1
|
Walter CEJ, Shankaran ZS, Kontham SS, Ramachandran K, Prakash N, Johnson T, JR SN. Investigating the association of microRNA polymorphisms and lifestyle factors with the susceptibility to common gastrointestinal cancers in an Indian population- A case control study. Heliyon 2025; 11:e41519. [PMID: 39850417 PMCID: PMC11755044 DOI: 10.1016/j.heliyon.2024.e41519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 12/04/2024] [Accepted: 12/25/2024] [Indexed: 01/25/2025] Open
Abstract
The cancers of the gastrointestinal (GI) tract have become a common diagnosis worldwide contributing to a large number of mortalities. Though potentially curable they are mostly fatal due to late diagnosis and lack of accurate diagnostic markers. microRNA, micromanagers of gene expression have been associated to have distinct roles as oncogenes or tumour suppressors in several cancers including GI cancers. These miRNAs are known to harbour single nucleotide polymorphisms (SNPs) that lead to loss or gain of its functions and have been found to be associated with altering susceptibility of several cancers. The current study aimed to investigate the role of miRSNPs in common gastrointestinal cancers. A case control study was designed which included 210 GI cancer cases and 230 cancer free controls. The miRSNPs were successfully genotyped using MassARRAY technique. Association analysis revealed that miR-196a; rs11614913, pre-mir-423; rs6505162, pre-mir-605; rs2043556, pre-mir-149; rs2292832 and pri-mir-30c; rs928508 polymorphisms significantly altered the risk of common GI cancers. Multifactor dimensionality reduction analysis demonstrated that miRSNPs alter GI cancer risk by interacting with exposures like diabetes mellitus, alcohol consumption, diet and socioeconomic status in the study subjects. In conclusion it was found that presence of miRNA polymorphism and certain lifestyle factors alters susceptibility to GI cancers significantly.
Collapse
Affiliation(s)
- Charles Emmanuel Jebaraj Walter
- Department of Biotechnology, Sri Ramachandra Institute of Higher Education & Research (formerly Sri Ramachandra Medical College & Research Institute), Chennai, India
| | - Zioni Sangeetha Shankaran
- Department of Biotechnology, Sri Ramachandra Institute of Higher Education & Research (formerly Sri Ramachandra Medical College & Research Institute), Chennai, India
- Biomedical Sciences, Faculty of Allied Health Sciences, Sree Balaji Medical College & Hospital, Chennai, India
| | - Sai Sushmitha Kontham
- Department of Biotechnology, Sri Ramachandra Institute of Higher Education & Research (formerly Sri Ramachandra Medical College & Research Institute), Chennai, India
- Department of Medical Biotechnology, School of Allied Health Sciences, Malla Reddy University, Hyderabad, India
| | | | - Nandini Prakash
- Department of Biotechnology, Sri Ramachandra Institute of Higher Education & Research (formerly Sri Ramachandra Medical College & Research Institute), Chennai, India
| | - Thanka Johnson
- Department of Pathology, Sree Balaji Medical College & Hospital, Chennai, India
| | - Sri Nisha JR
- Department of Prosthodontia, Sree Balaji Dental College & Hospital, Bharath Institute of Higher Education & Research, Chennai, India
| |
Collapse
|
2
|
Villa M, Sharma GG, Malighetti F, Mauri M, Arosio G, Cordani N, Lobello C, Larose H, Pirola A, D'Aliberti D, Massimino L, Criscuolo L, Pagani L, Chinello C, Mastini C, Fontana D, Bombelli S, Meneveri R, Lovisa F, Mussolin L, Janikova A, Pospíšilová Š, Turner SD, Inghirami G, Magni F, Urso M, Pagni F, Ramazzotti D, Piazza R, Chiarle R, Gambacorti-Passerini C, Mologni L. Recurrent somatic mutations of FAT family cadherins induce an aggressive phenotype and poor prognosis in anaplastic large cell lymphoma. Br J Cancer 2024; 131:1781-1795. [PMID: 39478125 PMCID: PMC11589140 DOI: 10.1038/s41416-024-02881-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 10/03/2024] [Accepted: 10/11/2024] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND Anaplastic Large Cell Lymphoma (ALCL) is a rare and aggressive T-cell lymphoma, classified into ALK-positive and ALK-negative subtypes, based on the presence of chromosomal translocations involving the ALK gene. The current standard of treatment for ALCL is polychemotherapy, with a high overall survival rate. However, a subset of patients does not respond to or develops resistance to these therapies, posing a serious challenge for clinicians. Recent targeted treatments such as ALK kinase inhibitors and anti-CD30 antibody-drug conjugates have shown promise but, for a fraction of patients, the prognosis is still unsatisfactory. METHODS We investigated the genetic landscape of ALK + ALCL by whole-exome sequencing; recurring mutations were characterized in vitro and in vivo using transduced ALCL cellular models. RESULTS Recurrent mutations in FAT family genes and the transcription factor RUNX1T1 were found. These mutations induced changes in ALCL cells morphology, growth, and migration, shedding light on potential factors contributing to treatment resistance. In particular, FAT4 silencing in ALCL cells activated the β-catenin and YAP1 pathways, which play crucial roles in tumor growth, and conferred resistance to chemotherapy. Furthermore, STAT1 and STAT3 were hyper-activated in these cells. Gene expression profiling showed global changes in pathways related to cell adhesion, cytoskeletal organization, and oncogenic signaling. Notably, FAT mutations associated with poor outcome in patients. CONCLUSIONS These findings provide novel insights into the molecular portrait of ALCL, that could help improve treatment strategies and the prognosis for ALCL patients.
Collapse
Affiliation(s)
- Matteo Villa
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Geeta G Sharma
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Federica Malighetti
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Mario Mauri
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Giulia Arosio
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Nicoletta Cordani
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Cosimo Lobello
- Center of Molecular Medicine, Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - Hugo Larose
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge, UK
| | | | - Deborah D'Aliberti
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Luca Massimino
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Division of Immunology, Transplantation and Infectious Disease, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Lucrezia Criscuolo
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Lisa Pagani
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Clizia Chinello
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Cristina Mastini
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Diletta Fontana
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Silvia Bombelli
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Neurogenomics Research Center, Fondazione Human Technopole, Milano, Italy
| | - Raffaella Meneveri
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Federica Lovisa
- Maternal and Child Health, Department Pediatric Hematology, Oncology and Stem Cell Transplant Center, University of Padua, Padua, Italy
- Pediatric Research Institute "Città della Speranza", Padua, Italy
| | - Lara Mussolin
- Maternal and Child Health, Department Pediatric Hematology, Oncology and Stem Cell Transplant Center, University of Padua, Padua, Italy
- Pediatric Research Institute "Città della Speranza", Padua, Italy
| | - Andrea Janikova
- Center of Molecular Medicine, Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
- Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Šárka Pospíšilová
- Center of Molecular Medicine, Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
- Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Suzanne D Turner
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge, UK
- Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | | | - Fulvio Magni
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Mario Urso
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Department of Pathology, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Fabio Pagni
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Department of Pathology, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Daniele Ramazzotti
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Rocco Piazza
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Roberto Chiarle
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
- Department of Pathology, Children's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Haematopathology, European Institute of Oncology IRCCS, Milan, Italy
| | - Carlo Gambacorti-Passerini
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Department of Haematology, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Luca Mologni
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.
| |
Collapse
|
3
|
Yang Y, Zhang W, Li H, Xiang H, Zhang C, Du Z, Huang L, Zhu J. MiR-196a Promotes Lipid Deposition in Goat Intramuscular Preadipocytes by Targeting MAP3K1 and Activating PI3K-Akt Pathway. Cells 2024; 13:1459. [PMID: 39273029 PMCID: PMC11394330 DOI: 10.3390/cells13171459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/21/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Meat quality in goats is partly determined by the intramuscular fat (IMF) content, which is associated with the proliferation and differentiation of intramuscular preadipocytes. Emerging studies have suggested that miRNA plays a crucial role in adipocyte proliferation and differentiation. In our recent study, we observed the expression variations in miR-196a in the longissimus dorsi muscle of Jianzhou goats at different ages. However, the specific function and underlying mechanism of miR-196a in IMF deposition are still unclear. This study demonstrated that miR-196a significantly enhanced adipogenesis and apoptosis and reduced the proliferation of preadipocytes. Subsequently, RNA-seq was employed to determine genes regulated by miR-196a, and 677 differentially expressed genes were detected after miR-196a overexpression. The PI3K-Akt pathway was identified as activated in miR-196a regulating intramuscular adipogenesis via Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis and further verified via Western blot and rescue assays. Lastly, using RT-qPCR, Western blot, dual-luciferase, and rescue assays, we found that miR-196a promoted adipogenesis and suppressed the proliferation of intramuscular preadipocytes by the downregulation of MAP3K1. In summary, these results suggest that miR-196a regulates IMF deposition by targeting MAP3K1 and activating the PI3K-Akt pathway and provide a theoretical foundation for improving goat meat quality through molecular breeding.
Collapse
Affiliation(s)
- Yuling Yang
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu 610041, China; (Y.Y.); (H.L.); (H.X.); (C.Z.); (Z.D.)
| | - Wenyang Zhang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Southwest Minzu University, Ministry of Education, Chengdu 610041, China;
| | - Haiyang Li
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu 610041, China; (Y.Y.); (H.L.); (H.X.); (C.Z.); (Z.D.)
| | - Hua Xiang
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu 610041, China; (Y.Y.); (H.L.); (H.X.); (C.Z.); (Z.D.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Southwest Minzu University, Ministry of Education, Chengdu 610041, China;
| | - Changhui Zhang
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu 610041, China; (Y.Y.); (H.L.); (H.X.); (C.Z.); (Z.D.)
| | - Zhanyu Du
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu 610041, China; (Y.Y.); (H.L.); (H.X.); (C.Z.); (Z.D.)
| | - Lian Huang
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu 610041, China; (Y.Y.); (H.L.); (H.X.); (C.Z.); (Z.D.)
| | - Jiangjiang Zhu
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu 610041, China; (Y.Y.); (H.L.); (H.X.); (C.Z.); (Z.D.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Southwest Minzu University, Ministry of Education, Chengdu 610041, China;
| |
Collapse
|
4
|
Khalilian S, Hosseini Imani SZ, Abedinlou H, Omrani MA, Ghafouri-Fard S. miR-196a in the carcinogenesis and other disorders with an especial focus on its biomarker capacity. Pathol Res Pract 2024; 260:155433. [PMID: 38959626 DOI: 10.1016/j.prp.2024.155433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024]
Abstract
miR-196a has important roles in the pathoetiology of different disorders ranging from non-malignant to malignant ones. This miRNA is transcribed from two genomic loci, namely HOXC and HOXB on human chromosomes 12 and 17, respectively. The current study aims to summarize the role of miR-196a in different disorders. In the most conducted studies in the framework of cancer, miR-196a has been identified as an oncogene. However, few studies are not conformed to this concept. In head and neck, lung, oral and pancreatic cancers, miR-196a is a possible diagnostic marker. In addition, it has a possible role in the pathoetiology of diabetic nephropathy, Huntington's disease, idiopathic male infertility, keloid, chronic kidney disease and spinal and bulbar muscular atrophy; and is regarded as a biomarker for focal segmental glomerulosclerosis and chronic kidney disease. We aim to recapitulate the role of miR-196a in different malignant and non-malignant disorders.
Collapse
Affiliation(s)
- Sheyda Khalilian
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyedeh Zahra Hosseini Imani
- Division of Genetics, Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Sciences and Technologies, University of Isfahan, Isfahan, Iran
| | - Hamid Abedinlou
- Department of Medical Biotechnology, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad-Amin Omrani
- Urology and Nephrology Research Center (UNRC), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Dental Research Center, Research Institute for Dental Sciences, Dental School, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Mehrjoei B, Haghnazari L, Bashiri H, Rezvani N. The diagnostic potential of miR-196a-1 in colorectal cancer. BMC Cancer 2024; 24:162. [PMID: 38302924 PMCID: PMC10832129 DOI: 10.1186/s12885-024-11881-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/14/2024] [Indexed: 02/03/2024] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is a common malignancy worldwide. MicroRNAs (miRNAs) are important epigenetic alterations that notably impact various physiological and pathological processes by acting as negative regulators of gene expression. Furthermore, they have a vital function in different types of cancers, including CRC. In this research, we evaluated, for the very first time, the expression levels of miR-196a-1 in the tissue and plasma of patients with CRC and also homeobox D8 (HOXD8) as the target gene. MATERIALS AND METHODS This study included a collection of 220 plasma and tissue samples from 55 patients diagnosed with CRC, as well as 55 healthy individuals matched by age and sex. Total RNA was extracted from plasma and tissue samples, and then polyadenylation and cDNA synthesis were performed. The expression levels of miR-196a-1 and HOXD8 as target gene was evaluated by quantitative RT-PCR (qRT-PCR) assay. We compared the diagnostic value of plasma miR-196a-1 with that of the circulating tumor markers CA19-9 and CEA using a Receiver Operating Characteristics (ROC) analysis. The association of miR-196a-1 with clinicopathological characteristics was assessed in tissue and plasma samples from patients with CRC. RESULTS Our data demonstrated that the expression levels of miR-196a-1 in the tissue and plasma samples of CRC patients were 11.426- and 11.655-fold higher, respectively than those in adjacent normal tissue and plasma samples from normal subjects (p < 0.001). Through ROC curve analysis, it was identified that the sensitivity and specificity of miR-196a-1 for tissue samples, with an AUC of 0.925, were 89% and 98%, respectively. In addition, the sensitivity and specificity for plasma samples with an AUC of 0.801 were 70% and 98%, respectively. These findings reveal that miR-196a-1 is a useful biomarker for discriminating cases from controls. Furthermore, the expression of HOXD8 was not significantly altered in tumor tissue samples compared to adjacent normal tissues (P > 0.05). CONCLUSIONS These results show that miR-196a-1 has an oncogenic impact and plays a significant role in CRC development. The results also indicate that miR-196a-1 could serve as a novel noninvasive biomarker for the detection of CRC.
Collapse
Affiliation(s)
- Bayan Mehrjoei
- Department of Clinical Biochemistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Lida Haghnazari
- Department of Clinical Biochemistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Homayoon Bashiri
- Imam Reza Hospital Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Nayebali Rezvani
- Department of Clinical Biochemistry, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
6
|
Ren JX, Chen L, Guo W, Feng KY, Cai YD, Huang T. Patterns of Gene Expression Profiles Associated with Colorectal Cancer in Colorectal Mucosa by Using Machine Learning Methods. Comb Chem High Throughput Screen 2024; 27:2921-2934. [PMID: 37957897 DOI: 10.2174/0113862073266300231026103844] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/11/2023] [Accepted: 09/30/2023] [Indexed: 11/15/2023]
Abstract
BACKGROUND Colorectal cancer (CRC) has a very high incidence and lethality rate and is one of the most dangerous cancer types. Timely diagnosis can effectively reduce the incidence of colorectal cancer. Changes in para-cancerous tissues may serve as an early signal for tumorigenesis. Comparison of the differences in gene expression between para-cancerous and normal mucosa can help in the diagnosis of CRC and understanding the mechanisms of development. OBJECTIVES This study aimed to identify specific genes at the level of gene expression, which are expressed in normal mucosa and may be predictive of CRC risk. METHODS A machine learning approach was used to analyze transcriptomic data in 459 samples of normal colonic mucosal tissue from 322 CRC cases and 137 non-CRC, in which each sample contained 28,706 gene expression levels. The genes were ranked using four ranking methods based on importance estimation (LASSO, LightGBM, MCFS, and mRMR) and four classification algorithms (decision tree [DT], K-nearest neighbor [KNN], random forest [RF], and support vector machine [SVM]) were combined with incremental feature selection [IFS] methods to construct a prediction model with excellent performance. RESULT The top-ranked genes, namely, HOXD12, CDH1, and S100A12, were associated with tumorigenesis based on previous studies. CONCLUSION This study summarized four sets of quantitative classification rules based on the DT algorithm, providing clues for understanding the microenvironmental changes caused by CRC. According to the rules, the effect of CRC on normal mucosa can be determined.
Collapse
Affiliation(s)
- Jing Xin Ren
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Lei Chen
- College of Information Engineering, Shanghai Maritime University, Shanghai, 201306, China
| | - Wei Guo
- Key Laboratory of Stem Cell Biology, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, 200030, China
| | - Kai Yan Feng
- Department of Computer Science, Guangdong AIB Polytechnic College, Guangzhou, 510507, China
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Tao Huang
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| |
Collapse
|
7
|
Xie X, Wang Y, Sheng N, Zhang S, Cao Y, Fu Y. Predicting miRNA-disease associations based on multi-view information fusion. Front Genet 2022; 13:979815. [PMID: 36238163 PMCID: PMC9552014 DOI: 10.3389/fgene.2022.979815] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/16/2022] [Indexed: 11/13/2022] Open
Abstract
MicroRNAs (miRNAs) play an important role in various biological processes and their abnormal expression could lead to the occurrence of diseases. Exploring the potential relationships between miRNAs and diseases can contribute to the diagnosis and treatment of complex diseases. The increasing databases storing miRNA and disease information provide opportunities to develop computational methods for discovering unobserved disease-related miRNAs, but there are still some challenges in how to effectively learn and fuse information from multi-source data. In this study, we propose a multi-view information fusion based method for miRNA-disease association (MDA)prediction, named MVIFMDA. Firstly, multiple heterogeneous networks are constructed by combining the known MDAs and different similarities of miRNAs and diseases based on multi-source information. Secondly, the topology features of miRNAs and diseases are obtained by using the graph convolutional network to each heterogeneous network view, respectively. Moreover, we design the attention strategy at the topology representation level to adaptively fuse representations including different structural information. Meanwhile, we learn the attribute representations of miRNAs and diseases from their similarity attribute views with convolutional neural networks, respectively. Finally, the complicated associations between miRNAs and diseases are reconstructed by applying a bilinear decoder to the combined features, which combine topology and attribute representations. Experimental results on the public dataset demonstrate that our proposed model consistently outperforms baseline methods. The case studies further show the ability of the MVIFMDA model for inferring underlying associations between miRNAs and diseases.
Collapse
Affiliation(s)
- Xuping Xie
- Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun, China
| | - Yan Wang
- Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun, China
- School of Artificial Intelligence, Jilin University, Changchun, China
- *Correspondence: Yan Wang,
| | - Nan Sheng
- Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun, China
| | - Shuangquan Zhang
- Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun, China
| | - Yangkun Cao
- School of Artificial Intelligence, Jilin University, Changchun, China
| | - Yuan Fu
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| |
Collapse
|
8
|
Wang L, Qiao C, Cao L, Cai S, Ma X, Song X, Jiang Q, Huang C, Wang J. Significance of HOXD transcription factors family in progression, migration and angiogenesis of cancer. Crit Rev Oncol Hematol 2022; 179:103809. [PMID: 36108961 DOI: 10.1016/j.critrevonc.2022.103809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 10/31/2022] Open
Abstract
The transcription factors (TFs) of the HOX family play significant roles during early embryonic development and cellular processes. They also play a key role in tumorigenesis as tumor oncogenes or suppressors. Furthermore, TFs of the HOXD geFIne cluster affect proliferation, migration, and invasion of tumors. Consequently, dysregulated activity of HOXD TFs has been linked to clinicopathological characteristics of cancer. HOXD TFs are regulated by non-coding RNAs and methylation of DNA on promoter and enhancer regions. In addition, HOXD genes modulate the biological function of cancer cells via the MEK and AKT signaling pathways, thus, making HOXD TFs, a suitable molecular marker for cancer prognosis and therapy. In this review, we summarized the roles of HOXD TFs in different cancers and highlighted its potential as a diagnostic and therapeutic target.
Collapse
Affiliation(s)
- Lumin Wang
- Gastroenterology department, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, PR China; Institute of precision medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, PR China
| | - Chenyang Qiao
- Gastroenterology department, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, PR China
| | - Li Cao
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, PR China
| | - Shuang Cai
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, PR China
| | - Xiaoping Ma
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, PR China
| | - Xinqiu Song
- Department of Cell Biology and Genetics, Medical College of Yan'an University, Yan'an, Shaanxi, PR China
| | - Qiuyu Jiang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, PR China
| | - Chen Huang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, PR China; Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, PR China.
| | - Jinhai Wang
- Gastroenterology department, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, PR China; Institute of precision medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, PR China.
| |
Collapse
|
9
|
Chen Q, Pan Q, Gao H, Wang Y, Zhong X. miR-17-5p/ HOXA7 Is a Potential Driver for Brain Metastasis of Lung Adenocarcinoma Related to Ferroptosis Revealed by Bioinformatic Analysis. Front Neurol 2022; 13:878947. [PMID: 35693013 PMCID: PMC9174431 DOI: 10.3389/fneur.2022.878947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/03/2022] [Indexed: 11/21/2022] Open
Abstract
Objectives Present study aims to identify the essential mRNAs responsible for the development of brain neurovascular-related metastases (BNM) among lung adenocarcinoma (LUAD) patients. Further, we attempted to predict brain metastases more accurately and prevent their development in LUAD patients. Methods Transcriptome data analysis was used to identify differentially expressed mRNAs (DEMs) associated with brain metastasis, and thereby the ferroptosis index (FPI) is calculated using a computational model. Meanwhile, the DEmRNAs linked with FPI, and brain metastasis were derived by the intersection of these two groups of DEMs. We also constructed a ceRNA network containing these DEmRNAs, identifying the HCP5 /hsa-miR-17-5p/HOXA7 axis for analysis. Further, a clinical cohort was employed to validate the regulatory roles of molecules involved in the ceRNA regulatory axis. Results Here we report the development of a ceRNA network based on BNM-associated DEMs and FPI-associated DEmRNAs which includes three core miRNAs (hsa-miR-338-3p, hsa-miR-429, and hsa-miR-17-5p), three mRNAs (HOXA7, TBX5, and TCF21), and five lncRNAs (HCP5, LINC00460, TP53TG1). Using gene set enrichment analysis (GSEA) and survival analysis, the potential axis of HCP5 /hsa-miR-17-5p/HOXA7 was further investigated. It is found that HOXA7 and ferroptosis index are positively correlated while inhibiting tumor brain metastasis. It may be that HCP5 binds competitively with miR-17-5p and upregulates HOXA7 to increase iron death limiting brain cancer metastases. Conclusions The expression of both HOXA7 and HCP5 is positively correlated with FPI, indicating a possible link between ferroptosis and BNM. According to the results of our study, the ferroptosis-related ceRNA HCP5 /hsa-miR-17-5p/HOXA7 axis may contribute to the development of BNM in LUAD patients.
Collapse
Affiliation(s)
| | | | | | | | - Xiaoning Zhong
- Department of Respiratory Medicine, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
10
|
CircTMEM59 Serves as miR-410-3p Sponge to Inhibit the Proliferation and Metastasis of Colorectal Cancer by Regulating HOXD8. Biochem Genet 2022; 60:2399-2415. [DOI: 10.1007/s10528-022-10224-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 03/21/2022] [Indexed: 12/13/2022]
|
11
|
Dang Y, Yu J, Zhao S, Cao X, Wang Q. HOXA7 promotes the metastasis of KRAS mutant colorectal cancer by regulating myeloid-derived suppressor cells. Cancer Cell Int 2022; 22:88. [PMID: 35183163 PMCID: PMC8858502 DOI: 10.1186/s12935-022-02519-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 02/07/2022] [Indexed: 12/13/2022] Open
Abstract
Abstract
Background
KRAS mutation accounts for 30–50% of human colorectal cancer (CRC) cases. Due to the scarcity of effective treatment options, KRAS mutant CRC is difficult to treat in the clinic. Metastasis is still the major cause of the high mortality associated with KRAS mutant CRC, but the exact mechanism remains unclear. Here, we report a unique function of Homeobox 7 (HOXA7) in driving KRAS mutant CRC metastasis and explore therapeutic strategies for subpopulations of patients with this disease.
Methods
The expression of HOXA7 in a human CRC cohort was measured by immunohistochemistry. The function of HOXA7 in KRAS mutant CRC metastasis was analyzed with the cecum orthotopic model.
Results
Elevated HOXA7 expression was positively correlated with lymph node metastasis, distant metastasis, poor tumor differentiation, high TNM stage, and poor prognosis in CRC patients. Furthermore, HOXA7 was an independent prognostic marker in KRAS mutant CRC patients (P < 0.001) but not in KRAS wild-type CRC patients (P = 0.575). Overexpression of HOXA7 improved the ability of KRAS mutant CT26 cells to metastasize and simultaneously promoted the infiltration of myeloid-derived suppressor cells (MDSCs). When MDSC infiltration was blocked by a CXCR2 inhibitor, the metastasis rate of CT26 cells was markedly suppressed. The combination of the CXCR2 inhibitor SB265610 and programmed death-ligand 1 antibody (anti-PD-L1) could largely inhibit the metastasis of KRAS mutant CRC.
Conclusions
HOXA7 overexpression upregulated CXCL1 expression, which promoted MDSC infiltration. Interruption of this loop might provide a promising treatment strategy for HOXA7-mediated KRAS mutant CRC metastasis.
Collapse
|
12
|
Zhang Y, Yu Y, Su X, Lu Y. HOXD8 inhibits the proliferation and migration of triple-negative breast cancer cells and induces apoptosis in them through regulation of AKT/mTOR pathway. Reprod Biol 2021; 21:100544. [PMID: 34454307 DOI: 10.1016/j.repbio.2021.100544] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 10/20/2022]
Abstract
HOXD8 (Homeobox D8) functions as an apoptotic inducer to suppress tumor progression. However, the role of HOXD8 in triple-negative breast cancer (TNBC) has not been fully understood. Firstly, HOXD8 was found to be reduced in TNBC tissues based on the TCGA samples through Ualcan (http://ualcan.path.uab.edu/analysis.html) prediction. Moreover, data from qRT-PCR and western blot confirmed the lower expression of HOXD8 in the TNBC tissues or cells than that in paracancerous tissues or human mammary epithelial cell line (MCF10A), respectively. Secondly, pcDNA-mediated over-expression of HOXD8 were conducted in TNBC cells, and the gain-of functional assays showed that over-expression of HOXD8 promoted TNBC cell progression with repressed cell apoptosis and induced proliferation, migration and invasion. Moreover, xenografted mouse model was constructed by injection of tumor cell line with stable over-expression of HOXD8 to assess the in vivo tumor growth, and the results revealed that over-expression of HOXD8 inhibited tumor growth. Lastly, our results showed that AKT and mTOR phosphorylation were repressed by HOXD8 over-expression in TNBC cells. In conclusion, HOXD8 functioned as an apoptotic inducer to suppress TNBC cell growth and progression by inhibition of AKT/mTOR pathway.
Collapse
Affiliation(s)
- Yixin Zhang
- Department of Thyroid and Breast Surgery, the Affiliated Peoples Hospital of Ningbo University, Ningbo City, Zhejiang Province, 315040, China
| | - Yu Yu
- Department of Thyroid and Breast Surgery, the Affiliated Peoples Hospital of Ningbo University, Ningbo City, Zhejiang Province, 315040, China
| | - Xiaobao Su
- Department of Thyroid and Breast Surgery, the Affiliated Peoples Hospital of Ningbo University, Ningbo City, Zhejiang Province, 315040, China
| | - Yuqin Lu
- Department of Nail Breast Surgery, Huai'an Second People's Hospital, Huai'an City, Jiangsu Province, 223002, China.
| |
Collapse
|
13
|
Cui J, Yuan Y, Shanmugam MK, Anbalagan D, Tan TZ, Sethi G, Kumar AP, Lim LHK. MicroRNA-196a promotes renal cancer cell migration and invasion by targeting BRAM1 to regulate SMAD and MAPK signaling pathways. Int J Biol Sci 2021; 17:4254-4270. [PMID: 34803496 PMCID: PMC8579441 DOI: 10.7150/ijbs.60805] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 09/16/2021] [Indexed: 12/23/2022] Open
Abstract
Rationale: MicroRNAs (miRNAs) are endogenous ~22nt RNAs that play critical regulatory roles in various biological and pathological processes, including various cancers. Their function in renal cancer has not been fully elucidated. It has been reported that miR-196a can act as oncogenes or as tumor suppressors depending on their target genes. However, the molecular target for miR-196a and the underlying mechanism in miR-196a promoted cell migration and invasion in renal cancer is still not clear. Methods: The expression, survival and correlation between miR-196a and BRAM1 were investigated using TCGA analysis and validated by RT-PCR and western blot. To visualize the effect of Bram1 on tumor metastasis in vivo, NOD-SCID gamma (NSG) mice were intravenously injected with RCC4 cells (106 cells/mouse) or RCC4 overexpressing Bram1. In addition, cell proliferation assays, migration and invasion assays were performed to examine the role of miR-196a in renal cells in vitro. Furthermore, immunoprecipitation was done to explore the binding targets of Bram1. Results: TCGA gene expression data from renal clear cell carcinoma patients showed a lower level of Bram1 expression in patients' specimens compared to adjacent normal tissues. Moreover, Kaplan‑Meier survival data clearly show that high expression of Bram1correlates to poor prognosis in renal carcinoma patients. Our mouse metastasis model confirmed that Bram1 overexpression resulted in an inhibition in tumor metastasis. Target-prediction analysis and dual-luciferase reporter assay demonstrated that Bram1 is a direct target of miR-196a in renal cells. Further, our in vitro functional assays revealed that miR-196a promotes renal cell proliferation, migration, and invasion. Rescue of Bram1 expression reversed miR-196a-induced cell migration. MiR-196a promotes renal cancer cell migration by directly targeting Bram1 and inhibits Smad1/5/8 phosphorylation and MAPK pathways through BMPR1A and EGFR. Conclusions: Our findings thus provide a new mechanism on the oncogenic role of miR-196a and the tumor-suppressive role of Bram1 in renal cancer cells. Dysregulated miR-196a and Bram1 represent potential prognostic biomarkers and may have therapeutic applications in renal cancer.
Collapse
Affiliation(s)
- Jianzhou Cui
- Department of Physiology , Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore.,NUS Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore.,Immunology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Yi Yuan
- Department of Physiology , Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore.,NUS Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore.,NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore.,Cancer Science Institute of Singapore, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117559, Singapore
| | - Muthu K Shanmugam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117559, Singapore
| | - Durkeshwari Anbalagan
- Department of Physiology , Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore.,NUS Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore
| | - Tuan Zea Tan
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore.,Cancer Science Institute of Singapore, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117559, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117559, Singapore
| | - Alan Prem Kumar
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore.,Cancer Science Institute of Singapore, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117559, Singapore.,Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117559, Singapore.,National University Cancer Institute, Singapore 119074, Singapore
| | - Lina H K Lim
- Department of Physiology , Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore.,NUS Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore.,Immunology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| |
Collapse
|
14
|
Expression profiles of miR-196, miR-132, miR-146a, and miR-134 in human colorectal cancer tissues in accordance with their clinical significance : Comparison regarding KRAS mutation. Wien Klin Wochenschr 2021; 133:1162-1170. [PMID: 34463887 DOI: 10.1007/s00508-021-01933-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 07/25/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Colorectal cancer (CRC) is among the most widespread malignancies in the world. MicroRNA (miRNA) has been identified as an important modulator of the biological processes of the cells. This group of noncoding RNAs also has a pivotal function in the growth and development of human cancers, including CRC. Among these miRNAs, miR-196, miR-132, miR-146a, and miR-134 have fundamental impacts on the regulation of cancers. The current study aimed to investigate the involvement of these miRNAs in CRC patients. METHODS In this study, 50 pairs of tumor and tumor margin samples of CRC patients were investigated to assess the expression levels of miR-196, miR-132, miR-146a, and miR-134 in this cancer. For this purpose, firstly, quantitative real-time PCR (qRT-PCR) was applied. Also, KRAS mutation and clinicopathological characteristics of the CRC patients were analyzed in the study groups. RESULTS The findings demonstrated the overexpression of miR-196 (P-value = 0.0045) and miR-146a (P-value = 0.0033) in tumor tissues compared to controls. Conversely, the expression levels of miR-132 (P-value = 0.00032) and miR-134 (P-value < 0.0001) were downregulated in tumor tissues. Also, miR-146a was the only miRNA with significant expression change in the case of the KRAS gene mutation. Interestingly, the expression ratio of these miRNAs was significantly associated with some of the clinicopathological features of the patients, such as lymph node and distant metastases. CONCLUSION Our data demonstrated that these miRNAs appear to be promising novel biomarkers for early diagnosis of CRC and may pave the way for the future establishment of novel therapeutic options for CRC.
Collapse
|
15
|
Wang JH, Shi CW, Lu YY, Zeng Y, Cheng MY, Wang RY, Sun Y, Jiang YL, Yang WT, Zhao DD, Huang HB, Ye LP, Cao X, Yang GL, Wang CF. MicroRNA and circRNA Expression Analysis in a Zbtb1 Gene Knockout Monoclonal EL4 Cell Line. Front Cell Infect Microbiol 2021; 11:706919. [PMID: 34290994 PMCID: PMC8287301 DOI: 10.3389/fcimb.2021.706919] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 06/21/2021] [Indexed: 12/30/2022] Open
Abstract
Zinc finger and BTB domain containing 1(Zbtb1) is a transcriptional suppressor protein, and a member of the mammalian Zbtb gene family. Previous studies have shown that Zbtb1 is essential for T-cell development. However, the role of Zbtb1 in T-cell lymphoma is undetermined. In this study, an EL4 cell line with Zbtb1 deletion was constructed using the CRISPR-Cas9 technique. The expression profiles of microRNA and circRNA produced by the control and gene deletion groups were determined by RNA-seq. In general, 24 differentially expressed microRNA and 16 differentially expressed circRNA were found between normal group and gene deletion group. Through further analysis of differentially expressed genes, GO term histogram and KEGG scatter plot were drawn, and three pairs of miRNA and circRNA regulatory relationships were found. This study describes the differentially expressed microRNA and circRNA in normal and Zbtb1-deficient EL4 cell lines, thus providing potential targets for drug development and clinical treatment of T-cell lymphoma.
Collapse
Affiliation(s)
- Jun-Hong Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Chun-Wei Shi
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yi-Yuan Lu
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yan Zeng
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Ming-Yang Cheng
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Ru-Yu Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yu Sun
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yan-Long Jiang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Wen-Tao Yang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Dan-Dan Zhao
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Hai-Bin Huang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Li-Ping Ye
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Xin Cao
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Gui-Lian Yang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Chun-Feng Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| |
Collapse
|
16
|
Zhao W, Quansah E, Yuan M, Li P, Yi C, Cai X, Zhu J. Next-generation sequencing analysis reveals segmental patterns of microRNA expression in yak epididymis. Reprod Fertil Dev 2021; 32:1067-1083. [PMID: 32758354 DOI: 10.1071/rd20113] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 06/16/2020] [Indexed: 12/26/2022] Open
Abstract
MicroRNAs (miRNAs) have emerged as potent regulators of gene expression and are widely expressed in biological systems. In reproduction, they have been shown to have a significant role in the acquisition and maintenance of male fertility, whereby deletion of Dicer in mouse germ cells leads to infertility. Evidence indicates that this role of miRNAs extends from the testis into the epididymis, controlling gene expression and contributing to regional variations in gene expression. In this study, RNA sequencing technology was used to investigate miRNA expression patterns in the yak epididymis. Region-specific miRNA expression was found in the yak epididymis. In all, 683 differentially expressed known miRNAs were obtained; 190, 186 and 307 differentially expressed miRNAs were identified for caput versus corpus, corpus versus cauda and caput versus cauda region pairs respectively. Kyoto Encyclopedia of Genes and Genomes results showed endocytosis as the most enriched pathway across region pairs, followed by protein processing in the endoplasmic reticulum, phagosome, spliceosome and biosynthesis of amino acids in region pair-specific hierarchical order. Gene ontology results showed varied enrichment in terms including cell, biogenesis, localisation, binding and locomotion across region pairs. In addition, significantly higher miR-34c expression was seen in the yak caput epididymidis relative to the corpus and cauda epididymidis.
Collapse
Affiliation(s)
- Wangsheng Zhao
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010 Sichuan, China
| | - Eugene Quansah
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010 Sichuan, China
| | - Meng Yuan
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010 Sichuan, China
| | - Pengcheng Li
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010 Sichuan, China
| | - Chuanping Yi
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010 Sichuan, China
| | - Xin Cai
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilisation (Southwest Minzu University), Ministry of Education, Chengdu, Sichuan 610041, China; and Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilisation Key Laboratory of Sichuan Province, Chengdu, Sichuan 610041, China; and Corresponding authors. ;
| | - Jiangjiang Zhu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilisation (Southwest Minzu University), Ministry of Education, Chengdu, Sichuan 610041, China; and Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilisation Key Laboratory of Sichuan Province, Chengdu, Sichuan 610041, China; and Corresponding authors. ;
| |
Collapse
|
17
|
Khan MS, Rahman B, Haq TU, Jalil F, Khan BM, Maodaa SN, Al-Farraj SA, El-Serehy HA, Shah AA. Deciphering the Variants Located in the MIR196A2, MIR146A, and MIR423 with Type-2 Diabetes Mellitus in Pakistani Population. Genes (Basel) 2021; 12:genes12050664. [PMID: 33925232 PMCID: PMC8146332 DOI: 10.3390/genes12050664] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/07/2021] [Accepted: 04/09/2021] [Indexed: 12/22/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNA molecules that control the post-transcriptional gene expression. They play a pivotal role in the regulation of important physiological processes. Variations in miRNA genes coding for mature miRNA sequences have been implicated in several diseases. However, the association of variants in miRNAs genes with Type 2 Diabetes Mellitus (T2DM) in the Pakistani population is rarely reported. Therefore, the current study was designed to investigate the association of rs11614913 T/C (MIR196A2), rs2910164 G/C (MIR146A), and rs6505162 C/A (MIR423) in clinicopathological proven T2DM patients and gender-matched healthy controls. The tetra-primer amplification refractory mutation system-polymerase chain (ARMS-PCR) reaction method was used to determine the genotypes and to establish the association of each variant with T2DM through inherited models. In conclusion, the present study showed that variants rs11614913 T/C and rs2910164 G/C were linked with the risk of T2DM. The data suggested that rs11614913 T/C and rs2910164 G/C could be considered as novel risk factors in the pathogenesis of T2DM in the Pakistani population.
Collapse
Affiliation(s)
- Muhammad Sohail Khan
- Department of Biotechnology, University of Malakand, Chakdara 18800, Pakistan; (M.S.K.); (B.R.); (T.U.H.)
| | - Bashir Rahman
- Department of Biotechnology, University of Malakand, Chakdara 18800, Pakistan; (M.S.K.); (B.R.); (T.U.H.)
| | - Taqweem Ul Haq
- Department of Biotechnology, University of Malakand, Chakdara 18800, Pakistan; (M.S.K.); (B.R.); (T.U.H.)
| | - Fazal Jalil
- Department of Biotechnology, Abdul Wali Khan University Mardan (AWKUM), Mardan 23200, Pakistan;
| | - Bilal Muhammad Khan
- University Institute of Biochemistry and Biotechnology, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi 46300, Pakistan;
- National Center of Industrial Biotechnology, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi 46300, Pakistan
| | - Saleh N. Maodaa
- Department of Zoology, College of Science, King Saud University, Riyadh l1451, Saudi Arabia; (S.N.M.); (S.A.A.-F.); (H.A.E.-S.)
| | - Saleh A. Al-Farraj
- Department of Zoology, College of Science, King Saud University, Riyadh l1451, Saudi Arabia; (S.N.M.); (S.A.A.-F.); (H.A.E.-S.)
| | - Hamed A. El-Serehy
- Department of Zoology, College of Science, King Saud University, Riyadh l1451, Saudi Arabia; (S.N.M.); (S.A.A.-F.); (H.A.E.-S.)
| | - Aftab Ali Shah
- Department of Biotechnology, University of Malakand, Chakdara 18800, Pakistan; (M.S.K.); (B.R.); (T.U.H.)
- Correspondence:
| |
Collapse
|
18
|
Takkar S, Sharma V, Ghosh S, Suri A, Sarkar C, Kulshreshtha R. Hypoxia-inducible miR-196a modulates glioblastoma cell proliferation and migration through complex regulation of NRAS. Cell Oncol (Dordr) 2021; 44:433-451. [PMID: 33469841 DOI: 10.1007/s13402-020-00580-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Glioblastoma (GBM) is the most common and aggressive malignant brain tumor in humans. Hypoxia has been correlated with the aggressive form of glial tumors, poor prognosis, recurrence and resistance to various therapies. MicroRNAs (miRNAs) have emerged as critical mediators of hypoxic responses and have shown great potential for cancer diagnostics and therapeutics. Here, we focus on the regulatory and functional characterization of miR-196a, a hypoxia-inducible miRNA, in GBM. METHODS Hypoxia/HIF regulation of miR-196a was assessed by RT-qPCR, promoter-luciferase and ChIP assays in GBM cell lines. miR-196a levels were analyzed in The Cancer Genome Atlas (TCGA)-GBM, Chinese Glioma Genome Atlas (CGGA) and Indian GBM patient cohorts. miR-target interactions were studied using RNA/protein quantification and 3'UTR luciferase assays. The effect of miR-196a overexpression/inhibition was assessed on cellular viability, migration and apoptosis under hypoxia and normoxia. Microarray-based gene expression profiling studies were performrd to study the effect of miR-196a on the GBM cellular transcriptome under hypoxia. RESULTS We identified miR-196a as a hypoxia-inducible and hypoxia-inducible factor (HIF)-regulated miRNA that plays an oncogenic role in GBM. miR-196a was found to be significantly up-regulated in TCGA-GBM, CGGA glioma as well as Indian GBM patient cohorts. miR-196a overexpression was found to induce cellular proliferation, migration, spheroid formation and colony formation and to inhibit apoptosis, while miR-196a inhibition using anti-miR-196a yielded opposite results, suggesting an oncogenic role of miR-196a in GBM. We further unveiled NRAS, AJAP1, TAOK1 and COL24A1 as direct targets of miR-196a. We also report a complex competitive regulation of oncogenic NRAS by miR-196a, miR-146a and let-7 in GBM. Analysis of microarray-based gene expression data obtained by miR-196a inhibition under hypoxia revealed a role of miR-196a in HIF, calcium adhesion, Wnt and cell adhesion pathways. Interestingly, miR-196a was found to positively regulate the expression of various genes involved in the induction or stabilization of HIFs and in maintenance of hypoxic conditions, thereby suggesting the existence of an indirect miR-196a/HIF positive feedback loop under hypoxia. CONCLUSIONS Overall, our work identifies a novel association between hypoxia/HIF signalling and miR-196a in GBM and suggests its therapeutic significance.
Collapse
Affiliation(s)
- Sonam Takkar
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Vikas Sharma
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Sourabh Ghosh
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, 110016, New Delhi, India
| | - Ashish Suri
- Department of Neurosurgery, All India Institute of Medical Sciences, 110029, New Delhi, India
| | - Chitra Sarkar
- Department of Pathology, All India Institute of Medical Sciences, 110029, New Delhi, India
| | - Ritu Kulshreshtha
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, 110016, India.
| |
Collapse
|
19
|
Meng L, Xing Z, Guo Z, Liu Z. LINC01106 post-transcriptionally regulates ELK3 and HOXD8 to promote bladder cancer progression. Cell Death Dis 2020; 11:1063. [PMID: 33311496 PMCID: PMC7733594 DOI: 10.1038/s41419-020-03236-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 12/12/2022]
Abstract
Bladder cancer (BCa) is a kind of common urogenital malignancy worldwide. Emerging evidence indicated that long noncoding RNAs (lncRNAs) play critical roles in the progression of BCa. In this study, we discovered a novel lncRNA LINC01116 whose expression increased with stages in BCa patients and closely related to the survival rate of BCa patients. However, the molecular mechanism dictating the role of LINC01116 in BCa has not been well elucidated so far. In our study, we detected that the expression of LINC01116 was boosted in BCa cells. Moreover, the results of a series of functional assays showed that LINC01116 knockdown suppressed the proliferation, migration, and invasion of BCa cells. Thereafter, GEPIA indicated the closest correlation of LINC01116 with two protein-coding genes, ELK3 and HOXD8. Interestingly, LINC01116 was mainly a cytoplasmic lncRNA in BCa cells, and it could modulate ELK3 and HOXD8 at post-transcriptional level. Mechanically, LINC01116 increased the expression of ELK3 by adsorbing miR-3612, and also stabilized HOXD8 mRNA by binding with DKC1. Rescue experiments further demonstrated that the restraining influence of LINC01116 knockdown on the progression of BCa, was partly rescued by ELK3 promotion, but absolutely reversed by the co-enhancement of ELK3 and HOXD8. More intriguingly, HOXD8 acted as a transcription factor to activate LINC01116 in BCa. In conclusion, HOXD8-enhanced LINC01116 contributes to the progression of BCa via targeting ELK3 and HOXD8, which might provide new targets for treating patients with BCa.
Collapse
Affiliation(s)
- Liwei Meng
- Qilu Hospital of Shandong University, Jinan, 250000, Shandong Province, China
| | - Zhaoquan Xing
- Qilu Hospital of Shandong University, Jinan, 250000, Shandong Province, China
| | - Zhaoxin Guo
- Qilu Hospital of Shandong University, Jinan, 250000, Shandong Province, China
| | - Zhaoxu Liu
- Qilu Hospital of Shandong University, Jinan, 250000, Shandong Province, China.
| |
Collapse
|
20
|
MiR-196: emerging of a new potential therapeutic target and biomarker in colorectal cancer. Mol Biol Rep 2020; 47:9913-9920. [PMID: 33130965 DOI: 10.1007/s11033-020-05949-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 10/23/2020] [Indexed: 02/06/2023]
Abstract
Deregulation of microRNAs, as key elements in colorectal cancer (CRC) pathogenesis, is correlated with various stages of this cancer. miR-196 is involved in the initiation and progression of a verity of malignances, especially CRC. miR-196 in CRC cells could target different types of genes with oncogenic and/or tumor suppressor function such as HOX genes, GATA6, SOCS1, SOCS3, ANXA1, DFFA, PDCD4, ZG16 and ING5. Therefore, these genes could be up or down-regulated in cells and subsequently change the capacity of CRC cells in terms of tumor development, progression and, response to therapy. Comprehension of miR-196-associated aberrations underlying the CRC pathogenesis might introduce promising targets for therapy. Additionally, it seems that miR-196 expression profiling, especially circulatory exosomal miR-196, might be useful for diagnosis and prognosis determination of the CRC patients. In this review, at first, we summarize the roles of miR-196 in different types of cancers. After that, a detailed discussion about this miRNA and also their targets in CRC pathogenesis, progression, and response to treatment are represented. Moreover, we highlight the potential utilization of miR-196 and its targets as therapeutic targets and novel biomarkers in early detection and prediction of prognosis in CRC patients.
Collapse
|
21
|
Zhan B, Huang L, Chen Y, Ye W, Li J, Chen J, Yang S, Jiang W. miR-196a-mediated downregulation of p27 kip1 protein promotes prostate cancer proliferation and relates to biochemical recurrence after radical prostatectomy. Prostate 2020; 80:1024-1037. [PMID: 32628792 DOI: 10.1002/pros.24036] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/13/2020] [Accepted: 06/17/2020] [Indexed: 01/10/2023]
Abstract
BACKGROUND Dysregulation of microRNAs has performed vital gene regulatory functions in the genesis, progression, and prognosis of multiple malignant tumors. This study aimed to elucidate the regulatory mechanism of miR-196a in prostate cancer (PCa) and explore its clinical significance. METHODS Quantitative real-time polymerase chain reaction was implemented to examine miR-196a and p27kip1 messenger RNA expression in PCa. Cell proliferation was evaluated via Cell Counting Kit-8, colony formation, and nude mouse tumorigenicity assays. Luciferase reporter assay was applied to identify target genes. p27kip1 protein expression in PCa was investigated using Western blot analysis and immunohistochemistry. RESULTS There was a dramatic upregulation of miR-196a in PCa. Upregulated miR-196a was related to worse Gleason score (GS), later pathological stage, and poor biochemical recurrence (BCR)-free survival. In vivo and in vitro experiments exhibited that miR-196a promoted PCa proliferation and expedited G1/S-phase progression through the downregulation of p27kip1 protein. Additionally, p27kip1 protein was distinctly downregulated in PCa. Low p27kip1 protein expression had a strong correlation with increased GS and was an independent predictor of BCR after radical prostatectomy (RP). CONCLUSIONS Excessive expression of miR-196a and subsequent downregulation of p27kip1 protein play essential roles in promoting PCa proliferation and leading to BCR after RP. miR-196a and its target p27kip1 may become novel molecular biomarkers and therapeutic targets for PCa.
Collapse
Affiliation(s)
- Bin Zhan
- Department of Urology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Linjin Huang
- Department of Urology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yachun Chen
- Department of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Wen Ye
- Department of Urology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Jingkun Li
- Department of Urology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Jianhui Chen
- Department of Urology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Sheng Yang
- Department of Medical Oncology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Wei Jiang
- Department of Urology, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|
22
|
Dehbidi S, Farokhizadeh Z, Karimi MH, Afshari A, Behmanesh M, Sanati MH, Geramizadeh B, Yaghobi R. Evaluation of microRNA Gene Polymorphisms in Liver Transplant Patients with Hepatocellular Carcinoma. HEPATITIS MONTHLY 2020; 20. [DOI: 10.5812/hepatmon.102690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 07/15/2020] [Accepted: 07/19/2020] [Indexed: 08/30/2023]
Abstract
Background: Genetic polymorphism in the miRNA sequence might alter miRNA expression and/or maturation, which is associated with the development and progression of hepatocellular carcinoma (HCC) in liver transplant patients. Objectives: Therefore, the prevalence of miRNA-146a G > C (rs2910164), miRNA-499A > G (rs3746444), miRNA-149C > T (rs2292832), and miRNA-196a-2 C > T (rs11614913) gene polymorphisms was evaluated in liver recipients with HCC with or without experiencing graft rejection. Methods: In a cross-sectional study, tissue samples were collected from 60 HCC patients who underwent liver transplant surgery at Namazi Hospital, Shiraz, Iran, in 2013 - 2015. A control group consisting of 120 individuals was randomly selected, as well. The genomic DNA was extracted from collected tissues and blood samples. The miRNA-146a (rs2910164), miRNA-499 (rs3746444), miRNA-149 (rs2292832), and miRNA-196a-2 (rs11614913) gene polymorphisms were evaluated in patients with HCC using the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. Results: The CC genotype and C allele of the miRNA-146a (rs2910164) polymorphism were significantly associated with the increased risk of transplant rejection in patients with HCC (P = 0.05 and P = 0.05, respectively). The CC genotype and C allele of the miRNA-146a (rs2910164) were also significantly more frequent in male liver transplant patients who experienced acute rejection than in non-rejected ones (P = 0.05 and P = 0.03, respectively). However, no significant association was found between the genotypes and alleles of miRNA-499 (rs3746444), miRNA-149 (rs2292832), and miRNA-196a-2 (rs11614913) polymorphisms and HCC outcomes in liver transplant recipients. Conclusions: The importance of the CC genotype and C allele of the miRNA-146a (rs2910164) polymorphism in increasing the risk of transplant rejection was confirmed, but it needs further studies in larger populations.
Collapse
|
23
|
Shahabi A, Naghili B, Ansarin K, Montazeri V, Zarghami N. miR-140 and miR-196a as Potential Biomarkers in Breast Cancer Patients. Asian Pac J Cancer Prev 2020; 21:1913-1918. [PMID: 32711415 PMCID: PMC7573432 DOI: 10.31557/apjcp.2020.21.7.1913] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 07/03/2020] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE MiR-140 and miR-196a were known to be correlated with cancer diagnosis and prognosis. The current study aimed at the analysis of miR-140 and miR-196a expression patterns and their clinical significance for breast cancer (BC) patients. METHODS Differentially expressed miR-140 and miR-196a were examined via quantitative PCR in 110 cases of BC and their adjacent non-tumor (ANT) tissues. RESULTS The results indicated that miR-140 and miR-196a, respectively, notably decreased and increased expression in BC samples in comparison with ANT (p<0.001). Reduced miR-140 expression was also related to Lymph node metastasis (LNM, P= 0.023) and stage (P = 0.009). Additionally, Receiver Operating Characteristics (ROC) analysis illustrated that miR-140 had a significant diagnostic accuracy for stage and LNM of BC patients. We also discovered a strong negative correlation between miR-196a expression with histological grade (P = 0.038), LNM (P = 0.012) and stage (P = 0.001). CONCLUSION Overall, exploring the miR-140 and miR-196a profiles not only can statistically different among BC and ANT samples, but it is also expected to become potential BC biomarkers. .
Collapse
Affiliation(s)
- Arman Shahabi
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Cell Therapy and Regenerative Medicine Comprehensive Center, Kerman University of Medical Sciences, Kerman, Iran.
| | - Behrooz Naghili
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Khalil Ansarin
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Vahid Montazeri
- Department of Thoracic Surgery, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Nosratollah Zarghami
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
24
|
Gholami M, Asgarbeik S, Razi F, Esfahani EN, Zoughi M, Vahidi A, Larijani B, Amoli MM. Association of microRNA gene polymorphisms with Type 2 diabetes mellitus: A systematic review and meta-analysis. JOURNAL OF RESEARCH IN MEDICAL SCIENCES 2020; 25:56. [PMID: 33088293 PMCID: PMC7554443 DOI: 10.4103/jrms.jrms_751_19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/22/2019] [Accepted: 02/26/2020] [Indexed: 12/11/2022]
Abstract
Background: Type 2 diabetes mellitus (T2DM) is a metabolic disorder with growing prevalence and increasing economic burden. Based on the role of genetics and epigenetic factors on T2DM, we aimed to carry a systematic review and meta-analysis for all miRNA gene polymorphisms and risk of T2DM. Materials and Methods: A computerized literature search was carried out on PubMed, Web of Science, Scopus, Embase, as well as references of relevant review/meta-analysis. Key search terms were “Diabetes Mellitus, Type 2,” “MicroRNAs,” and “Polymorphism, Single Nucleotide.” All types of observational studies from January 1, 1992, to November 30, 2019, were included, without language restriction. Data analysis was performed using R programming language (3.5.2). Level of heterogeneity was obtained by Cochran's Q test (P < 0.05), and subgroup analysis was performed based on ethnicity. Results: Thirty-two polymorphisms from fifteen articles were included. Meta-analysis was carried out based on minor allele frequencies. Seven studies with 2193 cases and 3963 controls were included for rs2910164 polymorphism. In subgroup analysis, there were significant results in Caucasian population in dominant model (odds ratio [OR] =1.12; 95% confidence interval [CI]: 0.83–1.51), homozygote model (OR = 1.78; 95% CI: 1.06–3.00), heterozygote model (OR = 1.77; 95% CI: 1.03–3.05), and recessive model (OR = 1.78; 95% CI: 1.07–2.96). Four studies with 2085 cases and 1933 controls were included for rs895819 polymorphism. Overall, there was no significant result for association with rs895819, but subgroup analysis revealed that minor allele significantly decreased the risk of T2DM in Caucasians by recessive model (OR = 0.34; 95% CI: 0.18–0.66), dominant model (OR = 0.70; 95% CI: 0.52–0.94), homozygote model (OR = 0.32; 95% CI: 0.16–0.62), heterozygote model (OR = 0.37; 95% CI: 0.19–0.74), allelic model (OR = 0.67; 95% CI: 0.52–0.85). Conclusion: The minor allele of rs2910164 may increase the risk of T2DM by leading to lower level of miR-146a. In contrast, minor allele of rs895819 may decrease the risk of T2DM by leading to higher level of miR-27a.
Collapse
Affiliation(s)
- Morteza Gholami
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.,Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeedeh Asgarbeik
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Farideh Razi
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ensieh Nasli Esfahani
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Marzieh Zoughi
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Aida Vahidi
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa Mohammad Amoli
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
25
|
de Souza T, Vargas da Silva S, Fonte-Faria T, Nascimento-Silva V, Barja-Fidalgo C, Citelli M. Chia oil induces browning of white adipose tissue in high-fat diet-induced obese mice. Mol Cell Endocrinol 2020; 507:110772. [PMID: 32114022 DOI: 10.1016/j.mce.2020.110772] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 02/03/2020] [Accepted: 02/24/2020] [Indexed: 01/10/2023]
Abstract
Previous research suggests that omega-3 fatty acids from animal origin may promote the browning of subcutaneous white adipose tissue. We evaluated if supplementation with a plant oil (chia, Salvia hispanica L.) rich in alpha-linolenic fatty acid (C18:3; ω-3) would promote browning and improve glucose metabolism in animals subjected to an obesogenic diet. Swiss male mice (n = 28) were divided into 4 groups: C: control diet; H: high-fat diet; HC: animals in the H group supplemented with chia oil after reaching obesity; HCW: animals fed since weaning on a high-fat diet supplemented with chia oil. Glucose tolerance, inflammatory markers, and expression of genes and proteins involved in the browning process were examined. When supplemented since weaning, chia oil improved glucose metabolism and promoted the browning process and a healthier phenotype. Results of this study suggested that chia oil has potential to protect against the development of obesity-related diseases.
Collapse
Affiliation(s)
- Thamiris de Souza
- Institute of Nutrition, Department of Basic and Experimental Nutrition, Rio de Janeiro State University, RJ, Brazil
| | | | - Thaís Fonte-Faria
- Department of Cellular Biology, Rio de Janeiro State University, RJ, Brazil
| | | | | | - Marta Citelli
- Institute of Nutrition, Department of Basic and Experimental Nutrition, Rio de Janeiro State University, RJ, Brazil.
| |
Collapse
|
26
|
Soleimani A, Rahmani F, Ferns GA, Ryzhikov M, Avan A, Hassanian SM. Role of Regulatory Oncogenic or Tumor Suppressor miRNAs of PI3K/AKT Signaling Axis in the Pathogenesis of Colorectal Cancer. Curr Pharm Des 2019; 24:4605-4610. [PMID: 30636581 DOI: 10.2174/1381612825666190110151957] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/24/2018] [Accepted: 12/31/2018] [Indexed: 02/06/2023]
Abstract
Colorectal cancer (CRC) is the leading cause of cancer death worldwide and its incidence is increasing. In most patients with CRC, the PI3K/AKT signaling axis is over-activated. Regulatory oncogenic or tumor suppressor microRNAs (miRNAs) for PI3K/AKT signaling regulate cell proliferation, migration, invasion, angiogenesis, as well as resistance to chemo-/radio-therapy in colorectal cancer tumor tissues. Thus, regulatory miRNAs of PI3K/AKT/mTOR signaling represent novel biomarkers for new patient diagnosis and obtaining clinically invaluable information from post-treatment CRC patients for improving therapeutic strategies. This review summarizes the current knowledge of miRNAs' regulatory roles of PI3K/AKT signaling in CRC pathogenesis.
Collapse
Affiliation(s)
- Atena Soleimani
- Department of Medical Biochemistry, faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzad Rahmani
- Department of Medical Biochemistry, faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex BN1 9PH, United Kingdom
| | - Mikhail Ryzhikov
- Division of Pulmonary and Critical Care Medicine, Washington University, School of Medicine, Saint Louis, MO, United States
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of M edical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Department of Medical Biochemistry, faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
27
|
Asadi M, Talesh ST, Gjerstorff MF, Shanehbandi D, Baradaran B, Hashemzadeh S, Zafari V. Identification of miRNAs correlating with stage and progression of colorectal cancer. COLORECTAL CANCER 2019. [DOI: 10.2217/crc-2018-0014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Aim: miRNAs control biological processes that are implicated in carcinogenesis, and have been researched as potential biomarkers for colorectal cancer (CRC). The aim of the current study was to evaluate the miRNA expression profile in CRC patients to determine their potential to be used as biomarkers in the disease. Materials & methods: Total 47 tissues and their matched marginal tissues, as control group, were obtained from CRC patients. The transcript levels of a selected panel of 15 cancer-associated miRNAs were quantified via real-time gene expression method. Results: miR-155, miR130a, miR-181b, miR-196a, miR-200c and miR-224 were significantly upregulated, while miR122, miR-132, miR-203b, miR330, miR-323, miR-378a-3p and miR-598 we significantly downregulated in CRC. Conclusion: We identified a panel of miRNAs that may be involved in the etiology and pathogenesis of CRC, and may be used for novel diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Milad Asadi
- Liver & Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shoan Taheri Talesh
- Hematology & Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Morten Frier Gjerstorff
- Department of Cancer & Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Dariush Shanehbandi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahriar Hashemzadeh
- Hematology & Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of General and Thoracic Surgery, Tabriz University of Medical Sciences, Imam Reza Hospital, Tabriz, Iran
| | - Venus Zafari
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
28
|
Ibrahim AA, Ramadan A, Wahby AA, Hassan M, Soliman HM, Abdel Hamid TA. Micro-RNA 196a2 expression and miR-196a2 (rs11614913) polymorphism in T1DM: a pilot study. J Pediatr Endocrinol Metab 2019; 32:1171-1179. [PMID: 31472066 DOI: 10.1515/jpem-2019-0226] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 08/02/2019] [Indexed: 12/28/2022]
Abstract
Background Recent emerging evidence supports the role of miR-196a2 in various human diseases. However, its role in type 1 diabetes mellitus (T1DM) is still underestimated. We aimed, for the first time, to investigate the expression of miR-196a2 in T1DM and the association of miR-196a2 (rs11614913) polymorphism with susceptibility of T1DM in a sample of patients from Cairo, Egypt. Methods The study included 150 patients and 150 healthy subjects. Evaluation of rs11614913 genotypes and miR-196a2 expression was done using the allelic discrimination and quantitative reverse transcriptase polymerase chain reaction (PCR) method, respectively. Results The Hardy-Weinberg equilibrium of single nucleotide polymorphism(SNP) was detected among controls (p = 0.2). Our results revealed that the TT genotype was more frequent in patients (22.6%) than controls (10%) while the CC genotype was more frequent in controls (47.3%) than patients (39.3%) (p = 0.01). The frequency of the T allele was significantly higher in patients than in controls (41.7 vs. 31.3%), while the C allele was more frequent in controls (p = 0.008). After adjustment for traditional risk factors, the association of the TT genotype with T1DM remained significant (TT vs. CC, odds ration [OR] = 3.2, 95% confidence interval [CI]: 1.4-7.4, p = 0.005). Power analysis of the data yielded a statistical power of 80% for the miR-196a2 rs11614913 with T1DM. Relative expression of miR-196a2 showed significant decrease in patients compared to controls (median = 0.09, 0.5, interquartile range [IQR] = 0.03-1.6, 0.1-2.1). However, miR-196a2 expression showed no significant difference between different rs11614913 genotypes (p = 0.5). Conclusions Our findings demonstrated that miR-196a rs11614913 is associated with T1DM and decreased expression of miR-196a2 may play a role in pathogenesis of T1DM.
Collapse
Affiliation(s)
- Alshaymaa A Ibrahim
- Clinical and Chemical Pathology Department, National Research Centre, El Buhouth St, Dokki, Cairo 12311, Egypt, Phone: 00201006193988, Fax: +20233370931
| | - Abeer Ramadan
- Molecular Genetics and Enzymology Department, Human Genetic and Genome Research Division, National Research Centre, Cairo, Egypt
| | - Aliaa Ahmed Wahby
- Clinical and Chemical Pathology Department, National Research Centre, Cairo, Egypt
| | - Mirhane Hassan
- Clinical and Chemical Pathology Department, National Research Centre, Cairo, Egypt
| | | | | |
Collapse
|
29
|
Homeobox B8 Targets Sterile Alpha Motif Domain-Containing Protein 9 and Drives Glioma Progression. Neurosci Bull 2019; 36:359-371. [PMID: 31646435 DOI: 10.1007/s12264-019-00436-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 05/27/2019] [Indexed: 02/07/2023] Open
Abstract
Gliomas are the most commonly occurring tumors of the central nervous system. Glioblastoma multiforme (GBM) is the most malignant and aggressive brain cancer in adults. Further understanding of the mechanisms underlying the aggressive nature of GBM is urgently needed. Here we identified homeobox B8 (HOXB8), a member of the homeobox family, as a crucial contributor to the aggressiveness of GBM. Data mining of publicly accessible RNA sequence datasets and our patient cohorts confirmed a higher expression of HOXB8 in the tumor tissue of GBM patients, and a strong positive correlation between the expression level and pathological grading of tumors and a negative correlation between the expression level and the overall survival rate. We next showed that HOXB8 promotes the proliferation and migration of glioblastoma cells and is crucial for the activation of the PI3K/AKT pathway and expression of epithelial-mesenchymal transition-related genes, possibly through direct binding to the promoter of SAMD9 (Sterile Alpha Motif Domain-Containing Protein 9) and activating its transcription. Collectively, we identified HOXB8 as a critical contributor to the aggressiveness of GBM, which provides insights into a potential therapeutic target for GBM and opens new avenues for improving its treatment outcome.
Collapse
|
30
|
Mohamed RH, Pasha HF, Gad DM, Toam MM. miR-146a and miR-196a-2 genes polymorphisms and its circulating levels in lung cancer patients. J Biochem 2019; 166:323-329. [PMID: 31127299 DOI: 10.1093/jb/mvz044] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 05/20/2019] [Indexed: 12/20/2022] Open
Abstract
Recently, MicroRNAs polymorphisms and their serum expression have been linked to increase risk of various cancers. The aim of this study was to elucidate the association between single nucleotide polymorphisms of miR-146a and miR-196a-2 and their serum expression and lung cancer risk. One hundred and twenty lung cancer patients and 120 health controls were included in this study. Genotyping and expression for miR-146a and miR-196a-2 were performed using polymerase chain reaction (PCR)-restriction fragment length polymorphism and quantitative real-time PCR. Individuals carrying miR-146a CG and CC genotypes had significantly increased risk for lung cancer than those carrying miR-146a GG genotype. MiR-146a expression significantly decreased in miR-146a CG and CC genotypes carriers as compared with GG genotype carriers. MiR-196a-2 CT and TT genotypes were significantly associated with increased lung cancer while the highest expression of MiR-196a-2 was detected in miR-196a-2 CC genotype carriers. Serum miR-146a was significantly decreased in lung cancer patients while serum miR-196a-2 expression was significantly increased in lung cancer patients. In conclusion, miR-146a and miR-196a-2 genes polymorphisms and their circulating levels were associated with lung cancer risk in Egyptians and may be helpful in early detection of lung cancer.
Collapse
Affiliation(s)
- Randa H Mohamed
- Medical Biochemistry Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Heba F Pasha
- Medical Biochemistry Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Doaa M Gad
- Chest Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Mostafa M Toam
- Clinical Oncology and Nuclear Medicine Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
31
|
Maghsudlu M, Farashahi Yazd E, Amiriani T. Expression Analysis of MicroRNA-196a in Esophageal Cancer. JOURNAL OF CLINICAL AND BASIC RESEARCH 2019. [DOI: 10.29252/jcbr.3.3.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
32
|
Hu C, Peng J, Lv L, Wang X, Zhou Y, Huo J, Liu D. miR-196a regulates the proliferation, invasion and migration of esophageal squamous carcinoma cells by targeting ANXA1. Oncol Lett 2019; 17:5201-5209. [PMID: 31186736 PMCID: PMC6507485 DOI: 10.3892/ol.2019.10186] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 01/16/2019] [Indexed: 01/08/2023] Open
Abstract
MicroRNA (miR)-196a is upregulated in various types of malignancy, including esophageal squamous cell carcinoma (ESCC); however, its role in ESCC is currently unclear. The present study aimed to investigate the biological role and molecular mechanism of miR-196a in ESCC. The expression levels of miR-196a in 25 tumor tissues and adjacent non-tumor tissues from patients with ESCC were measured by reverse transcription-quantitative polymerase chain reaction. In addition, miR-196a expression levels were assessed in the human normal esophageal epithelial cell line Het-1A and the ESCC cell line EC109. The effects of miR-196a on the proliferation, apoptosis, invasion and migration of EC109 cells were determined by MTT, flow cytometry and Transwell assays, respectively. A luciferase reporter assay and western blotting were performed to confirm the target gene of miR-196a, and to explore the molecular mechanism underlying the effects of miR-196a on regulation of ESCC cell phenotypes. The results demonstrated that miR-196a was markedly upregulated in ESCC tissues and EC109 cells. In addition, miR-196a downregulation suppressed EC109 cell proliferation, invasion and migration, but did not affect apoptosis. Annexin A1 (ANXA1) was demonstrated to be a direct target gene of miR-196a. ANXA1 protein knockdown reversed the effects of miR-196a inhibition on EC109 cell proliferation, invasion and migration. Furthermore, alongside the downregulation of miR-196a and the increase in ANXA1 expression, cyclooxygenase 2 (COX2), matrix metalloproteinase (MMP)-2 and Snail were downregulated, and E-cadherin was upregulated in EC109 cells. The results of the present study suggested that miR-196a may act as an oncogene in ESCC, and that miR-196a may regulate the proliferation, invasion and migration of ESCC cells by targeting ANXA1. Subsequently, ANXA1 may further modulate the expression levels of COX2, MMP-2, Snail and E-cadherin. In conclusion, the miR-196a/ANXA1 axis may represent a potential therapeutic target in ESCC.
Collapse
Affiliation(s)
- Changmei Hu
- Department of Gastroenterology, Second Xiangya Hospital, Central South University, Hunan, Changsha 410011, P.R. China
| | - Jie Peng
- Department of Haematology, Xiangya Hospital, Central South University, Hunan, Changsha 410078, P.R. China
| | - Liang Lv
- Department of Gastroenterology, Second Xiangya Hospital, Central South University, Hunan, Changsha 410011, P.R. China
| | - Xuehong Wang
- Department of Gastroenterology, Second Xiangya Hospital, Central South University, Hunan, Changsha 410011, P.R. China
| | - Yuqian Zhou
- Department of Gastroenterology, Second Xiangya Hospital, Central South University, Hunan, Changsha 410011, P.R. China
| | - Jirong Huo
- Department of Gastroenterology, Second Xiangya Hospital, Central South University, Hunan, Changsha 410011, P.R. China
| | - Deliang Liu
- Department of Gastroenterology, Second Xiangya Hospital, Central South University, Hunan, Changsha 410011, P.R. China
| |
Collapse
|
33
|
microRNA-196a attenuates ischemic brain injury in rats by directly targeting high mobility group A1. Exp Ther Med 2019; 17:1579-1586. [PMID: 30783424 PMCID: PMC6364231 DOI: 10.3892/etm.2019.7152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 11/22/2018] [Indexed: 12/15/2022] Open
Abstract
Dysfunction of the microRNA (miR) network has been indicated as a major regulator in neurological diseases. However, there is limited understanding regarding the functional significance of miRs in ischemic brain injury. In the present study, miR-196a expression was significantly increased in rat brains and neurons following transient middle cerebral artery occlusion (MCAO) or oxygen-glucose deprivation, respectively. In addition, repression of miR-196a significantly decreased neuron cell apoptosis and the infarct size in rats subjected to MCAO (P<0.05). Furthermore, miR-196a was indicated to directly target and inhibit high mobility group A1 expression, which indicated a potential role for miR-196a in ischemic brain injury. These findings suggested that miR-196a may be involved in regulating neuronal cell death, thus offering a novel target for the development of therapeutic agents against ischemic brain injury.
Collapse
|
34
|
Xin H, Wang C, Liu Z. miR-196a-5p promotes metastasis of colorectal cancer via targeting IκBα. BMC Cancer 2019; 19:30. [PMID: 30621631 PMCID: PMC6325824 DOI: 10.1186/s12885-018-5245-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 12/21/2018] [Indexed: 12/15/2022] Open
Abstract
Background MicroRNA-196a-5p (miR-196a-5p) has been reported to be involved in the metastatic process of several cancers. In present work, we aimed to investigate the effects of miR-196a-5p and its potential target IκBα on migration, invasion and epithelial-mesenchymal transition (EMT) of colorectal cancer (CRC) cells. Methods CCK-8 assay, wound healing assay and cell invasion assay were performed to evaluate the cell proliferation, migration and invasion. In vivo metastasis models were used to investigate the tumor metastasis ability. Real-time PCR, immunofluorescence staining or western blot were utilized to detect the expression of miR-196a-5p, IκBα, p-IκBα, nuclear p65 and EMT markers including E-cadherin, N-cadherin and fibronectin. Dual luciferase reporter assay was carried out to determine whether there is a direct interaction between miR-196a-5p and IκBα mRNA. Results Using SW480 cell with miR-196-5p over-expressed plus SW620 and HCT116 cells with miR-196a-5p knockdown, we found that miR-196a-5p promoted cell proliferation, migration and invasion in vitro and facilitated liver metastasis in vivo. We also observed that miR-196a-5p knockdown or NF-κB pathway inhibition up-regulated E-cadherin while down-regulated N-cadherin and fibronectin. By contrast, miR-196a-5p over-expression promoted EMT process of CRC. Data of dual luciferase reporter assay indicated that miR-196a-5p targeted the IκBα. Moreover, miR-196a-5p down-regulated IκBα expression while up-regulated nuclear p65 expression. Additionally, over-expression of IκBα in CRC cells attenuated the effects of miR-196a-5p on cell migration, invasion and EMT. Conclusions miR-196a-5p may play a key role in EMT, invasion and metastasis of CRC cells via targeting the IκBα. Electronic supplementary material The online version of this article (10.1186/s12885-018-5245-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- He Xin
- Department of Radiology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang, 110004, People's Republic of China
| | - Chuanzhuo Wang
- Department of Radiology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang, 110004, People's Republic of China
| | - Zhaoyu Liu
- Department of Radiology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang, 110004, People's Republic of China.
| |
Collapse
|
35
|
Haerian MS, Haerian BS, Molanaei S, Kosari F, Sabeti S, Bidari-zerehpoosh F, Abdolali E. MIR196A2 rs11614913 contributes to susceptibility to colorectal cancer in Iranian population: A multi-center case-control study and meta-analysis. Gene 2018; 669:82-90. [DOI: 10.1016/j.gene.2018.05.082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 05/18/2018] [Accepted: 05/21/2018] [Indexed: 12/29/2022]
|
36
|
Li H, Feng C, Shi S. miR-196b promotes lung cancer cell migration and invasion through the targeting of GATA6. Oncol Lett 2018; 16:247-252. [PMID: 29928408 PMCID: PMC6006457 DOI: 10.3892/ol.2018.8671] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 05/04/2018] [Indexed: 12/25/2022] Open
Abstract
MicroRNAs (miRNAs) have been proven to regulate gene expression at the protein translation level. miRNA abnormal expression has been associated with the development of lung cancer. In the present study, we aimed to investigate the mechanism of miR-196 in non-small cell lung cancer (NSCLC). The miR-196b and GATA-6 (GATA6) expression levels were examined in NSCLC by RT-qPCR and western blot analysis. Transwell assay was used to assess cell migration and invasion. Moreover, the specific target of miR-196b in NSCLC was verified by the luciferase reporter assay. The expression of miR-196b was higher in both NSCLC tissues and cells than the normal levels. Specifically, the miR-196b mimic group in NSCLC cells markedly promoted cell migration and invasion, while the miR-196b inhibitor group exhibited the opposite effect. Furthermore, GATA6 was verified as a specific target of miR-196b in NSCLC cells and GATA6 could attenuate the migratory and invasive ability of NSCLC cells regulated by miR-196b. In addition, the relationship between GATA6 and miR-196b expression was negatively correlated in NSCLC tissues. Thus, miR-196b enhanced NSCLC cell migration and invasion via the downregulation of GATA6, indicating its potential application in NSCLC diagnosis and therapy.
Collapse
Affiliation(s)
- Hongli Li
- Department of Operation Room, Eastern Medical District of Linyi People's Hospital, Linyi, Shandong 276034, P.R. China
| | - Chao Feng
- Department of Surgery, Eastern Medical District of Linyi People's Hospital, Linyi, Shandong 276034, P.R. China
| | - Songtao Shi
- Department of Thoracic Surgery, Eastern Medical District of Linyi People's Hospital, Linyi, Shandong 276034, P.R. China
| |
Collapse
|
37
|
|
38
|
Coebergh van den Braak RRJ, Sieuwerts AM, Lalmahomed ZS, Smid M, Wilting SM, Bril SI, Xiang S, van der Vlugt-Daane M, de Weerd V, van Galen A, Biermann K, van Krieken JHJM, Kloosterman WP, Foekens JA, Martens JWM, IJzermans JNM. Confirmation of a metastasis-specific microRNA signature in primary colon cancer. Sci Rep 2018; 8:5242. [PMID: 29588449 PMCID: PMC5869672 DOI: 10.1038/s41598-018-22532-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 02/21/2018] [Indexed: 12/16/2022] Open
Abstract
The identification of patients with high-risk stage II colon cancer who may benefit from adjuvant therapy may allow the clinical approach to be tailored for these patients based on an understanding of tumour biology. MicroRNAs have been proposed as markers of the prognosis or treatment response in colorectal cancer. Recently, a 2-microRNA signature (let-7i and miR-10b) was proposed to identify colorectal cancer patients at risk of developing distant metastasis. We assessed the prognostic value of this signature and additional candidate microRNAs in an independent, clinically well-defined, prospectively collected cohort of primary colon cancer patients including stage I-II colon cancer without and stage III colon cancer with adjuvant treatment. The 2-microRNA signature specifically predicted hepatic recurrence in the stage I-II group, but not the overall ability to develop distant metastasis. The addition of miR-30b to the 2-microRNA signature allowed the prediction of both distant metastasis and hepatic recurrence in patients with stage I-II colon cancer who did not receive adjuvant chemotherapy. Available gene expression data allowed us to associate miR-30b expression with axon guidance and let-7i expression with cell adhesion, migration, and motility.
Collapse
Affiliation(s)
| | - Anieta M Sieuwerts
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands.,Cancer Genomics Center Netherlands, Amsterdam, The Netherlands
| | - Zarina S Lalmahomed
- Department of Surgery, Erasmus MC Medical Center, 's Gravendijkwal 230, 3015 CE, Rotterdam, The Netherlands
| | - Marcel Smid
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Saskia M Wilting
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Sandra I Bril
- Department of Surgery, Erasmus MC Medical Center, 's Gravendijkwal 230, 3015 CE, Rotterdam, The Netherlands.,Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Shanshan Xiang
- Department of Surgery, Erasmus MC Medical Center, 's Gravendijkwal 230, 3015 CE, Rotterdam, The Netherlands.,Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Michelle van der Vlugt-Daane
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Vanja de Weerd
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Anne van Galen
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Katharina Biermann
- Department of Pathology, Erasmus MC Medical Center, Rotterdam, The Netherlands
| | - J Han J M van Krieken
- Department of Pathology, Radboud UMC, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands
| | - Wigard P Kloosterman
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - John A Foekens
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | - John W M Martens
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands.,Cancer Genomics Center Netherlands, Amsterdam, The Netherlands
| | - Jan N M IJzermans
- Department of Surgery, Erasmus MC Medical Center, 's Gravendijkwal 230, 3015 CE, Rotterdam, The Netherlands
| |
Collapse
|
39
|
Chen X, Du P, She J, Cao L, Li Y, Xia H. Loss of ZG16 is regulated by miR-196a and contributes to stemness and progression of colorectal cancer. Oncotarget 2018; 7:86695-86703. [PMID: 27880730 PMCID: PMC5349946 DOI: 10.18632/oncotarget.13435] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 10/31/2016] [Indexed: 11/25/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignant tumour and the leading cause of cancer-related mortality worldwide. Clarification of the mechanism that underlies CRC tumorigenesis and progression therefore is urgently needed ffor developing novel therapies. Through analysis of The Cancer Genome Atlas (TCGA) dataset, we identified an interesting gene, ZG16, which is significantly decreased in CRC samples compared to adjacent non-tumor tissues and associated with prognosis of patients. We found that the expression of ZG16 correlated with CRC related genes which were regulated by APC/CTNNB1 pathway. Interestingly, the expression of ZG16 was negatively correlated with CRC stem cell marker, LGR5. Overexpression of ZG16 significantly inhibits growth and sphere formation of stem-like CRC cells. Moreover, we also identified an upstream regulator of ZG16, miR-196a, which was significantly overexpressed in CRC and promotes cell growth and stemness. In conclusion, this study demonstrated that loss of ZG16 is regulated by miR-196a and contributes to stemness and progression of CRC, which may provide a promising therapeutic strategy for advanced CRCs.
Collapse
Affiliation(s)
- Xiaobing Chen
- Department of Oncology, Henan Cancer Hospital, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, China
| | - Peng Du
- Department of Colorectal Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Junjun She
- Department of General Surgery, The First Affiliated Hospital of Xi'An Jiaotong University, Xi'An 710061, China
| | - Liang Cao
- Department of Oncology, Henan Cancer Hospital, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, China
| | - Yingchao Li
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Hongping Xia
- Department of General Surgery, The First Affiliated Hospital of Xi'An Jiaotong University, Xi'An 710061, China
| |
Collapse
|
40
|
Pao JB, Lu TL, Ting WC, Chen LM, Bao BY. Association of Genetic Variants of Small Non-Coding RNAs with Survival in Colorectal Cancer. Int J Med Sci 2018; 15:217-222. [PMID: 29483812 PMCID: PMC5820850 DOI: 10.7150/ijms.22402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 11/22/2017] [Indexed: 01/05/2023] Open
Abstract
Background: Single nucleotide polymorphisms (SNPs) of small non-coding RNAs (sncRNAs) can influence sncRNA function and target gene expression to mediate the risk of certain diseases. The aim of the present study was to evaluate the prognostic relevance of sncRNA SNPs for colorectal cancer, which has not been well characterized to date. Methods: We comprehensively examined 31 common SNPs of sncRNAs, and assessed the impact of these variants on survival in a cohort of 188 patients with colorectal cancer. Results: Three SNPs were significantly associated with survival of patients with colorectal cancer after correction for multiple testing, and two of the SNPs (hsa-mir-196a-2 rs11614913 and U85 rs714775) remained significant in multivariate analyses. Additional in silico analysis provided further evidence of this association, since the expression levels of the target genes of the hsa-miR-196a (HOXA7, HOXB8, and AKT1) were significantly correlated with colorectal cancer progression. Furthermore, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses indicated that hsa-miR-196a is associated with well-known oncogenic pathways, including cellular protein modification process, mitotic cell cycle, adherens junction, and extracellular matrix receptor interaction pathways. Conclusion: Our results suggest that SNPs of sncRNAs could play a critical role in cancer progression, and that hsa-miR-196a might be a valuable biomarker or therapeutic target for colorectal cancer patients.
Collapse
Affiliation(s)
- Jiunn-Bey Pao
- Department of Pharmacy, Zhongxing Branch, Taipei City Hospital, Taipei, Taiwan
| | - Te-Ling Lu
- Department of Pharmacy, China Medical University, Taichung, Taiwan
| | - Wen-Chien Ting
- Department of Colorectal Surgery, China Medical University Hospital, Taichung, Taiwan.,Division of Colorectal Surgery, Department of Surgery, Chung Shan Medical University Hospital, Taichung, Taiwan.,Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Lu-Min Chen
- Department of Obstetrics and Gynecology, China Medical University Hospital, Taichung, Taiwan
| | - Bo-Ying Bao
- Department of Pharmacy, China Medical University, Taichung, Taiwan.,Sex Hormone Research Center, China Medical University Hospital, Taichung, Taiwan.,Department of Nursing, Asia University, Taichung, Taiwan
| |
Collapse
|
41
|
Dysregulation of Mir-196b in Head and Neck Cancers Leads to Pleiotropic Effects in the Tumor Cells and Surrounding Stromal Fibroblasts. Sci Rep 2017; 7:17785. [PMID: 29259267 PMCID: PMC5736577 DOI: 10.1038/s41598-017-18138-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 11/24/2017] [Indexed: 02/07/2023] Open
Abstract
The miR-196 family members have been found dysregulated in different cancers. Therefore, they have been proposed as promising biomarkers and therapeutic targets. This study is the first to investigate the role of miR-196b in the development and progression of head and neck squamous cell carcinomas (HNSCC), and also the impact on the surrounding tumor microenvironment. Increased miR-196b levels were detected in 95% of primary tumors and precancerous lesions, although no significant differences were observed between non-progressing versus progressing dysplasias. Furthermore, increased levels of both miR-196a and miR-196b were successfully detected in saliva samples from HNSCC patients. The functional consequences of altered miR-196 expression were investigated in both HNSCC cell lines and cancer-associated fibroblasts (CAFs) by transfection with specific pre-miR precursors. Results showed that both miR-196a and miR-196b elicit cell-specific responses in target genes and downstream regulatory pathways, and have a distinctive impact on cell proliferation, migration and invasion. These data reveal the early occurrence and prevalence of miR-196b dysregulation in HNSCC tumorigenesis, suggesting its utility for early diagnosis and/or disease surveillance and also as a non-invasive biomarker in saliva. The pleiotropic effects of miR-196a/b in HNSCC cell subpopulations and surrounding CAFs may complicate a possible therapeutic application.
Collapse
|
42
|
Strubberg AM, Madison BB. MicroRNAs in the etiology of colorectal cancer: pathways and clinical implications. Dis Model Mech 2017; 10:197-214. [PMID: 28250048 PMCID: PMC5374322 DOI: 10.1242/dmm.027441] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) are small single-stranded RNAs that repress mRNA translation
and trigger mRNA degradation. Of the ∼1900 miRNA-encoding genes present
in the human genome, ∼250 miRNAs are reported to have changes in
abundance or altered functions in colorectal cancer. Thousands of studies have
documented aberrant miRNA levels in colorectal cancer, with some miRNAs reported
to actively regulate tumorigenesis. A recurrent phenomenon with miRNAs is their
frequent participation in feedback loops, which probably serve to reinforce or
magnify biological outcomes to manifest a particular cellular phenotype. Here,
we review the roles of oncogenic miRNAs (oncomiRs), tumor suppressive miRNAs
(anti-oncomiRs) and miRNA regulators in colorectal cancer. Given their stability
in patient-derived samples and ease of detection with standard and novel
techniques, we also discuss the potential use of miRNAs as biomarkers in the
diagnosis of colorectal cancer and as prognostic indicators of this disease.
MiRNAs also represent attractive candidates for targeted therapies because their
function can be manipulated through the use of synthetic antagonists and miRNA
mimics. Summary: This Review provides an overview of some important
microRNAs and their roles in colorectal cancer.
Collapse
Affiliation(s)
- Ashlee M Strubberg
- Division of Gastroenterology, Washington University School of Medicine, Washington University, Saint Louis, MO 63110, USA
| | - Blair B Madison
- Division of Gastroenterology, Washington University School of Medicine, Washington University, Saint Louis, MO 63110, USA
| |
Collapse
|
43
|
Yang JP, Yang JK, Li C, Cui ZQ, Liu HJ, Sun XF, Geng SM, Lu SK, Song J, Guo CY, Jiao BH. Downregulation of ZMYND11 induced by miR-196a-5p promotes the progression and growth of GBM. Biochem Biophys Res Commun 2017; 494:674-680. [DOI: 10.1016/j.bbrc.2017.10.098] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 10/18/2017] [Indexed: 01/05/2023]
|
44
|
Al-Qahtani AA, Al-Anazi MR, Nazir N, Wani K, Abdo AA, Sanai FM, Khan MQ, Al-Ashgar HI, Albenmousa A, Al-Hamoudi WK, Alswat KA, Al-Ahdal MN. Association of single nucleotide polymorphisms in microRNAs with susceptibility to hepatitis B virus infection and HBV-related liver complications: A study in a Saudi Arabian population. J Viral Hepat 2017; 24:1132-1142. [PMID: 28685993 DOI: 10.1111/jvh.12749] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 05/26/2017] [Indexed: 12/14/2022]
Abstract
The aim of this study was to evaluate the association of 10 SNPs in different microRNAs (miRNAs) with susceptibility to hepatitis B virus (HBV) infection, HBV clearance, persistence of chronic HBV infection, and progression to liver cirrhosis and hepatocellular carcinoma (HCC). Patients were categorized into the following groups: inactive HBV carrier, active HBV carrier, HBV-cleared subject and cirrhosis+HCC. Samples were analysed for 10 SNPs in microRNAs using either PCR-based genotyping or the TaqMan assay. We found that rs1358379 was associated with susceptibility to HBV infection, HBV clearance, persistent chronic HBV infection and liver cirrhosis+HCC. In addition, we found that rs2292832 and rs11614913 were associated with risk of HBV infection, viral clearance and cirrhosis+HCC, whereas rs2910164 was associated with proneness to HBV infection, and ability to clear the virus. There was evidence of associations between rs6505162 and HBV clearance and the development of liver disease, whereas a single association was found between rs2289030 and HBV clearance. Similarly, rs7372209 and rs4919510 were specifically associated with the development of HBV-induced liver complications. SNPs in miRNAs affect the susceptibility, clearance and progression of HBV infection in Saudi Arabian patients. We found, using Gene Ontology or pathway analyses, that these genes may contribute to the pathophysiology of HBV infection and related liver complications. However, differences in the association of examined SNPs with various clinical stages indicate variations in the respective functional roles of these polymorphisms and their miRNAs, and thus, further investigation to fully explore their therapeutic potential is warranted.
Collapse
Affiliation(s)
- A A Al-Qahtani
- Department of Infection and Immunity, Research Center, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia.,Department of Microbiology and Immunology, Alfaisal University School of Medicine, Riyadh, Saudi Arabia
| | - M R Al-Anazi
- Department of Infection and Immunity, Research Center, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - N Nazir
- Department of Infection and Immunity, Research Center, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - K Wani
- Biomarkers Research Program, Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - A A Abdo
- Gastroenterology Section, Department of Medicine, College of Medicine, King Saud University, Riyadh, Saudi Arabia.,Liver Disease Research Center, King Saud University, Riyadh, Saudi Arabia
| | - F M Sanai
- Liver Disease Research Center, King Saud University, Riyadh, Saudi Arabia.,Gastroenterology Section, Department of Medicine, King Abdulaziz Medical City, Jeddah, Saudi Arabia
| | - M Q Khan
- Department of Medicine, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - H I Al-Ashgar
- Department of Medicine, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - A Albenmousa
- Department of Gastroenterology & Hepatology, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - W K Al-Hamoudi
- Gastroenterology Section, Department of Medicine, College of Medicine, King Saud University, Riyadh, Saudi Arabia.,Liver Disease Research Center, King Saud University, Riyadh, Saudi Arabia
| | - K A Alswat
- Gastroenterology Section, Department of Medicine, College of Medicine, King Saud University, Riyadh, Saudi Arabia.,Liver Disease Research Center, King Saud University, Riyadh, Saudi Arabia
| | - M N Al-Ahdal
- Department of Infection and Immunity, Research Center, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia.,Department of Microbiology and Immunology, Alfaisal University School of Medicine, Riyadh, Saudi Arabia
| |
Collapse
|
45
|
Li T, Ding ZL, Zheng YL, Wang W. MiR-484 promotes non-small-cell lung cancer (NSCLC) progression through inhibiting Apaf-1 associated with the suppression of apoptosis. Biomed Pharmacother 2017; 96:153-164. [PMID: 28982084 DOI: 10.1016/j.biopha.2017.09.102] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 09/02/2017] [Accepted: 09/18/2017] [Indexed: 11/17/2022] Open
|
46
|
Papaconstantinou I, Kapizioni C, Legaki E, Xourgia E, Karamanolis G, Gklavas A, Gazouli M. Association of miR-146 rs2910164, miR-196a rs11614913, miR-221 rs113054794 and miR-224 rs188519172 polymorphisms with anti-TNF treatment response in a Greek population with Crohn's disease. World J Gastrointest Pharmacol Ther 2017; 8:193-200. [PMID: 29152405 PMCID: PMC5680166 DOI: 10.4292/wjgpt.v8.i4.193] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 08/21/2017] [Accepted: 09/14/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the correlation between rs2910164, rs11 614913, rs113054794, and rs188519172 polymorphisms and response to anti-TNF treatment in patients with Crohn's disease (CD). METHODS One hundred seven patients with CD based on standard clinical, endoscopic, radiological, and pathological criteria were included in the study. They all received infliximab or adalimumab intravenously or subcutaneously at standard induction doses as per international guidelines. Clinical and biochemical response was assessed using the Harvey-Bradshaw index and CRP levels respectively. Endoscopic response was evaluated by ileocolonoscopy at week 12-20 of therapy. The changes in endoscopic appearance compared to baseline were classified into four categories, and patients were classified as responders and non-responders. Whole peripheral blood was extracted and genotyping was performed by PCR. RESULTS One hundred and seven patients were included in the study. Seventy two (67.3%) patients were classified as complete responders, 22 (20.5%) as partial while 13 (12.1%) were primary non-responders. No correlation was detected between response to anti-TNF agents and patients' characteristics such as gender, age and disease duration while clinical and biochemical indexes used were associated with endoscopic response. Concerning prevalence of rs2910164, rs11614913, and rs188519172 polymorphisms of miR-146, miR-196a and miR-224 respectively no statistically important difference was found between complete, partial, and non-responders to anti-TNF treatment. Actually CC genotype of rs2910164 was not detected in any patient. Regarding rs113054794 of miR-221, normal CC genotype was the only one detected in all studied patients, suggesting this polymorphism is highly rare in the studied population. CONCLUSION No correlation is detected between studied polymorphisms and patients' response to anti-TNF treatment. Polymorphism rs113054794 is not detected in our population.
Collapse
Affiliation(s)
- Ioannis Papaconstantinou
- 2nd Department of Surgery, Aretaieio Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Christina Kapizioni
- Gastroenterology Department, Tzaneion General Hospital, 18536 Piraeus, Greece
| | - Evangelia Legaki
- Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Elena Xourgia
- Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - George Karamanolis
- Gastroenterology Unit, 2nd Department of Surgery, Aretaieio Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Antonios Gklavas
- 2nd Department of Surgery, Aretaieio Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Maria Gazouli
- Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
47
|
Fawzy MS, Toraih EA, Ibrahiem A, Abdeldayem H, Mohamed AO, Abdel-Daim MM. Evaluation of miRNA-196a2 and apoptosis-related target genes: ANXA1, DFFA and PDCD4 expression in gastrointestinal cancer patients: A pilot study. PLoS One 2017; 12:e0187310. [PMID: 29091952 PMCID: PMC5665540 DOI: 10.1371/journal.pone.0187310] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 10/17/2017] [Indexed: 12/26/2022] Open
Abstract
Previous reports have suggested the significant association of miRNAs aberrant expression with tumor initiation, progression and metastasis in cancer, including gastrointestinal (GI) cancers. The current preliminary study aimed to evaluate the relative expression levels of miR-196a2 and three of its selected apoptosis-related targets; ANXA1, DFFA and PDCD4 in a sample of GI cancer patients. Quantitative real-time PCR for miR-196a2 and its selected mRNA targets, as well as immunohistochemical assay for annexin A1 protein expression were detected in 58 tissues with different GI cancer samples. In addition, correlation with the clinicopathological features and in silico network analysis of the selected molecular markers were analyzed. Stratified analyses by cancer site revealed elevated levels of miR-196a2 and low expression of the selected target genes. Annexin protein expression was positively correlated with its gene expression profile. In colorectal cancer, miR-196a over-expression was negatively correlated with annexin A1 protein expression (r = -0.738, p < 0.001), and both were indicators of unfavorable prognosis in terms of poor differentiation, larger tumor size, and advanced clinical stage. Taken together, aberrant expression of miR-196a2 and the selected apoptosis-related biomarkers might be involved in GI cancer development and progression and could have potential diagnostic and prognostic roles in these types of cancer; particularly colorectal cancer, provided the results experimentally validated and confirmed in larger multi-center studies.
Collapse
Affiliation(s)
- Manal S. Fawzy
- Department of Medical Biochemistry, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
- Department of Biochemistry, Faculty of Medicine, Northern Border University, Arar, Saudi Arabia
| | - Eman A. Toraih
- Genetics Unit, Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Afaf Ibrahiem
- Department of Pathology, Faculty of Medicine, Mansoura University, Mansours, Egypt
| | - Hala Abdeldayem
- Department of Pathology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Amany O. Mohamed
- Department of Medical Biochemistry, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Mohamed M. Abdel-Daim
- Department of Pharmacology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
- Department of Ophthalmology and Micro-Technology, Yokohama City University, Yokohama, Japan
| |
Collapse
|
48
|
Shu J, Silva BVRE, Gao T, Xu Z, Cui J. Dynamic and Modularized MicroRNA Regulation and Its Implication in Human Cancers. Sci Rep 2017; 7:13356. [PMID: 29042600 PMCID: PMC5645395 DOI: 10.1038/s41598-017-13470-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 09/26/2017] [Indexed: 12/19/2022] Open
Abstract
MicroRNA is responsible for the fine-tuning of fundamental cellular activities and human disease development. The altered availability of microRNAs, target mRNAs, and other types of endogenous RNAs competing for microRNA interactions reflects the dynamic and conditional property of microRNA-mediated gene regulation that remains under-investigated. Here we propose a new integrative method to study this dynamic process by considering both competing and cooperative mechanisms and identifying functional modules where different microRNAs co-regulate the same functional process. Specifically, a new pipeline was built based on a meta-Lasso regression model and the proof-of-concept study was performed using a large-scale genomic dataset from ~4,200 patients with 9 cancer types. In the analysis, 10,726 microRNA-mRNA interactions were identified to be associated with a specific stage and/or type of cancer, which demonstrated the dynamic and conditional miRNA regulation during cancer progression. On the other hands, we detected 4,134 regulatory modules that exhibit high fidelity of microRNA function through selective microRNA-mRNA binding and modulation. For example, miR-18a-3p, -320a, -193b-3p, and -92b-3p co-regulate the glycolysis/gluconeogenesis and focal adhesion in cancers of kidney, liver, lung, and uterus. Furthermore, several new insights into dynamic microRNA regulation in cancers have been discovered in this study.
Collapse
Affiliation(s)
- Jiang Shu
- Systems Biology and Biomedical Informatics (SBBI) Laboratory, Department of Computer Science and Engineering, Lincoln, NE, 68588, USA
| | - Bruno Vieira Resende E Silva
- Systems Biology and Biomedical Informatics (SBBI) Laboratory, Department of Computer Science and Engineering, Lincoln, NE, 68588, USA
| | - Tian Gao
- Systems Biology and Biomedical Informatics (SBBI) Laboratory, Department of Computer Science and Engineering, Lincoln, NE, 68588, USA
| | - Zheng Xu
- Department of Statistics, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- Quantitative Life Sciences Initiative, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Juan Cui
- Systems Biology and Biomedical Informatics (SBBI) Laboratory, Department of Computer Science and Engineering, Lincoln, NE, 68588, USA.
| |
Collapse
|
49
|
Stachowiak M, Flisikowska T, Bauersachs S, Perleberg C, Pausch H, Switonski M, Kind A, Saur D, Schnieke A, Flisikowski K. Altered microRNA profiles during early colon adenoma progression in a porcine model of familial adenomatous polyposis. Oncotarget 2017; 8:96154-96160. [PMID: 29221194 PMCID: PMC5707088 DOI: 10.18632/oncotarget.21774] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 09/23/2017] [Indexed: 01/14/2023] Open
Abstract
MicroRNAs are dysregulated in various cancers including colorectal cancer, and are potential useful biomarkers of disease development. We used next generation sequencing to investigate miRNA expression profiles in low- and high-grade intraepithelial dysplastic polyps from pigs carrying a mutation in the adenomatous polyposis coli tumour suppressor (APC1311 , orthologous to human APC1309 ) that model an inherited predisposition to colorectal cancer, familial adenomatous polyposis. We identified several miRNAs and their isomiRs significantly (P < 0.05) differentially expressed between low and high-grade intraepithelial dysplastic polyps. Of these, ssc-let-7e, ssc-miR-98, ssc-miR-146a-5p, ssc-miR-146b, ssc-miR-183 and ssc-miR-196a were expressed at higher level and ssc-miR-126-3p at lower level in high-grade intraepithelial dysplastic polyps. Functional miRNA target analysis revealed significant (P < 0.001) over-representation of cancer-related pathways, including 'microRNAs in cancer', 'proteoglycans in cancer', 'pathways in cancer' and 'colorectal cancer'. This is the first study to reveal miRNAs associated with premalignant transformation of colon polyps.
Collapse
Affiliation(s)
- Monika Stachowiak
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, 60-637 Poznan, Poland
| | - Tatiana Flisikowska
- Chair of Livestock Biotechnology, Technische Universität München, 85354 Freising, Germany
| | - Stefan Bauersachs
- Institute of Agricultural Sciences, Animal Physiology, ETH Zurich, CH-8092 Zurich, Switzerland.,Current address: University of Zurich, Clinic for Animal Reproduction Medicine, Genetics and Functional Genomics Group, CH-8092 Zurich, Switzerland
| | - Carolin Perleberg
- Chair of Livestock Biotechnology, Technische Universität München, 85354 Freising, Germany
| | - Hubert Pausch
- Institute of Agricultural Sciences, Animal Genomics, ETH Zurich, CH-8092 Zurich, Switzerland
| | - Marek Switonski
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, 60-637 Poznan, Poland
| | - Alexander Kind
- Chair of Livestock Biotechnology, Technische Universität München, 85354 Freising, Germany
| | - Dieter Saur
- Klinikum Rechts der Isar II, Technische Universität München, 81675 Munich, Germany
| | - Angelika Schnieke
- Chair of Livestock Biotechnology, Technische Universität München, 85354 Freising, Germany
| | - Krzysztof Flisikowski
- Chair of Livestock Biotechnology, Technische Universität München, 85354 Freising, Germany
| |
Collapse
|
50
|
Jacob H, Stanisavljevic L, Storli KE, Hestetun KE, Dahl O, Myklebust MP. Identification of a sixteen-microRNA signature as prognostic biomarker for stage II and III colon cancer. Oncotarget 2017; 8:87837-87847. [PMID: 29152124 PMCID: PMC5675676 DOI: 10.18632/oncotarget.21237] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 08/25/2017] [Indexed: 01/15/2023] Open
Abstract
Despite advances in colon cancer research and novel therapies, high risk of recurrence remains a major challenge. This study reports miRNA expression profiling as a biomarker for the prognosis of TNM stage II and III colon cancer. Fresh frozen biopsies from the study cohort (N=111) were analyzed for miRNA by RT-qPCR and LASSO regression analysis was used to build a classifier of miRNAs. The prognostic accuracy was tested and the classifier was validated in an independent colon cohort (TCGA-COAD, N=209). The LASSO regression analysis identified a 16-miRNA signature including miR-143-5p, miR-27a-3p, miR-31-5p, miR-181a-5p, miR-30b-5p, miR-30d-5p, miR-146a-5p, miR-23a-3p, miR-150-5p, miR-210-3p, miR-25-3p, miR-196a-5p, miR-148a-3p, miR-222-3p, miR-30c-5p and miR-223-3p. A low 16-miRNA signature was associated with better 5-year disease-free survival (DFS) in the study cohort than a high signature (93 % versus 58 %; p< 0.001). The signature was an independent prognostic factor for better 5-year DFS in multivariate analyses (HR 21.4; 95% CI: 4.21-108.7; p< 0.001). The results in the validation cohort were consistent with the study cohort in univariate (77 % versus 65 %; p= 0.045) and multivariate analyses (HR 2.0; 95% CI: 1.04-3.89; p=0.039). We identified a 16-miRNA signature as a reliable prognostic biomarker for classification of colon cancer stage II and III patients into groups with low and high risk for recurrence.
Collapse
Affiliation(s)
- Havjin Jacob
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Luka Stanisavljevic
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | | | - Kjersti E Hestetun
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Olav Dahl
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway.,Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | - Mette P Myklebust
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|