1
|
Ruano-Rodríguez S, Navarro-Alonso M, Domínguez-Velasco B, Álvarez-Dolado M, Esteban FJ. STXBP1 Syndrome: Biotechnological Advances, Challenges, and Perspectives in Gene Therapy, Experimental Models, and Translational Research. BIOTECH 2025; 14:11. [PMID: 40227275 PMCID: PMC11939967 DOI: 10.3390/biotech14010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/13/2025] [Accepted: 02/19/2025] [Indexed: 04/15/2025] Open
Abstract
STXBP1 syndrome is a severe early-onset epileptic encephalopathy characterized by developmental delay and intellectual disability. This review addresses key challenges in STXBP1 syndrome research, focusing on advanced therapeutic approaches and experimental models. We explore gene therapy strategies, including CRISPR-Cas9, adeno-associated viral (AAV) vectors, and RNA therapies such as antisense oligonucleotides (ASOs), aimed at correcting STXBP1 genetic dysfunctions. This review presents in vivo and in vitro models, highlighting their contributions to understanding disease mechanisms. Additionally, we provide a proposal for a detailed bioinformatic analysis of a Spanish cohort of 41 individuals with STXBP1-related disorders, offering insights into specific mutations and their biological implications. Clinical and translational perspectives are discussed, emphasizing the potential of personalized medicine approaches. Future research directions and key challenges are outlined, including the identification of STXBP1 interactors, unexplored molecular pathways, and the need for clinically useful biomarkers. This comprehensive review underscores the complexity of STXBP1-related infantile epileptic encephalopathy and opens new avenues for advancing the understanding and treatment of this heterogeneous disease.
Collapse
Affiliation(s)
- Silvestre Ruano-Rodríguez
- Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), CSIC-US-JA-UPO, Américo Vespuccio Avenue 24, Cartuja Scientific and Technological Park, 41092 Seville, Spain; (S.R.-R.); (M.N.-A.); (B.D.-V.)
- Systems Biology Unit, Department of Experimental Biology, University of Jaén, Campus Las Lagunillas s/n, 23071 Jaén, Spain
| | - Mar Navarro-Alonso
- Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), CSIC-US-JA-UPO, Américo Vespuccio Avenue 24, Cartuja Scientific and Technological Park, 41092 Seville, Spain; (S.R.-R.); (M.N.-A.); (B.D.-V.)
| | - Benito Domínguez-Velasco
- Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), CSIC-US-JA-UPO, Américo Vespuccio Avenue 24, Cartuja Scientific and Technological Park, 41092 Seville, Spain; (S.R.-R.); (M.N.-A.); (B.D.-V.)
| | - Manuel Álvarez-Dolado
- Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), CSIC-US-JA-UPO, Américo Vespuccio Avenue 24, Cartuja Scientific and Technological Park, 41092 Seville, Spain; (S.R.-R.); (M.N.-A.); (B.D.-V.)
| | - Francisco J. Esteban
- Systems Biology Unit, Department of Experimental Biology, University of Jaén, Campus Las Lagunillas s/n, 23071 Jaén, Spain
| |
Collapse
|
2
|
Amaro Alves Romariz S, Klippel Zanona Q, Vendramin Pasquetti M, Cardozo Muller G, de Almeida Xavier J, Hermanus Schoorlemmer G, Monteiro Longo B, Calcagnotto ME. Modification of pre-ictal cortico-hippocampal oscillations by medial ganglionic eminence precursor cells grafting in the pilocarpine model of epilepsy. Epilepsy Behav 2024; 159:110027. [PMID: 39217756 DOI: 10.1016/j.yebeh.2024.110027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Cell replacement therapies using medial ganglionic eminence (MGE)-derived GABAergic precursors reduce seizures by restoring inhibition in animal models of epilepsy. However, how MGE-derived cells affect abnormal neuronal networks and consequently brain oscillations to reduce ictogenesis is still under investigation. We performed quantitative analysis of pre-ictal local field potentials (LFP) of cortical and hippocampal CA1 areas recorded in vivo in the pilocarpine rat model of epilepsy, with or without intrahippocampal MGE-precursor grafts (PILO and PILO+MGE groups, respectively). The PILO+MGE animals had a significant reduction in the number of seizures. The quantitative analysis of pre-ictal LFP showed decreased power of cortical and hippocampal delta, theta and beta oscillations from the 5 min. interictal baseline to the 20 s. pre-ictal period in both groups. However, PILO+MGE animals had higher power of slow and fast oscillations in the cortex and lower power of slow and fast oscillations in the hippocampus compared to the PILO group. Additionally, PILO+MGE animals exhibited decreased cortico-hippocampal synchrony for theta and gamma oscillations at seizure onset and lower hippocampal CA1 synchrony between delta and theta with slow gamma oscillations compared to PILO animals. These findings suggest that MGE-derived cell integration into the abnormally rewired network may help control ictogenesis.
Collapse
Affiliation(s)
- Simone Amaro Alves Romariz
- Laboratório de Neurofisiologia, Departamento de Fisiologia, Universidade Federal de São Paulo (UNIFESP/SP), São Paulo, Brazil
| | - Querusche Klippel Zanona
- Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory, Department of Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Graduate Program in Neuroscience, ICBS, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Mayara Vendramin Pasquetti
- Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory, Department of Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Graduate Program in Biological Science: Biochemistry, Department of Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Gabriel Cardozo Muller
- Graduate Program in Epidemiology, Medical School, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Graduate Program in Medical Science, Universidade do Vale do Taquari, Lajeado, RS, Brazil
| | - Jaqueline de Almeida Xavier
- Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory, Department of Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Guus Hermanus Schoorlemmer
- Laboratório de Fisiologia Cardiovascular e Respiratória, Departamento de Fisiologia, Universidade Federal de São Paulo (UNIFESP/SP), São Paulo, Brazil
| | - Beatriz Monteiro Longo
- Laboratório de Neurofisiologia, Departamento de Fisiologia, Universidade Federal de São Paulo (UNIFESP/SP), São Paulo, Brazil
| | - Maria Elisa Calcagnotto
- Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory, Department of Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Graduate Program in Neuroscience, ICBS, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Graduate Program in Biological Science: Biochemistry, Department of Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| |
Collapse
|
3
|
Murao N, Matsuda T, Kadowaki H, Matsushita Y, Tanimoto K, Katagiri T, Nakashima K, Nishitoh H. The Derlin-1-Stat5b axis maintains homeostasis of adult hippocampal neurogenesis. EMBO Rep 2024; 25:3678-3706. [PMID: 39080439 PMCID: PMC11316036 DOI: 10.1038/s44319-024-00205-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 08/11/2024] Open
Abstract
Adult neural stem cells (NSCs) in the hippocampal dentate gyrus continuously proliferate and generate new neurons throughout life. Although various functions of organelles are closely related to the regulation of adult neurogenesis, the role of endoplasmic reticulum (ER)-related molecules in this process remains largely unexplored. Here we show that Derlin-1, an ER-associated degradation component, spatiotemporally maintains adult hippocampal neurogenesis through a mechanism distinct from its established role as an ER quality controller. Derlin-1 deficiency in the mouse central nervous system leads to the ectopic localization of newborn neurons and impairs NSC transition from active to quiescent states, resulting in early depletion of hippocampal NSCs. As a result, Derlin-1-deficient mice exhibit phenotypes of increased seizure susceptibility and cognitive dysfunction. Reduced Stat5b expression is responsible for adult neurogenesis defects in Derlin-1-deficient NSCs. Inhibition of histone deacetylase activity effectively induces Stat5b expression and restores abnormal adult neurogenesis, resulting in improved seizure susceptibility and cognitive dysfunction in Derlin-1-deficient mice. Our findings indicate that the Derlin-1-Stat5b axis is indispensable for the homeostasis of adult hippocampal neurogenesis.
Collapse
Affiliation(s)
- Naoya Murao
- Laboratory of Biochemistry and Molecular Biology, Department of Medical Sciences, University of Miyazaki, Miyazaki, Japan
| | - Taito Matsuda
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hisae Kadowaki
- Laboratory of Biochemistry and Molecular Biology, Department of Medical Sciences, University of Miyazaki, Miyazaki, Japan
| | - Yosuke Matsushita
- Division of Genome Medicine, Tokushima University, Tokushima, Japan
- National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Kousuke Tanimoto
- High-risk Infectious Disease Control, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Toyomasa Katagiri
- Division of Genome Medicine, Tokushima University, Tokushima, Japan
- National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Kinichi Nakashima
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Hideki Nishitoh
- Laboratory of Biochemistry and Molecular Biology, Department of Medical Sciences, University of Miyazaki, Miyazaki, Japan.
- Frontier Science Research Center, University of Miyazaki, Miyazaki, Japan.
| |
Collapse
|
4
|
Toudji I, Toumi A, Chamberland É, Rossignol E. Interneuron odyssey: molecular mechanisms of tangential migration. Front Neural Circuits 2023; 17:1256455. [PMID: 37779671 PMCID: PMC10538647 DOI: 10.3389/fncir.2023.1256455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/21/2023] [Indexed: 10/03/2023] Open
Abstract
Cortical GABAergic interneurons are critical components of neural networks. They provide local and long-range inhibition and help coordinate network activities involved in various brain functions, including signal processing, learning, memory and adaptative responses. Disruption of cortical GABAergic interneuron migration thus induces profound deficits in neural network organization and function, and results in a variety of neurodevelopmental and neuropsychiatric disorders including epilepsy, intellectual disability, autism spectrum disorders and schizophrenia. It is thus of paramount importance to elucidate the specific mechanisms that govern the migration of interneurons to clarify some of the underlying disease mechanisms. GABAergic interneurons destined to populate the cortex arise from multipotent ventral progenitor cells located in the ganglionic eminences and pre-optic area. Post-mitotic interneurons exit their place of origin in the ventral forebrain and migrate dorsally using defined migratory streams to reach the cortical plate, which they enter through radial migration before dispersing to settle in their final laminar allocation. While migrating, cortical interneurons constantly change their morphology through the dynamic remodeling of actomyosin and microtubule cytoskeleton as they detect and integrate extracellular guidance cues generated by neuronal and non-neuronal sources distributed along their migratory routes. These processes ensure proper distribution of GABAergic interneurons across cortical areas and lamina, supporting the development of adequate network connectivity and brain function. This short review summarizes current knowledge on the cellular and molecular mechanisms controlling cortical GABAergic interneuron migration, with a focus on tangential migration, and addresses potential avenues for cell-based interneuron progenitor transplants in the treatment of neurodevelopmental disorders and epilepsy.
Collapse
Affiliation(s)
- Ikram Toudji
- Centre Hospitalier Universitaire (CHU) Sainte-Justine Research Center, Montréal, QC, Canada
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
| | - Asmaa Toumi
- Centre Hospitalier Universitaire (CHU) Sainte-Justine Research Center, Montréal, QC, Canada
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC, Canada
| | - Émile Chamberland
- Centre Hospitalier Universitaire (CHU) Sainte-Justine Research Center, Montréal, QC, Canada
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
| | - Elsa Rossignol
- Centre Hospitalier Universitaire (CHU) Sainte-Justine Research Center, Montréal, QC, Canada
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
- Department of Pediatrics, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
5
|
Righes Marafiga J, Baraban SC. Cell therapy for neurological disorders: Progress towards an embryonic medial ganglionic eminence progenitor-based treatment. Front Neurosci 2023; 17:1177678. [PMID: 37123353 PMCID: PMC10140420 DOI: 10.3389/fnins.2023.1177678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 03/28/2023] [Indexed: 05/02/2023] Open
Abstract
Impairment of development, migration, or function of inhibitory interneurons are key features of numerous circuit-based neurological disorders, such as epilepsy. From a therapeutic perspective, symptomatic treatment of these disorders often relies upon drugs or deep brain stimulation approaches to provide a general enhancement of GABA-mediated inhibition. A more effective strategy to target these pathological circuits and potentially provide true disease-modifying therapy, would be to selectively add new inhibitory interneurons into these circuits. One such strategy, using embryonic medial ganglionic (MGE) progenitor cells as a source of a unique sub-population of interneurons, has already proven effective as a cell transplantation therapy in a variety of preclinical models of neurological disorders, especially in mouse models of acquired epilepsy. Here we will discuss the evolution of this interneuron-based transplantation therapy in acquired epilepsy models, with an emphasis on the recent adaptation of MGE progenitor cells for xenotransplantation into larger mammals.
Collapse
Affiliation(s)
- Joseane Righes Marafiga
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, United States
| | - Scott C. Baraban
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, United States
- Helen Wills Institute for Neuroscience, University of California Berkeley, Berkeley, CA, United States
| |
Collapse
|
6
|
Specific contribution of Reelin expressed by Cajal-Retzius cells or GABAergic interneurons to cortical lamination. Proc Natl Acad Sci U S A 2022; 119:e2120079119. [PMID: 36067316 PMCID: PMC9477240 DOI: 10.1073/pnas.2120079119] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The extracellular protein Reelin, expressed by Cajal-Retzius (CR) cells at early stages of cortical development and at late stages by GABAergic interneurons, regulates radial migration and the "inside-out" pattern of positioning. Current models of Reelin functions in corticogenesis focus on early CR cell-derived Reelin in layer I. However, developmental disorders linked to Reelin deficits, such as schizophrenia and autism, are related to GABAergic interneuron-derived Reelin, although its role in migration has not been established. Here we selectively inactivated the Reln gene in CR cells or GABAergic interneurons. We show that CR cells have a major role in the inside-out order of migration, while CR and GABAergic cells sequentially cooperate to prevent invasion of cortical neurons into layer I. Furthermore, GABAergic cell-derived Reelin compensates some features of the reeler phenotype and is needed for the fine tuning of the layer-specific distribution of cortical neurons. In the hippocampus, the inactivation of Reelin in CR cells causes dramatic alterations in the dentate gyrus and mild defects in the hippocampus proper. These findings lead to a model in which both CR and GABAergic cell-derived Reelin cooperate to build the inside-out order of corticogenesis, which might provide a better understanding of the mechanisms involved in the pathogenesis of neuropsychiatric disorders linked to abnormal migration and Reelin deficits.
Collapse
|
7
|
Li D, Wu Q, Han X. Application of Medial Ganglionic Eminence Cell Transplantation in Diseases Associated With Interneuron Disorders. Front Cell Neurosci 2022; 16:939294. [PMID: 35865112 PMCID: PMC9294455 DOI: 10.3389/fncel.2022.939294] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Excitatory projection neurons and inhibitory interneurons primarily accomplish the neural activity of the cerebral cortex, and an imbalance of excitatory-inhibitory neural networks may lead to neuropsychiatric diseases. Gamma-aminobutyric acid (GABA)ergic interneurons mediate inhibition, and the embryonic medial ganglionic eminence (MGE) is a source of GABAergic interneurons. After transplantation, MGE cells migrate to different brain regions, differentiate into multiple subtypes of GABAergic interneurons, integrate into host neural circuits, enhance synaptic inhibition, and have tremendous application value in diseases associated with interneuron disorders. In the current review, we describe the fate of MGE cells derived into specific interneurons and the related diseases caused by interneuron loss or dysfunction and explore the potential of MGE cell transplantation as a cell-based therapy for a variety of interneuron disorder-related diseases, such as epilepsy, schizophrenia, autism spectrum disorder, and Alzheimer’s disease.
Collapse
|
8
|
Saporin as a Commercial Reagent: Its Uses and Unexpected Impacts in the Biological Sciences—Tools from the Plant Kingdom. Toxins (Basel) 2022; 14:toxins14030184. [PMID: 35324681 PMCID: PMC8952126 DOI: 10.3390/toxins14030184] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/23/2022] [Accepted: 02/23/2022] [Indexed: 02/02/2023] Open
Abstract
Saporin is a ribosome-inactivating protein that can cause inhibition of protein synthesis and causes cell death when delivered inside a cell. Development of commercial Saporin results in a technology termed ‘molecular surgery’, with Saporin as the scalpel. Its low toxicity (it has no efficient method of cell entry) and sturdy structure make Saporin a safe and simple molecule for many purposes. The most popular applications use experimental molecules that deliver Saporin via an add-on targeting molecule. These add-ons come in several forms: peptides, protein ligands, antibodies, even DNA fragments that mimic cell-binding ligands. Cells that do not express the targeted cell surface marker will not be affected. This review will highlight some newer efforts and discuss significant and unexpected impacts on science that molecular surgery has yielded over the last almost four decades. There are remarkable changes in fields such as the Neurosciences with models for Alzheimer’s Disease and epilepsy, and game-changing effects in the study of pain and itch. Many other uses are also discussed to record the wide-reaching impact of Saporin in research and drug development.
Collapse
|
9
|
Righes Marafiga J, Vendramin Pasquetti M, Calcagnotto ME. GABAergic interneurons in epilepsy: More than a simple change in inhibition. Epilepsy Behav 2021; 121:106935. [PMID: 32035792 DOI: 10.1016/j.yebeh.2020.106935] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 12/20/2022]
Abstract
The pathophysiology of epilepsy has been historically grounded on hyperexcitability attributed to the oversimplified imbalance between excitation (E) and inhibition (I) in the brain. The decreased inhibition is mostly attributed to deficits in gamma-aminobutyric acid-containing (GABAergic) interneurons, the main source of inhibition in the central nervous system. However, the cell diversity, the wide range of spatiotemporal connectivity, and the distinct effects of the neurotransmitter GABA especially during development, must be considered to critically revisit the concept of hyperexcitability caused by decreased inhibition as a key characteristic in the development of epilepsy. Here, we will discuss that behind this known mechanism, there is a heterogeneity of GABAergic interneurons with distinct functions and sources, which have specific roles in controlling the neural network activity within the recruited microcircuit and altered network during the epileptogenic process. This article is part of the Special Issue "NEWroscience 2018.
Collapse
Affiliation(s)
- Joseane Righes Marafiga
- Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory, Department of Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil; Graduate Program in Biological Science: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil
| | - Mayara Vendramin Pasquetti
- Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory, Department of Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil; Graduate Program in Biological Science: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil
| | - Maria Elisa Calcagnotto
- Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory, Department of Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil; Graduate Program in Biological Science: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil; Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul, Porto Alegre 90046-900, RS, Brazil.
| |
Collapse
|
10
|
Xing W, de Lima AD, Voigt T. The Structural E/I Balance Constrains the Early Development of Cortical Network Activity. Front Cell Neurosci 2021; 15:687306. [PMID: 34349623 PMCID: PMC8326976 DOI: 10.3389/fncel.2021.687306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/17/2021] [Indexed: 01/03/2023] Open
Abstract
Neocortical networks have a characteristic constant ratio in the number of glutamatergic projection neurons (PN) and GABAergic interneurons (IN), and deviations in this ratio are often associated with developmental neuropathologies. Cultured networks with defined cellular content allowed us to ask if initial PN/IN ratios change the developmental population dynamics, and how different ratios impact the physiological excitatory/inhibitory (E/I) balance and the network activity development. During the first week in vitro, the IN content modulated PN numbers, increasing their proliferation in networks with higher IN proportions. The proportion of INs in each network set remained similar to the initial plating ratio during the 4 weeks cultivation period. Results from additional networks generated with more diverse cellular composition, including early-born GABA neurons, suggest that a GABA-dependent mechanism may decrease the survival of additional INs. A large variation of the PN/IN ratio did not change the balance between isolated spontaneous glutamatergic and GABAergic postsynaptic currents charge transfer (E/I balance) measured in PNs or INs. In contrast, the E/I balance of multisynaptic bursts reflected differences in IN content. Additionally, the spontaneous activity recorded by calcium imaging showed that higher IN ratios were associated with increased frequency of network bursts combined with a decrease of participating neurons per event. In the 4th week in vitro, bursting activity was stereotypically synchronized in networks with very few INs but was more desynchronized in networks with higher IN proportions. These results suggest that the E/I balance of isolated postsynaptic currents in single cells may be regulated independently of PN/IN proportions, but the network bursts E/I balance and the maturation of spontaneous network activity critically depends upon the structural PN/IN ratio.
Collapse
Affiliation(s)
- Wenxi Xing
- Medizinische Fakultät, Institut für Physiologie, Otto-von-Guericke Universität, Magdeburg, Germany
| | - Ana Dolabela de Lima
- Medizinische Fakultät, Institut für Physiologie, Otto-von-Guericke Universität, Magdeburg, Germany
| | - Thomas Voigt
- Medizinische Fakultät, Institut für Physiologie, Otto-von-Guericke Universität, Magdeburg, Germany
| |
Collapse
|
11
|
Rosell-Valle C, Martínez-Losa M, Matas-Rico E, Castilla-Ortega E, Zambrana-Infantes E, Gómez-Conde AI, Sánchez-Salido L, Ladrón de Guevara-Miranda D, Pedraza C, Serrano-Castro PJ, Chun J, Rodríguez de Fonseca F, Álvarez-Dolado M, Santín LJ, Estivill-Torrús G. GABAergic deficits in absence of LPA 1 receptor, associated anxiety-like and coping behaviors, and amelioration by interneuron precursor transplants into the dorsal hippocampus. Brain Struct Funct 2021; 226:1479-1495. [PMID: 33792787 DOI: 10.1007/s00429-021-02261-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 03/17/2021] [Indexed: 02/05/2023]
Abstract
Defects in GABAergic function can cause anxiety- and depression-like behaviors among other neuropsychiatric disorders. Therapeutic strategies using the transplantation of GABAergic interneuron progenitors derived from the medial ganglionic eminence (MGE) into the adult hippocampus reversed the symptomatology in multiple rodent models of interneuron-related pathologies. In turn, the lysophosphatidic acid receptor LPA1 has been reported to be essential for hippocampal function. Converging evidence suggests that deficits in LPA1 receptor signaling represent a core feature underlying comparable hippocampal dysfunction and behaviors manifested in common neuropsychiatric conditions. Here, we first analyzed the GABAergic interneurons in the hippocampus of wild-type and maLPA1-null mice, lacking the LPA1 receptor. Our data revealed a reduction in the number of neurons expressing GABA, calcium-binding proteins, and neuropeptides such as somatostatin and neuropeptide Y in the hippocampus of maLPA1-null mice. Then, we used interneuron precursor transplants to test links between hippocampal GABAergic interneuron deficit, cell-based therapy, and LPA1 receptor-dependent psychiatric disease-like phenotypes. For this purpose, we transplanted MGE-derived interneuron precursors into the adult hippocampus of maLPA1-null mice, to test their effects on GABAergic deficit and behavioral symptoms associated with the absence of the LPA1 receptor. Transplant studies in maLPA1-null mice showed that grafted cells were able to restore the hippocampal host environment, decrease the anxiety-like behaviors and neutralize passive coping, with no abnormal effects on motor activity. Furthermore, grafted MGE-derived cells maintained their normal differentiation program. These findings reinforce the use of cell-based strategies for brain disorders and suggest that the LPA1 receptor represents a potential target for interneuron-related neuropsychiatric disorders.
Collapse
Grants
- PSI2017-82604R Spanish Ministry of Science, Innovation and Universities, co-funded by European Regional Development Fund (ERDF, EU)
- PSI2017-83408P Spanish Ministry of Science, Innovation and Universities, co-funded by European Regional Development Fund (ERDF, EU)
- SAF-09-07746 Spanish Ministry of Science, Innovation and Universities, co-funded by European Regional Development Fund (ERDF, EU)
- PI16/01510 Spanish Ministry of Science, Innovation and Universities, co-funded by European Regional Development Fund (ERDF, EU)
- SEJ-4515 Andalusian Regional Ministry of Economy, Knowledge, Business and University
- SEJ-1863 Andalusian Regional Ministry of Economy, Knowledge, Business and University
Collapse
Affiliation(s)
- Cristina Rosell-Valle
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain
- Unidad Clínica de Neurociencias, Hospital Regional Universitario de Málaga, Málaga, Spain
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Universidad de Málaga, Málaga, Spain
- Unidad de Producción de Reprogramación Celular, Red Andaluza Para El Diseño Y Traslación de Terapias Avanzadas, Junta de Andalucía, Spain
| | - Magdalena Martínez-Losa
- Laboratorio de Terapia Celular en Neuropatologías, Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, CSIC, Sevilla, Spain
| | - Elisa Matas-Rico
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain
- Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, Málaga, Spain
| | - Estela Castilla-Ortega
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain
- Unidad Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Emma Zambrana-Infantes
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Universidad de Málaga, Málaga, Spain
| | - Ana Isabel Gómez-Conde
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain
- ECAI de Microscopía, Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain
| | - Lourdes Sánchez-Salido
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain
- ECAI de Microscopía, Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain
| | - David Ladrón de Guevara-Miranda
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Universidad de Málaga, Málaga, Spain
| | - Carmen Pedraza
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Universidad de Málaga, Málaga, Spain
| | - Pedro Jesús Serrano-Castro
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain
- Unidad Clínica de Neurociencias, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Jerold Chun
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Fernando Rodríguez de Fonseca
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain
- Unidad Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Manuel Álvarez-Dolado
- Laboratorio de Terapia Celular en Neuropatologías, Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, CSIC, Sevilla, Spain
| | - Luis Javier Santín
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Universidad de Málaga, Málaga, Spain
| | - Guillermo Estivill-Torrús
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain.
- Unidad Clínica de Neurociencias, Hospital Regional Universitario de Málaga, Málaga, Spain.
| |
Collapse
|
12
|
Bi D, Wen L, Wu Z, Shen Y. GABAergic dysfunction in excitatory and inhibitory (E/I) imbalance drives the pathogenesis of Alzheimer's disease. Alzheimers Dement 2020; 16:1312-1329. [PMID: 32543726 DOI: 10.1002/alz.12088] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 01/28/2020] [Accepted: 02/10/2020] [Indexed: 12/28/2022]
Abstract
OBJECTIVE To propose a new hypothesis that GABAergic dysfunction in excitatory and inhibitory (E/I) imbalance drives the pathogenesis of Alzheimer's disease (AD). BACKGROUND Synaptic dysfunction and E/I imbalance emerge decades before the appearance of cognitive decline in AD patients, which contribute to neurodegeneration. Initially, E/I imbalance was thought to occur first, due to dysfunction of the glutamatergic and cholinergic systems. However, new evidence has demonstrated that the GABAergic system, the counterpart of E/I balance and the major inhibitory neurotransmitter system in the central nervous system, is altered enormously and that this contributes to E/I imbalance and further AD pathogenesis. NEW HYPOTHESIS Alterations to the GABAergic system, induced by multiple AD pathogenic or risk factors, contribute to E/I imbalance and AD pathogenesis. MAJOR CHALLENGES FOR THE HYPOTHESIS This GABAergic hypothesis accounts for many critical questions and common challenges confronting a new hypothesis of AD pathogenesis. More specifically, it explains why amyloid beta (Aβ), β-secretase (BACE1), apolipoprotein E4 gene (APOE ε4), hyperactive glia cells, contributes to AD pathogenesis and why age and sex are the risk factors of AD. GABAergic dysfunction promotes the spread of Aβ pathology throughout the AD brain and associated cognitive impairments, and the induction of dysfunction induced by these varied risk factors shares this common neurobiology leading to E/I imbalance. In turn, some of these factors exacerbate GABAergic dysfunction and E/I imbalance. Moreover, the GABAergic system modulates various brain functions and thus, the GABAergic hypothesis accounts for nonamnestic manifestations. Furthermore, corrections of E/I balance through manipulation of GABAergic functions have shown positive outcomes in preclinical and clinical studies, suggesting the potential of the GABAergic system as a therapeutic target in AD. LINKAGE TO OTHER MAJOR THEORIES Dysfunction of the GABAergic system is induced by multiple critical signaling pathways, which include the existing major theories of AD pathogenesis, such as the Aβ and neuroinflammation hypotheses. In a new perspective, this GABAergic hypothesis accounts for the E/I imbalance and related excitotoxicity, which contribute to cognitive decline and AD pathogenesis. Therefore, the GABAergic system could be a key target to restore, at least partially, the E/I balance and cognitive function in AD patients.
Collapse
Affiliation(s)
- Danlei Bi
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Institute on Aging and Brain Disorders, University of Sciences and Technology of China, Hefei, China.,Neurodegenerative Disease Research Center, University of Science and Technology of China, Hefei, China.,Hefei National Laboratory for Physical Sciences at the Microscale, Neurodegenerative Disorder Research Center, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Lang Wen
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Institute on Aging and Brain Disorders, University of Sciences and Technology of China, Hefei, China.,Neurodegenerative Disease Research Center, University of Science and Technology of China, Hefei, China.,Hefei National Laboratory for Physical Sciences at the Microscale, Neurodegenerative Disorder Research Center, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zujun Wu
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Institute on Aging and Brain Disorders, University of Sciences and Technology of China, Hefei, China.,Neurodegenerative Disease Research Center, University of Science and Technology of China, Hefei, China.,Hefei National Laboratory for Physical Sciences at the Microscale, Neurodegenerative Disorder Research Center, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yong Shen
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Institute on Aging and Brain Disorders, University of Sciences and Technology of China, Hefei, China.,Neurodegenerative Disease Research Center, University of Science and Technology of China, Hefei, China.,Hefei National Laboratory for Physical Sciences at the Microscale, Neurodegenerative Disorder Research Center, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
13
|
Juarez-Salinas DL, Braz JM, Etlin A, Gee S, Sohal V, Basbaum AI. GABAergic cell transplants in the anterior cingulate cortex reduce neuropathic pain aversiveness. Brain 2019; 142:2655-2669. [PMID: 31321411 PMCID: PMC6752168 DOI: 10.1093/brain/awz203] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 03/18/2019] [Accepted: 05/12/2019] [Indexed: 01/09/2023] Open
Abstract
Dysfunction of inhibitory circuits in the rostral anterior cingulate cortex underlies the affective (aversive), but not the sensory-discriminative features (hypersensitivity) of the pain experience. To restore inhibitory controls, we transplanted inhibitory interneuron progenitor cells into the rostral anterior cingulate cortex in a chemotherapy-induced neuropathic pain model. The transplants integrated, exerted a GABA-A mediated inhibition of host pyramidal cells and blocked gabapentin preference (i.e. relieved ongoing pain) in a conditioned place preference paradigm. Surprisingly, pain aversiveness persisted when the transplants populated both the rostral and posterior anterior cingulate cortex. We conclude that selective and long lasting inhibition of the rostral anterior cingulate cortex, in the mouse, has a profound pain relieving effect against nerve injury-induced neuropathic pain. However, the interplay between the rostral and posterior anterior cingulate cortices must be considered when examining circuits that influence ongoing pain and pain aversiveness.
Collapse
Affiliation(s)
| | - Joao M Braz
- Department Anatomy, University California San Francisco, San Francisco, CA, USA
| | - Alexander Etlin
- Department Anatomy, University California San Francisco, San Francisco, CA, USA
| | - Steven Gee
- Department Psychiatry, University California San Francisco, San Francisco, CA, USA
| | - Vikaas Sohal
- Department Psychiatry, University California San Francisco, San Francisco, CA, USA
| | - Allan I Basbaum
- Department Anatomy, University California San Francisco, San Francisco, CA, USA
| |
Collapse
|
14
|
Restrained Dendritic Growth of Adult-Born Granule Cells Innervated by Transplanted Fetal GABAergic Interneurons in Mice with Temporal Lobe Epilepsy. eNeuro 2019; 6:ENEURO.0110-18.2019. [PMID: 31043461 PMCID: PMC6497906 DOI: 10.1523/eneuro.0110-18.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 03/11/2019] [Accepted: 03/15/2019] [Indexed: 12/16/2022] Open
Abstract
The dentate gyrus (DG) is a region of the adult rodent brain that undergoes continuous neurogenesis. Seizures and loss or dysfunction of GABAergic synapses onto adult-born dentate granule cells (GCs) alter their dendritic growth and migration, resulting in dysmorphic and hyperexcitable GCs. Additionally, transplants of fetal GABAergic interneurons in the DG of mice with temporal lobe epilepsy (TLE) result in seizure suppression, but it is unknown whether increasing interneurons with these transplants restores GABAergic innervation to adult-born GCs. Here, we address this question by birth-dating GCs with retrovirus at different times up to 12 weeks after pilocarpine-induced TLE in adult mice. Channelrhodopsin 2 (ChR2)-enhanced yellow fluorescent protein (EYFP)-expressing medial-ganglionic eminence (MGE)-derived GABAergic interneurons from embryonic day (E)13.5 mouse embryos were transplanted into the DG of the TLE mice and GCs with transplant-derived inhibitory post-synaptic currents (IPSCs) were identified by patch-clamp electrophysiology and optogenetic interrogation. Putative synaptic sites between GCs and GABAergic transplants were also confirmed by intracellular biocytin staining, immunohistochemistry, and confocal imaging. 3D reconstructions of dendritic arbors and quantitative morphometric analyses were carried out in >150 adult-born GCs. GABAergic inputs from transplanted interneurons correlated with markedly shorter GC dendrites, compared to GCs that were not innervated by the transplants. Moreover, these effects were confined to distal dendritic branches and a short time window of six to eight weeks. The effects were independent of seizures as they were also observed in naïve mice with MGE transplants. These findings are consistent with the hypothesis that increased inhibitory currents over a smaller dendritic arbor in adult-born GCs may reduce their excitability and lead to seizure suppression.
Collapse
|
15
|
Pluripotent stem cell-derived interneuron progenitors mature and restore memory deficits but do not suppress seizures in the epileptic mouse brain. Stem Cell Res 2018; 33:83-94. [DOI: 10.1016/j.scr.2018.10.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 08/27/2018] [Accepted: 10/03/2018] [Indexed: 01/11/2023] Open
|
16
|
Nirzhor SSR, Khan RI, Neelotpol S. The Biology of Glial Cells and Their Complex Roles in Alzheimer's Disease: New Opportunities in Therapy. Biomolecules 2018; 8:biom8030093. [PMID: 30201881 PMCID: PMC6164719 DOI: 10.3390/biom8030093] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 08/28/2018] [Accepted: 09/06/2018] [Indexed: 01/01/2023] Open
Abstract
Even though Alzheimer's disease (AD) is of significant interest to the scientific community, its pathogenesis is very complicated and not well-understood. A great deal of progress has been made in AD research recently and with the advent of these new insights more therapeutic benefits may be identified that could help patients around the world. Much of the research in AD thus far has been very neuron-oriented; however, recent studies suggest that glial cells, i.e., microglia, astrocytes, oligodendrocytes, and oligodendrocyte progenitor cells (NG2 glia), are linked to the pathogenesis of AD and may offer several potential therapeutic targets against AD. In addition to a number of other functions, glial cells are responsible for maintaining homeostasis (i.e., concentration of ions, neurotransmitters, etc.) within the central nervous system (CNS) and are crucial to the structural integrity of neurons. This review explores the: (i) role of glial cells in AD pathogenesis; (ii) complex functionalities of the components involved; and (iii) potential therapeutic targets that could eventually lead to a better quality of life for AD patients.
Collapse
|
17
|
Backofen-Wehrhahn B, Gey L, Bröer S, Petersen B, Schiff M, Handreck A, Stanslowsky N, Scharrenbroich J, Weißing M, Staege S, Wegner F, Niemann H, Löscher W, Gernert M. Anticonvulsant effects after grafting of rat, porcine, and human mesencephalic neural progenitor cells into the rat subthalamic nucleus. Exp Neurol 2018; 310:70-83. [PMID: 30205107 DOI: 10.1016/j.expneurol.2018.09.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 08/20/2018] [Accepted: 09/07/2018] [Indexed: 12/11/2022]
Abstract
Cell transplantation based therapy is a promising strategy for treating intractable epilepsies. Inhibition of the subthalamic nucleus (STN) or substantia nigra pars reticulata (SNr) is a powerful experimental approach for remote control of different partial seizure types, when targeting the seizure focus is not amenable. Here, we tested the hypothesis that grafting of embryonic/fetal neural precursor cells (NPCs) from various species (rat, human, pig) into STN or SNr of adult rats induces anticonvulsant effects. To rationally refine this approach, we included NPCs derived from the medial ganglionic eminence (MGE) and ventral mesencephalon (VM), both of which are able to develop a GABAergic phenotype. All VM- and MGE-derived cells showed intense migration behavior after grafting into adult rats, developed characteristics of inhibitory interneurons, and survived at least up to 4 months after transplantation. By using the intravenous pentylenetetrazole (PTZ) seizure threshold test in adult rats, transient anticonvulsant effects were observed after bilateral grafting of NPCs derived from human and porcine VM into STN, but not after SNr injection (site-specificity). In contrast, MGE-derived NPCs did not cause anticonvulsant effects after grafting into STN or SNr (cell-specificity). Neither induction of status epilepticus by lithium-pilocarpine to induce neuronal damage prior to the PTZ test nor pretreatment of MGE cells with retinoic acid and potassium chloride to increase differentiation into GABAergic neurons could enhance anticonvulsant effectiveness of MGE cells. This is the first proof-of-principle study showing anticonvulsant effects by bilateral xenotransplantation of NPCs into the STN. Our study highlights the value of VM-derived NPCs for interneuron-based cell grafting targeting the STN.
Collapse
Affiliation(s)
- Bianca Backofen-Wehrhahn
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany
| | - Laura Gey
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany
| | - Sonja Bröer
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany
| | - Björn Petersen
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Mariensee, Germany
| | - Miriam Schiff
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany
| | - Annelie Handreck
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany
| | | | - Jessica Scharrenbroich
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany
| | - Michael Weißing
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany
| | - Selma Staege
- Center for Systems Neuroscience, Hannover, Germany; Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Florian Wegner
- Center for Systems Neuroscience, Hannover, Germany; Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Heiner Niemann
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Mariensee, Germany
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany
| | - Manuela Gernert
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany.
| |
Collapse
|
18
|
Ectopic neurogenesis induced by prenatal antiepileptic drug exposure augments seizure susceptibility in adult mice. Proc Natl Acad Sci U S A 2018; 115:4270-4275. [PMID: 29610328 PMCID: PMC5910824 DOI: 10.1073/pnas.1716479115] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Recent clinical studies suggest that environmental insults, such as valproic acid (VPA) exposure, in utero can have adverse effects on brain function of the offspring in later life, although the underlying mechanisms of these impairments remain poorly understood. By focusing on the property of neural stem/progenitor cells (NS/PCs) residing in the adult hippocampus, we identified the mechanism of increased seizure sensitivity in prenatally VPA-exposed adult mice. Furthermore, we found that voluntary exercise can overcome the adverse effects through normalizing VPA-induced transcriptome alterations in NS/PCs. We believe that our study provides insights for further understanding and developing treatment strategies for neurological disorders induced by prenatal environmental insults. Epilepsy is a neurological disorder often associated with seizure that affects ∼0.7% of pregnant women. During pregnancy, most epileptic patients are prescribed antiepileptic drugs (AEDs) such as valproic acid (VPA) to control seizure activity. Here, we show that prenatal exposure to VPA in mice increases seizure susceptibility in adult offspring through mislocalization of newborn neurons in the hippocampus. We confirmed that neurons newly generated from neural stem/progenitor cells (NS/PCs) are integrated into the granular cell layer in the adult hippocampus; however, prenatal VPA treatment altered the expression in NS/PCs of genes associated with cell migration, including CXC motif chemokine receptor 4 (Cxcr4), consequently increasing the ectopic localization of newborn neurons in the hilus. We also found that voluntary exercise in a running wheel suppressed this ectopic neurogenesis and countered the enhanced seizure susceptibility caused by prenatal VPA exposure, probably by normalizing the VPA-disrupted expression of multiple genes including Cxcr4 in adult NS/PCs. Replenishing Cxcr4 expression alone in NS/PCs was sufficient to overcome the aberrant migration of newborn neurons and increased seizure susceptibility in VPA-exposed mice. Thus, prenatal exposure to an AED, VPA, has a long-term effect on the behavior of NS/PCs in offspring, but this effect can be counteracted by a simple physical activity. Our findings offer a step to developing strategies for managing detrimental effects in offspring exposed to VPA in utero.
Collapse
|
19
|
Nav1.1-Overexpressing Interneuron Transplants Restore Brain Rhythms and Cognition in a Mouse Model of Alzheimer's Disease. Neuron 2018; 98:75-89.e5. [PMID: 29551491 DOI: 10.1016/j.neuron.2018.02.029] [Citation(s) in RCA: 164] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 01/12/2018] [Accepted: 02/26/2018] [Indexed: 01/01/2023]
Abstract
Inhibitory interneurons regulate the oscillatory rhythms and network synchrony that are required for cognitive functions and disrupted in Alzheimer's disease (AD). Network dysrhythmias in AD and multiple neuropsychiatric disorders are associated with hypofunction of Nav1.1, a voltage-gated sodium channel subunit predominantly expressed in interneurons. We show that Nav1.1-overexpressing, but not wild-type, interneuron transplants derived from the embryonic medial ganglionic eminence (MGE) enhance behavior-dependent gamma oscillatory activity, reduce network hypersynchrony, and improve cognitive functions in human amyloid precursor protein (hAPP)-transgenic mice, which simulate key aspects of AD. Increased Nav1.1 levels accelerated action potential kinetics of transplanted fast-spiking and non-fast-spiking interneurons. Nav1.1-deficient interneuron transplants were sufficient to cause behavioral abnormalities in wild-type mice. We conclude that the efficacy of interneuron transplantation and the function of transplanted cells in an AD-relevant context depend on their Nav1.1 levels. Disease-specific molecular optimization of cell transplants may be required to ensure therapeutic benefits in different conditions.
Collapse
|
20
|
Wuttke TV, Markopoulos F, Padmanabhan H, Wheeler AP, Murthy VN, Macklis JD. Developmentally primed cortical neurons maintain fidelity of differentiation and establish appropriate functional connectivity after transplantation. Nat Neurosci 2018; 21:517-529. [PMID: 29507412 PMCID: PMC5876138 DOI: 10.1038/s41593-018-0098-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 01/26/2018] [Indexed: 01/06/2023]
Abstract
Repair of complex CNS circuitry requires newly incorporated neurons to become appropriately, functionally integrated. One approach is to direct differentiation of endogenous progenitors in situ, or ex vivo followed by transplantation. Prior studies find that newly incorporated neurons can establish long-distance axon projections, form synapses and functionally integrate in evolutionarily old hypothalamic energy-balance circuitry. We now demonstrate that postnatal neocortical connectivity can be reconstituted with point-to-point precision, including cellular integration of specific, molecularly identified projection neuron subtypes into correct positions, combined with development of appropriate long-distance projections and synapses. Using optogenetics-based electrophysiology, experiments demonstrate functional afferent and efferent integration of transplanted neurons into transcallosal projection neuron circuitry. Results further indicate that 'primed' early postmitotic neurons, including already fate-restricted deep-layer projection neurons and/or plastic postmitotic neuroblasts with partially fate-restricted potential, account for the predominant population of neurons capable of achieving this optimal level of integration.
Collapse
Affiliation(s)
- Thomas V Wuttke
- Dept. of Stem Cell and Regenerative Biology, Center for Brain Science, and Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA.,Departments of Neurosurgery and of Neurology and Epileptology, and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Foivos Markopoulos
- Dept. of Molecular and Cellular Biology, and Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Hari Padmanabhan
- Dept. of Stem Cell and Regenerative Biology, Center for Brain Science, and Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Aaron P Wheeler
- Dept. of Stem Cell and Regenerative Biology, Center for Brain Science, and Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Venkatesh N Murthy
- Dept. of Molecular and Cellular Biology, and Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Jeffrey D Macklis
- Dept. of Stem Cell and Regenerative Biology, Center for Brain Science, and Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
21
|
Yasuhara T, Date I, Liska MG, Kaneko Y, Vale FL. Translating regenerative medicine techniques for the treatment of epilepsy. Brain Circ 2017; 3:156-162. [PMID: 30276318 PMCID: PMC6057691 DOI: 10.4103/bc.bc_21_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 09/05/2017] [Accepted: 09/11/2017] [Indexed: 01/03/2023] Open
Abstract
Epilepsy is considered a chronic neurological disorder and is accompanied by persistent and diverse disturbances in electrical brain activity. While antiepileptic pharmaceuticals are still the predominant treatment for epilepsy, the advent of numerous surgical interventions has further improved outcomes for patients. Despite these advancements, a subpopulation continues to experience intractable seizures which are resistant to current conventional and nonconventional therapeutic options. In this review, we begin with an introduction to the clinical presentation of epilepsy before discussing the clinically relevant laboratory models of epilepsy. Finally, we explore the implications of regenerative medicine – including cell therapy, neuroprotective agents, and electrical stimulation – for epilepsy, supplemented with our laboratory's data. This paper is a review article. Referred literature in this paper has been listed in the references section. The datasets supporting the conclusions of this article are available online by searching various databases, including PubMed. Some original points in this article come from the laboratory practice in our research center and the authors’ experiences.
Collapse
Affiliation(s)
- Takao Yasuhara
- Department of Neurological Surgery, Okayama University, Graduate School of Medicine, Okayama, Japan
| | - Isao Date
- Department of Neurological Surgery, Okayama University, Graduate School of Medicine, Okayama, Japan
| | - M Grant Liska
- Department of Neurosurgery and Brain Repair, USF Morsani College of Medicine, Tampa, FL 33612, USA
| | - Yuji Kaneko
- Department of Neurosurgery and Brain Repair, USF Morsani College of Medicine, Tampa, FL 33612, USA
| | - Fernando L Vale
- Department of Neurosurgery and Brain Repair, USF Morsani College of Medicine, Tampa, FL 33612, USA
| |
Collapse
|
22
|
Casalia ML, Howard MA, Baraban SC. Persistent seizure control in epileptic mice transplanted with gamma-aminobutyric acid progenitors. Ann Neurol 2017; 82:530-542. [PMID: 28833459 PMCID: PMC5771437 DOI: 10.1002/ana.25021] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 08/14/2017] [Accepted: 08/14/2017] [Indexed: 12/19/2022]
Abstract
OBJECTIVE A significant proportion of the more than 50 million people worldwide currently suffering with epilepsy are resistant to antiepileptic drugs (AEDs). As an alternative to AEDs, novel therapies based on cell transplantation offer an opportunity for long-lasting modification of epileptic circuits. To develop such a treatment requires careful preclinical studies in a chronic epilepsy model featuring unprovoked seizures, hippocampal histopathology, and behavioral comorbidities. METHODS Transplantation of progenitor cells from embryonic medial or caudal ganglionic eminence (MGE, CGE) were made in a well-characterized mouse model of status epilepticus-induced epilepsy (systemic pilocarpine). Behavioral testing (handling and open field), continuous video-electroencephalographic (vEEG) monitoring, and slice electrophysiology outcomes were obtained up to 270 days after transplantation (DAT). Post-hoc immunohistochemistry was used to confirm cell identity. RESULTS MGE progenitors transplanted into the hippocampus of epileptic mice rescued handling and open field deficits starting at 60 DAT. In these same mice, an 84% to 88% reduction in seizure activity was observed between 180 and 210 DAT. Inhibitory postsynaptic current frequency, measured on pyramidal neurons in acute hippocampal slices at 270 DAT, was reduced in epileptic mice but restored to naïve levels in epileptic mice receiving MGE transplants. No reduction in seizure activity was observed in epileptic mice receiving intrahippocampal CGE progenitors. INTERPRETATION Our findings demonstrate that transplanted MGE progenitors enhance functional GABA-mediated inhibition, reduce spontaneous seizure frequency, and rescue behavioral deficits in a chronic epileptic animal model more than 6 months after treatment. Ann Neurol 2017;82:530-542.
Collapse
Affiliation(s)
- Mariana L Casalia
- Epilepsy Research Laboratory, Department of Neurological Surgery and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA
| | - MacKenzie A Howard
- Epilepsy Research Laboratory, Department of Neurological Surgery and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA
| | - Scott C Baraban
- Epilepsy Research Laboratory, Department of Neurological Surgery and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA
| |
Collapse
|
23
|
Spampanato J, Dudek FE. Targeted Interneuron Ablation in the Mouse Hippocampus Can Cause Spontaneous Recurrent Seizures. eNeuro 2017; 4:ENEURO.0130-17.2017. [PMID: 28785726 PMCID: PMC5520752 DOI: 10.1523/eneuro.0130-17.2017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 06/30/2017] [Accepted: 07/11/2017] [Indexed: 12/21/2022] Open
Abstract
The death of GABAergic interneurons has long been hypothesized to contribute to acquired epilepsy. These experiments tested the hypothesis that focal interneuron lesions cause acute seizures [i.e., status epilepticus (SE)] and/or chronic epilepsy [i.e., persistent spontaneous recurrent seizures (SRSs)]. To selectively ablate interneurons, Gad2-ires-Cre mice were injected unilaterally in the CA1 area of the dorsal hippocampus with an adeno-associated virus containing the diphtheria toxin receptor (DTR). Simultaneously, an electrode, connected to a miniature telemetry device, was positioned at the injection site for chronic recordings of local field potentials (LFPs). Two weeks after virus transfection, intraperitoneal injection of DT consistently caused focal, specific, and extensive ablation of interneurons. Long-term, continuous monitoring revealed that all mice with DT-induced interneuron lesions had SRSs. Seizures lasted tens of seconds and interseizure intervals were several hours (or days); therefore, these interneuron lesions did not induce SE. The SRSs occurred 3-5 d after DT treatment, which is the estimated time required for DT-induced cell death; therefore, induction of SRSs occurred without the latent period typical of acquired epilepsy. In five of six DT-treated mice, SRSs stopped within days, suggesting that the DT-induced interneuron lesions did not usually cause epilepsy. In one mouse, however, SRSs occurred for ≥34 d after interneuron ablation, similar to epilepsy after experimental SE. Sham control mice had no detectable seizures, confirming that the SRSs were due to ablation of interneurons. These data show that selective interneuron ablation consistently caused SRSs but not SE; and, at least under the conditions used here, interneuron lesions rarely led to persistent SRSs (i.e., epilepsy).
Collapse
Affiliation(s)
- Jay Spampanato
- Department of Neurosurgery, University of Utah School of Medicine, Salt Lake City, UT 84108
| | - F Edward Dudek
- Department of Neurosurgery, University of Utah School of Medicine, Salt Lake City, UT 84108
| |
Collapse
|
24
|
Paiva DDS, Romariz SAA, Valente MF, Moraes LB, Covolan L, Calcagnotto ME, Monteiro Longo B. Transplantation of inhibitory precursor cells from medial ganglionic eminence produces distinct responses in two different models of acute seizure induction. Epilepsy Behav 2017; 70:125-130. [PMID: 28427019 DOI: 10.1016/j.yebeh.2017.03.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 03/07/2017] [Accepted: 03/07/2017] [Indexed: 11/19/2022]
Abstract
Medial ganglionic eminence (MGE) is one of the sources of inhibitory interneurons during development. Following transplantation in postnatal developing brain, MGE cells can increase local inhibition suggesting a possible protection to GABAergic dysfunction in brain disorders, such as epilepsy. Since it has been shown that MGE-derived cells harvested as neurospheres are able to suppress seizures, it might be important to investigate whether these protective effects would change in different seizure models. Here, we used pentylenetetrazole-(PTZ) and maximal electroshock (MES)-induced seizure models to test whether the transplantation of MGE cells would increase the threshold to trigger acute seizures. When transplanted into the neocortex (layers 3-4) of neonatal mice (postnatal days 3-4), MGE cells were able to survive and were mainly found in piriform cortex, fimbria, and ventricular wall regions. Additionally, the number of GFP+ cells found in the brains of mice induced with PTZ and MES differed significantly and suggests proliferation and larger survival rate of MGE-transplanted cells after PTZ, but not MES-induced seizures. Following transplantation, there was a reduction in the number of animals presenting mild and severe seizures induced by PTZ. Furthermore, MGE-cell transplantation was able to increase threshold to seizures induced by PTZ, but was not able to prevent seizure spread induced by MES.
Collapse
Affiliation(s)
- Daisyléa de Souza Paiva
- Laboratório de Neurofisiologia, Universidade Federal de São Paulo - UNIFESP, São Paulo, Brazil
| | | | - Maria Fernanda Valente
- Laboratório de Neurofisiologia, Universidade Federal de São Paulo - UNIFESP, São Paulo, Brazil
| | - Luiz Bruno Moraes
- Laboratório de Neurofisiologia, Universidade Federal de São Paulo - UNIFESP, São Paulo, Brazil
| | - Luciene Covolan
- Laboratório de Neurofisiologia, Universidade Federal de São Paulo - UNIFESP, São Paulo, Brazil
| | | | - Beatriz Monteiro Longo
- Laboratório de Neurofisiologia, Universidade Federal de São Paulo - UNIFESP, São Paulo, Brazil.
| |
Collapse
|
25
|
Transplantation of GABAergic interneurons for cell-based therapy. PROGRESS IN BRAIN RESEARCH 2017; 231:57-85. [PMID: 28554401 DOI: 10.1016/bs.pbr.2016.11.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Many neurological disorders stem from defects in or the loss of specific neurons. Neuron transplantation has tremendous clinical potential for central nervous system therapy as it may allow for the targeted replacement of those cells that are lost in diseases. Normally, most neurons are added during restricted periods of embryonic and fetal development. The permissive milieu of the developing brain promotes neuronal migration, neuronal differentiation, and synaptogenesis. Once this active period of neurogenesis ends, the chemical and physical environment of the brain changes dramatically. The brain parenchyma becomes highly packed with neuronal and glial processes, extracellular matrix, myelin, and synapses. The migration of grafted cells to allow them to home into target regions and become functionally integrated is a key challenge to neuronal transplantation. Interestingly, transplanted young telencephalic inhibitory interneurons are able to migrate, differentiate, and integrate widely throughout the postnatal brain. These grafted interneurons can also functionally modify local circuit activity. These features have facilitated the use of interneuron transplantation to study fundamental neurodevelopmental processes including cell migration, cell specification, and programmed neuronal cell death. Additionally, these cells provide a unique opportunity to develop interneuron-based strategies for the treatment of diseases linked to interneuron dysfunction and neurological disorders associated to circuit hyperexcitability.
Collapse
|
26
|
Rodríguez-Martínez D, Martínez-Losa MM, Alvarez-Dolado M. Cryopreservation of GABAergic Neuronal Precursors for Cell-Based Therapy. PLoS One 2017; 12:e0170776. [PMID: 28122047 PMCID: PMC5266290 DOI: 10.1371/journal.pone.0170776] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 01/10/2017] [Indexed: 12/04/2022] Open
Abstract
Cryopreservation protocols are essential for stem cells storage in order to apply them in the clinic. Here we describe a new standardized cryopreservation protocol for GABAergic neural precursors derived from the medial glanglionic eminence (MGE), a promising source of GABAergic neuronal progenitors for cell therapy against interneuron-related pathologies. We used 10% Me2SO as cryoprotectant and assessed the effects of cell culture amplification and cellular organization, as in toto explants, neurospheres, or individualized cells, on post-thaw cell viability and retrieval. We confirmed that in toto cryopreservation of MGE explants is an optimal preservation system to keep intact the interneuron precursor properties for cell transplantation, together with a high cell viability (>80%) and yield (>70%). Post-thaw proliferation and self-renewal of the cryopreserved precursors were tested in vitro. In addition, their migration capacity, acquisition of mature neuronal morphology, and potency to differentiate into multiple interneuron subtypes were also confirmed in vivo after transplantation. The results show that the cryopreserved precursor features remained intact and were similar to those immediately transplanted after their dissection from the MGE. We hope this protocol will facilitate the generation of biobanks to obtain a permanent and reliable source of GABAergic precursors for clinical application in cell-based therapies against interneuronopathies.
Collapse
Affiliation(s)
- Daniel Rodríguez-Martínez
- Laboratory of Cell-based Therapy for Neuropathologies, Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), CSIC, Seville, Spain
| | - María Magdalena Martínez-Losa
- Laboratory of Cell-based Therapy for Neuropathologies, Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), CSIC, Seville, Spain
| | - Manuel Alvarez-Dolado
- Laboratory of Cell-based Therapy for Neuropathologies, Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), CSIC, Seville, Spain
| |
Collapse
|
27
|
Romariz SAA, Paiva DS, Galindo LT, Barnabé GF, Guedes VA, Borlongan CV, Longo BM. Medial Ganglionic Eminence Cells Freshly Obtained or Expanded as Neurospheres Show Distinct Cellular and Molecular Properties in Reducing Epileptic Seizures. CNS Neurosci Ther 2016; 23:127-134. [PMID: 27770487 DOI: 10.1111/cns.12650] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 09/11/2016] [Accepted: 09/13/2016] [Indexed: 01/20/2023] Open
Abstract
AIMS Medial ganglionic eminence (MGE) progenitors give rise to inhibitory interneurons and may serve as an alternative cell source for large-scale cell transplantation for epilepsy after in vitro expansion. We investigated whether modifications in the culture medium of MGE neurospheres affect neuronal differentiation and expression of MGE-specific genes. In vivo, we compared anticonvulsant effects and cell differentiation pattern among neurospheres grown in different culture media and compared them with freshly harvested MGE cells. METHODS We used four variations of cell culture: standard, containing growth factors (EGF/FGF-2) (GF); addition of retinoic acid (GF-RA); withdrawal of EGF/FGF-2 (WD); and addition of retinoic acid and withdrawal of EGF/FGF-2 (WD-RA). Based on in vitro results neurosphere-grown (WD-RA or GF conditions) or fresh MGE cells were transplanted into the hippocampus. RESULTS In vitro WD-RA showed increased neuronal population and higher expression of Dlx1, Nkx2.1, and Lhx6 genes in comparison with GF culture condition. After transplantation, fresh MGE cells and neurospheres (GF) showed anticonvulsant effects. However, fresh MGE cells differentiated preferentially into inhibitory neurons, while GF gave rise to glial cells. CONCLUSION We conclude that freshly isolated and neurosphere-grown MGE cells reduced seizures by different mechanisms (inhibitory interneurons vs. astrocytes). Fresh MGE cells appear more appropriate for cell therapies targeting inhibitory interneurons for conferring anticonvulsant outcomes.
Collapse
Affiliation(s)
- Simone A A Romariz
- Departamento de Fisiologia, Universidade Federal de São Paulo-UNIFESP, São Paulo, SP, Brazil
| | - Daisyléa S Paiva
- Departamento de Fisiologia, Universidade Federal de São Paulo-UNIFESP, São Paulo, SP, Brazil
| | - Layla T Galindo
- Departamento de Bioquímica, Universidade Federal de São Paulo-UNIFESP, São Paulo, SP, Brazil
| | - Gabriela F Barnabé
- Ludwig Institute for Cancer Research at Instituto Sírio-Libanês de Ensino e Pesquisa, São Paulo, SP, Brazil
| | - Vivian A Guedes
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, USA
| | - Cesario V Borlongan
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, USA
| | - Beatriz M Longo
- Departamento de Fisiologia, Universidade Federal de São Paulo-UNIFESP, São Paulo, SP, Brazil
| |
Collapse
|
28
|
Larimer P, Spatazza J, Espinosa JS, Tang Y, Kaneko M, Hasenstaub AR, Stryker MP, Alvarez-Buylla A. Caudal Ganglionic Eminence Precursor Transplants Disperse and Integrate as Lineage-Specific Interneurons but Do Not Induce Cortical Plasticity. Cell Rep 2016; 16:1391-1404. [PMID: 27425623 DOI: 10.1016/j.celrep.2016.06.071] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 05/04/2016] [Accepted: 06/16/2016] [Indexed: 10/21/2022] Open
Abstract
The maturation of inhibitory GABAergic cortical circuits regulates experience-dependent plasticity. We recently showed that the heterochronic transplantation of parvalbumin (PV) or somatostatin (SST) interneurons from the medial ganglionic eminence (MGE) reactivates ocular dominance plasticity (ODP) in the postnatal mouse visual cortex. Might other types of interneurons similarly induce cortical plasticity? Here, we establish that caudal ganglionic eminence (CGE)-derived interneurons, when transplanted into the visual cortex of neonatal mice, migrate extensively in the host brain and acquire laminar distribution, marker expression, electrophysiological properties, and visual response properties like those of host CGE interneurons. Although transplants from the anatomical CGE do induce ODP, we found that this plasticity reactivation is mediated by a small fraction of MGE-derived cells contained in the transplant. These findings demonstrate that transplanted CGE cells can successfully engraft into the postnatal mouse brain and confirm the unique role of MGE lineage neurons in the induction of ODP.
Collapse
Affiliation(s)
- Phillip Larimer
- Center for Integrative Neuroscience, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, CA 94158, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 94143, USA; Coleman Memorial Laboratory, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Julien Spatazza
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Juan Sebastian Espinosa
- Center for Integrative Neuroscience, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, CA 94158, USA; Department of Physiology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Yunshuo Tang
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Megumi Kaneko
- Center for Integrative Neuroscience, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, CA 94158, USA; Department of Physiology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Andrea R Hasenstaub
- Center for Integrative Neuroscience, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, CA 94158, USA; Coleman Memorial Laboratory, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Michael P Stryker
- Center for Integrative Neuroscience, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, CA 94158, USA; Department of Physiology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Arturo Alvarez-Buylla
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, 94143, USA.
| |
Collapse
|
29
|
Calcagnotto ME. Interneurons: Role in Maintaining and Restoring Synaptic Plasticity. Front Psychiatry 2016; 7:86. [PMID: 27242556 PMCID: PMC4863890 DOI: 10.3389/fpsyt.2016.00086] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 05/02/2016] [Indexed: 01/09/2023] Open
Affiliation(s)
- Maria Elisa Calcagnotto
- Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory, Biochemistry Department, Universidade Federal do Rio Grande do Sul , Porto Alegre , Brazil
| |
Collapse
|
30
|
GABA-ergic cell therapy for epilepsy: Advances, limitations and challenges. Neurosci Biobehav Rev 2015; 62:35-47. [PMID: 26748379 DOI: 10.1016/j.neubiorev.2015.12.014] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 11/06/2015] [Accepted: 12/28/2015] [Indexed: 01/04/2023]
Abstract
Diminution in the number of gamma-amino butyric acid positive (GABA-ergic) interneurons and their axon terminals, and/or alterations in functional inhibition are conspicuous brain alterations believed to contribute to the persistence of seizures in acquired epilepsies such as temporal lobe epilepsy. This has steered a perception that replacement of lost GABA-ergic interneurons would improve inhibitory synaptic neurotransmission in the epileptic brain region and thereby reduce the occurrence of seizures. Indeed, studies using animal prototypes have reported that grafting of GABA-ergic progenitors derived from multiple sources into epileptic regions can reduce seizures. This review deliberates recent advances, limitations and challenges concerning the development of GABA-ergic cell therapy for epilepsy. The efficacy and limitations of grafts of primary GABA-ergic progenitors from the embryonic lateral ganglionic eminence and medial ganglionic eminence (MGE), neural stem/progenitor cells expanded from MGE, and MGE-like progenitors generated from human pluripotent stem cells for alleviating seizures and co-morbidities of epilepsy are conferred. Additional studies required for possible clinical application of GABA-ergic cell therapy for epilepsy are also summarized.
Collapse
|
31
|
Hunt RF, Baraban SC. Interneuron Transplantation as a Treatment for Epilepsy. Cold Spring Harb Perspect Med 2015; 5:5/12/a022376. [PMID: 26627452 DOI: 10.1101/cshperspect.a022376] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Stem-cell therapy has extraordinary potential to address critical, unmet needs in the treatment of human disease. One particularly promising approach for the treatment of epilepsy is to increase inhibition in areas of the epileptic brain by grafting new inhibitory cortical interneurons. When grafted from embryos, young γ-aminobutyric acid (GABA)ergic precursors disperse, functionally mature into host brain circuits as local-circuit interneurons, and can stop seizures in both genetic and acquired forms of the disease. These features make interneuron cell transplantation an attractive new approach for the treatment of intractable epilepsies, as well as other brain disorders that involve increased risk for epilepsy as a comorbidity. Here, we review recent efforts to isolate and transplant cortical interneuron precursors derived from embryonic mouse and human cell sources. We also discuss some of the important challenges that must be addressed before stem-cell-based treatment for human epilepsy is realized.
Collapse
Affiliation(s)
- Robert F Hunt
- Department of Anatomy & Neurobiology, University of California Irvine, Irvine, California 92697
| | - Scott C Baraban
- Department of Anatomy & Neurobiology, University of California Irvine, Irvine, California 92697
| |
Collapse
|
32
|
Tong LM, Fong H, Huang Y. Stem cell therapy for Alzheimer's disease and related disorders: current status and future perspectives. Exp Mol Med 2015; 47:e151. [PMID: 25766620 PMCID: PMC4351411 DOI: 10.1038/emm.2014.124] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 11/19/2014] [Indexed: 12/31/2022] Open
Abstract
Underlying cognitive declines in Alzheimer's disease (AD) are the result of neuron and neuronal process losses due to a wide range of factors. To date, all efforts to develop therapies that target specific AD-related pathways have failed in late-stage human trials. As a result, an emerging consensus in the field is that treatment of AD patients with currently available drug candidates might come too late, likely as a result of significant neuronal loss in the brain. In this regard, cell-replacement therapies, such as human embryonic stem cell- or induced pluripotent stem cell-derived neural cells, hold potential for treating AD patients. With the advent of stem cell technologies and the ability to transform these cells into different types of central nervous system neurons and glial cells, some success in stem cell therapy has been reported in animal models of AD. However, many more steps remain before stem cell therapies will be clinically feasible for AD and related disorders in humans. In this review, we will discuss current research advances in AD pathogenesis and stem cell technologies; additionally, the potential challenges and strategies for using cell-based therapies for AD and related disorders will be discussed.
Collapse
Affiliation(s)
- Leslie M Tong
- Gladstone Institute of Neurological Disease, University of California, San Francisco, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, CA, USA
| | - Helen Fong
- Gladstone Institute of Neurological Disease, University of California, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Yadong Huang
- Gladstone Institute of Neurological Disease, University of California, San Francisco, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, CA, USA
- Department of Pathology, University of California, San Francisco, CA, USA
| |
Collapse
|
33
|
Functional integration of human neural precursor cells in mouse cortex. PLoS One 2015; 10:e0120281. [PMID: 25763840 PMCID: PMC4357458 DOI: 10.1371/journal.pone.0120281] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 01/31/2015] [Indexed: 12/14/2022] Open
Abstract
This study investigates the electrophysiological properties and functional integration of different phenotypes of transplanted human neural precursor cells (hNPCs) in immunodeficient NSG mice. Postnatal day 2 mice received unilateral injections of 100,000 GFP+ hNPCs into the right parietal cortex. Eight weeks after transplantation, 1.21% of transplanted hNPCs survived. In these hNPCs, parvalbumin (PV)-, calretinin (CR)-, somatostatin (SS)-positive inhibitory interneurons and excitatory pyramidal neurons were confirmed electrophysiologically and histologically. All GFP+ hNPCs were immunoreactive with anti-human specific nuclear protein. The proportions of PV-, CR-, and SS-positive cells among GFP+ cells were 35.5%, 15.7%, and 17.1%, respectively; around 15% of GFP+ cells were identified as pyramidal neurons. Those electrophysiologically and histological identified GFP+ hNPCs were shown to fire action potentials with the appropriate firing patterns for different classes of neurons and to display spontaneous excitatory and inhibitory postsynaptic currents (sEPSCs and sIPSCs). The amplitude, frequency and kinetic properties of sEPSCs and sIPSCs in different types of hNPCs were comparable to host cells of the same type. In conclusion, GFP+ hNPCs produce neurons that are competent to integrate functionally into host neocortical neuronal networks. This provides promising data on the potential for hNPCs to serve as therapeutic agents in neurological diseases with abnormal neuronal circuitry such as epilepsy.
Collapse
|
34
|
Reprogramming patient-derived cells to study the epilepsies. Nat Neurosci 2015; 18:360-6. [PMID: 25710838 DOI: 10.1038/nn.3944] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 01/08/2015] [Indexed: 02/07/2023]
Abstract
The epilepsies and related disorders of brain circuitry present significant challenges associated with the use of human cells to study disease mechanisms and develop new therapies. Some of these obstacles are being overcome through the use of induced pluripotent stem cells to obtain patient-derived neural cells for in vitro studies and as a source of cell-based treatments. The field is evolving rapidly with the addition of genome-editing approaches and expanding protocols for generating different neural cell types and three-dimensional tissues, but the application of these techniques to neurological disorders, and particularly to the epilepsies, is in its infancy. We discuss the progress made and the distinct advantages and limitations of using patient-derived cells to study or treat epilepsy, as well as critical future directions for the field.
Collapse
|
35
|
Long-term seizure suppression and optogenetic analyses of synaptic connectivity in epileptic mice with hippocampal grafts of GABAergic interneurons. J Neurosci 2015; 34:13492-504. [PMID: 25274826 DOI: 10.1523/jneurosci.0005-14.2014] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Studies in rodent epilepsy models suggest that GABAergic interneuron progenitor grafts can reduce hyperexcitability and seizures in temporal lobe epilepsy (TLE). Although integration of the transplanted cells has been proposed as the underlying mechanism for these disease-modifying effects, prior studies have not explicitly examined cell types and synaptic mechanisms for long-term seizure suppression. To address this gap, we transplanted medial ganglionic eminence (MGE) cells from embryonic day 13.5 VGAT-Venus or VGAT-ChR2-EYFP transgenic embryos into the dentate gyrus (DG) of adult mice 2 weeks after induction of TLE with pilocarpine. Beginning 3-4 weeks after status epilepticus, we conducted continuous video-electroencephalographic recording until 90-100 d. TLE mice with bilateral MGE cell grafts in the DG had significantly fewer and milder electrographic seizures, compared with TLE controls. Immunohistochemical studies showed that the transplants contained multiple neuropeptide or calcium-binding protein-expressing interneuron types and these cells established dense terminal arborizations onto the somas, apical dendrites, and axon initial segments of dentate granule cells (GCs). A majority of the synaptic terminals formed by the transplanted cells were apposed to large postsynaptic clusters of gephyrin, indicative of mature inhibitory synaptic complexes. Functionality of these new inhibitory synapses was demonstrated by optogenetically activating VGAT-ChR2-EYFP-expressing transplanted neurons, which generated robust hyperpolarizations in GCs. These findings suggest that fetal GABAergic interneuron grafts may suppress pharmacoresistant seizures by enhancing synaptic inhibition in DG neural circuits.
Collapse
|
36
|
Liu YQ, Yu F, Liu WH, He XH, Peng BW. Dysfunction of hippocampal interneurons in epilepsy. Neurosci Bull 2014; 30:985-998. [PMID: 25370443 DOI: 10.1007/s12264-014-1478-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 08/12/2014] [Indexed: 12/21/2022] Open
Abstract
Gamma-amino-butyric acid (GABA)-containing interneurons are crucial to both development and function of the brain. Down-regulation of GABAergic inhibition may result in the generation of epileptiform activity. Loss, axonal sprouting, and dysfunction of interneurons are regarded as mechanisms involved in epileptogenesis. Recent evidence suggests that network connectivity and the properties of interneurons are responsible for excitatory-inhibitory neuronal circuits. The balance between excitation and inhibition in CA1 neuronal circuitry is considerably altered during epileptic changes. This review discusses interneuron diversity, the causes of interneuron dysfunction in epilepsy, and the possibility of using GABAergic neuronal progenitors for the treatment of epilepsy.
Collapse
Affiliation(s)
- Yu-Qiang Liu
- Department of Physiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Fang Yu
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Wan-Hong Liu
- Department of Immunology, Wuhan University, Wuhan, 430071, China
| | - Xiao-Hua He
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Bi-Wen Peng
- Department of Physiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
37
|
Inhibitory interneuron progenitor transplantation restores normal learning and memory in ApoE4 knock-in mice without or with Aβ accumulation. J Neurosci 2014; 34:9506-15. [PMID: 25031394 DOI: 10.1523/jneurosci.0693-14.2014] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Excitatory and inhibitory balance of neuronal network activity is essential for normal brain function and may be of particular importance to memory. Apolipoprotein (apo) E4 and amyloid-β (Aβ) peptides, two major players in Alzheimer's disease (AD), cause inhibitory interneuron impairments and aberrant neuronal activity in the hippocampal dentate gyrus in AD-related mouse models and humans, leading to learning and memory deficits. To determine whether replacing the lost or impaired interneurons rescues neuronal signaling and behavioral deficits, we transplanted embryonic interneuron progenitors into the hippocampal hilus of aged apoE4 knock-in mice without or with Aβ accumulation. In both conditions, the transplanted cells developed into mature interneurons, functionally integrated into the hippocampal circuitry, and restored normal learning and memory. Thus, restricted hilar transplantation of inhibitory interneurons restores normal cognitive function in two widely used AD-related mouse models, highlighting the importance of interneuron impairments in AD pathogenesis and the potential of cell replacement therapy for AD. More broadly, it demonstrates that excitatory and inhibitory balance are crucial for learning and memory, and suggests an avenue for investigating the processes of learning and memory and their alterations in healthy aging and diseases.
Collapse
|
38
|
Romariz SAA, de Souza Paiva D, Valente MF, Barnabé GF, Frussa-Filho R, Barbosa-Silva RC, Calcagnotto ME, Longo BM. Long-lasting anxiolytic effect of neural precursor cells freshly prepared but not neurosphere-derived cell transplantation in newborn rats. BMC Neurosci 2014; 15:94. [PMID: 25086450 PMCID: PMC4131043 DOI: 10.1186/1471-2202-15-94] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 07/30/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The GABAergic system plays an important role in modulating levels of anxiety. When transplanted into the brain, precursor cells from the medial ganglionic eminence (MGE) have the ability to differentiate into GABAergic interneurons and modify the inhibitory tone in the host brain. Currently, two methods have been reported for obtaining MGE precursor cells for transplantation: fresh and neurosphere dissociated cells. Here, we investigated the effects generated by transplantation of the two types of cell preparations on anxiety behavior in rats. RESULTS We transplanted freshly dissociated or neurosphere dissociated cells into the neonate brain of male rats on postnatal (PN) day 2-3. At early adulthood (PN 62-63), transplanted animals were tested in the Elevated Plus Maze (EPM). To verify the differentiation and migration pattern of the transplanted cells in vitro and in vivo, we performed immunohistochemistry for GFP and several interneuron-specific markers: neuropeptide Y (NPY), parvalbumin (PV) and calretinin (CR). Cells from both types of preparations expressed these interneuronal markers. However, an anxiolytic effect on behavior in the EPM was observed in animals that received the MGE-derived freshly dissociated cells but not in those that received the neurosphere dissociated cells. CONCLUSION Our results suggest a long-lasting anxiolytic effect of transplanted freshly dissociated cells that reinforces the inhibitory function of the GABAergic neuronal circuitry in the hippocampus related to anxiety-like behavior in rats.
Collapse
Affiliation(s)
| | - Daisyléa de Souza Paiva
- />Departamento de Fisiologia, UNIFESP, Rua Botucatu, 862, 5° andar, 04023-062 São Paulo, SP Brazil
| | - Maria Fernanda Valente
- />Departamento de Fisiologia, UNIFESP, Rua Botucatu, 862, 5° andar, 04023-062 São Paulo, SP Brazil
| | - Gabriela Filoso Barnabé
- />Departamento de Fisiologia, UNIFESP, Rua Botucatu, 862, 5° andar, 04023-062 São Paulo, SP Brazil
| | - Roberto Frussa-Filho
- />Departamento de Farmacologia, UNIFESP, Rua Botucatu, 862, 04023-062 São Paulo, SP Brazil
| | | | - Maria Elisa Calcagnotto
- />Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Rua Ramiro Barcelos 2600, 90035-003 Porto Alegre, RS Brazil
| | - Beatriz Monteiro Longo
- />Departamento de Fisiologia, UNIFESP, Rua Botucatu, 862, 5° andar, 04023-062 São Paulo, SP Brazil
| |
Collapse
|
39
|
Southwell DG, Nicholas CR, Basbaum AI, Stryker MP, Kriegstein AR, Rubenstein JL, Alvarez-Buylla A. Interneurons from embryonic development to cell-based therapy. Science 2014; 344:1240622. [PMID: 24723614 DOI: 10.1126/science.1240622] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Many neurologic and psychiatric disorders are marked by imbalances between neural excitation and inhibition. In the cerebral cortex, inhibition is mediated largely by GABAergic (γ-aminobutyric acid-secreting) interneurons, a cell type that originates in the embryonic ventral telencephalon and populates the cortex through long-distance tangential migration. Remarkably, when transplanted from embryos or in vitro culture preparations, immature interneurons disperse and integrate into host brain circuits, both in the cerebral cortex and in other regions of the central nervous system. These features make interneuron transplantation a powerful tool for the study of neurodevelopmental processes such as cell specification, cell death, and cortical plasticity. Moreover, interneuron transplantation provides a novel strategy for modifying neural circuits in rodent models of epilepsy, Parkinson's disease, mood disorders, and chronic pain.
Collapse
Affiliation(s)
- Derek G Southwell
- Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Tyson JA, Anderson SA. GABAergic interneuron transplants to study development and treat disease. Trends Neurosci 2014; 37:169-77. [PMID: 24508416 PMCID: PMC4396846 DOI: 10.1016/j.tins.2014.01.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 01/06/2014] [Accepted: 01/06/2014] [Indexed: 01/06/2023]
Abstract
Advances in stem cell technology have engendered keen interest in cell-based therapies for neurological disorders. Postnatal engraftments of most neuronal precursors result in little cellular migration, a crucial prerequisite for transplants to integrate within the host circuitry. This may occur because most neurons migrate along substrates, such as radial glial processes, that are not abundant in adults. However, cortical GABAergic interneurons migrate tangentially from the subcortical forebrain into the cerebral cortex. Accordingly, transplants of cortical interneuron precursors migrate extensively after engraftment into a variety of CNS tissues, where they can become synaptically connected with host circuitry. We review how this remarkable ability to integrate post-transplant is being applied to the development of cell-based therapies for a variety of CNS disorders.
Collapse
Affiliation(s)
- Jennifer A Tyson
- Department of Psychiatry, Weill Medical College of Cornell University, New York, NY 10021, USA; Department of Psychiatry, Children's Hospital of Philadelphia and University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Stewart A Anderson
- Department of Psychiatry, Children's Hospital of Philadelphia and University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
41
|
Yasuhara T, Agari T, Kameda M, Kondo A, Kuramoto S, Jing M, Sasaki T, Toyoshima A, Sasada S, Sato K, Shinko A, Wakamori T, Okuma Y, Miyoshi Y, Tajiri N, Borlongan CV, Date I. Regenerative medicine for epilepsy: from basic research to clinical application. Int J Mol Sci 2013; 14:23390-401. [PMID: 24287913 PMCID: PMC3876052 DOI: 10.3390/ijms141223390] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 10/31/2013] [Accepted: 11/15/2013] [Indexed: 12/20/2022] Open
Abstract
Epilepsy is a chronic neurological disorder, which presents with various forms of seizures. Traditional treatments, including medication using antiepileptic drugs, remain the treatment of choice for epilepsy. Recent development in surgical techniques and approaches has improved treatment outcomes. However, several epileptic patients still suffer from intractable seizures despite the advent of the multimodality of therapies. In this article, we initially provide an overview of clinical presentation of epilepsy then describe clinically relevant animal models of epilepsy. Subsequently, we discuss the concepts of regenerative medicine including cell therapy, neuroprotective agents, and electrical stimulation, which are reviewed within the context of our data.
Collapse
Affiliation(s)
- Takao Yasuhara
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, 2-5-1, Shikata-cho, Okayama 700-8558, Japan; E-Mails: (T.A.); (M.K.); (A.K.); (S.K.); (M.J.); (T.S.); (A.T.); (S.S.); (K.S.); (A.S.); (T.W.); (Y.O.); (Y.M.); (I.D.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +81-86-235-7336; Fax: +81-86-227-0191
| | - Takashi Agari
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, 2-5-1, Shikata-cho, Okayama 700-8558, Japan; E-Mails: (T.A.); (M.K.); (A.K.); (S.K.); (M.J.); (T.S.); (A.T.); (S.S.); (K.S.); (A.S.); (T.W.); (Y.O.); (Y.M.); (I.D.)
| | - Masahiro Kameda
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, 2-5-1, Shikata-cho, Okayama 700-8558, Japan; E-Mails: (T.A.); (M.K.); (A.K.); (S.K.); (M.J.); (T.S.); (A.T.); (S.S.); (K.S.); (A.S.); (T.W.); (Y.O.); (Y.M.); (I.D.)
| | - Akihiko Kondo
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, 2-5-1, Shikata-cho, Okayama 700-8558, Japan; E-Mails: (T.A.); (M.K.); (A.K.); (S.K.); (M.J.); (T.S.); (A.T.); (S.S.); (K.S.); (A.S.); (T.W.); (Y.O.); (Y.M.); (I.D.)
| | - Satoshi Kuramoto
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, 2-5-1, Shikata-cho, Okayama 700-8558, Japan; E-Mails: (T.A.); (M.K.); (A.K.); (S.K.); (M.J.); (T.S.); (A.T.); (S.S.); (K.S.); (A.S.); (T.W.); (Y.O.); (Y.M.); (I.D.)
| | - Meng Jing
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, 2-5-1, Shikata-cho, Okayama 700-8558, Japan; E-Mails: (T.A.); (M.K.); (A.K.); (S.K.); (M.J.); (T.S.); (A.T.); (S.S.); (K.S.); (A.S.); (T.W.); (Y.O.); (Y.M.); (I.D.)
| | - Tatsuya Sasaki
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, 2-5-1, Shikata-cho, Okayama 700-8558, Japan; E-Mails: (T.A.); (M.K.); (A.K.); (S.K.); (M.J.); (T.S.); (A.T.); (S.S.); (K.S.); (A.S.); (T.W.); (Y.O.); (Y.M.); (I.D.)
| | - Atsuhiko Toyoshima
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, 2-5-1, Shikata-cho, Okayama 700-8558, Japan; E-Mails: (T.A.); (M.K.); (A.K.); (S.K.); (M.J.); (T.S.); (A.T.); (S.S.); (K.S.); (A.S.); (T.W.); (Y.O.); (Y.M.); (I.D.)
| | - Susumu Sasada
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, 2-5-1, Shikata-cho, Okayama 700-8558, Japan; E-Mails: (T.A.); (M.K.); (A.K.); (S.K.); (M.J.); (T.S.); (A.T.); (S.S.); (K.S.); (A.S.); (T.W.); (Y.O.); (Y.M.); (I.D.)
| | - Kenichiro Sato
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, 2-5-1, Shikata-cho, Okayama 700-8558, Japan; E-Mails: (T.A.); (M.K.); (A.K.); (S.K.); (M.J.); (T.S.); (A.T.); (S.S.); (K.S.); (A.S.); (T.W.); (Y.O.); (Y.M.); (I.D.)
| | - Aiko Shinko
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, 2-5-1, Shikata-cho, Okayama 700-8558, Japan; E-Mails: (T.A.); (M.K.); (A.K.); (S.K.); (M.J.); (T.S.); (A.T.); (S.S.); (K.S.); (A.S.); (T.W.); (Y.O.); (Y.M.); (I.D.)
| | - Takaaki Wakamori
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, 2-5-1, Shikata-cho, Okayama 700-8558, Japan; E-Mails: (T.A.); (M.K.); (A.K.); (S.K.); (M.J.); (T.S.); (A.T.); (S.S.); (K.S.); (A.S.); (T.W.); (Y.O.); (Y.M.); (I.D.)
| | - Yu Okuma
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, 2-5-1, Shikata-cho, Okayama 700-8558, Japan; E-Mails: (T.A.); (M.K.); (A.K.); (S.K.); (M.J.); (T.S.); (A.T.); (S.S.); (K.S.); (A.S.); (T.W.); (Y.O.); (Y.M.); (I.D.)
| | - Yasuyuki Miyoshi
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, 2-5-1, Shikata-cho, Okayama 700-8558, Japan; E-Mails: (T.A.); (M.K.); (A.K.); (S.K.); (M.J.); (T.S.); (A.T.); (S.S.); (K.S.); (A.S.); (T.W.); (Y.O.); (Y.M.); (I.D.)
| | - Naoki Tajiri
- Department of Neurosurgery, University of South Florida College Medicine, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA; E-Mails: (N.T.); (C.V.B.)
| | - Cesario V. Borlongan
- Department of Neurosurgery, University of South Florida College Medicine, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA; E-Mails: (N.T.); (C.V.B.)
| | - Isao Date
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, 2-5-1, Shikata-cho, Okayama 700-8558, Japan; E-Mails: (T.A.); (M.K.); (A.K.); (S.K.); (M.J.); (T.S.); (A.T.); (S.S.); (K.S.); (A.S.); (T.W.); (Y.O.); (Y.M.); (I.D.)
| |
Collapse
|
42
|
Wang K, Long Q, Jia C, Liu Y, Yi X, Yang H, Fei Z, Liu W. Over-expression of Mash1 improves the GABAergic differentiation of bone marrow mesenchymal stem cells in vitro. Brain Res Bull 2013; 99:84-94. [PMID: 24144723 DOI: 10.1016/j.brainresbull.2013.10.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 10/08/2013] [Accepted: 10/10/2013] [Indexed: 01/11/2023]
Abstract
Bone marrow mesenchymal stem cells (BMSCs) have been shown to be a promising cell type for the study of neuronal differentiation; however, few attempts had been made to differentiate these cells into inhibitory gamma-aminobutyric acid (GABA)ergic neurons. In this study, we over-expressed mammalian achaete-scute homologue-1 (Mash1), a basic helix-loop-helix (bHLH) transcription factor, in Sprague-Dawley rat BMSCs via lentiviral vectors, and then induced neuronal differentiation of these cells using conditioned medium. Our Western blot results show that, under conditions of differentiation, Mash1-overexpressing BMSCs exhibit an increased expression of neuronal markers and a greater degree of neuronal morphology compared to control, non-Mash1-overexpressing cells. Using immunocytochemistry, we observed increased expression of glutamic acid decarboxylase 67 (GAD67), as well as neuron-specific nuclear protein (NeuN) and β3-tubulin, in Mash1-overexpressing BMSCs compared to control cells. Moreover, we also found the differentiated cells showed representative traces of action potentials in electrophysiological characterization. In conclusion, our study demonstrated that over-expression of Mash1 can improve GABAergic differentiation of BMSCs in vitro.
Collapse
Affiliation(s)
- Kai Wang
- Department of Neurosurgery, Xijing Institute of Clinical Neuroscience, Fourth Military Medical University, No.17 Chang-le West Road, Xi'an 710032, China; Department of Neurosurgery, Qingdao 401 Hospital of PLA, No. 22 Minjiang Road, Qingdao 266071, China
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Genetically engineered bone marrow mesenchymal stem cells improve functional outcome in a rat model of epilepsy. Brain Res 2013; 1532:1-13. [DOI: 10.1016/j.brainres.2013.07.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Revised: 07/07/2013] [Accepted: 07/12/2013] [Indexed: 11/19/2022]
|
44
|
Valente MF, Romariz S, Calcagnotto ME, Ruiz L, Mello LE, Frussa-Filho R, Longo BM. Postnatal Transplantation of Interneuronal Precursor Cells Decreases Anxiety-Like Behavior in Adult Mice. Cell Transplant 2013; 22:1237-47. [DOI: 10.3727/096368912x657422] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The GABAergic system is critically involved in the modulation of anxiety levels, and dysfunction of GABAergic neurotransmission appears to be involved in the development of generalized anxiety disorder. Precursor cells from the medial ganglionic eminence (MGE) have the ability to migrate and differentiate into inhibitory GABAergic interneurons after being transplanted into the mouse brain. Thus, transplantation of interneuronal precursor cells derived from the MGE into a postnatal brain could modify the neuronal circuitry, increasing GABAergic tone and decreasing anxiety-like behavior in animals. Our aim was to verify the in vivo effects of transplanted MGE cells by evaluating anxiety-like behavior in mice. MGE cells from 14-day green fluorescent protein (GFP) embryos were transplanted into newborn mice. At 15, 30, and 60 days posttransplant, the animals were tested for anxiety behavior with the elevated plus maze (EPM) test. Our results show that transplanted cells from MGE were able to migrate to different regions of the brain parenchyma and to differentiate into inhibitory interneurons. The neuronal precursor cell transplanted animals had decreased levels of anxiety, indicating a specific function of these cells in vivo. We suggested that transplantation of MGE-derived neuronal precursors into neonate brain could strengthen the inhibitory function of the GABAergic neuronal circuitry related to anxiety-like behavior in mice.
Collapse
Affiliation(s)
- M. F. Valente
- Department of Physiology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - S. Romariz
- Department of Physiology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - M. E. Calcagnotto
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - L. Ruiz
- Department of Physiology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - L. E. Mello
- Department of Physiology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - R. Frussa-Filho
- Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - B. M. Longo
- Department of Physiology, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
45
|
Hunt RF, Girskis KM, Rubenstein JL, Alvarez-Buylla A, Baraban SC. GABA progenitors grafted into the adult epileptic brain control seizures and abnormal behavior. Nat Neurosci 2013; 16:692-7. [PMID: 23644485 PMCID: PMC3665733 DOI: 10.1038/nn.3392] [Citation(s) in RCA: 229] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 03/26/2013] [Indexed: 01/16/2023]
Abstract
Impaired GABA-mediated neurotransmission has been implicated in many neurologic diseases, including epilepsy, intellectual disability and psychiatric disorders. We found that inhibitory neuron transplantation into the hippocampus of adult mice with confirmed epilepsy at the time of grafting markedly reduced the occurrence of electrographic seizures and restored behavioral deficits in spatial learning, hyperactivity and the aggressive response to handling. In the recipient brain, GABA progenitors migrated up to 1,500 μm from the injection site, expressed genes and proteins characteristic for interneurons, differentiated into functional inhibitory neurons and received excitatory synaptic input. In contrast with hippocampus, cell grafts into basolateral amygdala rescued the hyperactivity deficit, but did not alter seizure activity or other abnormal behaviors. Our results highlight a critical role for interneurons in epilepsy and suggest that interneuron cell transplantation is a powerful approach to halting seizures and rescuing accompanying deficits in severely epileptic mice.
Collapse
Affiliation(s)
- Robert F Hunt
- Epilepsy Research Laboratory, University of California, San Francisco, California, USA.
| | | | | | | | | |
Collapse
|
46
|
Cai Y, Zhang Q, Wang C, Zhang Y, Ma T, Zhou X, Tian M, Rubenstein JLR, Yang Z. Nuclear receptor COUP-TFII-expressing neocortical interneurons are derived from the medial and lateral/caudal ganglionic eminence and define specific subsets of mature interneurons. J Comp Neurol 2013; 521:479-97. [PMID: 22791192 DOI: 10.1002/cne.23186] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 06/05/2012] [Accepted: 07/06/2012] [Indexed: 12/11/2022]
Abstract
Neocortical GABAergic interneurons in rodents originate from subpallial progenitor zones. The majority of mouse neocortical interneurons are derived from the medial and caudal ganglionic eminences (MGE and CGE, respectively) and the preoptic area (POA). It is controversial whether the lateral ganglionic eminence (LGE) also generates neocortical interneurons. Previously it was shown that the transcription factor COUP-TFII is expressed in the CGE; here we show that COUP-TFII is also expressed in the dorsal MGE, dorsal LGE (dMGE and dLGE, respectively), and POA. In the adult neocortex, COUP-TFII+/somatostatin (SOM)+ interneurons are mainly located in layer V. Using a genetic fate-mapping approach (Shh-Cre and Nkx2.1-Cre), we demonstrate that the POA and ventral MGE do not give rise to COUP-TFII+ neocortical interneurons, suggesting that the dMGE is the source of COUP-TFII+/SOM+ neocortical interneurons. We also observed a migratory stream of COUP-TFII+/Sp8+ cells emanating from the dLGE and CGE to the neocortex mainly through the subventricular zone at later embryonic stages. Slice culture experiments in which dLGE progenitors were labeled with BrdU provided additional evidence that the dLGE generates neocortical interneurons. While earlier-born dMGE-derived COUP-TFII+ interneurons occupy cortical layer V, later-born dLGE- and CGE-derived COUP-TFII+ ones preferentially occupy superficial cortical layers. A similar laminar distribution was observed following neonatal transplantation of embryonic day (E)14.5 dMGE and E15.5 dLGE. These results provide novel information about interneuron fate and position from spatially and temporally distinct origins in the ganglionic eminences.
Collapse
Affiliation(s)
- Yuqun Cai
- Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Germain ND, Banda EC, Becker S, Naegele JR, Grabel LB. Derivation and isolation of NKX2.1-positive basal forebrain progenitors from human embryonic stem cells. Stem Cells Dev 2013; 22:1477-89. [PMID: 23351095 PMCID: PMC4854221 DOI: 10.1089/scd.2012.0264] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 01/22/2013] [Indexed: 10/27/2022] Open
Abstract
Gamma aminobutyric acid (GABA)-expressing interneurons are the major inhibitory cells of the cerebral cortex and hippocampus. These interneurons originate in the medial ganglionic eminence (MGE) and lateral ganglionic eminence of the ventral forebrain during embryonic development and show reduced survival and function in a variety of neurological disorders, including temporal lobe epilepsy. We and others have proposed that embryonic stem cell (ESC)-derived ventral forebrain progenitors might provide a source of new GABAergic interneurons for cell-based therapies. While human ESCs (hESCs) are readily differentiated in vitro into dorsal telencephalic neural progenitors, standard protocols for generating ventral subtypes of telencephalic progenitors are less effective. We now report efficient derivation of GABAergic progenitors using an established hESC reporter line that expresses green fluorescent protein (GFP) under the control of an endogenous NKX2.1 promoter. GABAergic progenitors were derived from this hESC line by a modified monolayer neural differentiation protocol. Consistent with sonic hedgehog (SHH)-dependent specification of NKX2.1-positive progenitors in the embryonic MGE, we show a dose-dependent increase in the generation of NKX2.1:GFP-positive progenitors after SHH treatment in vitro. Characterization of NKX2.1:GFP-positive cells confirms their identity as MGE-like neural progenitors, based on gene expression profiles and their ability to differentiate into GABAergic interneurons. We are also able to generate highly enriched populations of NKX2.1:GFP-positive progenitors, including cells with telencephalic identity, by fluorescence-activated cell sorting. These hESC-derived ventral forebrain progenitors are suitable candidates for cell-based therapies that aim at replacing dysfunctional or damaged cortical or hippocampal GABAergic interneurons.
Collapse
Affiliation(s)
| | - Erin C. Banda
- Department of Biology, Wesleyan University, Middletown, Connecticut
| | - Sandy Becker
- Department of Biology, Wesleyan University, Middletown, Connecticut
| | - Janice R. Naegele
- Department of Biology, Wesleyan University, Middletown, Connecticut
- Program in Neuroscience and Behavior, Wesleyan University, Middletown, Connecticut
| | - Laura B. Grabel
- Department of Biology, Wesleyan University, Middletown, Connecticut
| |
Collapse
|
48
|
Chen YJJ, Vogt D, Wang Y, Visel A, Silberberg SN, Nicholas CR, Danjo T, Pollack JL, Pennacchio LA, Anderson S, Sasai Y, Baraban SC, Kriegstein AR, Alvarez-Buylla A, Rubenstein JLR. Use of "MGE enhancers" for labeling and selection of embryonic stem cell-derived medial ganglionic eminence (MGE) progenitors and neurons. PLoS One 2013; 8:e61956. [PMID: 23658702 PMCID: PMC3641041 DOI: 10.1371/journal.pone.0061956] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 03/15/2013] [Indexed: 12/21/2022] Open
Abstract
The medial ganglionic eminence (MGE) is an embryonic forebrain structure that generates the majority of cortical interneurons. MGE transplantation into specific regions of the postnatal central nervous system modifies circuit function and improves deficits in mouse models of epilepsy, Parkinson's disease, pain, and phencyclidine-induced cognitive deficits. Herein, we describe approaches to generate MGE-like progenitor cells from mouse embryonic stem (ES) cells. Using a modified embryoid body method, we provided gene expression evidence that mouse ES-derived Lhx6(+) cells closely resemble immature interneurons generated from authentic MGE-derived Lhx6(+) cells. We hypothesized that enhancers that are active in the mouse MGE would be useful tools in detecting when ES cells differentiate into MGE cells. Here we demonstrate the utility of enhancer elements [422 (DlxI12b), Lhx6, 692, 1056, and 1538] as tools to mark MGE-like cells in ES cell differentiation experiments. We found that enhancers DlxI12b, 692, and 1538 are active in Lhx6-GFP(+) cells, while enhancer 1056 is active in Olig2(+) cells. These data demonstrate unique techniques to follow and purify MGE-like derivatives from ES cells, including GABAergic cortical interneurons and oligodendrocytes, for use in stem cell-based therapeutic assays and treatments.
Collapse
Affiliation(s)
- Ying-Jiun J. Chen
- Department of Psychiatry and the Nina Ireland Laboratory of Developmental Neurobiology, University of California San Francisco, San Francisco, California, United States of America
| | - Daniel Vogt
- Department of Psychiatry and the Nina Ireland Laboratory of Developmental Neurobiology, University of California San Francisco, San Francisco, California, United States of America
| | - Yanling Wang
- Department of Psychiatry and the Nina Ireland Laboratory of Developmental Neurobiology, University of California San Francisco, San Francisco, California, United States of America
| | - Axel Visel
- Genomics Division, Lawrence Berkeley National Laboratory, Berkeley, California, and Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America
| | - Shanni N. Silberberg
- Department of Psychiatry and the Nina Ireland Laboratory of Developmental Neurobiology, University of California San Francisco, San Francisco, California, United States of America
| | - Cory R. Nicholas
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, California, United States of America
| | - Teruko Danjo
- Neurogenesis and Organogenesis Group, RIKEN Center for Developmental Biology, Kobe, Japan
| | - Joshua L. Pollack
- Lung Biology Center, Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Len A. Pennacchio
- Genomics Division, Lawrence Berkeley National Laboratory, Berkeley, California, and Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America
| | - Stewart Anderson
- 3Children's Hospital of Philadelphia, University of Pennsylvania, School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Yoshiki Sasai
- Neurogenesis and Organogenesis Group, RIKEN Center for Developmental Biology, Kobe, Japan
| | - Scott C. Baraban
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, United States of America
| | - Arnold R. Kriegstein
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, California, United States of America
| | - Arturo Alvarez-Buylla
- Department of Neurosurgery and Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, California, United States of America
| | - John L. R. Rubenstein
- Department of Psychiatry and the Nina Ireland Laboratory of Developmental Neurobiology, University of California San Francisco, San Francisco, California, United States of America
| |
Collapse
|
49
|
Arber C, Li M. Cortical interneurons from human pluripotent stem cells: prospects for neurological and psychiatric disease. Front Cell Neurosci 2013; 7:10. [PMID: 23493959 PMCID: PMC3595684 DOI: 10.3389/fncel.2013.00010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 01/28/2013] [Indexed: 01/20/2023] Open
Abstract
Cortical interneurons represent 20% of the cells in the cortex. These cells are local inhibitory neurons whose function is to modulate the firing activities of the excitatory projection neurons. Cortical interneuron dysfunction is believed to lead to runaway excitation underlying (or implicated in) seizure-based diseases, such as epilepsy, autism, and schizophrenia. The complex development of this cell type and the intricacies involved in defining the relative subtypes are being increasingly well defined. This has led to exciting experimental cell therapy in model organisms, whereby fetal-derived interneuron precursors can reverse seizure severity and reduce mortality in adult epileptic rodents. These proof-of-principle studies raise hope for potential interneuron-based transplantation therapies for treating epilepsy. On the other hand, cortical neurons generated from patient iPSCs serve as a valuable tool to explore genetic influences of interneuron development and function. This is a fundamental step in enhancing our understanding of the molecular basis of neuropsychiatric illnesses and the development of targeted treatments. Protocols are currently being developed for inducing cortical interneuron subtypes from mouse and human pluripotent stem cells. This review sets out to summarize the progress made in cortical interneuron development, fetal tissue transplantation and the recent advance in stem cell differentiation toward interneurons.
Collapse
Affiliation(s)
- Charles Arber
- Stem Cell Neurogenesis, MRC Clinical Sciences Centre, Imperial College London London, UK
| | | |
Collapse
|
50
|
Kotak VC, Takesian AE, MacKenzie PC, Sanes DH. Rescue of inhibitory synapse strength following developmental hearing loss. PLoS One 2013; 8:e53438. [PMID: 23326429 PMCID: PMC3543446 DOI: 10.1371/journal.pone.0053438] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 11/28/2012] [Indexed: 12/26/2022] Open
Abstract
Inhibitory synapse dysfunction may contribute to many developmental brain disorders, including the secondary consequences of sensory deprivation. In fact, developmental hearing loss leads to a profound reduction in the strength of inhibitory postsynaptic currents (IPSCs) in the auditory cortex, and this deficit persists into adulthood. This finding is consistent with the general theory that the emergence of mature synaptic properties requires activity during development. Therefore, we tested the prediction that inhibitory strength can be restored following developmental hearing loss by boosting GABAergic transmission in vivo. Conductive or sensorineural hearing loss was induced surgically in gerbils prior to hearing onset and GABA agonists were then administered for one week. IPSCs were subsequently recorded from pyramidal neurons in a thalamocortical brain slice preparation. Administration of either a GABAA receptor a1 subunit specific agonist (zolpidem), or a selective GABA reuptake inhibitor (SGRI), rescued IPSC amplitude in hearing loss animals. Furthermore, this restoration persisted in adults, long after drug treatment ended. In contrast, a GABAB receptor agonist baclofen did not restore inhibitory strength. IPSCs could also be restored when SGRI administration began 3 weeks after sensory deprivation. Together, these results demonstrate long-lasting restoration of cortical inhibitory strength in the absence of normal experience. This suggests that in vivo GABAA receptor activation is sufficient to promote maturation, and this principle may extend to other developmental disorders associated with diminished inhibitory function.
Collapse
Affiliation(s)
- Vibhakar C Kotak
- Center for Neural Science, New York University, New York, New York, United States of America.
| | | | | | | |
Collapse
|