1
|
Talib WH, Abed I, Raad D, Alomari RK, Jamal A, Jabbar R, Alhasan EOA, Alshaeri HK, Alasmari MM, Law D. Targeting Cancer Hallmarks Using Selected Food Bioactive Compounds: Potentials for Preventive and Therapeutic Strategies. Foods 2024; 13:2687. [PMID: 39272454 PMCID: PMC11395675 DOI: 10.3390/foods13172687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/23/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
Cancer continues to be a prominent issue in healthcare systems, resulting in approximately 9.9 million fatalities in 2020. It is the second most common cause of death after cardiovascular diseases. Although there are difficulties in treating cancer at both the genetic and phenotypic levels, many cancer patients seek supplementary and alternative medicines to cope with their illness, relieve symptoms, and reduce the side effects of cytotoxic drug therapy. Consequently, there is an increasing emphasis on studying natural products that have the potential to prevent or treat cancer. Cancer cells depend on multiple hallmarks to secure survival. These hallmarks include sustained proliferation, apoptosis inactivation, stimulation of angiogenesis, immune evasion, and altered metabolism. Several natural products from food were reported to target multiple cancer hallmarks and can be used as adjuvant interventions to augment conventional therapies. This review summarizes the main active ingredients in food that have anticancer activities with a comprehensive discussion of the mechanisms of action. Thymoquinone, allicin, resveratrol, parthenolide, Epigallocatechin gallate, and piperine are promising anticancer bioactive ingredients in food. Natural products discussed in this review provide a solid ground for researchers to provide effective anticancer functional food.
Collapse
Affiliation(s)
- Wamidh H Talib
- Faculty of Allied Medical Sciences, Applied Science Private University, Amman 11931, Jordan
- Faculty of Health and Life Sciences, Inti International University, Nilai 71800, Negeri Sembilan, Malaysia
| | - Ilia Abed
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman 11931, Jordan
| | - Daniah Raad
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman 11931, Jordan
| | - Raghad K Alomari
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman 11931, Jordan
| | - Ayah Jamal
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman 11931, Jordan
| | - Rand Jabbar
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman 11931, Jordan
| | - Eman Omar Amin Alhasan
- Faculty of Allied Medical Sciences, Applied Science Private University, Amman 11931, Jordan
| | - Heba K Alshaeri
- Department of Pharmacology, Faculty of Medicine, King Abdul-Aziz University, Rabigh 25724, Saudi Arabia
| | - Moudi M Alasmari
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Jeddah 21423, Saudi Arabia
- King Abdullah International Medical Research Centre (KAIMRC), Jeddah 22233, Saudi Arabia
| | - Douglas Law
- Faculty of Health and Life Sciences, Inti International University, Nilai 71800, Negeri Sembilan, Malaysia
| |
Collapse
|
2
|
Shete V, Mahajan NM, Shivhare R, Akkewar A, Gupta A, Gurav S. Genistein: A promising phytoconstituent with reference to its bioactivities. Phytother Res 2024. [PMID: 38831683 DOI: 10.1002/ptr.8256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/29/2024] [Accepted: 05/11/2024] [Indexed: 06/05/2024]
Abstract
Genistein, a potent phytoconstituent, has garnered significant attention for its diverse bioactivities, making it a subject of extensive research and exploration. This review delves into the multifaceted properties of genistein, encompassing its antioxidant and anticancer potential. Its ability to modulate various cellular pathways and interact with diverse molecular targets has positioned it as a promising candidate in the prevention and treatment of various diseases. This review provides a comprehensive examination of Genistein, covering its chemical properties, methods of isolation, synthesis, therapeutic attributes with regard to cancer management, and the proposed mechanisms of action as put forth by researchers.
Collapse
Affiliation(s)
- Vaishnavi Shete
- Department of Pharmaceutics, Datta Meghe College of Pharmacy, Wardha, Maharashtra, India
| | - Nilesh M Mahajan
- Department of Pharmaceutics, Dadasaheb Balpande College of Pharmacy, Nagpur, Maharashtra, India
| | - Ruchi Shivhare
- Department of Pharmaceutics, Dadasaheb Balpande College of Pharmacy, Nagpur, Maharashtra, India
| | - Ashish Akkewar
- Department of Pharmaceutics, Dadasaheb Balpande College of Pharmacy, Nagpur, Maharashtra, India
| | - Amisha Gupta
- Department of Pharmaceutics, Dadasaheb Balpande College of Pharmacy, Nagpur, Maharashtra, India
| | - Shailendra Gurav
- Department of Pharmacognosy, Goa College of Pharmacy, Panaji, Goa, India
| |
Collapse
|
3
|
Rayginia TP, Keerthana CK, Shifana SC, Pellissery MJ, Abhishek A, Anto RJ. Phytochemicals as Potential Lead Molecules against Hepatocellular Carcinoma. Curr Med Chem 2024; 31:5199-5221. [PMID: 38213177 DOI: 10.2174/0109298673275501231213063902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/31/2023] [Accepted: 11/16/2023] [Indexed: 01/13/2024]
Abstract
Hepatocellular carcinoma (HCC) is the most prevalent form of liver cancer, accounting for 85-90% of liver cancer cases and is a leading cause of cancer-related mortality worldwide. The major risk factors for HCC include hepatitis C and B viral infections, along with chronic liver diseases, such as cirrhosis, fibrosis, and non-alcoholic steatohepatitis associated with metabolic syndrome. Despite the advancements in modern medicine, there is a continuous rise in the annual global incidence rate of HCC, and it is estimated to reach >1 million cases by 2025. Emerging research in phytomedicine and chemotherapy has established the anti-cancer potential of phytochemicals, owing to their diverse biological activities. In this review, we report the major phytochemicals that have been explored in combating hepatocellular carcinoma and possess great potential to be used as an alternative or in conjunction with the existing HCC treatment modalities. An overview of the pre-clinical observations, mechanism of action and molecular targets of some of these phytochemicals is also incorporated.
Collapse
Affiliation(s)
- Tennyson Prakash Rayginia
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695014, India
- Department of Biotechnology, University of Kerala, Thiruvananthapuram, Kerala, 695011, India
| | - Chenicheri Kizhakkeveettil Keerthana
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695014, India
- Department of Biotechnology, University of Kerala, Thiruvananthapuram, Kerala, 695011, India
| | | | - Maria Joy Pellissery
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695014, India
| | - Ajmani Abhishek
- Molecular Bioassay Laboratory, Institute of Advanced Virology, Thiruvananthapuram, Kerala, 695317, India
| | - Ruby John Anto
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695014, India
- Molecular Bioassay Laboratory, Institute of Advanced Virology, Thiruvananthapuram, Kerala, 695317, India
| |
Collapse
|
4
|
Cheng Y, Tang Y, Tan Y, Li J, Zhang X. KCNK9 mediates the inhibitory effects of genistein on hepatic metastasis from colon cancer. Clinics (Sao Paulo) 2023; 78:100141. [PMID: 36905879 PMCID: PMC10019991 DOI: 10.1016/j.clinsp.2022.100141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 10/08/2022] [Accepted: 11/01/2022] [Indexed: 03/12/2023] Open
Abstract
OBJECTIVE The tyrosine-protein kinase inhibitor, genistein, can inhibit cell malignant transformation and has an antitumor effect on various types of cancer. It has been shown that both genistein and KNCK9 can inhibit colon cancer. This research aimed to investigate the suppressive effects of genistein on colon cancer cells and the association between the application of genistein and KCNK9 expression level. METHODS The Cancer Genome Atlas (TCGA) database was used to study the correlation between the KCNK9 expression level and the prognosis of colon cancer patients. HT29 and SW480 colon cancer cell lines were cultured to examine the inhibitory effects of KCNK9 and genistein on colon cancer in vitro, and a mouse model of colon cancer with liver metastasis was established to verify the inhibitory effect of genistein in vivo. RESULTS KCNK9 was overexpressed in colon cancer cells and was associated with a shorter Overall Survival (OS), a shorter Disease-Specific Survival (DFS), and a shorter Progression-Free Interval (PFI) of colon cancer patients. In vitro experiments showed that downregulation of KCNK9 or genistein application could suppress cell proliferation, migration, and invasion abilities, induce cell cycle quiescence, promote cell apoptosis, and reduce epithelial-mesenchymal transition of the colon cancer cell line. In vivo experiments revealed that silencing of KCNK9 or application of genistein could inhibit hepatic metastasis from colon cancer. Additionally, genistein could inhibit KCNK9 expression, thereby attenuating Wnt/β-catenin signaling pathway. CONCLUSION Genistein inhibited the occurrence and progression of colon cancer through Wnt/β-catenin signaling pathway that could be mediated by KCNK9.
Collapse
Affiliation(s)
- Yuan Cheng
- Department of Pharmacology Laboratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yi Tang
- Department of Pharmacology Laboratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yiming Tan
- Department of Pharmacology Laboratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Juan Li
- Department of Pharmacology Laboratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xuping Zhang
- Department of Pharmacy, Chengdu Second People's Hospital, Chengdu, China.
| |
Collapse
|
5
|
OUP accepted manuscript. J Pharm Pharmacol 2022; 74:660-680. [DOI: 10.1093/jpp/rgac009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/02/2022] [Indexed: 11/12/2022]
|
6
|
Ivashkevich A. The role of isoflavones in augmenting the effects of radiotherapy. Front Oncol 2022; 12:800562. [PMID: 36936272 PMCID: PMC10016616 DOI: 10.3389/fonc.2022.800562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 08/31/2022] [Indexed: 03/05/2023] Open
Abstract
Cancer is one of the major health problems and the second cause of death worldwide behind heart disease. The traditional soy diet containing isoflavones, consumed by the Asian population in China and Japan has been identified as a protective factor from hormone-related cancers. Over the years the research focus has shifted from emphasizing the preventive effect of isoflavones from cancer initiation and promotion to their efficacy against established tumors along with chemo- and radiopotentiating effects. Studies performed in mouse models and results of clinical trials emphasize that genistein or a mixture of isoflavones, containing in traditional soy diet, could be utilized to both potentiate the response of cancer cells to radiotherapy and reduce radiation-induced toxicity in normal tissues. Currently ongoing clinical research explores a potential of another significant isoflavone, idronoxil, also known as phenoxodiol, as radiation enhancing agent. In the light of the recent clinical findings, this article reviews the accumulated evidence which support the clinically desirable interactions of soy isoflavones with radiation therapy resulting in improved tumor treatment. This review discusses important aspects of the development of isoflavones as anticancer agents, and mechanisms potentially relevant to their activity in combination with radiation therapy of cancer. It gives a critical overview of studies characterizing isoflavone targets such as topoisomerases, ENOX2/PMET, tyrosine kinases and ER receptor signaling, and cellular effects on the cell cycle, DNA damage, cell death, and immune responses.
Collapse
Affiliation(s)
- Alesia Ivashkevich
- Faculty of Engineering and Information Sciences, University of Wollongong, Wollongong, NSW, Australia
- Noxopharm, Gordon, NSW, Australia
- *Correspondence: Alesia Ivashkevich,
| |
Collapse
|
7
|
Cayetano-Salazar L, Olea-Flores M, Zuñiga-Eulogio MD, Weinstein-Oppenheimer C, Fernández-Tilapa G, Mendoza-Catalán MA, Zacapala-Gómez AE, Ortiz-Ortiz J, Ortuño-Pineda C, Navarro-Tito N. Natural isoflavonoids in invasive cancer therapy: From bench to bedside. Phytother Res 2021; 35:4092-4110. [PMID: 33720455 DOI: 10.1002/ptr.7072] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 02/08/2021] [Accepted: 02/23/2021] [Indexed: 01/23/2023]
Abstract
Cancer is a public health problem worldwide, and one of the crucial steps within tumor progression is the invasion and metastasis of cancer cells, which are directly related to cancer-associated deaths in patients. Recognizing the molecular markers involved in invasion and metastasis is essential to find targeted therapies in cancer. Interestingly, about 50% of the discovered drugs used in chemotherapy have been obtained from natural sources such as plants, including isoflavonoids. Until now, most drugs are used in chemotherapy targeting proliferation and apoptosis-related molecules. Here, we review recent studies about the effect of isoflavonoids on molecular targets and signaling pathways related to invasion and metastasis in cancer cell cultures, in vivo assays, and clinical trials. This review also reports that glycitein, daidzein, and genistein are the isoflavonoids most studied in preclinical and clinical trials and displayed the most anticancer activity targeting invasion-related proteins such as MMP-2 and MMP-9 and also EMT-associated proteins. Therefore, the diversity of isoflavonoids is promising molecules to be used as chemotherapeutic in invasive cancer. In the future, more clinical trials are needed to validate the effectiveness of the various natural isoflavonoids in the treatment of invasive cancer.
Collapse
Affiliation(s)
- Lorena Cayetano-Salazar
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Gro, Mexico
| | - Monserrat Olea-Flores
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Gro, Mexico
| | - Miriam D Zuñiga-Eulogio
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Gro, Mexico
| | | | - Gloria Fernández-Tilapa
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Gro, Mexico
| | - Miguel A Mendoza-Catalán
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Gro, Mexico
| | - Ana E Zacapala-Gómez
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Gro, Mexico
| | - Julio Ortiz-Ortiz
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Gro, Mexico
| | - Carlos Ortuño-Pineda
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Gro, Mexico
| | - Napoleón Navarro-Tito
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Gro, Mexico
| |
Collapse
|
8
|
Lee Y, Lee J, Lim C. Anticancer activity of flavonoids accompanied by redox state modulation and the potential for a chemotherapeutic strategy. Food Sci Biotechnol 2021; 30:321-340. [PMID: 33868744 PMCID: PMC8017064 DOI: 10.1007/s10068-021-00899-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 03/02/2021] [Accepted: 03/04/2021] [Indexed: 12/13/2022] Open
Abstract
Since researchers began studying the mechanism of flavonoids' anticancer activity, little attention has been focused on the modulation of redox state in cells as a potential chemotherapeutic strategy. However, recent studies have begun identifying that the anticancer effect of flavonoids occurs both in their antioxidative activity which scavenges ROS and their prooxidative activity which generates ROS. Against this backdrop, this study attempts to achieve a comprehensive analysis of the individual and separate study findings regarding flavonoids' modulation of redox state in cancer cells. It focuses on the mechanism behind the anticancer effect, and mostly on the modulation of redox potential by flavonoids such as quercetin, hesperetin, apigenin, genistein, epigallocatechin-3-gallate (EGCG), luteolin and kaempferol in both in vitro and animal models. In addition, the clinical applications of and bioavailability of flavonoids were reviewed to help build a treatment strategy based on flavonoids' prooxidative potential.
Collapse
Affiliation(s)
- Yongkyu Lee
- Foood and Nutrition, College of Science and Engineering, Dongseo University, Jurae-ro 47, Sasang-Gu, Busan, 47011 Korea
| | - Jehyung Lee
- Department of Medicine, College of Medicine, Dong-A University, Daesingongwon-ro 32, Seo-Gu, Busan, 49201 Korea
| | - Changbaek Lim
- Central Research & Development Center, Daewoo Pharmaceutical Co, LTD. 153, Dadae-ro, Saha-gu, Busan, 49393 Korea
| |
Collapse
|
9
|
B Arcanjo R, Richardson KA, Yang S, Patel S, Flaws JA, Nowak RA. Effects of Chronic Dietary Exposure to Phytoestrogen Genistein on Uterine Morphology in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:1693-1704. [PMID: 33528250 DOI: 10.1021/acs.jafc.0c07456] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Genistein is naturally occurring in plants and binds to estrogen receptors. Humans are mainly exposed through diet, but the use of supplements is increasing as genistein is claimed to promote health and alleviate menopausal symptoms. We analyzed diverse uterine features in adult mice chronically fed genistein for different times. The luminal epithelium height was increased in females treated with 500 and 1000 ppm at PND 95, and the width of the outer myometrium was increased in females treated with 1000 ppm at PND 65 compared to that in controls. An increase in proliferation was noted in the inner myometrium layer of animals exposed to 300 ppm genistein at PND 185 compared to that in controls. Luminal hyperplasia was greater in the 1000 ppm group at PND 65, 95, and 185, although not statistically different from control. These results indicate that genistein may exert estrogenic activity in the uterus, without persistent harm to the organ.
Collapse
Affiliation(s)
- Rachel B Arcanjo
- Department of Animal Sciences, University of Illinois, Urbana, Illinois 61801, United States
| | - Kadeem A Richardson
- Department of Animal Sciences, University of Illinois, Urbana, Illinois 61801, United States
| | - Shuhong Yang
- Department of Animal Sciences, University of Illinois, Urbana, Illinois 61801, United States
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, People's Republic of China
| | - Shreya Patel
- Department of Comparative Biosciences, University of Illinois, Urbana, Illinois 61820, United States
| | - Jodi A Flaws
- Department of Comparative Biosciences, University of Illinois, Urbana, Illinois 61820, United States
| | - Romana A Nowak
- Department of Animal Sciences, University of Illinois, Urbana, Illinois 61801, United States
| |
Collapse
|
10
|
Talib WH, Alsalahat I, Daoud S, Abutayeh RF, Mahmod AI. Plant-Derived Natural Products in Cancer Research: Extraction, Mechanism of Action, and Drug Formulation. Molecules 2020; 25:E5319. [PMID: 33202681 PMCID: PMC7696819 DOI: 10.3390/molecules25225319] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 12/24/2022] Open
Abstract
Cancer is one of the main causes of death globally and considered as a major challenge for the public health system. The high toxicity and the lack of selectivity of conventional anticancer therapies make the search for alternative treatments a priority. In this review, we describe the main plant-derived natural products used as anticancer agents. Natural sources, extraction methods, anticancer mechanisms, clinical studies, and pharmaceutical formulation are discussed in this review. Studies covered by this review should provide a solid foundation for researchers and physicians to enhance basic and clinical research on developing alternative anticancer therapies.
Collapse
Affiliation(s)
- Wamidh H. Talib
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman 11931, Jordan;
| | - Izzeddin Alsalahat
- Department of Pharmaceutical Chemistry and Pharmacognosy, Applied Science Private University, Amman 11931, Jordan; (I.A.); (S.D.); (R.F.A.)
| | - Safa Daoud
- Department of Pharmaceutical Chemistry and Pharmacognosy, Applied Science Private University, Amman 11931, Jordan; (I.A.); (S.D.); (R.F.A.)
| | - Reem Fawaz Abutayeh
- Department of Pharmaceutical Chemistry and Pharmacognosy, Applied Science Private University, Amman 11931, Jordan; (I.A.); (S.D.); (R.F.A.)
| | - Asma Ismail Mahmod
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman 11931, Jordan;
| |
Collapse
|
11
|
Tuli HS, Tuorkey MJ, Thakral F, Sak K, Kumar M, Sharma AK, Sharma U, Jain A, Aggarwal V, Bishayee A. Molecular Mechanisms of Action of Genistein in Cancer: Recent Advances. Front Pharmacol 2019; 10:1336. [PMID: 31866857 PMCID: PMC6910185 DOI: 10.3389/fphar.2019.01336] [Citation(s) in RCA: 222] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 10/18/2019] [Indexed: 01/13/2023] Open
Abstract
Background: Genistein is one among the several other known isoflavones that is found in different soybeans and soy products. The chemical name of genistein is 4',5,7-trihydroxyisoflavone. Genistein has drawn attention of scientific community because of its potential beneficial effects on human grave diseases, such as cancer. Mechanistic insight of genistein reveals its potential for apoptotic induction, cell cycle arrest, as well as antiangiogenic, antimetastatic, and anti-inflammatory effects. Objective: The purpose of this review is to unravel and analyze various molecular mechanisms of genistein in diverse cancer models. Data sources: English language literature was searched using various databases, such as PubMed, ScienceDirect, EBOSCOhost, Scopus, Web of Science, and Cochrane Library. Key words used in various combinations included genistein, cancer, anticancer, molecular mechanisms prevention, treatment, in vivo, in vitro, and clinical studies. Study selection: Study selection was carried out strictly in accordance with the statement of Preferred Reporting Items for Systematic Reviews and Meta-analyses. Data extraction: Four authors independently carried out the extraction of articles. Data synthesis: One hundred one papers were found suitable for use in this review. Conclusion: This review covers various molecular interactions of genistein with various cellular targets in cancer models. It will help the scientific community understand genistein and cancer biology and will provoke them to design novel therapeutic strategies.
Collapse
Affiliation(s)
- Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, India
| | - Muobarak Jaber Tuorkey
- Division of Physiology, Zoology Department, Faculty of Science, Damanhour University, Damanhour, Egypt
| | - Falak Thakral
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, India
| | | | - Manoj Kumar
- Department of Chemistry, Maharishi Markandeshwar University, Sadopur, India
| | - Anil Kumar Sharma
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, India
| | - Uttam Sharma
- Department of Animal Sciences, Central University of Punjab, Bathinda, India
| | - Aklank Jain
- Department of Animal Sciences, Central University of Punjab, Bathinda, India
| | - Vaishali Aggarwal
- Department of Histopathology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, FL, United States
| |
Collapse
|
12
|
Zhang T, Liu H, Li Y, Li C, Wan G, Chen B, Li C, Wang Y. A pH-sensitive nanotherapeutic system based on a marine sulfated polysaccharide for the treatment of metastatic breast cancer through combining chemotherapy and COX-2 inhibition. Acta Biomater 2019; 99:412-425. [PMID: 31494294 DOI: 10.1016/j.actbio.2019.09.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 08/07/2019] [Accepted: 09/03/2019] [Indexed: 12/25/2022]
Abstract
Metastasis and chemotherapy resistance are the leading causes of breast cancer mortality. Celecoxib (CXB), a selective cyclooxygenase-2 (COX-2) inhibitor, has antiangiogenetic activity and inhibitory effect on tumor metastasis, and can also enhance the sensitivity of chemotherapeutic drug doxorubicin (DOX) in breast cancer. To combine anticancer effects of DOX and CXB more efficiently, we designed a pH-sensitive nanotherapeutic system based on propylene glycol alginate sodium sulfate (PSS), a marine sulfated polysaccharide that possesses anti-platelet aggregation activity and has been used as a heparinoid drug in China. A facile one-pot nanoprecipitation method was used to prepare this nanotherapeutic system named as PSS@DC nanoparticles, in which DOX and CXB were complexed to form hydrophobic nanocores and PPS coated these nanocores through conjugation with DOX via a highly acid-labile benzoic-imine linker. PSS@DC nanoparticles showed distinct pH-sensitivity and significantly accelerated the release of DOX at the acidic pH mimicking the tumor microenvironment and endocytic-related organelles. Compared to single- and mixed-drug treatments, PSS@DC nanoparticles notably inhibited the growth of mouse breast cancer 4T1 cells with an IC50 of about 0.82 μg/mL DOX, and meanwhile reduced cell migration, invasion and adhesion abilities more efficiently. In 4T1 tumor-bearing mice, PSS@DC nanoparticles exhibited good tumor-targeting ability and markedly inhibited tumor growth with an inhibition rate of approximately 73.3%, and furthermore suppressed tumor metastasis through anti-angiogenesis. In summary, this nanotherapeutic system shows a great potential for the treatment of metastatic breast cancer by combining chemotherapy and COX-2 inhibitor. STATEMENT OF SIGNIFICANCE: A pH-sensitive nanotherapeutic system (PSS@DC nanoparticles) containing both chemotherapeutic drug doxorubicin (DOX) and COX-2 specific inhibitor celecoxib was designed based on a marine sulfated polysaccharide that possesses anti-platelet aggregation activity and has been used as a heparinoid drug in China. PSS@DC nanoparticles had distinct pH-sensitivity and could accelerate the release of DOX at the acidic pH values of tumor microenvironment and endocytic-related organelles. Both in vitro and in vivo, PSS@DC nanoparticles showed synergistic effects on the suppression of breast tumor growth and metastasis by combining chemotherapy and COX-2 inhibition.
Collapse
Affiliation(s)
- Tao Zhang
- School of Pharmacy, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), Tianjin Medical University, Tianjin 300070, China
| | - Hui Liu
- School of Pharmacy, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), Tianjin Medical University, Tianjin 300070, China
| | - Yating Li
- School of Pharmacy, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), Tianjin Medical University, Tianjin 300070, China
| | - Chunyu Li
- Department of Integrated Traditional Chinese and Western Medicine, International Medical School, Tianjin Medical University, Tianjin 300070, China.
| | - Guoyun Wan
- School of Pharmacy, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), Tianjin Medical University, Tianjin 300070, China
| | - Bowei Chen
- School of Pharmacy, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), Tianjin Medical University, Tianjin 300070, China
| | - Chunxia Li
- Key Laboratory of Marine Drugs, Ministry of Education, Key Laboratory of Glycoscience and Glycotechnology of Shandong Province, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Yinsong Wang
- School of Pharmacy, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), Tianjin Medical University, Tianjin 300070, China.
| |
Collapse
|
13
|
Zhang W, Wang J, Gao J, Li HL, Han LH, Lan Q, Rothman N, Zheng W, Shu XO, Xiang YB. Prediagnostic Level of Dietary and Urinary Isoflavonoids in Relation to Risk of Liver Cancer in Shanghai, China. Cancer Epidemiol Biomarkers Prev 2019; 28:1712-1719. [PMID: 31387968 PMCID: PMC6800062 DOI: 10.1158/1055-9965.epi-18-1075] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 01/08/2019] [Accepted: 07/30/2019] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND No epidemiologic studies have directly assessed the association between dietary and urinary isoflavonoids and risk of liver cancer in humans. METHODS A nested case-control study, including 217 incident cases of liver cancer and 427 individually matched control subjects, was conducted in Shanghai, China. Dietary isoflavonoid intakes were assessed through a validated food-frequency questionnaire and the Chinese Food Composition Tables. Urinary excretion levels of four major isoflavonoids were measured by the reversed-phase high-performance liquid chromatography. ORs and 95% confidence intervals (CI) were derived using conditional logistic regression models. RESULTS The adjusted ORs (95% CIs) for liver cancer across increasing quartiles of urinary genistein levels were 1.00 (reference), 0.55 (95% CI, 0.22-1.36), 0.57 (95% CI, 0.23-1.43), and 0.19 (95% CI, 0.06-0.59) (P trend = 0.008) in women and 1.00 (reference), 1.22 (0.52-2.86), 1.17(0.47-2.90), and 1.23 (0.55-2.76) in men, respectively. These associations were consistent by limiting the cases to primary malignant neoplasm of liver or malignant neoplasms of the intrahepatic bile ducts, or among participants without self-reported liver disease or cirrhosis at the baseline survey. No associations were found between dietary isoflavonoids and liver cancer risk. CONCLUSIONS Our study suggests for the first time that urinary excretion of genistein may be associated with reduced risk of liver cancer in women. IMPACT In this nested case-control study in China, we found that urinary excretion of genistein was associated with lower risk of liver cancer in women, and not in men.
Collapse
Affiliation(s)
- Wei Zhang
- State Key Laboratory of Oncogene and Related Genes and Department of Epidemiology, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jing Wang
- State Key Laboratory of Oncogene and Related Genes and Department of Epidemiology, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jing Gao
- State Key Laboratory of Oncogene and Related Genes and Department of Epidemiology, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hong-Lan Li
- State Key Laboratory of Oncogene and Related Genes and Department of Epidemiology, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Li-Hua Han
- State Key Laboratory of Oncogene and Related Genes and Department of Epidemiology, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qing Lan
- Division of Cancer Epidemiology and Genetics, Occupational and Environmental Epidemiology Branch, NCI, Rockville, Maryland
| | - Nathaniel Rothman
- Division of Cancer Epidemiology and Genetics, Occupational and Environmental Epidemiology Branch, NCI, Rockville, Maryland
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt University Medicine Center, Nashville, Tennessee
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt University Medicine Center, Nashville, Tennessee
| | - Yong-Bing Xiang
- State Key Laboratory of Oncogene and Related Genes and Department of Epidemiology, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| |
Collapse
|
14
|
Cipolletti M, Solar Fernandez V, Montalesi E, Marino M, Fiocchetti M. Beyond the Antioxidant Activity of Dietary Polyphenols in Cancer: the Modulation of Estrogen Receptors (ERs) Signaling. Int J Mol Sci 2018; 19:E2624. [PMID: 30189583 PMCID: PMC6165334 DOI: 10.3390/ijms19092624] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 08/31/2018] [Accepted: 09/03/2018] [Indexed: 02/07/2023] Open
Abstract
The potential "health benefits" of dietary polyphenols have been ascribed to their direct antioxidant activity and their impact on the regulation of cell and tissue redox balance. However, because of the relative poor bioavailability of many of these compounds, their effects could not be easily explained by the antioxidant action, which may occur only at high circulating and tissue concentrations. Therefore, many efforts have been put forward to clarify the molecular mechanisms underlining the biological effect of polyphenols in physiological and pathological conditions. Polyphenols' bioavailability, metabolism, and their effects on enzyme, membrane, and/or nuclear receptors and intracellular transduction mechanisms may define the overall impact of these compounds on cancer risk and progression, which is still debated and not yet clarified. Polyphenols are able to bind to estrogen receptor α (ERα) and β (ERβ), and therefore induce biological effects in human cells through mimicking or inhibiting the action of endogenous estrogens, even at low concentrations. In this work, the role and effects of food-contained polyphenols in hormone-related cancers will be reviewed, mainly focusing on the different polyphenols' mechanisms of action with particular attention on their estrogen receptor-based effects, and on the consequences of such processes on tumor progression and development.
Collapse
Affiliation(s)
- Manuela Cipolletti
- Department of Science, University Roma Tre, Viale Guglielmo Marconi 446, I-00146 Roma, Italy.
| | | | - Emiliano Montalesi
- Department of Science, University Roma Tre, Viale Guglielmo Marconi 446, I-00146 Roma, Italy.
| | - Maria Marino
- Department of Science, University Roma Tre, Viale Guglielmo Marconi 446, I-00146 Roma, Italy.
| | - Marco Fiocchetti
- Department of Science, University Roma Tre, Viale Guglielmo Marconi 446, I-00146 Roma, Italy.
| |
Collapse
|
15
|
Hu X, Wu X, Liu H, Cheng Z, Zhao Z, Xiang C, Feng X, Takeda S, Qing Y. Genistein-induced DNA damage is repaired by nonhomologous end joining and homologous recombination in TK6 cells. J Cell Physiol 2018; 234:2683-2692. [PMID: 30070703 DOI: 10.1002/jcp.27082] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 06/28/2018] [Indexed: 02/05/2023]
Abstract
Genistein (GES), a phytoestrogen, has potential chemopreventive and chemotherapeutic effects on cancer. The anticancer mechanism of GES may be related with topoisomerase II associated DNA double-strand breaks (DSBs). However, the precise molecular mechanism remains elusive. Here, we performed genetic analyses using human lymphoblastoid TK6 cell lines to investigate whether non-homologous DNA end joining (NHEJ) and homologous recombination (HR), the two major repair pathways of DSBs, were involved in repairing GES-induced DNA damage. Our results showed that GES induced DSBs in TK6 cells. Cells lacking Ligase4, an NHEJ enzyme, are hypersensitive to GES. Furthermore, the sensitivity of Ligase4-/- cells was associated with enhanced DNA damage when comparing the accumulation of γ-H2AX foci and number of chromosomal aberrations (CAs) with WT cells. In addition, cells lacking Rad54, a HR enzyme, also presented hypersensitivity and increased DNA damages in response to GES. Meanwhile, Treatment of GES-lacking enhanced the accumulation of Rad51, an HR factor, in TK6 cells, especially in Ligase4-/- . These results provided direct evidence that GES induced DSBs in TK6 cells and clarified that both NHEJ and HR were involved in the repair of GES-induced DNA damage, suggesting that GES in combination with inhibition of NHEJ or HR would provide a potential anticancer strategy.
Collapse
Affiliation(s)
- Xiaoqing Hu
- State Key Laboratory of Biotherapy, West China Hospital, and Department of Pharmacology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China
| | - Xiaohua Wu
- State Key Laboratory of Biotherapy, West China Hospital, and Department of Pharmacology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China
| | - Hao Liu
- State Key Laboratory of Biotherapy, West China Hospital, and Department of Pharmacology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China
| | - Ziyuan Cheng
- State Key Laboratory of Biotherapy, West China Hospital, and Department of Pharmacology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China
| | - Zilu Zhao
- State Key Laboratory of Biotherapy, West China Hospital, and Department of Pharmacology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China
| | - Cuifang Xiang
- State Key Laboratory of Biotherapy, West China Hospital, and Department of Pharmacology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China
| | - Xiaoyu Feng
- State Key Laboratory of Biotherapy, West China Hospital, and Department of Pharmacology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China
| | - Shunichi Takeda
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yong Qing
- State Key Laboratory of Biotherapy, West China Hospital, and Department of Pharmacology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
16
|
Sanaei M, Kavoosi F, Roustazadeh A, Golestan F. Effect of Genistein in Comparison with Trichostatin A on Reactivation of DNMTs Genes in Hepatocellular Carcinoma. J Clin Transl Hepatol 2018; 6:141-146. [PMID: 29951358 PMCID: PMC6018304 DOI: 10.14218/jcth.2018.00002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 01/26/2018] [Accepted: 01/31/2018] [Indexed: 01/14/2023] Open
Abstract
Background and Aims: DNA methylation and histone modification are epigenetic modifications essential for normal function of mammalian cells. The processes are mediated by biochemical interactions between DNA methyltransferases (DNMTs) and histone deacetylases. Promoter hypermethylation and deacetylation of tumor suppressor genes play major roles in cancer induction, through transcriptional silencing of these genes. DNA hypermethylation is carried out by a family of DNMTs including DNMT1, DNMT3a and DNMT3b. In hepatocellular carcinoma, a significant positive correlation between over-expression of these genes and cancer induction has been reported. The DNA demethylating agent genistein (GE) has been demonstrated to reduce different cancers. Previously, we reported that GE can induce apoptosis and inhibit proliferation in hepatocellular carcinoma PLC/PRF5 and HepG2 cell lines. Besides, histone deacetylase inhibitors, such as trichostatin A (TSA), were successfully used to inhibit cancer cell growth. The present study was designed to assess the effect of GE in comparison with TSA on DNMT1, DNMT3a and DNMT3b gene expression, cell growth inhibition and apoptosis induction in the HepG2 cell line. Methods: Cells were seeded and treated with various doses of GE and TSA. The MTT assay, flow cytometry assay, and real-time RT-PCR were used to determine viability, apoptosis, and DNMT1, DNMT3a and DNMT3b gene expression respectively. Results: Both agents inhibited cell growth, induced apoptosis and reactivated DNMT1, DNMT3a and DNMT3b gene expression. Furthermore, TSA demonstrated a significantly greater apoptotic effect than the other agent, whereas GE improved gene expression more significantly than TSA. Conclusions: Our findings suggest that GE and TSA can significantly inhibit cell growth, induce apoptosis and restore DNMT1, DNMT3a and DNMT3b gene reactivation.
Collapse
Affiliation(s)
- Masumeh Sanaei
- Research Center for Non-Communicable Diseases, Jahrom University of Medical Sciences, Jahrom, Fars province, Iran
| | - Fraidoon Kavoosi
- Research Center for Non-Communicable Diseases, Jahrom University of Medical Sciences, Jahrom, Fars province, Iran
- *Correspondence to: Fraidoon Kavoosi, Jahrom University of Medical Sciences, Jahrom, Fars province, 74148-46199, Iran. Tel: +98-9173914117, E-mail:
| | - Abazar Roustazadeh
- Research Center for Non-Communicable Diseases, Jahrom University of Medical Sciences, Jahrom, Fars province, Iran
| | - Fatemeh Golestan
- Student Research Committee, Jahrom University of Medical Sciences, Jahrom, Fars province, Iran
| |
Collapse
|
17
|
Chan KKL, Siu MKY, Jiang YX, Wang JJ, Leung THY, Ngan HYS. Estrogen receptor modulators genistein, daidzein and ERB-041 inhibit cell migration, invasion, proliferation and sphere formation via modulation of FAK and PI3K/AKT signaling in ovarian cancer. Cancer Cell Int 2018; 18:65. [PMID: 29743815 PMCID: PMC5930957 DOI: 10.1186/s12935-018-0559-2] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 04/19/2018] [Indexed: 01/09/2023] Open
Abstract
Background Ovarian cancer is the most lethal gynaecological malignancy. Chemotherapy is the main stay of treatment for metastatic disease, with modest response rates but significant side effects. Therefore, there is a need for alternative therapies that can control the disease while offering good quality of life. Ovarian cancer cells express both estrogen receptor subtypes (ERα and ERβ). There is growing evidence that ERβ is anti-oncogenic. Genistein and daidzein are phytoestrogens found in soybeans and they display higher affinity to bind ERβ. ERB-041 is a potent selective ERβ agonist. In this study, we aimed to investigate the effects of genistein, daidzein and ERB-041 on ovarian cancer. Methods Ovarian cancer cell lines were treated with genistein, daidzein and ERB-041 in pharmacological doses. Cell migration, invasion, proliferation, cell cycle arrest, apoptosis and sphere formation were assessed by Transwell migration and invasion assays, XTT assay, focus formation, flow cytometry and sphere formation assay, respectively. Immunoblotting analysis was performed to determine the downstream signaling pathways. Results We found that genistein, daidzein and ERB-041 significantly inhibited ovarian cancer cell migration, invasion, proliferation, as well as induced cell cycle arrest and apoptosis. Significantly inhibitory effect on the size and number of sphere formed in genistein, daidzein and ERB-041 treated cells was also demonstrated. Moreover, genistein, daidzein and ERB-041 treatment reduced p-FAK, p-PI3K, p-AKT, p-GSK3β, p21 or cyclin D1 expression in ovarian cancer cells. Conclusion Genistein, daidzein and ERB-041 decreased ovarian cancer cell migration, invasion, proliferation and sphere formation, and induced cell cycle arrest and apoptosis with altered FAK and PI3K/AKT/GSK signaling and p21/cyclin D1 expression, suggesting their roles on ovarian cancer cell metastasis, tumorigenesis and stem-like properties and their potential as alternative therapies for ovarian cancer patients. Electronic supplementary material The online version of this article (10.1186/s12935-018-0559-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Karen K L Chan
- Department of Obstetrics and Gynaecology, Queen Mary Hospital, University of Hong Kong, 6/F Professorial Block, Pokfulam, Hong Kong, SAR China
| | - Michelle K Y Siu
- Department of Obstetrics and Gynaecology, Queen Mary Hospital, University of Hong Kong, 6/F Professorial Block, Pokfulam, Hong Kong, SAR China
| | - Yu-Xin Jiang
- Department of Obstetrics and Gynaecology, Queen Mary Hospital, University of Hong Kong, 6/F Professorial Block, Pokfulam, Hong Kong, SAR China
| | - Jing-Jing Wang
- Department of Obstetrics and Gynaecology, Queen Mary Hospital, University of Hong Kong, 6/F Professorial Block, Pokfulam, Hong Kong, SAR China
| | - Thomas H Y Leung
- Department of Obstetrics and Gynaecology, Queen Mary Hospital, University of Hong Kong, 6/F Professorial Block, Pokfulam, Hong Kong, SAR China
| | - Hextan Y S Ngan
- Department of Obstetrics and Gynaecology, Queen Mary Hospital, University of Hong Kong, 6/F Professorial Block, Pokfulam, Hong Kong, SAR China
| |
Collapse
|
18
|
Sanaei M, Kavoosi F, Valiani A, Ghobadifar MA. Effect of Genistein on Apoptosis and Proliferation of Hepatocellular Carcinoma Hepa1-6 Cell Line. Int J Prev Med 2018. [PMID: 29541427 PMCID: PMC5843956 DOI: 10.4103/ijpvm.ijpvm_249_16] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background: One of the main causes of mortality is hepatocellular carcinoma (HCC) which accounts for the third leading cause of deaths and one in forty deaths worldwide. The flavonoids, natural antioxidant compounds, account for a major group of polyphenolic compounds. One of the major isoflavones in soybean is genistein (GE) which can inhibit proliferation and induce apoptosis. Isoflavones, major type of phenolic materials, derived from dietary plants and medicinal herbs play a significant role in cancer prevention and treatment. Correlation between dietary habits and cancer risk including breast, prostate, and colon cancer has been reported. Various bioactivities of these compounds such as anticarcinogenic and antioxidant are responsible for their chemopreventive activities by which induce migration, proliferation, cell cycle arrest, and apoptosis. GE, one of the major isoflavones, is considered as a potent chemopreventive agent against cancer. The aim of this study was to investigate the inhibitory and apoptotic effects of GE on HCC Hepa1-6 cell line. Methods: Cell viability assay and cell cycle analysis with flow cytometry were used to evaluate proliferative and apoptotic effect GE. Results: GE inhibited the growth of Hepa1-6 cells and induced apoptosis with a concentration and time-dependent fashion. During GE treatment for 24, the half maximal inhibitory concentration (IC50) was 20 μM, and the maximum inhibition of cell growth was 52% (P < 0.01). The percentage of apoptotic cells with a concentration of 20 μM of GE after 24, 48, and 72 h was 35, 42, and 65%, respectively (P < 0.01). Conclusions: Our finding clearly indicated that GE can significantly inhibit proliferation of hepatocellular carcinoma Hepa 1-6 cell line and induce apoptosis in this cell line.
Collapse
Affiliation(s)
- Masumeh Sanaei
- Research Center for Noncommunicable Diseases, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Fraidoon Kavoosi
- Research Center for Noncommunicable Diseases, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Ali Valiani
- Department of Anatomical Sciences and Molecular Biology, Medical School, Isfahan University of Medical Sciences, Isfahan, Isfahan Province, Iran
| | - Mohamed Amin Ghobadifar
- Department of Student Research Committee, Jahrom University of Medical Sciences, Jahrom, Iran
| |
Collapse
|
19
|
Li L, Liu CC, Chen X, Xu S, Hernandez Cortes-Manno S, Cheng SH. Mechanistic Study of Bakuchiol-Induced Anti-breast Cancer Stem Cell and in Vivo Anti-metastasis Effects. Front Pharmacol 2017; 8:746. [PMID: 29093680 PMCID: PMC5651275 DOI: 10.3389/fphar.2017.00746] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 10/03/2017] [Indexed: 12/21/2022] Open
Abstract
Cancer stem cells are involved in cancer establishment, progression, and resistance to current treatments. We demonstrated the in vitro and in vivo anti-breast cancer effect of bakuchiol in a previous study. However, the ability of bakuchiol to target breast cancer stem cells (BCSCs) and inhibit breast cancer metastasis remains unknown. In the current study, we used the cell surface markers CD44 and CD24 to distinguish BCSCs from MCF-7 cells. Bakuchiol inhibited mammosphere formation and aldehyde dehydrogenase activity in BCSCs. Moreover, bakuchiol induced apoptosis and suppressed the mitochondrial membrane potential of BCSCs. Bakuchiol upregulated the expression levels of pro-apoptotic genes, BNIP3 and DAPK2. Bakuchiol induced oxidative stress and altered lipogenesis in BCSCs. In zebrafish xenografts, bakuchiol inhibited breast cancer cell metastasis in vivo. In addition, bakuchiol altered the expression levels of metastasis-related genes through upregulating CK18 and downregulating Notch3, FASN, TGFBR1, and ACVR1B. Our study provides evidence for the anti-breast cancer potential of bakuchiol.
Collapse
Affiliation(s)
- Li Li
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Chi C Liu
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Xueping Chen
- Vitargent (International) Biotechnology Limited, Sha Tin, Hong Kong
| | - Shisan Xu
- Department of Infectious Diseases and Public Health, City University of Hong Kong, Kowloon, Hong Kong
| | | | - Shuk H Cheng
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong
| |
Collapse
|
20
|
Genistein: Its role in metabolic diseases and cancer. Crit Rev Oncol Hematol 2017; 119:13-22. [PMID: 29065980 DOI: 10.1016/j.critrevonc.2017.09.004] [Citation(s) in RCA: 181] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/23/2017] [Accepted: 09/11/2017] [Indexed: 12/12/2022] Open
Abstract
Genistein is an isoflavone present in soy and is known to have multiple molecular effects, such as the inhibition of inflammation, promotion of apoptosis, and modulation of steroidal hormone receptors and metabolic pathways. Since these molecular effects impact carcinogenesis, cancer propagation, obesity, osteoporosis, and metabolic syndromes, genistein plays an important role in preventing and treating common disorders. The role of genistein has not been adequately evaluated in all these clinical settings. This review summarizes some of the known molecular effects of genistein and its potential role in health maintenance and treatment.
Collapse
|
21
|
Wei D, Yang L, Lv B, Chen L. Genistein suppresses retinoblastoma cell viability and growth and induces apoptosis by upregulating miR-145 and inhibiting its target ABCE1. Mol Vis 2017; 23:385-394. [PMID: 28706438 PMCID: PMC5501691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 06/30/2017] [Indexed: 11/01/2022] Open
Abstract
PURPOSE Retinoblastoma is a rare malignancy in developing retina tissue in children with limited therapeutic options. Here we sought to investigate the potential clinical value of genistein, the phytoestrogen derived from the soybean with antioxidant activity, in this disease. METHODS Retinoblastoma cells were treated with genistein. Colony formation capacity was measured with soft agar assay. MiRNA was identified with microarray. Post-transcriptional regulation of gene expression was determined with dual-luciferase reporter assay. Cell proliferation and apoptosis were measured with the Cell Counting Kit-8 (CCK-8) method and annexin V-propidium iodide (PI) staining. The xenograft model was administered with genistein, and tumor growth was monitored. RESULTS The results showed that genistein treatment significantly suppressed proliferation and anchorage-independent growth of the human retinoblastoma cell line Y79 in vitro, which partially attributed to apoptosis induction. MicroRNA array screening identified that miR-145 was upregulated by genistein. Through post-transcriptional regulation of ABCE1, miR-145 functioned as a key downstream effector in genistein-mediated tumor suppression in retinoblastoma. Moreover, the in vivo data consolidated the inhibitory effect of genistein against retinoblastoma xenograft via upregulation of miR-145. CONCLUSIONS The data highlighted the therapeutic potency of genistein in this disease and showed that further clinical investigation is warranted.
Collapse
Affiliation(s)
- Dong Wei
- Department of Ophthalmology 3, Hongqi Hospital, Mudanjiang Medical School, No.1 Taiping Road, Heilongjiang, China
| | - Lieying Yang
- Department of Ophthalmology 2, Hongqi Hospital, Mudanjiang Medical School, No.1 Taiping Road, Heilongjiang, China
| | - Bo Lv
- Department of Ophthalmology 3, Hongqi Hospital, Mudanjiang Medical School, No.1 Taiping Road, Heilongjiang, China
| | - Lijuan Chen
- Department of Ophthalmology 2, Hongqi Hospital, Mudanjiang Medical School, No.1 Taiping Road, Heilongjiang, China
| |
Collapse
|
22
|
Hussain H, Green IR. A patent review of the therapeutic potential of isoflavones (2012-2016). Expert Opin Ther Pat 2017; 27:1135-1146. [DOI: 10.1080/13543776.2017.1339791] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Hidayat Hussain
- UoN Chair of Oman’s Medicinal Plants and Marine Natural Products, University of Nizwa, Nizwa, Sultanate of Oman
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, CA, USA
| | - Ivan R. Green
- Department of Chemistry and Polymer Science, University of Stellenbosch, Stellenbosch, South Africa
| |
Collapse
|
23
|
Kavoosi F, Dastjerdi MN, Valiani A, Esfandiari E, Sanaei M, Hakemi MG. Genistein potentiates the effect of 17-beta estradiol on human hepatocellular carcinoma cell line. Adv Biomed Res 2016; 5:133. [PMID: 27656602 PMCID: PMC5025906 DOI: 10.4103/2277-9175.187395] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 05/11/2015] [Indexed: 11/16/2022] Open
Abstract
Background: Hepatocellular carcinoma (HCC) is one of the most common malignant tumors. This cancer may be due to a multistep process with an accumulation of epigenetic alterations in tumor suppressor genes (TSGs), leading to hypermethylation of the genes. Hypermethylation of TSGs is associated with silencing and inactivation of them. It is well-known that DNA hypomethylation is the initial epigenetic abnormality recognized in human tumors. Estrogen receptor alpha (ERα) is one of the TSGs which modulates gene transcription and its hypermethylation is because of overactivity of DNA methyltransferases. Fortunately, epigenetic changes especially hypermethylation can be reversed by pharmacological compounds such as genistein (GE) and 17-beta estradiol (E2) which involve in preventing the development of certain cancers by maintaining a protective DNA methylation. The aim of the present study was to analyze the effects of GE on ERα and DNMT1 genes expression and also apoptotic and antiproliferative effects of GE and E2 on HCC. Materials and Methods: Cells were treated with various concentrations of GE and E2 and the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide assay was used. Furthermore, cells were treated with single dose of GE and E2 (25 μM) and flow cytometry assay was performed. The expression level of the genes was determined by quantitative real-time reverse transcription polymerase chain reaction. Results: GE increased ERα and decreased DNMT1 genes expression, GE and E2 inhibited cell viability and induced apoptosis significantly. Conclusion: GE can epigenetically increase ERα expression by inhibition of DNMT1 expression which in turn increases apoptotic effect of E2. Furthermore, a combination of GE and E2 can induce apoptosis more significantly.
Collapse
Affiliation(s)
- Fraidoon Kavoosi
- Department of Anatomical Sciences, Medical School, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Mehdi Nikbakht Dastjerdi
- Department of Anatomical Sciences and Molecular Biology, Medical School, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Valiani
- Department of Anatomical Sciences and Molecular Biology, Medical School, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ebrahim Esfandiari
- Department of Anatomical Sciences and Molecular Biology, Medical School, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Masumeh Sanaei
- Department of Anatomical Sciences, Medical School, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Mazdak Ganjalikhani Hakemi
- Cellular and Molecular Immunology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
24
|
Russo M, Russo GL, Daglia M, Kasi PD, Ravi S, Nabavi SF, Nabavi SM. Understanding genistein in cancer: The "good" and the "bad" effects: A review. Food Chem 2016; 196:589-600. [PMID: 26593532 DOI: 10.1016/j.foodchem.2015.09.085] [Citation(s) in RCA: 159] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 08/29/2015] [Accepted: 09/23/2015] [Indexed: 02/07/2023]
Abstract
Nowadays, diet and specific dietary supplements are seen as potential adjuvants to prevent different chronic diseases, including cancer, or to ameliorate pharmacological therapies. Soybean is one of the most important food components in Asian diet. A plethora of evidence supports the in vitro and in vivo anticancer effects of genistein, a soybean isoflavone. Major tumors affected by genistein here reviewed are breast, prostate, colon, liver, ovarian, bladder, gastric, brain cancers, neuroblastoma and chronic lymphocytic leukemia. However, it is not always clear if and when genistein is beneficial against tumors (the "good" effects), or the opposite, when the same molecule exerts adverse effects (the "bad" effects), favouring cancer cell proliferation. This review will critically evaluate this concept in the light of the different molecular mechanisms of genistein which occur when the molecule is administered at low doses (chemopreventive effects), or at high doses (pharmacological effects).
Collapse
Affiliation(s)
- Maria Russo
- Institute of Food Sciences, National Research Council, 83100 Avellino, Italy.
| | - Gian Luigi Russo
- Institute of Food Sciences, National Research Council, 83100 Avellino, Italy
| | - Maria Daglia
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, 27100 Pavia, Italy
| | - Pandima Devi Kasi
- Department of Biotechnology, Alagappa University, Karaikudi 630 004, Tamil Nadu, India.
| | - Sakthivel Ravi
- Department of Biotechnology, Alagappa University, Karaikudi 630 004, Tamil Nadu, India
| | - Seyed Fazel Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
25
|
Novel Investigations of Flavonoids as Chemopreventive Agents for Hepatocellular Carcinoma. BIOMED RESEARCH INTERNATIONAL 2015; 2015:840542. [PMID: 26858957 PMCID: PMC4695650 DOI: 10.1155/2015/840542] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 10/19/2015] [Indexed: 12/16/2022]
Abstract
We would like to highlight the application of natural products to hepatocellular carcinoma (HCC). We will focus on the natural products known as flavonoids, which target this disease at different stages of hepatocarcinogenesis. In spite of the use of chemotherapy and radiotherapy in treating HCC, patients with HCC still face poor prognosis because of the nature of multidrug resistance and toxicity derived from chemotherapy and radiotherapy. Flavonoids can be found in many vegetables, fruits, and herbal medicines that exert their different anticancer effects via different intracellular signaling pathways and serve as antioxidants. In this review, we will discuss seven common flavonoids that exert different biological effects against HCC via different pathways.
Collapse
|
26
|
Spagnuolo C, Russo GL, Orhan IE, Habtemariam S, Daglia M, Sureda A, Nabavi SF, Devi KP, Loizzo MR, Tundis R, Nabavi SM. Genistein and cancer: current status, challenges, and future directions. Adv Nutr 2015; 6:408-19. [PMID: 26178025 PMCID: PMC4496735 DOI: 10.3945/an.114.008052] [Citation(s) in RCA: 350] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Primary prevention through lifestyle interventions is a cost-effective alternative for preventing a large burden of chronic and degenerative diseases, including cancer, which is one of the leading causes of morbidity and mortality worldwide. In the past decade, epidemiologic and preclinical evidence suggested that polyphenolic phytochemicals present in many plant foods possess chemopreventive properties against several cancer forms. Thus, there has been increasing interest in the potential cancer chemopreventive agents obtained from natural sources, such as polyphenols, that may represent a new, affordable approach to curb the increasing burden of cancer throughout the world. Several epidemiologic studies showed a relation between a soy-rich diet and cancer prevention, which was attributed to the presence of a phenolic compound, genistein, present in soy-based foods. Genistein acts as a chemotherapeutic agent against different types of cancer, mainly by altering apoptosis, the cell cycle, and angiogenesis and inhibiting metastasis. Targeting caspases, B cell lymphoma 2 (Bcl-2)-associated X protein (Bax), Bcl-2, kinesin-like protein 20A (KIF20A), extracellular signal-regulated kinase 1/2 (ERK1/2), nuclear transcription factor κB (NF-κB), mitogen-activated protein kinase (MAPK), inhibitor of NF-κB (IκB), Wingless and integration 1 β-catenin (Wnt/β-catenin), and phosphoinositide 3 kinase/Akt (PI3K/Akt) signaling pathways may act as the molecular mechanisms of the anticancer, therapeutic effects of genistein. Genistein also shows synergistic behavior with well-known anticancer drugs, such as adriamycin, docetaxel, and tamoxifen, suggesting a potential role in combination therapy. This review critically analyzes the available literature on the therapeutic role of genistein on different types of cancer, focusing on its chemical features, plant food sources, bioavailability, and safety.
Collapse
Affiliation(s)
- Carmela Spagnuolo
- Institute of Food Sciences, National Research Council, Avellino, Italy
| | - Gian Luigi Russo
- Institute of Food Sciences, National Research Council, Avellino, Italy;
| | - Ilkay Erdogan Orhan
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - Solomon Habtemariam
- Pharmacognosy Research Laboratories, Medway School of Science, University of Greenwich, Chatham-Maritime, United Kingdom
| | - Maria Daglia
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Pavia, Italy
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress and CIBERobn (Physiopathology of Obesity and Nutrition), University of Balearic Islands, Palma de Mallorca, Spain
| | - Seyed Fazel Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Kasi Pandima Devi
- Department of Biotechnology, Alagappa University, Karaikudi, Tamil Nadu, India; and
| | - Monica Rosa Loizzo
- Department of Pharmacy, Health, and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Rosa Tundis
- Department of Pharmacy, Health, and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran;
| |
Collapse
|
27
|
Li C, Wu X, Zhang H, Yang G, Hao M, Sheng S, Sun Y, Long J, Hu C, Sun X, Li L, Zheng J. A Huaier polysaccharide reduced metastasis of human hepatocellular carcinoma SMMC-7721 cells via modulating AUF-1 signaling pathway. Tumour Biol 2015; 36:6285-93. [PMID: 25787750 DOI: 10.1007/s13277-015-3314-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Accepted: 03/05/2015] [Indexed: 01/22/2023] Open
Abstract
TP-1 is a polysaccharide from one famous fungus Huaier. Treatment with TP-1 significantly inhibited the cell growth, adhesion, migration, and motility of SMMC-7721 cells in a dose-dependent manner. Real-time quantitative RT-PCR revealed a dose-dependent decrease in RNA-binding factor 1 (AUF-1) and astrocyte elevated gene-1 (AEG-1) messenger RNA (mRNA) levels in TP-1-treated SMMC-7721 cells, which is consistent with their protein expression detected by Western blotting. On the contrary, microRNA-122 (miR-122) expression increased in SMMC-7721 cells following TP-1 treatment. Moreover, TP-1 treatment at three doses apparently increased epithelial marker E-cadherin protein expression but decreased the mesenchymal marker N-cadherin protein level. In addition, the hematoxylin-eosin (H & E) staining showed that the TP-1 significantly inhibited the lung metastasis of liver cancer in mice orthotopic implanted with SMMC-7721 tumor tissue. Taken together, these findings proved the inhibitory effect of TP-1 on the growth and metastasis of SMMC-7721 cells, and TP-1 might be offered for future application as a powerful chemopreventive agent against hepatocellular carcinoma (HCC) metastasis.
Collapse
Affiliation(s)
- Cong Li
- Intervention Therapy Center of Liver Diseases, Beijing You An Hospital, Capital Medical University, 100069, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Chen P, Hu MD, Deng XF, Li B. Genistein reinforces the inhibitory effect of Cisplatin on liver cancer recurrence and metastasis after curative hepatectomy. Asian Pac J Cancer Prev 2014; 14:759-64. [PMID: 23621233 DOI: 10.7314/apjcp.2013.14.2.759] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The high recurrence rate after hepatic resection in hepatocellular carcinoma (HCC) is a major obstacle to improving prognosis. The objective of the present study was to explore the function of genistein, a soy-derived isoflavone, in enhancing the inhibitory effect of cisplatin on HCC cell proliferation and on tumor recurrence and metastasis in nude mice after curative hepatectomy. METHODS Proliferation of human HCC cells (HCCLM3) was detected by 3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide (MTT) assay. Synergistic effects of genistein and cisplatin were evaluated with the median-effect formula. Nude mice bearing human HCC xenografts underwent tumour resection (hepatectomy) 10 days post implantation, then received intraperitoneal administration of genistein or cisplatin alone or the combination of the two drugs. 33 days after surgery, recurrent tumours and pulmonary metastasis were evaluated individually. MMP-2 level in recurrent tumours was detected by immunohistochemistry and real-time PCR; MMP-2 expression in HCCLM3 was detected by immunocytochemistry. RESULTS Genistein and cisplatin both suppressed the growth and proliferation of HCCLM3 cells. The two drugs exhibited synergistic effects even at relatively low concentrations. In vivo, mice in the combined genistein and cisplatin group had a smaller volume of liver recurrent tumors and fewer pulmonary metastatic foci compared with single drug treated groups. Cisplatin upregulated the expression of MMP-2 in both recurrent tumours and HCCLM3, while genistein abolished cisplatin-induced MMP-2 expression. CONCLUSIONS Genistein reinforced the inhibitory effect of cisplatin on HCC cell proliferation and tumour recurrence and metastasis after curative hepatectomy in nude mice, possibly through mitigation of cisplatin-induced MMP-2 upregulation.
Collapse
Affiliation(s)
- Peng Chen
- Department of Liver Surgery, West China Hospital of Sichuan University, Chengdu, China
| | | | | | | |
Collapse
|
29
|
Ajdžanović VZ, Medigović IM, Pantelić JB, Milošević VL. Soy isoflavones and cellular mechanics. J Bioenerg Biomembr 2014; 46:99-107. [PMID: 24346760 DOI: 10.1007/s10863-013-9536-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 12/05/2013] [Indexed: 01/30/2023]
Abstract
Soy isoflavones are diphenolic compounds that are frequently used for alternative treatment of ageing symptoms in both genders. They operate at principally two hierarchical levels of functional organization - cellular and molecular, while these 'types' of action appear to have indefinite borders. Soy isoflavone action at the cellular level involves inter alia the effects on cell mechanics. This epigenetic and modular determinant of cell function and fate is defined by: the anchorage to extracellular matrix (ECM) and neighboring cells, cytoskeleton organization, membrane tension and vesicle trafficking. Soy isoflavones have been reported to: (i) generally fashion an inert cell phenotype in some cancers and enhance the cell anchorage in connective tissues, via the effects on ECM proteins, focal adhesion kinases-mediated events and matrix metalloproteinases inhibition; (ii) affect cytoskeleton integrity, the effects being related to Ca(2+) ions fluxes and involving cell retraction or differentiation/proliferation-related variations in mechanical status; (iii) increase, remain "silent" or decrease membrane tension/fluidity, which depends on polarity and a number and arrangement of functional groups in applied isoflavone; (iv) provoke inhibitory effects on vesicle trafficking and exo-/endocytosis, which are usually followed by changed cell morphology. Here we present and discuss the abundance of effects arising from cells' "encounter" with soy isoflavones, focusing on different morphofunctional definers of cell mechanics.
Collapse
Affiliation(s)
- Vladimir Z Ajdžanović
- Department of Cytology, Institute for Biological Research "Siniša Stanković", University of Belgrade, 142 Despot Stefan Blvd., 11060, Belgrade, Serbia,
| | | | | | | |
Collapse
|
30
|
Wang SD, Chen BC, Kao ST, Liu CJ, Yeh CC. Genistein inhibits tumor invasion by suppressing multiple signal transduction pathways in human hepatocellular carcinoma cells. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 14:26. [PMID: 24433534 PMCID: PMC3933236 DOI: 10.1186/1472-6882-14-26] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 01/15/2014] [Indexed: 12/18/2022]
Abstract
BACKGROUND Genistein (Gen) exhibits anti-mutagenic and anti-metastatic activities in hepatoma cell lines. Gen has suppressive effects on tumor growth and angiogenesis in nude mice. Gen suppresses the enzymatic activity of matrix metalloproteinase (MMP)-9; however, the mechanism underlying its anti-invasive activity on hepatocellular carcinoma (HCC) cells is unclear. METHODS In this study, the possible mechanisms underlying Gen-mediated reduction of 12-O-Tetradecanoylphorbol-13-acetate (TPA)-induced cell invasion and inhibition of secreted and cytosolic MMP-9 production in human hepatoma cells (HepG2, Huh-7, and HA22T) and murine embryonic liver cells (BNL CL2) were investigated. RESULTS Gen suppressed MMP-9 transcription by inhibiting activator protein (AP)-1 and nuclear factor-κ B (NF-κB) activity. Gen suppressed TPA-induced AP-1 activity through inhibitory phosphorylation of extracellular signal-related kinase (ERK) and c-Jun N-terminal kinase (JNK) signaling pathways, and TPA-stimulated inhibition of NF-κB nuclear translocation through IκB inhibitory signaling pathways. Moreover, Gen suppressed TPA-induced activation of ERK/phosphatidylinositol 3-kinase/Akt upstream of NF-κB and AP-1. CONCLUSIONS Gen and its inhibition of multiple signal transduction pathways can control the invasiveness and metastatic potential of HCC.
Collapse
Affiliation(s)
- Shulhn-Der Wang
- School of Post-Baccalaureate Chinese Medicine, Collage of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Bor-Chyuan Chen
- Department of Chinese Medicine, Buddhist Dalin Tzu Chi General Hospital, 2 Min-Sheng Road, Dalin Town, Chia-Yi 62247, Taiwan
| | - Shung-Te Kao
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
- Division of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Ching-Ju Liu
- Department of Chinese Medicine, Buddhist Dalin Tzu Chi General Hospital, 2 Min-Sheng Road, Dalin Town, Chia-Yi 62247, Taiwan
| | - Chia-Chou Yeh
- School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien, Taiwan
- Department of Chinese Medicine, Buddhist Dalin Tzu Chi General Hospital, 2 Min-Sheng Road, Dalin Town, Chia-Yi 62247, Taiwan
| |
Collapse
|
31
|
Mei QB, Zhao ZX, Zheng LH, Chen P, Liu D. Genistein inhibits cell proliferation in human colon cancer cell line SW620. Shijie Huaren Xiaohua Zazhi 2013; 21:619-623. [DOI: 10.11569/wcjd.v21.i7.619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the influence of genistein on cell proliferation in human colon cancer cell line SW620.
METHODS: MTT assay, Giemsa staining and Hoechst 33258 fluorescent staining were used to detect the effect of genistein on the growth and morphologic changes of SW620 cells.
RESULTS: Genistein could effectively inhibit the proliferation of SW620 cells in a dose- and time-dependent manner. Under a light microscope, cells treated with genistein showed significantly reduced number, unclear cell membrane and nuclear boundaries, chromatin marginalization, and chromatin segmentation. Under a fluorescence microscope, the nuclei of some cells treated with genistein presented light blue fluorescence and corrugated changes, which were characteristics of apoptotic cells. The nuclei of few cells presented fragmented fluorescence signal. Apoptosis index was 27.18%.
CONCLUSION: Genistein has an obvious inhibitory effect on the proliferation of SW620 cells, and inducing apoptosis may be one of the mechanisms that are related to anticarcinogenic action of genistein.
Collapse
|
32
|
Romagnolo DF, Selmin OI. Flavonoids and cancer prevention: a review of the evidence. J Nutr Gerontol Geriatr 2012; 31:206-38. [PMID: 22888839 DOI: 10.1080/21551197.2012.702534] [Citation(s) in RCA: 218] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The objective of this work is to review data from epidemiological and preclinical studies addressing the potential benefits of diets based on flavonoids for cancer prevention. Flavonoids are subdivided into subclasses including flavonols, flavones, flavanones, flavan-3-ols, anthocyanidins, and isoflavones. Epidemiological studies suggest dietary intake of flavonoids may reduce the risk of tumors of the breast, colon, lung, prostate, and pancreas. However, some studies have reported inconclusive or even harmful associations. A major challenge in the interpretation of epidemiological studies is that most of the data originate from case-control studies and retrospective acquisition of flavonoid intake. Differences in agricultural, sociodemographics, and lifestyle factors contribute to the heterogeneity in the intake of flavonoids among populations residing in the United States, Europe, and Asia. Dose and timing of exposure may influence the anticancer response to flavonoid-rich diets. A limited number of intervention trials of flavonoids have documented cancer preventative effects. Proposed anticancer mechanisms for flavonoids are inhibition of proliferation, inflammation, invasion, metastasis, and activation of apoptosis. Prospective studies with larger sample sizes are needed to develop biomarkers of flavonoid intake and effect. Mechanistic studies are needed to ascertain how flavonoid-rich diets influence gene regulation for cancer prevention.
Collapse
Affiliation(s)
- Donato F Romagnolo
- Department of Nutritional Sciences and University of Arizona Cancer Center, University of Arizona, Tucson, Arizona 85721-0038, USA.
| | | |
Collapse
|
33
|
Chen ZY, Shi M, Peng LX, Wei W, Li XJ, Guo ZX, Li SH, Zhong C, Qian CN, Guo RP. Dovitinib preferentially targets endothelial cells rather than cancer cells for the inhibition of hepatocellular carcinoma growth and metastasis. J Transl Med 2012; 10:245. [PMID: 23228017 PMCID: PMC3552726 DOI: 10.1186/1479-5876-10-245] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2012] [Accepted: 11/19/2012] [Indexed: 01/15/2023] Open
Abstract
Background Dovitinib is a receptor tyrosine kinase (RTK) inhibitor targeting vascular endothelial growth factor receptors, fibroblast growth factor receptors and platelet-derived growth factor receptor β. Dovitinib is currently in clinical trials for the treatment of hepatocellular carcinoma (HCC). Method In this study, we used five HCC cell lines and five endothelial cell lines to validate molecular and cellular targets of dovitinib. Results Tumor growth and pulmonary metastasis were significantly suppressed in an orthotopic HCC model. Immunoblotting revealed that among known dovitinib targets, only PDGFR-β was expressed in two HCC cell lines, while four of five endothelial lines expressed PDGFR-β, FGFR-1, and VEGFR-2. Dovitinib inhibited endothelial cell proliferation and motility at 0.04 μmol/L, a pharmacologically relevant concentration; it was unable to inhibit the proliferation or motility of HCC cells at the same concentration. Immunohistochemical analyses showed that dovitinib significantly decreased the microvessel density of xenograft tumors, inhibiting proliferation and inducing apoptosis in HCC cells. Conclusion Our findings indicate that dovitinib inhibits HCC growth and metastasis preferentially through an antiangiogenic mechanism, not through direct targeting of HCC cells.
Collapse
Affiliation(s)
- Zhi-Yuan Chen
- Department of Hepatobiliary Surgery, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Liu D, Zhao ZX. Genistein combined with 5-FU inhibits cell proliferation in human hepatocellular cancer cell line MHCC97-L. Shijie Huaren Xiaohua Zazhi 2012; 20:2474-2478. [DOI: 10.11569/wcjd.v20.i26.2474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To explore whether genistein and 5-FU has synergistic inhibitory effect on the proliferation of human hepatic cancer cells (MHCC97-L).
METHODS: MTT method was used to assay the biological activities of different concentrations of genistein and 5-FU in MHCC97-L cells. The inverted microscope was used to observe the influence of combined genistein and 5-FU on the morphological changes of MHCC97-L cells. After the cells were stained with Hoechst 33342 and observed under a fluorescence microscope, apoptosis index was calculated.
RESULTS: Both genistein and 5-FU could effectively inhibit the proliferation of MHCC97-L cells in a dose- and time-dependent manner. When used alone, the IC50 (48 h) of genistein and 5-FU for MHCC97-L cells was 174.17 μmol/L and 40.02 μmol/L, respectively. When used in combination, the IC50 of genistein and 5-FU was 66.03 μmol/L and 16.51 μmol/L. The cell density in the combination group was lower than the two monotherapy groups. Morphologic characteristics of apoptotic cells, such as cytoplasmic clouding, cell shrinkage and cytoplasmic vacuolation, were observed. Typical apoptosis was confirmed by fluorescence microscopy. The apoptosis index was 17.55% in the genistein group, 15.63 in the 5-FU group, and 30.38% in the combination group.
CONCLUSION: Genistein and 5-FU can exert synergistic inhibitory effects on the growth of MHCC97-L cells possibly via mechanism associated with inducing apoptosis.
Collapse
|
35
|
Stagos D, Amoutzias GD, Matakos A, Spyrou A, Tsatsakis AM, Kouretas D. Chemoprevention of liver cancer by plant polyphenols. Food Chem Toxicol 2012; 50:2155-70. [DOI: 10.1016/j.fct.2012.04.002] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 03/31/2012] [Accepted: 04/02/2012] [Indexed: 02/07/2023]
|
36
|
The effects of short-term genistein intervention on prostate biomarker expression in patients with localised prostate cancer before radical prostatectomy. Br J Nutr 2012; 108:2138-47. [PMID: 22397815 DOI: 10.1017/s0007114512000384] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Nutritionally relevant levels of genistein, the predominant isoflavone in soyabean associated with lower risk of prostate cancer (PCa), may modulate the expression of prostate tissue biomarkers associated with cancer prediction and progression. A phase 2 placebo-controlled, randomised, double-blind clinical trial was conducted in forty-seven Norwegian patients before prostatectomy. Intervention was 30 mg genistein or placebo capsules daily for 3-6 weeks. Luminal cells from malignant and benign glands were isolated with laser capture microdissection and the mRNA levels of androgen-related biomarkers (androgen receptor, NK3 homeobox 1, kallikrein-related peptide 4 (KLK4)) and cell cycle-related genes (p21 Waf1/Cip1 , p27 Kip1 , p53) were analysed with real-time semiquantitative PCR. Immunohistochemistry of androgen-, cell cycle-, proliferative- (Ki67 nuclear antigen), apoptotic- (B-cell CLL/lymphoma 2 (BCL-2) and BCL-2-associated X protein) and neuroendocrine differentiation-related biomarkers (neuron-specific enolase and cytoplasmic chromogranin A) was performed using tissue microarrays containing normal, Gleason grade 3 and grade 4 prostate tissues. There were no significant effects by genistein intervention on proliferation-, cell cycle-, apoptosis- or neuroendocrine biomarkers. Genistein intervention, however, significantly reduced the mRNA level of KLK4 in tumour cells (P = 0·033) and there was a non-significant reduction in androgen and cell cycle-related biomarkers, except for p27Kip1, whose expression in the nuclear compartment was increased. Genistein intervention modulated the expression of several biomarkers which may be related to PCa prediction and progression. The present study supports genistein as a chemopreventive agent in PCa. Further investigation is warranted in larger and longer-duration studies.
Collapse
|
37
|
|
38
|
Abstract
A high intake of fruits and vegetables is associated with a lower risk of cancer. In this context, considerable attention is paid to Asian populations who consume high amounts of soy and soy-derived isoflavones, and have a lower risk for several cancer types such as breast and prostate cancers than populations in Western countries. Hence, interest focuses on soyfoods, soy products, and soy ingredients such as isoflavones with regard to their possible beneficial effects that were observed in numerous experiments and studies. The outcomes of the studies are not always conclusive, are often contradictory depending on the experimental conditions, and are, therefore, difficult to interpret. Isoflavone research revealed not only beneficial but also adverse effects, for instance, on the reproductive system. This is also the case with tumor-promoting effects on, for example, breast tissue. Isoflavone extracts and supplements are often used for the treatment of menopausal symptoms and for the prevention of age-associated conditions such as cardiovascular diseases and osteoporosis in postmenopausal women. In relation to this, questions about the effectiveness and safety of isoflavones have to be clarified. Moreover, there are concerns about the maternal consumption of isoflavones due to the development of leukemia in infants. In contrast, men may benefit from the intake of isoflavones with regard to reducing the risk of prostate cancer. Therefore, this review examines the risks but also the benefits of isoflavones with regard to various kinds of cancer, which can be derived from animal and human studies as well as from in vitro experiments.
Collapse
Affiliation(s)
- Susanne Andres
- Department of Food Safety, Federal Institute for Risk Assessment, Berlin, Germany
| | | | | | | |
Collapse
|
39
|
Abstract
Carcinogenesis is a multi-step process which could be prevented by phytochemicals. Phytochemicals from dietary plants and other plant sources such as herbs are becoming increasingly important sources of anticancer drugs or compounds for cancer chemoprevention or adjuvant chemotherapy. Phytochemicals can prevent cancer initiation, promotion, and progression by exerting anti-inflammatory and anti-oxidative stress effects which are mediated by integrated Nrf2, NF-kappaB, and AP-1 signaling pathways. In addition, phytochemicals from herbal medicinal plants and/or some dietary plants developed in recent years have been shown to induce apoptosis in cancer cells and inhibition of tumor growth in vivo. In advanced tumors, a series of changes involving critical signaling molecules that would drive tumor cells undergoing epithelial-mesenchymal transition and becoming invasive. In this review, we will discuss the potential molecular targets and signaling pathways that mediate tumor onset and metastasis. In addition, we will shed light on some of the phytochemicals that are capable of targeting these signaling pathways which would make them potentially applicable to cancer chemoprevention, treatment and control of cancer progression.
Collapse
|
40
|
Abstract
Genistein is a small, biologically active flavonoid that is found in high amounts in soy. This important compound possesses a wide variety of biological activities, but it is best known for its ability to inhibit cancer progression. In particular, genistein has emerged as an important inhibitor of cancer metastasis. Consumption of genistein in the diet has been linked to decreased rates of metastatic cancer in a number of population-based studies. Extensive investigations have been performed to determine the molecular mechanisms underlying genistein's antimetastatic activity, with results indicating that this small molecule has significant inhibitory activity at nearly every step of the metastatic cascade. Reports have demonstrated that, at high concentrations, genistein can inhibit several proteins involved with primary tumor growth and apoptosis, including the cyclin class of cell cycle regulators and the Akt family of proteins. At lower concentrations that are similar to those achieved through dietary consumption, genistein can inhibit the prometastatic processes of cancer cell detachment, migration, and invasion through a variety of mechanisms, including the transforming growth factor (TGF)-beta signaling pathway. Several in vitro findings have been corroborated in both in vivo animal studies and in early-phase human clinical trials, demonstrating that genistein can both inhibit human cancer metastasis and also modulate markers of metastatic potential in humans, respectively. Herein, we discuss the variety of mechanisms by which genistein regulates individual steps of the metastatic cascade and highlight the potential of this natural product as a promising therapeutic inhibitor of metastasis.
Collapse
Affiliation(s)
- Janet M. Pavese
- Department of Medicine, Northwestern University, Lurie 6-105 303 E. Superior, Chicago, IL 60611 USA
- The Robert H. Lurie Cancer Center, Northwestern University, Chicago, IL USA
| | - Rebecca L. Farmer
- Department of Medicine, Northwestern University, Lurie 6-105 303 E. Superior, Chicago, IL 60611 USA
- The Robert H. Lurie Cancer Center, Northwestern University, Chicago, IL USA
- Center for Drug Discovery and Chemical Biology, Northwestern University, Chicago, IL USA
| | - Raymond C. Bergan
- Department of Medicine, Northwestern University, Lurie 6-105 303 E. Superior, Chicago, IL 60611 USA
- The Robert H. Lurie Cancer Center, Northwestern University, Chicago, IL USA
- Center for Drug Discovery and Chemical Biology, Northwestern University, Chicago, IL USA
| |
Collapse
|