1
|
Najafzadeh A, Mahdizadeh M, Kakhki S, Rahimi A, Ahmadi-Soleimani SM, Beheshti F. Ascorbic acid supplementation in adolescent rats ameliorates anxiety-like and depressive-like manifestations of nicotine-ethanol abstinence: Role of oxidative stress, inflammatory, and serotonergic mechanisms. Int J Dev Neurosci 2025; 85:e10392. [PMID: 39632085 DOI: 10.1002/jdn.10392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 10/01/2024] [Accepted: 10/28/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND The present study aims to assess the therapeutic potential of vitamin C (Vit C) on anxiety- and depressive-like behavior induced by abstinence from chronic nicotine-ethanol co-exposure in adolescent male rats. MATERIALS AND METHODS Adolescent male rats were divided into seven experimental groups with ten rats as follows: 1) vehicle, 2) Nicotine (Nic)-Ethanol (Eth): received Nic (2 mg/kg) and Eth (20%) in drinking water from 21 to 42 days of age, 3-5) Nic-Eth-Vit C 100/200/400: received Nic and Eth from 21 to 42 days of age and received Vit C 100/200/400 mg/kg from 43 to 63 days of age, 6) Nic-Eth-Bupropion (Bup)- Naloxone (Nal): received Nic and Eth from 21 to 42 days of age and received Bup and Nal from 43 to 63 days of age, and 7) Vit C 400 mg/kg: received Vit C 400 mg/kg from 43 to 63 days of age. Behavioral assessments were done by elevated plus maze (EPM), forced swimming test (FST), marble burring test (MBT), and open field tests (OFT). Furthermore, specific biochemical variables associated with oxidative, inflammatory, and serotonergic profiles were quantified. RESULTS According to the obtained results, Nic and Eth induced anxiety and depression in treated rats. We showed that two higher doses of Vit C increases the active struggling time in FST and decreases both the time spent in the peripheral zone of OFT and the time spent in the closed arms of EPM. In addition, animals treated by Vit C buried less number of marbles in MBT compared to their control counterparts. Nic and Eth induced oxidative stress and inflammation in cortical tissues of treated rats. Biochemical parameters were improved in the Nic-Eth group receiving Vit C 200/400 mg/kg and Bup-Nal through establishing a balance between oxidant/anti-oxidant and inflammatory/anti-inflammatory mediators. In addition, serotonin level was increased, while Monoamine oxidase (MAO) activity was notably decreased. CONCLUSION The present findings support the beneficial effect of Vit C on anxiety- and depressive-like behavior induced by Nic-Eth withdrawal through various mechanisms such as the promotion of antioxidant defense, suppression of inflammatory mediators, and enhancement of serotoninergic function.
Collapse
Affiliation(s)
- Alireza Najafzadeh
- Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Mobina Mahdizadeh
- Student Research Committee, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Samaneh Kakhki
- Department of Clinical Biochemistry, School of Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Ali Rahimi
- Student Research Committee, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - S Mohammad Ahmadi-Soleimani
- Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
- Department of Physiology, School of Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Farimah Beheshti
- Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
- Department of Physiology, School of Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| |
Collapse
|
2
|
Theron V, Lochner C, Stein DJ, Harvey BH, Wolmarans DW. The deer mouse (Peromyscus maniculatus bairdii) as a model organism to explore the naturalistic psychobiological mechanisms contributing to compulsive-like rigidity: A narrative overview of advances and opportunities. Compr Psychiatry 2025; 136:152545. [PMID: 39515287 DOI: 10.1016/j.comppsych.2024.152545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 10/25/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
Deer mice (Peromyscus maniculatus bairdii), a wildtype species native to North America, have been investigated for their spontaneous compulsive-like behaviour. The repetitive and persistence nature of three unique compulsive-like phenotypes in deer mice, i.e., high stereotypy (HS), large nesting behaviour (LNB) and high marble burying (HMB), are characterized by behavioural and cognitive rigidity. In this narrative review, we summarize key advances in the model's application to study obsessive-compulsive disorder (OCD), emphasizing how it may be used to investigate neurobiological and neurocognitive aspects of rigidity. Indeed, deer mice provide the field with a unique naturalistic and spontaneous model system of behavioural and cognitive rigidity that is useful for investigating the psychobiological mechanisms that underpin a range of compulsive-like phenotypes. Throughout the review, we highlight new opportunities for future research.
Collapse
Affiliation(s)
- Vasti Theron
- Centre of Excellence for Pharmaceutical Sciences, Department of Pharmacology, North-West University, South Africa
| | - Chrstine Lochner
- SAMRC Unit on Risk and Resilience in Mental Disorders, Department of Psychiatry, Stellenbosch University, South Africa
| | - Dan J Stein
- SAMRC Unit on Risk and Resilience in Mental Disorders, Department of Psychiatry and Neuroscience Institute, University of Cape Town, Rondebosch 7700, South Africa
| | - Brian H Harvey
- Centre of Excellence for Pharmaceutical Sciences, Department of Pharmacology, North-West University, South Africa; SAMRC Unit on Risk and Resilience in Mental Disorders, Department of Psychiatry and Neuroscience Institute, University of Cape Town, Rondebosch 7700, South Africa; The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Australia
| | - De Wet Wolmarans
- Centre of Excellence for Pharmaceutical Sciences, Department of Pharmacology, North-West University, South Africa.
| |
Collapse
|
3
|
Fischer C, Thomas D, Gurke R, Tegeder I. Brain region specific regulation of anandamide (down) and sphingosine-1-phosphate (up) in association with anxiety (AEA) and resilience (S1P) in a mouse model of chronic unpredictable mild stress. Pflugers Arch 2024; 476:1863-1880. [PMID: 39177699 PMCID: PMC11582197 DOI: 10.1007/s00424-024-03012-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 05/12/2024] [Accepted: 08/13/2024] [Indexed: 08/24/2024]
Abstract
Chronic unpredictable and unavoidable stress is associated with mental health problems such as depression and anxiety, whereas cycles of stress and stress relief strengthen resilience. It has been suggested that increased breakdown of brain endocannabinoids (eCB) promotes a feeling of adversity. To assess the impact of stress on bioactive lipid homeostasis, we analyzed eCB, sphingolipids, and ceramides in seven brain regions and plasma in a mouse model of chronic unpredictable mild stress. Chronic unpredictable mild stress (CUMS) was associated with low levels of anandamide in hippocampus and prefrontal cortex in association with indicators of anxiety (elevated plus maze). Oppositely, CUMS caused elevated levels of sphingosine-1-phosphate (S1P d18:1) and sphinganine-1-phosphate (S1P d18:0) in the midbrain and thalamus, which was associated with readouts of increased stress resilience, i.e., marble burying and struggling in the tail suspension tests. In the periphery, elevated plasma levels of ceramides revealed similarities with human major depression and suggested unfavorable effects of stress on metabolism, but plasma lipids were not associated with body weight, sucrose consumption, or behavioral features of depression or anxiety. The observed brain site-specific lipid changes suggest that the forebrain succumbs to adverse stress effects while the midbrain takes up defensive adjustments.
Collapse
Affiliation(s)
- Caroline Fischer
- Goethe-University Frankfurt, Faculty of Medicine, Institute of Clinical Pharmacology, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Dominique Thomas
- Goethe-University Frankfurt, Faculty of Medicine, Institute of Clinical Pharmacology, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Robert Gurke
- Goethe-University Frankfurt, Faculty of Medicine, Institute of Clinical Pharmacology, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Irmgard Tegeder
- Goethe-University Frankfurt, Faculty of Medicine, Institute of Clinical Pharmacology, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany.
| |
Collapse
|
4
|
Stoppel H, Harvey BH, Wolmarans DW. Adult Offspring of Deer Mouse Breeding Pairs Selected for Normal and Compulsive-Like Large Nesting Expression Invariably Show the Same Behavior Without Prior In-Breeding. Dev Psychobiol 2024; 66:e22533. [PMID: 39106336 DOI: 10.1002/dev.22533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 08/09/2024]
Abstract
Obsessive-compulsive disorder is a neuropsychiatric condition with notable genetic involvement. Against this background, laboratory-housed deer mice of both sexes varyingly present with excessive and persistent large nesting behavior (LNB), which has been validated for its resemblance of clinical compulsivity. Although LNB differs from normal nesting behavior (NNB) on both a biological and cognitive level, it is unknown to what extent the expression of LNB and NNB is related to familial background. Here, we randomly selected 14 NNB- and 14 LNB-expressing mice (equally distributed between sexes) to constitute 7 breeding pairs of each phenotype. Pairs were allowed to breed two successive generations of offspring, which were raised until adulthood (12 weeks) and assessed for nesting expression. Remarkably, our findings show that offspring from LNB-expressing pairs build significantly larger nests compared to offspring from NNB-expressing pairs and the nesting expression of the offspring of each breeding pair, irrespective of parental phenotype or litter, is family specific. Collectively, the results of this investigation indicate that LNB can be explored for its potential to shed light on heritable neurocognitive mechanisms that may underlie the expression of specific persistent behavioral phenotypes.
Collapse
Affiliation(s)
- Heike Stoppel
- Department of Pharmacology, Faculty of Health Sciences, Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| | - Brian H Harvey
- Department of Pharmacology, Faculty of Health Sciences, Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
- Department of Psychiatry and Neuroscience Institute, South African Medical Research Council Unit on Risk and Resilience in Mental Disorders, University of Cape Town, Rondebosch, South Africa
- School of Medicine, Institute for Mental and Physical Health and Clinical Translation, Deakin University and Barwon Health, Geelong, Australia
| | - De Wet Wolmarans
- Department of Pharmacology, Faculty of Health Sciences, Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| |
Collapse
|
5
|
Patel C, Patel R, Maturkar V, Jain NS. Central cholinergic transmission affects the compulsive-like behavior of mice in marble-burying test. Brain Res 2024; 1825:148713. [PMID: 38097126 DOI: 10.1016/j.brainres.2023.148713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/02/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
The presence of the cholinergic system in the brain areas implicated in the precipitation of obsessive-compulsive behavior (OCB) has been reported but the exact role of the central cholinergic system therein is still unexplored. Therefore, the current study assessed the effect of cholinergic analogs on central administration on the marble-burying behavior (MBB) of mice, a behavior correlated with OCB. The result reveals that the enhancement of central cholinergic transmission in mice achieved by intracerebroventricular (i.c.v.) injection of acetylcholine (0.01 µg) (Subeffective: 0.1 and 0.5 µg), cholinesterase inhibitor, neostigmine (0.1, 0.3, 0.5 µg/mouse) and neuronal nicotinic acetylcholine receptor agonist, nicotine (0.1, 2 µg/mouse) significantly attenuated the number of marbles buried by mice in MBB test without affecting basal locomotor activity. Similarly, central injection of mAChR antagonist, atropine (0.1, 0.5, 5 µg/mouse), nAChR antagonist, mecamylamine (0.1, 0.5, 3 µg/mouse) per se also reduced the MBB in mice, indicative of anti-OCB like effect of all the tested cholinergic mAChR or nAChR agonist and antagonist. Surprisingly, i.c.v. injection of acetylcholine (0.01 µg), and neostigmine (0.1 µg) failed to elicit an anti-OCB-like effect in mice pre-treated (i.c.v.) with atropine (0.1 µg), or mecamylamine (0.1 µg). Thus, the findings of the present investigationdelineate the role of central cholinergic transmission in the compulsive-like behavior of mice probably via mAChR or nAChR stimulation.
Collapse
Affiliation(s)
- Chhatrapal Patel
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya, Koni, Bilaspur, Chhattisgarh, India
| | - Richa Patel
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya, Koni, Bilaspur, Chhattisgarh, India
| | - Vaibhav Maturkar
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya, Koni, Bilaspur, Chhattisgarh, India
| | - Nishant Sudhir Jain
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya, Koni, Bilaspur, Chhattisgarh, India.
| |
Collapse
|
6
|
Horii-Hayashi N, Masuda K, Kato T, Kobayashi K, Inutsuka A, Nambu MF, Tanaka KZ, Inoue K, Nishi M. Entrance-sealing behavior in the home cage: a defensive response to potential threats linked to the serotonergic system and manifestation of repetitive/stereotypic behavior in mice. Front Behav Neurosci 2024; 17:1289520. [PMID: 38249128 PMCID: PMC10799337 DOI: 10.3389/fnbeh.2023.1289520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/11/2023] [Indexed: 01/23/2024] Open
Abstract
The security of animal habitats, such as burrows and nests, is vital for their survival and essential activities, including eating, mating, and raising offspring. Animals instinctively exhibit defensive behaviors to protect themselves from imminent and potential threats. In 1963, researchers reported wild rats sealing the entrances to their burrows from the inside using materials such as mud, sand, and vegetation. This behavior, known as "entrance sealing (ES)," involves repetitive movements of their nose/mouth and forepaws and is likely a proactive measure against potential intruders, which enhances burrow security. These observations provide important insights into the animals' ability to anticipate potential threats that have not yet occurred and take proactive actions. However, this behavior lacks comprehensive investigation, and the neural mechanisms underpinning it remain unclear. Hypothalamic perifornical neurons expressing urocortin-3 respond to novel objects/potential threats and modulate defensive responses to the objects in mice, including risk assessment and burying. In this study, we further revealed that chemogenetic activation of these neurons elicited ES-like behavior in the home-cage. Furthermore, behavioral changes caused by activating these neurons, including manifestations of ES-like behavior, marble-burying, and risk assessment/burying of a novel object, were effectively suppressed by selective serotonin-reuptake inhibitors. The c-Fos analysis indicated that ES-like behavior was potentially mediated through GABAergic neurons in the lateral septum. These findings underscore the involvement of hypothalamic neurons in the anticipation of potential threats and proactive defense against them. The links of this security system with the manifestation of repetitive/stereotypic behaviors and the serotonergic system provide valuable insights into the mechanisms underlying the symptoms of obsessive-compulsive disorder.
Collapse
Affiliation(s)
- Noriko Horii-Hayashi
- Anatomy and Cell Biology, Department of Medicine, Nara Medical University, Kashihara, Japan
| | - Kazuya Masuda
- Anatomy and Cell Biology, Department of Medicine, Nara Medical University, Kashihara, Japan
| | - Taika Kato
- Anatomy and Cell Biology, Department of Medicine, Nara Medical University, Kashihara, Japan
| | - Kenta Kobayashi
- Section of Viral Vector Development, National Institute for Physiological Sciences, Okazaki, Japan
| | - Ayumu Inutsuka
- Department of Physiology, Jichi Medical University, Shimono, Japan
| | - Miyu F. Nambu
- Memory Research Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Kunigami-gun, Japan
| | - Kazumasa Z. Tanaka
- Memory Research Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Kunigami-gun, Japan
| | - Koichi Inoue
- Anatomy and Cell Biology, Department of Medicine, Nara Medical University, Kashihara, Japan
| | - Mayumi Nishi
- Anatomy and Cell Biology, Department of Medicine, Nara Medical University, Kashihara, Japan
| |
Collapse
|
7
|
Herrera K, Maldonado-Ruiz R, Camacho-Morales A, de la Garza AL, Castro H. Maternal methyl donor supplementation regulates the effects of cafeteria diet on behavioral changes and nutritional status in male offspring. Food Nutr Res 2023; 67:9828. [PMID: 37920679 PMCID: PMC10619398 DOI: 10.29219/fnr.v67.9828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 11/04/2023] Open
Abstract
Background Nutritional status and maternal feeding during the perinatal and postnatal periods can program the offspring to develop long-term health alterations. Epidemiologic studies have demonstrated an association between maternal obesity and intellectual disability/cognitive deficits like autism spectrum disorders (ASDs) in offspring. Experimental findings have consistently been indicating that maternal supplementation with methyl donors, attenuated the social alterations and repetitive behavior in offspring. Objective This study aims to analyze the effect of maternal cafeteria diet and methyl donor-supplemented diets on social, anxiety-like, and repetitive behavior in male offspring, besides evaluating weight gain and food intake in both dams and male offspring. Design C57BL/6 female mice were randomized into four dietary formulas: control Chow (CT), cafeteria (CAF), control + methyl donor (CT+M), and cafeteria + methyl donor (CAF+M) during the pre-gestational, gestational, and lactation period. Behavioral phenotyping in the offspring was performed by 2-month-old using Three-Chamber Test, Open Field Test, and Marble Burying Test. Results We found that offspring prenatally exposed to CAF diet displayed less social interaction index when compared with subjects exposed to Chow diet (CT group). Notably, offspring exposed to CAF+M diet recovered social interaction when compared to the CAF group. Discussion These findings suggest that maternal CAF diet is efficient in promoting reduced social interaction in murine models. In our study, we hypothesized that a maternal methyl donor supplementation could improve the behavioral alterations expected in maternal CAF diet offspring. Conclusions The CAF diet also contributed to a social deficit and anxiety-like behavior in the offspring. On the other hand, a maternal methyl donor-supplemented CAF diet normalized the social interaction in the offspring although it led to an increase in anxiety-like behaviors. These findings suggest that a methyl donor supplementation could protect against aberrant social behavior probably targeting key genes related to neurotransmitter pathways.
Collapse
Affiliation(s)
- Katya Herrera
- Universidad Autonoma de Nuevo León, Facultad de Salud Pública y Nutrición, Centro de Investigación en Nutrición y Salud Pública. Monterrey, Nuevo León, México
| | - Roger Maldonado-Ruiz
- Universidad Autonoma de Nuevo Leon, Unidad de Neurometabolismo, Centro de Investigación y Desarrollo en Ciencias de la Salud. Monterrey, Nuevo León, México
| | - Alberto Camacho-Morales
- Universidad Autonoma de Nuevo Leon, Unidad de Neurometabolismo, Centro de Investigación y Desarrollo en Ciencias de la Salud. Monterrey, Nuevo León, México
- Universidad Autonoma de Nuevo Leon, Facultad de Medicina, Departamento de Bioquímica. Monterrey, Nuevo León, México
| | - Ana Laura de la Garza
- Universidad Autonoma de Nuevo Leon, Unidad de Nutrición, Centro de Investigación y Desarrollo en Ciencias de la Salud. Monterrey, Nuevo León, México
| | - Heriberto Castro
- Universidad Autonoma de Nuevo León, Facultad de Salud Pública y Nutrición, Centro de Investigación en Nutrición y Salud Pública. Monterrey, Nuevo León, México
- Universidad Autonoma de Nuevo Leon, Unidad de Nutrición, Centro de Investigación y Desarrollo en Ciencias de la Salud. Monterrey, Nuevo León, México
| |
Collapse
|
8
|
Ali Z, Godoy-Corchuelo JM, Martins-Bach AB, Garcia-Toledo I, Fernández-Beltrán LC, Nair RR, Spring S, Nieman BJ, Jimenez-Coca I, Bains RS, Forrest H, Lerch JP, Miller KL, Fisher EMC, Cunningham TJ, Corrochano S. Mutation in the FUS nuclear localisation signal domain causes neurodevelopmental and systemic metabolic alterations. Dis Model Mech 2023; 16:dmm050200. [PMID: 37772684 PMCID: PMC10642611 DOI: 10.1242/dmm.050200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 08/29/2023] [Indexed: 09/30/2023] Open
Abstract
Variants in the ubiquitously expressed DNA/RNA-binding protein FUS cause aggressive juvenile forms of amyotrophic lateral sclerosis (ALS). Most FUS mutation studies have focused on motor neuron degeneration; little is known about wider systemic or developmental effects. We studied pleiotropic phenotypes in a physiological knock-in mouse model carrying the pathogenic FUSDelta14 mutation in homozygosity. RNA sequencing of multiple organs aimed to identify pathways altered by the mutant protein in the systemic transcriptome, including metabolic tissues, given the link between ALS-frontotemporal dementia and altered metabolism. Few genes were commonly altered across all tissues, and most genes and pathways affected were generally tissue specific. Phenotypic assessment of mice revealed systemic metabolic alterations related to the pathway changes identified. Magnetic resonance imaging brain scans and histological characterisation revealed that homozygous FUSDelta14 brains were smaller than heterozygous and wild-type brains and displayed significant morphological alterations, including a thinner cortex, reduced neuronal number and increased gliosis, which correlated with early cognitive impairment and fatal seizures. These findings show that the disease aetiology of FUS variants can include both neurodevelopmental and systemic alterations.
Collapse
Affiliation(s)
- Zeinab Ali
- Neurological Disorders Group, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria Hospital Clínico San Carlos (IdiSSC), Madrid 28040, Spain
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
- Mammalian Genetics Unit, MRC Harwell Institute, Didcot, Oxfordshire OX11 ORD, UK
| | - Juan M. Godoy-Corchuelo
- Neurological Disorders Group, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria Hospital Clínico San Carlos (IdiSSC), Madrid 28040, Spain
| | - Aurea B. Martins-Bach
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford OX3 9D, UK
| | - Irene Garcia-Toledo
- Neurological Disorders Group, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria Hospital Clínico San Carlos (IdiSSC), Madrid 28040, Spain
| | - Luis C. Fernández-Beltrán
- Neurological Disorders Group, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria Hospital Clínico San Carlos (IdiSSC), Madrid 28040, Spain
- Department of Medicine, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Remya R. Nair
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
- Mammalian Genetics Unit, MRC Harwell Institute, Didcot, Oxfordshire OX11 ORD, UK
| | - Shoshana Spring
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, ON M57 3H7, Canada
| | - Brian J. Nieman
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, ON M57 3H7, Canada
| | - Irene Jimenez-Coca
- Neurological Disorders Group, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria Hospital Clínico San Carlos (IdiSSC), Madrid 28040, Spain
| | - Rasneer S. Bains
- Mary Lyon Centre at MRC Harwell, Didcot, Oxfordshire OX11 ORD, UK
| | - Hamish Forrest
- Mary Lyon Centre at MRC Harwell, Didcot, Oxfordshire OX11 ORD, UK
| | - Jason P. Lerch
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford OX3 9D, UK
| | - Karla L. Miller
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford OX3 9D, UK
| | - Elizabeth M. C. Fisher
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Thomas J. Cunningham
- Mammalian Genetics Unit, MRC Harwell Institute, Didcot, Oxfordshire OX11 ORD, UK
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, University College London, London W1W 7FF, UK
| | - Silvia Corrochano
- Neurological Disorders Group, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria Hospital Clínico San Carlos (IdiSSC), Madrid 28040, Spain
- Mammalian Genetics Unit, MRC Harwell Institute, Didcot, Oxfordshire OX11 ORD, UK
| |
Collapse
|
9
|
Lustberg DJ, Liu JQ, Iannitelli AF, Vanderhoof SO, Liles LC, McCann KE, Weinshenker D. Norepinephrine and dopamine contribute to distinct repetitive behaviors induced by novel odorant stress in male and female mice. Horm Behav 2022; 144:105205. [PMID: 35660247 PMCID: PMC10216880 DOI: 10.1016/j.yhbeh.2022.105205] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 12/30/2022]
Abstract
Exposure to unfamiliar odorants induces an array of repetitive defensive and non-defensive behaviors in rodents which likely reflect adaptive stress responses to the uncertain valence of novel stimuli. Mice genetically deficient for dopamine β-hydroxylase (Dbh-/-) lack the enzyme required to convert dopamine (DA) into norepinephrine (NE), resulting in globally undetectable NE and supranormal DA levels. Because catecholamines modulate novelty detection and reactivity, we investigated the effects of novel plant-derived odorants on repetitive behaviors in Dbh-/- mice and Dbh+/- littermate controls, which have catecholamine levels comparable to wild-type mice. Unlike Dbh+/- controls, which exhibited vigorous digging in response to novel odorants, Dbh-/- mice displayed excessive grooming. Drugs that block NE synthesis or neurotransmission suppressed odorant-induced digging in Dbh+/- mice, while a DA receptor antagonist attenuated grooming in Dbh-/- mice. The testing paradigm elicited high circulating levels of corticosterone regardless of Dbh genotype, indicating that NE is dispensable for this systemic stress response. Odorant exposure increased NE and DA abundance in the prefrontal cortex (PFC) of Dbh+/- mice, while Dbh-/- animals lacked NE and had elevated PFC DA levels that were unaffected by novel smells. Together, these findings suggest that novel odorant-induced increases in central NE tone contribute to repetitive digging and reflect psychological stress, while central DA signaling contributes to repetitive grooming. Further, we have established a simple method for repeated assessment of stress-induced repetitive behaviors in mice, which may be relevant for modeling neuropsychiatric disorders like Tourette syndrome or obsessive-compulsive disorder that are characterized by stress-induced exacerbation of compulsive symptoms.
Collapse
Affiliation(s)
- Daniel J Lustberg
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Joyce Q Liu
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Alexa F Iannitelli
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Samantha O Vanderhoof
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - L Cameron Liles
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Katharine E McCann
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - David Weinshenker
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
10
|
Do behavioral test scores represent repeatable phenotypes of female mice? J Pharmacol Toxicol Methods 2022; 115:107170. [DOI: 10.1016/j.vascn.2022.107170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/16/2022] [Accepted: 03/23/2022] [Indexed: 11/23/2022]
|
11
|
Beaver JN, Gilman TL. Salt as a non-caloric behavioral modifier: A review of evidence from pre-clinical studies. Neurosci Biobehav Rev 2021; 135:104385. [PMID: 34634356 DOI: 10.1016/j.neubiorev.2021.10.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/16/2021] [Accepted: 10/04/2021] [Indexed: 12/18/2022]
Abstract
Though excess salt intake is well-accepted as a dietary risk factor for cardiovascular diseases, relatively little has been explored about how it impacts behavior, despite the ubiquity of salt in modern diets. Given the challenges of manipulating salt intake in humans, non-human animals provide a more tractable means for evaluating behavioral sequelae of high salt. By describing what is known about the impact of elevated salt on behavior, this review highlights how underexplored salt's behavioral effects are. Increased salt consumption in adulthood does not affect spontaneous anxiety-related behaviors or locomotor activity, nor acquisition of maze or fear tasks, but does impede expression of spatial/navigational and fear memory. Nest building is reduced by heightened salt in adults, and stress responsivity is augmented. When excess salt exposure occurs during development, and/or to parents, offspring locomotion is increased, and both spatial memory expression and social investigation are attenuated. The largely consistent findings reviewed here indicate expanded study of salt's effects will likely uncover broader behavioral implications, particularly in the scarcely studied female sex.
Collapse
Affiliation(s)
- Jasmin N Beaver
- Department of Psychological Sciences & Brain Health Research Institute, Kent State University, Kent, OH, 44242, USA.
| | - T Lee Gilman
- Department of Psychological Sciences & Brain Health Research Institute, Kent State University, Kent, OH, 44242, USA.
| |
Collapse
|
12
|
Mitra S, Bult-Ito A. Bidirectional Behavioral Selection in Mice: A Novel Pre-clinical Approach to Examining Compulsivity. Front Psychiatry 2021; 12:716619. [PMID: 34566718 PMCID: PMC8458042 DOI: 10.3389/fpsyt.2021.716619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/16/2021] [Indexed: 11/17/2022] Open
Abstract
Obsessive-compulsive disorder (OCD) and related disorders (OCRD) is one of the most prevalent neuropsychiatric disorders with no definitive etiology. The pathophysiological attributes of OCD are driven by a multitude of factors that involve polygenic mechanisms, gender, neurochemistry, physiological status, environmental exposures and complex interactions among these factors. Such complex intertwining of contributing factors imparts clinical heterogeneity to the disorder making it challenging for therapeutic intervention. Mouse strains selected for excessive levels of nest- building behavior exhibit a spontaneous, stable and predictable compulsive-like behavioral phenotype. These compulsive-like mice exhibit heterogeneity in expression of compulsive-like and other adjunct behaviors that might serve as a valuable animal equivalent for examining the interactions of genetics, sex and environmental factors in influencing the pathophysiology of OCD. The current review summarizes the existing findings on the compulsive-like mice that bolster their face, construct and predictive validity for studying various dimensions of compulsive and associated behaviors often reported in clinical OCD and OCRD.
Collapse
Affiliation(s)
- Swarup Mitra
- Department of Pharmacology and Toxicology, State University of New York at Buffalo, Buffalo, NY, United States
| | - Abel Bult-Ito
- Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, AK, United States
- OCRD Biomed LLC, Fairbanks, AK, United States
| |
Collapse
|
13
|
Yanai S, Endo S. Functional Aging in Male C57BL/6J Mice Across the Life-Span: A Systematic Behavioral Analysis of Motor, Emotional, and Memory Function to Define an Aging Phenotype. Front Aging Neurosci 2021; 13:697621. [PMID: 34408644 PMCID: PMC8365336 DOI: 10.3389/fnagi.2021.697621] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/02/2021] [Indexed: 01/02/2023] Open
Abstract
Aging is characterized generally by progressive and overall physiological decline of functions and is observed in all animals. A long line of evidence has established the laboratory mouse as the prime model of human aging. However, relatively little is known about the detailed behavioral and functional changes that occur across their lifespan, and how this maps onto the phenotype of human aging. To better understand age-related changes across the life-span, we characterized functional aging in male C57BL/6J mice of five different ages (3, 6, 12, 18, and 22 months of age) using a multi-domain behavioral test battery. Spatial memory and physical activities, including locomotor activity, gait velocity, and grip strength progressively declined with increasing age, although at different rates; anxiety-like behaviors increased with aging. Estimated age-related patterns showed that these functional alterations across ages are non-linear, and the patterns are unique for each behavioral trait. Physical function progressively declines, starting as early as 6 months of age in mice, while cognitive function begins to decline later, with considerable impairment present at 22 months of age. Importantly, functional aging of male C57BL/6J mouse starts at younger relative ages compared to when it starts in humans. Our study suggests that human-equivalent ages of mouse might be better determined on the basis of its functional capabilities.
Collapse
Affiliation(s)
- Shuichi Yanai
- Aging Neuroscience Research Team, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Shogo Endo
- Aging Neuroscience Research Team, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| |
Collapse
|
14
|
Sex-Dependent Signatures, Time Frames and Longitudinal Fine-Tuning of the Marble Burying Test in Normal and AD-Pathological Aging Mice. Biomedicines 2021; 9:biomedicines9080994. [PMID: 34440198 PMCID: PMC8391620 DOI: 10.3390/biomedicines9080994] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/02/2021] [Accepted: 08/06/2021] [Indexed: 12/19/2022] Open
Abstract
The marble burying (MB) test, a classical test based on the natural tendency of rodents to dig in diverse substrates and to bury small objects, is sensitive to some intrinsic and extrinsic factors. Here, under emerging neuroethological quantitative and qualitative analysis, the MB performance of 12-month-old male and female 3xTg-AD mice for Alzheimer’s disease and age-matched counterparts of gold-standard C57BL6 strain with normal aging unveiled sex-dependent signatures. In addition, three temporal analyses, through the (1) time course of the performance, and (2) a repeated test schedule, identified the optimal time frames and schedules to detect sex- and genotype-dependent differences. Besides, a (3) longitudinal design from 12 to 16 months of age monitored the changes in the performance with aging, worsening in AD-mice, and modulation through the repeated test. In summary, the present results allow us to conclude that (1) the marble burying test is responsive to genotype, sex, aging, and its interactions; (2) the male sex was more sensitive to showing the AD-phenotype; (3) longitudinal assessment shows a reduction in females with AD pathology; (4) burying remains stable in repeated testing; (5) the time-course of marbles burying is useful; and (6) burying behavior most likely represents perseverative and/or stereotyped-like behavior rather than anxiety-like behavior in 3xTg-AD mice.
Collapse
|
15
|
Simmons DH, Titley HK, Hansel C, Mason P. Behavioral Tests for Mouse Models of Autism: An Argument for the Inclusion of Cerebellum-Controlled Motor Behaviors. Neuroscience 2021; 462:303-319. [PMID: 32417339 DOI: 10.1016/j.neuroscience.2020.05.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/20/2020] [Accepted: 05/07/2020] [Indexed: 12/21/2022]
Abstract
Mouse models of Autism Spectrum Disorder (ASD) have been interrogated using a variety of behavioral tests in order to understand the symptoms of ASD. However, the hallmark behaviors that are classically affected in ASD - deficits in social interaction and communication as well as the occurrence of repetitive behaviors - do not have direct murine equivalents. Thus, it is critical to identify the caveats that come with modeling a human disorder in mice. The most commonly used behavioral tests represent complex cognitive processes based on largely unknown brain circuitry. Motor impairments provide an alternative, scientifically rigorous approach to understanding ASD symptoms. Difficulties with motor coordination and learning - seen in both patients and mice - point to an involvement of the cerebellum in ASD pathology. This brain area supports types of motor learning that are conserved throughout vertebrate evolution, allowing for direct comparisons of functional abnormalities between humans with autism and ASD mouse models. Studying simple motor behaviors provides researchers with clearly interpretable results. We describe and evaluate methods used on mouse behavioral assays designed to test for social, communicative, perseverative, anxious, nociceptive, and motor learning abnormalities. We comment on the effectiveness and validity of each test based on how much information its results give, as well as its relevance to ASD, and will argue for an inclusion of cerebellum-supported motor behaviors in the phenotypic description of ASD mouse models. LAY SUMMARY: Mouse models of Autism Spectrum Disorder help us gain insight about ASD symptoms in human patients. However, there are many differences between mice and humans, which makes interpreting behaviors challenging. Here, we discuss a battery of behavioral tests for specific mouse behaviors to explore whether each test does indeed evaluate the intended measure, and whether these tests are useful in learning about ASD.
Collapse
Affiliation(s)
- Dana H Simmons
- Department of Neurobiology, The University of Chicago, Chicago, IL, USA
| | - Heather K Titley
- Department of Neurobiology, The University of Chicago, Chicago, IL, USA
| | - Christian Hansel
- Department of Neurobiology, The University of Chicago, Chicago, IL, USA.
| | - Peggy Mason
- Department of Neurobiology, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
16
|
Eaton M, Zhang J, Ma Z, Park AC, Lietzke E, Romero CM, Liu Y, Coleman ER, Chen X, Xiao T, Que Z, Lai S, Wu J, Lee JH, Palant S, Nguyen HP, Huang Z, Skarnes WC, Koss WA, Yang Y. Generation and basic characterization of a gene-trap knockout mouse model of Scn2a with a substantial reduction of voltage-gated sodium channel Na v 1.2 expression. GENES, BRAIN, AND BEHAVIOR 2021; 20:e12725. [PMID: 33369088 DOI: 10.1111/gbb.12725] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/22/2020] [Accepted: 12/22/2020] [Indexed: 12/17/2022]
Abstract
Large-scale genetic studies revealed SCN2A as one of the most frequently mutated genes in patients with neurodevelopmental disorders. SCN2A encodes for the voltage-gated sodium channel isoform 1.2 (Nav 1.2) expressed in the neurons of the central nervous system. Homozygous knockout (null) of Scn2a in mice is perinatal lethal, whereas heterozygous knockout of Scn2a (Scn2a+/- ) results in mild behavior abnormalities. The Nav 1.2 expression level in Scn2a+/- mice is reported to be around 50-60% of the wild-type (WT) level, which indicates that a close to 50% reduction of Nav 1.2 expression may not be sufficient to lead to major behavioral phenotypes in mice. To overcome this barrier, we characterized a novel mouse model of severe Scn2a deficiency using a targeted gene-trap knockout (gtKO) strategy. This approach produces viable homozygous mice (Scn2agtKO/gtKO ) that can survive to adulthood, with about a quarter of Nav 1.2 expression compared to WT mice. Innate behaviors like nesting and mating were profoundly disrupted in Scn2agtKO/gtKO mice. Notably, Scn2agtKO/gtKO mice have a significantly decreased center duration compared to WT in the open field test, suggesting anxiety-like behaviors in a novel, open space. These mice also have decreased thermal and cold tolerance. Additionally, Scn2agtKO/gtKO mice have increased fix-pattern exploration in the novel object exploration test and a slight increase in grooming, indicating a detectable level of repetitive behaviors. They bury little to no marbles and have decreased interaction with novel objects. These Scn2a gene-trap knockout mice thus provide a unique model to study pathophysiology associated with severe Scn2a deficiency.
Collapse
Affiliation(s)
- Muriel Eaton
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana, USA
| | - Jingliang Zhang
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana, USA
| | - Zhixiong Ma
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana, USA
| | - Anthony C Park
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana, USA
| | - Emma Lietzke
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana, USA
| | - Chloé M Romero
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana, USA
| | - Yushuang Liu
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana, USA
| | - Emily R Coleman
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana, USA
| | - Xiaoling Chen
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana, USA
| | - Tiange Xiao
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana, USA
| | - Zhefu Que
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana, USA
| | - Shirong Lai
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana, USA
| | - Jiaxiang Wu
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana, USA
| | - Ji Hea Lee
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana, USA
| | - Sophia Palant
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana, USA
| | - Huynhvi P Nguyen
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana, USA
| | - Zhuo Huang
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China
| | - William C Skarnes
- Department of Cellular Engineering, The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA
| | - Wendy A Koss
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana, USA
- Office of the Executive Vice President for Research and Partnerships, Purdue University, West Lafayette, Indiana, USA
| | - Yang Yang
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
17
|
O'Connor R, Moloney GM, Fulling C, O'Riordan KJ, Fitzgerald P, Bastiaanssen TFS, Schellekens H, Dinan TG, Cryan JF. Maternal antibiotic administration during a critical developmental window has enduring neurobehavioural effects in offspring mice. Behav Brain Res 2021; 404:113156. [PMID: 33571573 DOI: 10.1016/j.bbr.2021.113156] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 01/05/2021] [Accepted: 01/29/2021] [Indexed: 02/08/2023]
Abstract
Rates of perinatal maternal antibiotic use have increased in recent years linked to prophylactic antibiotic use following Caesarean section delivery. This antibiotic use is necessary and beneficial in the short-term; however, long-term consequences on brain and behaviour have not been studied in detail. Here, we endeavoured to determine whether maternal administration of antibiotics during a critical window of development in early life has lasting effects on brain and behaviour in offspring mice. To this end we studied two different antibiotic preparations (single administration of Phenoxymethylpenicillin at 31 mg/kg/day; and a cocktail consisting of, ampicillin 1 mg/mL; vancomycin 0.5 mg/mL; metronidazole 1 mg/mL; ciprofloxacin 0.2 mg/mL and imipenem 0.25 mg/mL). It was observed that early life exposure to maternal antibiotics led to persistent alterations in anxiety, sociability and cognitive behaviours. These effects in general were greater in animals treated with the broad-spectrum antibiotic cocktail compared to a single antibiotic with the exception of deficits in social recognition which were more robustly observed in Penicillin V exposed animals. Given the prevalence of maternal antibiotic use, our findings have potentially significant translational relevance, particularly considering the implications on infant health during this critical period and into later life.
Collapse
Affiliation(s)
- Rory O'Connor
- APC Microbiome Ireland, University College Cork, Ireland
| | - Gerard M Moloney
- Department of Anatomy & Neuroscience, University College Cork, Ireland
| | | | | | - Pat Fitzgerald
- APC Microbiome Ireland, University College Cork, Ireland
| | - Thomaz F S Bastiaanssen
- APC Microbiome Ireland, University College Cork, Ireland; Department of Anatomy & Neuroscience, University College Cork, Ireland
| | - Harriët Schellekens
- APC Microbiome Ireland, University College Cork, Ireland; Department of Anatomy & Neuroscience, University College Cork, Ireland
| | - Timothy G Dinan
- APC Microbiome Ireland, University College Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Ireland; Department of Anatomy & Neuroscience, University College Cork, Ireland.
| |
Collapse
|
18
|
Franceschini A, Fattore L. Gender-specific approach in psychiatric diseases: Because sex matters. Eur J Pharmacol 2021; 896:173895. [PMID: 33508283 DOI: 10.1016/j.ejphar.2021.173895] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/29/2020] [Accepted: 01/19/2021] [Indexed: 12/20/2022]
Abstract
In both animals and human beings, males and females differ in their genetic background and hormonally driven behaviour and show sex-related differences in brain activity and response to internal and external stimuli. Gender-specific medicine has been a neglected dimension of medicine for long time, and only in the last three decades it is receiving the due scientific and clinical attention. Research has recently begun to identify factors that could provide a neurobiological basis for gender-based differences in health and disease and to point to gonadal hormones as important determinants of male-female differences. Animal studies have been of great help in understanding factors contributing to sex-dependent differences and sex hormones action. Here we review and discuss evidence provided by clinical and animal studies in the last two decades showing gender (in humans) and sex (in animals) differences in selected psychiatric disorders, namely eating disorders (anorexia nervosa, bulimia nervosa, binge eating disorder), schizophrenia, mood disorders (anxiety, depression, obsessive-compulsive disorder) and neurodevelopmental disorders (autism spectrum disorders, attention-deficit/hyperactivity disorder).
Collapse
Affiliation(s)
- Anna Franceschini
- Addictive Behaviors Department, Local Health Authority, Trento, Italy
| | - Liana Fattore
- Institute of Neuroscience-Cagliari, National Research Council, Italy.
| |
Collapse
|
19
|
Abstract
OCD has lagged behind other psychiatric illnesses in the identification of molecular treatment targets, due in part to a lack of significant findings in genome-wide association studies. However, while progress in this area is being made, OCD's symptoms of obsessions, compulsions, and anxiety can be deconstructed into distinct neural functions that can be dissected in animal models. Studies in rodents and non-human primates have highlighted the importance of cortico-basal ganglia-thalamic circuits in OCD pathophysiology, and emerging studies in human post-mortem brain tissue point to glutamatergic synapse abnormalities as a potential cellular substrate for observed dysfunctional behaviors. In addition, accumulated evidence points to a potential role for neuromodulators including serotonin and dopamine in both OCD pathology and treatment. Here, we review current efforts to use animal models for the identification of molecules, cell types, and circuits relevant to OCD pathophysiology. We start by describing features of OCD that can be modeled in animals, including circuit abnormalities and genetic findings. We then review different strategies that have been used to study OCD using animal model systems, including transgenic models, circuit manipulations, and dissection of OCD-relevant neural constructs. Finally, we discuss how these findings may ultimately help to develop new treatment strategies for OCD and other related disorders.
Collapse
Affiliation(s)
- Brittany L Chamberlain
- Department of Psychiatry, Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA, USA.,Center for Neuroscience Program and Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
| | - Susanne E Ahmari
- Department of Psychiatry, Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA, USA. .,Center for Neuroscience Program and Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
20
|
Gomes JI, Farinha-Ferreira M, Rei N, Gonçalves-Ribeiro J, Ribeiro JA, Sebastião AM, Vaz SH. Of adenosine and the blues: The adenosinergic system in the pathophysiology and treatment of major depressive disorder. Pharmacol Res 2020; 163:105363. [PMID: 33285234 DOI: 10.1016/j.phrs.2020.105363] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 12/28/2022]
Abstract
Major depressive disorder (MDD) is the foremost cause of global disability, being responsible for enormous personal, societal, and economical costs. Importantly, existing pharmacological treatments for MDD are partially or totally ineffective in a large segment of patients. As such, the search for novel antidepressant drug targets, anchored on a clear understanding of the etiological and pathophysiological mechanisms underpinning MDD, becomes of the utmost importance. The adenosinergic system, a highly conserved neuromodulatory system, appears as a promising novel target, given both its regulatory actions over many MDD-affected systems and processes. With this goal in mind, we herein review the evidence concerning the role of adenosine as a potential player in pathophysiology and treatment of MDD, combining data from both human and animal studies. Altogether, evidence supports the assertions that the adenosinergic system is altered in both MDD patients and animal models, and that drugs targeting this system have considerable potential as putative antidepressants. Furthermore, evidence also suggests that modifications in adenosine signaling may have a key role in the effects of several pharmacological and non-pharmacological antidepressant treatments with demonstrated efficacy, such as electroconvulsive shock, sleep deprivation, and deep brain stimulation. Lastly, it becomes clear from the available literature that there is yet much to study regarding the role of the adenosinergic system in the pathophysiology and treatment of MDD, and we suggest several avenues of research that are likely to prove fruitful.
Collapse
Affiliation(s)
- Joana I Gomes
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Miguel Farinha-Ferreira
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Nádia Rei
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Joana Gonçalves-Ribeiro
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Joaquim A Ribeiro
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Ana M Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Sandra H Vaz
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
21
|
Cutuli D, Landolfo E, Nobili A, De Bartolo P, Sacchetti S, Chirico D, Marini F, Pieroni L, Ronci M, D'Amelio M, D'Amato FR, Farioli-Vecchioli S, Petrosini L. Behavioral, neuromorphological, and neurobiochemical effects induced by omega-3 fatty acids following basal forebrain cholinergic depletion in aged mice. ALZHEIMERS RESEARCH & THERAPY 2020; 12:150. [PMID: 33198763 PMCID: PMC7667851 DOI: 10.1186/s13195-020-00705-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/12/2020] [Indexed: 12/13/2022]
Abstract
Background In recent years, mechanistic, epidemiologic, and interventional studies have indicated beneficial effects of omega-3 polyunsaturated fatty acids (n-3 PUFA) against brain aging and age-related cognitive decline, with the most consistent effects against Alzheimer’s disease (AD) confined especially in the early or prodromal stages of the pathology. In the present study, we investigated the action of n-3 PUFA supplementation on behavioral performances and hippocampal neurogenesis, volume, and astrogliosis in aged mice subjected to a selective depletion of basal forebrain cholinergic neurons. Such a lesion represents a valuable model to mimic one of the most reliable hallmarks of early AD neuropathology. Methods Aged mice first underwent mu-p75-saporin immunotoxin intraventricular lesions to obtain a massive cholinergic depletion and then were orally supplemented with n-3 PUFA or olive oil (as isocaloric control) for 8 weeks. Four weeks after the beginning of the dietary supplementation, anxiety levels as well as mnesic, social, and depressive-like behaviors were evaluated. Subsequently, hippocampal morphological and biochemical analyses and n-3 PUFA brain quantification were carried out. Results The n-3 PUFA treatment regulated the anxiety alterations and reverted the novelty recognition memory impairment induced by the cholinergic depletion in aged mice. Moreover, n-3 PUFA preserved hippocampal volume, enhanced neurogenesis in the dentate gyrus, and reduced astrogliosis in the hippocampus. Brain levels of n-3 PUFA were positively related to mnesic abilities. Conclusions The demonstration that n-3 PUFA are able to counteract behavioral deficits and hippocampal neurodegeneration in cholinergically depleted aged mice promotes their use as a low-cost, safe nutraceutical tool to improve life quality at old age, even in the presence of first stages of AD.
Collapse
Affiliation(s)
- Debora Cutuli
- IRCCS Fondazione Santa Lucia, Rome, Italy. .,University of Rome "Sapienza", Rome, Italy.
| | - Eugenia Landolfo
- IRCCS Fondazione Santa Lucia, Rome, Italy.,University of Rome "Sapienza", Rome, Italy
| | - Annalisa Nobili
- IRCCS Fondazione Santa Lucia, Rome, Italy.,University "Campus Bio-Medico", Rome, Italy
| | - Paola De Bartolo
- IRCCS Fondazione Santa Lucia, Rome, Italy.,Department of Human Sciences, Guglielmo Marconi University, Rome, Italy
| | | | - Doriana Chirico
- Institute of Biochemistry and Cell Biology, CNR, Monterotondo, Italy
| | - Federica Marini
- Università Cattolica del Sacro Cuore, Rome, Italy.,IRCCS Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy
| | | | - Maurizio Ronci
- Department of Pharmacy, University G. D'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Marcello D'Amelio
- IRCCS Fondazione Santa Lucia, Rome, Italy.,University "Campus Bio-Medico", Rome, Italy
| | | | | | | |
Collapse
|
22
|
Sensini F, Inta D, Palme R, Brandwein C, Pfeiffer N, Riva MA, Gass P, Mallien AS. The impact of handling technique and handling frequency on laboratory mouse welfare is sex-specific. Sci Rep 2020; 10:17281. [PMID: 33057118 PMCID: PMC7560820 DOI: 10.1038/s41598-020-74279-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/10/2020] [Indexed: 02/07/2023] Open
Abstract
Handling is a well-known source of stress to laboratory animals and can affect variability of results and even compromise animal welfare. The conventional tail handling in mice has been shown to induce aversion and anxiety-like behaviour. Recent findings demonstrate that the use of alternative handling techniques, e.g. tunnel handling, can mitigate negative handling-induced effects. Here, we show that technique and frequency of handling influence affective behaviour and stress hormone release of subjects in a sex-dependent manner. While frequent tail handling led to a reduction of wellbeing-associated burrowing and increased despair-like behaviour in male mice, females seemed unaffected. Instead, they displayed a stress response to a low handling frequency, which was not detectable in males. This could suggest that in terms of refinement, the impact in handling could differ between the sexes. Independently from this observation, both sexes preferred to interact with the tunnel. Mice generally explored the tunnel more often than the tail-handling hands of the experimenter and showed more positively rated approaches, e.g. touching or climbing, and at the same time, less defensive burrowing, indicating a strong preference for the tunnel.
Collapse
Affiliation(s)
- Federica Sensini
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Dragos Inta
- RG Animal Models in Psychiatry, Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Department of Psychiatry (UPK), University of Basel, Basel, Switzerland
| | - Rupert Palme
- Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Christiane Brandwein
- RG Animal Models in Psychiatry, Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Natascha Pfeiffer
- RG Animal Models in Psychiatry, Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Marco Andrea Riva
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Peter Gass
- RG Animal Models in Psychiatry, Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Anne Stephanie Mallien
- RG Animal Models in Psychiatry, Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| |
Collapse
|
23
|
Sarkar D. A Review of Behavioral Tests to Evaluate Different Types of Anxiety and Anti-anxiety Effects. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2020; 18:341-351. [PMID: 32702213 PMCID: PMC7382999 DOI: 10.9758/cpn.2020.18.3.341] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/25/2020] [Accepted: 03/30/2020] [Indexed: 12/20/2022]
Abstract
Behavioral tests are very useful to understand the Neuro-psychotic disease and also helpful in finding the treatment of the particular disease. Nowadays various tests are available to evaluate the anxiolytics effect of a new entity or even for comparative studies with the standard drug. As per the ethics, a new compound or drug believes to have possible pharmacological effects should be tested on animals before tested on humans which have similar physiology than humans. First, rats were used for behavioral test for evaluation of anti-anxiety drug but later on the various strain of mice were added for evaluation of anxiolytics because of better genetic possibilities than rats. In this review article, we have discussed the most commonly used behavioral tests used to evaluate the anti-anxiety effect. Anxiolytics are the agent which are used to elevate anxiety effect produced due to any cause. The various parameter will be undertaken for the better and precise evaluation of anxiolytics.
Collapse
Affiliation(s)
-
- HIMT College of Pharmacy, Greater Noida, India
| | -
- School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | | | -
- HIMT College of Pharmacy, Greater Noida, India
| |
Collapse
|
24
|
Lustberg D, Iannitelli AF, Tillage RP, Pruitt M, Liles LC, Weinshenker D. Central norepinephrine transmission is required for stress-induced repetitive behavior in two rodent models of obsessive-compulsive disorder. Psychopharmacology (Berl) 2020; 237:1973-1987. [PMID: 32313981 PMCID: PMC7961804 DOI: 10.1007/s00213-020-05512-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/26/2020] [Indexed: 02/06/2023]
Abstract
RATIONALE Obsessive-compulsive disorder (OCD) is characterized by repetitive behaviors exacerbated by stress. Many OCD patients do not respond to available pharmacotherapies, but neurosurgical ablation of the anterior cingulate cortex (ACC) can provide symptomatic relief. Although the ACC receives noradrenergic innervation and expresses adrenergic receptors (ARs), the involvement of norepinephrine (NE) in OCD has not been investigated. OBJECTIVE To determine the effects of genetic or pharmacological disruption of NE neurotransmission on marble burying (MB) and nestlet shredding (NS), two animal models of OCD. METHODS We assessed NE-deficient (Dbh -/-) mice and NE-competent (Dbh +/-) controls in MB and NS tasks. We also measured the effects of anti-adrenergic drugs on NS and MB in control mice and the effects of pharmacological restoration of central NE in Dbh -/- mice. Finally, we compared c-fos induction in the locus coeruleus (LC) and ACC of Dbh -/- and control mice following both tasks. RESULTS Dbh -/- mice virtually lacked MB and NS behaviors seen in control mice but did not differ in the elevated zero maze (EZM) model of general anxiety-like behavior. Pharmacological restoration of central NE synthesis in Dbh -/- mice completely rescued NS behavior, while NS and MB were suppressed in control mice by anti-adrenergic drugs. Expression of c-fos in the ACC was attenuated in Dbh -/- mice after MB and NS. CONCLUSION These findings support a role for NE transmission to the ACC in the expression of stress-induced compulsive behaviors and suggest further evaluation of anti-adrenergic drugs for OCD is warranted.
Collapse
Affiliation(s)
- Daniel Lustberg
- Department of Human Genetics, Emory University School of Medicine, 615 Michael St., Whitehead 301, Atlanta, GA, 30322, USA
| | - Alexa F Iannitelli
- Department of Human Genetics, Emory University School of Medicine, 615 Michael St., Whitehead 301, Atlanta, GA, 30322, USA
| | - Rachel P Tillage
- Department of Human Genetics, Emory University School of Medicine, 615 Michael St., Whitehead 301, Atlanta, GA, 30322, USA
| | - Molly Pruitt
- University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - L Cameron Liles
- Department of Human Genetics, Emory University School of Medicine, 615 Michael St., Whitehead 301, Atlanta, GA, 30322, USA
| | - David Weinshenker
- Department of Human Genetics, Emory University School of Medicine, 615 Michael St., Whitehead 301, Atlanta, GA, 30322, USA.
| |
Collapse
|
25
|
de Brouwer G, Fick A, Lombaard A, Stein DJ, Harvey BH, Wolmarans DW. Large nest building and high marble-burying: Two compulsive-like phenotypes expressed by deer mice (Peromyscus maniculatus bairdii) and their unique response to serotoninergic and dopamine modulating intervention. Behav Brain Res 2020; 393:112794. [PMID: 32619566 DOI: 10.1016/j.bbr.2020.112794] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 06/19/2020] [Accepted: 06/29/2020] [Indexed: 02/08/2023]
Abstract
This study aimed to further dissect the deer mouse (Peromyscus maniculatus bairdii) model of compulsive-like behavior with respect to two persistent-like behavioral phenotypes viz. large nest building (LNB) and high marble-burying (HMB), which may be relevant to understanding the neurobiology of different symptom dimensions in obsessive-compulsive and related disorders. Since LNB is sensitive to chronic, high dose escitalopram intervention but HMB is not, we assessed whether the two behaviors could be further distinguished based on their response to 4 weeks of uninterrupted serotoninergic intervention (i.e. escitalopram; ESC; 50 mg/kg/day), dopaminergic antagonism, i.e. flupentixol; FLU; 0.9 mg/kg/day), dopaminergic potentiation (i.e. rasagiline; RAS; 5 mg/kg/day), and their respective combinations with escitalopram (ESC/FLU and ESC/RAS). Here we show LNB to be equally responsive to chronic ESC and ESC/FLU. HMB was insensitive to either of these interventions but was responsive to ESC/RAS. Additionally, we report that scoring preoccupied interaction with marbles over several trials is an appropriate measure of compulsive-like behavioral persistence in addition to the standard marble burying test. Taken together, these data provide further evidence that LNB and HMB in deer mice have distinctive neurobiological underpinnings. Thus, the naturally occurring compulsive-like behaviors expressed by deer mice may be useful in providing a platform to test unique treatment targets for different symptom dimensions of OCD and related disorders.
Collapse
Affiliation(s)
- Geoffrey de Brouwer
- Center of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North West-University, Potchefstroom, South Africa
| | - Arina Fick
- Center of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North West-University, Potchefstroom, South Africa
| | - Ané Lombaard
- Center of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North West-University, Potchefstroom, South Africa
| | - Dan J Stein
- MRC Unit on Risk and Resilience in Mental Disorders, Cape Town, South Africa; Department of Psychiatry and Mental Health, University of Cape Town, South Africa
| | - Brian H Harvey
- Center of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North West-University, Potchefstroom, South Africa; MRC Unit on Risk and Resilience in Mental Disorders, Cape Town, South Africa
| | - De Wet Wolmarans
- Center of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North West-University, Potchefstroom, South Africa.
| |
Collapse
|
26
|
Vitorino C, Silva S, Gouveia F, Bicker J, Falcão A, Fortuna A. QbD-driven development of intranasal lipid nanoparticles for depression treatment. Eur J Pharm Biopharm 2020; 153:106-120. [PMID: 32525033 DOI: 10.1016/j.ejpb.2020.04.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 03/03/2020] [Accepted: 04/13/2020] [Indexed: 01/08/2023]
Abstract
Depression is a life-threatening psychiatric disorder and a multifactorial global public health concern. Current pharmacological treatments present limited efficacy, and are associated with several harmful side effects and development of pharmacoresistance mechanisms. Developing more effective therapeutic options is therefore a priority. This work aims at efficiently designing an antidepressant therapeutic surrogate relying on a dual strategy supported on lipid nanoparticles and intranasal delivery. For that purpose, the formulation was comprehensively optimized following a quality by design perspective. Critical quality attributes (CQAs) ranged from physicochemical to intranasal performance features. The optimized formulation was administered to mice in order to assess the antidepressive and anxiolytic effects by applying the forced swimming and marble-burying tests, respectively. A cross-analysis of the predictive models established for the set of 12 CQAs elicited the formulation containing similar proportion of solid and liquid lipids and lower surfactant concentration as the optimal one. Despite increasing the liquid lipid amount yielded smaller and more homogeneous particle size, and higher release rate, nanostructured lipid carriers (NLCs) provided an earlier and superior pig nasal mucosa permeability than nanoemulsions, along with better stability and cytotoxic profiles. Importantly, the intranasal delivery of the optimal lipid nanoparticle formulation reduced both depressive and anxiety-like behaviors, which positions these intranasal nanosystems in line with the hypothesis of provisioning timely and better acting antidepressant therapies.
Collapse
Affiliation(s)
- Carla Vitorino
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; Center for Neurosciences and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal; Coimbra Chemistry Centre, Department of Chemistry, University of Coimbra, Coimbra, Portugal
| | - Soraia Silva
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; CIBIT/ICNAS - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal
| | - Filipa Gouveia
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; CIBIT/ICNAS - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal
| | - Joana Bicker
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; CIBIT/ICNAS - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal
| | - Amílcar Falcão
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; CIBIT/ICNAS - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal
| | - Ana Fortuna
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; CIBIT/ICNAS - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
27
|
Naturalistic operant responses in deer mice (Peromyscus maniculatus bairdii) and its response to outcome manipulation and serotonergic intervention. Behav Pharmacol 2020; 31:343-358. [DOI: 10.1097/fbp.0000000000000536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
28
|
A critical inquiry into marble-burying as a preclinical screening paradigm of relevance for anxiety and obsessive-compulsive disorder: Mapping the way forward. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2020; 19:1-39. [PMID: 30361863 DOI: 10.3758/s13415-018-00653-4] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Rodent marble-burying behavior in the marble-burying test (MBT) is employed as a model or measure to study anxiety- and compulsive-like behaviors or anxiolytic and anticompulsive drug action. However, the test responds variably to a range of pharmacological interventions, and little consensus exists regarding specific methodologies for its execution. Regardless, the test is widely applied to investigate the effects of pharmacological, genetic, and behavioral manipulations on purported behaviors related to the said neuropsychiatric constructs. Therefore, in the present review we attempt to expound the collective translational significance of the MBT. We do this by (1) reviewing burying behavior as a natural behavioral phenotype, (2) highlighting key aspects of anxiety and obsessive-compulsive disorder from a translational perspective, (3) reviewing the history and proof of concept of the MBT, (4) critically appraising potential methodological confounds in execution of the MBT, and (5) dissecting responses of the MBT to various pharmacological interventions. We conclude by underlining that the collective translational value of the MBT will be strengthened by contextually valid experimental designs and objective reporting of data.
Collapse
|
29
|
Ha S, Lee H, Choi Y, Kang H, Jeon SJ, Ryu JH, Kim HJ, Cheong JH, Lim S, Kim BN, Lee DS. Maturational delay and asymmetric information flow of brain connectivity in SHR model of ADHD revealed by topological analysis of metabolic networks. Sci Rep 2020; 10:3197. [PMID: 32081992 PMCID: PMC7035354 DOI: 10.1038/s41598-020-59921-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 01/28/2020] [Indexed: 11/09/2022] Open
Abstract
Attention-deficit hyperactivity disorder (ADHD) is a complex brain development disorder characterized by hyperactivity/impulsivity and inattention. A major hypothesis of ADHD is a lag of maturation, which is supported mainly by anatomical studies evaluating cortical thickness. Here, we analyzed changes of topological characteristics of whole-brain metabolic connectivity in twelve SHR rats selected as ADHD-model rats by confirming behavior abnormalities using the marble burying test, open field test, and delay discounting task and 12 Wistar Kyoto rats as the control group, across development from 4 weeks old (childhood) and 6 weeks old (entry of puberty). A topological approach based on graph filtrations revealed a lag in the strengthening of limbic-cortical/subcortical connections in ADHD-model rats. This in turn related to impaired modularization of memory and reward-motivation associated regions. Using mathematical network analysis techniques such as single linkage hierarchical clustering and volume entropy, we observed left-lateralized connectivity in the ADHD-model rats at 6 weeks old. Our findings supported the maturational delay of metabolic connectivity in the SHR model of ADHD, and also suggested the possibility of impaired and compensative reconfiguration of information flow over the brain network.
Collapse
Affiliation(s)
- Seunggyun Ha
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.,Division of Nuclear Medicine, Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyekyoung Lee
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.,Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Yoori Choi
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyejin Kang
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.,BK21 Plus Global Translational Research on Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Se Jin Jeon
- Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| | - Jong Hoon Ryu
- Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea.,Department of Life and Nanopharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| | - Hee Jin Kim
- Department of Pharmacy, Uimyung Research Institute for Neuroscience, Sahmyook University, Seoul, Republic of Korea
| | - Jae Hoon Cheong
- Department of Pharmacy, Uimyung Research Institute for Neuroscience, Sahmyook University, Seoul, Republic of Korea
| | - Seonhee Lim
- Department of Mathematical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Bung-Nyun Kim
- Division of Child and Adolescent Psychiatry, Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea.
| | - Dong Soo Lee
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea. .,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, and College of Medicine or College of Pharmacy, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
30
|
Chen W, Cai ZL, Chao ES, Chen H, Longley CM, Hao S, Chao HT, Kim JH, Messier JE, Zoghbi HY, Tang J, Swann JW, Xue M. Stxbp1/Munc18-1 haploinsufficiency impairs inhibition and mediates key neurological features of STXBP1 encephalopathy. eLife 2020; 9:e48705. [PMID: 32073399 PMCID: PMC7056272 DOI: 10.7554/elife.48705] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 02/18/2020] [Indexed: 12/11/2022] Open
Abstract
Mutations in genes encoding synaptic proteins cause many neurodevelopmental disorders, with the majority affecting postsynaptic apparatuses and much fewer in presynaptic proteins. Syntaxin-binding protein 1 (STXBP1, also known as MUNC18-1) is an essential component of the presynaptic neurotransmitter release machinery. De novo heterozygous pathogenic variants in STXBP1 are among the most frequent causes of neurodevelopmental disorders including intellectual disabilities and epilepsies. These disorders, collectively referred to as STXBP1 encephalopathy, encompass a broad spectrum of neurologic and psychiatric features, but the pathogenesis remains elusive. Here we modeled STXBP1 encephalopathy in mice and found that Stxbp1 haploinsufficiency caused cognitive, psychiatric, and motor dysfunctions, as well as cortical hyperexcitability and seizures. Furthermore, Stxbp1 haploinsufficiency reduced cortical inhibitory neurotransmission via distinct mechanisms from parvalbumin-expressing and somatostatin-expressing interneurons. These results demonstrate that Stxbp1 haploinsufficient mice recapitulate cardinal features of STXBP1 encephalopathy and indicate that GABAergic synaptic dysfunction is likely a crucial contributor to disease pathogenesis.
Collapse
Affiliation(s)
- Wu Chen
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
- The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
| | - Zhao-Lin Cai
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
- The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
| | - Eugene S Chao
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
- The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
| | - Hongmei Chen
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
- The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
| | - Colleen M Longley
- The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
- Program in Developmental Biology, Baylor College of MedicineHoustonUnited States
| | - Shuang Hao
- Department of Pediatrics, Division of Neurology and Developmental Neuroscience, Baylor College of MedicineHoustonUnited States
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
| | - Hsiao-Tuan Chao
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
- Department of Pediatrics, Division of Neurology and Developmental Neuroscience, Baylor College of MedicineHoustonUnited States
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
- McNair Medical Institute, The Robert and Janice McNair FoundationHoustonUnited States
| | - Joo Hyun Kim
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
- The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
| | - Jessica E Messier
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
- The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
| | - Huda Y Zoghbi
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
- Program in Developmental Biology, Baylor College of MedicineHoustonUnited States
- Department of Pediatrics, Division of Neurology and Developmental Neuroscience, Baylor College of MedicineHoustonUnited States
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
- Howard Hughes Medical Institute, Baylor College of MedicineHoustonUnited States
| | - Jianrong Tang
- Department of Pediatrics, Division of Neurology and Developmental Neuroscience, Baylor College of MedicineHoustonUnited States
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
| | - John W Swann
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
- The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
- Department of Pediatrics, Division of Neurology and Developmental Neuroscience, Baylor College of MedicineHoustonUnited States
| | - Mingshan Xue
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
- The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
- Program in Developmental Biology, Baylor College of MedicineHoustonUnited States
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
| |
Collapse
|
31
|
van Staden C, de Brouwer G, Botha TL, Finger-Baier K, Brand SJ, Wolmarans D. Dopaminergic and serotonergic modulation of social reward appraisal in zebrafish (Danio rerio) under circumstances of motivational conflict: Towards a screening test for anti-compulsive drug action. Behav Brain Res 2020; 379:112393. [PMID: 31785362 DOI: 10.1016/j.bbr.2019.112393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/26/2019] [Accepted: 11/26/2019] [Indexed: 01/04/2023]
Abstract
Cognitive flexibility, shown to be impaired in patients presenting with compulsions, is dependent on balanced dopaminergic and serotonergic interaction. Towards the development of a zebrafish (Danio rerio) screening test for anti-compulsive drug action, we manipulated social reward appraisal under different contexts by means of dopaminergic (apomorphine) and serotonergic (escitalopram) intervention. Seven groups of zebrafish (n = 6 per group) were exposed for 24 days (1 h per day) to either control (normal tank water), apomorphine (50 or 100 μg/L), escitalopram (500 or 1000 μg/L) or a combination (A100/E500 or A100/E1000 μg/L). Contextual reward appraisal was assessed over three phases i.e. Phase 1 (contingency association), Phase 2 (dissociative testing), and Phase 3 (re-associative testing). We demonstrate that 1) sight of social conspecifics is an inadequate motivational reinforcer under circumstances of motivational conflict, 2) dopaminergic and serotonergic intervention lessens the importance of an aversive stimulus, increasing the motivational valence of social reward, 3) while serotoninergic intervention maintains reward directed behavior, high-dose dopaminergic intervention bolsters cue-directed responses and 4) high-dose escitalopram reversed apomorphine-induced behavioral inflexibility. The results reported here are supportive of current dopamine-serotonin opponency theories and confirm the zebrafish as a potentially useful species in which to investigate compulsive-like behaviors.
Collapse
Affiliation(s)
- C van Staden
- Centre of Excellence for Pharmaceutical Sciences, Department of Pharmacology, North-West University, Potchefstroom, South Africa
| | - G de Brouwer
- Centre of Excellence for Pharmaceutical Sciences, Department of Pharmacology, North-West University, Potchefstroom, South Africa
| | - T L Botha
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - K Finger-Baier
- Department Genes - Circuits - Behavior, Max Planck Institute of Neurobiology, Martinsried, Germany
| | - S J Brand
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - D Wolmarans
- Centre of Excellence for Pharmaceutical Sciences, Department of Pharmacology, North-West University, Potchefstroom, South Africa.
| |
Collapse
|
32
|
Derksen M, Feenstra M, Willuhn I, Denys D. The serotonergic system in obsessive-compulsive disorder. HANDBOOK OF BEHAVIORAL NEUROSCIENCE 2020. [DOI: 10.1016/b978-0-444-64125-0.00044-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
33
|
Wolmarans DW, Stein DJ, Harvey BH. A Psycho-Behavioral Perspective on Modelling Obsessive-Compulsive Disorder (OCD) in Animals: The Role of Context. Curr Med Chem 2019; 25:5662-5689. [PMID: 28545371 DOI: 10.2174/0929867324666170523125256] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 04/18/2017] [Accepted: 05/29/2017] [Indexed: 01/24/2023]
Abstract
Obsessive-compulsive disorder is a heterogeneous and debilitating condition, characterized by intrusive thoughts and compulsive repetition. Animal models of OCD are important tools that have the potential to contribute significantly to our understanding of the condition. Although there is consensus that pre-clinical models are valuable in elucidating the underlying neurobiology in psychiatric disorders, the current paper attempts to prompt ideas on how interpretation of animal behavior can be expanded upon to more effectively converge with the human disorder. Successful outcomes in psychopharmacology involve rational design and synthesis of novel compounds and their testing in well-designed animal models. As part of a special journal issue on OCD, this paper will 1) review the psychobehavioral aspects of OCD that are of importance on how the above ideas can be articulated, 2) briefly elaborate on general issues that are important for the development of animal models of OCD, with a particular focus on the role and importance of context, 3) propose why translational progress may often be less than ideal, 4) highlight some of the significant contributions afforded by animal models to advance understanding, and 5) conclude by identifying novel behavioral constructs for future investigations that may contribute to the face, predictive and construct validity of OCD animal models. We base these targets on an integrative approach to face and construct validity, and note that the issue of treatment-resistance in the clinical context should receive attention in current animal models of OCD.
Collapse
Affiliation(s)
- De Wet Wolmarans
- Division of Pharmacology, Center of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North West-University, Potchefstroom, South Africa
| | - Dan J Stein
- MRC Unit on Risk and Resilience in Mental Disorders, University of Cape Town, Cape Town, South Africa.,Department of Psychiatry and Mental Health, MRC Unit on Risk and Resilience in Mental Disorders, University of Cape Town, Cape Town, South Africa
| | - Brian H Harvey
- Division of Pharmacology, Center of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North West-University, Potchefstroom, South Africa.,MRC Unit on Risk and Resilience in Mental Disorders, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
34
|
Tosta CL, Silote GP, Fracalossi MP, Sartim AG, Andreatini R, Joca SRL, Beijamini V. S-ketamine reduces marble burying behaviour: Involvement of ventromedial orbitofrontal cortex and AMPA receptors. Neuropharmacology 2019; 144:233-243. [DOI: 10.1016/j.neuropharm.2018.10.039] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 10/23/2018] [Accepted: 10/28/2018] [Indexed: 12/19/2022]
|
35
|
Haploinsufficiency of the intellectual disability gene SETD5 disturbs developmental gene expression and cognition. Nat Neurosci 2018; 21:1717-1727. [DOI: 10.1038/s41593-018-0266-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 09/26/2018] [Indexed: 12/11/2022]
|
36
|
Verma L, Agrawal D, Jain NS. Enhanced central histaminergic transmission attenuates compulsive-like behavior in mice. Neuropharmacology 2018; 138:106-117. [DOI: 10.1016/j.neuropharm.2018.05.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 05/23/2018] [Accepted: 05/24/2018] [Indexed: 12/18/2022]
|
37
|
Mitra S, Bult-Ito A. Attenuation of compulsive-like behavior by fluvoxamine in a non-induced mouse model of obsessive-compulsive disorder. Behav Pharmacol 2018; 29:299-305. [PMID: 29035919 PMCID: PMC5899065 DOI: 10.1097/fbp.0000000000000348] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The current study evaluated the role of strain and compulsive trait differences in response to fluvoxamine, a common obsessive-compulsive disorder (OCD) drug, in two different mouse strains (BIG1 and BIG2) with a spontaneous compulsive-like phenotype. For compulsive-like nest-building behavior, dose-dependent attenuation of nesting by fluvoxamine was observed for the BIG1 compulsive-like strain during the first hour after administration. No significant differences were found for the BIG2 strain during the first hour, although a dose-dependent trend similar to that in the BIG1 strain was observed. Fluvoxamine dose dependently decreased the number of marbles buried in both strains 1 h after administration. For anxiety-like behaviors in the open field, no significant drug effects were found for the latency to leave the center and the number of line crossings. Significant strain differences were observed, with the BIG2 strain showing higher anxiety-like behaviors and reduced locomotor activity compared with the BIG1 strain. Consequently, this study adds predictive validity to our mouse model of OCD, whereas the anxiety-like differences between the strains add heterogeneity to our mouse model, similar to the heterogeneity observed in OCD.
Collapse
Affiliation(s)
- Swarup Mitra
- Department of Chemistry & Biochemistry, University of Alaska Fairbanks, USA
- IDeA Network of Biomedical Research Excellence (INBRE) University of Alaska Fairbanks, USA
| | - Abel Bult-Ito
- Department of Biology & Wildlife, University of Alaska Fairbanks, USA
| |
Collapse
|
38
|
Anxiolytic effects of ascorbic acid and ketamine in mice. J Psychiatr Res 2018; 100:16-23. [PMID: 29475017 DOI: 10.1016/j.jpsychires.2018.02.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 12/07/2017] [Accepted: 02/08/2018] [Indexed: 12/15/2022]
Abstract
Some studies have demonstrated that ascorbic acid, similarly to ketamine, exhibits antidepressant-like effects mediated, at least in part, by modulation of the glutamatergic system. Despite the involvement of glutamatergic system in the pathophysiology of anxiety disorders, the ability of ascorbic acid and ketamine to elicit anxiolytic effects in animal models remains to be established. Therefore, this study investigated the effects of a single administration of ascorbic acid, ketamine or diazepam (positive control) in different animal models of anxiety. Mice were treated with ascorbic acid (1, 3 and 10 mg∕kg, p.o.), ketamine (1 and 10 mg∕kg, i.p.) or diazepam (2 mg∕kg, p.o) and their behavioral responses were assessed in the elevated plus maze, open field test (OFT), ligh∕dark preference test and marble burying test. Ascorbic acid increased total time spent in the open arms of elevated plus maze, increased total time in the center of the OFT, decreased rearing responses, increased the latency to grooming, decreased the rostral grooming, but did not affect body grooming. Furthermore, ascorbic acid increased the latency time and total time in light area in the ligh∕dark preference test, but did not affect the performance of mice in the marble burying test. Ketamine demonstrated an anxiolytic-like effect in elevated plus maze, OFT, and ligh∕dark preference test. Diazepam exhibited an anxiolytic-like effect in all the behavioral tests. Altogether, the results indicate the potential anxiolytic effect of ascorbic acid and ketamine, providing a possible new avenue for the management of anxiety-related disorders.
Collapse
|
39
|
Wolmarans DW, Scheepers IM, Stein DJ, Harvey BH. Peromyscus maniculatus bairdii as a naturalistic mammalian model of obsessive-compulsive disorder: current status and future challenges. Metab Brain Dis 2018; 33:443-455. [PMID: 29214602 DOI: 10.1007/s11011-017-0161-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 11/23/2017] [Indexed: 10/18/2022]
Abstract
Obsessive-compulsive disorder (OCD) is a prevalent and debilitating condition, characterized by intrusive thoughts and repetitive behavior. Animal models of OCD arguably have the potential to contribute to our understanding of the condition. Deer mice (Permomyscus maniculatus bairdii) are characterized by stereotypic behavior which is reminiscent of OCD symptomology, and which may serve as a naturalistic animal model of this disorder. Moreover, a range of deer mouse repetitive behaviors may be representative of different compulsive-like phenotypes. This paper will review work on deer mouse behavior, and evaluate the extent to which this serves as a valid and useful model of OCD. We argue that findings over the past decade indicate that the deer mouse model has face, construct and predictive validity.
Collapse
Affiliation(s)
- De Wet Wolmarans
- Division of Pharmacology, Center of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University, Private Bag X6001, Potchefstroom, South Africa.
| | - Isabella M Scheepers
- Division of Pharmacology, Center of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University, Private Bag X6001, Potchefstroom, South Africa
| | - Dan J Stein
- MRC Unit on Risk and Resilience in Mental Disorders, Cape Town, South Africa
- Department of Psychiatry and Mental Health, MRC Unit on Risk and Resilience in Mental Disorders, University of Cape Town, Cape Town, South Africa
| | - Brian H Harvey
- Division of Pharmacology, Center of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University, Private Bag X6001, Potchefstroom, South Africa
- MRC Unit on Risk and Resilience in Mental Disorders, Cape Town, South Africa
| |
Collapse
|
40
|
Arvaniti M, Polli FS, Kohlmeier KA, Thomsen MS, Andreasen JT. Loss of Lypd6 leads to reduced anxiety-like behaviour and enhanced responses to nicotine. Prog Neuropsychopharmacol Biol Psychiatry 2018; 82:86-94. [PMID: 29195920 DOI: 10.1016/j.pnpbp.2017.11.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 11/19/2017] [Accepted: 11/27/2017] [Indexed: 11/28/2022]
Abstract
Nicotine consumption through smoking affects anxious states in humans. However, the precise role of nicotinic acetylcholine receptor (nAChR) circuitry in the regulation of anxiety remains elusive. The Lynx protein Lypd6 is highly enriched in synaptic loci and has been previously identified as an endogenous inhibitor of neuronal nAChR function in vitro. Here, we investigate the effect of Lypd6 in anxiety-related behaviour and examine the molecular underpinnings of its function in the brain. We employ the marble burying (MB) and elevated zero maze (EZM) tests in Lypd6 knock-out (KO) and wild-type (WT) mice and find that loss of Lypd6 leads to decreased digging behaviour in the MB test and increased time spent in the open area in the EZM test. Moreover, we demonstrate that acute nicotine administration reduces digging in the MB test in both KO and WT mice and further accentuates the inherent genotype difference. Using in vitro electrophysiology in dorsal raphe nuclei (DRN) neurons from Lypd6 KO mice, we show that nicotine-evoked whole-cell currents are enhanced in the absence of Lypd6. Collectively, these data are the first to indicate the involvement of Lypd6 in circuits associated with anxiety and suggest that a possible underlying neurobiological mechanism is the modulation of cholinergic responses in the DRN.
Collapse
Affiliation(s)
- Maria Arvaniti
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Filip S Polli
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Kristi A Kohlmeier
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Morten S Thomsen
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark; H. Lundbeck A/S, Department of Synaptic Transmission In Vitro, Valby, Denmark
| | - Jesper T Andreasen
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
41
|
Wall TR, Henderson BJ, Voren G, Wageman CR, Deshpande P, Cohen BN, Grady SR, Marks MJ, Yohannes D, Kenny PJ, Bencherif M, Lester HA. TC299423, a Novel Agonist for Nicotinic Acetylcholine Receptors. Front Pharmacol 2017; 8:641. [PMID: 29033834 PMCID: PMC5626944 DOI: 10.3389/fphar.2017.00641] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Accepted: 08/29/2017] [Indexed: 01/11/2023] Open
Abstract
(E)-5-(Pyrimidin-5-yl)-1,2,3,4,7,8-hexahydroazocine (TC299423) is a novel agonist for nicotinic acetylcholine receptors (nAChRs). We examined its efficacy, affinity, and potency for α6β2∗ (α6β2-containing), α4β2∗, and α3β4∗ nAChRs, using [125I]-epibatidine binding, whole-cell patch-clamp recordings, synaptosomal 86Rb+ efflux, [3H]-dopamine release, and [3H]-acetylcholine release. TC299423 displayed an EC50 of 30–60 nM for α6β2∗ nAChRs in patch-clamp recordings and [3H]-dopamine release assays. Its potency for α6β2∗ in these assays was 2.5-fold greater than that for α4β2∗, and much greater than that for α3β4∗-mediated [3H]-acetylcholine release. We observed no major off-target binding on 70 diverse molecular targets. TC299423 was bioavailable after intraperitoneal or oral administration. Locomotor assays, measured with gain-of-function, mutant α6 (α6L9′S) nAChR mice, show that TC299423 elicits α6β2∗ nAChR-mediated responses at low doses. Conditioned place preference assays show that low-dose TC299423 also produces significant reward in α6L9′S mice, and modest reward in WT mice, through a mechanism that probably involves α6(non-α4)β2∗ nAChRs. However, TC299423 did not suppress nicotine self-administration in rats, indicating that it did not block nicotine reinforcement in the dosage range that was tested. In a hot-plate test, TC299423 evoked antinociceptive responses in mice similar to those of nicotine. TC299423 and nicotine similarly inhibited mouse marble burying as a measure of anxiolytic effects. Taken together, our data suggest that TC299423 will be a useful small-molecule agonist for future in vitro and in vivo studies of nAChR function and physiology.
Collapse
Affiliation(s)
- Teagan R Wall
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Brandon J Henderson
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| | - George Voren
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Charles R Wageman
- Institute of Behavioral Genetics, University of Colorado, Boulder, Boulder, CO, United States
| | - Purnima Deshpande
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Bruce N Cohen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Sharon R Grady
- Institute of Behavioral Genetics, University of Colorado, Boulder, Boulder, CO, United States
| | - Michael J Marks
- Institute of Behavioral Genetics, University of Colorado, Boulder, Boulder, CO, United States.,Department of Psychology and Neuroscience, University of Colorado, Boulder, Boulder, CO, United States
| | | | - Paul J Kenny
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | | | - Henry A Lester
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| |
Collapse
|
42
|
Szechtman H, Ahmari SE, Beninger RJ, Eilam D, Harvey BH, Edemann-Callesen H, Winter C. Obsessive-compulsive disorder: Insights from animal models. Neurosci Biobehav Rev 2017; 76:254-279. [PMID: 27168347 PMCID: PMC5833926 DOI: 10.1016/j.neubiorev.2016.04.019] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 04/22/2016] [Accepted: 04/26/2016] [Indexed: 01/15/2023]
Abstract
Research with animal models of obsessive-compulsive disorder (OCD) shows the following: (1) Optogenetic studies in mice provide evidence for a plausible cause-effect relation between increased activity in cortico-basal ganglia-thalamo-cortical (CBGTC) circuits and OCD by demonstrating the induction of compulsive behavior with the experimental manipulation of the CBGTC circuit. (2) Parallel use of several animal models is a fruitful paradigm to examine the mechanisms of treatment effects of deep brain stimulation in distinct OCD endophenotypes. (3) Features of spontaneous behavior in deer mice constitute a rich platform to investigate the neurobiology of OCD, social ramifications of a compulsive phenotype, and test novel drugs. (4) Studies in animal models for psychiatric disorders comorbid with OCD suggest comorbidity may involve shared neural circuits controlling expression of compulsive behavior. (5) Analysis of compulsive behavior into its constitutive components provides evidence from an animal model for a motivational perspective on OCD. (6) Methods of behavioral analysis in an animal model translate to dissection of compulsive rituals in OCD patients, leading to diagnostic tests.
Collapse
Affiliation(s)
- Henry Szechtman
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada.
| | - Susanne E Ahmari
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Richard J Beninger
- Departments of Psychology and Psychiatry, Queen's University, Kingston, ON, Canada.
| | - David Eilam
- Department of Zoology, Tel-Aviv University, Ramat-Aviv 69978, Israel.
| | - Brian H Harvey
- MRC Unit on Anxiety and Stress Disorders, Center of Excellence for Pharmaceutical Sciences, School of Pharmacy, North-West University, Potchefstroom, South Africa.
| | - Henriette Edemann-Callesen
- Bereich Experimentelle Psychiatrie, Klinik und Poliklinik für Psychiatrie und Psychotherapie, Universitätsklinikum Carl Gustav Carus an der Technischen Universität Dresden, Dresden, Germany.
| | - Christine Winter
- Bereich Experimentelle Psychiatrie, Klinik und Poliklinik für Psychiatrie und Psychotherapie, Universitätsklinikum Carl Gustav Carus an der Technischen Universität Dresden, Dresden, Germany.
| |
Collapse
|
43
|
Taylor GT, Lerch S, Chourbaji S. Marble burying as compulsive behaviors in male and female mice. Acta Neurobiol Exp (Wars) 2017. [DOI: 10.21307/ane-2017-059] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|