1
|
Elbehiry A, Marzouk E, Abalkhail A, Sindi W, Alzahrani Y, Alhifani S, Alshehri T, Anajirih NA, ALMutairi T, Alsaedi A, Alzaben F, Alqrni A, Draz A, Almuzaini AM, Aljarallah SN, Almujaidel A, Abu-Okail A. Pivotal role of Helicobacter pylori virulence genes in pathogenicity and vaccine development. Front Med (Lausanne) 2025; 11:1523991. [PMID: 39850097 PMCID: PMC11756510 DOI: 10.3389/fmed.2024.1523991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 12/13/2024] [Indexed: 01/25/2025] Open
Abstract
One of the most prevalent human infections is Helicobacter pylori (H. pylori), which affects more than half of the global population. Although H. pylori infections are widespread, only a minority of individuals develop severe gastroduodenal disorders. The global resistance of H. pylori to antibiotics has reached concerning levels, significantly impacting the effectiveness of treatment. Consequently, the development of vaccines targeting virulence factors may present a viable alternative for the treatment and prevention of H. pylori infections. This review aims to provide a comprehensive overview of the current understanding of H. pylori infection, with a particular focus on its virulence factors, pathophysiology, and vaccination strategies. This review discusses various virulence factors associated with H. pylori, such as cytotoxin-associated gene A (cagA), vacuolating cytotoxin gene (vacA), outer membrane proteins (OMPs), neutrophil-activated protein (NAP), urease (ure), and catalase. The development of vaccines based on these virulence characteristics is essential for controlling infection and ensuring long-lasting protection. Various vaccination strategies and formulations have been tested in animal models; however, their effectiveness and reproducibility in humans remain uncertain. Different types of vaccines, including vector-based vaccines, inactivated whole cells, genetically modified protein-based subunits, and multiepitope nucleic acid (DNA) vaccines, have been explored. While some vaccines have demonstrated promising results in murine models, only a limited number have been successfully tested in humans. This article provides a thorough evaluation of recent research on H. pylori virulence genes and vaccination methods, offering valuable insights for future strategies to address this global health challenge.
Collapse
Affiliation(s)
- Ayman Elbehiry
- Department of Public Health, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Eman Marzouk
- Department of Public Health, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Adil Abalkhail
- Department of Public Health, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Wael Sindi
- Department of Population, Public and Environmental Health, General Administration of Health Services, Ministry of Defense, Riyadh, Saudi Arabia
| | - Yasir Alzahrani
- Department of Psychiatry, King Fahad Armed Forces Hospital, Jeddah, Saudi Arabia
| | - Salem Alhifani
- Department of Psychiatry, King Fahad Armed Forces Hospital, Jeddah, Saudi Arabia
| | - Turki Alshehri
- Department of Dental, Alhada Armed Forces Hospital, Taif, Saudi Arabia
| | - Nuha Abdulaziz Anajirih
- Department of Medical Emergency Services, Faculty of Health Sciences, Umm Al-Qura University, Al-Qunfudah, Saudi Arabia
| | - Turki ALMutairi
- Department of Education and Training, Prince Sultan Military College of Health Sciences, Dammam, Saudi Arabia
| | - Ahmad Alsaedi
- Department of Education and Training, Prince Sultan Military College of Health Sciences, Dammam, Saudi Arabia
| | - Feras Alzaben
- Department of Food Service, King Fahad Armed Forces Hospital, Jeddah, Saudi Arabia
| | - Abdullah Alqrni
- Department of Preventive Medicine, King Fahad Armed Hospital, Jeddah, Saudi Arabia
| | - Abdelmaged Draz
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Abdulaziz M. Almuzaini
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Sahar N. Aljarallah
- Department of Pharmacy Sciences, College of Pharmacy, AlMaarefa University, Riyadh, Saudi Arabia
| | - Abdulrahman Almujaidel
- Department of Public Health, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Akram Abu-Okail
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| |
Collapse
|
2
|
McClain MS, Boeglin WE, Algood HMS, Brash AR. Fatty acids of Helicobacter pylori lipoproteins CagT and Lpp20. Microbiol Spectr 2024; 12:e0047024. [PMID: 38501821 PMCID: PMC11064636 DOI: 10.1128/spectrum.00470-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 03/04/2024] [Indexed: 03/20/2024] Open
Abstract
Bacterial lipoproteins are post-translationally modified by the addition of acyl chains that anchor the protein to bacterial membranes. This modification includes two ester-linked and one amide-linked acyl chain on lipoproteins from Gram-negative bacteria. Helicobacter pylori lipoproteins have important functions in pathogenesis (including delivering the CagA oncoprotein to mammalian cells) and are recognized by host innate and adaptive immune systems. The number and variety of acyl chains on lipoproteins impact the innate immune response through Toll-like receptor 2. The acyl chains added to lipoproteins are derived from membrane phospholipids. H. pylori membrane phospholipids have previously been shown to consist primarily of C14:0 and C19:0 cyclopropane-containing acyl chains. However, the acyl composition of H. pylori lipoproteins has not been determined. In this study, we characterized the acyl composition of two representative H. pylori lipoproteins, Lpp20 and CagT. Fatty acid methyl esters were prepared from both purified lipoproteins and analyzed by gas chromatography-mass spectrometry. For comparison, we also analyzed H. pylori phospholipids. Consistent with previous studies, we observed that the H. pylori phospholipids contain primarily C14:0 and C19:0 cyclopropane-containing fatty acids. In contrast, both the ester-linked and amide-linked fatty acids found in H. pylori lipoproteins were observed to be almost exclusively C16:0 and C18:0. A discrepancy between the acyl composition of membrane phospholipids and lipoproteins as reported here for H. pylori has been previously reported in other bacteria including Borrelia and Brucella. We discuss possible mechanisms.IMPORTANCEColonization of the stomach by Helicobacter pylori is an important risk factor in the development of gastric cancer, the third leading cause of cancer-related death worldwide. H. pylori persists in the stomach despite an immune response against the bacteria. Recognition of lipoproteins by TLR2 contributes to the innate immune response to H. pylori. However, the role of H. pylori lipoproteins in bacterial persistence is poorly understood. As the host response to lipoproteins depends on the acyl chain content, defining the acyl composition of H. pylori lipoproteins is an important step in characterizing how lipoproteins contribute to persistence.
Collapse
Affiliation(s)
- Mark S. McClain
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - William E. Boeglin
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Holly M. Scott Algood
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Vanderbilt Center for Immunobiology, Vanderbilt Medical Center, Nashville, Tennessee, USA
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| | - Alan R. Brash
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| |
Collapse
|
3
|
Rosli NA, Al-Maleki AR, Loke MF, Chua EG, Alhoot MA, Vadivelu J. Polymorphism of virulence genes and biofilm associated with in vitro induced resistance to clarithromycin in Helicobacter pylori. Gut Pathog 2023; 15:52. [PMID: 37898785 PMCID: PMC10613384 DOI: 10.1186/s13099-023-00579-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/19/2023] [Indexed: 10/30/2023] Open
Abstract
BACKGROUND Clarithromycin-containing triple therapy is commonly used to treat Helicobacter pylori infections. Clarithromycin resistance is the leading cause of H. pylori treatment failure. Understanding the specific mutations that occur in H. pylori strains that have evolved antibiotic resistance can help create a more effective and individualised antibiotic treatment plan. However, little is understood about the genetic reprogramming linked to clarithromycin exposure and the emergence of antibiotic resistance in H. pylori. Therefore, this study aims to identify compensatory mutations and biofilm formation associated with the development of clarithromycin resistance in H. pylori. Clarithromycin-sensitive H. pylori clinical isolates were induced to develop clarithromycin resistance through in vitro exposure to incrementally increasing concentration of the antibiotic. The genomes of the origin sensitive isolates (S), isogenic breakpoint (B), and resistant isolates (R) were sequenced. Single nucleotide variations (SNVs), and insertions or deletions (InDels) associated with the development of clarithromycin resistance were identified. Growth and biofilm production were also assessed. RESULTS The S isolates with A2143G mutation in the 23S rRNA gene were successfully induced to be resistant. According to the data, antibiotic exposure may alter the expression of certain genes, including those that code for the Cag4/Cag protein, the vacuolating cytotoxin domain-containing protein, the sel1 repeat family protein, and the rsmh gene, which may increase the risk of developing and enhances virulence in H. pylori. Enhanced biofilm formation was detected among R isolates compared to B and S isolates. Furthermore, high polymorphism was also detected among the genes associated with biofilm production. CONCLUSIONS Therefore, this study suggests that H. pylori may acquire virulence factors while also developing antibiotic resistance due to clarithromycin exposure.
Collapse
Affiliation(s)
- Naim Asyraf Rosli
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Anis Rageh Al-Maleki
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Sana'a University, Sana'a, Yemen.
| | - Mun Fai Loke
- Camtech Biomedical Pte Ltd, Singapore, Singapore
| | - Eng Guan Chua
- School of Biomedical Sciences, Marshall Centre for Infectious Disease Research and Training, University of Western Australia, Perth, WA, Australia
| | - Mohammed Abdelfatah Alhoot
- Faculty of Pharmacy, Airlangga University, Surabaya, 60155, Indonesia
- School of Graduate Studies, Management & Science University, Shah Alam, Selangor, Malaysia
| | - Jamuna Vadivelu
- Medical Education Research and Development Unit, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
4
|
Saruuljavkhlan B, Alfaray RI, Oyuntsetseg K, Gantuya B, Khangai A, Renchinsengee N, Matsumoto T, Akada J, Azzaya D, Davaadorj D, Yamaoka Y. Study of Helicobacter pylori Isolated from a High-Gastric-Cancer-Risk Population: Unveiling the Comprehensive Analysis of Virulence-Associated Genes including Secretion Systems, and Genome-Wide Association Study. Cancers (Basel) 2023; 15:4528. [PMID: 37760497 PMCID: PMC10526929 DOI: 10.3390/cancers15184528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/25/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND The prevalence of gastric cancer in Mongolia, in East Asia, remains the highest in the world. However, most Helicobacter pylori strains in Mongolia have a less virulent Western-type CagA. We aimed to determine how H. pylori genomic variation affected gastric diseases, especially gastric cancer, based on comprehensive genome analysis. METHODS We identified a set of 274 virulence-associated genes in H. pylori, including virulence factor and outer membrane protein (OMP) genes, the type four secretion system gene cluster, and 13 well-known virulence gene genotypes in 223 H. pylori strains and their associations with gastric cancer and other gastric diseases. We conducted a genome-wide association study on 158 H. pylori strains (15 gastric cancer and 143 non-gastric cancer strains). RESULTS Out of 274 genes, we found 13 genes were variable depending on disease outcome, especially iron regulating OMP genes. H. pylori strains from Mongolia were divided into two main subgroups: subgroup (Sg1) with high risk and Sg2 with low risk for gastric cancer. The general characteristics of Sg1 strains are that they possess more virulence genotype genes. We found nine non-synonymous single nucleotide polymorphisms in seven genes that are linked with gastric cancer strains. CONCLUSIONS Highly virulent H. pylori strains may adapt through host-influenced genomic variations, potentially impacting gastric carcinogenesis.
Collapse
Grants
- 18KK0266, 19H03473, 21H00346, 22H02871, 17K09353, 21K07898, 18K16182, 21K08010 Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 2021B13 Research Center for GLOBAL and LOCAL Infectious Diseases, Oita University
Collapse
Affiliation(s)
- Batsaikhan Saruuljavkhlan
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu 879-5593, Oita, Japan; (B.S.); (R.I.A.); (A.K.); (N.R.); (T.M.); (J.A.)
| | - Ricky Indra Alfaray
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu 879-5593, Oita, Japan; (B.S.); (R.I.A.); (A.K.); (N.R.); (T.M.); (J.A.)
- Helicobacter pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya 60286, East Java, Indonesia
| | - Khasag Oyuntsetseg
- Endoscopy Center, Mongolia Japan Hospital, Mongolian National University of Medical Sciences, Ulaanbaatar 14210, Mongolia; (K.O.); (B.G.)
| | - Boldbaatar Gantuya
- Endoscopy Center, Mongolia Japan Hospital, Mongolian National University of Medical Sciences, Ulaanbaatar 14210, Mongolia; (K.O.); (B.G.)
- Department of Gastroenterology and Hepatology, Mongolian National University of Medical Sciences, Ulaanbaatar 14210, Mongolia; (D.A.); (D.D.)
| | - Ayush Khangai
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu 879-5593, Oita, Japan; (B.S.); (R.I.A.); (A.K.); (N.R.); (T.M.); (J.A.)
| | - Namsrai Renchinsengee
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu 879-5593, Oita, Japan; (B.S.); (R.I.A.); (A.K.); (N.R.); (T.M.); (J.A.)
| | - Takashi Matsumoto
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu 879-5593, Oita, Japan; (B.S.); (R.I.A.); (A.K.); (N.R.); (T.M.); (J.A.)
| | - Junko Akada
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu 879-5593, Oita, Japan; (B.S.); (R.I.A.); (A.K.); (N.R.); (T.M.); (J.A.)
| | - Dashdorj Azzaya
- Department of Gastroenterology and Hepatology, Mongolian National University of Medical Sciences, Ulaanbaatar 14210, Mongolia; (D.A.); (D.D.)
| | - Duger Davaadorj
- Department of Gastroenterology and Hepatology, Mongolian National University of Medical Sciences, Ulaanbaatar 14210, Mongolia; (D.A.); (D.D.)
| | - Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu 879-5593, Oita, Japan; (B.S.); (R.I.A.); (A.K.); (N.R.); (T.M.); (J.A.)
- Helicobacter pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya 60286, East Java, Indonesia
- The Research Center for GLOBAL and LOCAL Infectious Diseases (RCGLID), Oita University, Yufu 870-1192, Oita, Japan
- Department of Medicine, Gastroenterology and Hepatology Section, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
5
|
Alfaray RI, Saruuljavkhlan B, Fauzia KA, Torres RC, Thorell K, Dewi SR, Kryukov KA, Matsumoto T, Akada J, Vilaichone RK, Miftahussurur M, Yamaoka Y. Global Antimicrobial Resistance Gene Study of Helicobacter pylori: Comparison of Detection Tools, ARG and Efflux Pump Gene Analysis, Worldwide Epidemiological Distribution, and Information Related to the Antimicrobial-Resistant Phenotype. Antibiotics (Basel) 2023; 12:1118. [PMID: 37508214 PMCID: PMC10376887 DOI: 10.3390/antibiotics12071118] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/15/2023] [Accepted: 06/25/2023] [Indexed: 07/30/2023] Open
Abstract
We conducted a global-scale study to identify H. pylori antimicrobial-resistant genes (ARG), address their global distribution, and understand their effect on the antimicrobial resistance (AMR) phenotypes of the clinical isolates. We identified ARG using several well-known tools against extensive bacterial ARG databases, then analyzed their correlation with clinical antibiogram data from dozens of patients across countries. This revealed that combining multiple tools and databases, followed by manual selection of ARG from the annotation results, produces more conclusive results than using a single tool or database alone. After curation, the results showed that H. pylori has 42 ARG against 11 different antibiotic classes (16 genes related to single antibiotic class resistance and 26 genes related to multidrug resistance). Further analysis revealed that H. pylori naturally harbors ARG in the core genome, called the 'Set of ARG commonly found in the Core Genome of H. pylori (ARG-CORE)', while ARG-ACC-the ARG in the accessory genome-are exclusive to particular strains. In addition, we detected 29 genes of potential efflux pump-related AMR that were mostly categorized as ARG-CORE. The ARG distribution appears to be almost similar either by geographical or H. pylori populations perspective; however, some ARG had a unique distribution since they tend to be found only in a particular region or population. Finally, we demonstrated that the presence of ARG may not directly correlate with the sensitive/resistance phenotype of clinical patient isolates but may influence the minimum inhibitory concentration phenotype.
Collapse
Affiliation(s)
- Ricky Indra Alfaray
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Oita 879-5593, Japan
- Helicobacter pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya 60286, Indonesia
| | - Batsaikhan Saruuljavkhlan
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Oita 879-5593, Japan
| | - Kartika Afrida Fauzia
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Oita 879-5593, Japan
- Helicobacter pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya 60286, Indonesia
- Department of Public Health and Preventive Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya 60132, Indonesia
| | - Roberto C Torres
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Kaisa Thorell
- Department of Chemistry and Molecular Biology, Faculty of Science, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Selva Rosyta Dewi
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Oita 879-5593, Japan
- Helicobacter pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya 60286, Indonesia
| | - Kirill A Kryukov
- Biological Networks Laboratory, Department of Informatics, National Institute of Genetics, Shizuoka 411-8540, Japan
| | - Takashi Matsumoto
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Oita 879-5593, Japan
| | - Junko Akada
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Oita 879-5593, Japan
| | - Ratha-Korn Vilaichone
- Gastroenterology Unit, Department of Medicine, Faculty of Medicine, Thammasat University Hospital, Khlong Nueng 12120, Pathumthani, Thailand
- Center of Excellence in Digestive Diseases, Thammasat University, Thailand Science Research and Innovation Fundamental Fund, Bualuang ASEAN Chair Professorship at Thammasat University, Khlong Nueng 12121, Pathumthani, Thailand
- Department of Medicine, Chulabhorn International College of Medicine (CICM), Thammasat University, Khlong Nueng 12121, Pathumthani, Thailand
- Division of Gastroentero-Hepatology, Department of Internal Medicine, Faculty of Medicine, Dr. Soetomo Teaching Hospital, Universitas Airlangga, Surabaya 60286, Indonesia
| | - Muhammad Miftahussurur
- Helicobacter pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya 60286, Indonesia
- Division of Gastroentero-Hepatology, Department of Internal Medicine, Faculty of Medicine, Dr. Soetomo Teaching Hospital, Universitas Airlangga, Surabaya 60286, Indonesia
| | - Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Oita 879-5593, Japan
- Division of Gastroentero-Hepatology, Department of Internal Medicine, Faculty of Medicine, Dr. Soetomo Teaching Hospital, Universitas Airlangga, Surabaya 60286, Indonesia
- The Research Center for GLOBAL and LOCAL Infectious Diseases (RCGLID), Oita University, Oita 870-1192, Japan
- Department of Medicine, Gastroenterology and Hepatology Section, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
6
|
Shawan MMAK, Jahan N, Ahamed T, Das A, Khan MA, Hossain S, Sarker SR. <i>In silico</i> subtractive genomics approach characterizes a hypothetical protein (MG_476) from <i>microplasma genitalium</i> G37. JOURNAL OF CLINICAL AND EXPERIMENTAL INVESTIGATIONS 2022. [DOI: 10.29333/jcei/12377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
7
|
Arteaga-Resendiz NK, Rodea GE, Ribas-Aparicio RM, Olivares-Cervantes AL, Castelán-Vega JA, Olivares-Trejo JDJ, Mendoza-Elizalde S, López-Villegas EO, Colín C, Aguilar-Rodea P, Reyes-López A, Salazar García M, Velázquez-Guadarrama N. HP0953 - hypothetical virulence factor overexpresion and localization during Helicobacter pylori infection of gastric epithelium. World J Gastroenterol 2022; 28:3886-3902. [PMID: 36157534 PMCID: PMC9367236 DOI: 10.3748/wjg.v28.i29.3886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/26/2022] [Accepted: 07/11/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The high prevalence and persistence of Helicobacter pylori (H. pylori) infection, as well as the diversity of pathologies related to it, suggest that the virulence factors used by this microorganism are varied. Moreover, as its proteome contains 340 hypothetical proteins, it is important to investigate them to completely understand the mechanisms of its virulence and survival. We have previously reported that the hypothetical protein HP0953 is overexpressed during the first hours of adhesion to inert surfaces, under stress conditions, suggesting its role in the environmental survival of this bacterium and perhaps as a virulence factor.
AIM To investigate the expression and localization of HP0953 during adhesion to an inert surface and against gastric (AGS) cells.
METHODS Expression analysis was performed for HP0953 during H. pylori adhesion. HP0953 expression at 0, 3, 12, 24, and 48 h was evaluated and compared using the Kruskal-Wallis equality-of-populations rank test. Recombinant protein was produced and used to obtain polyclonal antibodies for immunolocalization. Immunogold technique was performed on bacterial sections during adherence to inert surfaces and AGS cells, which was analyzed by transmission electron microscopy. HP0953 protein sequence was analyzed to predict the presence of a signal peptide and transmembrane helices, both provided by the ExPASy platform, and using the GLYCOPP platform for glycosylation sites. Different programs, via, I-TASSER, RaptorX, and HHalign-Kbest, were used to perform three-dimensional modeling.
RESULTS HP0953 exhibited its maximum expression at 12 h of infection in gastric epithelium cells. Immunogold technique revealed HP0953 localization in the cytoplasm and accumulation in some peripheral areas of the bacterial body, with greater expression when it is close to AGS cells. Bioinformatics analysis revealed the presence of a signal peptide that interacts with the transmembrane region and then allows the release of the protein to the external environment. The programs also showed a similarity with the Tip-alpha protein of H. pylori. Tip-alpha is an exotoxin that penetrates cells and induces tumor necrosis factor alpha production, and HP0953 could have a similar function as posttranslational modification sites were found; modifications in turn require enzymes located in eukaryotic cells. Thus, to be functional, HP0953 may necessarily need to be translocated inside the cell where it can trigger different mechanisms producing cellular damage.
CONCLUSION The location of HP0953 around infected cells, the probable posttranslational modifications, and its similarity to an exotoxin suggest that this protein is a virulence factor.
Collapse
Affiliation(s)
- Nancy K Arteaga-Resendiz
- Laboratorio de Investigación en Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico
- Posgrado en Biomedicina y Biotecnología Molecular, Laboratorio de Producción y Control de Biológicos, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Gerardo E Rodea
- Laboratorio de Investigación en Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico
| | - Rosa María Ribas-Aparicio
- Posgrado en Biomedicina y Biotecnología Molecular, Laboratorio de Producción y Control de Biológicos, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Alma L Olivares-Cervantes
- Laboratorio de Investigación en Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico
| | - Juan Arturo Castelán-Vega
- Posgrado en Biomedicina y Biotecnología Molecular, Laboratorio de Producción y Control de Biológicos, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - José de Jesús Olivares-Trejo
- Laboratorio de Adquisición de Hierro, Universidad Autónoma de la Ciudad México, Posgrado Ciencias Genómica, Mexico City 03100, Mexico
| | - Sandra Mendoza-Elizalde
- Laboratorio de Investigación en Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico
| | - Edgar O López-Villegas
- Laboratorio Central de Microscopía, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Christian Colín
- Laboratorio de Investigación en Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico
| | - Pamela Aguilar-Rodea
- Laboratorio de Investigación en Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico
| | - Alfonso Reyes-López
- Centro de estudios económicos y sociales en salud, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico
| | - Marcela Salazar García
- Laboratorio de Investigación en Biología del Desarrollo y Teratogénesis Experimental, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico
| | - Norma Velázquez-Guadarrama
- Laboratorio de Investigación en Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico
| |
Collapse
|
8
|
Gollapalli P, Selvan G T, H M, Shetty P, Kumari N S. Genome-scale protein interaction network construction and topology analysis of functional hypothetical proteins in Helicobacter pylori divulges novel therapeutic targets. Microb Pathog 2021; 161:105293. [PMID: 34800634 DOI: 10.1016/j.micpath.2021.105293] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/25/2021] [Accepted: 11/12/2021] [Indexed: 02/07/2023]
Abstract
The emergence and spread of multi-drug resistance among Helicobacter pylori (H. pylori) strain raise more stakes for genetic research for discovering new drugs. The quantity of uncharacterized hypothetical proteins in the genome may provide an opportunity to explore their property and promulgation could act as a platform for designing the drugs, making them an intriguing genetic target. In this context, the present study aims to identify the key hypothetical proteins (HPs) and their biological regulatory processes in H. pylori. This investigation could provide a foundation to establish the molecular connectivity among the pathways using topological analysis of the protein interaction networks (PINs). The giant network derived from the extended network has 374 nodes connected via 925 edges. A total of 43 proteins with high betweenness centrality (BC), 54 proteins with a large degree, and 23 proteins with high BC and large degrees have been identified. HP 1479, HP 0056, HP 1481, HP 1021, HP 0043, HP 1019, gmd, flgA, HP 0472, HP 1486, HP 1478, and HP 1473 are categorized as hub nodes because they have a higher number of direct connections and are potentially more important in understanding HP's molecular interactions. The pathway enrichment analysis of the network clusters revealed significant involvement of HPs in pathways such as flagellar assembly, bacterial chemotaxis and lipopolysaccharide biosynthesis. This comprehensive computational study revealed HP's functional role and its druggability characteristics, which could be useful in the development of drugs to combat H. pylori infections.
Collapse
Affiliation(s)
- Pavan Gollapalli
- Central Research Laboratory, KS Hegde Medical Academy, Nitte (Deemed to be University), Mangalore, 575018, Karnataka, India.
| | - Tamizh Selvan G
- Central Research Laboratory, KS Hegde Medical Academy, Nitte (Deemed to be University), Mangalore, 575018, Karnataka, India
| | - Manjunatha H
- Department of Biochemistry, Jnana Bharathi Campus, Bangalore University, Bangalore, Karnataka, 560056, India
| | - Praveenkumar Shetty
- Central Research Laboratory, KS Hegde Medical Academy, Nitte (Deemed to be University), Mangalore, 575018, Karnataka, India
| | - Suchetha Kumari N
- Central Research Laboratory, KS Hegde Medical Academy, Nitte (Deemed to be University), Mangalore, 575018, Karnataka, India
| |
Collapse
|
9
|
FBPAII and rpoBC, the Two Novel Secreted Proteins Identified by the Proteomic Approach from a Comparative Study between Antibiotic-Sensitive and Antibiotic-Resistant Helicobacter pylori-Associated Gastritis Strains. Infect Immun 2021; 89:IAI.00053-21. [PMID: 33782154 DOI: 10.1128/iai.00053-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/17/2021] [Indexed: 11/20/2022] Open
Abstract
Helicobacter pylori infection is the leading cause of chronic gastritis, which can develop into gastric cancer. Eliminating H. pylori infection with antibiotics achieves the prevention of gastric cancer. Currently, the prevalence of H. pylori resistance to clarithromycin and metronidazole, and the dual resistance to metronidazole and clarithromycin (C_R, M_R, and C/M_R, respectively), remains at a high level worldwide. As a means of exploring new candidate proteins for the management of H. pylori infection, secreted proteins from antibiotic-susceptible and antibiotic-resistant H. pylori-associated gastritis strains were obtained by in-solution tryptic digestion coupled with nano-liquid chromatography tandem mass spectrometry (nano-LC-MS/MS). A total of 583, 582, 590, and 578 differential expressed proteins were identified from C_R, M_R, C/M_R, and antibiotic-sensitive strain (S_S) samples, respectively. Of these, 23 overlapping proteins were found by Venn diagram analysis. Based on heat map analyses, the most and least differing protein expressions were observed from C/M_R strains and S_S strains, respectively. Of the proteins secreted by the S_S strain, only nine were found. After predicting the protein interaction with metronidazole and clarithromycin via the STITCH database, the two most interesting proteins were found to be rpoBC and FBPAII. After quantitative real-time reverse transcription PCR (qRT-PCR) analysis, a downregulation of rpoB from M_R strains was observed, suggesting a relationship of rpoB to metronidazole sensitivity. Inversely, an upregulation of fba from C_R, M_R, and C/M_R strains was noticed, suggesting the paradoxical expression of FBPAII and the fba gene. This report is the first to demonstrate the association of these two novel secreted proteins, namely, rpoBC and FBPAII, with antibiotic-sensitive H. pylori -associated gastritis strains.
Collapse
|
10
|
Identification of positive and negative regulators in the stepwise developmental progression towards infectivity in Trypanosoma brucei. Sci Rep 2021; 11:5755. [PMID: 33707699 PMCID: PMC7952579 DOI: 10.1038/s41598-021-85225-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 02/25/2021] [Indexed: 11/17/2022] Open
Abstract
Trypanosoma brucei is a protozoan parasite that causes important human and livestock diseases in sub-Saharan Africa. By overexpressing a single RNA-binding protein, RBP6, in non-infectious procyclics trypanosomes, we previously recapitulated in vitro the events occurring in the tsetse fly vector, namely the development of epimastigotes and infectious, quiescent metacyclic parasites. To identify genes involved in this developmental progression, we individually targeted 86 transcripts by RNAi in the RBP6 overexpression cell line and assessed the loss-of-function phenotypes on repositioning the kinetoplast, an organelle that contains the mitochondrial genome, the expression of BARP or brucei alanine rich protein, a marker for epimastigotes, and metacyclic variant surface glycoprotein. This screen identified 22 genes that positively or negatively regulate the stepwise progression towards infectivity at different stages. Two previously uncharacterized putative nucleic acid binding proteins emerged as potent regulators, namely the cold shock domain-containing proteins CSD1 and CSD2. RNA-Seq data from a selected group of cell lines further revealed that the components of gene expression regulatory networks identified in this study affected the abundance of a subset of transcripts in very similar fashion. Finally, our data suggest a considerable overlap between the genes that regulate the formation of stumpy bloodstream form trypanosomes and the genes that govern the development of metacyclic form parasites.
Collapse
|
11
|
Ansari S, Yamaoka Y. Helicobacter pylori Virulence Factor Cytotoxin-Associated Gene A (CagA)-Mediated Gastric Pathogenicity. Int J Mol Sci 2020; 21:ijms21197430. [PMID: 33050101 PMCID: PMC7582651 DOI: 10.3390/ijms21197430] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/06/2020] [Accepted: 10/06/2020] [Indexed: 12/12/2022] Open
Abstract
Helicobacter pylori causes persistent infection in the gastric epithelium of more than half of the world’s population, leading to the development of severe complications such as peptic ulcer diseases, gastric cancer, and gastric mucosa-associated lymphoid tissue (MALT) lymphoma. Several virulence factors, including cytotoxin-associated gene A (CagA), which is translocated into the gastric epithelium via the type 4 secretory system (T4SS), have been indicated to play a vital role in disease development. Although infection with strains harboring the East Asian type of CagA possessing the EPIYA-A, -B, and -D sequences has been found to potentiate cell proliferation and disease pathogenicity, the exact mechanism of CagA involvement in disease severity still remains to be elucidated. Therefore, we discuss the possible role of CagA in gastric pathogenicity.
Collapse
Affiliation(s)
- Shamshul Ansari
- Department of Microbiology, Chitwan Medical College, Bharatpur 44200, Nepal;
| | - Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu, Oita 879-5593, Japan
- Global Oita Medical Advanced Research Center for Health (GO-MARCH), Yufu, Oita 879-5593, Japan
- Department of Medicine, Gastroenterology and Hepatology Section, Baylor College of Medicine, Houston, TX 77030, USA
- Borneo Medical and Health Research Centre, Universiti Malaysia Sabah, Kota Kinabalu, Sabah 88400, Malaysia
- Correspondence: ; Tel.: +81-97-586-5740; Fax: +81-97-586-5749
| |
Collapse
|
12
|
Zubair M, Muhamed SA, Khan FA, Zhao G, Menghwar H, Faisal M, Zhang H, Zhu X, Rasheed MA, Chen Y, Marawan MA, Chen H, Guo A. Identification of 60 secreted proteins for Mycoplasma bovis with secretome assay. Microb Pathog 2020; 143:104135. [PMID: 32165330 DOI: 10.1016/j.micpath.2020.104135] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/13/2020] [Accepted: 03/06/2020] [Indexed: 01/28/2023]
Abstract
Mycoplasma bovis is a risky pathogen mainly responsible for pneumonia and mastitis in cattle. Up to date, its pathogenesis is not clear. Since secreted proteins have a tricky role in M. bovis pathogenesis, this study was designed to systematically reveal M. bovis secretome and potential role in virulence of the pathogen. By using bioinformatics tools, a total of 246 secreted proteins were predicted based on M. bovis genome. Among them, 14 were classical, 154 non-classical and 78 both pathways. Then by using 2-dimensional gel electrophoresis (2-DE) and Matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF- MS), 169 proteins were revealed. Of them, 60 were predicted to be secreted including 3 classical, 43 non-classical, and 14 both classical and non-classical. Further 8 proteins (MbovP0038, MbovP0338, MbovP0341, MbovP0520, MbovP0581, MbovP0674, MbovP0693, MbovP0845) were predicted to be virulence-related factors with VFDB. In addition, MbovP0581 (ABC transporter protein) was validated experimentally as secreted in nature and highly immunogenic reacting with sera of cattle experimentally infected with M. bovis. In conclusion, this study might be a crucial step towards a better understanding of pathogenesis and leading to the development of novel diagnostic marker and potent vaccine against M. bovis.
Collapse
Affiliation(s)
- Muhammad Zubair
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shafii Abdullahi Muhamed
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Farhan Anwar Khan
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; The University of Agriculture, Peshawar, Department of Animal Health, Khyber Pakhtunkhwa, 25120, Pakistan
| | - Gang Zhao
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Harish Menghwar
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Muhammad Faisal
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hui Zhang
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xifang Zhu
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Muhammad Asif Rasheed
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; Department of Biosciences, COMSATS Institute of Information Technology, Sahiwal, Pakistan
| | - Yingyu Chen
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Development of Veterinary Diagnostic Products, China Ministry of Agriculture, Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Marawan A Marawan
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; Infectious Diseases, Animal Medicine Department, Faculty of Veterinary Medicine, Benha University, Qualyobia, Egypt
| | - Huanchun Chen
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Development of Veterinary Diagnostic Products, China Ministry of Agriculture, Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Aizhen Guo
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Development of Veterinary Diagnostic Products, China Ministry of Agriculture, Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
13
|
Ansari S, Yamaoka Y. Helicobacter pylori Virulence Factors Exploiting Gastric Colonization and its Pathogenicity. Toxins (Basel) 2019; 11:677. [PMID: 31752394 PMCID: PMC6891454 DOI: 10.3390/toxins11110677] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/15/2019] [Accepted: 11/16/2019] [Indexed: 02/07/2023] Open
Abstract
Helicobacter pylori colonizes the gastric epithelial cells of at least half of the world's population, and it is the strongest risk factor for developing gastric complications like chronic gastritis, ulcer diseases, and gastric cancer. To successfully colonize and establish a persistent infection, the bacteria must overcome harsh gastric conditions. H. pylori has a well-developed mechanism by which it can survive in a very acidic niche. Despite bacterial factors, gastric environmental factors and host genetic constituents together play a co-operative role for gastric pathogenicity. The virulence factors include bacterial colonization factors BabA, SabA, OipA, and HopQ, and the virulence factors necessary for gastric pathogenicity include the effector proteins like CagA, VacA, HtrA, and the outer membrane vesicles. Bacterial factors are considered more important. Here, we summarize the recent information to better understand several bacterial virulence factors and their role in the pathogenic mechanism.
Collapse
Affiliation(s)
- Shamshul Ansari
- Department of Microbiology, Chitwan Medical College and Teaching Hospital, Bharatpur 44200, Chitwan, Nepal;
| | - Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Idaigaoka, Hasama-machi, Yufu, Oita 879-5593, Japan
- Global Oita Medical Advanced Research Center for Health, Idaigaoka, Hasama-machi, Yufu, Oita 879-5593, Japan
- Department of Medicine, Gastroenterology and Hepatology Section, Baylor College of Medicine, 2002 Holcombe Blvd., Houston, TX 77030, USA
- Borneo Medical and Health Research Centre, Universiti Malaysia Sabah, Kota Kinabaru, Sabah 88400, Malaysia
| |
Collapse
|
14
|
Induction of TNF, CXCL8 and IL-1β in macrophages by Helicobacter pylori secreted protein HP1173 occurs via MAP-kinases, NF-κB and AP-1 signaling pathways. Microb Pathog 2018; 125:295-305. [DOI: 10.1016/j.micpath.2018.09.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 09/06/2018] [Accepted: 09/24/2018] [Indexed: 02/07/2023]
|
15
|
Thioloxidoreductase HP0231 of Helicobacter pylori impacts HopQ-dependent CagA translocation. Int J Med Microbiol 2018; 308:977-985. [PMID: 30131271 DOI: 10.1016/j.ijmm.2018.08.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 07/25/2018] [Accepted: 08/05/2018] [Indexed: 02/07/2023] Open
Abstract
Thioloxidoreductase HP0231 of Helicobacter pylori plays essential roles in gastric colonization and related gastric pathology. Comparative proteomics and analysis of complexes between HP0231 and its protein substrates suggested that several Hop proteins are its targets. HP0231 is a dimeric oxidoreductase that functions in an oxidizing Dsb (disulfide bonds) pathway of H. pylori. H. pylori HopQ possesses six cysteine residues, which generate three consecutive disulfide bridges. Comparison of the redox state of HopQ in wild-type cells to that in hp0231-mutated cells clearly indicated that HopQ is a substrate of HP0231. HopQ binds CEACAM1, 3, 5 and 6 (carcinoembryonic antigen-related cell adhesion molecules). This interaction enables T4SS-mediated translocation of CagA into host cells and induces host signaling. Site directed mutagenesis of HopQ (changing cysteine residues into serine) and analysis of the functioning of HopQ variants showed that HP0231 influences the delivery of CagA into host cells, in part through its impact on HopQ redox state. Introduction of a C382S mutation into HopQ significantly affects its reaction with CEACAM receptors, which disturbs T4SS functioning and CagA delivery. An additional effect of HP0231 on other adhesins and their redox state, resulting in their functional impairment, cannot be excluded.
Collapse
|
16
|
Abstract
In addition to its role in gastric conditions,
Helicobacter pylori has been found to contribute to the development of several non-gastric issues in recent years. Eradication therapy is the only effective management strategy to minimize the
H. pylori-related gastric cancer and extra-gastric complications. For an effective “test and treat” strategy, diagnosis and therapy are both important. Because the infection is usually asymptomatic, patient selection is a critical issue for timely diagnosis and many clinical and demographic factors should be considered. Clarithromycin and metronidazole resistance rates also need to be considered while eradication therapy is offered. In this report, we discuss the issues which must be taken into account for the correct and timely diagnosis and for the antibiotic therapy-based management of
H. pylori infection.
Collapse
Affiliation(s)
- Shamshul Ansari
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama-machi, Yufu-City, Oita, 879-5593, Japan
| | - Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama-machi, Yufu-City, Oita, 879-5593, Japan.,Department of Medicine-Gastroenterology, Baylor College of Medicine, 2002 Holcombe Boulevard, Houston, TX, 77030, USA
| |
Collapse
|
17
|
Webb CT, Chandrapala D, Oslan SN, Bamert RS, Grinter RD, Dunstan RA, Gorrell RJ, Song J, Strugnell RA, Lithgow T, Kwok T. Reductive evolution in outer membrane protein biogenesis has not compromised cell surface complexity in Helicobacter pylori. Microbiologyopen 2017; 6. [PMID: 29055967 PMCID: PMC5727368 DOI: 10.1002/mbo3.513] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 05/19/2017] [Accepted: 05/25/2017] [Indexed: 12/18/2022] Open
Abstract
Helicobacter pylori is a gram‐negative bacterial pathogen that chronically inhabits the human stomach. To survive and maintain advantage, it has evolved unique host–pathogen interactions mediated by Helicobacter‐specific proteins in the bacterial outer membrane. These outer membrane proteins (OMPs) are anchored to the cell surface via a C‐terminal β‐barrel domain, which requires their assembly by the β‐barrel assembly machinery (BAM). Here we have assessed the complexity of the OMP C‐terminal β‐barrel domains employed by H. pylori, and characterized the H. pyloriBAM complex. Around 50 Helicobacter‐specific OMPs were assessed with predictive structural algorithms. The data suggest that H. pylori utilizes a unique β‐barrel architecture that might constitute H. pylori‐specific Type V secretions system. The structural and functional diversity in these proteins is encompassed by their extramembrane domains. Bioinformatic and biochemical characterization suggests that the low β‐barrel‐complexity requires only minimalist assembly machinery. The H. pylori proteins BamA and BamD associate to form a BAM complex, with features of BamA enabling an oligomerization that might represent a mechanism by which a minimalist BAM complex forms a larger, sophisticated machinery capable of servicing the outer membrane proteome of H. pylori.
Collapse
Affiliation(s)
- Chaille T. Webb
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of MicrobiologyMonash UniversityClaytonAustralia
| | - Dilini Chandrapala
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of MicrobiologyMonash UniversityClaytonAustralia
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of Biochemistry and Molecular BiologyMonash UniversityClaytonAustralia
| | - Siti Nurbaya Oslan
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of MicrobiologyMonash UniversityClaytonAustralia
- Department of BiochemistryFaculty of Biotechnology and Biomolecular SciencesUniversiti Putra MalaysiaSerdangSelangorMalaysia
- Enzyme and Microbial Technology Research CenterUniversiti Putra MalaysiaSerdangSelangorMalaysia
| | - Rebecca S. Bamert
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of MicrobiologyMonash UniversityClaytonAustralia
| | - Rhys D. Grinter
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of MicrobiologyMonash UniversityClaytonAustralia
| | - Rhys A. Dunstan
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of MicrobiologyMonash UniversityClaytonAustralia
| | - Rebecca J. Gorrell
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of MicrobiologyMonash UniversityClaytonAustralia
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of Biochemistry and Molecular BiologyMonash UniversityClaytonAustralia
| | - Jiangning Song
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of Biochemistry and Molecular BiologyMonash UniversityClaytonAustralia
- Monash Centre for Data ScienceFaculty of Information TechnologyMonash UniversityMelbourneAustralia
| | - Richard A. Strugnell
- Department of Microbiology & ImmunologyUniversity of MelbourneParkvilleAustralia
| | - Trevor Lithgow
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of MicrobiologyMonash UniversityClaytonAustralia
| | - Terry Kwok
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of MicrobiologyMonash UniversityClaytonAustralia
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of Biochemistry and Molecular BiologyMonash UniversityClaytonAustralia
| |
Collapse
|
18
|
Fernández-de-Larrea N, Michel A, Romero B, Butt J, Pawlita M, Pérez-Gómez B, Castaño-Vinyals G, Moreno V, Martín V, Amiano P, Castilla J, Fernández-Tardón G, Dierssen-Sotos T, Clofent J, Alguacil J, Huerta JM, Jiménez-Moleón JJ, Barricarte A, Molinuevo A, Fernández-Villa T, Casabonne D, Sierra Á, Kogevinas M, de Sanjosé S, Pollán M, Del Campo R, Waterboer T, Aragonés N. Antibody reactivity against Helicobacter pylori proteins in a sample of the Spanish adult population in 2008-2013. Helicobacter 2017; 22. [PMID: 28737284 DOI: 10.1111/hel.12401] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND Differences in Helicobacter pylori protein expression have been related to the risk of severe gastric diseases. In Spain, a marked geographic pattern in gastric cancer mortality has long been reported. OBJECTIVE To characterize antibody reactivity patterns against 16 H. pylori proteins, by age, sex, and region of birth, in a large sample of the Spanish adult population. MATERIALS AND METHODS Antibody reactivity was quantified by H. pylori multiplex serology in a sample from the control group of the multicase-control study MCC-Spain. For this analysis, 2555 population-based controls were included. Each participant was classified as seropositive or seronegative for each protein according to specific cutoffs. Overall H. pylori seroprevalence was defined as positivity against ≥4 proteins. Descriptive analyses by age, sex, and region of birth were performed for both seroprevalence and seroreactivity (continuous measure). Differences among groups were tested by logistic and linear regression models. RESULTS Overall H. pylori seroprevalence increased with age in both sexes. For ages 55-74, seroprevalence was lower in women than in men (84% vs 92%, P<.001). Region of birth explained 7% of the variability in seroprevalence. Among H. pylori seropositive subjects, proteins with the highest seroprevalence were GroEL, NapA, HP231, and Omp. Seropositivity for most of the proteins increased or remained stable with age, rising mainly for CagA, GroEL, and HyuA in women. A clear cohort effect was not observed. CONCLUSIONS This is the first study to describe the antibody patterns against 16 H. pylori proteins in the Spanish population. We found variability in the H. pylori antibody profiles according to both individual factors such as age and sex, and environmental factors such as the region of birth. The slightness of the reduction in seropositivity with decreasing age highlights the ongoing importance of this infection.
Collapse
Affiliation(s)
- Nerea Fernández-de-Larrea
- Environmental and Cancer Epidemiology Area, National Center of Epidemiology, Instituto de Salud Carlos III, Madrid, Spain.,Consortium for Biomedical Research in Epidemiology and Public Health (CIBER of Epidemiology and Public Health), Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Angelika Michel
- Division of Molecular Diagnostics of Oncogenic Infections, Infection, Inflammation and Cancer Program, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Beatriz Romero
- Department of Microbiology, Ramón y Cajal University Hospital (IRYCIS), Madrid, Spain
| | - Julia Butt
- Division of Molecular Diagnostics of Oncogenic Infections, Infection, Inflammation and Cancer Program, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael Pawlita
- Division of Molecular Diagnostics of Oncogenic Infections, Infection, Inflammation and Cancer Program, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Beatriz Pérez-Gómez
- Environmental and Cancer Epidemiology Area, National Center of Epidemiology, Instituto de Salud Carlos III, Madrid, Spain.,Consortium for Biomedical Research in Epidemiology and Public Health (CIBER of Epidemiology and Public Health), Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Gemma Castaño-Vinyals
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBER of Epidemiology and Public Health), Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.,ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Victor Moreno
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBER of Epidemiology and Public Health), Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.,Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona, Spain.,Cancer Prevention and Control Program, Catalan Institute of Oncology-IDIBELL, Hospitalet de Llobregat, Spain
| | - Vicente Martín
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBER of Epidemiology and Public Health), Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.,The Research Group in Gene, Environment and Health Interactions (GIGAS), University of León, León, Spain.,Faculty of Health Sciences, Area of Preventive Medicine and Public Health, Department of Biomedical Sciences, University of León, León, Spain
| | - Pilar Amiano
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBER of Epidemiology and Public Health), Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.,Public Health Division of Gipuzkoa, BioDonostia Research Institute, San Sebastián, Spain
| | - Jesús Castilla
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBER of Epidemiology and Public Health), Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.,Instituto de Salud Pública de Navarra - Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Guillermo Fernández-Tardón
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBER of Epidemiology and Public Health), Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.,IUOPA, University of Oviedo, Oviedo, Spain
| | - Trinidad Dierssen-Sotos
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBER of Epidemiology and Public Health), Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.,IDIVAL, University of Cantabria, Santander, Spain
| | - Juan Clofent
- Gastroenterology Department, Sagunto University Hospital, Sagunto, Spain.,Gastroenterology Department, La Fe University and Politecnic Hospital, Valencia, Spain
| | - Juan Alguacil
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBER of Epidemiology and Public Health), Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.,Centro de Investigación en Recursos Naturales, Salud, y Medio Ambiente (RENSMA), Universidad de Huelva, Huelva, Spain
| | - José María Huerta
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBER of Epidemiology and Public Health), Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.,Department of Epidemiology, Murcia Regional Health Council, IMIB-Arrixaca, Murcia, Spain
| | - José Juan Jiménez-Moleón
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBER of Epidemiology and Public Health), Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.,Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada Health Research Institute (ibs.GRANADA), Granada, Spain.,Department of Preventive Medicine and Public Health, University of Granada, Granada, Spain
| | - Aurelio Barricarte
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBER of Epidemiology and Public Health), Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.,Instituto de Salud Pública de Navarra - Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Amaia Molinuevo
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBER of Epidemiology and Public Health), Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Tania Fernández-Villa
- The Research Group in Gene, Environment and Health Interactions (GIGAS), University of León, León, Spain.,Faculty of Health Sciences, Area of Preventive Medicine and Public Health, Department of Biomedical Sciences, University of León, León, Spain
| | - Delphine Casabonne
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBER of Epidemiology and Public Health), Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.,Cancer Epidemiology Research Program, Catalan Institute of Oncology-IDIBELL, L'Hospitalet de Llobregat, Spain
| | - Ángeles Sierra
- Environmental and Cancer Epidemiology Area, National Center of Epidemiology, Instituto de Salud Carlos III, Madrid, Spain.,Consortium for Biomedical Research in Epidemiology and Public Health (CIBER of Epidemiology and Public Health), Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Manolis Kogevinas
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBER of Epidemiology and Public Health), Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.,ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Silvia de Sanjosé
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBER of Epidemiology and Public Health), Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.,Cancer Epidemiology Research Program, Catalan Institute of Oncology-IDIBELL, L'Hospitalet de Llobregat, Spain
| | - Marina Pollán
- Environmental and Cancer Epidemiology Area, National Center of Epidemiology, Instituto de Salud Carlos III, Madrid, Spain.,Consortium for Biomedical Research in Epidemiology and Public Health (CIBER of Epidemiology and Public Health), Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Rosa Del Campo
- Department of Microbiology, Ramón y Cajal University Hospital (IRYCIS), Madrid, Spain.,Spanish Network for Research in Infectious Diseases, (REIPI) Red Española de Investigación en Patología Infecciosa, Sevilla, Spain
| | - Tim Waterboer
- Division of Molecular Diagnostics of Oncogenic Infections, Infection, Inflammation and Cancer Program, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nuria Aragonés
- Environmental and Cancer Epidemiology Area, National Center of Epidemiology, Instituto de Salud Carlos III, Madrid, Spain.,Consortium for Biomedical Research in Epidemiology and Public Health (CIBER of Epidemiology and Public Health), Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| |
Collapse
|
19
|
Nammi D, Yarla NS, Chubarev VN, Tarasov VV, Barreto GE, Pasupulati AMC, Aliev G, Neelapu NRR. A Systematic In-silico Analysis of Helicobacter pylori Pathogenic Islands for Identification of Novel Drug Target Candidates. Curr Genomics 2017; 18:450-465. [PMID: 29081700 PMCID: PMC5635650 DOI: 10.2174/1389202918666170705160615] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 01/22/2016] [Accepted: 01/25/2016] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Helicobacter pylori is associated with inflammation of different areas, such as the duodenum and stomach, causing gastritis and gastric ulcers leading to lymphoma and cancer. Pathogenic islands are a type of clustered mobile elements ranging from 10-200 Kb contributing to the virulence of the respective pathogen coding for one or more virulence factors. Virulence factors are molecules expressed and secreted by pathogen and are responsible for causing disease in the host. Bacterial genes/virulence factors of the pathogenic islands represent a promising source for identifying novel drug targets. OBJECTIVE The study aimed at identifying novel drug targets from pathogenic islands in H. pylori. MATERIAL & METHODS The genome of 23 H. pylori strains were screened for pathogenic islands and bacterial genes/virulence factors to identify drug targets. Protein-protein interactions of drug targets were predicted for identifying interacting partners. Further, host-pathogen interactions of interacting partners were predicted to identify important molecules which are closely associated with gastric cancer. RESULTS Screening the genome of 23 H. pylori strains revealed 642 bacterial genes/virulence factors in 31 pathogenic islands. Further analysis identified 101 genes which were non-homologous to human and essential for the survival of the pathogen, among them 31 are potential drug targets. Protein-protein interactions for 31 drug targets predicted 609 interacting partners. Predicted interacting partners were further subjected to host-pathogen interactions leading to identification of important molecules like TNF receptor associated factor 6, (TRAF6) and MAPKKK7 which are closely associated with gastric cancer. CONCLUSION These provocative studies enabled us to identify important molecules in H. pylori and their counter interacting molecules in the host leading to gastric cancer and also a pool of novel drug targets for therapeutic intervention of gastric cancer.
Collapse
Affiliation(s)
- Deepthi Nammi
- Department of Biochemistry and Bioinformatics, GITAM Institute of Science, GITAM University, Rushikonda, Visakhapatnam – 534005 (AP), India
| | - Nagendra S. Yarla
- Department of Biochemistry and Bioinformatics, GITAM Institute of Science, GITAM University, Rushikonda, Visakhapatnam – 534005 (AP), India
| | - Vladimir N. Chubarev
- Institute of Pharmacy and Translational Medicine, Sechenov First Moscow State Medical University, 19991Moscow, Russia
| | - Vadim V. Tarasov
- Institute of Pharmacy and Translational Medicine, Sechenov First Moscow State Medical University, 19991Moscow, Russia
| | - George E. Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriama, BogotáD.C., Colombia
| | - Amita Martin Corolina Pasupulati
- Department of Biochemistry and Bioinformatics, GITAM Institute of Science, GITAM University, Rushikonda, Visakhapatnam – 534005 (AP), India
| | - Gjumrakch Aliev
- Institute of Pharmacy and Translational Medicine, Sechenov First Moscow State Medical University, 19991Moscow, Russia
- Institute of Physiologically Active Compounds Russian Academy of Sciences, Chernogolovka, 142432, Russia
| | - Nageswara Rao Reddy Neelapu
- Department of Biochemistry and Bioinformatics, GITAM Institute of Science, GITAM University, Rushikonda, Visakhapatnam – 534005 (AP), India
| |
Collapse
|
20
|
Fernández de Larrea-Baz N, Pérez-Gómez B, Michel A, Romero B, Lope V, Pawlita M, Fernández-Villa T, Moreno V, Martín V, Willhauck-Fleckenstein M, López-Abente G, Castilla J, Fernández-Tardón G, Dierssen-Sotos T, Santibáñez M, Peiró R, Jiménez-Moleón JJ, Navarro C, Castaño-Vinyals G, Kogevinas M, Pollán M, de Sanjosé S, Del Campo R, Waterboer T, Aragonés N. Helicobacter pylori serological biomarkers of gastric cancer risk in the MCC-Spain case-control Study. Cancer Epidemiol 2017; 50:76-84. [PMID: 28888185 DOI: 10.1016/j.canep.2017.08.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 07/10/2017] [Accepted: 08/04/2017] [Indexed: 02/08/2023]
Abstract
BACKGROUND Helicobacter pylori infection is one of the main risk factors for non-cardia gastric cancer. However, only a minority of infected persons develop the disease. This study aims at identifying H. pylori related serological biomarkers of risk for gastric cancer. METHODS Incident gastric cancer cases and population controls (age, sex and region frequency-matched) from the MCC-Spain multicase-control Study were included. Seroreactivities against 16H. pylori proteins were determined using multiplex serology. Infection was defined as seropositivity against≥4 proteins. Relation of serological results to non-cardia and cardia gastric cancer was assessed using multivariable mixed logistic regression and principal components analysis. RESULTS Seroprevalence was 88% among 2071 controls, 95% among 202 non-cardia gastric cancer cases (OR=1.9 (95% CI: 1.0-3.6)) and 85% among 62 cardia cancer cases (OR=0.5 (95% CI: 0.3-1.1)). In infected subjects, seropositivity for UreA, HP231, NapA and Cagδ was associated with lower non-cardia gastric cancer risk, while seropositivity for CagA and VacA was associated with higher risk. Seropositivity for CagA and seronegativity for Cagδ maintained the association after additional adjustment by serostatus of significant proteins. We identified two antibody reactivity patterns: the "virulent-pattern", related to a threefold higher risk of non-cardia gastric cancer and the "non-virulent pattern", related to a 60% decreased risk (4th vs. first quartile). CONCLUSIONS In our population, people seropositive for H. pylori were characterized by two patterns of antibody reactivity against H. pylori proteins: 1) Combined high seroreactivity against several proteins, associated with a lower non-cardia gastric cancer risk, and 2) High seroreactivity against CagA and VacA, associated with an increased risk.
Collapse
Affiliation(s)
- Nerea Fernández de Larrea-Baz
- Environmental and Cancer Epidemiology Area, National Center of Epidemiology, Carlos III Health Institute (ISCIII), Avda. Monforte de Lemos 5, 28029, Madrid, Spain; Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP)-CIBER of Epidemiology and Public Health (CIBERESP), Avda. Monforte de Lemos, 3-5, Pabellón 11, Planta 0, 28029, Madrid, Spain.
| | - Beatriz Pérez-Gómez
- Environmental and Cancer Epidemiology Area, National Center of Epidemiology, Carlos III Health Institute (ISCIII), Avda. Monforte de Lemos 5, 28029, Madrid, Spain; Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP)-CIBER of Epidemiology and Public Health (CIBERESP), Avda. Monforte de Lemos, 3-5, Pabellón 11, Planta 0, 28029, Madrid, Spain
| | - Angelika Michel
- Division of Molecular Diagnostics of Oncogenic Infections, Infection, Inflammation and Cancer Program, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Beatriz Romero
- Department of Microbiology, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS)-Ramón y Cajal Health Research Institute (IRYCIS), Ctra. de Colmenar Viejo km. 9,100, 28034, Madrid, Spain
| | - Virginia Lope
- Environmental and Cancer Epidemiology Area, National Center of Epidemiology, Carlos III Health Institute (ISCIII), Avda. Monforte de Lemos 5, 28029, Madrid, Spain; Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP)-CIBER of Epidemiology and Public Health (CIBERESP), Avda. Monforte de Lemos, 3-5, Pabellón 11, Planta 0, 28029, Madrid, Spain
| | - Michael Pawlita
- Division of Molecular Diagnostics of Oncogenic Infections, Infection, Inflammation and Cancer Program, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Tania Fernández-Villa
- The Research Group in Gene - Environment and Health Interactions (GIIGAS), University of León, Spain; Department of Biomedical Sciences, Area of Preventive Medicine and Public Health, University of León, Campus de Vegazana s/n, 24071, León, Spain
| | - Victor Moreno
- Cancer Prevention and Control Program, Catalan Institute of Oncology, Avinguda de la Granvia de l'Hospitalet 199-203, 08908, Hospitalet de Llobregat, Barcelona, Spain; Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Gran Via de les Corts Catalanes, 585, 08007, Barcelona, Spain; Colorectal Cancer Group, Bellvitge Biomedical Research Institute (IDIBELL), Gran Via de l'Hospitalet, 199, 08908, Hospitalet de Llobregat, Barcelona, Spain; Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP)-CIBER of Epidemiology and Public Health (CIBERESP), Avda. Monforte de Lemos, 3-5, Pabellón 11, Planta 0, 28029, Madrid, Spain
| | - Vicente Martín
- The Research Group in Gene - Environment and Health Interactions (GIIGAS), University of León, Spain; Department of Biomedical Sciences, Area of Preventive Medicine and Public Health, University of León, Campus de Vegazana s/n, 24071, León, Spain; Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP)-CIBER of Epidemiology and Public Health (CIBERESP), Avda. Monforte de Lemos, 3-5, Pabellón 11, Planta 0, 28029, Madrid, Spain
| | - Martina Willhauck-Fleckenstein
- Division of Molecular Diagnostics of Oncogenic Infections, Infection, Inflammation and Cancer Program, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Gonzalo López-Abente
- Environmental and Cancer Epidemiology Area, National Center of Epidemiology, Carlos III Health Institute (ISCIII), Avda. Monforte de Lemos 5, 28029, Madrid, Spain; Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP)-CIBER of Epidemiology and Public Health (CIBERESP), Avda. Monforte de Lemos, 3-5, Pabellón 11, Planta 0, 28029, Madrid, Spain
| | - Jesús Castilla
- Instituto de Salud Pública de Navarra, IdiSNA-Navarra Institute for Health Research, C/Leyre, 15, 31003, Pamplona, Spain; Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP)-CIBER of Epidemiology and Public Health (CIBERESP), Avda. Monforte de Lemos, 3-5, Pabellón 11, Planta 0, 28029, Madrid, Spain
| | - Guillermo Fernández-Tardón
- University Institute of Oncology (IUOPA), University of Oviedo, Fernando Bongera. Building "Santiago Gascón", 1 st Floor, Campus of "El Cristo" B, 33006, Oviedo, Asturias, Spain; Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP)-CIBER of Epidemiology and Public Health (CIBERESP), Avda. Monforte de Lemos, 3-5, Pabellón 11, Planta 0, 28029, Madrid, Spain
| | - Trinidad Dierssen-Sotos
- University of Cantabria - IDIVAL-Instituto de Investigación Marqués de Valdecilla-Marqués de Valdecilla Research Institute (IDIVAL), C/Cardenal Herrera Oria, s/n, 39011, Santander, Spain; Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP)-CIBER of Epidemiology and Public Health (CIBERESP), Avda. Monforte de Lemos, 3-5, Pabellón 11, Planta 0, 28029, Madrid, Spain
| | - Miguel Santibáñez
- University of Cantabria - IDIVAL-Instituto de Investigación Marqués de Valdecilla-Marqués de Valdecilla Research Institute (IDIVAL), C/Cardenal Herrera Oria, s/n, 39011, Santander, Spain; Centro de Investigación en Recursos Naturales, Salud, y Medio Ambiente (RENSMA), University of Huelva, Campus de El Carmen, 21007, Huelva, Spain
| | - Rosana Peiró
- Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana FISABIO-Salud Pública - Foundation for the Promotion of Health and Biomedical Research of Valencia Region (FISABIO), Avda. de Catalunya, 21, 46020, Valencia, Spain; Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP)-CIBER of Epidemiology and Public Health (CIBERESP), Avda. Monforte de Lemos, 3-5, Pabellón 11, Planta 0, 28029, Madrid, Spain
| | - José Juan Jiménez-Moleón
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA)-Granada Health Research Institute (ibs.GRANADA), 18012, Granada, Spain; Department of Preventive Medicine and Public Health, University of Granada, Avda. de la Investigación, 11, Building A, 8th Floor, 18016, Granada, Spain; Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP)-CIBER of Epidemiology and Public Health (CIBERESP), Avda. Monforte de Lemos, 3-5, Pabellón 11, Planta 0, 28029, Madrid, Spain
| | - Carmen Navarro
- Department of Epidemiology, Murcia Regional Health Council, IMIB-Arrixaca, Ronda de Levante, 11, 2ª planta, 30008, Murcia, Spain; Department of Health and Social Sciences, University of Murcia, Avda. Teniente Flomesta, 5, 30003, Murcia, Spain; Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP)-CIBER of Epidemiology and Public Health (CIBERESP), Avda. Monforte de Lemos, 3-5, Pabellón 11, Planta 0, 28029, Madrid, Spain
| | - Gemma Castaño-Vinyals
- ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Doctor Aiguader, 88, 08003, Barcelona, Spain; IMIM (Hospital del Mar Medical Research Institute), Dr. Aiguader, 88, 08003, Barcelona, Spain; Pompeu Fabra University (UPF), Plaça de la Mercè, 10-12, 08002, Barcelona, Spain; Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP)-CIBER of Epidemiology and Public Health (CIBERESP), Avda. Monforte de Lemos, 3-5, Pabellón 11, Planta 0, 28029, Madrid, Spain
| | - Manolis Kogevinas
- ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Doctor Aiguader, 88, 08003, Barcelona, Spain; IMIM (Hospital del Mar Medical Research Institute), Dr. Aiguader, 88, 08003, Barcelona, Spain; Pompeu Fabra University (UPF), Plaça de la Mercè, 10-12, 08002, Barcelona, Spain; Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP)-CIBER of Epidemiology and Public Health (CIBERESP), Avda. Monforte de Lemos, 3-5, Pabellón 11, Planta 0, 28029, Madrid, Spain
| | - Marina Pollán
- Environmental and Cancer Epidemiology Area, National Center of Epidemiology, Carlos III Health Institute (ISCIII), Avda. Monforte de Lemos 5, 28029, Madrid, Spain; Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP)-CIBER of Epidemiology and Public Health (CIBERESP), Avda. Monforte de Lemos, 3-5, Pabellón 11, Planta 0, 28029, Madrid, Spain
| | - Silvia de Sanjosé
- Cancer Epidemiology Research Program, Catalan Institute of Oncology-IDIBELL, Avinguda de la Granvia de l'Hospitalet 199-203, 08908, l'Hospitalet de Llobregat, Spain; Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP)-CIBER of Epidemiology and Public Health (CIBERESP), Avda. Monforte de Lemos, 3-5, Pabellón 11, Planta 0, 28029, Madrid, Spain
| | - Rosa Del Campo
- Department of Microbiology, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS)-Ramón y Cajal Health Research Institute (IRYCIS), Ctra. de Colmenar Viejo km. 9,100, 28034, Madrid, Spain; Red Española de Investigación en Patología Infecciosa (REIPI)-Spanish Network for Research in Infectious Diseases (REIPI), Spain
| | - Tim Waterboer
- Division of Molecular Diagnostics of Oncogenic Infections, Infection, Inflammation and Cancer Program, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Nuria Aragonés
- Environmental and Cancer Epidemiology Area, National Center of Epidemiology, Carlos III Health Institute (ISCIII), Avda. Monforte de Lemos 5, 28029, Madrid, Spain; Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP)-CIBER of Epidemiology and Public Health (CIBERESP), Avda. Monforte de Lemos, 3-5, Pabellón 11, Planta 0, 28029, Madrid, Spain
| |
Collapse
|
21
|
Bernardini G, Figura N, Ponzetto A, Marzocchi B, Santucci A. Application of proteomics to the study of Helicobacter pylori and implications for the clinic. Expert Rev Proteomics 2017; 14:477-490. [PMID: 28513226 DOI: 10.1080/14789450.2017.1331739] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Helicobacter pylori (H. pylori) is a gram-negative bacterium that colonizes the gastric epithelium and mucous layer of more than half the world's population. H. pylori is a primary human pathogen, responsible for the development of chronic gastritis, peptic ulceration and gastric cancer. Proteomics is impacting several aspects of medical research: understanding the molecular basis of infection and disease manifestation, identification of therapeutic targets and discovery of clinically relevant biomarkers. Areas covered: The main aim of the present review is to provide a comprehensive overview of the contribution of proteomics to the study of H. pylori infection pathophysiology. In particular, we focused on the role of the bacterium and its most important virulence factor, CagA, in the progression of gastric cells transformation and cancer progression. We also discussed the proteomic approaches aimed at the investigation of the host response to bacterial infection. Expert commentary: In the field of proteomics of H. pylori, comprehensive analysis of clinically relevant proteins (functional proteomics) rather than entire proteomes will result in important medical outcomes. Finally, we provided an outlook on the potential development of proteomics in H. pylori research.
Collapse
Affiliation(s)
- Giulia Bernardini
- a Dipartimento di Biotecnologie , Chimica e Farmacia, Università degli Studi di Siena , Siena , Italy
| | - Natale Figura
- a Dipartimento di Biotecnologie , Chimica e Farmacia, Università degli Studi di Siena , Siena , Italy
| | - Antonio Ponzetto
- b Dipartimento di Scienze Mediche , Università degli Studi di Torino , Torino , Italy
| | - Barbara Marzocchi
- a Dipartimento di Biotecnologie , Chimica e Farmacia, Università degli Studi di Siena , Siena , Italy
| | - Annalisa Santucci
- a Dipartimento di Biotecnologie , Chimica e Farmacia, Università degli Studi di Siena , Siena , Italy
| |
Collapse
|
22
|
Nirujogi RS, Muthusamy B, Kim MS, Sathe GJ, Lakshmi PTV, Kovbasnjuk ON, Prasad TSK, Wade M, Jabbour RE. Secretome analysis of diarrhea-inducing strains of Escherichia coli. Proteomics 2017; 17. [PMID: 28070933 DOI: 10.1002/pmic.201600299] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 12/19/2016] [Accepted: 01/05/2017] [Indexed: 01/05/2023]
Abstract
Secreted proteins constitute a major part of virulence factors that are responsible for pathogenesis caused by Gram-negative bacteria. Enterohemorrhagic Escherichia coli, O157:H7, is the major pathogen often causing outbreaks. However, studies have reported that the significant outbreaks caused by non-O157:H7 E. coli strains, also known as "Big-Six" serogroup strains, are increasing. There is no systematic study describing differential secreted proteins from these non-O157:H7 E. coli strains. In this study, we carried out MS-based differential secretome analysis using tandem mass tags labeling strategy of non-O157:H7 E. coli strains, O103, O111, O121, O145, O26, and O45. We identified 1241 proteins, of which 565 proteins were predicted to be secreted. We also found that 68 proteins were enriched in type III secretion system and several of them were differentially expressed across the strains. Additionally, we identified several strain-specific secreted proteins that could be used for developing potential markers for the identification and strain-level differentiation. To our knowledge, this study is the first comparative proteomic study on secretome of E. coli Big-Six serogroup and the several of these strain-specific secreted proteins can be further studied to develop potential markers for identification and strain-level differentiation. Moreover, the results of this study can be utilized in several applications, including food safety, diagnostics of E. coli outbreaks, and detection and identification of bio threats in biodefense.
Collapse
Affiliation(s)
- Raja Sekhar Nirujogi
- Institute of Bioinformatics, International Technology Park, Bangalore, India.,Centre for Bioinformatics, Pondicherry University, Puducherry, India.,McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Min-Sik Kim
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Applied Chemistry, Kyung Hee University, Yongin, Gyeonggi, South Korea
| | - Gajanan J Sathe
- Institute of Bioinformatics, International Technology Park, Bangalore, India.,Manipal University, Madhav Nagar, Manipal, India
| | - P T V Lakshmi
- Centre for Bioinformatics, Pondicherry University, Puducherry, India
| | - Olga N Kovbasnjuk
- Division of Gastroenterology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - T S Keshava Prasad
- Institute of Bioinformatics, International Technology Park, Bangalore, India.,Centre for Bioinformatics, Pondicherry University, Puducherry, India.,Manipal University, Madhav Nagar, Manipal, India.,NIMHANS-IOB Proteomics and Bioinformatics Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neuro Sciences, Bangalore, India.,YU-IOB Center for Systems Biology and Molecular Medicine, Yenepoya University, Mangalore, India
| | - Mary Wade
- Research and Technology Directorate, US Army Edgewood Chemical Biological Center, Aberdeen Proving Ground, MD, USA
| | - Rabih E Jabbour
- Research and Technology Directorate, US Army Edgewood Chemical Biological Center, Aberdeen Proving Ground, MD, USA
| |
Collapse
|
23
|
The naringenin-induced exoproteome of Rhizobium etli CE3. Arch Microbiol 2017; 199:737-755. [PMID: 28255691 DOI: 10.1007/s00203-017-1351-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 01/25/2017] [Accepted: 02/01/2017] [Indexed: 01/29/2023]
Abstract
Flavonoids excreted by legume roots induce the expression of symbiotically essential nodulation (nod) genes in rhizobia, as well as that of specific protein export systems. In the bean microsymbiont Rhizobium etli CE3, nod genes are induced by the flavonoid naringenin. In this study, we identified 693 proteins in the exoproteome of strain CE3 grown in minimal medium with or without naringenin, with 101 and 100 exoproteins being exclusive to these conditions, respectively. Four hundred ninety-two (71%) of the extracellular proteins were found in both cultures. Of the total exoproteins identified, nearly 35% were also present in the intracellular proteome of R. etli bacteroids, 27% had N-terminal signal sequences and a significant number had previously demonstrated or possible novel roles in symbiosis, including bacterial cell surface modification, adhesins, proteins classified as MAMPs (microbe-associated molecular patterns), such as flagellin and EF-Tu, and several normally cytoplasmic proteins as Ndk and glycolytic enzymes, which are known to have extracellular "moonlighting" roles in bacteria that interact with eukaryotic cells. It is noteworthy that the transmembrane ß (1,2) glucan biosynthesis protein NdvB, an essential symbiotic protein in rhizobia, was found in the R. etli naringenin-induced exoproteome. In addition, potential binding sites for two nod-gene transcriptional regulators (NodD) occurred somewhat more frequently in the promoters of genes encoding naringenin-induced exoproteins in comparison to those ofexoproteins found in the control condition.
Collapse
|
24
|
Zhang J, Fan F, Zhao Y, Sun L, Liu Y, Keegan RM, Isupov MN, Wu Y. Crystal structure of the type IV secretion system component CagX from Helicobacter pylori. Acta Crystallogr F Struct Biol Commun 2017; 73:167-173. [PMID: 28291753 PMCID: PMC5349311 DOI: 10.1107/s2053230x17001376] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 01/26/2017] [Indexed: 12/28/2022] Open
Abstract
Helicobacter pylori, a Gram-negative bacterial pathogen prevalent in the human population, is the causative agent of severe gastric diseases. An H. pylori type IV secretion (T4S) system encoded by the cytotoxin-associated gene pathogenicity island (cagPAI) is responsible for communication with host cells. As a component of the cagPAI T4S system core complex, CagX plays an important role in virulence-protein translocation into the host cells. In this work, the crystal structure of the C-terminal domain of CagX (CagXct), which is a homologue of the VirB9 protein from the VirB/D4 T4S system, is presented. CagXct is only the second three-dimensional structure to be elucidated of a VirB9-like protein. Another homologue, TraO, which is encoded on the Escherichia coli conjugative plasmid pKM101, shares only 19% sequence identity with CagXct; however, there is a remarkable similarity in tertiary structure between these two β-sandwich protein domains. Most of the residues that are conserved between CagXct and TraO are located within the protein core and appear to be responsible for the preservation of this domain fold. The studies presented here will contribute to our understanding of different bacterial T4S systems.
Collapse
Affiliation(s)
- Jin Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science, Fuzhou 350002, People’s Republic of China
| | - Fei Fan
- Fujian Health College, Fuzhou 350101, People’s Republic of China
| | - Yanhe Zhao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science, Fuzhou 350002, People’s Republic of China
| | - Lifang Sun
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science, Fuzhou 350002, People’s Republic of China
| | - Yadan Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science, Fuzhou 350002, People’s Republic of China
| | - Ronan M. Keegan
- CCP4, Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Oxford, Didcot OX11 0FA, England
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, England
| | - Michail N. Isupov
- The Henry Wellcome Building for Biocatalysis, Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, England
| | - Yunkun Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science, Fuzhou 350002, People’s Republic of China
| |
Collapse
|
25
|
Tavares R, Pathak SK. Helicobacter pylori Secreted Protein HP1286 Triggers Apoptosis in Macrophages via TNF-Independent and ERK MAPK-Dependent Pathways. Front Cell Infect Microbiol 2017; 7:58. [PMID: 28293545 PMCID: PMC5329642 DOI: 10.3389/fcimb.2017.00058] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 02/13/2017] [Indexed: 01/10/2023] Open
Abstract
Macrophages constitute a powerful line of defense against H. pylori. The final disease outcome is highly dependent on the bacterial ability to modulate the effector functions of activated macrophages. Here, we report that H. pylori secreted protein HP1286 is a novel regulator of macrophage responses. Differential expression and release of HP1286 homologues were observed among H. pylori strains. Recombinant purified HP1286 (rHP1286) had the ability to bind to primary human monocyte-derived macrophages (MDM) and macrophage cell lines. Exposure to rHP1286 induced apoptosis in macrophages in a dose- and time-dependent manner. Although interaction of rHP1286 was observed for several other cell types, such as human monocytes, differentiated neutrophil-like HL60 cells, and the T lymphocyte Jurkat cell line, rHP1286 failed to induce apoptosis under similar conditions, indicating a macrophage-specific effect of the protein. A mutant strain of H. pylori lacking HP1286 protein expression was significantly impaired in its ability to induce apoptosis in macrophages. Significantly higher caspase 3 activity was detected in rHP1286-challenged macrophages. Furthermore, rHP1286-induced macrophages apoptosis was not inhibited in the presence of neutralizing antibodies against TNF. These observations indicate that rHP1286 induced a caspase-dependent and TNF-independent macrophage apoptosis. Pre-treatment of macrophages with U0126, an inhibitor of the ERK MAPK signaling pathway significantly reduced rHP1286-induced apoptosis. Furthermore, nuclear translocation of ERK and phosphorylation of c-Fos was detected in rHP1286-treated macrophages. These results provide functional insight into the potential role of HP1286 during H. pylori infection. Considering the ability of HP1286 to induce macrophage apoptosis, the protein could possibly help in the bacterial escape from the activated macrophages and persistence in the stomach.
Collapse
Affiliation(s)
- Raquel Tavares
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University Stockholm, Sweden
| | - Sushil Kumar Pathak
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University Stockholm, Sweden
| |
Collapse
|
26
|
Kumari R, Shariq M, Kumar N, Mukhopadhyay G. Biochemical characterization of theHelicobacter pyloriCag-type IV secretion system unique component CagU. FEBS Lett 2017; 591:500-512. [DOI: 10.1002/1873-3468.12564] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Revised: 12/16/2016] [Accepted: 01/10/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Rajesh Kumari
- Special Centre for Molecular Medicine; Jawaharlal Nehru University; New Delhi India
| | - Mohd Shariq
- Special Centre for Molecular Medicine; Jawaharlal Nehru University; New Delhi India
- School of Life Sciences; Jawaharlal Nehru University; New Delhi India
| | - Navin Kumar
- Special Centre for Molecular Medicine; Jawaharlal Nehru University; New Delhi India
- School of Biotechnology; Gautam Buddha University; Uttar Pradesh India
| | | |
Collapse
|
27
|
Paes JA, Lorenzatto KR, de Moraes SN, Moura H, Barr JR, Ferreira HB. Secretomes of Mycoplasma hyopneumoniae and Mycoplasma flocculare reveal differences associated to pathogenesis. J Proteomics 2017; 154:69-77. [DOI: 10.1016/j.jprot.2016.12.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/18/2016] [Accepted: 12/07/2016] [Indexed: 02/07/2023]
|
28
|
Lewinska A, Wnuk M. Helicobacter pylori-induced premature senescence of extragastric cells may contribute to chronic skin diseases. Biogerontology 2017; 18:293-299. [PMID: 28074309 PMCID: PMC5350214 DOI: 10.1007/s10522-017-9676-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 01/02/2017] [Indexed: 02/06/2023]
Abstract
Helicobacter pylori, one of the most frequently observed bacterium in the human intestinal flora, has been widely studied since Marshall and Warren documented a link between the presence of H. pylori in the gastrointestinal tract and gastritis and gastric ulcers. Interestingly, H. pylori has also been found in several other epithelial tissues, including the eyes, ears, nose and skin that may have direct or indirect effects on host physiology and may contribute to extragastric diseases, e.g. chronic skin diseases. More recently, it has been shown that H. pylori cytotoxin CagA expression induces cellular senescence of human gastric nonpolarized epithelial cells that may lead to gastrointestinal disorders and systemic inflammation. Here, we hypothesize that also chronic skin diseases may be promoted by stress-induced premature senescence (SIPS) of skin cells, namely fibroblasts and keratinocytes, stimulated with H. pylori cytotoxins. Future studies involving cell culture models and clinical specimens are needed to verify the involvement of H. pylori in SIPS-based chronic skin diseases.
Collapse
Affiliation(s)
- Anna Lewinska
- Department of Genetics, University of Rzeszow, Werynia 502, 36-100, Kolbuszowa, Poland.
| | - Maciej Wnuk
- Department of Genetics, University of Rzeszow, Werynia 502, 36-100, Kolbuszowa, Poland.
| |
Collapse
|
29
|
Mori G, Doniselli N, Faroldi F, Percudani R. Heme binding and peroxidase activity of a secreted minicatalase. FEBS Lett 2016; 590:4495-4506. [PMID: 27859138 DOI: 10.1002/1873-3468.12493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 10/29/2016] [Accepted: 11/07/2016] [Indexed: 11/10/2022]
Abstract
Microbial pathogens often require efficient and robust H2 O2 scavenger activities to survive in the presence of reactive oxygen species generated by inflammatory responses. In addition to catalases and peroxidases, enzymes known to scavenge H2 O2 , a novel class of secreted minicatalases is found in diderm bacteria. Here, we characterize the Helicobacter pylori (Hp) minicatalase: a monomeric hemoprotein with catalase core homology. Overexpression of Hp minicatalase rescued a catalase/peroxidase-deficient Escherichia coli phenotype under aerobic conditions and limited H2 O2 stress. The purified enzyme lacks catalase activity, but has strong (kcat > 100 s-1 ) H2 O2 -dependent peroxidase activity toward a variety of organic substrates. Our investigations into heme binding revealed that the heme cofactor is assembled in the periplasm to form the functional holoprotein. Furthermore, we observed the presence of a disulfide bond near the heme cavity of Hp minicatalase, which is conserved in secreted minicatalases and, therefore, may play a role in heme binding.
Collapse
Affiliation(s)
- Giulia Mori
- Department of Life Sciences, University of Parma, Italy
| | | | | | | |
Collapse
|
30
|
A Nonoligomerizing Mutant Form of Helicobacter pylori VacA Allows Structural Analysis of the p33 Domain. Infect Immun 2016; 84:2662-70. [PMID: 27382020 PMCID: PMC4995914 DOI: 10.1128/iai.00254-16] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 06/24/2016] [Indexed: 12/17/2022] Open
Abstract
Helicobacter pylori secretes a pore-forming VacA toxin that has structural features and activities substantially different from those of other known bacterial toxins. VacA can assemble into multiple types of water-soluble flower-shaped oligomeric structures, and most VacA activities are dependent on its capacity to oligomerize. The 88-kDa secreted VacA protein can undergo limited proteolysis to yield two domains, designated p33 and p55. The p33 domain is required for membrane channel formation and intracellular toxic activities, and the p55 domain has an important role in mediating VacA binding to cells. Previous studies showed that the p55 domain has a predominantly β-helical structure, but no structural data are available for the p33 domain. We report here the purification and analysis of a nonoligomerizing mutant form of VacA secreted by H. pylori The nonoligomerizing 88-kDa mutant protein retains the capacity to enter host cells but lacks detectable toxic activity. Analysis of crystals formed by the monomeric protein reveals that the β-helical structure of the p55 domain extends into the C-terminal portion of p33. Fitting the p88 structural model into an electron microscopy map of hexamers formed by wild-type VacA (predicted to be structurally similar to VacA membrane channels) reveals that p55 and the β-helical segment of p33 localize to peripheral arms but do not occupy the central region of the hexamers. We propose that the amino-terminal portion of p33 is unstructured when VacA is in a monomeric form and that it undergoes a conformational change during oligomer assembly.
Collapse
|
31
|
Pulić I, Cendron L, Salamina M, Polverino de Laureto P, Matković-Čalogović D, Zanotti G. Crystal structure of truncated FlgD from the human pathogen Helicobacter pylori. J Struct Biol 2016; 194:147-55. [PMID: 26868107 DOI: 10.1016/j.jsb.2016.02.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 01/30/2016] [Accepted: 02/02/2016] [Indexed: 01/28/2023]
Abstract
Flagellin component D (FlgD) participates in the assembly of flagella, helical tubular structures that provide motility in non-filamentous bacteria. FlgD guides and controls the polymerization of FlgE that builds the hook, a short curved and hollow cylinder that connects the flagellar basal body spanning the cell envelope to the protruding filament. Crystal structures of truncated forms of Helicobacter pylori FlgD from two different strains in two space groups, I422 and P2, are reported here, at 2.2Å and 2.8Å resolution, respectively. Analogously to Pseudomonas aeruginosa and Xanthomonas campestris FlgD proteins, crystallization experiments set up for the full length protein resulted in crystals of a truncated form, lacking both N- and C-terminus ends. The crystal structures of the central domain show that the monomer is composed of a tudor and a fibronectin type III domain. The full length HpFlgD contains a long N-terminal signal region, probably partially flexible, a central globular region and a C-terminal segment with a peculiar repetitive pattern of amino acids. The spatial orientation of the two domains in HpFlgD differs from that of the homologous FlgD family members, P. aeruginosa and X. campestris. This difference together with the observation that HpFlgD assembles into tetramers, both in the solution and in the two crystal forms, strongly suggests that significant differences exist in the molecular organization of the flagella in different bacterial species.
Collapse
Affiliation(s)
- Ivana Pulić
- University of Zagreb, Faculty of Science, Department of Chemistry, Division of General and Inorganic Chemistry, Horvatovac 102a, Zagreb 10000, Croatia; Department of Biomedical Sciences, University of Padua, Via Ugo Bassi 58/B, Padua 35131, Italy
| | - Laura Cendron
- Department of Biology, University of Padua, Via Ugo Bassi 58/B, Padua 35131, Italy
| | - Marco Salamina
- Department of Biomedical Sciences, University of Padua, Via Ugo Bassi 58/B, Padua 35131, Italy
| | | | - Dubravka Matković-Čalogović
- University of Zagreb, Faculty of Science, Department of Chemistry, Division of General and Inorganic Chemistry, Horvatovac 102a, Zagreb 10000, Croatia.
| | - Giuseppe Zanotti
- Department of Biomedical Sciences, University of Padua, Via Ugo Bassi 58/B, Padua 35131, Italy.
| |
Collapse
|
32
|
Kronsteiner B, Bassaganya-Riera J, Philipson C, Viladomiu M, Carbo A, Abedi V, Hontecillas R. Systems-wide analyses of mucosal immune responses to Helicobacter pylori at the interface between pathogenicity and symbiosis. Gut Microbes 2016; 7:3-21. [PMID: 26939848 PMCID: PMC4856448 DOI: 10.1080/19490976.2015.1116673] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 10/29/2015] [Accepted: 10/31/2015] [Indexed: 02/08/2023] Open
Abstract
Helicobacter pylori is the dominant member of the gastric microbiota in over half of the human population of which 5-15% develop gastritis or gastric malignancies. Immune responses to H. pylori are characterized by mixed T helper cell, cytotoxic T cell and NK cell responses. The presence of Tregs is essential for the control of gastritis and together with regulatory CX3CR1+ mononuclear phagocytes and immune-evasion strategies they enable life-long persistence of H. pylori. This H. pylori-induced regulatory environment might contribute to its cross-protective effect in inflammatory bowel disease and obesity. Here we review host-microbe interactions, the development of pro- and anti-inflammatory immune responses and how the latter contribute to H. pylori's role as beneficial member of the gut microbiota. Furthermore, we present the integration of existing and new data into a computational/mathematical model and its use for the investigation of immunological mechanisms underlying initiation, progression and outcomes of H. pylori infection.
Collapse
Affiliation(s)
- Barbara Kronsteiner
- Nutritional Immunology and Molecular Medicine Laboratory and Center for Modeling Immunity to Enteric Pathogens; Virginia Bioinformatics Institute; Virginia Tech; Blacksburg, VA, USA
| | - Josep Bassaganya-Riera
- Nutritional Immunology and Molecular Medicine Laboratory and Center for Modeling Immunity to Enteric Pathogens; Virginia Bioinformatics Institute; Virginia Tech; Blacksburg, VA, USA
| | | | - Monica Viladomiu
- Nutritional Immunology and Molecular Medicine Laboratory and Center for Modeling Immunity to Enteric Pathogens; Virginia Bioinformatics Institute; Virginia Tech; Blacksburg, VA, USA
| | | | - Vida Abedi
- Nutritional Immunology and Molecular Medicine Laboratory and Center for Modeling Immunity to Enteric Pathogens; Virginia Bioinformatics Institute; Virginia Tech; Blacksburg, VA, USA
| | - Raquel Hontecillas
- Nutritional Immunology and Molecular Medicine Laboratory and Center for Modeling Immunity to Enteric Pathogens; Virginia Bioinformatics Institute; Virginia Tech; Blacksburg, VA, USA
| |
Collapse
|
33
|
Growth phase-dependent composition of the Helicobacter pylori exoproteome. J Proteomics 2015; 130:94-107. [PMID: 26363098 DOI: 10.1016/j.jprot.2015.08.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 08/28/2015] [Accepted: 08/31/2015] [Indexed: 12/11/2022]
Abstract
Helicobacter pylori colonizes the human stomach and is associated with an increased risk of gastric cancer and peptic ulcer disease. Analysis of H. pylori protein secretion is complicated by the occurrence of bacterial autolysis. In this study, we analyzed the exoproteome of H. pylori at multiple phases of bacterial growth and identified 74 proteins that are selectively released into the extracellular space. These include proteins known to cause alterations in host cells, antigenic proteins, and additional proteins that have not yet been studied in any detail. The composition of the H. pylori exoproteome is dependent on the phase of bacterial growth. For example, the proportional abundance of the vacuolating toxin VacA in culture supernatant is higher during late growth phases than early growth phases, whereas the proportional abundance of many other proteins is higher during early growth phases. We detected marked variation in the subcellular localization of putative secreted proteins within soluble and membrane fractions derived from intact bacteria. By providing a comprehensive view of the H. pylori exoproteome, these results provide new insights into the array of secreted H. pylori proteins that may cause alterations in the gastric environment.
Collapse
|