1
|
Matthies DJ, Novoa-Gundel P, Vásquez G, Dubois-Camacho K, De la Fuente López M, Donoso B, Toledo-Stuardo K, Gutiérrez-González M, Landskron G, Valdebenito-Silva S, Sánchez O, Fierro A, Teimoori S, Chaicumpa W, Eugenin E, Zapata-Torres G, Molina MC, Hermoso MA. Enhancing the Affinity of a Novel Selective scFv for Soluble ST2 through Computational Design. J Chem Inf Model 2025. [PMID: 40417773 DOI: 10.1021/acs.jcim.4c02027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2025]
Abstract
Suppression of Tumorigenicity 2 (ST2) is a member of the IL-1 receptor family, which includes transmembrane (ST2L) and soluble (sST2) isoforms. sST2 functions as a decoy receptor for Interleukin-33 (IL-33), thereby blocking the activation of the IL-33/ST2L signaling axis, which is essential for tissue repair and immune regulation. Clinical evidence indicates that elevated sST2 levels are associated with increased disease severity in conditions such as ulcerative colitis (UC), cardiovascular disease, and asthma. However, current antibodies cannot reliably distinguish between sST2 and its membrane-bound isoform ST2L, limiting their effectiveness for diagnostic and therapeutic use. To address this limitation, we developed an antibody that selectively targets sST2. Using a phage display library, we identified a single-chain variable fragment (scFv) with high specificity for a unique five amino acid sequence (SKECF) located at the C-terminus of sST2. Our parental scFv showed high selectivity for sST2 with minimal cross-reactivity to ST2L, as demonstrated by both flow cytometry and immunoprecipitation. Molecular simulations identified key binding residues, allowing the design of four scFv mutants, three of which displayed improved binding in surface plasmon resonance (SPR) analyses. The A183YL2 mutant exhibited a 3.4-fold increase in binding affinity, while G100WH3 demonstrated reduced binding due to unfavorable conformations. This study presents an anti-sST2 scFv with enhanced specificity and affinity, offering a promising tool for the diagnosis and treatment of inflammatory diseases, in which sST2 interferes with IL-33-mediated tissue repair.
Collapse
Affiliation(s)
- Douglas J Matthies
- Recombinant Antibody and Immune-oncology laboratory, Immunology Program, Faculty of Medicine, Institute of Biomedical Sciences (ICBM), University of Chile, Santiago 8420000, Chile
- Center for Molecular Modeling, Biophysics and Bioinformatics (CM2B2), Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago 8420000, Chile
| | - Pedro Novoa-Gundel
- Laboratory of Innate Immunity, Immunology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad of Chile, Santiago 8420000, Chile
- Department of Pharmacy, Faculty of Pharmacy, University of Concepción, Bío Bío 4070409, Chile
| | - Gonzalo Vásquez
- Recombinant Antibody and Immune-oncology laboratory, Immunology Program, Faculty of Medicine, Institute of Biomedical Sciences (ICBM), University of Chile, Santiago 8420000, Chile
- Laboratory of Innate Immunity, Immunology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad of Chile, Santiago 8420000, Chile
| | - Karen Dubois-Camacho
- Laboratory of Innate Immunity, Immunology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad of Chile, Santiago 8420000, Chile
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen 9700, the Netherlands
| | - Marjorie De la Fuente López
- Center for Biomedical Research (CIBMED), School of Medicine, Universidad Finis Terrae, Santiago 7501014, Chile
| | - Bárbara Donoso
- Recombinant Antibody and Immune-oncology laboratory, Immunology Program, Faculty of Medicine, Institute of Biomedical Sciences (ICBM), University of Chile, Santiago 8420000, Chile
- Laboratory of Innate Immunity, Immunology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad of Chile, Santiago 8420000, Chile
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen 9700, the Netherlands
| | - Karen Toledo-Stuardo
- Recombinant Antibody and Immune-oncology laboratory, Immunology Program, Faculty of Medicine, Institute of Biomedical Sciences (ICBM), University of Chile, Santiago 8420000, Chile
| | - Matías Gutiérrez-González
- Recombinant Antibody and Immune-oncology laboratory, Immunology Program, Faculty of Medicine, Institute of Biomedical Sciences (ICBM), University of Chile, Santiago 8420000, Chile
| | - Glauben Landskron
- Center for Biomedical Research (CIBMED), School of Medicine, Universidad Finis Terrae, Santiago 7501014, Chile
| | - Silvana Valdebenito-Silva
- Department of Neurobiology, The University of Texas Medical Branch (UTMB), Galveston, Texas 77555-5302, United States
| | - Oliberto Sánchez
- Pharmacology Department School of Biological Sciences, University of Concepcion, Bío Bío 4070409, Chile
| | - Angelica Fierro
- Departamento de Química Orgánica, Escuela de Química, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Salma Teimoori
- Biotechrabbit GmbH, Volmerstraße 9, Berlin 12489, Germany
| | - Wanpen Chaicumpa
- Center of Research Excellence in Therapeutic Proteins and Antibody, Engineering, Department of Parasitology, Faculty of Medicine Siriraj, Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Eliseo Eugenin
- Department of Neurobiology, The University of Texas Medical Branch (UTMB), Galveston, Texas 77555-5302, United States
| | - Gerald Zapata-Torres
- Center for Molecular Modeling, Biophysics and Bioinformatics (CM2B2), Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago 8420000, Chile
| | - Maria Carmen Molina
- Recombinant Antibody and Immune-oncology laboratory, Immunology Program, Faculty of Medicine, Institute of Biomedical Sciences (ICBM), University of Chile, Santiago 8420000, Chile
| | - Marcela A Hermoso
- Laboratory of Innate Immunity, Immunology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad of Chile, Santiago 8420000, Chile
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen 9700, the Netherlands
| |
Collapse
|
2
|
Öztürk G, Bayrakoğlu D, Haskoloğlu Ş, Baskın K, Deveci N, İnce E, İleri T, Çakmaklı H, Ertem M, İkincioğulları A, Doğu F. ST2 and Reg3α: Can they predict aGvHD, steroid refractoriness and transplant-related mortality in pediatric patients after HSCT? Hematol Transfus Cell Ther 2024; 46 Suppl 6:S129-S135. [PMID: 38658297 PMCID: PMC11726067 DOI: 10.1016/j.htct.2024.02.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 12/18/2023] [Accepted: 02/27/2024] [Indexed: 04/26/2024] Open
Abstract
BACKGROUND/AIM There are several complications of hematopoietic stem cell transplantation. Without any doubt, most important of these is aGvHD that increases transplant-related mortality. The aim of this study is to investigate whether ST-2 and Reg3α levels measured at an early stage in pediatric patients undergoing allogeneic hematopoietic stem cell transplantation can be individual biomarkers identifying future GvHD and predicting treatment response. MATERIALS AND METHODS From January 2019 to January 2021, 27 patients undergoing hematopoietic stem cell transplantation for primary immunodeficiency or hematopoietic diseases formed the study group. During their follow-up, the patients were classified into two groups as those developing and those not developing aGvHD. Nineteen healthy volunteers from a similar age group who needed their blood samples drawn for other reasons and who did not have any history of chronic disease, infection or medication use formed the control group. Blood samples of patients scheduled to have allogeneic HSCT were obtained before the administration of the preparative regimen, on Day +7 post-transplant and on the day of diagnosis if they developed aGvHD. Serum samples were stored at -20ºC until the day of processing. ST2 and Reg3α levels were measured using the ELISA method. RESULTS For patients who developed aGvHD (n = 13), ST2 levels obtained before the transplantation, on Day +7 post-transplant and on the day of aGvHD diagnosis (in patients developing GvHD) were significantly higher compared to the healthy Control Group (p-value <0.05). As regards to the samples obtained on the same days, ST2 levels did not differ significantly among patients who developed and those who did not develop GvHD (n = 14; p-value >0.05). ST2 levels of samples obtained on the days that acute skin and gastrointestinal tract GvHD developed did not differ significantly between these two groups (p-value >0.05). Reg3α levels of the pre-transplant samples, on Day +7 after the transplantation and on the day of aGvHD diagnosis did not show any difference between any of the groups (p-value >0.05). As only two patients died after transplantation, thus correlation of ST2 and Reg3α levels with transplant-related mortality could not be proven. CONCLUSION The results of this study suggest that ST2 and Reg3α levels are neither diagnostic nor prognostic or predictive biomarkers of aGvHD, steroid resistance or transplant-related mortality in pediatric patients. This study can be regarded as a pilot study because of the small patient population; more research involving a larger patient population is required.
Collapse
Affiliation(s)
- Gökcan Öztürk
- Ankara University School of Medicine, Department of Pediatric Immunology and Allergy, Ankara, Turkey.
| | - Deniz Bayrakoğlu
- Ankara University School of Medicine, Department of Pediatric Immunology and Allergy, Ankara, Turkey
| | - Şule Haskoloğlu
- Ankara University School of Medicine, Department of Pediatric Immunology and Allergy, Ankara, Turkey
| | - Kübra Baskın
- Ankara University School of Medicine, Department of Pediatric Immunology and Allergy, Ankara, Turkey
| | - Nazlı Deveci
- Ankara University School of Medicine, Department of Pediatric Immunology and Allergy, Ankara, Turkey
| | - Elif İnce
- Ankara University School of Medicine, Department of Pediatric Hematology, Ankara, Turkey
| | - Talia İleri
- Ankara University School of Medicine, Department of Pediatric Hematology, Ankara, Turkey
| | - Hasan Çakmaklı
- Ankara University School of Medicine, Department of Pediatric Hematology, Ankara, Turkey
| | - Mehmet Ertem
- Ankara University School of Medicine, Department of Pediatric Hematology, Ankara, Turkey
| | - Aydan İkincioğulları
- Ankara University School of Medicine, Department of Pediatric Hematology, Ankara, Turkey
| | - Figen Doğu
- Ankara University School of Medicine, Department of Pediatric Immunology and Allergy, Ankara, Turkey
| |
Collapse
|
3
|
Nystuen KL, McNamee SM, Akula M, Holton KM, DeAngelis MM, Haider NB. Alzheimer's Disease: Models and Molecular Mechanisms Informing Disease and Treatments. Bioengineering (Basel) 2024; 11:45. [PMID: 38247923 PMCID: PMC10813760 DOI: 10.3390/bioengineering11010045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/15/2023] [Accepted: 12/22/2023] [Indexed: 01/23/2024] Open
Abstract
Alzheimer's Disease (AD) is a complex neurodegenerative disease resulting in progressive loss of memory, language and motor abilities caused by cortical and hippocampal degeneration. This review captures the landscape of understanding of AD pathology, diagnostics, and current therapies. Two major mechanisms direct AD pathology: (1) accumulation of amyloid β (Aβ) plaque and (2) tau-derived neurofibrillary tangles (NFT). The most common variants in the Aβ pathway in APP, PSEN1, and PSEN2 are largely responsible for early-onset AD (EOAD), while MAPT, APOE, TREM2 and ABCA7 have a modifying effect on late-onset AD (LOAD). More recent studies implicate chaperone proteins and Aβ degrading proteins in AD. Several tests, such as cognitive function, brain imaging, and cerebral spinal fluid (CSF) and blood tests, are used for AD diagnosis. Additionally, several biomarkers seem to have a unique AD specific combination of expression and could potentially be used in improved, less invasive diagnostics. In addition to genetic perturbations, environmental influences, such as altered gut microbiome signatures, affect AD. Effective AD treatments have been challenging to develop. Currently, there are several FDA approved drugs (cholinesterase inhibitors, Aß-targeting antibodies and an NMDA antagonist) that could mitigate AD rate of decline and symptoms of distress.
Collapse
Affiliation(s)
- Kaden L. Nystuen
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Shannon M. McNamee
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Monica Akula
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Kristina M. Holton
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Margaret M. DeAngelis
- Department of Ophthalmology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Neena B. Haider
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
4
|
D’Incà R, Sturniolo G. Biomarkers in IBD: What to Utilize for the Diagnosis? Diagnostics (Basel) 2023; 13:2931. [PMID: 37761298 PMCID: PMC10527829 DOI: 10.3390/diagnostics13182931] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/05/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
The role of biomarkers in the diagnosis of inflammatory bowel disease is not fully characterized. C-reactive protein has a short half-life and elevates quickly after the onset of an inflammatory process; the performance is better in Crohn's disease than in ulcerative colitis. Erythrocyte sedimentation rate is easy to determine, widely available, and cheap, but the long half-life, the influence of age, anemia, smoking, and drugs limit its usefulness. Fecal markers have good specificity, but suboptimal accuracy. Microbial antibodies and novel immunological markers show promise but need further evidence before entering clinical practice. Proteomic methods could represent the dawn of a new era of stool protein/peptide biomarker panels able to select patients at risk of inflammatory bowel disease.
Collapse
Affiliation(s)
- Renata D’Incà
- Department of Surgical, Oncological and Gastroenterological Sciences, University of Padua, 35124 Padua, Italy
| | - Giulia Sturniolo
- Department of Women’s and Children’s Health, University of Padua, 35128 Padova, Italy
| |
Collapse
|
5
|
Wang Y, He C, Xin S, Liu X, Zhang S, Qiao B, Shang H, Gao L, Xu J. A Deep View of the Biological Property of Interleukin-33 and Its Dysfunction in the Gut. Int J Mol Sci 2023; 24:13504. [PMID: 37686309 PMCID: PMC10487440 DOI: 10.3390/ijms241713504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/19/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Intestinal diseases have always posed a serious threat to human health, with inflammatory bowel disease (IBD) being one of them. IBD is an autoimmune disease characterized by chronic inflammation, including ulcerative colitis (UC) and Crohn's disease (CD). The "alarm" cytokine IL-33, which is intimately associated with Th2 immunity, is a highly potent inflammatory factor that is considered to have dual functions-operating as both a pro-inflammatory cytokine and a transcriptional regulator. IL-33 has been shown to play a crucial role in both the onset and development of IBD. Therefore, this review focuses on the pathogenesis of IBD, the major receptor cell types, and the activities of IL-33 in innate and adaptive immunity, as well as its underlying mechanisms and conflicting conclusions in IBD. We have also summarized different medicines targeted to IL-33-associated diseases. Furthermore, we have emphasized the role of IL-33 in gastrointestinal cancer and parasitic infections, giving novel prospective therapeutic utility in the future application of IL-33.
Collapse
Affiliation(s)
- Yi Wang
- Department of Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (Y.W.); (S.Z.); (B.Q.)
| | - Chengwei He
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (C.H.); (S.X.); (X.L.)
| | - Shuzi Xin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (C.H.); (S.X.); (X.L.)
| | - Xiaohui Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (C.H.); (S.X.); (X.L.)
| | - Sitian Zhang
- Department of Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (Y.W.); (S.Z.); (B.Q.)
| | - Boya Qiao
- Department of Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (Y.W.); (S.Z.); (B.Q.)
| | - Hongwei Shang
- Experimental Center for Morphological Research Platform, Capital Medical University, Beijing 100069, China;
| | - Lei Gao
- Department of Intelligent Medical Engineering, School of Biomedical Engineering, Capital Medical University, Beijing 100069, China
| | - Jingdong Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (C.H.); (S.X.); (X.L.)
| |
Collapse
|
6
|
Xiao Y, Powell DW, Liu X, Li Q. Cardiovascular manifestations of inflammatory bowel diseases and the underlying pathogenic mechanisms. Am J Physiol Regul Integr Comp Physiol 2023; 325:R193-R211. [PMID: 37335014 PMCID: PMC10979804 DOI: 10.1152/ajpregu.00300.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 06/01/2023] [Accepted: 06/01/2023] [Indexed: 06/21/2023]
Abstract
Inflammatory bowel disease (IBD), consisting of ulcerative colitis and Crohn's disease, mainly affects the gastrointestinal tract but is also known to have extraintestinal manifestations because of long-standing systemic inflammation. Several national cohort studies have found that IBD is an independent risk factor for the development of cardiovascular disorders. However, the molecular mechanisms by which IBD impairs the cardiovascular system are not fully understood. Although the gut-heart axis is attracting more attention in recent years, our knowledge of the organ-to-organ communication between the gut and the heart remains limited. In patients with IBD, upregulated inflammatory factors, altered microRNAs and lipid profiles, as well as dysbiotic gut microbiota, may induce adverse cardiac remodeling. In addition, patients with IBD have a three- to four times higher risk of developing thrombosis than people without IBD, and it is believed that the increased risk of thrombosis is largely due to increased procoagulant factors, platelet count/activity, and fibrinogen concentration, in addition to decreased anticoagulant factors. The predisposing factors for atherosclerosis are present in IBD and the possible mechanisms may involve oxidative stress system, overexpression of matrix metalloproteinases, and changes in vascular smooth muscle phenotype. This review focuses mainly on 1) the prevalence of cardiovascular diseases associated with IBD, 2) the potential pathogenic mechanisms of cardiovascular diseases in patients with IBD, and 3) adverse effects of IBD drugs on the cardiovascular system. Also, we introduce here a new paradigm for the gut-heart axis that includes exosomal microRNA and the gut microbiota as a cause for cardiac remodeling and fibrosis.
Collapse
Affiliation(s)
- Ying Xiao
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, China
- Division of Gastroenterology, Department of Internal Medicine, University of Texas Medical Branch at Galveston, Galveston, Texas, United States
| | - Don W Powell
- Division of Gastroenterology, Department of Internal Medicine, University of Texas Medical Branch at Galveston, Galveston, Texas, United States
| | - Xiaowei Liu
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, China
| | - Qingjie Li
- Division of Gastroenterology, Department of Internal Medicine, University of Texas Medical Branch at Galveston, Galveston, Texas, United States
| |
Collapse
|
7
|
Mi J, Wu X, Bai X, Yang Y, Yang H. ST2 and CSF-1 as potential druggable targets of inflammatory bowel diseases: Results from two-sample Mendelian randomization study. Clin Transl Sci 2022; 16:236-245. [PMID: 36333983 PMCID: PMC9926074 DOI: 10.1111/cts.13442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 10/02/2022] [Accepted: 10/11/2022] [Indexed: 11/07/2022] Open
Abstract
Novel druggable targets are warranted for inflammatory bowel disease (IBD) treatment. We aimed to identify novel circulating proteins with causal associations with the risk of IBDs and provide potential therapeutic targets for IBD treatment. We performed a two-sample Mendelian randomization (MR) study to explore the associations of 55 circulating biomarkers on the risk of IBD, Crohn's disease (CD), and ulcerative colitis (UC) by leveraging the summary statistics from large genomewide association studies and protein quantitative trait loci studies. The individual estimate was pooled together by meta-analyses to estimate the causal effects of each outcome. In univariable MR, we identified several circulating proteins showed potential correlation with IBD, UC, and CD. Of note, we observed that a genetically proxied increased level of suppression of tumorigenicity 2 (ST2) was associated with an elevated risk of IBD (odds ratios [ORs] 1.133, 95% confidence interval [CI] 1.091-1.176, p < 0.0001), CD (ORs 1.188, 95% CI 1.103-1.281, p < 0.0001), and UC cohorts (ORs 1.087, 95% CI 1.050-1.125, p < 0.0001). Additionally, we observed a consistent positive correlation between the level of CSF-1 and the increased risk of IBD in individual MR, with statistically significant causal associations in the meta-analyses with ORs equal to 1.217 (IBD, 95% CI 1.115-1.328, p < 0.0001), 1.223 (CD, 95% CI 1.082-1.382, p = 0.0013), and 1.179 (UC, 95% CI 1.055-1.317, p = 0.0037). This study provided evidence for potential casual associations between circulating ST2 and CSF-1 levels, and increased risks of IBD, UC, and CD, implicating potential treatment targets for IBD and subtypes.
Collapse
Affiliation(s)
- Jiarui Mi
- Department of Gastroenterology, Peking Union Medical College HospitalPeking Union Medical College and Chinese Academy of Medical SciencesBeijingChina,Graduate SchoolChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Xia Wu
- Department of MedicineTufts Medical CenterMassachusettsBostonUSA
| | - Xiaoyin Bai
- Department of Gastroenterology, Peking Union Medical College HospitalPeking Union Medical College and Chinese Academy of Medical SciencesBeijingChina
| | - Yang Yang
- Department of Pharmacy, Peking Union Medical College HospitalPeking Union Medical College and Chinese Academy of Medical SciencesBeijingChina
| | - Hong Yang
- Department of Gastroenterology, Peking Union Medical College HospitalPeking Union Medical College and Chinese Academy of Medical SciencesBeijingChina
| |
Collapse
|
8
|
Ge C, Lu Y, Shen H, Zhu L. Monitoring of intestinal inflammation and prediction of recurrence in ulcerative colitis. Scand J Gastroenterol 2022; 57:513-524. [PMID: 34994661 DOI: 10.1080/00365521.2021.2022193] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Background and objectives: Ulcerative colitis is a chronic recurrent intestinal inflammatory disease, and its recurrence is difficult to predict. In this review, we summarized the objective indicators that can be used to evaluate intestinal inflammation, the purpose is to better predict the clinical recurrence of UC, formulate individualized treatment plan during remission of UC, and improve the level of diagnosis and treatment of UC.Methods: Based on the search results in the PUBMED database, we explored the accuracy and value of these methods in predicting the clinical recurrence of UC from the following three aspects: endoscopic and histological scores, serum biomarkers and fecal biomarkers.Results: Colonoscopy with biopsy is the gold standard for assessing intestinal inflammation, but it is invasive, inconvenient and expensive. At present, there is no highly sensitive and specific endoscopic or histological score to predict the clinical recurrence of UC. Compared with serum biomarkers, fecal biomarkers have higher sensitivity and specificity because they are in direct contact with the intestine and are closer to the site of intestinal inflammation. Fecal calprotectin is currently the most studied and meaningful fecal biomarker. Lactoferrin and S100A12, as novel biomarkers, have no better performance than FC in predicting the recurrence of UC.Conclusions: FC is currently the most promising predictive marker, but it lacks an accurate cut-off value. Combining patient symptoms, incorporating multiple indicators to construct a UC recurrence prediction model, and formulating individualized treatment plans for high recurrence risk patients will be the focus of UC remission management.
Collapse
Affiliation(s)
- Changchang Ge
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yi Lu
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Hong Shen
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Lei Zhu
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
9
|
Yuan X, Chinnaswamy K, Stuckey JA, Yang CY. Computational Cosolvent Mapping Analysis Leads to Identify Salicylic Acid Analogs as Weak Inhibitors of ST2 and IL33 Binding. J Phys Chem B 2022; 126:2394-2406. [PMID: 35294837 PMCID: PMC9354565 DOI: 10.1021/acs.jpcb.2c00341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cytokine signaling initiated by the binding of the cytokine receptors to cytokines plays important roles in immune regulation and diseases. Structurally, cytokine receptors interact with cytokines via an extensive, rugged interface that represents a challenge in inhibitor development. Our computational analysis has previously indicated that butyric acid, mimicking acidic residues, preferentially binds to sites in ST2 (Stimulation-2) that interact with acidic residues of IL33, the endogenous cytokine for ST2. To investigate if a charged group in small molecules facilitates ligand binding to ST2, we developed a biochemical homogeneous time resolved fluorescence assay to determine the inhibition of ST2/IL33 binding by five molecules containing an aromatic ring and a charged group. Three molecules, including niacin, salicylic acid, and benzamidine, exhibit inhibition activities at millimolar concentrations. We further employed the computational cosolvent mapping analysis to identify a shared mode of interaction between niacin, salicylic acid, and ST2. The mode of interaction was further confirmed by four analogous compounds that exhibited similar or improved activities. Our study provided the evidence of inhibition of ST2 and IL33 binding by salicylic acid and analogs. The results suggest that biological activity of salicylic acid may be partly mediated through modulating extracellular cytokine receptors and cytokine interaction.
Collapse
Affiliation(s)
- Xinrui Yuan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | | | - Jeanne A Stuckey
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Chao-Yie Yang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| |
Collapse
|
10
|
General Rehabilitation Program after Knee or Hip Replacement Significantly Influences Erythrocytes Oxidative Stress Markers and Serum ST2 Levels. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1358858. [PMID: 35401921 PMCID: PMC8986427 DOI: 10.1155/2022/1358858] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/12/2022] [Accepted: 03/14/2022] [Indexed: 12/12/2022]
Abstract
The survival of erythrocytes in the circulating blood depends on their membranes' structural and functional integrity. One of the mechanisms that may underlie the process of joint degeneration is the imbalance of prooxidants and antioxidants, promoting cellular oxidative stress. The study is aimed at observing the effects of the 21-day general rehabilitation program on the erythrocytes redox status and serum ST2 marker in patients after knee or hip replacement in the course of osteoarthritis. Erythrocytes and serum samples were collected from 36 patients. We analyzed the selected markers of the antioxidant system in the erythrocytes: catalase (CAT), glutathione reductase (glutathione disulfide reductase (GR, GSR)), total superoxide dismutase activity (SOD), glutathione peroxidase (GPx), glutathione transferase (GST) activity, and cholesterol and lipofuscin (LPS) concentration. In serum, we analyzed the concentration of the suppression of tumorigenicity 2 (ST2) marker. After the 21-day general rehabilitation program, the total SOD and GPx activity, measured in the hemolysates, significantly increased (p < 0.001) while LPS, cholesterol, and ST2 levels in serum significantly decreased (p < 0.001). General rehabilitation reduces oxidative stress in patients after knee or hip replacement in the course of osteoarthritis. Individually designed, regular physical activity is the essential element of the postoperative protocol, which improves the redox balance helping patients recover after the s4urgery effectively.
Collapse
|
11
|
Diagnostic biomarkers of dilated cardiomyopathy. Immunobiology 2021; 226:152153. [PMID: 34784575 DOI: 10.1016/j.imbio.2021.152153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/29/2021] [Accepted: 10/30/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND Dilated cardiomyopathy (DCM) is a condition involving dilation of cardiac chambers, which results in contraction impairment. Besides invasive and non-invasive diagnostic procedures, cardiac biomarkers are of great importance in both diagnosis and prognosis of the disease. These biomarkers are categorized into three groups based on their site; cardiomyocyte biomarkers, microenvironmental biomarkers and macroenvironmental biomarkers. AIMS In this review, an overview of characteristics, epidemiology, etiology and clinical manifestations of DCM is provided. In addition, the most important biomarkers, of all three categories, and their diagnostic and prognostic values are discussed. CONCLUSION Considering the association of DCM with conditions such as infections and autoimmunity, which are prevalent among the population, introducing efficient diagnostic tools is of high value for the early detection of DCM to prevent its severe complications. The three discussed classes of biomarkers are potential candidates for the detection of DCM. However, further studies are necessary in this regard.
Collapse
|
12
|
Role of Interleukin-1 Receptor-Like 1 (ST2) in Cerebrovascular Disease. Neurocrit Care 2021; 35:887-893. [PMID: 34231185 DOI: 10.1007/s12028-021-01284-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/21/2021] [Indexed: 12/16/2022]
Abstract
Following both ischemic and hemorrhagic stroke, innate immune cells initiate a proinflammatory response that further exacerbate tissue injury in the acute phase, but these cells also play an important reparative role thereafter. Numerous cytokines and signaling pathways have been implicated in driving the deleterious proinflammatory response, but less is known about the mediators that connect the initial vascular injury to the systemic immune response and the relationship between proinflammatory and reparative immune responses. The Interleukin-33 (IL-33) and serum stimulation-2 (ST2) axis is an interleukin signaling pathway that is a prime candidate to fulfill this role. In this review, we describe the biology of the IL-33/ST2 system, present evidence that its soluble decoy receptor, soluble ST2 (sST2), plays a key role in secondary neurologic injury after stroke, and discuss this in the context of the known role of IL-33/ST2 in other disease.
Collapse
|
13
|
Krzystek-Korpacka M, Kempiński R, Bromke M, Neubauer K. Biochemical Biomarkers of Mucosal Healing for Inflammatory Bowel Disease in Adults. Diagnostics (Basel) 2020; 10:E367. [PMID: 32498475 PMCID: PMC7344443 DOI: 10.3390/diagnostics10060367] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/29/2020] [Accepted: 05/30/2020] [Indexed: 02/06/2023] Open
Abstract
Mucosal healing (MH) is the key therapeutic target of inflammatory bowel disease (IBD). The evaluation of MH remains challenging, with endoscopy being the golden standard. We performed a comprehensive overview of the performance of fecal-, serum-, and urine-based biochemical markers in colonic IBD to find out whether we are ready to replace endoscopy with a non-invasive but equally accurate instrument. A Pubmed, Web of Knowledge, and Scopus search of original articles as potential MH markers in adults, published between January 2009 and March 2020, was conducted. Finally, 84 eligible studies were identified. The most frequently studied fecal marker was calprotectin (44 studies), with areas under the curves (AUCs) ranging from 0.70 to 0.99 in ulcerative colitis (UC) and from 0.70 to 0.94 in Crohn`s disease (CD), followed by lactoferrin (4 studies), matrix metalloproteinase-9 (3 studies), and lipocalin-2 (3 studies). The most frequently studied serum marker was C-reactive protein (30 studies), with AUCs ranging from 0.60 to 0.96 in UC and from 0.64 to 0.93 in CD. Fecal calprotectin is an accurate MH marker in IBD in adults; however, it cannot replace endoscopy and the application of calprotectin is hampered by the lack of standardization concerning the cut-off value. Other markers are either not sufficiently accurate or have not been studied extensively enough.
Collapse
Affiliation(s)
| | - Radosław Kempiński
- Department of Gastroenterology and Hepatology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland;
| | - Mariusz Bromke
- Department of Medical Biochemistry, Wroclaw Medical University, Chalubinskiego 10, 50-368 Wroclaw, Poland;
| | - Katarzyna Neubauer
- Department of Gastroenterology and Hepatology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland;
| |
Collapse
|
14
|
Artru F, Bou Saleh M, Maggiotto F, Lassailly G, Ningarhari M, Demaret J, Ntandja-Wandji LC, Pais de Barros JP, Labreuche J, Drumez E, Helou DG, Dharancy S, Gantier E, Périanin A, Chollet-Martin S, Bataller R, Mathurin P, Dubuquoy L, Louvet A. IL-33/ST2 pathway regulates neutrophil migration and predicts outcome in patients with severe alcoholic hepatitis. J Hepatol 2020; 72:1052-1061. [PMID: 31953139 DOI: 10.1016/j.jhep.2019.12.017] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 11/30/2019] [Accepted: 12/12/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Severe alcoholic hepatitis (SAH) is associated with a high risk of infection. The IL-33/ST2 pathway is involved in sepsis control but data regarding its role in alcohol-related liver disease (ALD) are lacking. We aimed to characterize the role of IL-33/ST2 in the polymorphonuclear neutrophils (PMNs) of patients with ALD and SAH. METHODS Serum and circulating neutrophils were collected from patients with SAH, alcoholic cirrhosis and healthy controls. We quantified IL-33/ST2 pathway activity and CXCR2 at baseline and after exposure to IL-33. We also determined the migration capacity of PMNs. RESULTS The decoy receptor of IL-33 (soluble ST2 [sST2]) was increased in SAH vs. cirrhosis and controls, demonstrating the defect in this pathway during ALD. The sST2 level was associated with response to treatment, 2-month survival, infection-free survival and probability of infection in SAH. Endotoxemia was weakly correlated with sST2. GRK2, a negative regulator of CXCR2, was overexpressed in PMNs of patients with SAH and cirrhosis and was decreased by IL-33. CXCR2 levels on PMNs were lower in SAH vs. cirrhosis and controls. Treatment with IL-33 partially restored CXCR2 expression in SAH and cirrhosis. PMN migration upon IL-8 was lower in patients with SAH and cirrhosis vs. controls. Treatment with IL-33 partially restored migration in those with SAH and cirrhosis. Interestingly, the migration capacity of PMNs and the response to IL-33 were enhanced in responders to corticosteroids (Lille <0.45) compared to non-responders. CONCLUSION The IL33/ST2 pathway is defective in SAH and predicts outcome. This defect is associated with decreased CXCR2 expression on the surface of PMNs and lower migration capacity, which can be corrected by IL-33, especially in patients responding to steroids. These results suggest that IL-33 has therapeutic potential for SAH and its infectious complications. LAY SUMMARY The neutrophils of patients with severe alcoholic hepatitis are associated with a defect in the IL-33/ST2 pathway. This defect is associated with lower migration capacities in neutrophils and a higher probability of getting infected. Administration of IL-33 to the neutrophils at least partly restores this defect and may be effective at reducing the risk of infection in patients with severe alcoholic hepatitis.
Collapse
Affiliation(s)
- Florent Artru
- Hôpital Claude-Huriez, Service Maladies de l'Appareil Digestif, CHU Lille, Lille, France; Université de Lille/Inserm/CHU de Lille, U995 - LIRIC - Lille Inflammation Research Center, Lille, France
| | - Mohamed Bou Saleh
- Université de Lille/Inserm/CHU de Lille, U995 - LIRIC - Lille Inflammation Research Center, Lille, France
| | - François Maggiotto
- Université de Lille/Inserm/CHU de Lille, U995 - LIRIC - Lille Inflammation Research Center, Lille, France
| | - Guillaume Lassailly
- Hôpital Claude-Huriez, Service Maladies de l'Appareil Digestif, CHU Lille, Lille, France; Université de Lille/Inserm/CHU de Lille, U995 - LIRIC - Lille Inflammation Research Center, Lille, France
| | - Massih Ningarhari
- Hôpital Claude-Huriez, Service Maladies de l'Appareil Digestif, CHU Lille, Lille, France; Université de Lille/Inserm/CHU de Lille, U995 - LIRIC - Lille Inflammation Research Center, Lille, France
| | - Julie Demaret
- Université de Lille/Inserm/CHU de Lille, U995 - LIRIC - Lille Inflammation Research Center, Lille, France; Centre de Biologie-Pathologie, CHU de Lille, Lille, France
| | - Line-Carolle Ntandja-Wandji
- Hôpital Claude-Huriez, Service Maladies de l'Appareil Digestif, CHU Lille, Lille, France; Université de Lille/Inserm/CHU de Lille, U995 - LIRIC - Lille Inflammation Research Center, Lille, France
| | | | | | - Elodie Drumez
- Département de biostatistiques, CHU de Lille, Lille, France
| | - Doumet Georges Helou
- Inserm/Université Paris-Sud/Université Paris-Saclay, UMR996, Chatenay-Malabry, France; Assistance publique-Hôpitaux de Paris, Hôpital Bichat, Laboratoire d'immunologie « Autoimmunité et Hypersensibilités », Paris, France
| | - Sébastien Dharancy
- Hôpital Claude-Huriez, Service Maladies de l'Appareil Digestif, CHU Lille, Lille, France; Université de Lille/Inserm/CHU de Lille, U995 - LIRIC - Lille Inflammation Research Center, Lille, France
| | - Emilie Gantier
- Université de Lille/Inserm/CHU de Lille, U995 - LIRIC - Lille Inflammation Research Center, Lille, France
| | - Axel Périanin
- Inserm/Faculté de Médecine Xavier Bichat, UMRS-1149, Paris, France; CNRS, ERL-8252 Centre de Recherche sur l'Inflammation, Paris, France; Université Paris Diderot, Sorbonne Paris Cité, Laboratoire d'Excellence INFLAMEX, Paris, France
| | - Sylvie Chollet-Martin
- Inserm/Université Paris-Sud/Université Paris-Saclay, UMR996, Chatenay-Malabry, France; Assistance publique-Hôpitaux de Paris, Hôpital Bichat, Laboratoire d'immunologie « Autoimmunité et Hypersensibilités », Paris, France
| | - Ramon Bataller
- Division of Gastroenterology, Hepatology and Nutrition, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Philippe Mathurin
- Hôpital Claude-Huriez, Service Maladies de l'Appareil Digestif, CHU Lille, Lille, France; Université de Lille/Inserm/CHU de Lille, U995 - LIRIC - Lille Inflammation Research Center, Lille, France
| | - Laurent Dubuquoy
- Université de Lille/Inserm/CHU de Lille, U995 - LIRIC - Lille Inflammation Research Center, Lille, France.
| | - Alexandre Louvet
- Hôpital Claude-Huriez, Service Maladies de l'Appareil Digestif, CHU Lille, Lille, France; Université de Lille/Inserm/CHU de Lille, U995 - LIRIC - Lille Inflammation Research Center, Lille, France.
| |
Collapse
|
15
|
Yang CY. Comparative Analyses of the Conformational Dynamics Between the Soluble and Membrane-Bound Cytokine Receptors. Sci Rep 2020; 10:7399. [PMID: 32366846 PMCID: PMC7198498 DOI: 10.1038/s41598-020-64034-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 04/06/2020] [Indexed: 12/25/2022] Open
Abstract
Cytokine receptors receive extracellular cues by binding with cytokines to transduce a signaling cascade leading to gene transcription in cells. Their soluble isoforms, functioning as decoy receptors, contain only the ectodomain. Whether the ectodomains of cytokine receptors at the membrane exhibit different conformational dynamics from their soluble forms is unknown. Using Stimulation-2 (ST2) as an example, we performed microsecond molecular dynamics (MD) simulations to study the conformational dynamics of the soluble and the membrane-bound ST2 (sST2 and ST2). Combined use of accelerated and conventional MD simulations enabled extensive sampling of the conformational space of sST2 for comparison with ST2. Using the interdomain loop conformation as the reaction coordinate, we built a Markov State Model to determine the slowest implied timescale of the conformational transition in sST2 and ST2. We found that the ectodomain of ST2 undergoes slower conformational relaxation but exhibits a faster rate of conformational transition in a more restricted conformational space than sST2. Analyses of the relaxed conformations of ST2 further suggest important contributions of interdomain salt-bridge interactions to the stabilization of different ST2 conformations. Our study elucidates differential conformational properties between sST2 and ST2 that may be exploited for devising strategies to selectively target each isoform.
Collapse
Affiliation(s)
- Chao-Yie Yang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America.
| |
Collapse
|
16
|
Homsak E, Gruson D. Soluble ST2: A complex and diverse role in several diseases. Clin Chim Acta 2020; 507:75-87. [PMID: 32305537 DOI: 10.1016/j.cca.2020.04.011] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 12/13/2022]
Abstract
The Suppression of Tumorigenicity 2 protein (ST2) is a member of the interleukin (IL) 1 receptor family with transmembrane (ST2L) and soluble (sST2) isoforms that are (over)expressed in several cells in different conditions and following various triggers (e.g. inflammation, stress). The ligand of ST2 is IL-33, which on binding to ST2L results in nuclear signalling and immunomodulatory action in various cells (tumour, immune, heart). sST2, that is released in the circulation, functions as a »decoy« receptor of IL-33 and inhibits IL-33/ST2L signalling and beneficial effects. The importance and role of the ST2/IL-33 axis and sST2 have been evaluated and confirmed in several inflammatory, cancer and cardiac diseases. sST2 is involved in homeostasis/pathogenesis of these diseases, as the counterbalance/response on IL-33/ST2L axis activation, which is triggered and expressed during developing fibrosis, tissue damage/inflammation and remodelling. In clinical studies, sST2 has been recognised as an important prognostic marker in patients with cardiac disease, including patients with chronic kidney disease where specific characteristics of sST2 enable better assessment of the risk of End-Stage Renal Disease patients on dialysis. sST2 is also recognised as an important marker for monitoring treatment in heart failure patients. However, accurate measurement and interpretation of ST2 concentration in serum/plasma samples for routine and research applications require the use of appropriate methods and recognition of essential characteristics of both the methods and the analyte that may influence the result. sST2, as one of the most promising disease biomarkers, is deserving of further study and wider application in clinical practice.
Collapse
Affiliation(s)
- Evgenija Homsak
- Department of Laboratory Diagnostics, University Medical Centre Maribor, Maribor, Slovenia.
| | - Damien Gruson
- Department of Laboratory Medicine, Cliniques Universitaires St-Luc and Universite Catholique de Lovain, Brussels, Belgium
| |
Collapse
|
17
|
Xu J, Wu L, Yu P, Sun Y, Lu Y. Effect of T. spiralis Serine protease inhibitors on TNBS-induced experimental colitis mediated by Macrophages. Sci Rep 2020; 10:3147. [PMID: 32081954 PMCID: PMC7035329 DOI: 10.1038/s41598-020-60155-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 02/06/2020] [Indexed: 12/13/2022] Open
Abstract
Inflammatory bowel disease (IBD) is an autoimmune disease with increasing incidence rate, and divided into ulcerative colitis (UC) and Crohn’s disease (CD). And more and more experimental evidence supports that immune disorder is important in the pathogenesis of IBD. Our previous experiments have confirmed that TsKaSPI and TsAdSPI recombinant proteins could relieve TNBS (2,4,6-Trinitrobenzenesulfonic acid solution)-induced colitis. Therefore, we speculate that macrophages play a certain role in the process of recombinant protein relieving colitis. In this experiment, 96 male BALB/c mice aged 6–8 weeks were randomly divided into two groups: the prevention group and the therapy group. Changes of the ratio of M1/M2 phenotypic macrophages in spleens and MLNs, key factors in the IL-33/ST2 and IL-6/JAK2/STAT3 signaling pathway were detected. The purpose is to analyze the specific role played by macrophages and their secreted cytokines in the immunomodulation of colitis by Trichinella spiralis (T. spiralis) Serine protease inhibitors. The results showed that the percentage of M1 phenotypic macrophages was decreased and M2 phenotypic macrophages was increased in the TsKaSPI + TNBS, TsAdSPI + TNBS group compared with the PBS + TNBS group in the prevention group. Meanwhile, the expression of IL-33 and ST2 were significantly decreased. The key factors of IL-6/JAK2/STAT3 signaling pathway were all significantly increased. In addition, in the therapy group, we found similar results. This experiment demonstrated that macrophages have a certain impact during this process of recombinant protein relieving mouse CD model.
Collapse
Affiliation(s)
- Jingyun Xu
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Street, Harbin, 150030, China
| | - Lijia Wu
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Street, Harbin, 150030, China
| | - Pengcheng Yu
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Street, Harbin, 150030, China
| | - Yichun Sun
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Street, Harbin, 150030, China
| | - Yixin Lu
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Street, Harbin, 150030, China.
| |
Collapse
|
18
|
Kourkoulis P, Kapizioni C, Michalopoulos G, Andreou NP, Papaconstantinou I, Karamanolis G, Gazouli M. Novel potential biomarkers for the diagnosis and monitoring of patients with ulcerative colitis. Eur J Gastroenterol Hepatol 2019; 31:1173-1183. [PMID: 31498278 DOI: 10.1097/meg.0000000000001490] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Unambiguously, great progress has been achieved in the unraveling of more pathological pathways implicated in the development and progression of ulcerative colitis during the last decades. Novel effective drugs that have augmented the management armamentarium have been developed alongside this growing comprehension of the disease, rendering mucosal healing not only a feasible but the optimal goal of every therapy. Clinical evaluation, colonoscopy and biomarkers are the tools used by practitioners for the diagnosis and assessment of the status of the disease in order to achieve clinical remission and mucosal healing for their patients. Among these tools, colonoscopy is the gold method for the cause but is still an invasive, high-cost procedure with possible adverse events such as perforation. While clinical evaluation entails much subjectivity, biomarkers are objective, easily reproducible, non-invasive, cheap and potent surrogate tools of mucosal inflammation. Unfortunately, the well-established, currently in use serum biomarkers, such as C-reactive protein, erythrocyte sedimentation rate and others, do not display sufficiently acceptable sensitivity and specificity rates for the diagnosis of ulcerative colitis and, most importantly, do not represent precisely the mucosal inflammation status of the disease. Therefore, the discovery of new serum biomarkers has been the cause of several studies attempting to discover an "optimal" serum biomarker during the recent years. After thorough research, collection and examination of current data, this review focuses on and selectively presents promising, potential, novel serum biomarkers of ulcerative colitis as they are indicated by studies on the patient over the last years.
Collapse
Affiliation(s)
- P Kourkoulis
- Gastroenterology Department, Tzaneion General Hospital of Piraeus, Piraeus
| | - C Kapizioni
- Gastroenterology Department, Tzaneion General Hospital of Piraeus, Piraeus
| | - G Michalopoulos
- Gastroenterology Department, Tzaneion General Hospital of Piraeus, Piraeus
| | - N P Andreou
- Department of Basic Medical Sciences, Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Athens
| | - I Papaconstantinou
- 2nd Department of Surgery, Aretaieion University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - G Karamanolis
- 2nd Department of Surgery, Aretaieion University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - M Gazouli
- Department of Basic Medical Sciences, Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Athens
| |
Collapse
|
19
|
Magro F, Lopes S, Silva M, Coelho R, Portela F, Branquinho D, Correia L, Fernandes S, Cravo M, Caldeira P, Tavares de Sousa H, Patita M, Lago P, Ramos J, Afonso J, Redondo I, Machado P, Philip G, Lopes J, Carneiro F. Soluble human Suppression of Tumorigenicity 2 is associated with endoscopic activity in patients with moderate-to-severe ulcerative colitis treated with golimumab. Therap Adv Gastroenterol 2019; 12:1756284819869141. [PMID: 31516554 PMCID: PMC6719471 DOI: 10.1177/1756284819869141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 07/17/2019] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Suppressor of Tumorigenicity 2 (ST2) is an IL33 receptor detected in the mucosa and serum of ulcerative colitis (UC) patients. We evaluated soluble ST2 (sST2) as a surrogate biomarker of disease outcome and therapeutic response, in moderate-to-severe UC patients treated with golimumab. METHODS We conducted an open-label single-arm multicentre prospective study. At screening/baseline, week 6 (W6) and week 16 (W16), clinical and endoscopic activity (total Mayo score), histologic activity (Geboes index) and biomarkers were evaluated. RESULTS From 38 patients, 34 (89.5%) completed W6 and 29 (76.3%) completed W16. Mean age (±SD) was 34.6 ± 12.6 years; 55.9% were female. At W16, 62.1% achieved clinical response. Patients with endoscopic activity at W6 (n = 20) had higher baseline sST2 (median, 24.5 versus 18.7 ng/ml, p = 0.026) and no decrease from baseline (median change, 0.8 versus -2.7, p = 0.029). At W6, sST2 levels correlated with endoscopic activity (rs = 0.45, p = 0.007) but not with histological activity (rs = 0.25, p = 0.151). The best cut-offs for endoscopic activity were sST2 = 16.9 ng/ml (sensitivity = 85%; specificity = 71%) and faecal calprotectin (FC) = 353 μg/g (sensitivity = 90%, specificity = 67%). Patients with histological activity at W6 (n = 27) had higher baseline ST2 levels (median, 23.0 versus 13.7 ng/ml, p = 0.035). sST2 did not correlate with FC or serum C-reactive protein. FC levels correlated with histological activity and baseline FC were higher when Geboes ⩾3.1 at W6. CONCLUSIONS sST2 may be a surrogate biomarker of UC activity and therapeutic response as it correlates with endoscopic and clinical activity at W6 of golimumab treatment, and subjects with endoscopic and histological activity at W6 had higher baseline ST2 levels.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Paulo Caldeira
- Centro Hospitalar Universitário do Algarve, Faro, Portugal
- Departamento de Ciências Biomédicas e Medicina, Universidade do Algarve, Faro, Portugal
- ABC–Algarve Biomedical Centre, Universidade do Algarve, Faro, Portugal
| | - Helena Tavares de Sousa
- Centro Hospitalar Universitário do Algarve, Faro, Portugal
- Departamento de Ciências Biomédicas e Medicina, Universidade do Algarve, Faro, Portugal
- ABC–Algarve Biomedical Centre, Universidade do Algarve, Faro, Portugal
| | | | - Paula Lago
- Centro Hospitalar do Porto, Porto, Portugal
| | - Jaime Ramos
- Centro Hospitalar Lisboa Central, Lisboa, Portugal
| | | | | | | | | | - Joanne Lopes
- Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| | - Fátima Carneiro
- Faculdade de Medicina, Universidade do Porto, Porto, Portugal
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (Ipatimup), i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| |
Collapse
|
20
|
Xie L, Liao G, Chen H, Xia M, Huang X, Fan R, Peng J, Zhang X, Liu H. Elevated expression of serum soluble ST2 in clinical relapse after stopping long-term Nucleos(t)ide analogue therapy for chronic hepatitis B. BMC Infect Dis 2019; 19:640. [PMID: 31324231 PMCID: PMC6642508 DOI: 10.1186/s12879-019-4261-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 07/04/2019] [Indexed: 12/13/2022] Open
Abstract
Background The virological or clinical relapse is common in chronic hepatitis B (CHB) patients after stopping long-term nucleos(t)ide analogue (NA) therapy. Soluble growth stimulation expressed gene 2 (sST2), one of the Toll-like/interleukin-1 receptor members, is involved in a variety of inflammatory processes and immune responses. However, the expression and function of serum sST2 in CHB patients after stopping NA treatment remains unknown. Methods A total of 91 non-cirrhotic Asian patients with CHB who discontinued NA therapy according to international guidelines were prospectively followed up to 240 weeks. All patients were divided into clinical relapse group and non-clinical relapse (including sustained virological response and only virological relapse) group according HBV DNA and ALT levels. The serum levels of sST2 of all participants were determined by ELISA and compared between each two groups. Results Clinical relapse occurred in 26 patients and virological relapse occurred in 57 patients. We found that there was a positive correlation between sST2 expression and HBsAg, ALT, HBV DNA, and anti-HBc levels in CHB patients after discontinuation of NA treatment. Levels of serum sST2 in clinical relapse patients showed a rising trend and most patients showed peak sST2 levels at the point of clinical relapse. Moreover, the sST2 levels of clinical relapse group at week 12, week 24 and week 48 were relatively higher than non-clinical relapse group. However, the level of sST2 at the end of treatment was not an effective biological marker for the early prediction of clinical relapse after discontinuation of long-term NA therapy. Conclusions In conclusion, we found that an increase in sST2 in clinical relapse patients might be associated with an inflammation-related immune response after discontinuation of NA treatment. Trial registration The trial was retrospectively registered at Chinese Clinical Trial Registry: ChiCTR-OOC-17013970. Registration date: December 15, 2017.
Collapse
Affiliation(s)
- Linqing Xie
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Guichan Liao
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hongjie Chen
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Muye Xia
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xuan Huang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Rong Fan
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jie Peng
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoyong Zhang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China. .,Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China.
| | - Hongyan Liu
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China. .,Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China.
| |
Collapse
|
21
|
Holgado A, Braun H, Van Nuffel E, Detry S, Schuijs MJ, Deswarte K, Vergote K, Haegman M, Baudelet G, Haustraete J, Hammad H, Lambrecht BN, Savvides SN, Afonina IS, Beyaert R. IL-33trap is a novel IL-33-neutralizing biologic that inhibits allergic airway inflammation. J Allergy Clin Immunol 2019; 144:204-215. [PMID: 30876911 PMCID: PMC7610802 DOI: 10.1016/j.jaci.2019.02.028] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 02/21/2019] [Accepted: 02/27/2019] [Indexed: 01/04/2023]
Abstract
BACKGROUND The emergence of IL-33 as a key molecular player in the development and propagation of widespread inflammatory diseases, including asthma and atopic dermatitis, has established the need for effective IL-33-neutralizing biologics. OBJECTIVE Here we describe the development and validation of a new antagonist of IL-33, termed IL-33trap, which combines the extracellular domains of the IL-33 receptor (ST2) and its coreceptor, IL-1 receptor accessory protein, into a single fusion protein. METHODS We produced and purified recombinant IL-33trap from human cells and analyzed its IL-33-binding affinity and IL-33 antagonistic activity in cultured cells and mice. IL-33trap activity was also benchmarked with a recombinant soluble ST2 corresponding to the naturally occurring IL-33 decoy receptor. Finally, we studied the effect of IL-33trap in the Alternaria alternata mouse model of allergic airway inflammation. RESULTS In vitro IL-33trap binds IL-33 and inhibits IL-33 activity to a much stronger degree than soluble ST2. Furthermore, IL-33trap inhibits eosinophil infiltration, splenomegaly, and production of signature cytokines in splenic lymphocytes and lung tissue on IL-33 injection. Finally, administration of IL-33trap at the time of allergen challenge inhibits inflammatory responses in a preclinical mouse model of acute allergic airway inflammation. CONCLUSIONS IL-33trap is a novel IL-33 antagonist that outperforms the natural IL-33 decoy receptor and shows anti-inflammatory activities in a preclinical mouse model of acute allergic airway inflammation when administered at the time of allergen challenge.
Collapse
Affiliation(s)
- Aurora Holgado
- Unit of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Harald Braun
- Unit of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Elien Van Nuffel
- Unit of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Sammy Detry
- Unit for Structural Biology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Laboratory for Protein Biochemistry and Biomolecular Engineering, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Martijn J Schuijs
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Kim Deswarte
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Karl Vergote
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Mira Haegman
- Unit of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Griet Baudelet
- Unit of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Jurgen Haustraete
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium; Protein Service Facility, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Hamida Hammad
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Bart N Lambrecht
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Savvas N Savvides
- Unit for Structural Biology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Laboratory for Protein Biochemistry and Biomolecular Engineering, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Inna S Afonina
- Unit of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Rudi Beyaert
- Unit of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
| |
Collapse
|
22
|
Ramadan AM, Daguindau E, Rech JC, Chinnaswamy K, Zhang J, Hura GL, Griesenauer B, Bolten Z, Robida A, Larsen M, Stuckey JA, Yang CY, Paczesny S. From proteomics to discovery of first-in-class ST2 inhibitors active in vivo. JCI Insight 2018; 3:99208. [PMID: 30046004 DOI: 10.1172/jci.insight.99208] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 06/12/2018] [Indexed: 12/19/2022] Open
Abstract
Soluble cytokine receptors function as decoy receptors to attenuate cytokine-mediated signaling and modulate downstream cellular responses. Dysregulated overproduction of soluble receptors can be pathological, such as soluble ST2 (sST2), a prognostic biomarker in cardiovascular diseases, ulcerative colitis, and graft-versus-host disease (GVHD). Although intervention using an ST2 antibody improves survival in murine GVHD models, sST2 is a challenging target for drug development because it binds to IL-33 via an extensive interaction interface. Here, we report the discovery of small-molecule ST2 inhibitors through a combination of high-throughput screening and computational analysis. After in vitro and in vivo toxicity assessment, 3 compounds were selected for evaluation in 2 experimental GVHD models. We show that the most effective compound, iST2-1, reduces plasma sST2 levels, alleviates disease symptoms, improves survival, and maintains graft-versus-leukemia activity. Our data suggest that iST2-1 warrants further optimization to develop treatment for inflammatory diseases mediated by sST2.
Collapse
Affiliation(s)
- Abdulraouf M Ramadan
- Department of Pediatrics and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Etienne Daguindau
- Department of Pediatrics and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Jason C Rech
- Department of Internal Medicine, Hematology and Oncology Division, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Jilu Zhang
- Department of Pediatrics and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Greg L Hura
- Lawrence Berkeley National Laboratory, Berkeley, California, USA.,Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, California, USA
| | - Brad Griesenauer
- Department of Pediatrics and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Zachary Bolten
- Department of Pediatrics and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Aaron Robida
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Martha Larsen
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Jeanne A Stuckey
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA.,Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Chao-Yie Yang
- Department of Internal Medicine, Hematology and Oncology Division, University of Michigan, Ann Arbor, Michigan, USA
| | - Sophie Paczesny
- Department of Pediatrics and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
23
|
Wang M, Shen G, Xu L, Liu X, Brown JM, Feng D, Ross RA, Gao B, Liangpunsakul S, Ju C. IL-1 receptor like 1 protects against alcoholic liver injury by limiting NF-κB activation in hepatic macrophages. J Hepatol 2017; 68:S0168-8278(17)32263-8. [PMID: 28870670 DOI: 10.1016/j.jhep.2017.08.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 08/02/2017] [Accepted: 08/14/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND & AIM Alcohol consumption increases intestinal permeability and causes damage to hepatocytes, leading to the release of pathogen- and damage-associated molecular pattern molecules (PAMPs and DAMPs), stimulating hepatic macrophages and activating NF-κB. The resultant inflammation exacerbates alcoholic liver disease (ALD). However, much less is known about the mechanisms attenuating inflammation and preventing disease progression in most heavy drinkers. Interleukin (IL)-33 is a DAMP (alarmin) released from dead cells that acts through its receptor, IL-1 receptor like 1 (ST2). ST2 signaling has been reported to either stimulate or inhibit NF-κB activation. The role of IL-33/ST2 in ALD has not been studied. METHODS Serum levels of IL-33 and its decoy receptor, soluble ST2 (sST2) were measured in ALD patients. Alcohol-induced liver injury, inflammation and hepatic macrophage activation were compared between wild-type, IL-33-/- and ST2-/- mice in several models. RESULTS Elevation of serum IL-33 and sST2 were only observed in patients with severe decompensated ALD. Consistently, in mice with mild ALD without significant cell death and IL-33 release, IL-33 deletion did not affect alcohol-induced liver damage. However, ST2-deletion exacerbated ALD, through enhancing NF-κB activation in liver macrophages. In contrast, when extracellular IL-33 was markedly elevated, liver injury and inflammation were attenuated in both IL-33-/- and ST2-/- mice compared to wild-type mice. CONCLUSION Our data revealed a dichotomous role of IL-33/ST2 signaling during ALD development. At early and mild stages, ST2 restrains the inflammatory activation of hepatic macrophages, through inhibiting NF-κB, and plays a protective function in an IL-33-independent fashion. During severe liver injury, significant cell death and marked IL-33 release occur, which triggers IL-33/ST2 signaling and exacerbates tissue damage. LAY SUMMARY In mild ALD, ST2 negatively regulates the inflammatory activation of hepatic macrophages, thereby protecting against alcohol-induced liver damage, whereas in the case of severe liver injury, the release of extracellular IL-33 may exacerbate tissue inflammation by triggering the canonical IL-33/ST2L signaling in hepatic macrophages.
Collapse
Affiliation(s)
- Meng Wang
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, USA
| | - Guannan Shen
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, USA
| | - Liangguo Xu
- School of Life Science, Jiangxi Normal University, China
| | - Xiaodong Liu
- Department of Pharmacy, Shengjing Hospital, China Medical University, China
| | - Jared M Brown
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, USA
| | - Dechun Feng
- Laboratory of Liver Diseases, NIAAA, NIH, USA
| | - Ruth Ann Ross
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Bin Gao
- Laboratory of Liver Diseases, NIAAA, NIH, USA
| | - Suthat Liangpunsakul
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA; Roudebush Veterans Administration Medical Center, Indianapolis, IN, USA
| | - Cynthia Ju
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, USA.
| |
Collapse
|
24
|
A functional IL1RL1 variant regulates corticosteroid-induced sST2 expression in ulcerative colitis. Sci Rep 2017; 7:10180. [PMID: 28860510 PMCID: PMC5579262 DOI: 10.1038/s41598-017-10465-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 08/10/2017] [Indexed: 02/07/2023] Open
Abstract
The ST2/IL33 signalling pathway has been associated with ulcerative colitis (UC). ST2, encoded by the IL1RL1 gene, is expressed as both a membrane-anchored receptor (ST2L) activated by IL33 and as a soluble receptor (sST2) with anti-inflammatory properties. In UC patients, sST2 is further increased by corticosteroid treatment; however, the glucocorticoid-mediated molecular regulation remains unknown. We therefore tested whether genetic variants in the IL1RL1 distal promoter are involved in UC and affect glucocorticoid-mediated ST2 expression. Serum ST2 levels and genetic variants in the IL1RL1 distal promoter were examined by ELISA and PCR sequencing in UC patients receiving corticosteroids. Glucocorticoid-mediated ST2 production was evaluated in intestinal mucosa cultures. Molecular regulation of glucocorticoid-mediated ST2 was assessed by RT-qPCR, ChIP assay and luciferase reporter assay. Dexamethasone effect on ST2 transcript expression was analyzed in leukocytes and related to IL1RL1 variants. Sequencing of a distal IL1RL1 promoter region demonstrated that SNPs rs6543115(C) and rs6543116(A) are associated with increased sST2 in UC patients on corticosteroids. Dexamethasone up-regulated sST2 transcription through interaction with the glucocorticoid-response element (GRE) carrying rs6543115(C) variant. Our data indicate that IL1RL1 SNPs rs6543115(C) confer susceptibility to UC and is contained in the GRE, which may modulate glucocorticoid-induced sST2 expression.
Collapse
|
25
|
Griesenauer B, Paczesny S. The ST2/IL-33 Axis in Immune Cells during Inflammatory Diseases. Front Immunol 2017; 8:475. [PMID: 28484466 PMCID: PMC5402045 DOI: 10.3389/fimmu.2017.00475] [Citation(s) in RCA: 444] [Impact Index Per Article: 55.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 04/05/2017] [Indexed: 12/16/2022] Open
Abstract
Il1rl1 (also known as ST2) is a member of the IL-1 superfamily, and its only known ligand is IL-33. ST2 exists in two forms as splice variants: a soluble form (sST2), which acts as a decoy receptor, sequesters free IL-33, and does not signal, and a membrane-bound form (ST2), which activates the MyD88/NF-κB signaling pathway to enhance mast cell, Th2, regulatory T cell (Treg), and innate lymphoid cell type 2 functions. sST2 levels are increased in patients with active inflammatory bowel disease, acute cardiac and small bowel transplant allograft rejection, colon and gastric cancers, gut mucosal damage during viral infection, pulmonary disease, heart disease, and graft-versus-host disease. Recently, sST2 has been shown to be secreted by intestinal pro-inflammatory T cells during gut inflammation; on the contrary, protective ST2-expressing Tregs are decreased, implicating that ST2/IL-33 signaling may play an important role in intestinal disease. This review will focus on what is known on its signaling during various inflammatory disease states and highlight potential avenues to intervene in ST2/IL-33 signaling as treatment options.
Collapse
Affiliation(s)
- Brad Griesenauer
- Department of Pediatrics, Indiana University, Indianapolis, IN, USA
- Department of Microbiology Immunology, Indiana University, Indianapolis, IN, USA
- Melvin and Bren Simon Cancer Center, Indiana University, Indianapolis, IN, USA
| | - Sophie Paczesny
- Department of Pediatrics, Indiana University, Indianapolis, IN, USA
- Department of Microbiology Immunology, Indiana University, Indianapolis, IN, USA
- Melvin and Bren Simon Cancer Center, Indiana University, Indianapolis, IN, USA
| |
Collapse
|
26
|
Zhang J, Ramadan AM, Griesenauer B, Li W, Turner MJ, Liu C, Kapur R, Hanenberg H, Blazar BR, Tawara I, Paczesny S. ST2 blockade reduces sST2-producing T cells while maintaining protective mST2-expressing T cells during graft-versus-host disease. Sci Transl Med 2016; 7:308ra160. [PMID: 26446957 DOI: 10.1126/scitranslmed.aab0166] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Graft-versus-host disease (GVHD) remains a devastating complication after allogeneic hematopoietic cell transplantation (HCT). We previously identified high plasma soluble suppression of tumorigenicity 2 (sST2) as a biomarker of the development of GVHD and death. sST2 sequesters interleukin-33 (IL-33), limiting its availability to T cells expressing membrane-bound ST2 (mST2) [T helper 2 (TH2) cells and ST2(+)FoxP3(+) regulatory T cells]. We report that blockade of sST2 in the peritransplant period with a neutralizing monoclonal antibody (anti-ST2 mAb) reduced GVHD severity and mortality. We identified intestinal stromal cells and T cells as major sources of sST2 during GVHD. ST2 blockade decreased systemic interferon-γ, IL-17, and IL-23 but increased IL-10 and IL-33 plasma levels. ST2 blockade also reduced sST2 production by IL-17-producing T cells while maintaining protective mST2-expressing T cells, increasing the frequency of intestinal myeloid-derived suppressor cells, and decreasing the frequency of intestinal CD103 dendritic cells. Finally, ST2 blockade preserved graft-versus-leukemia activity in a model of green fluorescent protein (GFP)-positive MLL-AF9 acute myeloid leukemia. Our findings suggest that ST2 is a therapeutic target for severe GVHD and that the ST2/IL-33 pathway could be investigated in other T cell-mediated immune disorders with loss of tolerance.
Collapse
Affiliation(s)
- Jilu Zhang
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA. Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA. Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA. Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Abdulraouf M Ramadan
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA. Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA. Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA. Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Brad Griesenauer
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA. Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA. Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA. Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Wei Li
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA. Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA. Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA. Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Matthew J Turner
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA. Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN 46202, USA. Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, IN 46202, USA
| | - Chen Liu
- Department of Pathology and Immunology, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Reuben Kapur
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Helmut Hanenberg
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA. Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA. Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Bruce R Blazar
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55454, USA
| | - Isao Tawara
- Department of Hematology/Oncology, Mie University Hospital, Mie 514-8507, Japan
| | - Sophie Paczesny
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA. Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA. Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA. Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
27
|
Díaz-Jiménez D, De la Fuente M, Dubois-Camacho K, Landskron G, Fuentes J, Pérez T, González MJ, Simian D, Hermoso MA, Quera R. Soluble ST2 is a sensitive clinical marker of ulcerative colitis evolution. BMC Gastroenterol 2016; 16:103. [PMID: 27565556 PMCID: PMC5002140 DOI: 10.1186/s12876-016-0520-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 08/14/2016] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The ST2/IL-33 pathway has been related to ulcerative colitis (UC), and soluble ST2 (sST2), to disease severity. We tested the potential usefulness of sST2 as a predictive marker of treatment response and patients' outcome. METHODS Twenty-six patients with active UC were prospectively recruited and grouped according to an endoscopic score and therapy response. Colonoscopic biopsies were collected at baseline and 6 months or when patients showed clinical activity. The protocol was reinitiated in patients requiring rescue therapy. Blood and stool were collected at baseline, 1, 3, 6 and 12 months. Serum and mucosal ST2, and fecal calprotectin (FC) content were determined by ELISA and correlated to Mayo clinical and endoscopic subscore. Intestinal ST2 was evaluated by immunofluorescence. Wilcoxon signed rank test and Spearman correlations (Rs) were applied (p <0.05). RESULTS Follow-up was completed in 24 patients. sST2 levels (median and range) varied from 173.5 [136.6-274.0] to 86.5 [54.6-133.2] in responders (p < 0.05), and 336.3 [211.0-403.2] to 385.3 pg/mL [283.4-517.3] in non-responders at baseline and 6 months, respectively. sST2 levels correlated with Mayo clinical and endoscopic subscore, mucosal ST2 and FC (Rs = 0.57, 0.66, 0.74 and 0.42, respectively; p < 0.0001) and showed a trend similar to that of FC in responders. Non-responders revealed an increased ST2 content, restricted to the lamina propria's cellular infiltrate. CONCLUSIONS Consecutive sST2 measurement to follow changes in inflammatory activity of UC patients who respond or not to treatment identifies sST2, like FC, as a useful biomarker in predicting clinical outcome of UC patients.
Collapse
Affiliation(s)
- David Díaz-Jiménez
- Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, CL, 8380453, Chile
| | - Marjorie De la Fuente
- Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, CL, 8380453, Chile.,Subdirección de Investigación, Dirección Académica, Clínica Las Condes, Santiago, CL, 7591018, Chile
| | - Karen Dubois-Camacho
- Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, CL, 8380453, Chile
| | - Glauben Landskron
- Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, CL, 8380453, Chile
| | - Janitza Fuentes
- Unidad de Hígado y Gastroenterología, Instituto Chileno-Japonés de Enfermedades Digestivas, Hospital San Borja-Arriarán, Santiago, CL, Chile
| | - Tamara Pérez
- Unidad de Hígado y Gastroenterología, Instituto Chileno-Japonés de Enfermedades Digestivas, Hospital San Borja-Arriarán, Santiago, CL, Chile
| | - María Julieta González
- Programa disciplinario de Biología Celular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, CL, 8380453, Chile
| | - Daniela Simian
- Subdirección de Investigación, Dirección Académica, Clínica Las Condes, Santiago, CL, 7591018, Chile
| | - Marcela A Hermoso
- Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, CL, 8380453, Chile.
| | - Rodrigo Quera
- Servicio de Gastroenterología, Clínica Las Condes, Santiago, CL, 7591018, Chile.
| |
Collapse
|
28
|
Boga S, Alkim H, Koksal AR, Ozagari AA, Bayram M, Tekin Neijmann S, Sen I, Alkim C. Serum ST2 in inflammatory bowel disease: a potential biomarker for disease activity. J Investig Med 2016; 64:1016-24. [PMID: 27001944 DOI: 10.1136/jim-2016-000062] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2016] [Indexed: 12/22/2022]
Abstract
ST2, a specific ligand of interleukin 33, was described as a biomarker protein of inflammatory processes and overexpression of ST2 in ulcerative colitis (UC) was shown previously. We aimed to investigate the potential relationship of serum ST2 levels with the clinical, endoscopic and histopathological activity scores in UC and Crohn's disease (CD). Serum ST2 levels were determined in 143 patients with inflammatory bowel disease (IBD) (83 UC and 60 CD), in 50 healthy controls (HC), and in 32 patients with irritable bowel syndrome (IBS). Serum ST2 levels were elevated in IBD (56.8 (41.9-87.2) pg/mL) compared to HC and IBS (30.7 (20.2-54.3), p<0.001 and 39.9 (25.9-68.7) pg/mL, p=0.002, respectively). No significant difference was found between UC (54.2 (41.3-93.0) pg/mL) and CD (63.8 (42.7-88.4) pg/mL) and between IBS and HC. Serum ST2 levels were significantly increased in active UC compared to inactive UC (72.5 (44.1-99.5) vs 40.0 (34.7-51.6) pg/mL, p<0.001) and in active CD in comparison with inactive CD (63.8 (42.7-88.4) vs 48.4 (29.6-56.9) pg/mL, p=0.036). Patients with CD showing fistulizing behavior had significantly higher ST2 levels compared to patients with inflammatory and stricturing CD (p<0.001). Clinical activity scores of patients with UC and CD were correlated with serum ST2 levels (r=0.692, p<0.001 and r=0.242, p=0.043, respectively). Serum ST2 levels showed stepwise increases with the increasing histopathological scores of patients with UC and CD (p<0.001 for both). The present study highlights significant associations between ST2 and IBD presence and activity and demonstrates elevated serum ST2 levels in patients with active CD as a novel finding.
Collapse
Affiliation(s)
- Salih Boga
- Department of Gastroenterology, Sisli Hamidiye Etfal Education and Research Hospital, Istanbul, Turkey
| | - Huseyin Alkim
- Department of Gastroenterology, Sisli Hamidiye Etfal Education and Research Hospital, Istanbul, Turkey
| | - Ali Riza Koksal
- Department of Gastroenterology, Sisli Hamidiye Etfal Education and Research Hospital, Istanbul, Turkey
| | - Ayse Aysim Ozagari
- Department of Pathology, Sisli Hamidiye Etfal Education and Research Hospital, Istanbul, Turkey
| | - Mehmet Bayram
- Department of Gastroenterology, Sisli Hamidiye Etfal Education and Research Hospital, Istanbul, Turkey
| | - Sebnem Tekin Neijmann
- Department of Biochemistry, Bakirkoy Dr. Sadi Konuk Education and Research Hospital, Istanbul, Turkey
| | - Ilker Sen
- Department of Gastroenterology, Sisli Hamidiye Etfal Education and Research Hospital, Istanbul, Turkey
| | - Canan Alkim
- Department of Gastroenterology, Sisli Hamidiye Etfal Education and Research Hospital, Istanbul, Turkey
| |
Collapse
|
29
|
Chang J, Xia YF, Zhang MZ, Zhang LM. IL-33 Signaling in Lung Injury. TRANSLATIONAL PERIOPERATIVE AND PAIN MEDICINE 2016; 1:24-32. [PMID: 27536706 PMCID: PMC4985245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Interleukin (IL)-33, a member of the IL-1 cytokine super-family, acts as both a traditional cytokine and an intracellular nuclear factor. It is generally released from damaged immune cells and signals through its receptor ST2 in an autocrine and paracrine fashion, plays important roles in type-2 innate immunity, and functions as an "alarmin" or a danger signal for cellular damage or cellular stress. Here, we review recent advances of the role of IL-33 in lung injury and explore its potential significance as an attractive therapeutic target.
Collapse
Affiliation(s)
- Jing Chang
- Department of Anesthesiology, Shanghai Children's Medical Center, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai, P.R. China
- Department of Anesthesiology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, U.S.A
| | - Yue-Feng Xia
- Department of Anesthesiology, Hunan Cancer Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan Province, P.R. China
- Department of Anesthesiology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, U.S.A
| | - Ma-Zhong Zhang
- Department of Anesthesiology, Shanghai Children's Medical Center, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai, P.R. China
| | - Li-Ming Zhang
- Department of Anesthesiology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, U.S.A
| |
Collapse
|
30
|
Takeyama H, Mizushima T, Iijima H, Shinichiro S, Uemura M, Nishimura J, Hata T, Takemasa I, Yamamoto H, Doki Y, Mori M. Platelet Activation Markers Are Associated with Crohn's Disease Activity in Patients with Low C-Reactive Protein. Dig Dis Sci 2015; 60:3418-23. [PMID: 26077975 DOI: 10.1007/s10620-015-3745-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 06/04/2015] [Indexed: 02/08/2023]
Abstract
BACKGROUND In assessing Crohn's disease (CD) activity, C-reactive protein (CRP) is an important indicator of inflammation; however, it is not necessarily associated with the Crohn's Disease Activity Index (CDAI), particularly in patients with low CRP. Recently, platelet activation factors have been recognized due to their importance in the inflammatory response. In this study, we examined associations between the CDAI and platelet factor 4 (PF-4), β-thromboglobulin (β-TG), and other coagulation and fibrinolysis factors. AIMS We aimed to find a new marker for evaluating disease activity in patients with CD and low CRP. METHODS Nine markers, including CRP, platelet count, white blood cell count, fibrin and fibrinogen degradation product, fibrinogen, thrombin-antithrombin complex, prothrombin fragments 1 + 2, PF-4, and β-TG were evaluated in 47 patients with CD and low CRP (<1.0 mg/dl). Patients were assigned to high or low disease activity groups, CDAI-H (CDAI ≥ 150) and CDAI-L (CDAI < 150), respectively. RESULTS CDAI-H exhibited significantly higher PF-4 and β-TG levels than CDAI-L (P < 0.01). Other markers were not significantly different between groups. CDAI was positively correlated with the levels of PF-4 and β-TG (P = 0.0033 and 0.0024; r = 0.4202 and 0.4321, respectively). Receiver operating characteristic curve analyses of PF-4 and β-TG showed high sensitivity (61.9 and 81%, respectively) and specificity (84.7 and 69.2%, respectively) for diagnosing active CD. CONCLUSION Among eight potential markers, PF-4 and β-TG were the most highly correlated with CDAI in patients with CD and low CRP. PF-4 and β-TG levels showed promise as new markers for assessing CD in patients with low CRP.
Collapse
Affiliation(s)
- Hiroshi Takeyama
- Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita City, Osaka, 565-0871, Japan
| | - Tsunekazu Mizushima
- Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita City, Osaka, 565-0871, Japan.
| | - Hideki Iijima
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita City, Osaka, 565-0871, Japan
| | - Shinzaki Shinichiro
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita City, Osaka, 565-0871, Japan
| | - Mamoru Uemura
- Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita City, Osaka, 565-0871, Japan
| | - Junichi Nishimura
- Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita City, Osaka, 565-0871, Japan
| | - Taishi Hata
- Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita City, Osaka, 565-0871, Japan
| | - Ichiro Takemasa
- Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita City, Osaka, 565-0871, Japan
| | - Hirofumi Yamamoto
- Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita City, Osaka, 565-0871, Japan
| | - Yuichiro Doki
- Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita City, Osaka, 565-0871, Japan
| | - Masaki Mori
- Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita City, Osaka, 565-0871, Japan
| |
Collapse
|
31
|
Peters CP, Mjösberg JM, Bernink JH, Spits H. Innate lymphoid cells in inflammatory bowel diseases. Immunol Lett 2015; 172:124-31. [PMID: 26470815 DOI: 10.1016/j.imlet.2015.10.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 09/28/2015] [Accepted: 10/07/2015] [Indexed: 12/29/2022]
Abstract
It is generally believed that inflammatory bowel diseases (IBD) are caused by an aberrant immune response to environmental triggers in genetically susceptible individuals. The exact contribution of the adaptive and innate immune system has not been elucidated. However, recent advances in treatments targeting key inflammatory mediators such as tumour necrosis factor highlight the crucial role of the innate immune system in IBD. Innate lymphoid cells (ILCs) have recently been identified to play an important role in immune mediated inflammatory diseases. In this review we recapitulate the current knowledge on ILCs in IBD.
Collapse
Affiliation(s)
- C P Peters
- Department of Gastroenterology and Hepatology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands.
| | - J M Mjösberg
- Center for Infectious Medicine, Department of Medicine, Karolinska University Hospital Huddinge Karolinska Institutet, CIM, F59, S-14186 Stockholm, Sweden.
| | - J H Bernink
- Department of Celbiology and Histology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands.
| | - H Spits
- Department of Celbiology and Histology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands.
| |
Collapse
|
32
|
Sands BE. Biomarkers of Inflammation in Inflammatory Bowel Disease. Gastroenterology 2015; 149:1275-1285.e2. [PMID: 26166315 DOI: 10.1053/j.gastro.2015.07.003] [Citation(s) in RCA: 282] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 07/02/2015] [Accepted: 07/06/2015] [Indexed: 02/07/2023]
Abstract
Recent observations suggest that subjective measures of disease activity in inflammatory bowel disease (IBD) are often misleading. Objective measures of inflammation are more closely associated with important long-term outcomes, but often depend upon invasive and costly procedures such as ileocolonoscopy and cross-sectional imaging by computed tomography or magnetic resonance imaging. Noninvasive, accurate, and inexpensive measures of intestinal inflammation would allow clinicians to adopt widely the paradigm of adjusting therapies with a goal of controlling inflammation. Blood, stool, and urine markers have all been explored as indicators of intestinal inflammation in IBD, and although none has been universally adopted, some have been well-characterized, and others hold great promise. Serum C-reactive protein and fecal calprotectin are among the best-studied noninvasive biomarkers of inflammation in IBD, and their test characteristics have been described in the setting of differentiating IBD from irritable bowel syndrome, for grading inflammation, to describe the response to therapy, and in demonstrating recurrent inflammation after medical or surgically induced remission. High-throughput research platforms, including gene expression arrays, metabolomics and proteomics, are also being applied to the discovery of novel biomarkers of inflammation. It is certain that biomarkers of inflammation will attain growing importance in the clinic as we strive for more effective and cost-effective strategies to treat patients with IBD.
Collapse
Affiliation(s)
- Bruce E Sands
- Dr. Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
33
|
Bandara G, Beaven MA, Olivera A, Gilfillan AM, Metcalfe DD. Activated mast cells synthesize and release soluble ST2-a decoy receptor for IL-33. Eur J Immunol 2015; 45:3034-44. [PMID: 26256265 DOI: 10.1002/eji.201545501] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 07/20/2015] [Accepted: 08/08/2015] [Indexed: 12/19/2022]
Abstract
IL-33 released from damaged cells plays a central role in allergic inflammation by acting through its membrane-bound receptor, ST2 receptor (ST2L). IL-33 activity can be neutralized by the soluble spliced variant of ST2 (sST2) that has been associated with allergic inflammation but its source is not well defined. We investigated whether mast cells (MCs) are a significant source of sST2 following activation through FcεRI or ST2. We find that antigen and IL-33 induce substantial production and release of sST2 from human and mouse MCs in culture and do so synergistically when added together or in combination with stem cell factor. Moreover, increases in circulating sST2 during anaphylaxis in mice were dependent on the presence of MCs. Human MCs activated via FcεRI failed to generate IL-33 and IL-33 produced by mouse bone marrow-derived MCs was retained within the cells. Therefore, FcεRI-mediated sST2 production is independent of MC-derived IL-33 acting in an autocrine manner. These results are consistent with the conclusion that both mouse and human MCs when activated are a significant inducible source of sST2 but not IL-33 and thus have the ability to modulate the biologic impact of IL-33 produced locally by other cell types during allergic inflammation.
Collapse
Affiliation(s)
- Geethani Bandara
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Michael A Beaven
- Laboratory of Molecular Immunology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ana Olivera
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Alasdair M Gilfillan
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Dean D Metcalfe
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
34
|
Owens BMJ. Inflammation, Innate Immunity, and the Intestinal Stromal Cell Niche: Opportunities and Challenges. Front Immunol 2015; 6:319. [PMID: 26150817 PMCID: PMC4471728 DOI: 10.3389/fimmu.2015.00319] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Accepted: 06/03/2015] [Indexed: 01/01/2023] Open
Abstract
Stromal cells of multiple tissues contribute to immune-mediated protective responses and, conversely, the pathological tissue changes associated with chronic inflammatory disease. However, unlike hematopoietic immune cells, tissue stromal cell populations remain poorly characterized with respect to specific surface marker expression, their ontogeny, self-renewal, and proliferative capacity within tissues and the extent to which they undergo phenotypic immunological changes during the course of an infectious or inflammatory insult. Extending our knowledge of the immunological features of stromal cells provides an exciting opportunity to further dissect the underlying biology of many important immune-mediated diseases, although several challenges remain in bringing the emerging field of stromal immunology to equivalence with the study of the hematopoietic immune cell compartment. This review highlights recent studies that have begun unraveling the complexity of tissue stromal cell function in immune responses, with a focus on the intestine, and proposes strategies for the development of the field to uncover the great potential for stromal immunology to contribute to our understanding of the fundamental pathophysiology of disease, and the opening of new therapeutic avenues in multiple chronic inflammatory conditions.
Collapse
Affiliation(s)
- Benjamin M J Owens
- Translational Gastroenterology Unit, Experimental Medicine Division, Nuffield Department of Clinical Medicine, John Radcliffe Hospital, University of Oxford , Oxford , UK ; Somerville College, University of Oxford , Oxford , UK
| |
Collapse
|
35
|
Jiang W, Li X. Molecular Analysis of Inflammatory Bowel Disease: Clinically Useful Tools for Diagnosis, Response Prediction, and Monitoring of Targeted Therapy. Mol Diagn Ther 2015; 19:141-58. [DOI: 10.1007/s40291-015-0142-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
36
|
Abstract
Suppression of tumorigenicity 2 (ST2, also known as interleukin [IL]-1 receptor-like-1) is an IL-1 receptor family member with transmembrane (ST2L) and soluble isoforms (sST2). ST2L is a membrane-bound receptor, and IL-33 is the functional ligand for ST2L. sST2, a soluble truncated form of ST2L, is secreted into the circulation and functions as a "decoy" receptor for IL-33, inhibiting IL-33/ST2L signaling. Blood concentrations of sST2 are increased in inflammatory diseases and heart disease and are considered a valuable prognostic marker in both conditions. In multiple clinical trials, sST2 has emerged as a clinically useful prognostic biomarker in patients with cardiac diseases. Interestingly, sST2 even provides prognostic information in low-risk community-based populations. In this review, we will discuss analytical considerations of measuring circulating sST2 including pre-analytical issues, such as in vitro stability of sST2, biological variation of sST2, and postanalytical issues, such as reference ranges and comparisons to diseased cohorts.
Collapse
|
37
|
Shen J, Shang Q, Wong CK, Li EK, Wang S, Li RJ, Lee KL, Leung YY, Ying KY, Yim CW, Kun EW, Leung MH, Li M, Li TK, Zhu TY, Yu SL, Kuan WP, Yu CM, Tam LS. IL-33 and soluble ST2 levels as novel predictors for remission and progression of carotid plaque in early rheumatoid arthritis: A prospective study. Semin Arthritis Rheum 2015; 45:18-27. [PMID: 25798875 DOI: 10.1016/j.semarthrit.2015.02.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 11/26/2014] [Accepted: 02/16/2015] [Indexed: 01/23/2023]
Abstract
OBJECTIVES To study the association between the baseline IL-33 and soluble ST2 (sST2) levels with disease remission and progression of carotid atherosclerosis in early rheumatoid arthritis (ERA) patients. METHODS A total of 98 ERA patients were enrolled. Disease activity and the presence of carotid plaque were evaluated at baseline and 12 months later. Plasma IL-33 and sST2 levels were determined using enzyme-linked immunosorbent assay kits. RESULTS Baseline IL-33 and sST2 levels were associated with inflammatory markers and cardiovascular (CV) risk factors. Overall, 44(45%), 18(18%), and 21(21%) patients achieved remission based on 28-joint disease activity score (DAS28), Boolean, and simplified disease activity score (SDAI) criteria at 12 months, respectively. Patients with detectable IL-33 at baseline were less likely to achieve DAS28 (P = 0.010) and SDAI remission (P = 0.021), while a lower baseline sST2 level was able to predict DAS28, Boolean, and SDAI remission (P = 0.005, 0.001, and <0.001, respectively). Using multivariate analysis, a lower baseline sST2 level independently predict Boolean (OR = 0.789; P = 0.005) and SDAI remission (0.812; P = 0.008). Regarding carotid atherosclerosis, 9/98(9.2%) patients had plaque progression at 12 months. Baseline IL-33 was detectable in 8/9(89%) and 42/83(51%) of patients with and without plaque progression respectively (P = 0.029). Baseline detectable IL-33 was an independent predictor for plaque progression after adjusting for traditional CV risk factors (P = 0.017). CONCLUSIONS Lower baseline sST2 levels independently predict disease remission and baseline detectable IL-33 independently predicts carotid plaque progression in ERA patients. This study suggests that inflammation induced by the IL-33/ST2 axis may play a significant role in the development of cardiovascular disease in RA.
Collapse
Affiliation(s)
- Jiayun Shen
- Department of Medicine & Therapeutics, The Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Qing Shang
- Department of Medicine & Therapeutics, The Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Chun-Kwok Wong
- Department of Chemical Pathology, The Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Edmund K Li
- Department of Medicine & Therapeutics, The Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Shang Wang
- Department of Medicine & Therapeutics, The Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Rui-Jie Li
- Department of Medicine & Therapeutics, The Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Ka-Lai Lee
- Department of Medicine, Pamela Youde Nethersole Eastern Hospital, Hong Kong, China
| | - Ying-Ying Leung
- Department of Rheumatology and Immunology, Singapore General Hospital, Singapore, Republic of Singapore
| | - King-Yee Ying
- Department of Medicine, Princess Margaret Hospital, Hong Kong, China
| | - Cheuk-Wan Yim
- Department of Medicine, Tseung Kwan O Hospital, Hong Kong, China
| | - Emily W Kun
- Department of Medicine and Geriatrics, Taipo Hospital, Hong Kong, China
| | - Moon-Ho Leung
- Department of Medicine, Queen Elizabeth Hospital, Hong Kong, China
| | - Martin Li
- Department of Medicine & Therapeutics, The Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Tena K Li
- Department of Medicine & Therapeutics, The Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Tracy Y Zhu
- Department of Medicine & Therapeutics, The Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Shui-Lian Yu
- Department of Medicine & Therapeutics, The Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Woon-Pang Kuan
- Department of Medicine & Therapeutics, The Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Cheuk-Man Yu
- Department of Medicine & Therapeutics, The Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Lai-Shan Tam
- Department of Medicine & Therapeutics, The Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
38
|
Jenabian MA, El-Far M, Vyboh K, Kema I, Costiniuk CT, Thomas R, Baril JG, LeBlanc R, Kanagaratham C, Radzioch D, Allam O, Ahmad A, Lebouché B, Tremblay C, Ancuta P, Routy JP. Immunosuppressive Tryptophan Catabolism and Gut Mucosal Dysfunction Following Early HIV Infection. J Infect Dis 2015; 212:355-66. [PMID: 25616404 DOI: 10.1093/infdis/jiv037] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 01/16/2015] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Tryptophan (Trp) catabolism into kynurenine (Kyn) contributes to immune dysfunction in chronic human immunodeficiency virus (HIV) infection. To better define the relationship between Trp catabolism, inflammation, gut mucosal dysfunction, and the role of early antiretroviral therapy (ART), we prospectively assessed patients early after they acquired HIV. METHODS Forty patients in the early phase of infection were longitudinally followed for 12 months after receiving a diagnosis of HIV infection; 24 were untreated, and 16 were receiving ART. Kyn/Trp ratio, regulatory T-cells (Tregs) frequency, T-cell activation, dendritic cell counts, and plasma levels of gut mucosal dysfunction markers intestinal-type fatty acid-binding protein, soluble suppression of tumorigenicity 2, and lipopolysaccharide were assessed. RESULTS Compared with healthy subjects, patients in the early phase of infection presented with elevated Kyn/Trp ratios, which further increased in untreated patients but normalized in ART recipients. Accordingly, in untreated subjects, the elevated Treg frequency observed at baseline continued to increase over time. The highest CD8(+) T-cell activation was observed during the early phase of infection and decreased in untreated patients, whereas activation normalized in ART recipients. The Kyn/Trp ratio was positively associated with CD8(+) T-cell activation and levels of inflammatory cytokines (interleukin 6, interferon γ-inducible protein 10, interleukin 18, and tumor necrosis factor α) and negatively associated with dendritic cell frequencies at baseline and in untreated patients. However, ART did not normalize plasma levels of gut mucosal dysfunction markers. CONCLUSIONS Early initiation of ART normalized enhanced Trp catabolism and immune activation but did not improve plasma levels of gut mucosal dysfunction markers.
Collapse
Affiliation(s)
| | | | | | - Ido Kema
- Department of Laboratory Medicine, University Medical Center, University of Groningen, The Netherlands
| | | | | | | | - Roger LeBlanc
- Chronic Viral Illnesses Service Clinique Médicale OPUS
| | | | | | - Ossama Allam
- Department of Microbiology and Immunology CHU Ste-Justine Research Center, University of Montreal, Quebec, Canada
| | - Ali Ahmad
- Department of Microbiology and Immunology CHU Ste-Justine Research Center, University of Montreal, Quebec, Canada
| | | | - Cécile Tremblay
- CHUM Research Centre Department of Microbiology and Immunology
| | | | - Jean-Pierre Routy
- Chronic Viral Illnesses Service Research Institute Division of Hematology, McGill University Health Centre
| | | |
Collapse
|
39
|
Jung SM, Lee J, Baek SY, Lee JH, Lee J, Park KS, Park SH, Kim HY, Kwok SK. The Interleukin 33/ST2 Axis in Patients with Primary Sjögren Syndrome: Expression in Serum and Salivary Glands, and the Clinical Association. J Rheumatol 2014; 42:264-71. [DOI: 10.3899/jrheum.140234] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Objective.To evaluate the expression of interleukin 33 (IL-33) and its receptor in sera and salivary tissues of patients with primary Sjögren syndrome (pSS), and to investigate the association with clinical profiles.Methods.Serum IL-33 and soluble ST2 (sST2) of 55 patients with pSS and 48 controls were determined by ELISA and assessed for clinical correlation. The expression of IL-33/ST2 in salivary tissues was investigated by immunohistochemical staining and was further characterized by confocal microscopy. We also measured IL-33 production in salivary glandular epithelial cells by proinflammatory stimuli.Results.Serum levels of IL-33 and sST2 were higher in patients with pSS compared to those in controls (p = 0.018 and p < 0.0001, respectively). Among patients with pSS, sST2 concentration was associated with thrombocytopenia (p = 0.029) and correlated with disease duration (p = 0.013) and the European League Against Rheumatism Sjögren Syndrome Disease Activity Index (p = 0.042). The expression of IL-33 and ST2 was elevated in salivary glands of patients with pSS with grade 2 inflammation, and diminished in advanced inflammation. In patients with pSS, IL-33 was mainly observed in epithelial and endothelial cells of glandular tissue. The production of IL-33 mRNA by salivary gland epithelial cell line increased under stimulation with interferon-γ.Conclusion.The expression of IL-33 and its receptor was elevated in sera and salivary tissues of patients with pSS. These results suggest that the IL-33/ST2 axis might have a role in the pathogenesis of pSS.
Collapse
|
40
|
Dieplinger B, Mueller T. Soluble ST2 in heart failure. Clin Chim Acta 2014; 443:57-70. [PMID: 25269091 DOI: 10.1016/j.cca.2014.09.021] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 08/27/2014] [Accepted: 09/16/2014] [Indexed: 12/12/2022]
Abstract
In addition to routine clinical laboratory tests (including natriuretic peptides and cardiac troponins), other biomarkers are gaining attention for their utility in heart failure (HF) management. Among them, soluble ST2 (sST2) a novel biomarker integrating inflammation, fibrosis, and cardiac stress has been included in the 2013 ACCF/AHA guideline for additive risk stratification of patients with acute and chronic HF. sST2 is an interleukin-1 (IL-1) receptor family member, is secreted into the circulation and functions as a "decoy" receptor for IL-33, inhibiting IL-33/ST2 signaling. Blood concentrations of sST2 are increased in various diseases such as inflammatory diseases and heart diseases and are considered a valuable prognostic marker in both conditions. sST2 lacks disease specificity and, therefore, is not a valuable marker for the diagnosis of HF. In acute and chronic HF, however, sST2 is strongly associated with measures of HF severity and poor outcome. Several studies in patients with HF indicate that serial measurement of sST2 has prognostic value and could have a potential role in future biomarker-directed therapy. In this review, the role of sST2 as a HF biomarker will be discussed, specifically addressing analytical considerations of measuring sST2 as well as the clinical applications of measurement of sST2 for the diagnosis, prognosis and monitoring of acute and chronic HF.
Collapse
Affiliation(s)
- Benjamin Dieplinger
- Department of Laboratory Medicine, Konventhospital Barmherzige Brueder, Linz, Austria.
| | - Thomas Mueller
- Department of Laboratory Medicine, Konventhospital Barmherzige Brueder, Linz, Austria
| |
Collapse
|
41
|
Schiering C, Krausgruber T, Chomka A, Fröhlich A, Adelmann K, Wohlfert EA, Pott J, Griseri T, Bollrath J, Hegazy AN, Harrison OJ, Owens BMJ, Löhning M, Belkaid Y, Fallon PG, Powrie F. The alarmin IL-33 promotes regulatory T-cell function in the intestine. Nature 2014; 513:564-568. [PMID: 25043027 PMCID: PMC4339042 DOI: 10.1038/nature13577] [Citation(s) in RCA: 803] [Impact Index Per Article: 73.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 06/11/2014] [Indexed: 02/06/2023]
Abstract
FOXP3(+) regulatory T cells (Treg cells) are abundant in the intestine, where they prevent dysregulated inflammatory responses to self and environmental stimuli. It is now appreciated that Treg cells acquire tissue-specific adaptations that facilitate their survival and function; however, key host factors controlling the Treg response in the intestine are poorly understood. The interleukin (IL)-1 family member IL-33 is constitutively expressed in epithelial cells at barrier sites, where it functions as an endogenous danger signal, or alarmin, in response to tissue damage. Recent studies in humans have described high levels of IL-33 in inflamed lesions of inflammatory bowel disease patients, suggesting a role for this cytokine in disease pathogenesis. In the intestine, both protective and pathological roles for IL-33 have been described in murine models of acute colitis, but its contribution to chronic inflammation remains ill defined. Here we show in mice that the IL-33 receptor ST2 is preferentially expressed on colonic Treg cells, where it promotes Treg function and adaptation to the inflammatory environment. IL-33 signalling in T cells stimulates Treg responses in several ways. First, it enhances transforming growth factor (TGF)-β1-mediated differentiation of Treg cells and, second, it provides a necessary signal for Treg-cell accumulation and maintenance in inflamed tissues. Strikingly, IL-23, a key pro-inflammatory cytokine in the pathogenesis of inflammatory bowel disease, restrained Treg responses through inhibition of IL-33 responsiveness. These results demonstrate a hitherto unrecognized link between an endogenous mediator of tissue damage and a major anti-inflammatory pathway, and suggest that the balance between IL-33 and IL-23 may be a key controller of intestinal immune responses.
Collapse
Affiliation(s)
- Chris Schiering
- Translational Gastroenterology Unit, Nuffield Department of Clinical Medicine, Experimental Medicine Division, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Thomas Krausgruber
- Translational Gastroenterology Unit, Nuffield Department of Clinical Medicine, Experimental Medicine Division, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Agnieszka Chomka
- Translational Gastroenterology Unit, Nuffield Department of Clinical Medicine, Experimental Medicine Division, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Anja Fröhlich
- Experimental Immunology, Department of Rheumatology and Clinical Immunology, Charité - University Medicine Berlin, and German Rheumatism Research Center (DRFZ), Berlin, Germany
| | - Krista Adelmann
- Translational Gastroenterology Unit, Nuffield Department of Clinical Medicine, Experimental Medicine Division, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Elizabeth A Wohlfert
- Program in Barrier Immunity and Repair, Mucosal Immunology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Johanna Pott
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, United Kingdom
| | - Thibault Griseri
- Translational Gastroenterology Unit, Nuffield Department of Clinical Medicine, Experimental Medicine Division, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Julia Bollrath
- Translational Gastroenterology Unit, Nuffield Department of Clinical Medicine, Experimental Medicine Division, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Ahmed N Hegazy
- Translational Gastroenterology Unit, Nuffield Department of Clinical Medicine, Experimental Medicine Division, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Oliver J Harrison
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, United Kingdom
| | - Benjamin M J Owens
- Translational Gastroenterology Unit, Nuffield Department of Clinical Medicine, Experimental Medicine Division, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Max Löhning
- Experimental Immunology, Department of Rheumatology and Clinical Immunology, Charité - University Medicine Berlin, and German Rheumatism Research Center (DRFZ), Berlin, Germany
| | - Yasmine Belkaid
- Program in Barrier Immunity and Repair, Mucosal Immunology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Padraic G Fallon
- Trinity Biomedical Sciences Institute, Trinity College Dublin, Pearse Street, Dublin, Ireland
| | - Fiona Powrie
- Translational Gastroenterology Unit, Nuffield Department of Clinical Medicine, Experimental Medicine Division, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| |
Collapse
|
42
|
Vrabie R, Kane S. Noninvasive Markers of Disease Activity in Inflammatory Bowel Disease. Gastroenterol Hepatol (N Y) 2014; 10:576-584. [PMID: 27551251 PMCID: PMC4991533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
It is often difficult to assess disease activity in inflammatory bowel disease (IBD). Noninvasive biomarkers are a means of quantifying often nebulous symptoms without subjecting patients to endoscopy or radiation. This paper highlights markers present in feces, serum, or urine that have all been compared with the gold standard, histologic analysis of endoscopically collected specimens. Two categories of markers are featured: well-researched markers of mucosal inflammation with high sensitivity and specificity (calprotectin, lactoferrin, and S100A12) and novel promising markers, some of which are already clinically employed for reasons unrelated to IBD (interleukin [IL]-17, IL-33/ST2, adenosine deaminase, polymorphonuclear elastase, matrix metalloproteinase-9, neopterin, serum M30, and fecal immunohistochemistry). The data pertaining to the more-established markers are intended to highlight recent clinical applications for these markers (ie, assessing disease outside of the colon or in the pediatric population as well as being a cost-saving alternative to colonoscopy to screen for IBD). As there is no evidence to date that a specific marker will accurately be able to represent the entire IBD patient population, it is likely that a combination of the existing markers will be most clinically relevant to the practicing gastroenterologist attempting to evaluate disease severity in a specific patient. Familiarity with the most promising emerging markers will allow a better understanding of new studies and their impact on patient care.
Collapse
Affiliation(s)
- Raluca Vrabie
- Dr Vrabie is an assistant professor of clinical medicine at Stony Brook School of Medicine in Stony Brook, New York and the director of the Center of Inflammatory Bowel Disease at Winthrop University Hospital in Mineola, New York. Dr Kane is a professor of medicine at the Mayo Clinic in Rochester, Minnesota
| | - Sunanda Kane
- Dr Vrabie is an assistant professor of clinical medicine at Stony Brook School of Medicine in Stony Brook, New York and the director of the Center of Inflammatory Bowel Disease at Winthrop University Hospital in Mineola, New York. Dr Kane is a professor of medicine at the Mayo Clinic in Rochester, Minnesota
| |
Collapse
|
43
|
Role of IL-33 and its receptor in T cell-mediated autoimmune diseases. BIOMED RESEARCH INTERNATIONAL 2014; 2014:587376. [PMID: 25032216 PMCID: PMC4084552 DOI: 10.1155/2014/587376] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 05/26/2014] [Accepted: 05/27/2014] [Indexed: 12/14/2022]
Abstract
Interleukin-33 (IL-33) is a new cytokine of interleukin-1 family, whose specific receptor is ST2. IL-33 exerts its functions via its target cells and plays different roles in diseases. ST2 deletion and exclusion of IL-33/ST2 axis are accompanied by enhanced susceptibility to dominantly T cell-mediated organ-specific autoimmune diseases. It has been reported that IL-33/ST2 pathway plays a key role in host defense and immune regulation in inflammatory and infectious diseases. This review focuses on new findings in the roles of IL-33 and ST2 in several kinds of T cell-mediated autoimmune diseases.
Collapse
|
44
|
Biomarkers of inflammatory bowel disease. DISEASE MARKERS 2014; 2014:710915. [PMID: 24963213 PMCID: PMC4055235 DOI: 10.1155/2014/710915] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 05/06/2014] [Indexed: 12/13/2022]
Abstract
Inflammatory bowel disease (IBD) is a chronic disease mostly involved with intestine with unknown etiology. Diagnosis, evaluation of severity, and prognosis are still present as challenges for physicians. An ideal biomarker with the characters such as simple, easy to perform, noninvasive or microinvasive, cheap, rapid, and reproducible is helpful for patients and clinicians. Currently biomarkers applied in clinic include CRP, ESR, pANCA, ASCA, and fecal calprotectin. However, they are far from ideal. Lots of studies are focused on seeking for ideal biomarker for IBD. Herein, the paper reviewed recent researches on biomarkers of IBD to get advances of biomarkers in inflammatory bowel disease.
Collapse
|
45
|
Ji GX, Cheng Y, Gao FL, Xie CS, Yang M. Immune modulation by the IL-33/ST2 system in ulcerative colitis. Shijie Huaren Xiaohua Zazhi 2014; 22:1663-1668. [DOI: 10.11569/wcjd.v22.i12.1663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The immune system prevents pathogens from entering and spreading in the body. Dysfunction of the immune system can activate an intestinal inflammatory response, leading to chronic diseases including inflammatory bowel diseases (IBD). Ulcerative colitis (UC) is a form of IBD of unknown etiology with increasing prevalence. There is an imbalance in the interleukin-33/homolog of sulfotransferase 2 (IL-33/ST2) axis in UC intestinal mucosa. This paper reviews the role of the IL-33/ST2 system in immunity of the intestinal mucosa and its importance in IBD, especially UC.
Collapse
|
46
|
Pei C, Barbour M, Fairlie-Clarke KJ, Allan D, Mu R, Jiang HR. Emerging role of interleukin-33 in autoimmune diseases. Immunology 2014; 141:9-17. [PMID: 24116703 DOI: 10.1111/imm.12174] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 09/20/2013] [Accepted: 09/22/2013] [Indexed: 12/12/2022] Open
Abstract
Interleukin-33 (IL-33) is a member of the IL-1 cytokine family. It predominantly induces type 2 immune responses and thus is protective against atherosclerosis and nematode infections but contributes to allergic airway inflammation. Interleukin-33 also plays a pivotal role in the development of many autoimmune diseases through mechanisms that are still not fully understood. In this review, we focus on the recent advances in understanding of the expression and function of IL-33 in some autoimmune disorders, aiming to provide insight into its potential role in disease development.
Collapse
Affiliation(s)
- Cheng Pei
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK; Department of Ophthalmology, First Affiliated Hospital of the Medical College, Xi'an Jiaotong University, Xi'an, China
| | | | | | | | | | | |
Collapse
|
47
|
Mueller T, Dieplinger B. The Presage(®) ST2 Assay: analytical considerations and clinical applications for a high-sensitivity assay for measurement of soluble ST2. Expert Rev Mol Diagn 2013; 13:13-30. [PMID: 23256700 DOI: 10.1586/erm.12.128] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The Presage(®) ST2 Assay (Critical Diagnostics, CA, USA) is an in vitro diagnostic device that quantitatively measures soluble suppression of tumorigenicity 2 (sST2) in serum and plasma by ELISA. This assay is US FDA approved and is indicated to be used in conjunction with clinical evaluation as an aid in assessing the prognosis of patients diagnosed with chronic heart failure. sST2 binds to IL-33 and functions as a 'decoy' receptor for IL-33, thereby attenuating the systemic effects of IL-33. Due to the role of IL-33/transmembrane isoform of suppression of tumorigenicity 2 signaling in cardiac remodeling, sST2 has emerged as a novel cardiovascular biomarker. In recent studies, it was shown that sST2 is a valuable predictor of several end points in heart failure, in acute coronary syndromes and in critically ill patients. In this review, analytical considerations and clinical applications of the Presage ST2 Assay will be discussed, as well as probable future concepts for adoption of sST2 measurements into clinical practice.
Collapse
Affiliation(s)
- Thomas Mueller
- Department of Laboratory Medicine, Konventhospital Barmherzige Brueder, Seilerstaette 2-4, A-4020 Linz, Austria.
| | | |
Collapse
|
48
|
The role of IL-33 in gut mucosal inflammation. Mediators Inflamm 2013; 2013:608187. [PMID: 23766561 PMCID: PMC3676953 DOI: 10.1155/2013/608187] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 05/09/2013] [Indexed: 02/04/2023] Open
Abstract
Interleukin (IL)-33 is a recently identified cytokine belonging to the IL-1 family that is widely expressed throughout the body and has the ability to induce Th2 immune responses. In addition, IL-33 plays a key role in promoting host defenses against parasites through the expansion of a novel population of innate lymphoid cells. In recent years, a growing body of evidence has shown that the proinflammatory properties displayed by IL-33 are detrimental in several experimental models of inflammation; in others, however, IL-33 appears to have protective functions. In 2010, four different research groups consistently described the upregulation of IL-33 in patients with inflammatory bowel disease (IBD). Animal models of IBD were subsequently utilized in order to mechanistically determine the precise role of IL-33 in chronic intestinal inflammation, without, however, reaching conclusive evidence demonstrating whether IL-33 is pathogenic or protective. Indeed, data generated from these studies suggest that IL-33 may possess dichotomous functions, enhancing inflammatory responses on one hand and promoting epithelial integrity on the other. This review focuses on the available data regarding IL-33/ST2 in the physiological and inflammatory states of the gut in order to speculate on the possible roles of this novel IL-1 family member in intestinal inflammation.
Collapse
|
49
|
Innate immunity modulation by the IL-33/ST2 system in intestinal mucosa. BIOMED RESEARCH INTERNATIONAL 2012; 2013:142492. [PMID: 23484079 PMCID: PMC3591220 DOI: 10.1155/2013/142492] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 10/29/2012] [Indexed: 12/23/2022]
Abstract
Innate immunity prevents pathogens from entering and spreading within the body. This function is especially important in the gastrointestinal tract and skin, as these organs have a large surface contact area with the outside environment. In the intestine, luminal commensal bacteria are necessary for adequate food digestion and play a crucial role in tolerance to benign antigens. Immune system damage can create an intestinal inflammatory response, leading to chronic disease including inflammatory bowel diseases (IBD). Ulcerative colitis (UC) is an IBD of unknown etiology with increasing worldwide prevalence. In the intestinal mucosa of UC patients, there is an imbalance in the IL-33/ST2 axis, an important modulator of the innate immune response. This paper reviews the role of the IL-33/ST2 system in innate immunity of the intestinal mucosa and its importance in inflammatory bowel diseases, especially ulcerative colitis.
Collapse
|
50
|
Candia E, Díaz-Jiménez D, Langjahr P, Núñez LE, de la Fuente M, Farfán N, López-Kostner F, Abedrapo M, Alvarez-Lobos M, Pinedo G, Beltrán CJ, González C, González MJ, Quera R, Hermoso MA. Increased production of soluble TLR2 by lamina propria mononuclear cells from ulcerative colitis patients. Immunobiology 2011; 217:634-42. [PMID: 22101184 DOI: 10.1016/j.imbio.2011.10.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2011] [Revised: 09/13/2011] [Accepted: 10/28/2011] [Indexed: 12/12/2022]
Abstract
Toll-like receptor 2 (TLR2) is a type I pattern recognition receptor that has been shown to participate in intestinal homeostasis. Its increased expression in the lamina propria has been associated with the pathogenesis in inflammatory bowel disease (IBD), such as ulcerative colitis (UC) and Crohn's disease (CD). Recently, soluble TLR2 (sTLR2) variants have been shown to counteract inflammatory responses driven by the cognate receptor. Despite the evident roles of TLR2 in intestinal immunity, no study has elucidated the production and cellular source of sTLR2 in IBD. Furthermore, an increase in the population of activated macrophages expressing TLR2 that infiltrates the intestine in IBD has been reported. We aimed first to assess the production of the sTLR2 by UC and CD organ culture biopsies and lamina propria mononuclear cells (LPMCs) as well as the levels of sTLR2 in serum, and then characterize the cell population from lamina propria producing the soluble protein. Mucosa explants, LPMCs and serum were obtained from UC, CD patients and control subjects. The level of sTLR2 was higher in conditioned media from organ culture biopsies and LPMCs from UC patients in comparison to CD and controls. Moreover, an inverse correlation between the content of intestinal and serum sTLR2 levels was observed in UC patients. Additionally, when characterizing the cellular source of the increased sTLR2 by LPMCs from UC patients, an increase in TLR2(+)/CD33(+) cell population was found. Also, these cells expressed CX3CR1, which was related to the increased levels of intestinal FKN in UC patients, suggesting that a higher proportion of TLR2(+) mononuclear cells infiltrate the lamina propria. The increased production of sTLR2 suggests that a differential regulating factor of the innate immune system is present in the intestinal mucosa of UC patients.
Collapse
Affiliation(s)
- Enzo Candia
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, CL 8380453, Chile
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|