1
|
Mohamed FEZA, Dewidar B, Lin T, Ebert MP, Dooley S, Meindl‐Beinker NM, Hammad S. TGFβR1 inhibition drives hepatocellular carcinoma proliferation through induction of toll-like-receptor signalling. Int J Exp Pathol 2024; 105:64-74. [PMID: 38328944 PMCID: PMC10951419 DOI: 10.1111/iep.12501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/18/2023] [Accepted: 01/06/2024] [Indexed: 02/09/2024] Open
Abstract
Transforming growth factor (TGF)-β and toll-like receptors (TLRs) have been shown to independently modulate the proliferation of hepatocellular carcinoma (HCC). Since a direct cross-talk between these two signalling pathways in HCC has not been clearly described before, we aimed here to explore the possibility of such interaction. A human HCC tissue array (n = 20 vs. four control samples), human HCC samples (n = 10) and steatohepatitis-driven murine HCC samples (control, NASH and HCC; n = 6/group) were immunostained for TGFβR1, pSMAD2, TRAF6, IRAK1 and PCNA. The results were confirmed by immunoblotting. Effects of constant activation of the SMAD pathway by constitutive expression of ALK5 or knockdown of mediators of TLR signalling, IRAK1 and MyD88, on HCC proliferation, were investigated in the HCC cell line (HUH-7) after treatment with TGFβ1 cytokine or TGFβR1 kinase inhibitor (LY2157299) using PCNA and MTS assay. TGFβR1 expression is decreased in human and murine HCC and associated with downregulated pSMAD2, but increased IRAK1, TRAF6 and PCNA staining. TGFβR1 kinase inhibition abolished the cytostatic effects of TGFβ1 and led to the induction of IRAK1, pIRAK1 and elevated mRNA levels of TLR-9. Overexpression of ALK5 and knockdown of MyD88 or IRAK1 augmented the cytostatic effects of TGFβ1 on HUH-7. In another epithelial HCC cell line, that is, HepG2, TGFβR1 kinase inhibitor similarly elevated cellular proliferation. There is a balance between the canonical SMAD-driven tumour-suppressing arm and the non-canonical tumour-promoting arm of TGFβ signalling. Disruption of this balance, by inhibition of the canonical pathway, induces HCC proliferation through TLR signalling.
Collapse
Affiliation(s)
- Fatma El Zahraa Ammar Mohamed
- Department of Pathology, Faculty of MedicineMinia UniversityMiniaEgypt
- Molecular Hepatology Section, Department of Medicine II, Medical Faculty MannheimHeidelberg UniversityMannheimGermany
| | - Bedair Dewidar
- Molecular Hepatology Section, Department of Medicine II, Medical Faculty MannheimHeidelberg UniversityMannheimGermany
- Department of Pharmacology and Toxicology, Faculty of PharmacyTanta UniversityTantaEgypt
- Institute for Clinical Diabetology, German Diabetes CenterLeibniz Center for Diabetes Research at Heinrich‐Heine‐University DüsseldorfDüsseldorfGermany
| | - Tao Lin
- Molecular Hepatology Section, Department of Medicine II, Medical Faculty MannheimHeidelberg UniversityMannheimGermany
| | - Matthias P. Ebert
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty MannheimHeidelberg UniversityMannheimGermany
- Mannheim Institute for Innate Immunoscience (MI3), University Medical Center Mannheim, Medical Faculty MannheimHeidelberg UniversityMannheimGermany
- Clinical Cooperation Unit Healthy Metabolism, Center of Preventive Medicine and Digital Health, University Medical Center Mannheim, Medical Faculty MannheimHeidelberg UniversityMannheimGermany
| | - Steven Dooley
- Molecular Hepatology Section, Department of Medicine II, Medical Faculty MannheimHeidelberg UniversityMannheimGermany
| | - Nadja M. Meindl‐Beinker
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty MannheimHeidelberg UniversityMannheimGermany
| | - Seddik Hammad
- Molecular Hepatology Section, Department of Medicine II, Medical Faculty MannheimHeidelberg UniversityMannheimGermany
| |
Collapse
|
2
|
Yu Y, Liu Q, Ran Q, Cao F. Overexpression of PPM1B inhibited chemoresistance to temozolomide and proliferation in glioma cells. Cell Biol Int 2024; 48:143-153. [PMID: 37798941 DOI: 10.1002/cbin.12092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 08/02/2023] [Accepted: 09/16/2023] [Indexed: 10/07/2023]
Abstract
Protein phosphatase magnesium-dependent 1B (PPM1B) functions as IKKβ phosphatases to terminate nuclear factor kappa B (NF-κB) signaling. NF-κB signaling was constitutively activated in glioma cells. At present, little is known about the role of PPM1B in glioma. In the current study, we found that the expression of PPM1B was reduced in glioma tissues and cells, and decreased expression of PPM1B was related to poor overall survival of patients. Overexpression of PPM1B inhibited the proliferation and promoted apoptosis of glioma cells. Moreover, PPM1B overexpression reduced the phosphorylation of IKKβ and inhibited the nuclear localization of NF-κBp65. PDTC, an inhibitor of NF-κB signaling, reversed PPM1B-knockdown-induced cell proliferation. Furthermore, overexpression of PPM1B enhanced the sensitivity of glioma cells to temozolomide. In vivo experiments showed that overexpression of PPM1B could inhibit tumor growth, improve the survival rate of nude mice, and enhance the sensitivity to temozolomide. In conclusion, PPM1B suppressed glioma cell proliferation and the IKKβ-NF-κB signaling pathway, and enhanced temozolomide sensitivity of glioma cells.
Collapse
Affiliation(s)
- Yunhu Yu
- Neurosurgery Department, People's Hospital of Honghuagang District of Zunyi, Zunyi, China
- Department of Neurosurgery, The Third Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Qian Liu
- Department of Neurosurgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Qishan Ran
- Department of Neurosurgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Fang Cao
- Department of Neurosurgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
3
|
Wang Y, Guan T, Zhou G, Zhao H, Gao J. SOJNMF: Identifying Multidimensional Molecular Regulatory Modules by Sparse Orthogonality-Regularized Joint Non-Negative Matrix Factorization Algorithm. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:3695-3703. [PMID: 34546925 DOI: 10.1109/tcbb.2021.3114146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Cancer is not only a very aggressive but also a very diverse disease. Recent advances in high-throughput omics technologies of cancer have enabled biomedical researchers to have more opportunities for studying its multi-level biological regulatory mechanism. However, there are few methods to explore the underlying mechanism of cancer by identifying its multidimensional molecular regulatory modules from the multidimensional omics data of cancer. In this paper, we propose a sparse orthogonality-regularized joint non-negative matrix factorization (SOJNMF) algorithm which can integratively analyze multidimensional omics data. This method can not only identify multidimensional molecular regulatory modules, but reduce the overlap rate of features among the multidimensional modules while ensuring the sparsity of the coefficient matrix after decomposition. Gene expression data, miRNA expression data and gene methylation data of liver cancer are integratively analyzed based on SOJNMF algorithm. Then, we obtain 238 multidimensional molecular regulatory modules. The results of permutation test indicate that different omics features within these modules are significantly correlated in statistics. Meanwhile, the results of functional enrichment analysis show that these multidimensional modules are significantly related to the underlying mechanism of the occurrence and development of liver cancer.
Collapse
|
4
|
Wang Q, Wang J, Xiang H, Ding P, Wu T, Ji G. The biochemical and clinical implications of phosphatase and tensin homolog deleted on chromosome ten in different cancers. Am J Cancer Res 2021; 11:5833-5855. [PMID: 35018228 PMCID: PMC8727805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 11/08/2021] [Indexed: 06/14/2023] Open
Abstract
Phosphatase and tensin homolog deleted on chromosome ten (PTEN) is widely known as a tumor suppressor gene. It is located on chromosome 10q23 with 200 kb, and has dual activity of both protein and lipid phosphatase. In addition, as a targeted gene in multiple pathways, PTEN has a variety of physiological activities, such as those regulating the cell cycle, inducing cell apoptosis, and inhibiting cell invasion, etc. The PTEN gene have been identified in many kinds of cancers due to its mutations, deletions and inactivation, such as lung cancer, liver cancer, and breast cancer, and they are closely connected with the genesis and progression of cancers. To a large extent, the tumor suppressive function of PTEN is realized through its inhibition of the PI3K/AKT signaling pathway which controls cells apoptosis and development. In addition, PTEN loss has been associated with the prognosis of many cancers, such as lung cancer, liver cancer, and breast cancer. PTEN gene is related to many cancers and their pathological development. On the basis of a large number of related studies, this study describes in detail the structure, regulation, function and classical signal pathways of PTEN, as well as the relationship between various tumors related to PTEN. In addition, some drug studies targeting PTEN/PI3K/AKT/mTOR are also introduced in order to provide some directions for experimental research and clinical treatment of tumors.
Collapse
Affiliation(s)
- Qinyi Wang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese MedicineShanghai 201203, China
| | - Junmin Wang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese MedicineShanghai 201203, China
| | - Hongjiao Xiang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese MedicineShanghai 201203, China
| | - Peilun Ding
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese MedicineShanghai 201203, China
| | - Tao Wu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese MedicineShanghai 201203, China
| | - Guang Ji
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese MedicineShanghai 200032, China
| |
Collapse
|
5
|
Luo Z, Chen S, Chen X. CircMAPK9 promotes the progression of fibroblast-like synoviocytes in rheumatoid arthritis via the miR-140-3p/PPM1A axis. J Orthop Surg Res 2021; 16:395. [PMID: 34154607 PMCID: PMC8215771 DOI: 10.1186/s13018-021-02550-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 06/10/2021] [Indexed: 12/12/2022] Open
Abstract
Background Rheumatoid arthritis (RA) is a chronic inflammatory joint disease, and fibroblast-like synoviocytes (FLSs) are key effector cells in RA development. Mounting evidence indicates that circular RNAs (circRNAs) participate in the occurrence and development of RA. However, the precise mechanism of circRNA mitogen-activated protein kinase (circMAPK9) in the cell processes of FLSs has not been reported. Methods The expression levels of circMAPK9, microRNA-140-3p (miR-140-3p), and protein phosphatase magnesium-dependent 1A (PPM1A) were determined by quantitative real-time polymerase chain reaction (qRT-PCR) or western blot assay. Cell proliferation was examined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Cell apoptosis and cycle distribution were assessed by flow cytometry. Cell migration and invasion were tested by transwell assay. All the proteins were inspected by western blot assay. Inflammatory response was evaluated by enzyme-linked immunosorbent assay (ELISA). The interaction between miR-140-3p and circMAPK9 or PPM1A was verified by dual-luciferase reporter assay. Results CircMAPK9 and PPM1A were upregulated and miR-140-3p was downregulated in RA patients and FLSs from RA patients (RA-FLSs). CircMAPK9 silence suppressed cell proliferation, migration, invasion, inflammatory response, and promoted apoptosis in RA-FLSs. MiR-140-3p was a target of circMAPK9, and miR-140-3p downregulation attenuated the effects of circMAPK9 knockdown on cell progression and inflammatory response in RA-FLSs. PPM1A was targeted by miR-140-3p, and circMAPK9 could regulate PPM1A expression by sponging miR-140-3p. Furthermore, miR-140-3p could impede cell biological behaviors in RA-FLSs via targeting PPM1A. Conclusion CircMAPK9 knockdown might inhibit cell proliferation, migration, invasion, inflammatory response, and facilitate apoptosis in RA-FLSs via regulating miR-140-3p/PPM1A axis, offering a new mechanism for the comprehension of RA development and a new insight into the potential application of circMAPK9 in RA treatment.
Collapse
Affiliation(s)
- Zhihuan Luo
- Department of Sports Medical, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou People's Hospital, No.17 Hongqi Avenue, Zhanggong District, Ganzhou City, 341000, Jiangxi Province, China
| | - Shaojian Chen
- Department of Sports Medical, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou People's Hospital, No.17 Hongqi Avenue, Zhanggong District, Ganzhou City, 341000, Jiangxi Province, China.
| | - Xiaguang Chen
- Department of Sports Medical, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou People's Hospital, No.17 Hongqi Avenue, Zhanggong District, Ganzhou City, 341000, Jiangxi Province, China
| |
Collapse
|
6
|
Lee B, Song YS, Rhodes C, Goh TS, Roh JS, Jeong H, Park J, Lee HN, Lee SG, Kim S, Kim M, Lee SI, Sohn DH, Robinson WH. Protein phosphatase magnesium-dependent 1A induces inflammation in rheumatoid arthritis. Biochem Biophys Res Commun 2019; 522:731-735. [PMID: 31791585 DOI: 10.1016/j.bbrc.2019.11.112] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 11/17/2019] [Indexed: 12/29/2022]
Abstract
Rheumatoid arthritis (RA) is a highly inflammatory autoimmune disease. Although proinflammatory cytokines, including tumor necrosis factor (TNF) and interleukin (IL)-6, play a key role in the pathogenesis of RA, the causes of chronic inflammation are not fully understood. Here, we report that protein phosphatase magnesium-dependent 1A (PPM1A) levels were increased in RA synovial fluid compared with osteoarthritis (OA) synovial fluid and positively correlated with TNF levels. In addition, PPM1A expression was increased in synovial tissue from RA patients and joint tissue from a mouse model of arthritis. Finally, extracellular PPM1A induced inflammation by stimulating macrophages to produce TNF through toll-like receptor 4 (TLR4) and myeloid differentiation primary response protein 88 (MyD88) signaling pathway. Our findings suggest that extracellular PPM1A may contribute to the pathogenesis of RA by functioning as a damage-associated molecular pattern (DAMP) to induce inflammation.
Collapse
Affiliation(s)
- Beomgu Lee
- Department of Microbiology and Immunology, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - You Seon Song
- Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea; Department of Radiology, Pusan National University Hospital, Busan, Republic of Korea
| | - Christopher Rhodes
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA; VA Palo Alto Health Care System, Palo Alto, CA, 94304, USA
| | - Tae Sik Goh
- Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea; Department of Orthopaedic Surgery, Pusan National University Hospital, Busan, Republic of Korea
| | - Jong Seong Roh
- Department of Microbiology and Immunology, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Hoim Jeong
- Department of Microbiology and Immunology, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Jisu Park
- Department of Microbiology and Immunology, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Han-Na Lee
- Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea; Division of Rheumatology, Department of Internal Medicine, Pusan National University School of Medicine, Pusan National University Hospital, Busan, Republic of Korea
| | - Seung-Geun Lee
- Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea; Division of Rheumatology, Department of Internal Medicine, Pusan National University School of Medicine, Pusan National University Hospital, Busan, Republic of Korea
| | - Soohyun Kim
- College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Mingyo Kim
- Division of Rheumatology, Department of Internal Medicine, Gyeongsang National University School of Medicine and Hospital, Jinju, Republic of Korea
| | - Sang-Il Lee
- Division of Rheumatology, Department of Internal Medicine, Gyeongsang National University School of Medicine and Hospital, Jinju, Republic of Korea
| | - Dong Hyun Sohn
- Department of Microbiology and Immunology, Pusan National University School of Medicine, Yangsan, Republic of Korea.
| | - William H Robinson
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA; VA Palo Alto Health Care System, Palo Alto, CA, 94304, USA.
| |
Collapse
|
7
|
Mazumdar A, Tahaney WM, Reddy Bollu L, Poage G, Hill J, Zhang Y, Mills GB, Brown PH. The phosphatase PPM1A inhibits triple negative breast cancer growth by blocking cell cycle progression. NPJ Breast Cancer 2019; 5:22. [PMID: 31372497 PMCID: PMC6659706 DOI: 10.1038/s41523-019-0118-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 06/26/2019] [Indexed: 12/31/2022] Open
Abstract
Estrogen receptor (ER)-negative, progesterone receptor (PR)-negative and HER2-negative, or "triple negative," breast cancer (TNBC) is a poor prognosis clinical subtype that occurs more frequently in younger women and is commonly treated with toxic chemotherapy. Effective targeted therapy for TNBC is urgently needed. Our previous studies have identified several kinases critical for TNBC growth. Since phosphatases regulate the function of kinase signaling pathways, we sought to identify critical growth-regulatory phosphatases that are expressed differentially in ER-negative, as compared to ER-positive, breast cancers. In this study, we examined the role of one of these differentially expressed phosphatases, the protein phosphatase Mg + 2/Mn + 2 dependent 1A (PPM1A) which is underexpressed in ER-negative breast cancer as compared to ER-positive breast cancers, in regulating TNBC growth. We found that PPM1A is deleted in ~40% of ER-negative breast cancers, and that induced expression of PPM1A suppresses in vitro and in vivo growth of TNBC cells. This study demonstrates that induction of PPM1A expression blocks the cell cycle and reduces CDK and Rb phosphorylation. These results suggest PPM1A is a crucial regulator of cell cycle progression in triple negative breast cancer. Our results also suggest that PPM1A loss should be explored as a predictive biomarker of CDK inhibitor sensitivity.
Collapse
Affiliation(s)
- Abhijit Mazumdar
- Department of Clinical Cancer Prevention, The University of Texas M.D. Anderson Cancer Center, Texas, USA
| | - William M. Tahaney
- Department of Clinical Cancer Prevention, The University of Texas M.D. Anderson Cancer Center, Texas, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030 USA
| | - Lakshmi Reddy Bollu
- Department of Clinical Cancer Prevention, The University of Texas M.D. Anderson Cancer Center, Texas, USA
| | | | - Jamal Hill
- Department of Clinical Cancer Prevention, The University of Texas M.D. Anderson Cancer Center, Texas, USA
| | - Yun Zhang
- Department of Clinical Cancer Prevention, The University of Texas M.D. Anderson Cancer Center, Texas, USA
| | - Gordon B. Mills
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Oregon, USA
| | - Powel H. Brown
- Department of Clinical Cancer Prevention, The University of Texas M.D. Anderson Cancer Center, Texas, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030 USA
| |
Collapse
|
8
|
Xu X, Liu M. miR-522 stimulates TGF-β/Smad signaling pathway and promotes osteosarcoma tumorigenesis by targeting PPM1A. J Cell Biochem 2019; 120:18425-18434. [PMID: 31190351 DOI: 10.1002/jcb.29160] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 05/18/2019] [Accepted: 05/23/2019] [Indexed: 12/19/2022]
Abstract
Osteosarcoma (OS) is identified as an aggressive malignancy of the skeletal system and normally occurs among young people. It is well accepted that microRNAs are implicated in biological activities of diverse tumors. Although miR-522 has been proved to elicit oncogenic properties in a wide range of human cancers, the physiological function and latent mechanism of miR-522 in OS tumorigenesis remain largely to be probed. In the current study, we certified that miR-522 was highly expressed in OS cells and presented carcinogenic function by contributing to cell proliferation, migration, and EMT progression whereas dampening cell apoptosis. In addition, miR-522 provoked TGF-β/Smad pathway through targeting PPM1A. Finally, the results of mechanism experiments elucidated that miR-522 stimulated TGF-β/Smad pathway to induce the development of OS via targeting PPM1A, which exposed that miR-522 may become a promising curative target for OS patients.
Collapse
Affiliation(s)
- Xiqiang Xu
- Department of Spine Surgery, Shandong Provincial Hospital affiliated to Shandong University, Jinan, China
| | - Mengmeng Liu
- Department of Anesthesiology, Shandong Provincial Hospital affiliated to Shandong University, Jinan, China
| |
Collapse
|
9
|
Kim SS, Eun JW, Cho HJ, Lee HY, Seo CW, Lee GH, Yoon SY, Noh CK, Cho SW, Cheong JY. Effect of PTEN Polymorphism on the Development of Hepatitis B Virus-associated Hepatocellular Carcinoma. ACTA ACUST UNITED AC 2019. [DOI: 10.17998/jlc.19.1.46] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
10
|
Lee G, Jeong YS, Kim DW, Kwak MJ, Koh J, Joo EW, Lee JS, Kah S, Sim YE, Yim SY. Clinical significance of APOB inactivation in hepatocellular carcinoma. Exp Mol Med 2018; 50:1-12. [PMID: 30429453 PMCID: PMC6235894 DOI: 10.1038/s12276-018-0174-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 07/03/2018] [Accepted: 07/18/2018] [Indexed: 12/19/2022] Open
Abstract
Recent findings from The Cancer Genome Atlas project have provided a comprehensive map of genomic alterations that occur in hepatocellular carcinoma (HCC), including unexpected mutations in apolipoprotein B (APOB). We aimed to determine the clinical significance of this non-oncogenetic mutation in HCC. An Apob gene signature was derived from genes that differed between control mice and mice treated with siRNA specific for Apob (1.5-fold difference; P < 0.005). Human gene expression data were collected from four independent HCC cohorts (n = 941). A prediction model was constructed using Bayesian compound covariate prediction, and the robustness of the APOB gene signature was validated in HCC cohorts. The correlation of the APOB signature with previously validated gene signatures was performed, and network analysis was conducted using ingenuity pathway analysis. APOB inactivation was associated with poor prognosis when the APOB gene signature was applied in all human HCC cohorts. Poor prognosis with APOB inactivation was consistently observed through cross-validation with previously reported gene signatures (NCIP A, HS, high-recurrence SNUR, and high RS subtypes). Knowledge-based gene network analysis using genes that differed between low-APOB and high-APOB groups in all four cohorts revealed that low-APOB activity was associated with upregulation of oncogenic and metastatic regulators, such as HGF, MTIF, ERBB2, FOXM1, and CD44, and inhibition of tumor suppressors, such as TP53 and PTEN. In conclusion, APOB inactivation is associated with poor outcome in patients with HCC, and APOB may play a role in regulating multiple genes involved in HCC development.
Collapse
Affiliation(s)
- Gena Lee
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yun Seong Jeong
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Do Won Kim
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Min Jun Kwak
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jiwon Koh
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Eun Wook Joo
- Department of Gynecology, School of Medicine, Kyung Hee University, Seoul, Korea
| | - Ju-Seog Lee
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Susie Kah
- Department of Internal Medicine, School of Medicine, Kyung Hee University, Seoul, Korea
| | - Yeong-Eun Sim
- Department of Internal Medicine, School of Medicine, Kyung Hee University, Seoul, Korea
| | - Sun Young Yim
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA. .,Department of Internal Medicine, Korea University, College of Medicine, Seoul, Korea.
| |
Collapse
|
11
|
Moussa MM, Helal NS, Youssef MM. Significance of pSmad2/3 and Smad4 in hepatitis C virus-related liver fibrosis and hepatocellular carcinoma. APMIS 2018; 126:477-485. [PMID: 29924446 DOI: 10.1111/apm.12844] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 04/17/2018] [Indexed: 12/18/2022]
Abstract
Chronic hepatitis C (CHC) is a major public health problem, especially in Egypt. Risk of hepatocellular carcinoma (HCC) development increases as hepatitis C virus (HCV)-related liver diseases progress. Smads act as substrates for the transforming growth factor-beta (TGF-β) family of receptors. This study aims to assess hepatic expression of pSmad2/3 and Smad4 in CHC with different stages of fibrosis and grades of necro-inflammation as well as in HCC on top of CHC. This study was done on 33 core liver biopsies from patients with CHC (15 with early fibrosis and 18 with late fibrosis), 15 liver specimens from HCC cases on top of CHC, as well as five normal controls. pSmad2/3 and Smad4 show more immunopositivity, higher percentage of positive hepatocytes and stronger staining intensity in CHC with late fibrosis compared to early fibrosis. pSmad2/3 shows increase of the previous parameters in CHC with high grade activity than those with low activity. Smad4 shows increase of the previous parameters in HCC compared to CHC cases. pSmad2/3 and Smad4 can be used as diagnostic and/or prognostic markers for progression of HCV-related fibrosis to cirrhosis and further progression to HCC.
Collapse
Affiliation(s)
| | - Noha Said Helal
- Pathology Department, Theodor Bilharz Research Institute, Imbaba, Giza, Egypt
| | - Mohieldin Magdy Youssef
- Pharmacology and Toxicology Department, Egyptian-Russian University, Cairo, Egypt.,Graduate School, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| |
Collapse
|
12
|
Soliman B, Salem A, Ghazy M, Abu-Shahba N, El Hefnawi M. Bioinformatics functional analysis of let-7a, miR-34a, and miR-199a/b reveals novel insights into immune system pathways and cancer hallmarks for hepatocellular carcinoma. Tumour Biol 2018; 40:1010428318773675. [PMID: 29775159 DOI: 10.1177/1010428318773675] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Let-7a, miR-34a, and miR-199 a/b have gained a great attention as master regulators for cellular processes. In particular, these three micro-RNAs act as potential onco-suppressors for hepatocellular carcinoma. Bioinformatics can reveal the functionality of these micro-RNAs through target prediction and functional annotation analysis. In the current study, in silico analysis using innovative servers (miRror Suite, DAVID, miRGator V3.0, GeneTrail) has demonstrated the combinatorial and the individual target genes of these micro-RNAs and further explored their roles in hepatocellular carcinoma progression. There were 87 common target messenger RNAs (p ≤ 0.05) that were predicted to be regulated by the three micro-RNAs using miRror 2.0 target prediction tool. In addition, the functional enrichment analysis of these targets that was performed by DAVID functional annotation and REACTOME tools revealed two major immune-related pathways, eight hepatocellular carcinoma hallmarks-linked pathways, and two pathways that mediate interconnected processes between immune system and hepatocellular carcinoma hallmarks. Moreover, protein-protein interaction network for the predicted common targets was obtained by using STRING database. The individual analysis of target genes and pathways for the three micro-RNAs of interest using miRGator V3.0 and GeneTrail servers revealed some novel predicted target oncogenes such as SOX4, which we validated experimentally, in addition to some regulated pathways of immune system and hepatocarcinogenesis such as insulin signaling pathway and adipocytokine signaling pathway. In general, our results demonstrate that let-7a, miR-34a, and miR-199 a/b have novel interactions in different immune system pathways and major hepatocellular carcinoma hallmarks. Thus, our findings shed more light on the roles of these miRNAs as cancer silencers.
Collapse
Affiliation(s)
- Bangly Soliman
- 1 Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt.,2 Informatics and Systems Department, Biomedical Informatics and Chemo-Informatics Group, Centre of Excellence for Advanced Sciences (CEAS), Division of Engineering Research, National Research Centre, Cairo, Egypt
| | - Ahmed Salem
- 1 Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Mohamed Ghazy
- 1 Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Nourhan Abu-Shahba
- 3 Stem Cells Research Group, Medical Centre of Excellence, Medical Molecular Genetics Department, National Research Centre, Cairo, Egypt
| | - Mahmoud El Hefnawi
- 2 Informatics and Systems Department, Biomedical Informatics and Chemo-Informatics Group, Centre of Excellence for Advanced Sciences (CEAS), Division of Engineering Research, National Research Centre, Cairo, Egypt.,4 Centre for Informatics, Nile University, Sheikh Zayed City, Egypt
| |
Collapse
|
13
|
Liu Y, Xu Y, Ma H, Wang B, Xu L, Zhang H, Song X, Gao L, Liang X, Ma C. Hepatitis B virus X protein amplifies TGF-β promotion on HCC motility through down-regulating PPM1a. Oncotarget 2018; 7:33125-35. [PMID: 27121309 PMCID: PMC5078080 DOI: 10.18632/oncotarget.8884] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 04/02/2016] [Indexed: 12/26/2022] Open
Abstract
Over-activation of transforming growth factor-β (TGF-β) signaling pathway promotes cell migration and invasion in hepatocellular carcinoma (HCC). The Hepatitis B virus X protein (HBx) is involved in the enhancement of TGF-β signaling pathway in HCC while the mechanism remains unclear. Protein phosphatase magnesium dependent 1A (PPM1a) functions as a phosphatase essential for terminating the TGF-β signaling pathway by dephosphorylating p-Smad2/3. In this study, we found that HBx dose-dependently downregulated PPM1a protein level in the presence of TGF-β, while having no effect on its mRNA level. Further study showed that HBx increased the ubiquitination of PPM1a and accelerated its proteasomal degradation. Restoration of PPM1a almost completely abrogated HBx mediated promotion on HCC migration and invasion. This involvement of PPM1a in HBx-related HCC was further confirmed with immunohistochemical analysis in HCC tissue. Compared with paired pericarcinous tissue, HCC tissue showed decreased PPM1a level. Besides, PPM1a level is negatively correlated with HBx expression. Taken together, our present study suggests that HBx-induced degradation of PPM1a is a novel mechanism for over-activation of TGF-β pathway in HCC development, which might provide potential candidates for clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Yuan Liu
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, Shandong University School of Medicine, Jinan, Shandong, 250012 P.R. China
| | - Yong Xu
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, Shandong University School of Medicine, Jinan, Shandong, 250012 P.R. China
| | - Hongxin Ma
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, Shandong University School of Medicine, Jinan, Shandong, 250012 P.R. China
| | - Bo Wang
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, Shandong University School of Medicine, Jinan, Shandong, 250012 P.R. China
| | - Leiqi Xu
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, Shandong University School of Medicine, Jinan, Shandong, 250012 P.R. China
| | - Hualin Zhang
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, Shandong University School of Medicine, Jinan, Shandong, 250012 P.R. China
| | - Xiaojia Song
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, Shandong University School of Medicine, Jinan, Shandong, 250012 P.R. China
| | - Lifen Gao
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, Shandong University School of Medicine, Jinan, Shandong, 250012 P.R. China
| | - Xiaohong Liang
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, Shandong University School of Medicine, Jinan, Shandong, 250012 P.R. China
| | - Chunhong Ma
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, Shandong University School of Medicine, Jinan, Shandong, 250012 P.R. China
| |
Collapse
|
14
|
Ao L, Song X, Li X, Tong M, Guo Y, Li J, Li H, Cai H, Li M, Guan Q, Yan H, Guo Z. An individualized prognostic signature and multi‑omics distinction for early stage hepatocellular carcinoma patients with surgical resection. Oncotarget 2018; 7:24097-110. [PMID: 27006471 PMCID: PMC5029687 DOI: 10.18632/oncotarget.8212] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Accepted: 03/02/2016] [Indexed: 12/31/2022] Open
Abstract
Previously reported prognostic signatures for predicting the prognoses of postsurgical hepatocellular carcinoma (HCC) patients are commonly based on predefined risk scores, which are hardly applicable to samples measured by different laboratories. To solve this problem, using gene expression profiles of 170 stage I/II HCC samples, we identified a prognostic signature consisting of 20 gene pairs whose within-sample relative expression orderings (REOs) could robustly predict the disease-free survival and overall survival of HCC patients. This REOs-based prognostic signature was validated in two independent datasets. Functional enrichment analysis showed that the patients with high-risk of recurrence were characterized by the activations of pathways related to cell proliferation and tumor microenvironment, whereas the low-risk patients were characterized by the activations of various metabolism pathways. We further investigated the distinct epigenomic and genomic characteristics of the two prognostic groups using The Cancer Genome Atlas samples with multi-omics data. Epigenetic analysis showed that the transcriptional differences between the two prognostic groups were significantly concordant with DNA methylation alternations. The signaling network analysis identified several key genes (e.g. TP53, MYC) with epigenomic or genomic alternations driving poor prognoses of HCC patients. These results help us understand the multi-omics mechanisms determining the outcomes of HCC patients.
Collapse
Affiliation(s)
- Lu Ao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150086, China.,Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Department of Bioinformatics, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350001, China
| | - Xuekun Song
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150086, China
| | - Xiangyu Li
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Department of Bioinformatics, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350001, China
| | - Mengsha Tong
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Department of Bioinformatics, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350001, China
| | - You Guo
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Department of Bioinformatics, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350001, China
| | - Jing Li
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Department of Bioinformatics, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350001, China
| | - Hongdong Li
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Department of Bioinformatics, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350001, China
| | - Hao Cai
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Department of Bioinformatics, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350001, China
| | - Mengyao Li
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Department of Bioinformatics, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350001, China
| | - Qingzhou Guan
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Department of Bioinformatics, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350001, China
| | - Haidan Yan
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Department of Bioinformatics, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350001, China
| | - Zheng Guo
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150086, China.,Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Department of Bioinformatics, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350001, China
| |
Collapse
|
15
|
Fan J, Yang MX, Ouyang Q, Fu D, Xu Z, Liu X, Mino-Kenudson M, Geng J, Tang F. Phosphatase PPM1A is a novel prognostic marker in pancreatic ductal adenocarcinoma. Hum Pathol 2016; 55:151-158. [PMID: 27195906 DOI: 10.1016/j.humpath.2016.05.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 04/24/2016] [Accepted: 05/05/2016] [Indexed: 01/07/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) harbors complex molecular alterations and remains a lethal disease. Aberrant TGF-β/Smads signaling is a well-known mechanism involved in the progression of PDACs. However, loss of Smad4 expression is reported in only ~50% of PDACs and is generally associated with worse prognosis. Investigating additional prognostic markers is warranted. PPM1A is a phosphatase that dephosphorylates TGF-β-activated Smad2/3 and inactivates the TGF-β signaling. Little is known about the clinical significance of PPM1A in PDACs and its functional relationship to Smad4. In this study, PPM1A and Smad4 immunohistochemistry was assessed in 180 R0 resected human PDACs. PPM1A was lost in 41.7% cases, whereas Smad4 was lost in 45.7% cases. The median survival rate with negative and positive PPM1A was 10.9 and 16.8 months, respectively. Loss of PPM1A was significantly associated with larger tumor size and higher stage and was an independent predictor of unfavorable outcomes. Intriguingly, the overall survival of this cohort was divided into 3 groups based on the expression pattern of PPM1A and Smad4, with the Smad4+/PPM1A+ pattern associated with favorable survival, the Smad4+/PPM1A- or Smad4-/PPM1A- pattern associated with unfavorable, and the PPM1A+/Smad4- pattern fell between these 2 groups. In 82 cases with negative Smad4, PPM1A or P-Smad2/3 expression was retained. Using a SMAD4-deficient human PDAC cell line, BxPC3, we further demonstrated that TGF-β1 treatment induced PPM1A and P-Smad2/3 expression in this cell line. PPM1A and Smad4 immunohistochemistry in surgical specimens may provide more accurate prognostic stratification for patients with PDAC.
Collapse
Affiliation(s)
- Jie Fan
- Department of Pathology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Michelle X Yang
- Department of Pathology, University of Vermont Medical Center, Burlington, VT 05401
| | - Qi Ouyang
- Department of Pathology, Huadong Hospital; Fudan University, Shanghai 200040, China
| | - Deliang Fu
- Department of Pancreatic Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Zude Xu
- Department of Pathology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Xiuping Liu
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Mari Mino-Kenudson
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02114
| | - Jiang Geng
- Department of Urology, Shanghai 10th People's Hospital, Tongji University, Shanghai 200072, China.
| | - Feng Tang
- Department of Pathology, Huashan Hospital, Fudan University, Shanghai 200040, China.
| |
Collapse
|
16
|
Geng J, Fan J, Ouyang Q, Zhang X, Zhang X, Yu J, Xu Z, Li Q, Yao X, Liu X, Zheng J. Loss of PPM1A expression enhances invasion and the epithelial-to-mesenchymal transition in bladder cancer by activating the TGF-β/Smad signaling pathway. Oncotarget 2015; 5:5700-11. [PMID: 25026293 PMCID: PMC4170610 DOI: 10.18632/oncotarget.2144] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The transforming growth factor-β (TGF-β) signaling pathway is believed to contribute to carcinoma development by increasing cell invasiveness and metastasis and inducing the epithelial-to-mesenchymal transition (EMT). Protein phosphatase PPM1A has been reported to dephosphorylate TGF-β-activated Smad2/3, thus inhibiting the TGF-β signaling pathway. In this study, we investigated the role of PPM1A in bladder cancer. PPM1A protein expression was analyzed in 145 bladder cancer specimens. The loss of PPM1A expression was predictive of poor survival and high muscle-invasiveness. PPM1A was more commonly deficient among muscle-invasive relapse samples compared to primary tumors in twenty paired bladder cancer tissues. Functional studies indicated that blockade of PPM1A through lentivirus-mediated RNA interference significantly promoted urinary bladder cancer (BCa) cell motility, the EMT in vitro and metastasis in vivo, and these effects were dependent on the TGF-β/Smad signaling pathway. The increase in p-Smad2/3 induced by TGF-β1 correlated with the degree of PPM1A depletion in BCa cells, which resulted in an altered expression profile of TGF-β-inducible genes. The correlations between PPM1A and biomarkers related to the TGF-β signaling pathway and tumor invasion were also detected in BCa samples. These results demonstrate that loss of PPM1A is associated with the development of tumor invasion in bladder cancer.
Collapse
Affiliation(s)
- Jiang Geng
- Department of Urology, Tenth People's Hospital; Tongji University, Shanghai, China
| | - Jie Fan
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China; Department of Pathology, Huashan Hospital; Fudan University, Shanghai, China
| | - Qi Ouyang
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China; Department of Pathology, Huashan Hospital; Fudan University, Shanghai, China
| | - Xiaopeng Zhang
- Department of Urology, Tenth People's Hospital; Tongji University, Shanghai, China
| | - Xiaolong Zhang
- Department of Urology, Tenth People's Hospital; Tongji University, Shanghai, China
| | - Juan Yu
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Zude Xu
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China; Department of Pathology, Huashan Hospital; Fudan University, Shanghai, China
| | - Qianyu Li
- Department of Pathology, Tenth People's Hospital; Tongji University, Shanghai, China
| | - Xudong Yao
- Department of Urology, Tenth People's Hospital; Tongji University, Shanghai, China
| | - Xiuping Liu
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China; Department of Pathology, Fifth People's Hospital, Fudan University, Shanghai, China
| | - Junhua Zheng
- Department of Urology, Tenth People's Hospital; Tongji University, Shanghai, China
| |
Collapse
|
17
|
Shearn CT, Petersen DR. Understanding the Tumor Suppressor PTEN in Chronic Alcoholism and Hepatocellular Carcinoma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 815:173-84. [DOI: 10.1007/978-3-319-09614-8_10] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
18
|
Protein phosphatase magnesium dependent 1A governs the wound healing-inflammation-angiogenesis cross talk on injury. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:2936-50. [PMID: 25196308 DOI: 10.1016/j.ajpath.2014.07.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 06/25/2014] [Accepted: 07/18/2014] [Indexed: 01/09/2023]
Abstract
Protein phosphatase magnesium dependent 1A (PPM1A) has been implicated in fibrosis and skin wounding. We generated PPM1A knockout mice to study the role of PPM1A in the wound healing-inflammation-angiogenesis cross talk. The role of PPM1A in these processes was studied using the ocular alkali burn model system. In the injured cornea the absence of PPM1A led to enhanced inflammatory response, stromal keratocyte transactivation, fibrosis, increased p38 mitogen-activated protein kinase phosphorylation, elevated expression of transforming growth factor-β-related genes (including Acta2, TGF-β, Col1, MMP9, and VEGF) and subsequently to neovascularization. Augmented angiogenesis in the absence of PPM1A is a general process occurring in vivo in PPM1A knockout mice upon subcutaneous Matrigel injection and ex vivo in aortic ring Matrigel cultures. Using primary keratocyte cultures and various experimental approaches, we found that phospho-p38 is a favored PPM1A substrate and that by its dephosphorylation PPM1A participates in the regulation of the transforming growth factor-β signaling cascade, the hallmark of inflammation and the angiogenic process. On the whole, the studies presented here position PPM1A as a new player in the wound healing-inflammation-angiogenesis axis in mouse, reveal its crucial role in homeostasis on injury, and highlight its potential as a therapeutic mediator in pathologic conditions, such as inflammation and angiogenesis disorders, including cancer.
Collapse
|
19
|
The AKT inhibitor MK-2206 is cytotoxic in hepatocarcinoma cells displaying hyperphosphorylated AKT-1 and synergizes with conventional chemotherapy. Oncotarget 2014; 4:1496-506. [PMID: 24036604 PMCID: PMC3824526 DOI: 10.18632/oncotarget.1236] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common potentially lethal human malignancies worldwide. Advanced or recurrent HCC is frequently resistant to conventional chemotherapeutic agents and radiation. Therefore, targeted agents with tolerable toxicity are mandatory to improve HCC therapy and prognosis. In this neoplasia, the PI3K/Akt signaling network has been frequently shown to be aberrantly up-regulated. To evaluate whether Akt could represent a target for treatment of HCC, we studied the effects of the allosteric Akt inhibitor, MK-2206, on a panel of HCC cell lines characterized by different levels of Akt-1 activation. The inhibitor decreased cell viability and induced cell cycle arrest in the G0/G1 phase of the cell cycle, with a higher efficacy in cells with hyperphosphorylated Akt-1. Moreover, MK-2206 induced apoptosis, as documented by Annexin V labeling, and also caused autophagy, as evidenced by increased levels of the autophagy marker LC3A/B. Autophagy was shown to be a protective mechanism against MK-2206 cytotoxicity. MK-2206 down-regulated, in a concentration-dependent manner, the phosphorylation levels of Akt-1 synergizedand its downstream targets, GSK3 α/β and FOXO3A. MK-2206 synergized with doxorubicin, a chemotherapeutic drug widely used for HCC treatment. Our findings suggest that the use of Akt inhibitors, either alone or in combination with doxorubicin, may be considered as an attractive therapeutic regimen for the treatment of HCC.
Collapse
|
20
|
Bassullu N, Turkmen I, Dayangac M, Yagiz Korkmaz P, Yasar R, Akyildiz M, Yaprak O, Tokat Y, Yuzer Y, Bulbul Dogusoy G. The Predictive and Prognostic Significance of c-erb-B2, EGFR, PTEN, mTOR, PI3K, p27, and ERCC1 Expression in Hepatocellular Carcinoma. HEPATITIS MONTHLY 2012; 12:e7492. [PMID: 23162604 PMCID: PMC3496900 DOI: 10.5812/hepatmon.7492] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2012] [Revised: 07/04/2012] [Accepted: 07/17/2012] [Indexed: 12/11/2022]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the fifth most common fatal cancer and an important healthcare problem worldwide. There are many studies describing the prognostic and predictive effects of epidermal growth factor receptor 2 (c-erb-B2) and epidermal growth factor receptor 1 (EGFR), transmembrane tyrosine kinases that influence cell growth and proliferation in many tumors. OBJECTIVES The current study aimed to investigate the expression levels of c-erb-B2, EGFR, PTEN, mTOR, PI3K, p27, and ERCC1 in hepatocellular carcinoma (HCC) and their correlation with other clinicopathologic features. PATIENTS AND METHODS Fifty HCC cases were stained immunohistochemically with these markers. Correlations between the markers and clinicopathologic characteristics and survival rates were analyzed. RESULTS No membranous c-erb-B2 staining was seen, whereas cytoplasmic positivity was present in 92% of HCC samples, membranous EGFR was observed in 40%, PI3K was found in all samples, and mTOR was seen in 30%, whereas reduced or absent PTEN expression was observed in 56% of samples and loss of p27 was seen in 92% of the cases. c-erb-B2 and mTOR overexpression, as well as reduced expression of p27, all correlated with multiple tumors (P = 0.041, P < 0.001, and P < 0.001, respectively). P27 loss, and mTOR and EGFR positivity were significantly correlated with AFP (P = 0.047, P = 0.004, and P = 0.008, respectively). Angiolymphatic invasion was more commonly seen in EGFR- and ERCC1-positive cases (P = 0.003 and P = 0.005). EGFR was also correlated with histological grade (P = 0.039). No significant correlations were found among PTEN , PI3K, and the clinicopathological parameters. Disease-free or overall survival rates showed significant differences among therapy modalities, AFP levels, angiolymphatic or lymph node invasions, and ERCC1 and p27 expression levels (P < 0.05). CONCLUSIONS c-erb-B2, EGFR, mTOR, ERCC1 overexpression levels, and loss of p27 may play roles in hepatocarcinogenesis and may be significant predictors of aggressive tumor behavior. These markers were found to be correlated with certain clinicopathologic features, therapy modalities, and survival rates in the current study. These findings may help in planning new, targeted treatment strategies .
Collapse
Affiliation(s)
- Nuray Bassullu
- Department of Pathology, Istanbul Bilim University Medical Faculty, Istanbul, Turkey
- Corresponding author: Nuray Bassullu, Department of Pathology, Istanbul Bilim University Medical Faculty, Mehmetcik Street, Cahit Yalcın Sokak No: 1 Mecidiyeköy, Sisli, Istanbul, Turkey. Tel.: +90-2122883400/4819, Fax: +90-2122883456, E-mail:
| | - Ilknur Turkmen
- Department of Pathology, Istanbul Bilim University Medical Faculty, Istanbul, Turkey
| | - Murat Dayangac
- Department of General Surgery, Florence Nigthingale Hospital, Istanbul, Turkey
| | | | - Reyhan Yasar
- Department of Pathology, Florence Nigthingale Hospital, Istanbul, Turkey
| | - Murat Akyildiz
- Department of Gastroenterology, Istanbul Bilim University Medical Faculty, Istanbul, Turkey
| | - Onur Yaprak
- Department of General Surgery, Florence Nigthingale Hospital, Istanbul, Turkey
| | - Yaman Tokat
- Department of General Surgery, Florence Nigthingale Hospital, Istanbul, Turkey
| | - Yildiray Yuzer
- Department of General Surgery, Florence Nigthingale Hospital, Istanbul, Turkey
| | | |
Collapse
|
21
|
Combined phosphatase and tensin homolog (PTEN) loss and fatty acid synthase (FAS) overexpression worsens the prognosis of Chinese patients with hepatocellular carcinoma. Int J Mol Sci 2012; 13:9980-9991. [PMID: 22949843 PMCID: PMC3431841 DOI: 10.3390/ijms13089980] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/26/2012] [Accepted: 08/01/2012] [Indexed: 01/04/2023] Open
Abstract
We aimed to investigate the expression pattern of phosphatase and tensin homolog (PTEN), to evaluate the relationship between PTEN expression and clinicopathological characteristics, including fatty acid synthase (FAS) expression, and to determine the correlations of PTEN and FAS expression with survival in Chinese patients with hepatocellular carcinoma (HCC). The expression patterns of PTEN and FAS were determined using tissue microarrays and immunohistochemistry. The expression of PTEN was compared with the clinicopathological characteristics of HCC, including FAS expression. Receiver operator characteristic curves were used to calculate the clinical sensitivity and specificity of PTEN expression. Kaplan-Meier survival curves were constructed to evaluate the correlations of PTEN loss and FAS overexpression with overall survival. We found that the loss of PTEN expression occurred predominantly in the cytoplasm, while FAS was mainly localized to the cytoplasm. Cytoplasmic and total PTEN expression levels were significantly decreased in HCC compared with adjacent non-neoplastic tissue (both, p < 0.0001). Decreased cytoplasmic and total PTEN expression showed significant clinical sensitivity and specificity for HCC (both, p < 0.0001). Downregulation of PTEN in HCC relative to non-neoplastic tissue was significantly correlated with histological grade (p = 0.043 for histological grades I-II versus grade III). Loss of total PTEN was significantly correlated with FAS overexpression (p = 0.014). Loss of PTEN was also associated with poor prognosis of patients with poorly differentiated HCC (p = 0.049). Moreover, loss of PTEN combined with FAS overexpression was associated with significantly worse prognosis compared with other HCC cases (p = 0.011). Our data indicate that PTEN may serve as a potential diagnostic and prognostic marker of HCC. Upregulating PTEN expression and inhibiting FAS expression may offer a novel therapeutic approach for HCC.
Collapse
|
22
|
Sze KMF, Wong KLT, Chu GKY, Lee JMF, Yau TO, Ng IOL. Loss of phosphatase and tensin homolog enhances cell invasion and migration through AKT/Sp-1 transcription factor/matrix metalloproteinase 2 activation in hepatocellular carcinoma and has clinicopathologic significance. Hepatology 2011; 53:1558-69. [PMID: 21520171 DOI: 10.1002/hep.24232] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
UNLABELLED Phosphatase and tensin homolog (PTEN) is frequently inactivated in cancers and is associated with advanced stages of cancers or metastasis. However, the molecular mechanism of PTEN in hepatocellular carcinoma (HCC) metastasis is unclear. In this study, we found frequent (47.5%, n = 40) protein underexpression of PTEN in human HCCs compared with their corresponding nontumorous livers. Significantly, PTEN underexpression was associated with larger tumor size (P = 0.021), tumor microsatellite formation (P = 0.027), and shorter overall survival of patients (P = 0.035). Using different cell models, we observed that PTEN-knockdown HCC cells and PTEN-knockout mouse embryonic fibroblasts (MEFs) had enhanced cell migratory and invasive abilities. In addition to activation of AKT, there was up-regulation of the Sp1 transcription factor (SP1) and matrix metalloproteinase 2 (MMP2), as well as MMP2 activation in PTEN-knockdown HCC cells and PTEN(-/-) MEFs. With dual luciferase reporter assay, exogenous expression of SP1 in HCC cells led to enhanced MMP2 promoter activity by up to 74%, whereas deletion of the putative SP1 binding site on the MMP2 promoter led to reduced promoter activity by up to 65%. Using chromatin immunoprecipitation assay, we documented increased binding of SP1 to the MMP2 promoter in PTEN-knockdown HCC cells. Overexpression of SP1 and MMP2 was significantly but negatively associated with PTEN underexpression in human HCCs. CONCLUSION Our results show that PTEN was underexpressed in HCCs, and this underexpression was associated with more aggressive biological behavior and poorer patient survival. We have provided the first evidence that MMP2 up-regulation upon PTEN loss is SP1-dependent. Our findings indicate that PTEN plays a significant role in down-regulating HCC cell invasion via the AKT/SP1/MMP2 pathway.
Collapse
|
23
|
Sugihara T, Mandai M, Koda M, Matono T, Nagahara T, Ueki M, Murawaki Y. Cowden syndrome complicated with hepatocellular carcinoma possibly originating from non-alcoholic steatohepatitis (NASH). Hepatol Res 2011; 41:189-93. [PMID: 21269388 DOI: 10.1111/j.1872-034x.2010.00742.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
There is currently no report that has documented hepatocellular carcinoma (HCC) in a case of Cowden syndrome. Here, we present the first reported case of HCC in a 60-year-old female patient with Cowden syndrome. We diagnosed the patient using a pathognomonic criterion of the International Cowden Consortium Operational Diagnostic Criteria and performed genetic analysis. Enhanced computed tomography demonstrated a hypervascular tumor in segment VII of the liver. The patient was diagnosed with Cowden syndrome because her mucocutaneous lesions met the pathognomonic criterion. Mutational analysis confirmed a heterozygous germ line TGT→TAT transition at nucleotide 407 in exon 5 of the phosphatase and tensin homolog detected on the chromosome 10 (PTEN) gene. Needle biopsy showed a poorly differentiated HCC. We also diagnosed non-alcoholic steatohepatitis (NASH) from hepatic histological findings of Mallory's bodies and ballooning cells. PTEN-deficient mice reportedly develop HCC through NASH. This is the first reported case of Cowden syndrome complicated with HCC possibly originating from NASH.
Collapse
Affiliation(s)
- Takaaki Sugihara
- Division of Medicine and Clinical Science, Department of Multidisciplinary Internal Medicine, Faculty of Medicine, Tottori University, Yonago, Japan
| | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
The phosphoinositide 3-kinase (PI3K)/phosphatase and tensin homolog (PTEN)/Akt axis is a key signal transduction node that regulates crucial cellular functions, including insulin and other growth factors signaling, lipid and glucose metabolism, as well as cell survival and apoptosis. In this pathway, PTEN acts as a phosphoinositide phosphatase, which terminates PI3K-propagated signaling by dephosphorylating PtdIns(3,4)P2 and PtdIns(3,4,5)P3. However, the role of PTEN does not appear to be restricted only to PI3K signaling antagonism, and new functions have been recently discovered for this protein. In addition to the well-established role of PTEN as a tumor suppressor, increasing evidence now suggests that a dysregulated PTEN expression and/or activity is also linked to the development of several hepatic pathologies. Dysregulated PTEN expression/activity is observed with obesity, insulin resistance, diabetes, hepatitis B virus/hepatitis C virus infections, and abusive alcohol consumption, whereas mutations/deletions have also been associated with the occurrence of hepatocellular carcinoma. Thus, it appears that alterations of PTEN expression and activity in hepatocytes are common and recurrent molecular events associated with liver disorders of various etiologies. These recent findings suggest that PTEN might represent a potential common therapeutic target for a number of liver pathologies.
Collapse
|
25
|
Duong FHT, Christen V, Lin S, Heim MH. Hepatitis C virus-induced up-regulation of protein phosphatase 2A inhibits histone modification and DNA damage repair. Hepatology 2010; 51:741-51. [PMID: 20043320 DOI: 10.1002/hep.23388] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
UNLABELLED The molecular mechanisms underlying hepatocarcinogenesis in chronic viral hepatitis are poorly understood. A potential tumorigenic pathway could involve protein phosphatase 2A (PP2A) and protein arginine methyltransferase 1 (PRMT1), because both enzymes are dysregulated in chronic hepatitis C, and both enzymes have been involved in chromatin remodeling and DNA damage repair. We used cell lines that allow the inducible expression of hepatitis C virus proteins (UHCV57.3) and of the catalytic subunit of PP2A (UPP2A-C8) as well as Huh7.5 cells infected with recombinant cell culture-derived hepatitis C virus (HCVcc) to study epigenetic histone modifications and DNA damage repair. The induction of viral proteins, the overexpression of PP2Ac, or the infection of Huh7.5 cells with HCVcc resulted in an inhibition of histone H4 methylation/acetylation and histone H2AX phosphorylation, in a significantly changed expression of genes important for hepatocarcinogenesis, and inhibited DNA damage repair. Overexpression of PP2Ac in NIH-3T3 cells increased anchorage-independent growth. These changes were partially reversed by the treatment of cells with the methyl-group donor S-adenosyl-L-methionine (SAMe). CONCLUSION Hepatitis C virus-induced overexpression of PP2Ac contributes to hepatocarcinogenesis through dysregulation of epigenetic histone modifications. The correction of defective histone modifications by S-adenosyl-L-methionine makes this drug a candidate for chemopreventive therapies in patients with chronic hepatitis C who are at risk for developing hepatocellular carcinoma.
Collapse
Affiliation(s)
- Francois H T Duong
- Department of Biomedicine, Hepatology Laboratory, University Hospital Basel, 4031 Basel, Switzerland
| | | | | | | |
Collapse
|
26
|
Wu B, Zhang Y, Zhao D, Zhang X, Kong Z, Cheng S. Gene expression profiles in liver of mouse after chronic exposure to drinking water. J Appl Toxicol 2009; 29:569-77. [DOI: 10.1002/jat.1441] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
27
|
Nishikawa T, Nakajima T, Katagishi T, Okada Y, Jo M, Kagawa K, Okanoue T, Itoh Y, Yoshikawa T. Oxidative stress may enhance the malignant potential of human hepatocellular carcinoma by telomerase activation. Liver Int 2009; 29:846-56. [PMID: 19141026 DOI: 10.1111/j.1478-3231.2008.01963.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
BACKGROUND/AIMS Continuous oxidative stress (OS) plays an important role in the progression of chronic liver diseases and hepatocarcinogenesis through telomere shortening in hepatocytes. However, it has not been established how the OS influences the progression of human hepatocellular carcinomas (HCCs). We examined the correlations of OS with telomere length of cancer cells, telomerase activity and other clinicopathological factors in 68 HCCs. METHODS The level of 8-hydroxy-2'-deoxyguanosine (8-OHdG) as a marker of OS was examined immunohistochemically and OS was scored in four grades (0-3). The telomere length of cancer cells was measured by quantitative fluorescence in situ hybridization. Telomerase activity was measured by (i) immunodetection of human telomerase reverse transcriptase (hTERT) and (ii) telomere repeat amplification protocol (TRAP) assay. Telomerase related proteins, phosphatase and tensin homolog deleted on chromosome 10 (PTEN) and Akt, and other clinicopathological factors were also evaluated. RESULTS As the OS grade increased, the average telomere length became significantly shorter in HCCs, especially in the hTERT-negative group. In the state of high-grade OS, hTERT-positive HCC cells showed more proliferative and less apoptotic features compared with hTERT-negative HCC cells. Telomerase activity, as measured by the TRAP assay, was strongly correlated with OS grade in HCCs. Furthermore, a high OS grade was correlated with the downexpression of PTEN and the activation of Akt. CONCLUSIONS Oxidative stress enhanced the malignant potential of HCCs through the activation of telomerase, which raises the possibility of using OS as a marker for assessing the clinical state of HCCs.
Collapse
Affiliation(s)
- Taichiro Nishikawa
- Kyoto Prefectural University of Medicine Graduate School of Medical Science, Molecular Gastroenterology and Hepatology, Kyoto, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Zhang B, Zhou Z, Lin H, Lv X, Fu J, Lin P, Zhu C, Wang H. Protein phosphatase 1A (PPM1A) is involved in human cytotrophoblast cell invasion and migration. Histochem Cell Biol 2009; 132:169-79. [PMID: 19404668 DOI: 10.1007/s00418-009-0601-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2009] [Indexed: 11/25/2022]
Abstract
Trophoblast invasion is crucial for embryo implantation and placentation. Excessive trophoblast invasion leads to hydatidiform moles and choriocarcinoma. PPM1A is a phosphatase which dephosphorylates and inactivates a broad range of substrates, including TGF-beta, MAP kinases, p38 and JNK kinase cascades, and is involved in tumor suppression. The objective of this study was to investigate the expression of PPM1A in normal and malignant human placenta and its role in trophoblast invasion, which shares many similarities with invasion of tumor cells. By Western blotting and immunocytochemistry, significantly higher expression of PPM1A in human placental villi at term was found as compared with that during the first trimester. Furthermore, the expression level of PPM1A protein in hydatidiform moles was lower compared with that during normal pregnancy. We further investigated the function of PPM1A in extravillous trophoblast cell line HTR8/SVneo. Transwell migration and Matrigel invasion assays demonstrated that PPM1A siRNA significantly promoted the motility and invasiveness of the cells. Gelatin zymography showed that knockdown of PPM1A with siRNA elevated the expression of pro-matrix metalloproteinase pro-(MMP)-9, but down-regulated tissue inhibitors of metalloproteinases (TIMP)-2. The present data indicate that PPM1A plays a critical role in the regulation of normal placentation by inhibiting trophoblast migration and invasion.
Collapse
Affiliation(s)
- Baohua Zhang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Datun Road, Chaoyang District, 100101, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Members of the transforming growth factor-beta (TGF-beta) family control a broad range of cellular responses in metazoan organisms via autocrine, paracrine, and endocrine modes. Thus, aberrant TGF-beta signaling can play a key role in the pathogenesis of several diseases, including cancer. TGF-beta signaling pathways are activated by a short phospho-cascade, from receptor phosphorylation to the subsequent phosphorylation and activation of downstream signal transducers called R-Smads. R-Smad phosphorylation state determines Smad complex assembly/disassembly, nuclear import/export, transcriptional activity and stability, and is thus the most critical event in TGF-beta signaling. Dephosphorylation of R-Smads by specific phosphatases prevents or terminates TGF-beta signaling, highlighting the need to consider Smad (de)phosphorylation as a tightly controlled and dynamic event. This article illustrates the essential roles of reversible phosphorylation in controlling the strength and duration of TGF-beta signaling and the ensuing physiological responses.
Collapse
|
30
|
Zhang ZH, Han SX, Qiu CH, Qiang O, Chen HP, Zhang CM, Li Y. Effects and mechanisms of survivin-siRNA interference on colon adenocarcinoma cells SW620. Shijie Huaren Xiaohua Zazhi 2007; 15:3803-3808. [DOI: 10.11569/wcjd.v15.i36.3803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effects and mecha-nisms of survivin-siRNA inteference on adenocarcinoma cells SW620.
METHODS: SW620 cells were transfected with survivin-siRNA using Lipofectamine 2000. The mRNA expression levels of survivin and PTEN were detected by RT-PCR and protein expression levels were detected by Western blotting. MTT and flow cytometry were used to analyze proliferation and apoptosis.
RESULTS: Compared with control cells, the mRNA and protein levels of survivin were reduced in siRNA-transfected cells, while PTEN was increased. At 12, 24, 48 hours, the expression of survivin mRNA was downregulated 75%, 93.75% and 97.8%, respectivly, compared with that in the controls, and the expression of PTEN mRNA was upregulated 41%, 100%, 128%. The growth of transfected cells was inhibited, while apopotosis was increased.
CONCLUSION: Survivin-siRNA has preferential effects on adenocarcinoma cells.
Collapse
|