1
|
Gasparello J, Ceccon C, Angerilli V, Comunello T, Sabbadin M, D'Almeida Costa F, Antico A, Luchini C, Parente P, Bergamo F, Lonardi S, Fassan M. Liquid biopsy in gastric cancer: A snapshot of the current state of the art. THE JOURNAL OF LIQUID BIOPSY 2025; 7:100288. [PMID: 40027230 PMCID: PMC11863821 DOI: 10.1016/j.jlb.2025.100288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/15/2025] [Accepted: 01/15/2025] [Indexed: 03/05/2025]
Abstract
Circulating tumor DNA (ctDNA) is nowadays considered a robust source to search for druggable tumoral genetic alterations, and in some specific settings liquid biopsy (LB) is already part of the diagnostics scenario and it has successfully implemented in the everyday practice. Three strengths make LB an extraordinary tool: i) to represent the complex molecular mosaicism that characterizes spatially heterogeneous malignancies; ii) to monitor in real-time the tumoral molecular landscape (i.e. to depict the longitudinal/temporal tumor evolution); iii) to ensure molecular profiling even in those cases in which tissue sampling is not feasible or not adequate. This review provides a snapshot of the current state of the art concerning ctDNA assay utility in gastric cancer (GC), testing its robustness as marker and seeking to understand the reasons for the delay in its application in clinical practice.
Collapse
Affiliation(s)
| | - Carlotta Ceccon
- Department of Medicine - DIMED, University of Padova, Padova, Italy
| | - Valentina Angerilli
- Department of Medicine - DIMED, University of Padova, Padova, Italy
- Department of Surgical Pathology, Azienda ULSS2 Marca Trevigiana, Treviso, Italy
- Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Department of Pathology, Nijmegen, the Netherlands
| | - Tatiane Comunello
- Department of Pathology, A.C. Camargo Cancer Center, Sao Paulo, Brazil
| | - Marianna Sabbadin
- Department of Medicine - DIMED, University of Padova, Padova, Italy
- Department of Surgical Pathology, Azienda ULSS2 Marca Trevigiana, Treviso, Italy
| | | | - Antonio Antico
- Department of Clinical Pathology, Azienda ULSS2 Marca Trevigiana, Treviso, Italy
| | - Claudio Luchini
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, Verona, Italy
| | - Paola Parente
- Unit of Pathology, Fondazione IRCCS Ospedale Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy
| | | | - Sara Lonardi
- Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Matteo Fassan
- Department of Medicine - DIMED, University of Padova, Padova, Italy
- Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| |
Collapse
|
2
|
Wang Y, Liu H, Zhang M, Xu J, Zheng L, Liu P, Chen J, Liu H, Chen C. Epigenetic reprogramming in gastrointestinal cancer: biology and translational perspectives. MedComm (Beijing) 2024; 5:e670. [PMID: 39184862 PMCID: PMC11344282 DOI: 10.1002/mco2.670] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 08/27/2024] Open
Abstract
Gastrointestinal tumors, the second leading cause of human mortality, are characterized by their association with inflammation. Currently, progress in the early diagnosis and effective treatment of gastrointestinal tumors is limited. Recent whole-genome analyses have underscored their profound heterogeneity and extensive genetic and epigenetic reprogramming. Epigenetic reprogramming pertains to dynamic and hereditable alterations in epigenetic patterns, devoid of concurrent modifications in the underlying DNA sequence. Common epigenetic modifications encompass DNA methylation, histone modifications, noncoding RNA, RNA modifications, and chromatin remodeling. These modifications possess the potential to invoke or suppress a multitude of genes associated with cancer, thereby governing the establishment of chromatin configurations characterized by diverse levels of accessibility. This intricate interplay assumes a pivotal and indispensable role in governing the commencement and advancement of gastrointestinal cancer. This article focuses on the impact of epigenetic reprogramming in the initiation and progression of gastric cancer, esophageal cancer, and colorectal cancer, as well as other uncommon gastrointestinal tumors. We elucidate the epigenetic landscape of gastrointestinal tumors, encompassing DNA methylation, histone modifications, chromatin remodeling, and their interrelationships. Besides, this review summarizes the potential diagnostic, therapeutic, and prognostic targets in epigenetic reprogramming, with the aim of assisting clinical treatment strategies.
Collapse
Affiliation(s)
- Yingjie Wang
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| | - Hongyu Liu
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| | - Mengsha Zhang
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| | - Jing Xu
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| | - Liuxian Zheng
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| | - Pengpeng Liu
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| | - Jingyao Chen
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| | - Hongyu Liu
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| | - Chong Chen
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| |
Collapse
|
3
|
Li JH, Zhang DY, Zhu JM, Dong L. Clinical applications and perspectives of circulating tumor DNA in gastric cancer. Cancer Cell Int 2024; 24:13. [PMID: 38184573 PMCID: PMC10770949 DOI: 10.1186/s12935-024-03209-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 01/02/2024] [Indexed: 01/08/2024] Open
Abstract
Gastric cancer remains a leading cause of cancer-related death worldwide, largely due to inadequate screening methods, late diagnosis, and limited treatment options. Liquid biopsy has emerged as a promising non-invasive approach for cancer screening and prognosis by detecting circulating tumor components like circulating tumor DNA (ctDNA) in the blood. Numerous gastric cancer-specific ctDNA biomarkers have now been identified. CtDNA analysis provides insight into genetic and epigenetic alterations in tumors, holding promise for predicting treatment response and prognosis in gastric cancer patients. This review summarizes current research on ctDNA biology and detection technologies, while highlighting clinical applications of ctDNA for gastric cancer diagnosis, prognosis, and guiding treatment decisions. Current challenges and future perspectives for ctDNA analysis are also discussed.
Collapse
Affiliation(s)
- Jing-Han Li
- Department of Gastroenterology and Hepatology and Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Dan-Ying Zhang
- Department of Gastroenterology and Hepatology and Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Ji-Min Zhu
- Department of Gastroenterology and Hepatology and Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Ling Dong
- Department of Gastroenterology and Hepatology and Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
4
|
Xue Y, Huang C, Pei B, Wang Z, Dai Y. An overview of DNA methylation markers for early detection of gastric cancer: current status, challenges, and prospects. Front Genet 2023; 14:1234645. [PMID: 37560387 PMCID: PMC10407555 DOI: 10.3389/fgene.2023.1234645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/17/2023] [Indexed: 08/11/2023] Open
Abstract
Background: Gastric cancer (GC) is one of the most common malignancies, with a low 5-year survival rate. However, if diagnosed at an early stage, it can be cured by endoscopic treatment and has a good prognosis. While gastrointestinal X-ray and upper endoscopy are used as national GC screening methods in some GC high-risk countries, such as Japan and Korea, their radiation exposure, invasiveness, and high cost suggest that they are not the optimal tools for early detection of GC in many countries. Therefore, a cost-effective, and highly accurate method for GC early detection is urgently needed in clinical settings. DNA methylation plays a key role in cancer progression and metastasis and has been demonstrated as a promising marker for cancer early detection. Aims and methods: This review provides a comprehensive overview of the current status of DNA methylation markers associated with GC, the assays developed for GC early detection, challenges in methylation marker discovery and application, and the future prospects of utilizing methylation markers for early detection of GC. Through our analysis, we found that the currently reported DNA methylation markers related to GC are mainly in the early discovery stage. Most of them have only been evaluated in tissue samples. The majority of non-invasive assays developed based on blood lack standardized sampling protocols, pre-analytical procedures, and multicenter validation, and they exhibit insufficient sensitivity for early-stage GC detection. Meanwhile, the reported GC DNA methylation markers are generally considered pan-cancer markers. Conclusion: Therefore, future endeavors should focus on identifying additional methylation markers specific to GC and establishing non-invasive diagnostic assays that rely on these markers. These assays should undergo multicenter, large-scale prospective validation in diverse populations.
Collapse
Affiliation(s)
- Ying Xue
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Chao Huang
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Bing Pei
- Department of Clinical Laboratory, The Affiliated Suqian First People’s Hospital of Nanjing Medical University, Suqian, Jiangsu, China
| | - ZhenZhen Wang
- Department of Laboratory Medicine, Affiliated Xuzhou Maternity and Child Healthcare Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yanmiao Dai
- Department of Spleen and Stomach Diseases, Kunshan Hospital of Traditional Chinese Medicine, Kunshan, China
| |
Collapse
|
5
|
Makgoo L, Mosebi S, Mbita Z. The Role of Death-Associated Protein Kinase-1 in Cell Homeostasis-Related Processes. Genes (Basel) 2023; 14:1274. [PMID: 37372454 DOI: 10.3390/genes14061274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/10/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Tremendous amount of financial resources and manpower have been invested to understand the function of numerous genes that are deregulated during the carcinogenesis process, which can be targeted for anticancer therapeutic interventions. Death-associated protein kinase 1 (DAPK-1) is one of the genes that have shown potential as biomarkers for cancer treatment. It is a member of the kinase family, which also includes Death-associated protein kinase 2 (DAPK-2), Death-associated protein kinase 3 (DAPK-3), Death-associated protein kinase-related apoptosis-inducing kinase 1 (DRAK-1) and Death-associated protein kinase-related apoptosis-inducing kinase 2 (DRAK-2). DAPK-1 is a tumour-suppressor gene that is hypermethylated in most human cancers. Additionally, DAPK-1 regulates a number of cellular processes, including apoptosis, autophagy and the cell cycle. The molecular basis by which DAPK-1 induces these cell homeostasis-related processes for cancer prevention is less understood; hence, they need to be investigated. The purpose of this review is to discuss the current understanding of the mechanisms of DAPK-1 in cell homeostasis-related processes, especially apoptosis, autophagy and the cell cycle. It also explores how the expression of DAPK-1 affects carcinogenesis. Since deregulation of DAPK-1 is implicated in the pathogenesis of cancer, altering DAPK-1 expression or activity may be a promising therapeutic strategy against cancer.
Collapse
Affiliation(s)
- Lilian Makgoo
- Department of Biochemistry, Microbiology and Biotechnology, University of Limpopo, Private Bag X1106, Pietersburg 0727, Sovenga, South Africa
| | - Salerwe Mosebi
- Department of Life and Consumer Sciences, University of South Africa, Private Bag X6, Johanessburg 1710, Florida, South Africa
| | - Zukile Mbita
- Department of Biochemistry, Microbiology and Biotechnology, University of Limpopo, Private Bag X1106, Pietersburg 0727, Sovenga, South Africa
| |
Collapse
|
6
|
Grizzi G, Salati M, Bonomi M, Ratti M, Holladay L, De Grandis MC, Spada D, Baiocchi GL, Ghidini M. Circulating Tumor DNA in Gastric Adenocarcinoma: Future Clinical Applications and Perspectives. Int J Mol Sci 2023; 24:9421. [PMID: 37298371 PMCID: PMC10254023 DOI: 10.3390/ijms24119421] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/25/2023] [Accepted: 05/27/2023] [Indexed: 06/12/2023] Open
Abstract
Gastric cancer (GC) is still one of the most aggressive cancers with a few targetable alterations and a dismal prognosis. A liquid biopsy allows for identifying and analyzing the DNA released from tumor cells into the bloodstream. Compared to tissue-based biopsy, liquid biopsy is less invasive, requires fewer samples, and can be repeated over time in order to longitudinally monitor tumor burden and molecular changes. Circulating tumor DNA (ctDNA) has been recognized to have a prognostic role in all the disease stages of GC. The aim of this article is to review the current and future applications of ctDNA in gastric adenocarcinoma, in particular, with respect to early diagnosis, the detection of minimal residual disease (MRD) following curative surgery, and in the advanced disease setting for treatment decision choice and therapeutic monitoring. Although liquid biopsies have shown potentiality, pre-analytical and analytical steps must be standardized and validated to ensure the reproducibility and standardization of the procedures and data analysis methods. Further research is needed to allow the use of liquid biopsy in everyday clinical practice.
Collapse
Affiliation(s)
- Giulia Grizzi
- Oncology Unit, ASST Cremona, 26100 Cremona, Italy; (G.G.); (M.B.); (M.R.); (D.S.)
| | - Massimiliano Salati
- Department of Oncology and Hematology, University Hospital of Modena, 41124 Modena, Italy;
| | - Maria Bonomi
- Oncology Unit, ASST Cremona, 26100 Cremona, Italy; (G.G.); (M.B.); (M.R.); (D.S.)
| | - Margherita Ratti
- Oncology Unit, ASST Cremona, 26100 Cremona, Italy; (G.G.); (M.B.); (M.R.); (D.S.)
| | - Lauren Holladay
- Anne Burnett Marion School of Medicine, Texas Christian University, Fort Worth, TX 76129, USA;
| | | | - Daniele Spada
- Oncology Unit, ASST Cremona, 26100 Cremona, Italy; (G.G.); (M.B.); (M.R.); (D.S.)
| | | | - Michele Ghidini
- Oncology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| |
Collapse
|
7
|
la Torre A, Lo Vecchio F, Greco A. Epigenetic Mechanisms of Aging and Aging-Associated Diseases. Cells 2023; 12:cells12081163. [PMID: 37190071 DOI: 10.3390/cells12081163] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 04/04/2023] [Accepted: 04/07/2023] [Indexed: 05/17/2023] Open
Abstract
Aging is an inevitable outcome of life, characterized by a progressive decline in tissue and organ function. At a molecular level, it is marked by the gradual alterations of biomolecules. Indeed, important changes are observed on the DNA, as well as at a protein level, that are influenced by both genetic and environmental parameters. These molecular changes directly contribute to the development or progression of several human pathologies, including cancer, diabetes, osteoporosis, neurodegenerative disorders and others aging-related diseases. Additionally, they increase the risk of mortality. Therefore, deciphering the hallmarks of aging represents a possibility for identifying potential druggable targets to attenuate the aging process, and then the age-related comorbidities. Given the link between aging, genetic, and epigenetic alterations, and given the reversible nature of epigenetic mechanisms, the precisely understanding of these factors may provide a potential therapeutic approach for age-related decline and disease. In this review, we center on epigenetic regulatory mechanisms and their aging-associated changes, highlighting their inferences in age-associated diseases.
Collapse
Affiliation(s)
- Annamaria la Torre
- Laboratory of Gerontology and Geriatrics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy
| | - Filomena Lo Vecchio
- Laboratory of Gerontology and Geriatrics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy
| | - Antonio Greco
- Complex Unit of Geriatrics, Department of Medical Sciences, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy
| |
Collapse
|
8
|
Spagnol LW, Polettini J, Silveira DA, Wegner GRM, Paiva DFF. P16 gene promoter methylation is associated with oncogenesis and progression of gastric carcinomas: A systematic review and meta-analysis. Crit Rev Oncol Hematol 2022; 180:103843. [DOI: 10.1016/j.critrevonc.2022.103843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/02/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
|
9
|
Massen M, Lommen K, Wouters KAD, Vandersmissen J, van Criekinge W, Herman JG, Melotte V, Schouten LJ, van Engeland M, Smits KM. Technical considerations in PCR-based assay design for diagnostic DNA methylation cancer biomarkers. Clin Epigenetics 2022; 14:56. [PMID: 35477541 PMCID: PMC9047347 DOI: 10.1186/s13148-022-01273-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/07/2022] [Indexed: 11/21/2022] Open
Abstract
Background DNA methylation biomarkers for early detection, risk stratification and treatment response in cancer have been of great interest over the past decades. Nevertheless, clinical implementation of these biomarkers is limited, as only < 1% of the identified biomarkers is translated into a clinical or commercial setting. Technical factors such as a suboptimal genomic location of the assay and inefficient primer or probe design have been emphasized as important pitfalls in biomarker research. Here, we use eleven diagnostic DNA methylation biomarkers for colorectal cancer (ALX4, APC, CDKN2A, MGMT, MLH1, NDRG4, SDC2, SFRP1, SFRP2, TFPI1 and VIM), previously described in a systematic literature search, to evaluate these pitfalls. Results To assess the genomic assay location, the optimal genomic locations according to TCGA data were extracted and compared to the genomic locations used in the published assays for all eleven biomarkers. In addition, all primers and probes were technically evaluated according to several criteria, based on literature and expert opinion. Both assay location and assay design quality varied widely among studies. Conclusions Large variation in both assay location and design hinders the development of future DNA methylation biomarkers as well as inter-study comparability.
Collapse
Affiliation(s)
- Maartje Massen
- Department of Pathology, GROW - School for Oncology and Reproduction, Maastricht University Medical Center, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Kim Lommen
- Department of Pathology, GROW - School for Oncology and Reproduction, Maastricht University Medical Center, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Kim A D Wouters
- Department of Pathology, GROW - School for Oncology and Reproduction, Maastricht University Medical Center, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | | | - Wim van Criekinge
- Department of Mathematical Modelling, Statistics and Bioinformatics, Ghent University, 9000, Ghent, Belgium
| | - James G Herman
- The Hillman Cancer Center, University of Pittsburgh Cancer Institute, Pittsburgh, PA, 15232, USA
| | - Veerle Melotte
- Department of Pathology, GROW - School for Oncology and Reproduction, Maastricht University Medical Center, P.O. Box 616, 6200 MD, Maastricht, The Netherlands.,Department of Clinical Genetics, Erasmus University Medical Center, 3015 GD, Rotterdam, The Netherlands
| | - Leo J Schouten
- Department of Epidemiology, GROW - School for Oncology and Reproduction, Maastricht University Medical Center, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Manon van Engeland
- Department of Pathology, GROW - School for Oncology and Reproduction, Maastricht University Medical Center, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Kim M Smits
- Department of Pathology, GROW - School for Oncology and Reproduction, Maastricht University Medical Center, P.O. Box 616, 6200 MD, Maastricht, The Netherlands.
| |
Collapse
|
10
|
Zeng Y, Rong H, Xu J, Cao R, Li S, Gao Y, Cheng B, Zhou T. DNA Methylation: An Important Biomarker and Therapeutic Target for Gastric Cancer. Front Genet 2022; 13:823905. [PMID: 35309131 PMCID: PMC8931997 DOI: 10.3389/fgene.2022.823905] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 02/07/2022] [Indexed: 12/12/2022] Open
Abstract
Gastric cancer (GC) is a very common malignancy with a poor prognosis, and its occurrence and development are closely related to epigenetic modifications. Methylation of DNA before or during gastric cancer is an interesting research topic. This article reviews the studies on DNA methylation related to the cause, diagnosis, treatment, and prognosis of gastric cancer and aims to find cancer biomarkers to solve major human health problems.
Collapse
Affiliation(s)
- Yunqing Zeng
- Department of Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Huimin Rong
- Department of Reconstructive Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jianwei Xu
- Department of Pancreatic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ruyue Cao
- Department of Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shuhua Li
- Department of Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yanjing Gao
- Department of Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Baoquan Cheng
- Department of Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Tao Zhou
- Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Tao Zhou,
| |
Collapse
|
11
|
Abbaszadegan MR, Mojarrad M, Rahimi HR, Moghbeli M. Genetic and molecular biology of gastric cancer among Iranian patients: an update. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2022. [DOI: 10.1186/s43042-022-00232-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Abstract
Background
There is a declining trend of gastric cancer (GC) incidence in the world during recent years that is related to the development of novel diagnostic methods. However, there is still a high ratio of GC mortality among the Iranian population that can be associated with late diagnosis. Despite various reports about the novel diagnostic markers, there is not any general and standard diagnostic panel marker for Iranian GC patients. Therefore, it is required to determine an efficient and general panel of molecular markers for early detection.
Main body of the abstract
In the present review, we summarized all of the reported markers until now among Iranian GC patients to pave the way for the determination of a population-based diagnostic panel of markers. In this regard, we categorized these markers in different groups based on their involved processes to know which molecular process is more frequent during the GC progression among Iranians.
Conclusion
We observed that the non-coding RNAs are the main factors involved in GC tumorigenesis in this population.
Collapse
|
12
|
Janjua KA, Shahzad R, Shehzad A. Development of Novel Cancer Biomarkers for Diagnosis and Prognosis. CANCER BIOMARKERS IN DIAGNOSIS AND THERAPEUTICS 2022:277-343. [DOI: 10.1007/978-981-16-5759-7_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
13
|
Ren J, Lu P, Zhou X, Liao Y, Liu X, Li J, Wang W, Wang J, Wen L, Fu W, Tang F. Genome-Scale Methylation Analysis of Circulating Cell-Free DNA in Gastric Cancer Patients. Clin Chem 2021; 68:354-364. [PMID: 34791072 DOI: 10.1093/clinchem/hvab204] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/31/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND Aberrant DNA hypermethylation of CpG islands (CGIs) occurs frequently and is genome-wide in human gastric cancer (GC). A DNA methylation approach in plasma cell-free DNA (cfDNA) is attractive for the noninvasive detection of GC. Here, we performed genome-scale cfDNA methylation analysis in patients with GC. METHODS We used MCTA-Seq, a genome-scale DNA methylation analysis method, on the plasma samples of patients with GC (n = 89) and control participants (n = 82), as well as 28 pairs of GC and adjacent noncancerous tissues. The capacity of the method for detecting GC and discriminating GC from colorectal cancer (CRC) and hepatocellular carcinoma (HCC) was assessed. RESULTS We identified 153 cfDNA methylation biomarkers, including DOCK10, CABIN1, and KCNQ5, for detecting GC in blood. A panel of these biomarkers gave a sensitivity of 44%, 59%, 78%, and 100% for stage I, II, III, and IV tumors, respectively, at a specificity of 92%. CpG island methylation phenotype (CIMP) tumors and NON-CIMP tumors could be distinguished and detected effectively. We also identified several hundreds of cfDNA biomarkers differentially methylated between GC, CRC, and HCC, and showed that MCTA-Seq can discriminate early-stage GC, CRC, and HCC in blood by using a high specificity (approximately 100%) algorithm. CONCLUSIONS Our comprehensive analyses provided valuable data on cfDNA methylation biomarkers of GC and showed the promise of cfDNA methylation for the blood-based noninvasive detection of GC.
Collapse
Affiliation(s)
- Jie Ren
- Beijing Advanced Innovation Center for Genomics, School of Life Sciences, Department of General Surgery, Third Hospital, Peking University, Beijing, China.,Biomedical Pioneering Innovation Center, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Ping Lu
- Beijing Advanced Innovation Center for Genomics, School of Life Sciences, Department of General Surgery, Third Hospital, Peking University, Beijing, China.,Biomedical Pioneering Innovation Center, Peking University, Beijing, China
| | - Xin Zhou
- Beijing Advanced Innovation Center for Genomics, School of Life Sciences, Department of General Surgery, Third Hospital, Peking University, Beijing, China
| | - Yuhan Liao
- Beijing Advanced Innovation Center for Genomics, School of Life Sciences, Department of General Surgery, Third Hospital, Peking University, Beijing, China.,Biomedical Pioneering Innovation Center, Peking University, Beijing, China
| | - Xiaomeng Liu
- Beijing Advanced Innovation Center for Genomics, School of Life Sciences, Department of General Surgery, Third Hospital, Peking University, Beijing, China
| | - Jingyi Li
- Beijing Advanced Innovation Center for Genomics, School of Life Sciences, Department of General Surgery, Third Hospital, Peking University, Beijing, China
| | - Wendong Wang
- Beijing Advanced Innovation Center for Genomics, School of Life Sciences, Department of General Surgery, Third Hospital, Peking University, Beijing, China
| | - Jilian Wang
- Beijing Advanced Innovation Center for Genomics, School of Life Sciences, Department of General Surgery, Third Hospital, Peking University, Beijing, China
| | - Lu Wen
- Beijing Advanced Innovation Center for Genomics, School of Life Sciences, Department of General Surgery, Third Hospital, Peking University, Beijing, China.,Biomedical Pioneering Innovation Center, Peking University, Beijing, China
| | - Wei Fu
- Beijing Advanced Innovation Center for Genomics, School of Life Sciences, Department of General Surgery, Third Hospital, Peking University, Beijing, China
| | - Fuchou Tang
- Beijing Advanced Innovation Center for Genomics, School of Life Sciences, Department of General Surgery, Third Hospital, Peking University, Beijing, China.,Biomedical Pioneering Innovation Center, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| |
Collapse
|
14
|
Saleh RO, Ahmed NS, Ewais EA, Mahmood AS, Sofy AR. Frequency infections of Helicobacter pylori and Epstein - Barr virus in Iraqi patients with chronic gastritis and their serum level of P16. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
15
|
Akhlaghipour I, Bina AR, Abbaszadegan MR, Moghbeli M. Methylation as a critical epigenetic process during tumor progressions among Iranian population: an overview. Genes Environ 2021; 43:14. [PMID: 33883026 PMCID: PMC8059047 DOI: 10.1186/s41021-021-00187-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/07/2021] [Indexed: 11/10/2022] Open
Abstract
Cancer is one of the main health challenges and leading causes of deaths in the world. Various environmental and genetic risk factors are associated with tumorigenesis. Epigenetic deregulations are also important risk factors during tumor progression which are reversible transcriptional alterations without any genomic changes. Various mechanisms are involved in epigenetic regulations such as DNA methylation, chromatin modifications, and noncoding RNAs. Cancer incidence and mortality have a growing trend during last decades among Iranian population which are significantly related to the late diagnosis. Therefore, it is required to prepare efficient molecular diagnostic panels for the early detection of cancer in this population. Promoter hyper methylation is frequently observed as an inhibitory molecular mechanism in various genes associated with DNA repair, cell cycle regulation, and apoptosis during tumor progression. Since aberrant promoter methylations have critical roles in early stages of neoplastic transformations, in present review we have summarized all of the aberrant methylations which have been reported during tumor progression among Iranian cancer patients. Aberrant promoter methylations are targetable and prepare novel therapeutic options for the personalized medicine in cancer patients. This review paves the way to introduce a non-invasive methylation specific panel of diagnostic markers for the early detection of cancer among Iranians.
Collapse
Affiliation(s)
- Iman Akhlaghipour
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Reza Bina
- Student Research Committee, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | | | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
16
|
Huang ZB, Zhang HT, Yu B, Yu DH. Cell-free DNA as a liquid biopsy for early detection of gastric cancer. Oncol Lett 2021; 21:3. [PMID: 33240409 PMCID: PMC7681206 DOI: 10.3892/ol.2020.12264] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 09/17/2020] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer (GC) is one of the most common malignant tumors with poor prognosis worldwide, mainly due to the lack of suitable modalities for population-based screening and early detection of this disease. Therefore, novel and less invasive tests with improved clinical utility are urgently required. The remarkable advances in genomics and proteomics, along with emerging new technologies for highly sensitive detection of genetic alterations, have shown the potential to map the genomic makeup of a tumor in liquid biopsies, in order to assist with early detection and clinical management. The present review summarize the current status in the identification and development of cell-free DNA (cfDNA)-based biomarkers in GC, and also discusses their potential utility and the technical challenges in developing practical cfDNA-based liquid biopsy for early detection of GC.
Collapse
Affiliation(s)
- Zheng-Bin Huang
- Department of Surgery, Hanchuan Renmin Hospital, Hanchuan, Hubei 431600, P.R. China
| | - Hai-Tao Zhang
- Department of Gastrointestinal Surgery, The Second People's Hospital of Shenzhen, Shenzhen, Guangdong 518037, P.R. China
| | - Benjamin Yu
- Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - De-Hua Yu
- Shenzhen USK Bioscience Co., Ltd., Shenzhen, Guangdong 518110, P.R. China
| |
Collapse
|
17
|
Forghanifard MM, Aarabi A, Nasiri Aghdam M, Memar B, Hasanzadeh Khayat M, Dadkhah E, Abbaszadegan MR. GSTs polymorphisms are associated with epigenetic silencing of CDKN2A gene in esophageal squamous cell carcinoma. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:31269-31277. [PMID: 32488710 DOI: 10.1007/s11356-020-09408-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 05/21/2020] [Indexed: 06/11/2023]
Abstract
Esophageal cancer is the eighth most common cancer and the sixth most frequent cause of cancer mortality worldwide. Exposure to polycyclic aromatic hydrocarbons formed by incomplete combustion of organic matter is an important risk factor. Genetic polymorphisms in genes encoding PAH-metabolizing enzymes like glutathione S-transferases (GSTM1, GSTP1, GSTT1) which conjugate glutathione to PAHs for reduction of oxidative stress may affect an individual's response to PAH exposure. Genomic DNA from 50 esophageal squamous cell carcinoma patients extracted from peripheral blood. PCR-RFLP technique was employed to determine GSTM1, GSTT1, and GSTP1 polymorphisms. Aberrant promoter methylation of CDKN2A was applied by methylation-specific PCR technique. Concentration of urinary 1-hydroxypyrene was determined using a HPLC system. About 38.7% showed the null GSTM1 genotype (54% cases and 13% controls), 23.7% showed GSTT1 null genotype (30% cases and 13% controls), and 62.5% were GSTP1 A/A genotype (66% cases and 56% controls). Polymorphic variants of GSTM1 and GSTT1 were significantly associated with aberrant methylation of CDKN2A gene. The null state of GSTT1 was significantly associated with high concentrations of 1-OHP in urea (p < 0.01). There was significant association between methylated states of CDKN2A and high concentrations of 1-OHP in urine (p < 0.01). We identified significant association between polymorphism of GSTs genes and epigenetic silencing of tumor suppressor gene CDKN2A in esophageal squamous cell carcinoma.
Collapse
Affiliation(s)
| | - Azadeh Aarabi
- Immunology research center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Nasiri Aghdam
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bahram Memar
- Department of Pathology, Omeed Hospital, Mashhad University of Medical Sciences, Mashhad, 9196773117, Iran
| | | | - Ezzat Dadkhah
- School of Systems Biology, George Mason University, Manassas, VA, USA
| | | |
Collapse
|
18
|
Canale M, Casadei-Gardini A, Ulivi P, Arechederra M, Berasain C, Lollini PL, Fernández-Barrena MG, Avila MA. Epigenetic Mechanisms in Gastric Cancer: Potential New Therapeutic Opportunities. Int J Mol Sci 2020; 21:E5500. [PMID: 32752096 PMCID: PMC7432799 DOI: 10.3390/ijms21155500] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/27/2020] [Accepted: 07/29/2020] [Indexed: 02/07/2023] Open
Abstract
Gastric cancer (GC) is one of the deadliest malignancies worldwide. Complex disease heterogeneity, late diagnosis, and suboptimal therapies result in the poor prognosis of patients. Besides genetic alterations and environmental factors, it has been demonstrated that alterations of the epigenetic machinery guide cancer onset and progression, representing a hallmark of gastric malignancies. Moreover, epigenetic mechanisms undergo an intricate crosstalk, and distinct epigenomic profiles can be shaped under different microenvironmental contexts. In this scenario, targeting epigenetic mechanisms could be an interesting therapeutic strategy to overcome gastric cancer heterogeneity, and the efforts conducted to date are delivering promising results. In this review, we summarize the key epigenetic events involved in gastric cancer development. We conclude with a discussion of new promising epigenetic strategies for gastric cancer treatment.
Collapse
Affiliation(s)
- Matteo Canale
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy; (M.C.); (P.U.)
| | - Andrea Casadei-Gardini
- Department of Oncology and Hematology, Division of Oncology, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Paola Ulivi
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy; (M.C.); (P.U.)
| | - Maria Arechederra
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (M.A.); (C.B.); (M.G.F.-B.)
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - Carmen Berasain
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (M.A.); (C.B.); (M.G.F.-B.)
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute), 28029 Madrid, Spain
| | - Pier-Luigi Lollini
- Laboratory of Immunology and Biology of Metastasis, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40126 Bologna, Italy;
| | - Maite G. Fernández-Barrena
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (M.A.); (C.B.); (M.G.F.-B.)
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute), 28029 Madrid, Spain
| | - Matías A. Avila
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (M.A.); (C.B.); (M.G.F.-B.)
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute), 28029 Madrid, Spain
| |
Collapse
|
19
|
Wang X, Shang W, Li X, Chang Y. Methylation signature genes identification of cancers occurrence and pattern recognition. Comput Biol Chem 2020; 85:107198. [PMID: 32120302 DOI: 10.1016/j.compbiolchem.2019.107198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 11/19/2019] [Accepted: 12/30/2019] [Indexed: 01/25/2023]
Abstract
In order to identify the signature genes of tumorigenesis, the pattern-recognition method was used to analyze the gene methylation (ME) data which included only normal and cancer samples and was collected from the TCGA (The Cancer Genome Atlas) database. Here, we analyzed the DNA methylation profiles of the six types of cancer and the ME signature genes for each cancer were selected by means of a combination of correlation, student's t-test and Elastic Net. Modeling by support vector machine, the accuracy of ME signature genes can be as high as 98 % for training set and as high as 97 % for the independent test set, the recognition accuracy of stage I is more than 97 % for training set and more than 98 % for test set. Then, the common signature genes and common pathways emerging in multiple cancers were obtained. A functional analysis of these signature genes indicates that the identified signatures have direct relationship with tumorigenesis and is very important for understanding the pathogenesis of cancer and the early therapy.
Collapse
Affiliation(s)
- Xuedong Wang
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China.
| | - Wenhui Shang
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China.
| | - Xiaoqin Li
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China.
| | - Yu Chang
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
20
|
Saliminejad K, Soleymani Fard S, Khorram Khorshid HR, Yaghmaie M, Mahmoodzadeh H, Mousavi SA, Ghaffari SH. Methylation Analysis of P16, RASSF1A, RPRM, and RUNX3 in Circulating Cell-Free DNA for Detection of Gastric Cancer: A Validation Study. Avicenna J Med Biotechnol 2020; 12:99-106. [PMID: 32431794 PMCID: PMC7229449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Most of Gastric Cancer (GC) patients are diagnosed at an advanced stage with poor prognosis. Hypermethylations of several tumor suppressor genes in cell-free DNA of GC patients have been previously reported. In this study, an attempt was made to investigate the methylation status of P16, RASSF1A, RPRM, and RUNX3 and their potentials for early diagnosis of GC. METHODS Methylation status of the four tumor suppressor genes in 96 plasma samples from histopathologically confirmed gastric adenocarcinoma patients (Stage I-IV) and 88 healthy controls was determined using methylation-specific PCR method. Receiver operating characteristic curve analysis was performed and Area Under the Curve (AUC) was calculated. Two tailed p<0.05 were considered statistically significant. RESULTS Methylated P16, RASSF1A, RPRM, and RUNX3 were significantly higher in the GC patients (41.7, 33.3, 66.7, and 58.3%) compared to the controls (15.9, 0.0, 6.8, and 4.5%), respectively (p<0.001). Stratification of patients showed that RPRM (AUC: 0.70, Sensitivity: 0.47, Specificity: 0.93, and p<0.001) and RUNX3 (AUC: 0.77, Sensitivity: 0.59, Specificity: 0.95, and p<0.001) had the highest performances in detection of early-stage (I+II) GC. The combined methylation of RPRM and RUNX3 in detection of early-stage GC had a higher AUC of 0.88 (SE=0.042; 95% CI:0.793-0.957; p<0.001), higher sensitivity of 0.82 and reduced specificity of 0.89. CONCLUSION Methylation analysis of RPRM and RUNX3 in circulating cell free-DNA of plasma could be suggested as a potential biomarker for detection of GC in early-stages.
Collapse
Affiliation(s)
- Kioomars Saliminejad
- Hematology, Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran, Reproductive Biotechnology Research Center, Avicenna Research Institute, (ACECR), Tehran, Iran
| | - Shahrzad Soleymani Fard
- Hematology, Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Marjan Yaghmaie
- Hematology, Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Habibollah Mahmoodzadeh
- Department of Surgery, Cancer Institute, Imam Khomeini Hospital, Tehran, University of Medical Sciences, Tehran, Iran
| | - Seyed Asadollah Mousavi
- Hematology, Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Hamidollah Ghaffari
- Hematology, Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran,Corresponding author: Seyed Hamidollah Ghaffari, Ph.D., Hematology, Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, Tehran, Iran, Tel: +98 21 84902665, Fax: +98 21 88004140, E-mail:
| |
Collapse
|
21
|
Abbaszadegan MR, Keyvani V, Moghbeli M. Genetic and molecular bases of esophageal Cancer among Iranians: an update. Diagn Pathol 2019; 14:97. [PMID: 31470870 PMCID: PMC6717340 DOI: 10.1186/s13000-019-0875-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 08/22/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Esophageal cancer is one of the leading causes of cancer related deaths among the Iranians. There is still a high ratio of mortality and low 5 years survival which are related to the late onset and diagnosis. Majority of patients refer for the treatment in advanced stages of tumor progression. MAIN BODY It is required to define an efficient local panel of diagnostic and prognostic markers for the Iranians. Indeed such efficient specific panel of markers will pave the way to decrease the mortality rate and increase the 5 years survival among the Iranian patients via the early diagnosis and targeted therapy. CONCLUSION in present review we have reported all of the molecular markers in different signaling pathways and cellular processes which have been assessed among the Iranian esophageal cancer patients until now.
Collapse
Affiliation(s)
| | - Vahideh Keyvani
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Meysam Moghbeli
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
22
|
Cervena K, Vodicka P, Vymetalkova V. Diagnostic and prognostic impact of cell-free DNA in human cancers: Systematic review. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2019; 781:100-129. [PMID: 31416571 DOI: 10.1016/j.mrrev.2019.05.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/03/2019] [Accepted: 05/07/2019] [Indexed: 02/06/2023]
|
23
|
Impact of catechol-O-methyltransferase gene variants on methylation status of P16 and MGMT genes and their downregulation in colorectal cancer. Eur J Cancer Prev 2019; 28:68-75. [PMID: 30379684 DOI: 10.1097/cej.0000000000000485] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Globally, colorectal cancer (CRC) is the third most commonly diagnosed cancer in males and the second most commonly diagnosed cancer in females, with 1.4 million new cases and almost 694 000 deaths estimated to have occurred in 2012. The development and progression of CRC is dictated by a series of alterations in diverse genes mostly proto-oncogenes and tumor suppressor genes. In this dreadful disease disturbances different from mutations called as epigenetic regulations are also taken into consideration and are thoroughly investigated. The present study was designed to analyze the promoter hypermethylation of CpG (cytosine, followed by guanine nucleotide) islands of cyclin-dependent kinase inhibitor 2A (P16) and O-methylguanine-DNA methyltransferase (MGMT) genes and its subsequent effect on the protein expression in CRC. The impact of the common functional polymorphism of the catechol-O-methyltransferase (COMT) gene, Val158Met, on promoter hypermethylation of P16 and MGMT genes in CRC was also investigated. The study included 200 CRC cases and equal numbers of normal samples. DNA was extracted using the kit method and methylation specific-PCR was performed for analysis of the promoter hypermethylation status. Total protein was isolated form all CRC cases and western blotting was performed for P16 and MGMT proteins. The COMT Val158Met polymorphism was analyzed by a PCR-restriction fragment length polymorphism assay. Epigenetic analysis showed that unlike other high-risk regions, the Kashmiri population has a different promoter hypermethylation profile of both P16 and MGMT genes, with frequent and significant promoter hypermethylation of both in CRC. The frequency of promoter hypermethylation of both genes was significantly higher in males and was insignificantly found to be higher in stage III/IV. The degree of P16 and MGMT promoter hypermethylation increased significantly with increasing severity of the lesion. We also found a significant correlation between P16 and MGMT promoter hypermethylation and loss of protein expression in CRC. A significant association was found between COMT polymorphism (homozygous variant) and P16 methylation status. Similar results were also found for MGMT hypermethylated cases.
Collapse
|
24
|
Karam RA, Zidan HE, Abd Elrahman TM, Badr SA, Amer SA. Study of p16 promoter methylation in Egyptian colorectal cancer patients. J Cell Biochem 2019; 120:8581-8587. [PMID: 30485512 DOI: 10.1002/jcb.28146] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 11/05/2018] [Indexed: 01/24/2023]
Abstract
Many tumor-suppressor genes contain CpG islands in their promoter regions which raised the necessity of investigating the role of methylation in silencing these genes. We examined p16 methylation as a potential biomarker in the peripheral blood of colorectal cancer (CRC) patients. Using methylation-specific polymerase chain reaction method, the methylation status of p16 was investigated in the tumor tissue and blood of 65 CRC patients and blood samples from 70 healthy control individuals. Also, the relationship between p16 methylation level and the clinical-pathological findings in CRC was evaluated. The frequency of blood p16 methylation in CRC cases was significantly higher than in control (P = 0.0001). The sensitivity and specificity of p16 methylation in diagnosing CRC was 55.38% and 98.5%, respectively, with 77.7% diagnostic accuracy. There was significant association between p16 methylation and age, sex, Dukes staging, lymph node involvement, and carcinoembryonic antigen levels. Our study revealed that p16 promoter methylation could be considered as both potential diagnostic and prognostic biomarker of CRC.
Collapse
Affiliation(s)
- Rehab A Karam
- Department of Medical Biochemistry, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Haidy E Zidan
- Department of Medical Biochemistry, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Tamer M Abd Elrahman
- Department of Surgery, General Organization for Teaching Hospitals and Institutes, Cairo, Egypt
| | - Samir A Badr
- Department of Surgery, General Organization for Teaching Hospitals and Institutes, Cairo, Egypt
| | - Samar A Amer
- Department of Community, Environmental and Occupational Medicine, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
25
|
Lu JJ, Yuan Z. Application of DNA methylation in early diagnosis and treatment of pancreatic cancer. Shijie Huaren Xiaohua Zazhi 2019; 27:13-19. [DOI: 10.11569/wcjd.v27.i1.13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer (PC) is one of the most malignant gastrointestinal tumors, characterized by a poor prognosis. Most of the patients have an advanced disease at the time of diagnosis and lose the opportunity of radical surgery, resulting in a 5-year survival rate of less than 5%. Circulating tumor DNA, whose concentration in plasma of patients with pancreatic adenocarcinoma is higher than that in health controls, carries specific gene mutation and aberrant DNA methylation. Epigenetic change is one of the important characteristics of cell carcinogenesis. DNA methylation is an early event in tumorigenesis, which is more helpful for early diagnosis than gene mutation and can be observed in each stage of PC. Therefore, the detection of aberrant DNA methylation in the promoter region in patients with PC may be a non-invasive method for early cancer detection, predicting prognosis, and monitoring recurrence. In the present review, we discuss the recent advances in the study of DNA methylation in the early diagnosis of PC, and the potential application value in the treatment of PC.
Collapse
Affiliation(s)
- Jia-Jun Lu
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Zhou Yuan
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| |
Collapse
|
26
|
Min A, Kim JE, Kim YJ, Lim JM, Kim S, Kim JW, Lee KH, Kim TY, Oh DY, Bang YJ, Im SA. Cyclin E overexpression confers resistance to the CDK4/6 specific inhibitor palbociclib in gastric cancer cells. Cancer Lett 2018; 430:123-132. [PMID: 29729292 DOI: 10.1016/j.canlet.2018.04.037] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 04/11/2018] [Accepted: 04/26/2018] [Indexed: 12/16/2022]
Abstract
Palbociclib is a specific inhibitor of CDK4/6 and has been shown to provide a survival benefit in hormone receptor-positive advanced breast cancer. TCGA database reported that about half of gastric cancers exhibit abnormalities in cell-cycle-related molecules, suggesting that gastric cancer is a good candidate for palbociclib treatment; however, the antitumor effects and predictive markers of palbociclib in gastric cancer remain incompletely described. Herein, the effect and predictive markers of palbociclib on gastric cancer cells were investigated. Our results reveal that palbociclib showed anti-proliferative effects by inducing G1 phase cell-cycle arrest and cellular senescence in some gastric cancer cells. Basal protein expression level of cyclin E showed an inverse correlation of cancer cell sensitivity to palbociclib. In addition, palbociclib enhanced the antitumor effect of 5-FU in vitro and in vivo by modulating thymidine synthase expression. These results suggest that cyclin E protein expression determines the anti-proliferative effect of palbociclib, and palbociclib acts synergistically with 5-FU in gastric cancer. These findings provide a rationale for future clinical trials of palbociclib and 5-FU combination-based chemotherapy in gastric cancer.
Collapse
Affiliation(s)
- Ahrum Min
- Cancer Research Institute, Seoul National University, South Korea; Biomedical Research Institute, Seoul National University Hospital, South Korea
| | - Jung Eun Kim
- Cancer Research Institute, Seoul National University, South Korea
| | - Yu-Jin Kim
- Cancer Research Institute, Seoul National University, South Korea
| | - Jee Min Lim
- Cancer Research Institute, Seoul National University, South Korea
| | - Seongyeong Kim
- Cancer Research Institute, Seoul National University, South Korea
| | - Jin Won Kim
- Cancer Research Institute, Seoul National University, South Korea; Translational Medicine, Seoul National University College of Medicine, Seoul, South Korea; Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Kyung-Hun Lee
- Cancer Research Institute, Seoul National University, South Korea; Biomedical Research Institute, Seoul National University Hospital, South Korea; Department of Internal Medicine, Seoul National University College of Medicine, South Korea; Translational Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Tae-Yong Kim
- Cancer Research Institute, Seoul National University, South Korea; Biomedical Research Institute, Seoul National University Hospital, South Korea; Department of Internal Medicine, Seoul National University College of Medicine, South Korea
| | - Do-Youn Oh
- Cancer Research Institute, Seoul National University, South Korea; Biomedical Research Institute, Seoul National University Hospital, South Korea; Department of Internal Medicine, Seoul National University College of Medicine, South Korea; Translational Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Yung-Jue Bang
- Cancer Research Institute, Seoul National University, South Korea; Biomedical Research Institute, Seoul National University Hospital, South Korea; Department of Internal Medicine, Seoul National University College of Medicine, South Korea
| | - Seock-Ah Im
- Cancer Research Institute, Seoul National University, South Korea; Biomedical Research Institute, Seoul National University Hospital, South Korea; Department of Internal Medicine, Seoul National University College of Medicine, South Korea; Translational Medicine, Seoul National University College of Medicine, Seoul, South Korea.
| |
Collapse
|
27
|
Vedeld HM, Goel A, Lind GE. Epigenetic biomarkers in gastrointestinal cancers: The current state and clinical perspectives. Semin Cancer Biol 2018; 51:36-49. [PMID: 29253542 PMCID: PMC7286571 DOI: 10.1016/j.semcancer.2017.12.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 11/17/2017] [Accepted: 12/12/2017] [Indexed: 02/07/2023]
Abstract
Each year, almost 4.1 million people are diagnosed with gastrointestinal (GI) cancers. Due to late detection of this disease, the mortality is high, causing approximately 3 million cancer-related deaths annually, worldwide. Although the incidence and survival differs according to organ site, earlier detection and improved prognostication have the potential to reduce overall mortality burden from these cancers. Epigenetic changes, including aberrant promoter DNA methylation, are common events in both cancer initiation and progression. Furthermore, such changes may be identified non-invasively with the use of PCR based methods, in bodily fluids of cancer patients. These features make aberrant DNA methylation a promising substrate for the development of disease biomarkers for early detection, prognosis and for predicting response to therapy. In this article, we will provide an update and current clinical perspectives for DNA methylation alterations in patients with colorectal, gastric, pancreatic, liver and esophageal cancers, and discuss their potential role as cancer biomarkers.
Collapse
Affiliation(s)
- Hege Marie Vedeld
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Norwegian Radium Hospital, Oslo, Norway; K.G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway; Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway.
| | - Ajay Goel
- Center for Gastrointestinal Research, and Center for Translational Genomics and Oncology, Baylor Scott & White Research Institute and Charles A. Sammons Cancer Center, Baylor University Medical Center, Dallas, TX, USA.
| | - Guro E Lind
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Norwegian Radium Hospital, Oslo, Norway; K.G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway; Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
28
|
Molaei F, Forghanifard MM, Fahim Y, Abbaszadegan MR. Molecular Signaling in Tumorigenesis of Gastric Cancer. IRANIAN BIOMEDICAL JOURNAL 2018; 22:217-230. [PMID: 29706061 PMCID: PMC5949124 DOI: 10.22034/ibj.22.4.217] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 01/28/2018] [Accepted: 02/03/2018] [Indexed: 02/07/2023]
Abstract
Gastric cancer (GC) is regarded as the fifth most common cancer and the third cause of cancer-related deaths worldwide. Mechanism of GC pathogenesis is still unclear and relies on multiple factors, including environmental and genetic characteristics. One of the most important environmental factors of GC occurrence is infection with Helicobacter pylori that is classified as class one carcinogens. Dysregulation of several genes and pathways play an essential role during gastric carcinogenesis. Dysregulation of developmental pathways such as Wnt/β-catenin signaling, Hedgehog signaling, Hippo pathway, Notch signaling, nuclear factor-kB, and epidermal growth factor receptor have been found in GC. Epithelial-mesenchymal transition, as an important process during embryogenesis and tumorigenesis, is supposed to play a role in initiation, invasion, metastasis, and progression of GC. Although surgery is the main therapeutic modality of the disease, the understanding of biological processes of cell signaling pathways may help to develop new therapeutic targets for GC.
Collapse
Affiliation(s)
- Fatemeh Molaei
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Yasaman Fahim
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | |
Collapse
|
29
|
Diagnostic and prognostic value of circulating tumor DNA in gastric cancer: a meta-analysis. Oncotarget 2018; 8:6330-6340. [PMID: 28009985 PMCID: PMC5351635 DOI: 10.18632/oncotarget.14064] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 12/13/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Circulating tumor DNA (ctDNA) has offered a minimally invasive approach for detection and measurement of gastric cancer (GC). However, its diagnostic and prognostic value in gastric cancer still remains unclear. RESULTS A total of 16 studies comprising 1193 GC patients met our inclusion criteria. The pooled sensitivity and specificity were 0.62 (95% confidence intervals (CI) 0.59-0.65) and 0.95 (95% CI 0.93-0.96), respectively. The AUSROC (area under SROC) curve was 0.94 (95% CI 0.89-0.98). The results showed that the presence of certain ctDNA markers was associated with larger tumor size (OR: 0.26, 95% CI 0.11-0.61, p = 0.002), TNM stage (I + II/III + IV, OR: 0.11, 95% CI 0.07-0.17, p = 0.000), as well as H. pylori infection. (H.p negative/H.p positive, OR: 0.57, 95% CI 0.36-0.91, p = 0.018). Moreover, there was also a significant association between the presence of ctDNA and worse overall survival (HR 1.77, 95% CI 1.38-2.28, p < 0.001), as well as disease-free survival (HR 4.36, 95% CI 3.08-6.16, p < 0.001). MATERIALS AND METHODS Pubmed, Embase, Cochrane Library and Web of Science databases were searched for relating literature published up until November 30, 2016. Diagnostic accuracy variables were pooled by the Meta-Disc software. Engauge Digitizer and Stata software were applied for prognostic data extraction and analysis. CONCLUSIONS Our meta-analysis indicates the detection of certain ctDNA targets is significantly associated with poor prognosis of GC patients, with high specificity and relatively moderate sensitivity.
Collapse
|
30
|
Wen J, Zheng T, Hu K, Zhu C, Guo L, Ye G. Promoter methylation of tumor-related genes as a potential biomarker using blood samples for gastric cancer detection. Oncotarget 2017; 8:77783-77793. [PMID: 29100425 PMCID: PMC5652815 DOI: 10.18632/oncotarget.20782] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Accepted: 07/30/2017] [Indexed: 02/06/2023] Open
Abstract
Gene promoter methylation has been reported in gastric cancer (GC). However, the potential applications of blood-based gene promoter methylation as a noninvasive biomarker for GC detection remain to be evaluated. Hence, we performed this analysis to determine whether promoter methylation of 11 tumor-related genes could become a promising biomarker in blood samples in GC. We found that the cyclin-dependent kinase inhibitor 2A (p16), E-cadherin (CDH1), runt-related transcription factor 3 (RUNX3), human mutL homolog 1 (MLH1), RAS association domain family protein 1A (RASSF1A), cyclin-dependent kinase inhibitor 2B (p15), adenomatous polyposis coli (APC), Glutathione S-transferase P1 (GSTP1), TP53 dependent G2 arrest mediator candidate (Reprimo), and O6-methylguanine-DNAmethyl-transferase (MGMT) promoter methylation was notably higher in blood samples of patients with GC compared with non-tumor controls. While death-associated protein kinase (DAPK) promoter methylation was not correlated with GC. Further analyses demonstrated that RUNX3, RASSF1A and Reprimo promoter methylation had a good diagnostic capacity in blood samples of GC versus non-tumor controls (RUNX3: sensitivity = 63.2% and specificity = 97.5%, RASSF1A: sensitivity = 61.5% and specificity = 96.3%, Reprimo: sensitivity = 82.0% and specificity = 89.0%). Our findings indicate that promoter methylation of the RUNX3, RASSF1A and Reprimo genes could be powerful and potential noninvasive biomarkers for the detection and diagnosis of GC in blood samples in clinical practices, especially Reprimo gene. Further well-designed (multi-center) and prospective clinical studies with large populations are needed to confirm these findings in the future.
Collapse
Affiliation(s)
- Jinfeng Wen
- Department of Gastroenterology, The Affiliated Hospital, School of Medicine, Ningbo University, Ningbo, Zhejiang 315020, People's Republic of China
| | - Tuo Zheng
- Department of Gastroenterology, Ningbo No.1 Hospital, Ningbo, Zhejiang 315000, People's Republic of China
| | - Kefeng Hu
- Department of Gastroenterology, The Affiliated Hospital, School of Medicine, Ningbo University, Ningbo, Zhejiang 315020, People's Republic of China
| | - Chunxia Zhu
- Department of Gastroenterology, The Affiliated Hospital, School of Medicine, Ningbo University, Ningbo, Zhejiang 315020, People's Republic of China
| | - Lihua Guo
- Department of Gastroenterology, The Affiliated Hospital, School of Medicine, Ningbo University, Ningbo, Zhejiang 315020, People's Republic of China
| | - Guoliang Ye
- Department of Gastroenterology, The Affiliated Hospital, School of Medicine, Ningbo University, Ningbo, Zhejiang 315020, People's Republic of China
| |
Collapse
|
31
|
Wang HC, Chen CW, Yang CL, Tsai IM, Hou YC, Chen CJ, Shan YS. Tumor-Associated Macrophages Promote Epigenetic Silencing of Gelsolin through DNA Methyltransferase 1 in Gastric Cancer Cells. Cancer Immunol Res 2017; 5:885-897. [DOI: 10.1158/2326-6066.cir-16-0295] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 05/07/2017] [Accepted: 08/15/2017] [Indexed: 11/16/2022]
|
32
|
Xue WJ, Feng Y, Wang F, Li P, Liu YF, Guo YB, Wang ZW, Mao QS. The value of serum RASSF10 hypermethylation as a diagnostic and prognostic tool for gastric cancer. Tumour Biol 2016; 37:11249-57. [PMID: 26945573 DOI: 10.1007/s13277-016-5001-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 02/25/2016] [Indexed: 01/10/2023] Open
Abstract
The tumor-suppressing role of Ras-association domain family 10 (RASSF10) has been described in several types of cancers. Here, we evaluated the potential use of the hypermethylation status of the RASSF10 promoter in serum as a new diagnostic and prognostic tool in gastric cancer (GC). We used bisulfite sequencing polymerase chain reaction to examine RASSF10 methylation levels in serum and/or tumor samples from 82 GC, 45 chronic atrophic gastritis (CAG), and 50 healthy control patients. In the serum of GC patients, the median level of RASSF10 methylation was higher at 47.84 % than those in the serum of CAG and healthy control patients at 11.89 and 11.35 %, respectively. The median level of RASSF10 methylation in GC tumor tissue was similarly high at 62.70 %. Furthermore, RASSF10 methylation levels were highly correlated between paired serum and tumor samples from GC patients. We performed receiver-operating characteristic curve analyses to verify that serum RASSF10 methylation levels could effectively distinguish GC from control patients. Moreover, multivariate analyses showed that high serum RASSF10 methylation levels in GC patients were associated with large tumors, lymph node metastasis, and high carcinoembryonic antigen (CEA) levels. Survival analyses showed that GC patients with high serum RASSF10 methylation levels had shorter overall and disease-free survival after D2 lymphadenectomy than those with low levels. High serum RASSF10 methylation levels were also an independent predictor of tumor recurrence and GC patient survival. In conclusion, serum RASSF10 promoter methylation levels can serve as a valuable indicator for the diagnosis and prognosis of GC in the clinic.
Collapse
Affiliation(s)
- Wan-Jiang Xue
- Department of General Surgery, Nantong University Affiliated Hospital, 20 Xisi Street, Nantong, 226001, Jiangsu, China
| | - Ying Feng
- Department of General Surgery, Nantong University Affiliated Hospital, 20 Xisi Street, Nantong, 226001, Jiangsu, China
| | - Fei Wang
- Department of General Surgery, Nantong University Affiliated Hospital, 20 Xisi Street, Nantong, 226001, Jiangsu, China
| | - Peng Li
- Department of General Surgery, Nantong University Affiliated Hospital, 20 Xisi Street, Nantong, 226001, Jiangsu, China
| | - Yi-Fei Liu
- Department of Pathology, Nantong University Affiliated Hospital, Nantong, 226001, Jiangsu, China
| | - Yi-Bing Guo
- Department of Surgical Comprehensive Laboratory, Nantong University Affiliated Hospital, Nantong, 226001, Jiangsu, China
| | - Zhi-Wei Wang
- Department of General Surgery, Nantong University Affiliated Hospital, 20 Xisi Street, Nantong, 226001, Jiangsu, China.
| | - Qin-Sheng Mao
- Department of General Surgery, Nantong University Affiliated Hospital, 20 Xisi Street, Nantong, 226001, Jiangsu, China.
- Department of Minimally Invasive Surgery, The Affiliated Hospital of Nantong University, 20 Xisi Street, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
33
|
Kristiansen S, Sölétormos G. Clinical Utility of Solid Tumor Epigenetics. MEDICAL EPIGENETICS 2016:459-471. [DOI: 10.1016/b978-0-12-803239-8.00025-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
34
|
Wang G, Zhang W, Zhou B, Jin C, Wang Z, Yang Y, Wang Z, Chen Y, Feng X. The diagnosis value of promoter methylation of UCHL1 in the serum for progression of gastric cancer. BIOMED RESEARCH INTERNATIONAL 2015; 2015:741030. [PMID: 26550574 PMCID: PMC4624918 DOI: 10.1155/2015/741030] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 08/23/2015] [Accepted: 08/27/2015] [Indexed: 02/07/2023]
Abstract
BACKGROUND Aberrant promoter methylation has been considered as a potential molecular marker for gastric cancer (GC). However, the role of methylation of FLNC, THBS1, and UCHL1 in the development and progression of GC has not been explored. METHODS The promoter methylation status of UCHL1, FLNC, THBS1, and DLEC1 was assessed by quantitative methylation-specific PCR (QMSP) in the serum of 82 GC patients, 46 chronic atrophic gastritis (CAG) subjects, and 40 healthy controls. RESULTS All four genes had significantly higher methylation levels in GC patients than in CAG and control subjects. However, only UCHL1 methylation was significantly correlated with the tumor stage and lymph node metastasis. While THBS1 methylation was altered in an age-dependent manner, FLNC methylation was correlated with differentiation and Helicobacter pylori infection. DLEC1 methylation was only associated with tumor size. Moreover, methylated UCHL1 with or without THBS1 in the serum was found to be significantly associated with a poor prognosis. CONCLUSION The promoter methylation degree of FLNC, THBS1, UCHL1, and DLEC1 in serum could tell the existence of GC and only UCHL1 in the serum was also associated with poor prognosis of GC.
Collapse
Affiliation(s)
- Gongping Wang
- Department of Gastrointestinal Oncology Surgery, The First Affiliated Hospital, Henan University of Science and Technology, Luoyang, Henan 471003, China
| | - Wei Zhang
- Department of Gastrointestinal Oncology Surgery, The First Affiliated Hospital, Henan University of Science and Technology, Luoyang, Henan 471003, China
| | - Bo Zhou
- Department of Gastrointestinal Oncology Surgery, The First Affiliated Hospital, Henan University of Science and Technology, Luoyang, Henan 471003, China
| | - Canhui Jin
- Department of Gastrointestinal Oncology Surgery, The First Affiliated Hospital, Henan University of Science and Technology, Luoyang, Henan 471003, China
| | - Zengfang Wang
- Department of Gastrointestinal Oncology Surgery, The First Affiliated Hospital, Henan University of Science and Technology, Luoyang, Henan 471003, China
| | - Yantong Yang
- Department of Gastrointestinal Oncology Surgery, The First Affiliated Hospital, Henan University of Science and Technology, Luoyang, Henan 471003, China
| | - Zhenzhen Wang
- Department of Gastrointestinal Oncology Surgery, The First Affiliated Hospital, Henan University of Science and Technology, Luoyang, Henan 471003, China
| | - Ye Chen
- Department of Gastrointestinal Oncology Surgery, The First Affiliated Hospital, Henan University of Science and Technology, Luoyang, Henan 471003, China
| | - Xiaoshan Feng
- Department of Gastrointestinal Oncology Surgery, The First Affiliated Hospital, Henan University of Science and Technology, Luoyang, Henan 471003, China
| |
Collapse
|
35
|
Hudler P. Challenges of deciphering gastric cancer heterogeneity. World J Gastroenterol 2015; 21:10510-10527. [PMID: 26457012 PMCID: PMC4588074 DOI: 10.3748/wjg.v21.i37.10510] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Revised: 06/19/2015] [Accepted: 08/31/2015] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer is in decline in most developed countries; however, it still accounts for a notable fraction of global mortality and morbidity related to cancer. High-throughput methods are rapidly changing our view and understanding of the molecular basis of gastric carcinogenesis. Today, it is widely accepted that the molecular complexity and heterogeneity, both inter- and intra-tumour, of gastric adenocarcinomas present significant obstacles in elucidating specific biomarkers for early detection of the disease. Although genome-wide sequencing and gene expression studies have revealed the intricate nature of the molecular changes that occur in tumour landscapes, the collected data and results are complex and sometimes contradictory. Several aberrant molecules have already been tested in clinical trials, although their diagnostic and prognostic utilities have not been confirmed thus far. The gold standard for the detection of sporadic gastric cancer is still the gastric endoscopy, which is considered invasive. In addition, genome-wide association studies have confirmed that genetic variations are important contributors to increased cancer risk and could participate in the initiation of malignant transformation. This hypothesis could in part explain the late onset of sporadic gastric cancers. The elaborate interplay of polymorphic low penetrance genes and lifestyle and environmental risk factors requires additional research to decipher their relative impacts on tumorigenesis. The purpose of this article is to present details of the molecular heterogeneity of sporadic gastric cancers at the DNA, RNA, and proteome levels and to discuss issues relevant to the translation of basic research data to clinically valuable tools. The focus of this work is the identification of relevant molecular changes that could be detected non-invasively.
Collapse
|
36
|
Shi J, Wei PK. Low-dose interleukin-8 induces the adhesion, migration and invasion of the gastric cancer SGC-7901 cell line. Oncol Lett 2015; 10:2871-2877. [PMID: 26722255 DOI: 10.3892/ol.2015.3641] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 07/07/2015] [Indexed: 12/12/2022] Open
Abstract
Interleukin-8 (IL-8), an important inflammatory cytokine, is strongly associated with gastric cancer development and metastasis. High-dose (>1 ng/ml) IL-8 has been revealed to promote the adhesion, migration and invasion of human gastric cancer SGC-7901 cells in a dose-dependent manner. However, the IL-8 level produced by gastric cells is marginal, at even less than 1 ng/ml. It is unclear whether low-dose IL-8 also induces these capacities. In the present study, the effect of low-dose IL-8 on the adhesion, migration and invasion of the SGC-7901 cell line and the underlying molecular mechanism with regard to cluster of differentiation 44 (CD44) were investigated. The SGC-7901 cells were exposed to various concentrations of IL-8 (0, 0.2, 0.5, 0.8 and 1 ng/ml) in vitro. The adhesion of the SGC-7901 cells to fibronectin, an extracellular matrix component, was then detected by cell counting kit 8 assay. Migration and invasion abilities were evaluated by wound scratch and Transwell chamber assays. In addition, protein and mRNA levels of CD44 were measured using immunofluorescence and western blotting, and quantitative polymerase chain reaction, respectively, in cells cultured for 72 h. Following the exposure of the SGC-7901 cells to the various low doses of IL-8, the cell adhesion, migration and invasion capacities were promoted by IL-8, but not in a significant dose-dependent manner. Low-dose IL-8 upregulated the protein and mRNA expression of CD44. In conclusion, low-dose IL-8 potently induces the adhesion, migration and invasion of SGC-7901 cells, and the regulation of CD44 expression is one of the potential molecular mechanisms involved.
Collapse
Affiliation(s)
- Jun Shi
- Department of Traditional Chinese Medicine, Shanghai Changzheng Hospital, The Second Military Medical University, Shanghai 200003, P.R. China
| | - Pin-Kang Wei
- Department of Traditional Chinese Medicine, Shanghai Changzheng Hospital, The Second Military Medical University, Shanghai 200003, P.R. China
| |
Collapse
|
37
|
Li Y, Liang J, Hou P. Hypermethylation in gastric cancer. Clin Chim Acta 2015; 448:124-32. [PMID: 26148722 DOI: 10.1016/j.cca.2015.07.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 07/02/2015] [Accepted: 07/02/2015] [Indexed: 02/07/2023]
Abstract
Although gastric cancer (GC) is highly prevalent in China and is a leading cause of cancer-related death, major advances in early diagnostic and effective therapeutic strategies have not been made. GC patients are usually diagnosed at an advanced stage and the prognosis is still poor. Over the years, many efforts have been done on exploring the pathology of GC. In particular, genome-wide analysis tools have been widely used in the detection of genetic and epigenetic alterations in GC. For example, many tumor suppressor genes have been found to be aberrantly hypermethylated in GCs, and some even in gastric precancerous lesions, suggesting a role of this molecular event in early gastric tumorigenesis. In addition, accumulating evidences have demonstrated that some hypermethylated genes can be used as potential biomarkers for detection and diagnosis of GC in biopsy specimens and non-invasive body fluids. These exciting advances provide unprecedented opportunities for the development of molecular-based novel diagnostic, prognostic, and therapeutic strategies for GC. Here, we reviewed recent findings on the promoter hypermethylation of tumor suppressor genes in GC and aimed to provide better understanding of the contribution of this epigenetic event to gastric tumorigenesis.
Collapse
Affiliation(s)
- Yujun Li
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, People's Republic of China
| | - Junrong Liang
- Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, People's Republic of China
| | - Peng Hou
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, People's Republic of China.
| |
Collapse
|
38
|
Moghbeli M, Moaven O, Memar B, Raziei HR, Aarabi A, Dadkhah E, Forghanifard MM, Manzari F, Abbaszadegan MR. Role of hMLH1 and E-cadherin promoter methylation in gastric cancer progression. J Gastrointest Cancer 2014; 45:40-7. [PMID: 24022108 DOI: 10.1007/s12029-013-9548-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Gastric cancer (GC) is one of the leading causes of cancer-related death in Iran. Genome stability is one of the main genetic issues in cancer biology which is governed via the different repair systems such as DNA mismatch repair (MMR). A clear correlation between MMR defects and tumor progression has been shown. Beside the genetic mutations, epigenetic changes also have a noticeable role in MMR defects. METHODS Here, we assessed promoter methylation status and the level of hMLH1mRNA expression as the main component of MMR system in 51 GC patients using the methylation-specific PCR and real-time PCR, respectively. Moreover, we performed a promoter methylation study of the E-cadherin gene promoter. RESULTS It was observed that, 12 out of 39 cases (23.5%) had hMLH1 overexpression. Hypermethylation of hMLH1 and E-cadherin promoter regions were observed in 25.5 and 36.4%, respectively. Although, there was no significant correlation between hMLH1 mRNA expression and clinicopathological features, there are significant correlations between E-cadherin promoter methylation and tumor stage (p = 0.028) and location (p = 0.025). The rate of hMLH1 promoter methylation in this study was lower than that in the other population, showing the importance of the other mechanisms, in gastric tumorigenesis. CONCLUSION The results of this study indicate that DNA repair system is adversely affected by hypermethylation of hMLH1 in a fraction of gastric cancer patients. Additionally, E-cadherin hypermethylation seen in a subset of our gastric cancer patients is consistent with other reports showing correlation with aggressiveness and metastasis of gastric cancer.
Collapse
Affiliation(s)
- Meysam Moghbeli
- Division of Human Genetics, Immunology Research Center, Avicenna Research Institute, Mashhad University of Medical Sciences (MUMS), Mashhad, Iran
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Nakamura J, Tanaka T, Kitajima Y, Noshiro H, Miyazaki K. Methylation-mediated gene silencing as biomarkers of gastric cancer: A review. World J Gastroenterol 2014; 20:11991-12006. [PMID: 25232236 PMCID: PMC4161787 DOI: 10.3748/wjg.v20.i34.11991] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Revised: 01/29/2014] [Accepted: 04/09/2014] [Indexed: 02/06/2023] Open
Abstract
Despite a decline in the overall incidence of gastric cancer (GC), the disease remains the second most common cause of cancer-related death worldwide and is thus a significant global health problem. The best means of improving the survival of GC patients is to screen for and treat early lesions. However, GC is often diagnosed at an advanced stage and is associated with a poor prognosis. Current diagnostic and therapeutic strategies have not been successful in decreasing the global burden of the disease; therefore, the identification of reliable biomarkers for an early diagnosis, predictive markers of recurrence and survival and markers of drug sensitivity and/or resistance is urgently needed. The initiation and progression of GC depends not only on genetic alterations but also epigenetic changes, such as DNA methylation and histone modification. Aberrant DNA methylation is the most well-defined epigenetic change in human cancers and is associated with inappropriate gene silencing. Therefore, an increasing number of genes methylated at the promoter region have been targeted as possible biomarkers for different purposes, including early detection, classification, the assessment of the tumor prognosis, the development of therapeutic strategies and patient follow-up. This review article summarizes the current understanding and recent evidence regarding DNA methylation markers in GC with a focus on the clinical potential of these markers.
Collapse
|
40
|
Toiyama Y, Okugawa Y, Goel A. DNA methylation and microRNA biomarkers for noninvasive detection of gastric and colorectal cancer. Biochem Biophys Res Commun 2014; 455:43-57. [PMID: 25128828 DOI: 10.1016/j.bbrc.2014.08.001] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Revised: 07/22/2014] [Accepted: 08/01/2014] [Indexed: 02/06/2023]
Abstract
Cancer initiation and progression is controlled by both genetic and epigenetic events. Epigenetics refers to the study of mechanisms that alter gene expression without permanently altering the DNA sequence. Epigenetic alterations are reversible and heritable, and include changes in histone modifications, DNA methylation, and non-coding RNA-mediated gene silencing. Disruption of epigenetic processes can lead to altered gene function and malignant cellular transformation. Aberrant epigenetic modifications occur at the earliest stages of neoplastic transformation and are now believed to be essential players in cancer initiation and progression. Recent advances in epigenetics have not only offered a deeper understanding of the underlying mechanism(s) of carcinogenesis, but have also allowed identification of clinically relevant putative biomarkers for the early detection, disease monitoring, prognosis and risk assessment of cancer patients. At this moment, DNA methylation and non-coding RNA including with microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) represent the largest body of available literature on epigenetic biomarkers with the highest potential for cancer diagnosis. Following identification of cell-free nucleic acids in systematic circulation, increasing evidence has demonstrated the potential of cell-free epigenetic biomarkers in the blood or other body fluids for cancer detection. In this article, we summarize the current state of knowledge on epigenetic biomarkers - primarily DNA methylation and non-coding RNAs - as potential substrates for cancer detection in gastric and colorectal cancer, the two most frequent cancers within the gastrointestinal tract. We also discuss the obstacles that have limited the routine use of epigenetic biomarkers in the clinical settings and provide our perspective on approaches that might help overcome these hurdles, so that these biomarkers can be readily developed for clinical management of cancer patients.
Collapse
Affiliation(s)
- Yuji Toiyama
- Gastrointestinal Cancer Research Laboratory, Department of Internal Medicine, Charles A. Sammons Cancer Center and Baylor Research Institute, Baylor University Medical Center, 3500 Gaston Avenue, Dallas, TX 75246, USA; Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Graduate School of Medicine, Mie University, Mie 514-8507, Japan
| | - Yoshinaga Okugawa
- Gastrointestinal Cancer Research Laboratory, Department of Internal Medicine, Charles A. Sammons Cancer Center and Baylor Research Institute, Baylor University Medical Center, 3500 Gaston Avenue, Dallas, TX 75246, USA; Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Graduate School of Medicine, Mie University, Mie 514-8507, Japan
| | - Ajay Goel
- Gastrointestinal Cancer Research Laboratory, Department of Internal Medicine, Charles A. Sammons Cancer Center and Baylor Research Institute, Baylor University Medical Center, 3500 Gaston Avenue, Dallas, TX 75246, USA.
| |
Collapse
|
41
|
Jung J, Jung Y, Bang EJ, Cho SI, Jang YJ, Kwak JM, Ryu DH, Park S, Hwang GS. Noninvasive diagnosis and evaluation of curative surgery for gastric cancer by using NMR-based metabolomic profiling. Ann Surg Oncol 2014; 21 Suppl 4:S736-42. [PMID: 25092158 DOI: 10.1245/s10434-014-3886-0] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Indexed: 12/17/2022]
Abstract
BACKGROUND Mass screening for gastric cancer (GC), particularly using endoscopy, may not be the most practical approach as a result of its high cost, lack of acceptance, and poor availability. Thus, novel markers that can be used in cost-effective diagnosis and noninvasive screening for GC are needed. METHODS A total of 154 urine samples from GC patients and healthy individuals and 30 pairs of matched tumor and normal stomach tissues were collected. Multivariate analysis was performed on urinary and tissue metabolic profiles acquired using (1)H nuclear magnetic resonance and (1)H high-resolution magic angle spinning spectroscopy, respectively. In addition, metabolic profiling of urine from GC patients after curative surgery was performed. RESULTS Multivariate statistical analysis showed significant separation in the urinary and tissue data of GC patients and healthy individuals. The metabolites altered in the urine of GC patients were related to amino acid and lipid metabolism, consistent with changes in GC tissue. In the external validation, the presence of GC (early or advanced) from the urine model was predicted with high accuracy, which showed much higher sensitivity than carbohydrate antigen 19-9 and carcinoembryonic antigen. Furthermore, 4-hydroxyphenylacetate, alanine, phenylacetylglycine, mannitol, glycolate, and arginine levels were significantly correlated with cancer T stage and, together with hypoxanthine level, showed a recovery tendency toward healthy controls in the postoperative samples compared to the preoperative samples. CONCLUSIONS An urinary metabolomics approach may be useful for the effective diagnosis of GC.
Collapse
Affiliation(s)
- Jeeyoun Jung
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Zhang X, Zhang X, Sun B, Lu H, Wang D, Yuan X, Huang Z. Detection of aberrant promoter methylation of RNF180, DAPK1 and SFRP2 in plasma DNA of patients with gastric cancer. Oncol Lett 2014; 8:1745-1750. [PMID: 25202403 PMCID: PMC4156173 DOI: 10.3892/ol.2014.2410] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 07/11/2014] [Indexed: 12/18/2022] Open
Abstract
Gastric cancer (GC) is one of the most frequently diagnosed malignancies in East Asia, particularly in China, and remains the second leading cause of cancer-associated mortality worldwide. However, no effective plasma biomarkers have been identified for the diagnosis of patients with GC. The aim of this study was to investigate the DNA methylation status of the ring finger protein 180 (RNF180), secreted frizzled-related protein 2 (SFRP2) and death-associated protein kinase 1 (DAPK1) genes in the plasma samples of 57 GC patients and 42 control individuals with no malignant disease, and to evaluate the clinical utility of these makers. A significantly higher level of methylation was observed in the plasma DNA of GC patients when compared with that of controls for the three genes investigated (RNF180, 57.89% vs. 23.81%; DAPK1, 49.12% vs. 28.57%; and SFRP2, 71.93% vs. 42.86%). No association was identified between the DAPK1 or SFRP2 methylation level in the plasma DNA and the clinicopathological parameters of patients. Notably, RNF180 methylation was found to positively correlate with tumor size (P=0.018), histological type (P=0.025), TNM stage (P=0.002), lymph node metastasis (P=0.008) and distant metastasis (P=0.018). Overall, 50 cancer patients (87.72%) exhibited methylation of at least one of the three markers, while 26 normal subjects presented methylation in plasma DNA [specificity, 38.1%; odds ratio (OR), 4.4]. The combined use of RNF180 and SFRP2 as methylation markers appeared to be the most preferable predictor with regard to predictive power and cost-performance (OR, 5.57; P=0.0002). The results of the present study indicate that aberrant promoter methylation of genes in the plasma may be detected in a substantial proportion of GC patients and thus, these genes must be evaluated in the screening and surveillance of GC.
Collapse
Affiliation(s)
- Xie Zhang
- Department of Gastroenterology, Ningbo Medical Treatment Center, Li Huili Hospital, Ningbo, Zhejiang 315040, P.R. China
| | - Xuesong Zhang
- Department of Gastroenterology, Ningbo Medical Treatment Center, Li Huili Hospital, Ningbo, Zhejiang 315040, P.R. China
| | - Beilei Sun
- Department of Gastroenterology, Ningbo Medical Treatment Center, Li Huili Hospital, Ningbo, Zhejiang 315040, P.R. China
| | - Hongna Lu
- Department of Gastroenterology, Ningbo Medical Treatment Center, Li Huili Hospital, Ningbo, Zhejiang 315040, P.R. China
| | - Danping Wang
- School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Xiaogang Yuan
- Department of Gastroenterology, Ningbo Medical Treatment Center, Li Huili Hospital, Ningbo, Zhejiang 315040, P.R. China
| | - Zhigang Huang
- Department of Gastroenterology, Ningbo Medical Treatment Center, Li Huili Hospital, Ningbo, Zhejiang 315040, P.R. China
| |
Collapse
|
43
|
Chen YZ, Liu D, Zhao YX, Wang HT, Gao Y, Chen Y. Relationships between p16 gene promoter methylation and clinicopathologic features of colorectal cancer: a meta-analysis of 27 cohort studies. DNA Cell Biol 2014; 33:729-38. [PMID: 24979649 DOI: 10.1089/dna.2013.2253] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Many existing studies have demonstrated that p16 promoter methylation might be correlated with the clinicopathologic features of colorectal cancer (CRC), but individually published results are inconclusive. This meta-analysis aimed to derive a more precise estimation of the relationships between p16 promoter methylation and the clinicopathologic features of CRC. We searched the CISCOM, CINAHL, Web of Science, PubMed, Google Scholar, EBSCO, Cochrane Library, and CBM databases from inception through August 1, 2013. Meta-analysis was performed using the STATA 12.0 software. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated under fixed- or random-effects models. Twenty-seven clinical cohort studies were included with a total of 3311 CRC patients. Our meta-analysis results revealed that p16 promoter methylation was associated with pathological characteristics of CRC (tumor, nodes, metastasis stage: OR=1.55, 95% CI: 1.14-2.13, p=0.006; lymph node metastasis: OR=2.40, 95% CI: 1.37-4.19, p=0.002; histologic grade: OR=2.72, 95% CI: 1.63-4.54, p<0.001; Dukes stage: OR=2.06, 95% CI: 1.57-2.71, p=0.002; tumor size: OR=1.99, 95% CI: 1.03-3.85, p=0.041; location: OR=2.49, 95% CI: 1.95-3.18, p<0.001, respectively). Subgroup analysis by ethnicity suggested that there were also significant correlations between p16 gene promoter methylation and pathological characteristics of CRC among both Caucasian and Asian populations (all p<0.05). Our meta-analysis suggests that promoter methylation of the p16 gene may be strongly correlated with the clinicopathologic features of CRC. Thus, p16 gene promoter methylation may be a potential biomarker for CRC.
Collapse
Affiliation(s)
- Yan-Zhi Chen
- Department of Radiotherapy, The Fourth Affiliated Hospital of China Medical University , Shenyang, People's Republic of China
| | | | | | | | | | | |
Collapse
|
44
|
Role of p16 gene promoter methylation in gastric carcinogenesis: a meta-analysis. Mol Biol Rep 2014; 41:4481-92. [PMID: 24610350 DOI: 10.1007/s11033-014-3319-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 02/24/2014] [Indexed: 01/30/2023]
Abstract
This meta-analysis was performed to evaluate the relationships between promoter DNA methylation in tumor suppressor gene p16 and gastric carcinogenesis. The PubMed, CISCOM, CINAHL, Web of Science, Google Scholar, EBSCO, Cochrane Library and CBM databases were searched for relevant articles published before November 1st, 2013 without any language restrictions. Meta-analysis was conducted using the STATA 12.0 software. Crude odds ratios (ORs) with 95% confidence intervals (95% CI) were calculated. Forty-seven clinical cohort studies that met all inclusion criteria were included in this meta-analysis. A total of 2,813 gastric cancer (GC) patients were assessed. Our meta-analysis results revealed that the frequencies of p16 promoter methylation in the GC tissues were higher than those of normal and adjacent tissues (Normal: OR = 23.04, 95% CI = 13.55-39.15, P < 0.001; Adjacent: OR = 4.42, 95% CI = 1.66-11.76, P = 0.003; respectively). Furthermore, we observed significant associations of p16 promoter methylation with TNM stage, histologic grade, invasive grade, lymph node metastasis of GC (TNM stage: OR = 3.60, 95% CI: 2.17-5.98, P < 0.001; Histologic grade: OR = 2.63, 95% CI: 1.55-4.45, P < 0.001; Invasive grade: OR = 3.44, 95% CI: 1.68-7.06, P = 0.001; Lymph node metastasis: OR = 2.68, 95% CI: 1.66-4.32, P < 0.001; respectively). However, there were no correlations of p16 promoter methylation with the TNM stage and Helicobacter pylori (HP) infection of GC (Tumor size: OR = 0.76, 95% CI: 0.14-4.07, P = 0.746; HP infection: OR = 1.31, 95% CI: 0.75-2.27, P = 0.342; respectively). Our findings provide empirical evidence that p16 promoter methylation may play an important role in gastric carcinogenesis. Thus, p16 promoter methylation may be a promising potential biomarker for the early diagnosis of GC.
Collapse
|
45
|
Schneider BG, Piazuelo MB, Sicinschi LA, Mera R, Peng DF, Roa JC, Romero-Gallo J, Delgado AG, de Sablet T, Bravo LE, Wilson KT, El-Rifai W, Peek Jr RM, Correa P. Virulence of infecting Helicobacter pylori strains and intensity of mononuclear cell infiltration are associated with levels of DNA hypermethylation in gastric mucosae. Epigenetics 2013; 8:1153-61. [PMID: 24128875 PMCID: PMC3927747 DOI: 10.4161/epi.26072] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 08/01/2013] [Accepted: 08/07/2013] [Indexed: 12/27/2022] Open
Abstract
DNA methylation changes are known to occur in gastric cancers and in premalignant lesions of the gastric mucosae. In order to examine variables associated with methylation levels, we quantitatively evaluated DNA methylation in tumors, non-tumor gastric mucosae, and in gastric biopsies at promoters of 5 genes with methylation alterations that discriminate gastric cancers from non-tumor epithelia (EN1, PCDH10, RSPO2, ZIC1, and ZNF610). Among Colombian subjects at high and low risk for gastric cancer, biopsies from subjects from the high-risk region had significantly higher levels of methylation at these 5 genes than samples from subjects in the low risk region (p ≤ 0.003). When results were stratified by Helicobacter pylori infection status, infection with a cagA positive, vacA s1m1 strain was significantly associated with highest methylation levels, compared with other strains (p = 0.024 to 0.001). More severe gastric inflammation and more advanced precancerous lesions were also associated with higher levels of DNA methylation (p ≤ 0.001). In a multivariate model, location of residence of the subject and the presence of cagA and vacA s1m1 in the H. pylori strain were independent variables associated with higher methylation in all 5 genes. High levels of mononuclear cell infiltration were significantly related to methylation in PCDH10, RSPO2, and ZIC1 genes. These results indicate that for these genes, levels of methylation in precancerous lesions are related to H. pylori virulence, geographic region and measures of chronic inflammation. These genes seem predisposed to sustain significant quantitative changes in DNA methylation at early stages of the gastric precancerous process.
Collapse
Affiliation(s)
- Barbara G Schneider
- Division of Gastroenterology; Department of Medicine; Vanderbilt University Medical Center; Nashville, TN USA
| | - M Blanca Piazuelo
- Division of Gastroenterology; Department of Medicine; Vanderbilt University Medical Center; Nashville, TN USA
| | - Liviu A Sicinschi
- Division of Gastroenterology; Department of Medicine; Vanderbilt University Medical Center; Nashville, TN USA
- Holmes Regional Medical Center; Melbourne, FL USA
| | - Robertino Mera
- Division of Gastroenterology; Department of Medicine; Vanderbilt University Medical Center; Nashville, TN USA
| | - Dun-Fa Peng
- Department of Surgery; Vanderbilt University Medical Center; Nashville, TN USA
| | - Juan Carlos Roa
- Department of Pathology; School of Medicine; Pontificia Universidad Catolica de Chile; Santiago, Chile
| | - Judith Romero-Gallo
- Division of Gastroenterology; Department of Medicine; Vanderbilt University Medical Center; Nashville, TN USA
| | - Alberto G Delgado
- Division of Gastroenterology; Department of Medicine; Vanderbilt University Medical Center; Nashville, TN USA
| | - Thibaut de Sablet
- Division of Gastroenterology; Department of Medicine; Vanderbilt University Medical Center; Nashville, TN USA
| | - Luis E Bravo
- Department of Pathology; School of Medicine; Universidad del Valle; Cali, Colombia
| | - Keith T Wilson
- Division of Gastroenterology; Department of Medicine; Vanderbilt University Medical Center; Nashville, TN USA
- Veterans Affairs Tennessee Valley Healthcare System and Office of Medical Research; Department of Veterans Affairs; Nashville, TN USA
| | - Wael El-Rifai
- Department of Surgery; Vanderbilt University Medical Center; Nashville, TN USA
- Veterans Affairs Tennessee Valley Healthcare System and Office of Medical Research; Department of Veterans Affairs; Nashville, TN USA
| | - Richard M Peek Jr
- Division of Gastroenterology; Department of Medicine; Vanderbilt University Medical Center; Nashville, TN USA
| | - Pelayo Correa
- Division of Gastroenterology; Department of Medicine; Vanderbilt University Medical Center; Nashville, TN USA
| |
Collapse
|
46
|
Shi X, Li X, Chen L, Wang C. Analysis of somatostatin receptors and somatostatin promoter methylation in human gastric cancer. Oncol Lett 2013; 6:1794-1798. [PMID: 24260078 PMCID: PMC3834542 DOI: 10.3892/ol.2013.1614] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 10/02/2013] [Indexed: 02/05/2023] Open
Abstract
Somatostatin (SST) is a gut peptide that is able to inhibit the growth of tumor cells in gastric cancer and other types of cancer. The present study investigated the mRNA and protein levels of SST and SST receptors (SSTRs) in human gastric cancer, and detected the DNA methylation of the SST promoter. The protein levels of SST were detected using a radioimmunoassay in 102 human gastric tissue specimens (51 pairs of samples from 51 gastric cancer patients, each pair of samples included a cancer tissue and a normal tissue sample). SST and SSTR mRNA expression was assessed by reverse transcription-PCR (RT-PCR), while SST promoter methylation was examined using quantitative methylation-specific PCR (qMSP) in 51 pairs of tissues. The association between SST protein and RNA levels and SST methylation and gastric cancer were also analyzed. The protein levels of SST were decreased in the gastric cancer group compared with those of the normal group (5.091±0.994 vs. 7.399±0.956 pg/mg; P<0.01). The RT-PCR analysis indicated that the mRNA levels of SST (0.218±0.183 vs. 0.456±0.331; P<0.001) and SSTRs in the gastric cancer group were lower compared with those of the normal gastric tissue group. The methylation proportion of SST was 45.1% (23/51) in the carcinoma group and 3.9% (2/51) in the normal group. In conclusion, SST promoter methylation is a common event in human gastric cancer and is connected with a decrease in SST protein and RNA levels and associated with gastric carcinogens.
Collapse
Affiliation(s)
- Xuefei Shi
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | | | | | | |
Collapse
|
47
|
Gopal G, Raja UM, Shirley S, Rajalekshmi KR, Rajkumar T. SOSTDC1 down-regulation of expression involves CpG methylation and is a potential prognostic marker in gastric cancer. Cancer Genet 2013; 206:174-82. [PMID: 23830730 DOI: 10.1016/j.cancergen.2013.04.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 04/27/2013] [Accepted: 04/30/2013] [Indexed: 01/15/2023]
Abstract
Sclerostin domain containing 1 (SOSTDC1) is reportedly down-regulated in various cancers. Our purpose was to study whether epigenetic mechanisms were involved in the down-regulation of expression in gastric cancer. Expression analysis of SOSTDC1 in gastric cancer cell lines indicated mRNA down-regulation. Our reporter assays and gene reactivation studies using 5-aza-2'-deoxycytidine, a DNA demethylating agent, and trichostatin A (TSA), a histone deacetylase (HDAC) inhibitor, demonstrated that epigenetic mechanisms are involved in the down-regulation of SOSTC1 expression. Methylation analysis of the SOSTDC1 promoter CpGs using methylation-specific polymerase chain reaction analysis revealed methylation in gastric cancer cell lines and tissue samples. A majority of tumors (17 of 18) with observed methylation exhibited down-regulation of mRNA expression relative to apparently normal gastric tissues. Immunoreactivity for SOSTDC1 in gastric tumors (24 of 46, 52.1%) was down-regulated relative to normal tissues (36 of 38, 94.7%) (P = 0.00001). The difference in expression between gastric tumor subtypes, intestinal and diffuse, was significant (P = 0.040). Expression of SOSTDC1 in gastric tumors increased the probability of both overall and disease-free survival. When overexpressed in AGS cells, cell proliferation, cell cycle progression, and anchorage-independent growth was repressed. The present findings indicate SOSTDC1 down-regulation involves methylation; SOSTDC1 expression is a potential prognostic factor and tumor suppressor in gastric cancer.
Collapse
Affiliation(s)
- Gopisetty Gopal
- Department of Molecular Oncology, Cancer Institute (Women's India Association), Chennai, India
| | | | | | | | | |
Collapse
|
48
|
Kawasaki H, Igawa E, Kohosozawa R, Kobayashi M, Nishiko R, Abe H. Detection of aberrant methylation of tumor suppressor genes in plasma from cancer patients. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.pmu.2013.04.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
49
|
Tänzer M, Liebl M, Quante M. Molecular biomarkers in esophageal, gastric, and colorectal adenocarcinoma. Pharmacol Ther 2013; 140:133-47. [PMID: 23791941 DOI: 10.1016/j.pharmthera.2013.06.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 06/06/2013] [Indexed: 02/06/2023]
Abstract
Cancers of the esophagus, stomach and colon contribute to a major health burden worldwide and over 20% of all cancer deaths. Biomarkers that should indicate pathogenic process and are measureable in an objective manner for these tumors are rare and not established in the clinical setting. In general biomarkers can be very useful for cancer management as they can improve clinical decision-making regarding diagnosis, surveillance, and therapy. Biomarkers can be different types of molecular entities (such as DNA, RNA or proteins), which can be detected, in different tissues or body fluids. However, more important is the type of biomarker itself, which allows diagnostic, prognostic or predictive analyses for different clinical problems. This review aims to systematically summarize the recent findings of genetic and epigenetic markers for gastrointestinal tumors within the last decade. While many biomarkers seem to be very promising, especially if used as panels, further development is urgently needed to address practical considerations of biomarkers in cancer treatment.
Collapse
Affiliation(s)
- Marc Tänzer
- II. Medizinische Klinik, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 München, Germany
| | | | | |
Collapse
|
50
|
Qu Y, Dang S, Hou P. Gene methylation in gastric cancer. Clin Chim Acta 2013; 424:53-65. [PMID: 23669186 DOI: 10.1016/j.cca.2013.05.002] [Citation(s) in RCA: 279] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 05/03/2013] [Accepted: 05/03/2013] [Indexed: 02/07/2023]
Abstract
Gastric cancer is one of the most common malignancies and remains the second leading cause of cancer-related death worldwide. Over 70% of new cases and deaths occur in developing countries. In the early years of the molecular biology revolution, cancer research mainly focuses on genetic alterations, including gastric cancer. Epigenetic mechanisms are essential for normal development and maintenance of tissue-specific gene expression patterns in mammals. Disruption of epigenetic processes can lead to altered gene function and malignant cellular transformation. Recent advancements in the rapidly evolving field of cancer epigenetics have shown extensive reprogramming of every component of the epigenetic machinery in cancer, including DNA methylation, histone modifications, nucleosome positioning, noncoding RNAs, and microRNAs. Aberrant DNA methylation in the promoter regions of gene, which leads to inactivation of tumor suppressor and other cancer-related genes in cancer cells, is the most well-defined epigenetic hallmark in gastric cancer. The advantages of gene methylation as a target for detection and diagnosis of cancer in biopsy specimens and non-invasive body fluids such as serum and gastric washes have led to many studies of application in gastric cancer. This review focuses on the most common and important phenomenon of epigenetics, DNA methylation, in gastric cancer and illustrates the impact epigenetics has had on this field.
Collapse
Key Words
- 5-hmC
- 5-hydroxymethylcytosine
- 5-mC
- 5-methylcytosine
- ADAM metallopeptidase domain 23
- ADAM metallopeptidase with thrombospondin type 1 motif, 9
- ADAM23
- ADAMTS9
- AML
- APC
- ARID1A
- AT motif-binding factor 1
- AT rich interactive domain 1A (SWI-like)
- ATBF1
- Acute myelocytic leukemia
- Adenomatosis polyposis coli
- B-cell translocation gene 4
- BCL2/adenovirus E1B 19kDa interacting protein 3
- BMP-2
- BNIP3
- BS
- BTG4
- Biomarkers
- Bisulfite sequencing
- Bone morphogenetic protein 2
- C-MET
- CACNA1G
- CACNA2D3
- CD44
- CD44 molecule (Indian blood group)
- CDH1
- CDK4
- CDK6
- CDKN1C
- CDKN2A
- CDX2
- CGI
- CHD5
- CHFR
- CKLF-like MARVEL transmembrane domain containing 3
- CMTM3
- CNS
- CRBP1
- Cadherin 1 or E-cadherin
- Calcium channel, voltage-dependent, T type, alpha 1G subunit
- Calcium channel, voltage-dependent, alpha 2/delta subunit 3
- Caudal type homeobox 2
- Central nervous system
- Checkpoint with forkhead and ring finger domains, E3 ubiquitin protein ligase
- Chromodomain helicase DNA binding protein 5
- Chromosome 2 open reading frame 40
- Clinical outcomes
- CpG islands
- Cyclin-dependent kinase 4
- Cyclin-dependent kinase 6
- Cyclin-dependent kinase inhibitor 1A
- Cyclin-dependent kinase inhibitor 1B
- Cyclin-dependent kinase inhibitor 1C
- Cyclin-dependent kinase inhibitor 2A
- Cyclin-dependent kinase inhibitor 2B
- DAB2 interacting protein
- DACT1
- DAPK
- DNA
- DNA methylatransferases
- DNA mismatch repair
- DNMT
- Dapper, antagonist of beta-catenin, homolog 1 (Xenopus laevis)
- Death-associated protein kinase
- Deoxyribose Nucleic Acid
- Dickkopf 3 homolog (Xenopus laevis)
- Dkk-3
- EBV
- ECRG4
- EDNRB
- EGCG
- ERBB4
- Endothelin receptor type B
- Epigallocatechin gallate
- Epigenetics
- Epstein–Barr Virus
- FDA
- FLNc
- Filamin C
- Food and Drug Administration
- GC
- GDNF
- GI endoscopy
- GPX3
- GRIK2
- GSTP1
- Gastric cancer
- Gene methylation
- Glutamate receptor, ionotropic, kainate 2
- Glutathione S-transferase pi 1
- Glutathione peroxidase 3 (plasma)
- H. pylori
- HACE1
- HAI-2/SPINT2
- HECT domain and ankyrin repeat containing E3 ubiquitin protein ligase 1
- HGFA
- HLTF
- HOXA1
- HOXA10
- HRAS-like suppressor
- HRASLS
- Helicase-like transcription factor
- Helicobacter pylori
- Homeobox A1
- Homeobox A10
- Homeobox D10
- HoxD10
- IGF-1
- IGF-1R
- IGFBP3
- IL-1β
- ITGA4
- Insulin-like growth factor 1 (somatomedin C)
- Insulin-like growth factor I receptor
- Insulin-like growth factor binding protein 3
- Integrin, alpha 4 (antigen CD49D, alpha 4 subunit of VLA-4 receptor)
- Interleukin 1, beta
- KL
- KRAS
- Klotho
- LL3
- LMP2A
- LOX
- LRP1B
- Low density lipoprotein receptor-related protein 1B
- Lysyl oxidase
- MAPK
- MBPs
- MDS
- MGMT
- MINT25
- MLF1
- MLL
- MMR
- MSI
- MSP
- Matrix metallopeptidase 24 (membrane-inserted)
- Met proto-oncogene (hepatocyte growth factor receptor)
- Methyl-CpG binding proteins
- Methylation-specific PCR
- Microsatellite instability
- Myeloid leukemia factor 1
- Myeloid/lymphoid or mixed-lineage leukemia (trithorax homolog, Drosophila)
- Myeloid/lymphoid or mixed-lineage leukemia 3
- NDRG family member 2
- NDRG2
- NPR1
- NR3C1
- Natriuretic peptide receptor A/guanylate cyclase A
- Notch 1
- Nuclear receptor subfamily 3, group C, member 1 (glucocorticoid receptor)
- O-6-methylguanine-DNA methyltransferase
- PCDH10
- PCDH17
- PI3K/Akt
- PIK3CA
- PR domain containing 5
- PRDM5
- PTCH1
- Patched 1
- Phosphatidylethanolamine binding protein 1
- Protein tyrosine phosphatase, non-receptor type 6
- Protocadherin 10
- Protocadherin 17
- Q-MSP
- Quantitative methylation-specific PCR
- RAR-related orphan receptor A
- RARRES1
- RARß
- RAS/RAF/MEK/ERK
- RASSF1A
- RASSF2
- RBP1
- RKIP
- RORA
- ROS
- RUNX3
- Ras association (RalGDS/AF-6) domain family member 1
- Ras association (RalGDS/AF-6) domain family member 2
- Rb
- Retinoic acid receptor responder (tazarotene induced) 1
- Retinoic acid receptor, beta
- Retinol binding protein 1, cellular
- Runt-related transcription factor 3
- S-adenosylmethionine
- SAM
- SFRP2
- SFRP5
- SHP1
- SOCS-1
- STAT3
- SYK
- Secreted frizzled-related protein 2
- Secreted frizzled-related protein 5
- Serine peptidase inhibitor, Kunitz type, 2
- Spleen tyrosine kinase
- Suppressor of cytokine signaling 1
- TCF4
- TET
- TFPI2
- TGF-β
- TIMP metallopeptidase inhibitor 3
- TIMP3
- TNM
- TP73
- TSP1
- Thrombospondin 1
- Tissue factor pathway inhibitor 2
- Transcription factor 4
- Tumor Node Metastasis
- Tumor protein p73
- V-erb-a erythroblastic leukemia viral oncogene homolog 4
- ZFP82 zinc finger protein
- ZIC1
- ZNF545
- Zinc finger protein of the cerebellum 1
- gastrointestinal endoscopy
- glial cell derived neurotrophic factor
- hDAB2IP
- hMLH1
- hepatocyte growth factor activator
- latent membrane protein
- mutL homolog 1
- myelodysplastic syndromes
- p15
- p16
- p21
- p27
- p53
- p73
- phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha
- phosphoinositide 3-kinase (PI3K)/Akt
- reactive oxygen species
- retinoblastoma
- signal transducer and activator of transcription-3
- ten-eleven translocation
- transforming growth factor-β
- tumor protein p53
- tumor protein p73
- v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog
Collapse
Affiliation(s)
- Yiping Qu
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an 710061, People's Republic of China
| | | | | |
Collapse
|