1
|
Yang G, Huang X. LncRNA MALAT1's role in the development of retinopathy: A review. Medicine (Baltimore) 2025; 104:e41954. [PMID: 40128064 PMCID: PMC11936551 DOI: 10.1097/md.0000000000041954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 03/06/2025] [Indexed: 03/26/2025] Open
Abstract
Long noncoding RNA (lncRNA) metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) and retinopathy are 2 distinct yet interconnected areas of research in the field of ocular studies. MALAT1, with its diverse biological functions, has been extensively studied and demonstrated to play a role in various diseases, including ocular pathologies. Its involvement in alternative splicing regulation, transcriptional control, and the competing endogenous RNA (ceRNA) network suggests its potential implication in retinopathy. Retinopathy refers to a group of disorders that affect the retina, leading to vision impairment and, in severe cases, even blindness. These conditions include diabetic retinopathy, retinoblastoma, proliferative vitreoretinopathy, retinopathy of prematurity, and retinal neurodegeneration. The understanding of the molecular mechanisms underlying the development and progression of retinopathy, along with the potential involvement of MALAT1, can provide valuable insights for the diagnosis and treatment of this condition. Retinopathy, characterized by various manifestations and underlying mechanisms, presents a significant challenge in the field of ophthalmology. As a complex disease, its pathogenesis involves multifactorial factors, including angiogenic dysregulation, inflammatory responses, oxidative stress, and cellular signaling abnormalities. The emerging role of long noncoding RNA MALAT1 in retinopathy has attracted considerable attention. MALAT1 has been found to participate in multiple cellular processes, including alternative splicing regulation and transcriptional control. Additionally, the competing endogenous RNA (ceRNA) network involving MALAT1 indicates its potential relevance as a regulator in retinopathy. Further investigations into the specific mechanisms underlying MALAT1's involvement in retinopathy pathogenesis may provide valuable insights into the development of diagnostic and therapeutic approaches for managing retinal disorders.
Collapse
Affiliation(s)
- Gukun Yang
- Department of Ophthalmology, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province, PR China
- Key Laboratory of Emergency and Trauma of Ministry of Education, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, PR China
| | - Xionggao Huang
- Department of Ophthalmology, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province, PR China
- Key Laboratory of Emergency and Trauma of Ministry of Education, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, PR China
| |
Collapse
|
2
|
Hamdy NM, Zaki MB, Rizk NI, Abdelmaksoud NM, Abd-Elmawla MA, Ismail RA, Abulsoud AI. Unraveling the ncRNA landscape that governs colorectal cancer: A roadmap to personalized therapeutics. Life Sci 2024; 354:122946. [PMID: 39122108 DOI: 10.1016/j.lfs.2024.122946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/23/2024] [Accepted: 08/04/2024] [Indexed: 08/12/2024]
Abstract
Colorectal cancer (CRC) being one of the most common malignancies, has a significant death rate, especially when detected at an advanced stage. In most cases, the fundamental aetiology of CRC remains unclear despite the identification of several environmental and intrinsic risk factors. Numerous investigations, particularly in the last ten years, have indicated the involvement of epigenetic variables in this type of cancer. The development, progression, and metastasis of CRC are influenced by long non-coding RNAs (lncRNAs), which are significant players in the epigenetic pathways. LncRNAs are implicated in diverse pathological processes in CRC, such as liver metastasis, epithelial to mesenchymal transition (EMT), inflammation, and chemo-/radioresistance. It has recently been determined that CRC cells and tissues exhibit dysregulation of tens of oncogenic and tumor suppressor lncRNAs. Serum samples from CRC patients exhibit dysregulated expressions of several of these transcripts, offering a non-invasive method of detecting this kind of cancer. In this review, we outlined the typical paradigms of the deregulated lncRNA which exert significant role in the underlying molecular mechanisms of CRC initiation and progression. We comprehensively discuss the role of lncRNAs as innovative targets for CRC prognosis and treatment.
Collapse
Affiliation(s)
- Nadia M Hamdy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Abbasia Cairo, 11566, Egypt.
| | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Menoufia, 32897, Egypt
| | - Nehal I Rizk
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | | | - Mai A Abd-Elmawla
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Kasr Al Ainy, Cairo, 11562, Egypt
| | - Rehab A Ismail
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Ahmed I Abulsoud
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al Azhar University, Nasr City, Cairo, 11231, Egypt
| |
Collapse
|
3
|
Xu D, Wang W, Wang D, Ding J, Zhou Y, Zhang W. Long noncoding RNA MALAT-1: A versatile regulator in cancer progression, metastasis, immunity, and therapeutic resistance. Noncoding RNA Res 2024; 9:388-406. [PMID: 38511067 PMCID: PMC10950606 DOI: 10.1016/j.ncrna.2024.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/24/2024] [Accepted: 01/24/2024] [Indexed: 03/22/2024] Open
Abstract
Long noncoding RNAs (lncRNAs) are RNA transcripts longer than 200 nucleotides that do not code for proteins but have been linked to cancer development and metastasis. Metastasis-associated lung adenocarcinoma transcript 1 (MALAT-1) influences crucial cancer hallmarks through intricate molecular mechanisms, including proliferation, invasion, angiogenesis, apoptosis, and the epithelial-mesenchymal transition (EMT). The current article highlights the involvement of MALAT-1 in drug resistance, making it a potential target to overcome chemotherapy refractoriness. It discusses the impact of MALAT-1 on immunomodulatory molecules, such as major histocompatibility complex (MHC) proteins and PD-L1, leading to immune evasion and hindering anti-tumor immune responses. MALAT-1 also plays a significant role in cancer immunology by regulating diverse immune cell populations. In summary, MALAT-1 is a versatile cancer regulator, influencing tumorigenesis, chemoresistance, and immunotherapy responses. Understanding its precise molecular mechanisms is crucial for developing targeted therapies, and therapeutic strategies targeting MALAT-1 show promise for improving cancer treatment outcomes. However, further research is needed to fully uncover the role of MALAT-1 in cancer biology and translate these findings into clinical applications.
Collapse
Affiliation(s)
- Dexin Xu
- Department of Orthopedics, Jilin Province FAW General Hospital, Changchun, 130000, China
| | - Wenhai Wang
- Department of Cardiology, Jilin Province FAW General Hospital, Changchun, 130000, China
| | - Duo Wang
- Department of Geriatrics, Jilin Province FAW General Hospital, Changchun, 130000, China
| | - Jian Ding
- Department of Electrodiagnosis, Jilin Province FAW General Hospital, Changchun, 130000, China
| | - Yunan Zhou
- Department of Orthopedics, Jilin Province FAW General Hospital, Changchun, 130000, China
| | - Wenbin Zhang
- Department of Cardiology, Jilin Province FAW General Hospital, Changchun, 130000, China
| |
Collapse
|
4
|
Zhang C, Qin Y, Wu Y, Xu H, Shu Y. Long non-coding RNA MALAT1 in hematological malignancies and its clinical applications. Chin Med J (Engl) 2024; 137:1151-1159. [PMID: 38557962 PMCID: PMC11101235 DOI: 10.1097/cm9.0000000000003090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Indexed: 04/04/2024] Open
Abstract
ABSTRACT Metastasis-associated lung adenocarcinoma transcript 1 ( MALAT1 ) is a well-established oncogenic long non-coding RNA, the higher expression of which is strongly correlated with cancer events such as tumorigenesis, progression, metastasis, drug resistance, and treatment outcome in solid cancers. Recently, a series of studies has highlighted its potential role in hematological malignancies in terms of these events. Similar to solid cancers, MALAT1 can regulate various target genes via sponging and epigenetic mechanisms, but the miRNAs sponged by MALAT1 differ from those identified in solid cancers. In this review, we systematically describe the role and underlying mechanisms of MALAT1 in multiple types of hematological malignancies, including regulation of cell proliferation, metastasis, stress response, and glycolysis. Clinically, MALAT1 expression is related to poor treatment outcome and drug resistance, therefore exhibiting potential prognostic value in multiple myeloma, lymphoma, and leukemia. Finally, we discuss the evaluation of MALAT1 as a novel therapeutic target against cancer in preclinical studies.
Collapse
Affiliation(s)
- Chunlan Zhang
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yun Qin
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yu Wu
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Heng Xu
- Department of Laboratory Medicine/Research Center of Clinical Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Institute of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yang Shu
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Department of General Surgery, Gastric Cancer Center and Laboratory of Gastric Cancer, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
5
|
DeSouza NR, Jarboe T, Carnazza M, Quaranto D, Islam HK, Tiwari RK, Geliebter J. Long Non-Coding RNAs as Determinants of Thyroid Cancer Phenotypes: Investigating Differential Gene Expression Patterns and Novel Biomarker Discovery. BIOLOGY 2024; 13:304. [PMID: 38785786 PMCID: PMC11118935 DOI: 10.3390/biology13050304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024]
Abstract
Thyroid Cancer (TC) is the most common endocrine malignancy, with increasing incidence globally. Papillary thyroid cancer (PTC), a differentiated form of TC, accounts for approximately 90% of TC and occurs predominantly in women of childbearing age. Although responsive to current treatments, recurrence of PTC by middle age is common and is much more refractive to treatment. Undifferentiated TC, particularly anaplastic thyroid cancer (ATC), is the most aggressive TC subtype, characterized by it being resistant and unresponsive to all therapeutic and surgical interventions. Further, ATC is one of the most aggressive and lethal malignancies across all cancer types. Despite the differences in therapeutic needs in differentiated vs. undifferentiated TC subtypes, there is a critical unmet need for the identification of molecular biomarkers that can aid in early diagnosis, prognosis, and actionable therapeutic targets for intervention. Advances in the field of cancer genomics have enabled for the elucidation of differential gene expression patterns between tumors and healthy tissue. A novel category of molecules, known as non-coding RNAs, can themselves be differentially expressed, and extensively contribute to the up- and downregulation of protein coding genes, serving as master orchestrators of regulated and dysregulated gene expression patterns. These non-coding RNAs have been identified for their roles in driving carcinogenic patterns at various stages of tumor development and have become attractive targets for study. The identification of specific genes that are differentially expressed can give insight into mechanisms that drive carcinogenic patterns, filling the gaps of deciphering molecular and cellular processes that modulate TC subtypes, outside of well-known driver mutations.
Collapse
Affiliation(s)
- Nicole R. DeSouza
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA; (N.R.D.); (T.J.); (H.K.I.); (R.K.T.)
| | - Tara Jarboe
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA; (N.R.D.); (T.J.); (H.K.I.); (R.K.T.)
| | - Michelle Carnazza
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA; (N.R.D.); (T.J.); (H.K.I.); (R.K.T.)
| | - Danielle Quaranto
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA; (N.R.D.); (T.J.); (H.K.I.); (R.K.T.)
| | - Humayun K. Islam
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA; (N.R.D.); (T.J.); (H.K.I.); (R.K.T.)
| | - Raj K. Tiwari
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA; (N.R.D.); (T.J.); (H.K.I.); (R.K.T.)
- Department of Otolaryngology, New York Medical College, Valhalla, NY 10595, USA
| | - Jan Geliebter
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA; (N.R.D.); (T.J.); (H.K.I.); (R.K.T.)
- Department of Otolaryngology, New York Medical College, Valhalla, NY 10595, USA
| |
Collapse
|
6
|
Yang J, Jiang G, Huang L, Liu Z, Jiang R, Cao G, Cao J, Zhu H, Chen L, Chen X, Pei F. The Long non-coding RNA MALAT1 functions as a competing endogenous RNA to regulate vascular remodeling by sponging miR-145-5p/HK2 in hypertension. Clin Exp Hypertens 2023; 45:2284658. [PMID: 38010958 DOI: 10.1080/10641963.2023.2284658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/11/2023] [Indexed: 11/29/2023]
Abstract
Long non-coding RNAs (LncRNAs) have been found to play a regulatory role in the pathophysiology of vascular remodeling-associated illnesses through the lncRNA-microRNA (miRNA) regulation axis. LncRNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is thought to be involved in proliferation, migration, apoptosis, and calcification of vascular smooth muscle cells (VSMCs). The purpose of this study was to investigate the regulatory role of MALAT1 on vascular remodeling in hypertension. Our data indicate that the expression of MALAT1 is significantly upregulated in hypertensive aortic smooth muscle. Knockdown of MALAT1 inhibited the proliferation, migration, and phenotypic transition of VSMCs induced by Ang II. Bioinformatics analysis was used to predict the complementary binding of miR-145-5p to the 3'-untranslated region of MALAT1. Besides, the expressions of MALAT1 and miR-145-5p were negatively correlated, while luciferase reporter assays and RNA immunoprecipitation assay validated the interaction between miR-145-5p and MALAT1. The proliferation, migration and phenotypic transformation of VSMCs induced by overexpression of MALAT1 were reversed in the presence of miR-145-5p. Furthermore, we verified that miR-145-5p could directly target and bind to hexokinase 2 (HK2) mRNA, and that HK2 expression was negatively correlated with miR-145-5p in VSMCs. Knockdown of HK2 significantly inhibited the effects of overexpression of MALAT1 on Ang II-induced VSMCs proliferation, migration and phenotypic transformation. Taken together, the MALAT1/miR-145-5p/HK2 axis may play a critical regulatory role in the vascular remodeling of VSMCs in hypertension.
Collapse
Affiliation(s)
- Jiangyong Yang
- Department of Cardiology, Ganzhou Hospital of Guangdong Provincial People's Hospital, Ganzhou Municipal Hospital, Ganzhou, Jiangxi, China
| | - Guojun Jiang
- Department of Pharmacy, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Ling Huang
- Department of Cardiology, Ganzhou Hospital of Guangdong Provincial People's Hospital, Ganzhou Municipal Hospital, Ganzhou, Jiangxi, China
| | - Zhongyi Liu
- Department of Medical Research, Ganzhou Hospital of Guangdong Provincial People's Hospital, Ganzhou Municipal Hospital, Ganzhou, Jiangxi, China
| | - Rengui Jiang
- Department of Cardiology, Ganzhou Hospital of Guangdong Provincial People's Hospital, Ganzhou Municipal Hospital, Ganzhou, Jiangxi, China
| | - Gang Cao
- Department of Cardiology, Ganzhou Hospital of Guangdong Provincial People's Hospital, Ganzhou Municipal Hospital, Ganzhou, Jiangxi, China
| | - Jun Cao
- Department of Cardiology, Ganzhou Hospital of Guangdong Provincial People's Hospital, Ganzhou Municipal Hospital, Ganzhou, Jiangxi, China
| | - Hengqing Zhu
- Department of Cardiology, Ganzhou Hospital of Guangdong Provincial People's Hospital, Ganzhou Municipal Hospital, Ganzhou, Jiangxi, China
| | - Lemei Chen
- Department of Medical Research, Ganzhou Hospital of Guangdong Provincial People's Hospital, Ganzhou Municipal Hospital, Ganzhou, Jiangxi, China
| | - Xiaoming Chen
- Department of Medical Research, Ganzhou Hospital of Guangdong Provincial People's Hospital, Ganzhou Municipal Hospital, Ganzhou, Jiangxi, China
| | - Fang Pei
- Department of Cardiology, Ganzhou Hospital of Guangdong Provincial People's Hospital, Ganzhou Municipal Hospital, Ganzhou, Jiangxi, China
| |
Collapse
|
7
|
Nasrolahi A, Khojasteh Pour F, Mousavi Salehi A, Kempisty B, Hajizadeh M, Feghhi M, Azizidoost S, Farzaneh M. Potential roles of lncRNA MALAT1-miRNA interactions in ocular diseases. J Cell Commun Signal 2023:10.1007/s12079-023-00787-2. [PMID: 37870615 DOI: 10.1007/s12079-023-00787-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 10/09/2023] [Indexed: 10/24/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are non-protein coding transcripts that are longer than 200 nucleotides in length. LncRNAs are implicated in gene expression at the transcriptional, translational, and epigenetic levels, and thereby impact different cellular processes including cell proliferation, migration, apoptosis, angiogenesis, and immune response. In recent years, numerous studies have demonstrated the significant contribution of lncRNAs to the pathogenesis and progression of various diseases, such as stroke, heart disease, and cancer. Further investigations have shown that lncRNAs have altered expression patterns in ocular tissues and cell lines during pathological conditions. The pathogenesis of various ocular diseases, including glaucoma, cataract, corneal diseases, proliferative vitreoretinopathy, diabetic retinopathy, and retinoblastoma, is influenced by the involvement of specific lncRNAs which play a critical role in the development and progression of these diseases. Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is a well-researched lncRNA in the context of ocular diseases, which has been shown to exert its biological effects through several signaling pathways and downstream targets. The present review provides a comprehensive summary of the molecular mechanisms underlying the biological functions and roles of MALAT1 in ocular diseases.
Collapse
Affiliation(s)
- Ava Nasrolahi
- Infectious Ophthalmologic Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Fatemeh Khojasteh Pour
- Department of Obstetrics and Gynecology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Abdolah Mousavi Salehi
- Department of Immunology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Bartosz Kempisty
- Department of Human Morphology and Embryology, Division of Anatomy, Wroclaw Medical University, Wrocław, Poland
- Institute of Veterinary Medicine, Department of Veterinary Surgery, Nicolaus Copernicus University, Torun, Poland
- North Carolina State University College of Agriculture and Life Sciences, Raleigh, NC, 27695, USA
| | - Maryam Hajizadeh
- Infectious Ophthalmologic Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Ophthalmology, Imam Khomeini Hospital, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mostafa Feghhi
- Infectious Ophthalmologic Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Ophthalmology, Imam Khomeini Hospital, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Shirin Azizidoost
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
8
|
Zhang J, Li J, Wang H, Wang M. Research progress of organic liquid electrolyte for sodium ion battery. Front Chem 2023; 11:1253959. [PMID: 37780988 PMCID: PMC10536326 DOI: 10.3389/fchem.2023.1253959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/23/2023] [Indexed: 10/03/2023] Open
Abstract
Electrochemical energy storage technology has attracted widespread attention due to its low cost and high energy efficiency in recent years. Among the electrochemical energy storage technologies, sodium ion batteries have been widely focused due to the advantages of abundant sodium resources, low price and similar properties to lithium. In the basic structure of sodium ion battery, the electrolyte determines the electrochemical window and electrochemical performance of the battery, controls the properties of the electrode/electrolyte interface, and affects the safety of sodium ion batteries. Organic liquid electrolytes are widely used because of their low viscosity, high dielectric constant, and compatibility with common cathodes and anodes. However, there are problems such as low oxidation potential, high flammability and safety hazards. Therefore, the development of novel, low-cost, high-performance organic liquid electrolytes is essential for the commercial application of sodium ion batteries. In this paper, the basic requirements and main classifications of organic liquid electrolytes for sodium ion batteries have been introduced. The current research status of organic liquid electrolytes for sodium ion batteries has been highlighted, including compatibility with various types of electrodes and electrochemical properties such as multiplicative performance and cycling performance of electrode materials in electrolytes. The composition, formation mechanism and regulation strategies of interfacial films have been explained. Finally, the development trends of sodium ion battery electrolytes in terms of compatibility with materials, safety and stable interfacial film formation are pointed out in the future.
Collapse
Affiliation(s)
- Jia Zhang
- Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, China
- Key Laboratory of Salt Lake Resources Chemistry of Qinghai Province, Xining, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jianwei Li
- Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, China
- Key Laboratory of Salt Lake Resources Chemistry of Qinghai Province, Xining, China
| | - Huaiyou Wang
- Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, China
- Key Laboratory of Salt Lake Resources Chemistry of Qinghai Province, Xining, China
| | - Min Wang
- Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, China
- Key Laboratory of Salt Lake Resources Chemistry of Qinghai Province, Xining, China
| |
Collapse
|
9
|
Hussain MS, Afzal O, Gupta G, Altamimi ASA, Almalki WH, Alzarea SI, Kazmi I, Fuloria NK, Sekar M, Meenakshi DU, Thangavelu L, Sharma A. Long non-coding RNAs in lung cancer: Unraveling the molecular modulators of MAPK signaling. Pathol Res Pract 2023; 249:154738. [PMID: 37595448 DOI: 10.1016/j.prp.2023.154738] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/20/2023]
Abstract
Lung cancer (LC) continues to pose a significant global medical burden, necessitating a comprehensive understanding of its molecular foundations to establish effective treatment strategies. The mitogen-activated protein kinase (MAPK) signaling system has been scientifically associated with LC growth; however, the intricate regulatory mechanisms governing this system remain unknown. Long non-coding RNAs (lncRNAs) are emerging as crucial regulators of diverse cellular activities, including cancer growth. LncRNAs have been implicated in LC, which can function as oncogenes or tumor suppressors, and their dysregulation has been linked to cancer cell death, metastasis, spread, and proliferation. Due to their involvement in critical pathophysiological processes, lncRNAs are gaining attention as potential candidates for anti-cancer treatments. This article aims to elucidate the regulatory role of lncRNAs in MAPK signaling in LC. We provide a comprehensive review of the key components of the MAPK pathway and their relevance in LC, focusing on aberrant signaling processes associated with disease progression. By examining recent research and experimental findings, this article examines the molecular mechanisms through which lncRNAs influence MAPK signaling in lung cancer, ultimately contributing to tumor development.
Collapse
Affiliation(s)
- Md Sadique Hussain
- School of Pharmaceutical Sciences, Jaipur National University, Jagatpura, 302017 Jaipur, Rajasthan, India
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur, India; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India; School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India
| | | | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Mahendran Sekar
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Subang Jaya 47500, Selangor, Malaysia
| | | | - Lakshmi Thangavelu
- Center for Global Health Research , Saveetha Medical College , Saveetha Institute of Medical and Technical Sciences, Saveetha University, India
| | - Ajay Sharma
- Delhi Pharmaceutical Science and Research University, Pushp Vihar Sector-3, MB Road, New Delhi 110017, India.
| |
Collapse
|
10
|
Li Z, Fang Y, Zhang Y, Zhou X. RNA-seq analysis of differentially expressed LncRNAs from leishmaniasis patients compared to uninfected humans. Acta Trop 2023; 238:106738. [PMID: 36379256 DOI: 10.1016/j.actatropica.2022.106738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/02/2022] [Accepted: 10/31/2022] [Indexed: 11/14/2022]
Abstract
Leishmaniasis is a parasitic disease that seriously endangers human health. Furthermore, among the parasitic diseases, leishmaniasis is the third most common cause of death after malaria and schistosomiasis. However, the potential function of LncRNAs in leishmaniasis remain unclear. This study aimed to explore the differentially expressed LncRNAs in leishmaniasis. The sera of leishmaniasis patients and uninfected persons for controls were obtained and analyzed by high-throughput sequencing. Moreover, the expression of key LncRNAs was detected by qPCR. The results showed that 970 differentially expressed LncRNAs and 1692 differentially expressed mRNAs were screened compared to control groups. Then, 520 target genes were identified by using bioinformation analysis and the ENCORI database. The bioinformatics analysis revealed that the differentially expressed target genes were enriched in autophagy animal, FoxO signaling pathway, mTOR signaling pathway, and apoptosis, et al. Among those differentially expressed LncRNAs, nine key LncRNAs were selected (MALAT1, NUTM2A-AS1, and LINC00963 had high expression; LINC00622, MAPKAPK5-AS1, LINC02289, XPC-AS1, ZFAS1 and SNHG5 had low expression) by qPCR. This study suggests that different expressions of LncRNAs may involve in the potential function in leishmaniasis and provide a novel insight for diagnosis of this zoonotic disease.
Collapse
Affiliation(s)
- Zhongqiu Li
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai 200025, China
| | - Yuan Fang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai 200025, China; School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yi Zhang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai 200025, China; School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Xiaonong Zhou
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai 200025, China; School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
11
|
Long Non-Coding RNAs as Novel Targets for Phytochemicals to Cease Cancer Metastasis. Molecules 2023; 28:molecules28030987. [PMID: 36770654 PMCID: PMC9921150 DOI: 10.3390/molecules28030987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/31/2022] [Accepted: 01/11/2023] [Indexed: 01/21/2023] Open
Abstract
Metastasis is a multi-step phenomenon during cancer development leading to the propagation of cancer cells to distant organ(s). According to estimations, metastasis results in over 90% of cancer-associated death around the globe. Long non-coding RNAs (LncRNAs) are a group of regulatory RNA molecules more than 200 base pairs in length. The main regulatory activity of these molecules is the modulation of gene expression. They have been reported to affect different stages of cancer development including proliferation, apoptosis, migration, invasion, and metastasis. An increasing number of medical data reports indicate the probable function of LncRNAs in the metastatic spread of different cancers. Phytochemical compounds, as the bioactive agents of plants, show several health benefits with a variety of biological activities. Several phytochemicals have been demonstrated to target LncRNAs to defeat cancer. This review article briefly describes the metastasis steps, summarizes data on some well-established LncRNAs with a role in metastasis, and identifies the phytochemicals with an ability to suppress cancer metastasis by targeting LncRNAs.
Collapse
|
12
|
Long non-coding RNAs involved in retinoblastoma. J Cancer Res Clin Oncol 2023; 149:401-421. [PMID: 36305946 DOI: 10.1007/s00432-022-04398-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/05/2022] [Indexed: 02/03/2023]
Abstract
INTRODUCTION Retinoblastoma (RB) is the most common childhood tumor that can occur in the retina and develop in a sporadic or heritable form. Although various traditional treatment options have been used for patients with RB, identifying novel strategies for childhood cancers is necessary. MATERIAL AND METHODS Recently, molecular-based targeted therapies have opened a greater therapeutic window for RB. Long non-coding RNAs (lncRNAs) presented a potential role as a biomarker for the detection of RB in various stages. CONCLUSION LncRNAs by targeting several miRNA/transcription factors play critical roles in the stimulation or suppression of RB. In this review, we summarized recent progress on the functions of tumor suppressors or oncogenes lncRNAs in RB.
Collapse
|
13
|
Ahangar Davoodi N, Najafi S, Naderi Ghale-Noie Z, Piranviseh A, Mollazadeh S, Ahmadi Asouri S, Asemi Z, Morshedi M, Tamehri Zadeh SS, Hamblin MR, Sheida A, Mirzaei H. Role of non-coding RNAs and exosomal non-coding RNAs in retinoblastoma progression. Front Cell Dev Biol 2022; 10:1065837. [PMID: 36619866 PMCID: PMC9816416 DOI: 10.3389/fcell.2022.1065837] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Retinoblastoma (RB) is a rare aggressive intraocular malignancy of childhood that has the potential to affect vision, and can even be fatal in some children. While the tumor can be controlled efficiently at early stages, metastatic tumors lead to high mortality. Non-coding RNAs (ncRNAs) are implicated in a number of physiological cellular process, including differentiation, proliferation, migration, and invasion, The deregulation of ncRNAs is correlated with several diseases, particularly cancer. ncRNAs are categorized into two main groups based on their length, i.e. short and long ncRNAs. Moreover, ncRNA deregulation has been demonstrated to play a role in the pathogenesis and development of RB. Several ncRNAs, such as miR-491-3p, miR-613,and SUSD2 have been found to act as tumor suppressor genes in RB, but other ncRNAs, such as circ-E2F3, NEAT1, and TUG1 act as tumor promoter genes. Understanding the regulatory mechanisms of ncRNAs can provide new opportunities for RB therapy. In the present review, we discuss the functional roles of the most important ncRNAs in RB, their interaction with the genes responsible for RB initiation and progression, and possible future clinical applications as diagnostic and prognostic tools or as therapeutic targets.
Collapse
Affiliation(s)
- Nasrin Ahangar Davoodi
- Eye Research Center, Rassoul Akram Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zari Naderi Ghale-Noie
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ashkan Piranviseh
- Brain and Spinal Cord Injury Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Samaneh Mollazadeh
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Sahar Ahmadi Asouri
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammadamin Morshedi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran,School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Amirhossein Sheida
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran,School of Medicine, Kashan University of Medical Sciences, Kashan, Iran,*Correspondence: Amirhossein Sheida, ; Hamed Mirzaei, ,
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran,*Correspondence: Amirhossein Sheida, ; Hamed Mirzaei, ,
| |
Collapse
|
14
|
Lin X, Huang X, Wang L, Liu W. The long noncoding RNA MALAT1/microRNA-598-3p axis regulates the proliferation and apoptosis of retinoblastoma cells through the PI3K/AKT pathway. Mol Vis 2022; 28:269-279. [PMID: 36284668 PMCID: PMC9514550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 09/02/2022] [Indexed: 11/05/2022] Open
Abstract
Purpose This study was designed to dissect the role of long noncoding RNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) in retinoblastoma (RB) and its underlying mechanism. Methods Gain- and loss-of-function experiments were adopted to explore the effects of MALAT1 and microRNA (miR)-598-3p on the biologic behaviors of RB cells. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) was used to assess the expression of MALAT1 and miR-598-3p in Y79 and HXO-RB44 cells. The proliferation of RB cells was determined with the cell counting kit-8 (CCK-8) assay and 5-ethynyl-2'-deoxyuridine (EdU) staining. Flow cytometry was employed for the measurement of the apoptotic rate, western blotting for examination of the expression of apoptosis-related proteins (Bax and Bcl-2) and phosphoinositide 3-kinase/protein kinase-B (PI3K/AKT) pathway-related factors (PI3K, AKT, p-PI3K, and p-AKT), and the luciferase reporter assay for assessment of the interaction between MALAT1 and miR-598-3p. Results High expression of MALAT1 and low expression of miR-598-3p were noticed in Y79 and HXO-RB44 cells. MALAT1 upregulation or miR-598-3p downregulation facilitated RB cell proliferation and inhibited cell apoptosis, as evidenced by the increased proliferation rate and Bcl-2 expression, as well as diminished Bax expression and apoptotic rate, in the RB cells after transfection with pcDNA3.1-MALAT1 or miR-598-3p inhibitor. MALAT1 bound to and negatively regulated miR-598-3p. The PI3K/AKT pathway activation occurred with MALAT1 overexpression. MALAT1 promoted RB cell proliferation and repressed cell apoptosis by repressing miR-598-3p to activate the PI3K/AKT pathway. Conclusions MALAT1 repressed miR-598-3p to activate the PI3K/AKT pathway, thus facilitating cell proliferation and inhibiting cell apoptosis in RB.
Collapse
Affiliation(s)
- Xiaoli Lin
- Department of Ophthalmology, Sanya People’s Hospital, Sanya, Hainan, P.R. China
| | - Xionggao Huang
- Department of Ophthalmology, the First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, P.R. China
| | - Ling Wang
- Department of Ophthalmology, the First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, P.R. China
| | - Weixian Liu
- Department of Ophthalmology, the First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, P.R. China
| |
Collapse
|
15
|
Makgoo L, Mosebi S, Mbita Z. Long noncoding RNAs (lncRNAs) in HIV-mediated carcinogenesis: Role in cell homeostasis, cell survival processes and drug resistance. Noncoding RNA Res 2022; 7:184-196. [PMID: 35991514 PMCID: PMC9361211 DOI: 10.1016/j.ncrna.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/04/2022] [Accepted: 07/20/2022] [Indexed: 12/24/2022] Open
Abstract
There is accruing data implicating long non-coding RNAs (lncRNAs) in the development and progression of non-communicable diseases such as cancer. These lncRNAs have been implicated in many diverse HIV-host interactions, some of which are beneficial to HIV propagation. The virus-host interactions induce the expression of HIV-regulated long non-coding RNAs, which are implicated in the carcinogenesis process, therefore, it is critical to understand the molecular mechanisms that underpin these HIV-regulated lncRNAs, especially in cancer formation. Herein, we summarize the role of HIV-regulated lncRNAs targeting cancer development-related processes including apoptosis, cell cycle, cell survival signalling, angiogenesis and drug resistance. It is unclear how lncRNAs regulate cancer development, this review also discuss recent discoveries regarding the functions of lncRNAs in cancer biology. Innovative research in this field will be beneficial for the future development of therapeutic strategies targeting long non-coding RNAs that are regulated by HIV, especially in HIV associated cancers.
Collapse
|
16
|
Cao Y, Liu J, Lu Q, Huang K, Yang B, Reilly J, Jiang N, Shu X, Shang L. An update on the functional roles of long non‑coding RNAs in ischemic injury (Review). Int J Mol Med 2022; 50:91. [PMID: 35593308 PMCID: PMC9170192 DOI: 10.3892/ijmm.2022.5147] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 05/05/2022] [Indexed: 11/20/2022] Open
Abstract
Ischemic injuries result from ischemia and hypoxia in cells. Tissues and organs receive an insufficient supply of nutrients and accumulate metabolic waste, which leads to the development of inflammation, fibrosis and a series of other issues. Ischemic injuries in the brain, heart, kidneys, lungs and other organs can cause severe adverse effects. Acute renal ischemia induces acute renal failure, heart ischemia induces myocardial infarction and cerebral ischemia induces cerebrovascular accidents, leading to loss of movement, consciousness and possibly, life-threatening disabilities. Existing evidence suggests that long non-coding RNAs (lncRNAs) are regulatory sequences involved in transcription, post-transcription, epigenetic regulation and multiple physiological processes. lncRNAs have been shown to be differentially expressed following ischemic injury, with the severity of the ischemic injury being affected by the upregulation or downregulation of certain types of lncRNA. The present review article provides an extensive summary of the functional roles of lncRNAs in ischemic injury, with a focus on the brain, heart, kidneys and lungs. The present review mainly summarizes the functional roles of lncRNA MALAT1, lncRNA MEG3, lncRNA H19, lncRNA TUG1, lncRNA NEAT1, lncRNA AK139328 and lncRNA CAREL, among which lncRNA MALAT1, in particular, plays a crucial role in ischemic injury and is currently a hot research topic.
Collapse
Affiliation(s)
- Yanqun Cao
- School of Basic Medical Sciences, Shaoyang University, Shaoyang, Hunan 422000, P.R. China
| | - Jia Liu
- School of Basic Medical Sciences, Shaoyang University, Shaoyang, Hunan 422000, P.R. China
| | - Quzhe Lu
- School of Basic Medical Sciences, Shaoyang University, Shaoyang, Hunan 422000, P.R. China
| | - Kai Huang
- School of Basic Medical Sciences, Shaoyang University, Shaoyang, Hunan 422000, P.R. China
| | - Baolin Yang
- Department of Human Anatomy, School of Basic Medicine, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - James Reilly
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow G4 0BA, UK
| | - Na Jiang
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, Jiangxi 330006, P.R. China
| | - Xinhua Shu
- School of Basic Medical Sciences, Shaoyang University, Shaoyang, Hunan 422000, P.R. China
| | - Lei Shang
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
17
|
Cui X, Liang T, Ji X, Shao Y, Zhao P, Li X. LINC00488 Induces Tumorigenicity in Retinoblastoma by Regulating microRNA-30a-5p/EPHB2 Axis. Ocul Immunol Inflamm 2022; 31:506-514. [PMID: 35404750 DOI: 10.1080/09273948.2022.2037659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVE LINC00488 confers oncogenic activity in the progression of some tumors. Hence, the target of the study was about to specify LINC00488-mediated network in retinoblastoma (RB). METHODS LINC00488 expression was tested in RB clinical tissues. siRNA targeting LINC00488 or miR-30a-5p mimic was introduced into RB cell line (Y79) to observe cellular biological functions. The relationship between LINC00488, miR-30a-5p and EPHB2 was verified. Afterward, the role of miR-30a-5p involved in RB through targeted regulation of EPHB2 was probed in vitro and in vivo. RESULTS LINC00488 was induced in RB tissue and cells. LINC00488 knockdown or miR-30a-5p upregulation depressed the malignant activities of Y79 cells. LINC00488 could sponge miR-30a-5p that targeted EPHB2. EPHB2, and EPHB2 overexpression counteracted miR-30a-5p restoration-induced inhibition of Y79 cell development in vitro and in vivo. CONCLUSION LINC00488 induces tumorigenicity in RB by binding to miR-30a-5p to target EPHB2, which may offer a new clue of RB treatment from an lncRNA-miRNA-mRNA network.
Collapse
Affiliation(s)
- Xuehao Cui
- Department of Ophthalmology, Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin International Joint Research and Development Centre of Ophthalmology and Vision ScienceEye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjing, China
| | - Tingyi Liang
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xunda Ji
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Shao
- Department of Ophthalmology, Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin International Joint Research and Development Centre of Ophthalmology and Vision ScienceEye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjing, China
| | - Peiquan Zhao
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaorong Li
- Department of Ophthalmology, Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin International Joint Research and Development Centre of Ophthalmology and Vision ScienceEye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjing, China
| |
Collapse
|
18
|
Yan J, Deng Y, Cai Y, Cong W. LncRNA MIR17HG
promotes the proliferation, migration, and invasion of retinoblastoma cells by up‐regulating
HIF
‐1α expression via sponging
miR
‐155‐5p. Kaohsiung J Med Sci 2022; 38:554-564. [PMID: 35253975 DOI: 10.1002/kjm2.12523] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 01/06/2022] [Accepted: 02/08/2022] [Indexed: 12/28/2022] Open
Affiliation(s)
- Jian Yan
- Department of Ophthalmology Longgang District Central Hospital Shenzhen China
| | - Yi‐Xuan Deng
- Department of Ophthalmology Longgang District Central Hospital Shenzhen China
| | - Yu‐Lian Cai
- Department of Ophthalmology Longgang District Central Hospital Shenzhen China
| | - Wen‐Dong Cong
- Department of Neurology Longgang District Central Hospital Shenzhen China
| |
Collapse
|
19
|
Wang H, Zhang Z, Zhang Y, Li L. Knockdown of the Long Noncoding RNA TUG1 Suppresses Retinoblastoma Progression by Disrupting the Epithelial-Mesenchymal Transition. Cell Transplant 2022; 31:9636897221078026. [PMID: 35176897 PMCID: PMC8862129 DOI: 10.1177/09636897221078026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Taurine-upregulated gene 1 (TUG1) is a long noncoding RNA (lncRNA) that has previously been linked to the development and progression of several cancer types. Its expression and mechanistic role in retinoblastoma (RB), however, remains to be established. Herein, we found that RB tissue samples exhibited TUG1 upregulation. RB cell lines similarly exhibited marked TUG1 upregulation. Real-time cellular analysis (RTCA) and colony formation assays were then used to gauge RB cell proliferation, while transwell assays were conducted to assess the metastatic and invasive potential of these cells. In these assays, TUG1 upregulation was found to promote RB cell proliferative, migratory, and invasive activity while inducing the epithelial–mesenchymal transition (EMT). Subsequent quantitative real-time polymerase chain reaction (qPCR) and Western blotting indicated that this lncRNA functions at least in part by influencing the expression of Notch signaling pathway genes, which were downregulated following TUG1 knockdown in RB cells. Together, these data suggested that TUG1 can promote RB cell malignancy via the Notch signaling and EMT pathways, contributing to negative patient outcomes.
Collapse
Affiliation(s)
- Hongyi Wang
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zhen Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yue Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Li Li
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
20
|
Xia F, Xu Y, Zhang X, Lyu J, Zhao P. Competing endogenous RNA network associated with oxygen-induced retinopathy: Expression of the network and identification of the MALAT1/miR-124-3p/EGR1 regulatory axis. Exp Cell Res 2021; 408:112783. [PMID: 34469714 DOI: 10.1016/j.yexcr.2021.112783] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 07/19/2021] [Accepted: 08/11/2021] [Indexed: 02/07/2023]
Abstract
Retinopathy of prematurity (ROP) is a severe retinal dysfunction in prematurely born babies. The relationship between non-coding RNAs and retinopathy of prematurity (ROP) remain unclear. Microarray analysis of lncRNAs, miRNAs, and mRNAs was conducted in a mouse model of ROP. A competing endogenous RNA (ceRNA) network was constructed. The relationship among MALAT1, miR-124-3p, and Early growth response protein 1 (EGR1) was assessed in hypoxia-induced primary human umbilical vein endothelial cells (HUVECs) and ROP mouse model. In the study, we found 2252 lncRNAs, 1239 mRNAs, and 36 miRNAs were differentially regulated. ceRNA network consisting of 21 lncRNAs, 10 miRNAs, and 19 mRNAs was established. Of the most down-regulated miRNAs, miR-124-3p was selected for additional study. miR-124-3p ceased the migration and proliferation of primary HUVECs in hypoxic conditions, and directly suppressed EGR1. Additionally, MALAT1 directly sponged miR-124-3p. Knockdown of MALAT1 decreased EGR1 expression and inhibited the migration and proliferation of primary HUVECs in hypoxia. Furthermore, these changes were rescued by depletion of miR-124-3p. In vivo, intravitreal injection of miR-124-3p, shMALAT1 decreased EGR1 expression and markedly suppressed retinal neovascularization in OIR models. Intravitreal injection of shMALAT1 and miR-124-3p antagomir at the same time can promote retinal neovascularization, which reversed the suppression of retinal neovascularization functioned by shMALAT1. In conclusion, the expression profiles of lncRNAs and miRNAs and the ceRNA network in a mouse model of ROP may be indicative of the underlying mechanisms of retinal angiogenesis and neural activity. The MALAT1/miR-124-3p/EGR1 regulatory axis is partly responsible for retinal neovascularization, which may provide a novel theoretical basis for the pathogenesis of ROP.
Collapse
Affiliation(s)
- Fengjie Xia
- Department of Ophthalmology, Xinhua Hospital, Affiliated to Medicine School of Shanghai Jiaotong University, No. 1665, Kongjiang Road, Shanghai, 200092, China
| | - Yu Xu
- Department of Ophthalmology, Xinhua Hospital, Affiliated to Medicine School of Shanghai Jiaotong University, No. 1665, Kongjiang Road, Shanghai, 200092, China
| | - Xiang Zhang
- Department of Ophthalmology, Xinhua Hospital, Affiliated to Medicine School of Shanghai Jiaotong University, No. 1665, Kongjiang Road, Shanghai, 200092, China
| | - Jiao Lyu
- Department of Ophthalmology, Xinhua Hospital, Affiliated to Medicine School of Shanghai Jiaotong University, No. 1665, Kongjiang Road, Shanghai, 200092, China.
| | - Peiquan Zhao
- Department of Ophthalmology, Xinhua Hospital, Affiliated to Medicine School of Shanghai Jiaotong University, No. 1665, Kongjiang Road, Shanghai, 200092, China.
| |
Collapse
|
21
|
Zhang RN, Wu DM, Wu LP, Gao GW. LncRNA LINC00337 sponges mir-1285-3p to promote proliferation and metastasis of lung adenocarcinoma cells by upregulating YTHDF1. Cancer Cell Int 2021; 21:550. [PMID: 34663343 PMCID: PMC8524958 DOI: 10.1186/s12935-021-02253-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 10/07/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Emerging studies have shown that long noncoding RNAs (lncRNAs) predominantly function in the carcinogenesis of multiple developing human tumors. The current study aimed to investigate the underlying mechanisms of LINC00337 in lung adenocarcinoma. METHODS We analyzed TCGA and GTEx datasets and chose LINC00337 as the research object. Cell proliferation, cell apoptosis, cell cycle, migration, and invasion were detected in the gain and loss experiments of LINC00337 both in vitro and in vivo. Moreover, RNA pull-down, luciferase reporter assays, western blotting analysis, and rescue experiments were performed to investigate the underlying molecular mechanisms of LINC00337 function. RESULTS LINC00337 expression was remarkably upregulated in lung adenocarcinoma. In addition, LINC00337 knockdown was shown to repress cell migration, invasion, and proliferation, as well as the cell cycle, and gear up apoptosis in lung adenocarcinoma in vitro and in vivo. With respect to the mechanism, LINC00337 knockdown boosted miR-1285-3p expression and then restrained YTHDF1 expression post-transcriptionally. Crucially, both miR-1285-3p decrement and YTHDF1 overexpression successfully reversed the influence on cell proliferation, migration, invasion, and apoptosis caused by LINC00337 shRNA. CONCLUSIONS These results suggest that LINC00337 acts as an oncogenic lncRNA, targeting miR-1285-3p and regulating YTHDF1 expression, to promote the progression of lung adenocarcinoma.
Collapse
Affiliation(s)
- Ru-Nan Zhang
- Department of Radiation Oncology, Xinxiang Central Hospital, No.56 Jinsui Road, Xinxiang, 453000, Henan, People's Republic of China.
| | - Dong-Mei Wu
- Department of Radiation Oncology, Xinxiang Central Hospital, No.56 Jinsui Road, Xinxiang, 453000, Henan, People's Republic of China
| | - Li-Ping Wu
- Department of Radiation Oncology, Xinxiang Central Hospital, No.56 Jinsui Road, Xinxiang, 453000, Henan, People's Republic of China
| | - Guo-Wei Gao
- Department of Radiation Oncology, Xinxiang Central Hospital, No.56 Jinsui Road, Xinxiang, 453000, Henan, People's Republic of China
| |
Collapse
|
22
|
Chen Y, Lu B, Liu L, Pan X, Jiang C, Xu H. Long non-coding RNA PROX1-AS1 knockdown upregulates microRNA-519d-3p to promote chemosensitivity of retinoblastoma cells via targeting SOX2. Cell Cycle 2021; 20:2149-2159. [PMID: 34583623 DOI: 10.1080/15384101.2021.1971352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE Long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) participate in tumor progression, while the role of PROX1-antisense RNA1 (PROX1-AS1) sponging miR-519d-3p in retinoblastoma (RB) remains largely unknown. We aim to explore the effect of the PROX1-AS1/miR-519d-3p/sex determining region Y-box 2 (SOX2) in chemosensitivity of RB cells. METHODS Expression of PROX1-AS1, miR-519d-3p and SOX2 in RB tissues and cells was determined. The drug-resistant cell lines were established and respectively intervened with PROX1-AS1 or miR-519d-3p expression to explore their roles in drug resistance and malignant behaviors of the drug-resistant cells. The binding relationships between PROX1-AS1 and miR-519d-3p, and between miR-519d-3p and SOX2 were evaluated. RESULTS PROX1-AS1 and SOX2 were upregulated while miR-519d-3p was downregulated in RB tissues and cells, especially in drug-resistant cells. The PROX1-AS1 inhibition or miR-519d-3p elevation suppressed the drug resistance, proliferation, migration and invasion, and promoted apoptosis of the drug-resistant RB cells. Moreover, PROX1-AS1 sponged miR-519d-3p and miR-519d-3p targeted SOX2. CONCLUSION PROX1-AS1 knockdown upregulates miR-519d-3p to promote chemosensitivity of RB cells via targeting SOX2.
Collapse
Affiliation(s)
- Yanyan Chen
- Department of Ophthalmology, The First Hospital of Jilin University, Changchun Jilin, China
| | - Boyang Lu
- Department of Ophthalmology, The First Hospital of Jilin University, Changchun Jilin, China
| | - Lei Liu
- Department of Ophthalmology, The First Hospital of Jilin University, Changchun Jilin, China
| | - Xuefeng Pan
- Department of Ophthalmology, The First Hospital of Jilin University, Changchun Jilin, China
| | - Chunying Jiang
- Department of Ophthalmology, The First Hospital of Jilin University, Changchun Jilin, China
| | - Hui Xu
- Department of Ophthalmology, The First Hospital of Jilin University, Changchun Jilin, China
| |
Collapse
|
23
|
Qian Z, Chen L, Wang X, Kan Y, Wang Y, Yu Y, Wang X, Zhao Z, Yang H, Ge P, Ding T, Zhai Q, Zhao H. Increased MALAT1 expression predicts poor prognosis in primary gastrointestinal diffuse large B-cell lymphoma. Clin Exp Med 2021; 22:183-191. [PMID: 34427833 DOI: 10.1007/s10238-021-00748-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 07/22/2021] [Indexed: 11/24/2022]
Abstract
Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is involved in the pathogenesis and progression of several cancers. However, the potential effect of MALAT1 in primary gastrointestinal diffuse large B-cell lymphoma (PGI-DLBCL) has not been elucidated. This study aimed to explore the prognostic value of MALAT1 in patients with PGI-DLBCL. Quantitative real-time polymerase chain reaction (qRT-PCR) was performed to determine the expression of MALAT1 in 90 patients with PGI-DLBCL. MALAT1 was remarkably upregulated in PGI-DLBCL tissues compared to paired adjacent non-tumor tissues (P < 0.001), and the area under the receiver operating characteristic (ROC) curve (AUC) was 0.838. MALAT1 expression was further increased in the non-germinal center B-cell-like (non-GCB), advanced stage (stages IIE-IV) and International Prognostic Index (IPI) score (3-5) groups (P = 0.01, P < 0.001 and P < 0.001, respectively). Furthermore, Kaplan-Meier analysis showed that elevated MALAT1 expression correlated with inferior overall survival (OS) and progression-free survival in PGI-DLBCL patients (P < 0.001 and P < 0.001, respectively), and our multivariate analysis results suggested that upregulation of MALAT1 and high IPI score (3-5) were two unfavorable prognostic factors for PGI-DLBCL. In conclusion, our results demonstrate that MALAT1 may serve as a novel prognostic biomarker and an ideal therapeutic target for patients with PGI-DLBCL.
Collapse
Affiliation(s)
- Zhengzi Qian
- Key Laboratory of Cancer Prevention and Therapy, Department of Lymphoma, National Clinical Research Center for Cancer, Tianjin Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China
| | - Leiyuan Chen
- Key Laboratory of Cancer Prevention and Therapy, Department of Hematology, National Clinical Research Center for Cancer, Tianjin Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, People's Republic of China
| | - Xinyuan Wang
- Key Laboratory of Cancer Prevention and Therapy, Department of Hematology, National Clinical Research Center for Cancer, Tianjin Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, People's Republic of China
| | - Yutian Kan
- Key Laboratory of Cancer Prevention and Therapy, Department of Hematology, National Clinical Research Center for Cancer, Tianjin Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, People's Republic of China
| | - Yafei Wang
- Key Laboratory of Cancer Prevention and Therapy, Department of Hematology, National Clinical Research Center for Cancer, Tianjin Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, People's Republic of China
| | - Yong Yu
- Key Laboratory of Cancer Prevention and Therapy, Department of Hematology, National Clinical Research Center for Cancer, Tianjin Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, People's Republic of China
| | - Xiaofang Wang
- Key Laboratory of Cancer Prevention and Therapy, Department of Hematology, National Clinical Research Center for Cancer, Tianjin Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, People's Republic of China
| | - Zhigang Zhao
- Key Laboratory of Cancer Prevention and Therapy, Department of Hematology, National Clinical Research Center for Cancer, Tianjin Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, People's Republic of China
| | - Hongliang Yang
- Key Laboratory of Cancer Prevention and Therapy, Department of Hematology, National Clinical Research Center for Cancer, Tianjin Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, People's Republic of China
| | - Peng Ge
- Key Laboratory of Cancer Prevention and Therapy, Department of Laboratory, National Clinical Research Center for Cancer, Tianjin Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China
| | - Tingting Ding
- Key Laboratory of Cancer Prevention and Therapy, Department of Pathology, National Clinical Research Center for Cancer, Tianjin Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China
| | - Qiongli Zhai
- Key Laboratory of Cancer Prevention and Therapy, Department of Pathology, National Clinical Research Center for Cancer, Tianjin Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China
| | - Haifeng Zhao
- Key Laboratory of Cancer Prevention and Therapy, Department of Hematology, National Clinical Research Center for Cancer, Tianjin Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, People's Republic of China.
| |
Collapse
|
24
|
Zhou W, Guan W, Zhou Y, Rao Y, Ji X, Li J. Weighted genes associated with the progression of retinoblastoma: Evidence from bioinformatic analysis. Exp Eye Res 2021; 211:108730. [PMID: 34419445 DOI: 10.1016/j.exer.2021.108730] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/09/2021] [Accepted: 08/12/2021] [Indexed: 11/30/2022]
Abstract
Mechanisms underlying the development of malignant retinoblastoma (RB) remain largely unknown. The purpose of this study was to identify weighted genes that are associated with the progression of RB and to assess the usefulness of bioinformatic analysis in RB research. Bioinformatic analysis was performed to construct weighted gene co-expression and protein-protein interaction (PPI) networks and to predict long non-coding RNA (lncRNA)-microRNA (miRNA)-mRNA regulatory networks. RNA extracted from RB and adjacent retinal tissue was used to validate the results obtained from bioinformatic analysis, using a semi-quantitative PCR (qPCR) assay. Twenty-one modules were generated from 5000 most variably expressed genes. Both the light-yellow and red modules were significantly associated with the cellular anaplastic grade of RB. The genes clustered in the light-yellow module included protocadherin beta (PCDHBs) family members. The red module included 5 hub genes involved in cell division. According to the hypothesis that lncRNA may serve as a competing endogenous RNA (ceRNA) for miRNAs and modulates mRNA expression, a network was constructed between lncRNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) and cell division-related mRNAs. PCR analysis using 23 tumor tissues and 5 adjacent retinal tissue showed increased expression of PCDHB5 in tumor samples, and supported the predicted upregulation of mitotic checkpoint serine/threonine kinase (BUB1) by MALAT1 via miR-495-3p. Our study highlights the importance of bioinformatic analysis in identifying potential markers and mechanisms associated with the malignant transformation of RB, and provides evidence to suggest that PCDHB5 and the ceRNA regulatory network of MALAT1/miR-495-3p/BUB1 are involved in the progression of RB.
Collapse
Affiliation(s)
- Wenchuan Zhou
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai, 200092, China
| | - Wenbin Guan
- Department of Pathology, Xinhua Hospital Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai, 200092, China
| | - Yutong Zhou
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai, 200092, China
| | - Yuqing Rao
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai, 200092, China
| | - Xunda Ji
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai, 200092, China.
| | - Jing Li
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
25
|
Knockdown of PAK1 Inhibits the Proliferation and Invasion of Non-Small Cell Lung Cancer Cells Through the ERK Pathway. Appl Immunohistochem Mol Morphol 2021; 28:602-610. [PMID: 31394555 DOI: 10.1097/pai.0000000000000803] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The p21-activated kinase (PAK) family of serine/threonine kinases plays a pivotal role in various human tumors, as supported by our previous report on the overexpressed PAK isoforms in non-small cell lung cancer (NSCLC). To better understand the role of PAKs in tumorigenesis, the authors examined PAK1 expression patterns and its significance in NSCLC. It was demonstrated by immunohistochemical staining that PAK1 was increased and localized in the cytoplasm in 151 of 207 cases. High levels of PAK1 expression correlated with a histologic type of tumor (squamous cell carcinoma), tumor node metastasis stage, and lymph nodal status. We also examined the biological role of PAK1 in lung cancer cell lines transfected with PAK1-small interfering RNA. Decreased expression of PAK1 inhibited lung cancer cell proliferation and invasion, which is the major cause of lung cancer malignancy. Downregulated expression of PAK1 hampered rapidly accelerated fibrosarcoma/mitogen-activated extracellular signal-regulated kinase/extracellular signal-regulated kinase pathway activity but did not affect Wnt/β-catenin signaling. Our findings suggest that PAK1 is an important oncogene in NSCLC, as decreased expression of PAK1 inhibited the proliferation and invasion of NSCLC cells by blocking the ERK pathway. These results provide evidence for using PAK1 inhibition as potential anticancer therapy.
Collapse
|
26
|
Ahadi A. Functional roles of lncRNAs in the pathogenesis and progression of cancer. Genes Dis 2021; 8:424-437. [PMID: 34179307 PMCID: PMC8209321 DOI: 10.1016/j.gendis.2020.04.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/02/2020] [Accepted: 04/13/2020] [Indexed: 12/18/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) act as regulators of gene expression and pivotal transcriptional regulators in cancer cells via diverse mechanisms. lncRNAs involves a variety of pathological and biological activities, such as apoptosis, cell proliferation, metastasis, and invasion. By using microarray and RNA sequencing, it was identified that dysregulation of lncRNAs affects the tumorigenesis process. Taken together, these lncRNAs are putative biomarker and therapeutic target in human malignancies. In this review, I discuss the latest finding regarding the dysregulation of some important lncRNAs and their diverse mechanisms of these lncRNAs in the pathogenesis and progression of certain cancers; also, I summarize the possible roles of lncRNAs in clinical application for diagnosis and prognosis of cancer.
Collapse
Affiliation(s)
- Alireza Ahadi
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 198396-3113, Iran
| |
Collapse
|
27
|
Ji F, Lang C, Gao P, Sun H. Knockdown of Circ_0000144 Suppresses Cell Proliferation, Migration and Invasion in Gastric Cancer Via Sponging MiR-217. J Microbiol Biotechnol 2021; 31:784-793. [PMID: 33958507 PMCID: PMC9705855 DOI: 10.4014/jmb.2102.02005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/23/2021] [Accepted: 05/03/2021] [Indexed: 12/15/2022]
Abstract
Previous studies have uncovered the role of circ_0000144 in various tumors. Here, we investigated the function and mechanism of circ_0000144 in gastric cancer (GC) progression. The expression of circ_0000144 in GC tissues and cells was detected through quantitative real-time polymerase chain reaction (qRT-PCR) method. Gain- and loss-of-function experiments including colony formation, wound healing and transwell assays were performed to examine the role of circ_0000144 in GC cells. Furthermore, western blot was conducted to determine the expressions of epithelial mesenchymal transition (EMT)-related proteins. The interaction between circ_0000144 and miR-217 was analyzed by bioinformatic analysis and luciferase reporter assays. The circ_0000144 expression was obviously upregulated in GC tissues and cells. Silencing of circ_0000144 inhibited cell proliferation, migration and invasion of GC cells, but ectopic expression of circ_0000144 showed the opposite results. Moreover, circ_0000144 sponged miR-217, and rescue assays revealed that silencing miR-217 expression reversed the inhibitory effect of circ_0000144 knockdown on the progress of GC. Our findings reveal that circ_0000144 inhibition suppresses GC cell proliferation, migration and invasion via absorbing miR-217, providing a new biomarker and potential therapeutic target for treatment of GC.
Collapse
Affiliation(s)
- Fengcun Ji
- Department of General Surgery, Sunshine Union Hospital, High-Tech District, Weifang 261000, P.R. China
| | - Chao Lang
- Department of General Surgery, Sunshine Union Hospital, High-Tech District, Weifang 261000, P.R. China
| | - Pengfei Gao
- Department of General Surgery, Sunshine Union Hospital, High-Tech District, Weifang 261000, P.R. China
| | - Huanle Sun
- Department of General Surgery, Sunshine Union Hospital, High-Tech District, Weifang 261000, P.R. China,Corresponding author E-mail:
| |
Collapse
|
28
|
Zhao Y, Wang Z, Gao M, Wang X, Feng H, Cui Y, Tian X. lncRNA MALAT1 regulated ATAD2 to facilitate retinoblastoma progression via miR-655-3p. Open Med (Wars) 2021; 16:931-943. [PMID: 34222668 PMCID: PMC8231467 DOI: 10.1515/med-2021-0290] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 04/03/2021] [Accepted: 04/22/2021] [Indexed: 02/06/2023] Open
Abstract
Long noncoding RNA (lncRNA) metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) was reported as an oncogene in many tumors including retinoblastoma (RB). This research mainly focused on the functions and mechanism of MALAT1 in RB. MALAT1 was upregulated in RB tissues and cells, and it served as a competing endogenous RNA (ceRNA) and inhibited miRNA-655-3p (miR-655-3p) expression, which eventually regulated the expression of miR-655-3p downstream target ATPase Family AAA Domain Containing 2 (ATAD2). The level of ATAD2 significantly increased, while that of miR-655-3p remarkably decreased in RB tissues and cells. MALAT1 depletion inhibited cell proliferation, metastasis, and epithelial-mesenchymal transition (EMT), but promoted apoptosis in vitro and blocked xenograft tumor growth in vivo. MALAT1 exerted its oncogenic functions in RB by regulating miR-655-3p/ATAD2 axis.
Collapse
Affiliation(s)
- Yuxin Zhao
- Department of Ophthalmology, Weihai Central Hospital, No. 3, Mishandongluxi, Wendeng District, Weihai, 264400, Shandong, China
| | - Zhaoxia Wang
- Department of Pediatric, Weihai Central Hospital, Weihai, Shandong, China
| | - Meili Gao
- Department of Ophthalmology, Weihai Central Hospital, No. 3, Mishandongluxi, Wendeng District, Weihai, 264400, Shandong, China
| | - Xuehong Wang
- Department of Ophthalmology, Weihai Central Hospital, No. 3, Mishandongluxi, Wendeng District, Weihai, 264400, Shandong, China
| | - Hui Feng
- Department of Ophthalmology, Weihai Central Hospital, No. 3, Mishandongluxi, Wendeng District, Weihai, 264400, Shandong, China
| | - Yuanyuan Cui
- Department of Ophthalmology, Weihai Central Hospital, No. 3, Mishandongluxi, Wendeng District, Weihai, 264400, Shandong, China
| | - Xia Tian
- Department of Ophthalmology, Weihai Central Hospital, No. 3, Mishandongluxi, Wendeng District, Weihai, 264400, Shandong, China
| |
Collapse
|
29
|
Uthman YA, Ibrahim KG, Abubakar B, Bello MB, Malami I, Imam MU, Qusty N, Cruz-Martins N, Batiha GES, Abubakar MB. MALAT1: A Promising Therapeutic Target for the Treatment of Metastatic Colorectal Cancer. Biochem Pharmacol 2021; 190:114657. [PMID: 34144008 DOI: 10.1016/j.bcp.2021.114657] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 06/11/2021] [Accepted: 06/13/2021] [Indexed: 12/24/2022]
Abstract
Cancer metastasis research has emerged in recent years as one of the most important topics of debate in the discovery and development of novel anticancer therapies. Colorectal cancer (CRC), the third most common cancer worldwide, has a high mortality rate due to recurrence and distant metastasis to the liver. Several non-coding RNAs (ncRNAs) have been linked to metastatic CRC (mCRC), including the long non-coding RNA (lncRNA) Metastasis-Associated Lung-Adenocarcinoma Transcript 1 (MALAT1). MALAT1 is an RNA that has been linked to tumor cell proliferation, progression, epithelial-mesenchymal transition (EMT), cell migration and invasion, metastasis, and survival in mammalian species. Previously, there was no convincing evidence linking MALAT1 to mCRC. Studies have shown that MALAT1 functions as a competitive endogenous RNA (ceRNA) with microRNAs (miRNAs) and interacts directly with oncogenes and proteins. This RNA also activates several signaling pathways, including Wnt/β-catenin, PI3K/Akt/mTOR, and EMT. Meanwhile, standard chemotherapy and immunotherapy are the current treatment options for mCRC patients. However, evidence-based studies have recently demonstrated that inhibiting the MALAT1 RNA transcript can be considered as a treatment option for mCRC, highlighting the need to investigate its roles as a therapeutic target in mCRC. Thus, in this review, we looked at studies that linked MALAT1 to multiple signaling pathways implicated in mCRC, as well as its potential as a therapeutic target for the treatment of mCRC.
Collapse
Affiliation(s)
- Yaaqub Abiodun Uthman
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Usmanu Danfodiyo University, PMB 2346, Sokoto, Nigeria; Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, PMB 2346, Sokoto, Nigeria
| | - Kasimu Ghandi Ibrahim
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Usmanu Danfodiyo University, PMB 2346, Sokoto, Nigeria; Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, PMB 2346, Sokoto, Nigeria
| | - Bilyaminu Abubakar
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, PMB 2346, Sokoto, Nigeria; Department of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, Usmanu Danfodiyo University, PMB 2346, Sokoto, Nigeria
| | - Muhammad Bashir Bello
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, PMB 2346, Sokoto, Nigeria; Department of Veterinary Microbiology, Faculty of Veterinary Medicine, Usmanu Danfodiyo University, PMB 2346, Sokoto, Nigeria
| | - Ibrahim Malami
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, PMB 2346, Sokoto, Nigeria; Department of Pharmacognosy and Ethnopharmacy, Faculty of Pharmaceutical Sciences, Usmanu Danfodiyo University, PMB 2346, Sokoto, Nigeria
| | - Mustapha Umar Imam
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, PMB 2346, Sokoto, Nigeria; Department of Medical Biochemistry, Faculty of Basic Medical Sciences, College of Health Sciences, Usmanu Danfodiyo University, PMB 2346, Sokoto, Nigeria
| | - Naeem Qusty
- Medical Laboratories Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Mecca, Portugal.
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, Alameda Prof. Hernani Monteiro, 4200-319 Porto, Portugal; Institute for Research and Innovation in Health (i3S), University of Porto, Rua Alfredo Allen, 4200-135 Porto, Portugal; Institute of Research and Advanced Training in Health Sciences and Technologies (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra PRD, Portugal.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, AlBeheira, Egypt
| | - Murtala Bello Abubakar
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Usmanu Danfodiyo University, PMB 2346, Sokoto, Nigeria; Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, PMB 2346, Sokoto, Nigeria.
| |
Collapse
|
30
|
Dias TR, Santos JMO, Gil da Costa RM, Medeiros R. Long non-coding RNAs regulate the hallmarks of cancer in HPV-induced malignancies. Crit Rev Oncol Hematol 2021; 161:103310. [PMID: 33781867 DOI: 10.1016/j.critrevonc.2021.103310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 02/07/2023] Open
Abstract
High-risk human papillomavirus (HPV) is the most frequent sexually transmitted agent worldwide and is responsible for approximately 5% of human cancers. Identifying novel biomarkers and therapeutic targets for these malignancies requires a deeper understanding of the mechanisms involved in the progression of HPV-induced cancers. Long non-coding RNAs (lncRNAs) are crucial in the regulation of biological processes. Importantly, these molecules are key players in the progression of multiple malignancies and are able to regulate the development of the different hallmarks of cancer. This review highlights the action of lncRNAs in the regulation of cellular processes leading to the typical hallmarks of cancer. The regulation of lncRNAs by HPV oncogenes, their targets and also their mechanisms of action are also discussed, in the context of HPV-induced malignancies. Overall, accumulating data indicates that lncRNAs may have a significant potential to become useful tools for clinical practice as disease biomarkers or therapy targets.
Collapse
Affiliation(s)
- Tânia R Dias
- Molecular Oncology and Viral Pathology Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), 4200-072 Porto, Portugal; Faculty of Medicine of the University of Porto (FMUP), 4200-319, Porto, Portugal; Research Department of the Portuguese League Against Cancer-Regional Nucleus of the North (Liga Portuguesa Contra o Cancro-Núcleo Regional do Norte), 4200-177, Porto, Portugal.
| | - Joana M O Santos
- Molecular Oncology and Viral Pathology Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), 4200-072 Porto, Portugal; Faculty of Medicine of the University of Porto (FMUP), 4200-319, Porto, Portugal.
| | - Rui M Gil da Costa
- Molecular Oncology and Viral Pathology Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), 4200-072 Porto, Portugal; Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), 5001-911 Vila Real, Portugal; LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, 4200-465, Porto, Portugal; Postgraduate Programme in Adult Health (PPGSAD), Tumour and DNA Biobank, Federal University of Maranhão (UFMA), 65080-805, São Luís, Brazil.
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), 4200-072 Porto, Portugal; Faculty of Medicine of the University of Porto (FMUP), 4200-319, Porto, Portugal; Research Department of the Portuguese League Against Cancer-Regional Nucleus of the North (Liga Portuguesa Contra o Cancro-Núcleo Regional do Norte), 4200-177, Porto, Portugal; Virology Service, Portuguese Oncology Institute of Porto (IPO Porto), 4200-072, Porto, Portugal; CEBIMED, Faculty of Health Sciences of the Fernando Pessoa University, 4249-004, Porto, Portugal.
| |
Collapse
|
31
|
Xiu C, Song R, Jiang J. TUG1 promotes retinoblastoma progression by sponging miR-516b-5p to upregulate H6PD expression. Transl Cancer Res 2021; 10:738-747. [PMID: 35116405 PMCID: PMC8799124 DOI: 10.21037/tcr-19-1480] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 02/08/2020] [Indexed: 12/16/2022]
Abstract
Background Retinoblastoma (RB), depicted as an aggressive eye cancer, mainly occurs in infancy and childhood and is followed by high mortality and poor prognosis. Increasing evidence has revealed that long noncoding RNA taurine upregulated gene 1 (TUG1) is closely linked to the progression of diverse cancers. Nonetheless, the specific function and molecular regulatory mechanism of TUG1 in RB still need to be explored. Methods To explore the specific role of TUG1 in RB. TUG1 expression was detected by real-time quantitative polymerase chain reaction (RT-qPCR). Cell counting kit-8 (CCK-8), colony formation, 5-ethynyl-2’-deoxyuridine (EdU), caspase-3, terminal-deoxynucleotidyl transferase mediated nick end labeling (TUNEL) and western blot assays were utilized to study the role of TUG1 in RB. The binding relation between miR-516b-5p and TUG1 or hexose-6-phosphate dehydrogenase/glucose 1-dehydrogenase (H6PD) was analyzed by luciferase reporter and RNA immunoprecipitation (RIP) assays. Results The expression of TUG1 was upregulated in RB cells. TUG1 knockdown repressed proliferation ability and promoted apoptosis ability of RB cells. Moreover, TUG1 could bind with miR-516b-5p, which targeted H6PD in RB. In addition, the expression of H6PD was negatively and positively regulated by miR-516b-5p and TUG1 in RB, respectively. Finally, H6PD overexpression could partially offset the effects of TUG1 deficiency on cell proliferation and apoptosis. Conclusions TUG1 promoted the development of RB by sponging miR-516b-5p to upregulate H6PD expression, which might provide a new thought for researching RB-related molecular mechanism.
Collapse
Affiliation(s)
- Caimei Xiu
- Department of Ophthalmology, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Ruiying Song
- Department of Ophthalmology, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Jing Jiang
- Department of Ophthalmology, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| |
Collapse
|
32
|
KCNQ1OT1 regulates the retinoblastoma cell proliferation, migration and SIRT1/JNK signaling pathway by targeting miR-124/SP1 axis. Biosci Rep 2021; 41:227390. [PMID: 33345272 PMCID: PMC7805023 DOI: 10.1042/bsr20201626] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 11/06/2020] [Accepted: 12/09/2020] [Indexed: 02/03/2023] Open
Abstract
Objective: Long non-coding RNA (lncRNA) KCNQ1OT1 was reported to be tightly associated with tumorigenesis and progression of multiple cancers. However, the expression and biological functions of KCNQ1OT1 in retinoblastoma (RB) are still unknown. We aim to elucidate the potential function and underlying mechanism of KCNQ1OT1 in regulating the progression of RB. Methods: The levels of KCNQ1OT1 were assayed by real-time fluorescence quantitative polymerase chain reaction (RT-qPCR) analysis. The cell proliferation of RB cells (Y79 and WERI-Rb-1) were evaluated through Cell Counting Kit 8 (CCK-8) assay. Meanwhile, Y79 and WERI-Rb-1 cell apoptosis and cell cycle were assessed by Flow Cytometry analysis. Dual luciferase reporter assay were performed to illustrate the interaction between KCNQ1OT1, miR-124, and SP1. Results: We found that KCNQ1OT1 was up-regulated and miR-124 was down-regulated in RB tissues and cells. Moreover, knockdown of KCNQ1OT1 reduced the proliferation, migration, and cell cycle, as well as promoted cell apoptosis of Y79 and WERI-Rb-1 cells. Western blot analysis consistently proved cell cycle and apoptosis related protein expression levels. More importantly, KCNQ1OT1 was a sponge of microRNA (miR)-124. MiR-124 inhibition strongly reversed the effect on cell proliferation, cycle arrest, and apoptosis by KCNQ1OT1 knockdown mediation. In addition, KCNQ1OT1 regulated expression of SP1, a direct target of miR-124 in RB. On the other hand, miR-124 inhibitor abrogated the active effect of KCNQ1OT1 silencing on silent information regulator 1 (SIRT1)/c-Jun N-terminal kinase (JNK) signaling pathway. The function of KCNQ1OT1 was verified in vivo. Conclusions: These findings implied that KCNQ1OT1 silencing inhibited RB progression and activated SIRT1/JNK signaling pathway partially by modulating the miR-124/SP1 axis.
Collapse
|
33
|
Dieter C, Lemos NE, Corrêa NRDF, Assmann TS, Crispim D. The Impact of lncRNAs in Diabetes Mellitus: A Systematic Review and In Silico Analyses. Front Endocrinol (Lausanne) 2021; 12:602597. [PMID: 33815273 PMCID: PMC8018579 DOI: 10.3389/fendo.2021.602597] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 02/15/2021] [Indexed: 12/17/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are non-coding transcripts that have emerged as one of the largest and diverse RNA families that regulate gene expression. Accumulating evidence has suggested a number of lncRNAs are involved in diabetes mellitus (DM) pathogenesis. However, results about lncRNA expressions in DM patients are still inconclusive. Thus, we performed a systematic review of the literature on the subject followed by bioinformatics analyses to better understand which lncRNAs are dysregulated in DM and in which pathways they act. Pubmed, Embase, and Gene Expression Omnibus (GEO) repositories were searched to identify studies that investigated lncRNA expression in cases with DM and non-diabetic controls. LncRNAs consistently dysregulated in DM patients were submitted to bioinformatics analysis to retrieve their target genes and identify potentially affected signaling pathways under their regulation. Fifty-three eligible articles were included in this review after the application of the inclusion and exclusion criteria. Six hundred and thirty-eight lncRNAs were differentially expressed between cases and controls in at least one study. Among them, six lncRNAs were consistently dysregulated in patients with DM (Anril, Hotair, Malat1, Miat, Kcnq1ot1, and Meg3) compared to controls. Moreover, these six lncRNAs participate in several metabolism-related pathways, evidencing their importance in DM. This systematic review suggests six lncRNAs are dysregulated in DM, constituting potential biomarkers of this disease.
Collapse
Affiliation(s)
- Cristine Dieter
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Post-Graduate Program in Medical Sciences: Endocrinology, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | | | - Taís Silveira Assmann
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Post-Graduate Program in Medical Sciences: Endocrinology, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Daisy Crispim
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Post-Graduate Program in Medical Sciences: Endocrinology, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- *Correspondence: Daisy Crispim,
| |
Collapse
|
34
|
Xu LB, Bo BX, Xiong J, Ren YJ, Han D, Wei SH, Ren XP. Long non-coding RNA LINC00887 promotes progression of lung carcinoma by targeting the microRNA-206/NRP1 axis. Oncol Lett 2020; 21:87. [PMID: 33376520 PMCID: PMC7751375 DOI: 10.3892/ol.2020.12348] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 10/05/2020] [Indexed: 02/07/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) have been reported to participate in multiple biological processes, including tumorigenesis. In the current study, the function of a novel lncRNA LINC00887 was investigated in lung carcinoma. For this purpose, LINC00887 expression was assessed by reverse-transcription quantitative PCR. Cell viability was determined by the CCK-8 and EdU assays. Cell invasion, migration were assessed by the transwell and wound healing assays, respectively. A dual luciferase assay was used for analysis of the interaction between LINC00887 and miR-206, as well as the relationship of miR-206 with NRP1. A tumor xenograft study was performed to investigate the LINC00887-miR-206-NRP1 axis in vivo. The expression levels of LINC00887 were upregulated in lung carcinoma tissues and cells compared with adjacent tissues or normal cells (BEAS-2B). Knockdown LINC00887 significantly inhibited the proliferation, migration and invasion of lung carcinoma A549 and NCI-H460 cells. Furthermore, LINC00887 was identified as a competing endogenous RNA and to directly interact with miR-206. Mechanistically, miR-206 was demonstrated to regulate neuropilin-1 (NRP1) expression by targeting the NRP1 3'-untranslated region. The results of the present study suggested that the LINC00887-miR-206-NRP1 axis served a critical role in regulating lung carcinoma cell proliferation, migration and invasion. In addition, xenograft tumor model experiments revealed that silencing LINC00887 suppressed lung carcinoma tumor growth of in vivo. In summary, our results suggest that LINC00887 may serve an oncogenic role in lung carcinoma by targeting the miR-206/NRP1 axis, providing a potential therapeutic target for patients with lung carcinoma.
Collapse
Affiliation(s)
- Ling-Bin Xu
- The Second Department of Pulmonary and Critical Care Medicine, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Bian-Xin Bo
- Department of Critical Care Medicine, Zhouzhi Country People's Hospital, Xi'an, Shaanxi 710407, P.R. China
| | - Jie Xiong
- The Second Department of Pulmonary and Critical Care Medicine, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Ya-Juan Ren
- The Second Department of Pulmonary and Critical Care Medicine, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Dong Han
- The Second Department of Pulmonary and Critical Care Medicine, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Sheng-Hong Wei
- The Second Department of Pulmonary and Critical Care Medicine, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Xiao-Ping Ren
- The Second Department of Pulmonary and Critical Care Medicine, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| |
Collapse
|
35
|
Zhang C, Wu S. microRNA -378a-3p Restrains the Proliferation of Retinoblastoma Cells but Promotes Apoptosis of Retinoblastoma Cells via Inhibition of FOXG1. Invest Ophthalmol Vis Sci 2020; 61:31. [PMID: 32428232 PMCID: PMC7405766 DOI: 10.1167/iovs.61.5.31] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Purpose More recently, literature has emerged providing findings about the novelty of microRNAs (miR)-targeted therapeutics in the treatment of retinoblastoma (RB). The prime objective of this study was to identify the potential role of miR-378a-3p and its regulation in RB cells via forkhead box G1 (FOXG1). Methods The expression of miR-378a-3p and FOXG1 in the clinical RB tissues was determined using RNA quantitation and Western blot assays. The interaction between miR-378a-3p and FOXG1 was identified using dual luciferase reporter gene assay. The potential effects of miR-378a-3p on the RB cell biological processes were evaluated by conducting gain- and loss-of-function studies of miR-378a-3p and FOXG1, followed by cell viability, cell cycle progression, and apoptosis measurements. Furthermore, experiments were performed in nude mice to assess its effects on tumor formation. Results miR-378a-3p was poorly expressed, whereas FOXG1 was highly expressed in RB tissues and cells. miR-378a-3p bound to the FOXG1 3′ untranslated region and negatively modulated its expression. The overexpression of miR-378a-3p was found to decrease RB cell viability and to promote cell apoptosis in vitro, whereas overexpressed FOXG1 reversed the regulatory effects of miR-378a-3p on RB cellular behaviors. In nude mice, the restoration of miR-378a-3p by miR-378a-3p agomir was shown to play a role in the reduction of tumor volume and size relative to nude mice injected with negative control-agomir. Conclusions Our findings identified that increased miR-378a-3p exerted an inhibitory effect on RB cell proliferation by targeting FOXG1, suggesting the role of miR-378a-3p as a novel therapeutic target for RB.
Collapse
|
36
|
Dong Y, Wan G, Yan P, Qian C, Li F, Peng G. Long noncoding RNA LINC00324 promotes retinoblastoma progression by acting as a competing endogenous RNA for microRNA-769-5p, thereby increasing STAT3 expression. Aging (Albany NY) 2020; 12:7729-7746. [PMID: 32369777 PMCID: PMC7244063 DOI: 10.18632/aging.103075] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 03/24/2020] [Indexed: 12/19/2022]
Abstract
Long intergenic non–protein-coding RNA 324 (LINC00324) is abnormally expressed in multiple human cancer types and plays an important role in cancer initiation and progression. This study showed that LINC00324 was expressed at higher levels in retinoblastoma (RB) tumors and cell lines than in control samples. Increased LINC00324 expression closely correlated with the TNM stage, optic nerve invasion, and shorter overall survival among patients with RB. The knockdown of LINC00324 decreased RB cell proliferation, colony formation, migration, and invasion, and promoted apoptosis and cell cycle arrest in vitro as well as hindered tumor growth in vivo. With respect to the mechanism, LINC00324 acted as a competing endogenous RNA for microRNA-769-5p (miR-769-5p) in RB cells. The mRNA of signal transducer and activator of transcription 3 (STAT3) was identified as a direct target of miR-769-5p in RB cells. Rescue experiments indicated that restoration of STAT3 expression attenuated the tumor-suppressive actions of miR-769-5p in RB cells. Downregulation of miR-769-5p or restoration of STAT3 almost completely reversed the effects of LINC00324 knockdown on RB cells. Our findings describe a novel RB-related LINC00324–miR-769-5p–STAT3 axis that is implicated in the malignancy of RB in vitro and in vivo. This study may point to innovative therapeutic targets in RB.
Collapse
Affiliation(s)
- Yi Dong
- Department of Ophthalmology, First Affiliated Hospital of Zhengzhou University, Henan Province Eye Hospital, Zhengzhou 450052, Henan, China
| | - Guangming Wan
- Department of Ophthalmology, First Affiliated Hospital of Zhengzhou University, Henan Province Eye Hospital, Zhengzhou 450052, Henan, China
| | - Panshi Yan
- Department of Ophthalmology, First Affiliated Hospital of Zhengzhou University, Henan Province Eye Hospital, Zhengzhou 450052, Henan, China
| | - Cheng Qian
- Department of Ophthalmology, First Affiliated Hospital of Zhengzhou University, Henan Province Eye Hospital, Zhengzhou 450052, Henan, China
| | - Fuzhen Li
- Department of Ophthalmology, First Affiliated Hospital of Zhengzhou University, Henan Province Eye Hospital, Zhengzhou 450052, Henan, China
| | - Guanghua Peng
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450002, Henan, China
| |
Collapse
|
37
|
Magnelli L, Schiavone N, Staderini F, Biagioni A, Papucci L. MAP Kinases Pathways in Gastric Cancer. Int J Mol Sci 2020; 21:ijms21082893. [PMID: 32326163 PMCID: PMC7215608 DOI: 10.3390/ijms21082893] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/05/2020] [Accepted: 04/17/2020] [Indexed: 12/24/2022] Open
Abstract
Gastric cancer (GC) is turning out today to be one of the most important welfare issues for both Asian and European countries. Indeed, while the vast majority of the disease burden is located in China and in Pacific and East Asia, GC in European countries still account for about 100,000 deaths per year. With this review article, we aim to focus the attention on one of the most complex cellular pathways involved in GC proliferation, invasion, migration, and metastasis: the MAP kinases. Such large kinases family is to date constantly studied, since their discovery more than 30 years ago, due to the important role that it plays in the regulation of physiological and pathological processes. Interactions with other cellular proteins as well as miRNAs and lncRNAs may modulate their expression influencing the cellular biological features. Here, we summarize the most important and recent studies involving MAPK in GC. At the same time, we need to underly that, differently from cancers arising from other tissues, where MAPK pathways seems to be a gold target for anticancer therapies, GC seems to be unique in any aspect. Our aim is to review the current knowledge in MAPK pathways alterations leading to GC, including H. pylori MAPK-triggering to derail from gastric normal epithelium to GC and to encourage researches involved in MAPK signal transduction, that seems to definitely sustain GC development.
Collapse
Affiliation(s)
- Lucia Magnelli
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale G.B. Morgagni 50, 50134 Firenze, Italy; (N.S.); (A.B.); (L.P.)
- Correspondence: ; Tel.: +39-055-2751397
| | - Nicola Schiavone
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale G.B. Morgagni 50, 50134 Firenze, Italy; (N.S.); (A.B.); (L.P.)
| | - Fabio Staderini
- Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Firenze, Italy;
| | - Alessio Biagioni
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale G.B. Morgagni 50, 50134 Firenze, Italy; (N.S.); (A.B.); (L.P.)
| | - Laura Papucci
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale G.B. Morgagni 50, 50134 Firenze, Italy; (N.S.); (A.B.); (L.P.)
| |
Collapse
|
38
|
Wang L, Zhang Y, Xin X. Long non-coding RNA MALAT1 aggravates human retinoblastoma by sponging miR-20b-5p to upregulate STAT3. Pathol Res Pract 2020; 216:152977. [PMID: 32336590 DOI: 10.1016/j.prp.2020.152977] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/24/2020] [Accepted: 04/13/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Retinoblastoma (RB) is an uncommon childhood carcinoma of the developing retina. Long non-coding RNA (lncRNA) metastasis associated lung adenocarcinoma transcript 1 (MALAT1), microRNA-20b-5p (miR-20b-5p) and signal transducer and activator of transcription 3 (STAT3) was revealed to partake in RB. But their relationship was still to be investigated, so we intended to discuss the specific interaction of MALAT1, miR-20b-5p and STAT3 in RB. METHODS By RNA isolation and quantitation, we measured the MALAT1 expression in RB tissues and cell lines. Then, to determine the influence of MALAT1 on RB cells, RB cells were transfected with siRNA-MALAT1 or pcDNA-MALAT1. The interplay among MALAT1, miR-20b-5p and STAT3 were evaluated through dual luciferase reporter gene assay and RNA pull-down after RB cells treated with siRNA/pcDNA-MALAT1 or/and miR-20b-5p mimic/inhibitor. The influence of their interaction on cells was evaluated by cell counting kit-8, EdU assay and flow cytometry. Finally, the involvement of MALAT1 in tumorigenesis was elucidated in vivo. RESULTS Both RB tissues and cells showed highly expressed MALAT1. When MALAT1 was downregulated, RB cell proliferation was hindered and apoptosis was accelerated. MALAT1 sponged miR-20b-5p and upregulated STAT3. Silencing MALAT1 or overexpressing miR-20b-5p inhibited proliferation and promoted apoptosis in RB cells. The tumor growth of nude mice treated with siRNA-MALAT1 was inhibited. CONCLUSION MALAT1 could increase proliferation and reduce apoptosis by sponging miR-20b-5p to upregulate STAT3 in RB cells. Therefore, MALAT1 might be a latent target in the RB treatment.
Collapse
Affiliation(s)
- Liming Wang
- Department of Ophthalmology, Inner Mongolia Baogang Hospital, Baotou 014010, Inner Mongolia, PR China
| | - Yanwen Zhang
- Department of Ophthalmology, Inner Mongolia Baogang Hospital, Baotou 014010, Inner Mongolia, PR China
| | - Xiangyang Xin
- Department of Ophthalmology, Inner Mongolia Baogang Hospital, Baotou 014010, Inner Mongolia, PR China.
| |
Collapse
|
39
|
Sun X, Shen H, Liu S, Gao J, Zhang S. Long noncoding RNA SNHG14 promotes the aggressiveness of retinoblastoma by sponging microRNA‑124 and thereby upregulating STAT3. Int J Mol Med 2020; 45:1685-1696. [PMID: 32236565 PMCID: PMC7169960 DOI: 10.3892/ijmm.2020.4547] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 01/30/2020] [Indexed: 12/11/2022] Open
Abstract
A long noncoding RNA called small nucleolar RNA host gene 14 (SNHG14) has been validated as a key regulator of cellular processes in multiple types of human cancer. However, to the best of our knowledge, the expression status and specific roles of SNHG14 in retinoblastoma (RB) have not been studied. The aims of the present study were to determine the expression status of SNHG14 in RB, assess the effects of SNHG14 on malignant characteristics of RB cells and investigate the mechanisms of action of SNHG14 in RB. SNHG14 expression levels in RB tissue samples and cell lines were measured by reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR). Cell proliferation, apoptosis, migration and invasion in vitro, and tumor growth in vivo were quantitated by the Cell Counting Kit‑8 assay, flow cytometry, migration and invasion assays, and mouse tumor xenograft experiments, respectively. The target microRNA (miRNA) of SNHG14 was predicted by bioinformatics analysis and was subsequently validated by a luciferase reporter assay, RNA immunoprecipitation (RIP) assay, RT‑qPCR, and western blot analysis. SNHG14 was identified to be significantly overexpressed in RB tissues and cell lines. SNHG14 overexpression was markedly associated with the intraocular international retinoblastoma classification stage, optic nerve invasion, and differentiation grade among patients with RB. The patients in the SNHG14 high‑expression group exhibited shorter overall survival compared with the SNHG14 low‑expression group. Functional analysis revealed that SNHG14 silencing inhibited cell proliferation, migration and invasion, and increased apoptosis in vitro, and decreased tumor growth in vivo. SNHG14 directly interacted with, and functioned as a competing endogenous RNA (ceRNA) of, miR‑124, consequently upregulating signal transducer and activator of transcription 3 (STAT3). miR‑124 inhibition and STAT3 expression recovery attenuated the effects of the SNHG14 silencing on RB cells. In conclusion, SNHG14 served as a ceRNA to upregulate STAT3 by sponging miR‑124. Therefore, targeting the SNHG14/miR‑124/STAT3 pathway may be an effective therapeutic strategy against RB.
Collapse
Affiliation(s)
- Xiaowen Sun
- Department of Ophthalmology, People's Hospital of Rizhao, Rizhao, Shandong 276800, P.R. China
| | - Hui Shen
- Department of Ophthalmology, People's Hospital of Rizhao, Rizhao, Shandong 276800, P.R. China
| | - Shubin Liu
- Department of Oncology, Binzhou People's Hospital, Binzhou, Shandong 256610, P.R. China
| | - Jing Gao
- Department of Ophthalmology, Weifang Ophthalmic Hospital, Weifang, Shandong 261041, P.R. China
| | - Shuyan Zhang
- Department of Ophthalmology, People's Hospital of Rizhao, Rizhao, Shandong 276800, P.R. China
| |
Collapse
|
40
|
Sun Y, Niu X, Wang G, Qiao X, Chen L, Zhong M. A Novel lncRNA ENST00000512916 Facilitates Cell Proliferation, Migration and Cell Cycle Progression in Ameloblastoma. Onco Targets Ther 2020; 13:1519-1531. [PMID: 32110049 PMCID: PMC7037065 DOI: 10.2147/ott.s236158] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 02/04/2020] [Indexed: 12/12/2022] Open
Abstract
Objective Our purpose was to identify up-regulated long noncoding RNA ENST00000512916 in ameloblastoma (AB) and explore its role in the progression of AB. Methods We analyzed lncRNA microarray expression profile between six paired AB and normal oral mucosa (NOM) tissues. An up-regulated lncRNA, ENST00000512916 was identified and validated by real-time qPCR. Cell proliferation, migration and cell cycle were detected by CCK-8 assay, transwell chamber and flow cytometry, respectively. Western blotting analysis was used to measure the expression of cell-cycle-related proteins including CyclinD1 and Cyclin-dependent kinase (CDK) 2/4/6. In addition, Xenograft tumor model was constructed to investigate tumor growth. Results Real-time qPCR confirmed that lncRNA ENST00000512916 was up-regulated in AB tissues. ENST00000512916 knockdown significantly inhibited cell proliferation, migration and the expression of CDK2/4/6 in AM-1 cells. Moreover, ENST00000512916 knockdown suppressed tumor growth in vivo. We also found that ENST00000512916 overexpression significantly promoted the expression of HOXC13 in AM-1 cells. Overexpression of ENST00000512916 promoted cell cycle progression in AM-1 cells, which was reversed by HOXC13 knockdown. Conclusion Our findings reveal that lncRNA ENST00000512916 promotes cell proliferation, migration and cell cycle progression of AB.
Collapse
Affiliation(s)
- Yan Sun
- Department of Oral Histopathology, School of Stomatology, China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Xing Niu
- Department of Oral Histopathology, School of Stomatology, China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Guannan Wang
- Department of Oral Histopathology, School of Stomatology, China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Xue Qiao
- Department of Central Laboratory, School of Stomatology, China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Lijie Chen
- Department of Oral Histopathology, School of Stomatology, China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Ming Zhong
- Department of Oral Histopathology, School of Stomatology, China Medical University, Shenyang, Liaoning, People's Republic of China
| |
Collapse
|
41
|
Zou X, Guo ZH, Li Q, Wang PS. Long Noncoding RNA LINC00460 Modulates MMP-9 to Promote Cell Proliferation, Invasion and Apoptosis by Targeting miR-539 in Papillary Thyroid Cancer. Cancer Manag Res 2020; 12:199-207. [PMID: 32021436 PMCID: PMC6956998 DOI: 10.2147/cmar.s222085] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 11/18/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Increasing evidence shows that Long non-coding RNAs (lncRNAs) involve in the development and progression processes of various cancers, including papillary thyroid cancer (PTC). In this study, we focused on the regulation function of lncRNA LINC00460 in the development of PTC. METHODS Expression of LINC00460 was detected using quantitative real-time PCR (qRT-PCR) and Western blot assay. Cell proliferation, cell apoptosis and cell invasion were determined through CCK-8 assay, flow cytometry, and Transwell assay, respectively. In addition, target sites were detected by the dual-luciferase reporter gene assay. RESULTS LINC00460 expression was markedly up-regulated in PTC tissues and cells compared to their corresponding controls by quantitative real-time PCR (qRT-PCR). Meanwhile, LINC00460 knockdown notably inhibited the proliferation capacity, accelerated the apoptosis and down-regulated the invasion-related proteins (MMP-2, MMP-9, ZEB1) expression. In addition, bioinformatics tools predicted that miR-539 both targeted with the 3'-UTR of LINC00460 and MMP-9, which was confirmed by luciferase reporter assay and Western blot. CONCLUSION These findings indicated that LINC00460 can modulate MMP-9 expression to promote cell proliferation, invasion and apoptosis through targeting miR-539, suggesting act as an oncogenic RNA in PTC and provide a new therapeutic perspective.
Collapse
Affiliation(s)
- Xian Zou
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Department of Surgery, Jiang Yuan Hospital Affiliated to Jiangsu Institute of Nuclear Medicine, Wuxi214063, Jiangsu, People’s Republic of China
| | - Zhi Heng Guo
- Department of Obstetrics, The First Hospital of Jilin University, Changchun130021, Jilin, People’s Republic of China
| | - Qun Li
- Department of Thyroid Surgery, The First Hospital of Jilin University, Changchun130021, Jilin, People’s Republic of China
| | - Pei Song Wang
- Department of Thyroid Surgery, The First Hospital of Jilin University, Changchun130021, Jilin, People’s Republic of China
| |
Collapse
|
42
|
Abstract
Retinoblastoma (Rb) is the most common ocular pediatric malignancy that arises from the retina and is caused by a mutation of the two alleles of the tumor suppressor gene, RB1. Although early detection provides the opportunity of controlling the primary tumor with effective therapies, metastatic activity is fatal. Non-coding RNAs (ncRNAs) have emerged as important modifiers of a plethora of biological mechanisms including those involved in cancer. They are classified into short and long ncRNAs according to their length. Deregulation of all these molecules has also been shown to play a critical role in Rb pathogenesis and progression. It is believed that ncRNAs can provide new insights into novel regulatory mechanisms associated with clinical pathological characteristics, facilitating the development of therapeutic alternatives for the treatment of Rb. In this review, we describe a variety of ncRNAs, which capable of regulating the most likely candidate genes involved in the tumorigenesis of Rb, could prove useful in analyzing different aspects of this cancer.
Collapse
Affiliation(s)
- Meropi Plousiou
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Ivan Vannini
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| |
Collapse
|
43
|
Metastasis Associated Lung Adenocarcinoma Transcript 1: An update on expression pattern and functions in carcinogenesis. Exp Mol Pathol 2019; 112:104330. [PMID: 31712117 DOI: 10.1016/j.yexmp.2019.104330] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 11/03/2019] [Indexed: 12/28/2022]
Abstract
The Metastasis Associated Lung Adenocarcinoma Transcript 1 (MALAT1) is among long non-coding RNAs (lncRNAs) which has disapproved the old term of "junk DNA" which was used for majority of human genome which are not transcribed to proteins. An extensive portion of literature points to the fundamental role of this lncRNA in tumorigenesis process of diverse cancers ranging from solid tumors to leukemia. Being firstly identified in lung cancer, it has prognostic and diagnostic values in several cancer types. Consistent with the proposed oncogenic roles for this lncRNA, most of studies have shown up-regulation of MALAT1 in malignant tissues compared with non-malignant/normal tissues of the same source. However, few studies have shown down-regulation of MALAT1 in breast cancer, endometrial cancer, colorectal cancer and glioma. In the current study, we have conducted a comprehensive literature search and provided an up-date on the role of MALAT1 in cancer biology. Our investigation underscores a potential role as a diagnostic/prognostic marker and a putative therapeutic target for MALAT1.
Collapse
|
44
|
Smith CM, Catchpoole D, Hutvagner G. Non-Coding RNAs in Pediatric Solid Tumors. Front Genet 2019; 10:798. [PMID: 31616462 PMCID: PMC6764412 DOI: 10.3389/fgene.2019.00798] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 07/30/2019] [Indexed: 12/15/2022] Open
Abstract
Pediatric solid tumors are a diverse group of extracranial solid tumors representing approximately 40% of childhood cancers. Pediatric solid tumors are believed to arise as a result of disruptions in the developmental process of precursor cells which lead them to accumulate cancerous phenotypes. In contrast to many adult tumors, pediatric tumors typically feature a low number of genetic mutations in protein-coding genes which could explain the emergence of these phenotypes. It is likely that oncogenesis occurs after a failure at many different levels of regulation. Non-coding RNAs (ncRNAs) comprise a group of functional RNA molecules that lack protein coding potential but are essential in the regulation and maintenance of many epigenetic and post-translational mechanisms. Indeed, research has accumulated a large body of evidence implicating many ncRNAs in the regulation of well-established oncogenic networks. In this review we cover a range of extracranial solid tumors which represent some of the rarer and enigmatic childhood cancers known. We focus on two major classes of ncRNAs, microRNAs and long non-coding RNAs, which are likely to play a key role in the development of these cancers and emphasize their functional contributions and molecular interactions during tumor formation.
Collapse
Affiliation(s)
- Christopher M Smith
- School of Biomedical Engineering, University of Technology Sydney, Sydney, Australia
| | - Daniel Catchpoole
- School of Software, University of Technology Sydney, Sydney, Australia.,The Tumour Bank-CCRU, Kids Research, The Children's Hospital at Westmead, Sydney, Australia
| | - Gyorgy Hutvagner
- School of Biomedical Engineering, University of Technology Sydney, Sydney, Australia
| |
Collapse
|
45
|
Zhang L, Dong Y, Wang Y, Gao J, Lv J, Sun J, Li M, Wang M, Zhao Z, Wang J, Xu W. Long non-coding RNAs in ocular diseases: new and potential therapeutic targets. FEBS J 2019; 286:2261-2272. [PMID: 30927500 DOI: 10.1111/febs.14827] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 02/21/2019] [Accepted: 03/28/2019] [Indexed: 12/21/2022]
Abstract
Long non-coding RNAs (lncRNAs) are non-protein coding transcripts containing more than 200 nucleotides. In the past, lncRNAs were considered as 'transcript noise' or 'pseudogenes' and were thus ignored. However, in recent years, lncRNAs have been proven to regulate gene expression at the epigenetic, transcriptional and translational level, and thereby influence cell proliferation, apoptosis, viability, immune response and oxidative stress. Furthermore, increasing evidence points to their involvement in different diseases, including cancer and heart diseases. Recently, lncRNAs were shown to be differentially expressed in ocular tissues and play a significant role in the pathogenesis of ophthalmological disorders such as glaucoma, corneal diseases, cataract, diabetic retinopathy, proliferative vitreoretinopathy and ocular tumors. In this review, we summarize the classification and mechanisms of known lncRNAs, while detailing their biological functions and roles in ocular diseases. Moreover, we provide a concise review of the clinical relevance of lncRNAs as novel, potential therapeutic targets in the treatment of eye diseases.
Collapse
Affiliation(s)
- Lixia Zhang
- Department of Inspection, The Medical Faculty of Qingdao University, China
| | - Yanhan Dong
- Institute for Translational Medicine, Qingdao University, China
| | - Yujie Wang
- The Clinical Laboratory of Qingdao Municipal Hospital, China
| | - Jinning Gao
- Institute for Translational Medicine, Qingdao University, China
| | - Jiayi Lv
- Department of Inspection, The Medical Faculty of Qingdao University, China
| | - Jingguo Sun
- Department of Inspection, The Medical Faculty of Qingdao University, China
| | - Mengjie Li
- Department of Inspection, The Medical Faculty of Qingdao University, China
| | - Meng Wang
- Department of Inspection, The Medical Faculty of Qingdao University, China
| | - Zhihong Zhao
- Department of Inspection, The Medical Faculty of Qingdao University, China
| | - Jianxun Wang
- Institute for Translational Medicine, Qingdao University, China
| | - Wenhua Xu
- Department of Inspection, The Medical Faculty of Qingdao University, China
| |
Collapse
|
46
|
Abstract
PURPOSE The research of long non-coding RNAs (lncRNAs) has become a new passion with the discovery of abundant new lncRNAs and extensive investigation of their roles in various diseases, especially in cancers. Metastasis associated in lung adenocarcinoma transcript 1 (MALAT1) emerges as a hotspot, which has been reported to be involved in dysregulation of cell signaling and closely correlated with cancer development, progression, and response to therapy. This review is a brief update of the current knowledge related to the role of MALAT1 in cancer-associated molecular pathways and pathophysiology and possible determinants for MALAT1 to function as a biomarker, aiming to stimulate the basic investigation of lncRNA MALAT1 as well as its translation to clinical applications. METHODS We have selected vast literature from electronic databases including studies associated with its clinical significance and the pivotal functions in cancer processes such as cell proliferation, apoptosis, metastasis, immunity, angiogenesis, and drug resistance. RESULTS Studies have shown that aberrant expression of MALAT1 is related to cancer pathophysiology with the potential to be translated clinically and MALAT1 can regulate cancer processes by interacting with molecules, such as proteins, RNAs and DNAs, and further altering different signal pathways. CONCLUSION MALAT1 lncRNA promises to be a potential biomarker for cancer diagnosis as well as prognosis. Additionally, it might be a therapeutic target for human cancers.
Collapse
Affiliation(s)
- Zhi-Xing Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China,
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, 410078, People's Republic of China,
| | - Qiong-Ni Zhu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China,
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, 410078, People's Republic of China,
| | - Hai-Bo Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China,
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, 410078, People's Republic of China,
| | - Yang Hu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China,
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, 410078, People's Republic of China,
| | - Guo Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China,
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, 410078, People's Republic of China,
| | - Yuan-Shan Zhu
- Department of Medicine, Weill Cornell Medicine, New York, NY, 10065, USA,
| |
Collapse
|
47
|
Liu P, Wang H, Liang Y, Hu A, Xing R, Jiang L, Yi L, Dong J. LINC00852 Promotes Lung Adenocarcinoma Spinal Metastasis by Targeting S100A9. J Cancer 2018; 9:4139-4149. [PMID: 30519313 PMCID: PMC6277606 DOI: 10.7150/jca.26897] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 08/31/2018] [Indexed: 01/29/2023] Open
Abstract
Background: Lung adenocarcinoma has a strong tendency to develop into bone metastases, especially spinal metastases (SM). Long noncoding RNAs (lncRNAs) play critical roles in regulating several biological processes in cancer cells. However, the mechanisms underlying the roles of lncRNAs in the development of SM have not been elucidated to date. Methods: Clinical specimens were collected for analysis of differentially expressed lncRNAs. The Kyoto Encyclopedia of Genes and Genomes (KEGG) was used to examine the effects of these genes on pathways. RNA pull-down was utilized to identify the targeting protein of lncRNAs. The effects of lncRNA on its target were detected in A549 and SPCA-1 cells via perturbation of the lncRNA expression. Oncological behavioral changes in transfected cells and phosphorylation of kinases in the relevant pathways, with or without inhibitors, were observed. Further, tumorigenicity was found to occur in experimental nude mice. Results: LINC00852 and the mitogen-activated protein kinase (MAPK) pathway were found to be associated with SM. Moreover, the LINC00852 target S100A9 had a positive regulatory role in the progression, migration, invasion, and metastasis of lung adenocarcinoma cells, both in vitro and in vivo. Furthermore, S100A9 strongly activated the P38 and REK1/2 kinases, and slightly activated the phosphorylation of the JNK kinase in the MAPK pathway in A549 and SPCA-1 cells. Conclusion: LINC00852 targets S100A9 to promote progression and oncogenic ability in lung adenocarcinoma SM through activation of the MAPK pathway. These findings suggest a potential novel target for early intervention against SM in lung cancer.
Collapse
Affiliation(s)
- Peng Liu
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Houlei Wang
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yun Liang
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Annan Hu
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Rong Xing
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Libo Jiang
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lei Yi
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jian Dong
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
48
|
Sun W, Shi Y, Wang Z, Zhang J, Cai H, Zhang J, Huang D. Interaction of long-chain non-coding RNAs and important signaling pathways on human cancers (Review). Int J Oncol 2018; 53:2343-2355. [PMID: 30272345 DOI: 10.3892/ijo.2018.4575] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 08/24/2018] [Indexed: 11/05/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) usually refer to non-coding RNA transcripts >200 nucleotides in length. In terms of the full genomic transcript, the proportion of lncRNAs far exceeds that of coding RNA. Initially, lncRNAs were considered to be the transcriptional noise of genes, but it has since been demonstrated that lncRNAs serve an important role in the regulation of cellular activities through interaction with DNA, RNA and protein. Numerous studies have demonstrated that various intricate signaling pathways are closely related to lncRNAs. Here, we focus on a large number of studies regarding the interaction of lncRNAs with important signaling pathways. It is comprehensively illustrated that lncRNAs regulate key metabolic components and regulatory factors of signaling pathways to affect the biological activities of tumor cells. Evidence suggests that the abnormal expression or mutation of lncRNAs in human tumor cells, and their interaction with signaling pathways, may provide a basis and potential target for the diagnosis and treatment of human cancers.
Collapse
Affiliation(s)
- Wei Sun
- Department of Postgraduates, Bengbu Medical College, Bengbu, Anhui 233000, P.R. China
| | - Ying Shi
- Department of Obstetrics, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310014, P.R. China
| | - Zhifei Wang
- Department of Hepatobiliary and Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310014, P.R. China
| | - Jiye Zhang
- Department of Hepatobiliary and Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310014, P.R. China
| | - Hanhui Cai
- Department of Hepatobiliary and Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310014, P.R. China
| | - Jungang Zhang
- Department of Hepatobiliary and Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310014, P.R. China
| | - Dongsheng Huang
- Department of Hepatobiliary and Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310014, P.R. China
| |
Collapse
|
49
|
Lei L, Chen J, Huang J, Lu J, Pei S, Ding S, Kang L, Xiao R, Zeng Q. Functions and regulatory mechanisms of metastasis‐associated lung adenocarcinoma transcript 1. J Cell Physiol 2018; 234:134-151. [PMID: 30132842 DOI: 10.1002/jcp.26759] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 04/26/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Li Lei
- Department of Dermatology, Xiangya Hospital Central South University Changsha Hunan China
- Department of Hunan Key Laboratory of Skin Cancer and Psoriasis Xiangya Hospital, Central South University Changsha Hunan China
| | - Jing Chen
- Department of Dermatology Third Xiangya Hospital, Central South University Changsha Hunan China
| | - Jinhua Huang
- Department of Dermatology Third Xiangya Hospital, Central South University Changsha Hunan China
| | - Jianyun Lu
- Department of Dermatology Third Xiangya Hospital, Central South University Changsha Hunan China
| | - Shiyao Pei
- Department of Dermatology Third Xiangya Hospital, Central South University Changsha Hunan China
| | - Shu Ding
- Department of Dermatology Third Xiangya Hospital, Central South University Changsha Hunan China
| | - Liyang Kang
- Department of Dermatology Third Xiangya Hospital, Central South University Changsha Hunan China
| | - Rong Xiao
- Department of Dermatology Second Xiangya Hospital, Central South University Changsha Hunan China
| | - Qinghai Zeng
- Department of Dermatology Third Xiangya Hospital, Central South University Changsha Hunan China
| |
Collapse
|
50
|
[Bioinformatics Analysis of DNA Methylation in the Promoters of LincRNA
in Lung Adenocarcinoma]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2018; 21:470-475. [PMID: 29945706 PMCID: PMC6022035 DOI: 10.3779/j.issn.1009-3419.2018.06.08] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Previous studies have found the lincRNAs play important roles in the occurrence and development of lung adenocarcinoma, but their regulated mechanims are still unclear. The aim of this study is to evaluate the relationship between DNA methylation and lincRNA expression, and the effect of prognosis in lung adenocarcinoma. METHODS The whole genome Illumina Methylation 450 DNA methylatiuon data and RNAseq for lung adenocarcinoma were download from TCGA. DNA methylation around lincRNA and their relationship to gene expression were analyzed. Their contribution to lung adenocarcinoma were further analyzed by comparing DNA methylation and lincRNA expression in tumor and adjacent tissues. RESULTS The methylation level in promoter region was lower than other positions in lincRNA, and was negatively correlated with gene expression. There were 427 lincRNA genes showed differential DNA methylation in their promoter regions in tumor and adjacent tissues. Among these, 15 lincRNA genes showed differential gene expression and negatively correlated with DNA methylation, including FENDRR (a tumor progression and metastasis gene) whose high methylation in its promoter showed poor survival in lung adenocarcinoma. CONCLUSIONS The expression of lincRNA can be regulated by DNA methylation in their promoter regions, and the level of DNA methylation is related to patient prognosis in lung adenocarcinoma.
Collapse
|