1
|
Gutiérrez-Nájera J, Mendoza-Núñez VM. Effect of Probiotic Supplementation on Body Fat, Skeletal Muscle Mass, and Body Mass Index in Individuals ≥45 Years Old: A Systematic Review. In Vivo 2025; 39:1220-1236. [PMID: 40294995 PMCID: PMC12041995 DOI: 10.21873/invivo.13927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/02/2025] [Accepted: 03/05/2025] [Indexed: 04/30/2025]
Abstract
BACKGROUND/AIM Probiotics are living microorganisms that confer health benefits when administered in adequate amounts. Several studies have shown the positive effects on body fat, muscle mass, and body mass index (BMI) in young adults and athletes; however, the results in adults aged ≥45 years are not conclusive. MATERIALS AND METHODS A systematic review was conducted in accordance with the PRISMA guidelines, analyzing studies up to December 10, 2024, from nine databases (PubMed, Scopus, Web of Science, LILACS, SciELO, Springer, Redalyc, Cochrane Library and TESIUNAM). Mean differences (MD) were estimated using RevMan V 5.4.1. software. RESULTS Six hundred and sixty-six studies were identified, of which 15 met the eligibility criteria. A statistically significant decrease in fat mass (%) was found in two studies and in fat mass (kg) in another two studies. Likewise, one study reported a statistically significant increase in skeletal muscle mass. CONCLUSION Probiotic supplementation may have a beneficial effect on reducing body fat mass and increasing or preventing skeletal muscle mass loss in adults ≥45 years old; however, further clinical trials are needed to determine the optimal types, doses, and duration of probiotic treatment for best results.
Collapse
Affiliation(s)
- Jessica Gutiérrez-Nájera
- Gerontology Research Unit, Faculty of Higher Studies, National Autonomous University of Mexico, Mexico City, Mexico
| | - Víctor Manuel Mendoza-Núñez
- Gerontology Research Unit, Faculty of Higher Studies, National Autonomous University of Mexico, Mexico City, Mexico
| |
Collapse
|
2
|
Rai AK, Yadav M, Duary RK, Shukla P. Gut Microbiota Modulation Through Dietary Approaches Targeting Better Health During Metabolic Disorders. Mol Nutr Food Res 2025:e70033. [PMID: 40195821 DOI: 10.1002/mnfr.70033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 02/26/2025] [Accepted: 03/07/2025] [Indexed: 04/09/2025]
Abstract
The impact of gut microbiota is known to play a significant role in an individual's metabolism and health. Many harmful food products or dietary imbalance adversely affect human health and changing lifestyle, environmental factors, and food habits may have their effect on gut microbiota. It has emerged that gut microbiota is regarded as an emerging metabolic organ, which is dependent on individual's diet and its composition. This review discusses the significance of lactic acid bacteria as a prominent inhabitant in the gut microbiota and the role of probiotics, prebiotics, and polyphenols to improve human health and metabolism. The role of fermented foods as an important source of probiotics and bioactive molecules is also discussed along with the role of gut microbiota in metabolic disorders like dyslipidemia, obesity, hypercholesterolemia, cancer, and hypertension. Finally, the review gives insights into the effective therapeutic prospects through gut microbiota alterations to tackle these metabolic disorders.
Collapse
Affiliation(s)
- Amit Kumar Rai
- BRIC-National Agri-Food and Biomanufacturing Institute (BRIC-NABI), SAS Nagar, Mohali, India
| | | | - Raj Kumar Duary
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
3
|
Shirkoohi NM, Mohammadi H, Gallaly DQ, Djafarian K. The effects of probiotic supplementation on body composition, recovery following exercise-induced muscle damage, and exercise performance: A systematic review and meta-analysis of clinical trials. Physiol Rep 2025; 13:e70288. [PMID: 40268884 PMCID: PMC12018167 DOI: 10.14814/phy2.70288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 03/07/2025] [Accepted: 03/13/2025] [Indexed: 04/25/2025] Open
Abstract
The goal of the current systematic review and meta-analysis was to provide a definitive assessment of the impacts of probiotic supplementation on body composition, recovery from exercise-induced muscle damage, and exercise performance in individuals actively participating in exercise. A thorough literature search encompassing Scopus, PubMed, Google Scholar, and Web of Science databases was conducted up to May 2024. The weighted mean difference (WMD) and 95% confidence interval (95% CI) for each outcome were estimated using a random-effects model. The certainty of the assessments was further evaluated utilizing the GRADE approach. The pooled analysis showed a significant effect of probiotics on body weight [(WMD = -0.55 kg; 95% CI, -0.98 to -0.13; p = 0.010)], percent body fat [(WMD = -0.46%; 95% CI, -0.83 to -0.09; p = 0.014)], creatine kinase [(WMD = -45.57 IU. L-1; 95% CI: -65.12, -26.02; p = 0.000)], and VO2max [(WMD = 1.55 mL/kg-1/min-1; 95% CI, 0.61 to 2.49; p = 0.001)]. Despite this, no significant effects were observed on body mass index, lean body mass, lactate dehydrogenase, and myoglobin levels. Probiotic supplementation can have significant effects on body composition and exercise performance. Due to the moderate-to-low certainty of evidence, further studies are warranted.
Collapse
Affiliation(s)
- Nastaran Mahmoudi Shirkoohi
- Department of Clinical Nutrition, School of Nutritional Sciences and DieteticsTehran University of Medical SciencesTehranIran
- Sports Medicine Research Center, Neuroscience InstituteTehran University of Medical SciencesTehranIran
| | - Hamed Mohammadi
- Department of Clinical Nutrition, School of Nutritional Sciences and DieteticsTehran University of Medical SciencesTehranIran
| | - Dler Q. Gallaly
- Department of Basic Sciences, College of MedicineHawler Medical UniversitykurdistanIraq
| | - Kurosh Djafarian
- Department of Clinical Nutrition, School of Nutritional Sciences and DieteticsTehran University of Medical SciencesTehranIran
- Sports Medicine Research Center, Neuroscience InstituteTehran University of Medical SciencesTehranIran
| |
Collapse
|
4
|
Hou S, Li R, Zhang Y, Liang P, Yang H, He H, Wang L, Sun Y, Jin T, Liu Z, Xie J. Supplementation of mixed Lactobacillus alleviates metabolic impairment, inflammation, and dysbiosis of the gut microbiota in an obese mouse model. Front Nutr 2025; 12:1554996. [PMID: 40206949 PMCID: PMC11978641 DOI: 10.3389/fnut.2025.1554996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 03/06/2025] [Indexed: 04/11/2025] Open
Abstract
Introduction Obesity is a complex metabolic disease, which is often accompanied with impaired glucose and lipid metabolism and chronic inflammation. Probiotics have been considered as a strategy for treating obesity, while the genus of Lactobacillus is the most commonly tested and approved probiotics. Some multi-strain probiotics were proven to produce synergistic effects on treating obesity as compared to mono-strain ones. Methods The purpose of this study was to investigate the anti-obesity effect of a new probiotic formation contained Lactobacillus plantarum L14, Lactobacillus paracasei L9, Lactobacillus rhamnosus GG, and Lactobacillus sakei X-MRS-2, designated as L-PPRS. Multi-strain probiotics L-PPRS was shown to have a better antiadipogenic effect than mono-strain probiotics in 3T3-L1 cell. Subsequently, L-PPRS was orally supplemented to a high-fat diet (HFD) induced obese mouse model for two kinds of treatment course, a short-term (8 weeks) one and a long-term (12 weeks) one. Results We found that intervention of L-PPRS not only significantly inhibited weight gain in HFD-fed mice, but also improved glucose tolerance, insulin sensitivity and reduced serum lipid levels. Furthermore, L-PPRS intervention reduced fat accumulation in the adipose tissue and the liver, and ameliorated the antioxidant capacity of liver in HFD-fed mice. L-PPRS intervention modulated the expression of lipid-metabolic genes, and exhibited excellent anti-inflammatory effect. In addition, L-PPRS intervention restored the dysbiosis of gut microbiota via reducing the Firmicutes/ Bacteroidetes ratio, and increasing the abundance of beneficial intestinal bacteria. In conclusion, this study proved that L-PPRS could effectively prevent the development of obesity and its associated abnormalities, and the long-term supplementation of L-PPRS provided a more profound benefit than the short-term. Discussion This study highlights the potential of L-PPRS as an effective anti-obesity strategy.
Collapse
Affiliation(s)
- Shulin Hou
- Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, China
| | - Ruining Li
- Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, China
- Academy of Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Yunyun Zhang
- Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, China
- Academy of Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Ping Liang
- Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, China
| | - Haishan Yang
- Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, China
- Academy of Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Huili He
- Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, China
| | - Lei Wang
- Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, China
| | - Yaojun Sun
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Tianru Jin
- Department of Physiology, Temerty Faculty of Medicine, Banting and Best Diabetes Centre, University of Toronto, Toronto, ON, Canada
| | - Zhizhen Liu
- Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, China
| | - Jun Xie
- Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
5
|
Chen J, Yu Y, Sun S, Yu W, Lei Y, Lu C, Zhai J, Bai F, Ren F, Wang R. Probiotics and Prebiotics: Meeting Dietary Requirements for Optimal Health and Planetary Sustainability. J Nutr 2025:S0022-3166(25)00179-8. [PMID: 40127733 DOI: 10.1016/j.tjnut.2025.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/17/2025] [Accepted: 03/19/2025] [Indexed: 03/26/2025] Open
Abstract
Probiotics and prebiotics are valuable in enhancing human health and fostering sustainable development. This review focuses on the role of probiotics and prebiotics at all stages of life to promote nutrient absorption, boost immunity, and support healthy aging by mitigating cognitive decline and chronic disease. Health and environmental sustainability are deeply connected, making probiotics and prebiotics promising tools for promoting well-being and achieving global sustainability goals. In addition to health, probiotics and prebiotics contribute to sustainable development by optimizing agricultural byproducts, reducing reliance on antibiotics in animal feed, lowering greenhouse gas emissions, and supporting environmental protection. Future research should focus on personalizing treatments, improving bioavailability, and expanding applications to effectively address global health and the sustainable development goals.
Collapse
Affiliation(s)
- Juan Chen
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Yifei Yu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - SiYuan Sun
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Weiru Yu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Yumei Lei
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Chenxu Lu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Jianan Zhai
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Feirong Bai
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Fazheng Ren
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China.
| | - Ran Wang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China.
| |
Collapse
|
6
|
Wang Y, Lei P. Efficacy of probiotic supplements in the treatment of sarcopenia: A systematic review and meta-analysis. PLoS One 2025; 20:e0317699. [PMID: 39913546 PMCID: PMC11801621 DOI: 10.1371/journal.pone.0317699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 01/02/2025] [Indexed: 02/09/2025] Open
Abstract
Although some studies have confirmed the efficacy of probiotics in the treatment of sarcopenia, the intervention of sarcopenia is a comprehensive consideration of many factors, and the efficacy of probiotics is still controversial. Therefore, this study systematically evaluated the efficacy of probiotics in the intervention of sarcopenia via high-quality meta-analysis, providing a basis for the clinical diagnosis and treatment of sarcopenia. Randomized controlled trials related to probiotics in the treatment of sarcopenia were searched in PubMed, Embase, the Cochrane Library and Web of Science. The search time was from inception to 2024-07-17. Two investigators independently screened the articles, extracted data, and assessed the risk of bias of the included studies. Meta-analysis was performed using RevMan 5.4 and Stata 14.0 software. A total of 22 eligible studies were included. The results showed that there was no statistically significant difference between probiotics and placebo in improving muscle mass and Lean body mass in sarcopenia patients; MD: 0.66, 95%CI: - 0.01-1.33; Z = 1.93, P > 0.05; MD: - 0.13, 95%CI: -0.81-0.55; Z = 0.38, P = 0.71 > 0.05. However, probiotics were found to significantly improve overall muscle strength compared with the placebo group. MD: 2.99, 95%CI: 2.14-3.85; Z = 6.86, P < 0.001. Probiotics can significantly improve global muscle strength in patients with sarcopenia. It is suggested that probiotics have certain clinical value in the clinical treatment of sarcopenia, but the results may be limited by the number and quality of included studies. The above conclusions need to be verified by more high-quality studies.
Collapse
Affiliation(s)
- Yi Wang
- College of Integrative Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Ping Lei
- College of Integrative Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| |
Collapse
|
7
|
Kim DW, Nguyen QA, Chanmuang S, Lee SB, Kim BM, Lee HJ, Jang GJ, Kim HJ. Effects of Kimchi Intake on the Gut Microbiota and Metabolite Profiles of High-Fat-Induced Obese Rats. Nutrients 2024; 16:3095. [PMID: 39339693 PMCID: PMC11435375 DOI: 10.3390/nu16183095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/12/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
With rising global obesity rates, the demand for effective dietary strategies for obesity management has intensified. This study evaluated the potential of kimchi with various probiotics and bioactive compounds as a dietary intervention for high-fat diet (HFD)-induced obesity in rats. Through a comprehensive analysis incorporating global and targeted metabolomics, gut microbiota profiling, and biochemical markers, we investigated the effects of the 12-week kimchi intake on HFD-induced obesity. Kimchi intake modestly mitigated HFD-induced weight gain and remarkably altered gut microbiota composition, steroid hormones, bile acids, and metabolic profiles, but did not reduce adipose tissue accumulation. It also caused significant shifts in metabolomic pathways, including steroid hormone metabolism, and we found substantial interactions between dietary interventions and gut microbiota composition. Although more research is required to fully understand the anti-obesity effects of kimchi, our findings support the beneficial role of kimchi in managing obesity and related metabolic disorders.
Collapse
Affiliation(s)
- Dong-Wook Kim
- Division of Applied Life Sciences (BK21 Plus), Gyeongsang National University, Jinju 52828, Republic of Korea; (D.-W.K.); (Q.-A.N.); (S.-B.L.); (B.-M.K.); (H.-J.L.); (G.-J.J.)
- Food Safety and Processing Research Division, National Institute of Fisheries Science, Busan 46083, Republic of Korea
| | - Quynh-An Nguyen
- Division of Applied Life Sciences (BK21 Plus), Gyeongsang National University, Jinju 52828, Republic of Korea; (D.-W.K.); (Q.-A.N.); (S.-B.L.); (B.-M.K.); (H.-J.L.); (G.-J.J.)
| | - Saoraya Chanmuang
- Department of Food Science and Technology, Institute of Agriculture and Life Science, Gyeongsang National University, 501 Jinjudaero, Jinju 52828, Republic of Korea;
| | - Sang-Bong Lee
- Division of Applied Life Sciences (BK21 Plus), Gyeongsang National University, Jinju 52828, Republic of Korea; (D.-W.K.); (Q.-A.N.); (S.-B.L.); (B.-M.K.); (H.-J.L.); (G.-J.J.)
- Food Safety and Distribution Research Group, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea
| | - Bo-Min Kim
- Division of Applied Life Sciences (BK21 Plus), Gyeongsang National University, Jinju 52828, Republic of Korea; (D.-W.K.); (Q.-A.N.); (S.-B.L.); (B.-M.K.); (H.-J.L.); (G.-J.J.)
| | - Hyeon-Jeong Lee
- Division of Applied Life Sciences (BK21 Plus), Gyeongsang National University, Jinju 52828, Republic of Korea; (D.-W.K.); (Q.-A.N.); (S.-B.L.); (B.-M.K.); (H.-J.L.); (G.-J.J.)
- Doping Control Center, Korea Institute of Science and Technology, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Gwang-Ju Jang
- Division of Applied Life Sciences (BK21 Plus), Gyeongsang National University, Jinju 52828, Republic of Korea; (D.-W.K.); (Q.-A.N.); (S.-B.L.); (B.-M.K.); (H.-J.L.); (G.-J.J.)
- Food Safety and Distribution Research Group, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea
| | - Hyun-Jin Kim
- Division of Applied Life Sciences (BK21 Plus), Gyeongsang National University, Jinju 52828, Republic of Korea; (D.-W.K.); (Q.-A.N.); (S.-B.L.); (B.-M.K.); (H.-J.L.); (G.-J.J.)
- Department of Food Science and Technology, Institute of Agriculture and Life Science, Gyeongsang National University, 501 Jinjudaero, Jinju 52828, Republic of Korea;
| |
Collapse
|
8
|
Tan LJ, Oh SJ, Nasan-Ulzii B, Lee W, Hong SW, Shin S. Association between dietary patterns and obesity: a longitudinal prospective cohort study. Public Health 2024; 234:217-223. [PMID: 39089174 DOI: 10.1016/j.puhe.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 08/03/2024]
Abstract
OBJECTIVES The obesity prevalence in South Korea in 2021 stood at 38.4%. South Korea faces unique challenges in providing essential and emergency guidelines for weight management because of stepping into an aging society. We aimed to determine the daily diet patterns among the general Korean population and to investigate the association between such patterns and different obesity. STUDY DESIGN Longitudinal prospective cohort study. METHODS A total of 6539 adult participants (mean age 50.8 years, 52.9% male) with normal-weight adults were included from the Ansan-Ansung cohort of 10,030 Korean adults aged 40 or older and followed for an average of 11 years. Obesity was defined according to the criteria from the Korean Society for The Study of Obesity. Baseline dietary intake was assessed using a validated 103-item food frequency questionnaire. Dietary patterns were derived from k-means cluster analysis. RESULTS In the multivariate analysis, referring to white rice + baechu kimchi, participants from multigrain rice + baechu kimchi showed lower HR for obesity development (waist circumference defined-obesity; HR: 0.87, 95% CI: 0.79, 0.95; body fat percentage defined-obesity; HR: 0.89, 95% CI: 0.80, 0.98). Further analysis documented that except for body fat percentage defined-obesity, consuming milk or dairy products was linked to a reduced incidence of the other three obesity (body mass index defined-obesity; HR: 0.84, 95% CI: 0.72, 0.99; waist circumference defined-obesity; HR: 0.82, 95% CI: 0.71, 0.94; waist-to-hip ratio defined-obesity; HR: 0.75, 95% CI: 0.61, 0.91). CONCLUSIONS Following a diet that includes multigrain rice, fermented baechu kimchi, and dairy products is linked to a decreased risk of obesity in Korean adults. Public health programs and policies could incorporate these dietary recommendations, targeting specific population groups such as schoolchildren, adults, and the elderly. Additionally, further research is needed to explore the synergistic effects of various foods and their interactions within dietary patterns on obesity outcomes.
Collapse
Affiliation(s)
- L-J Tan
- Department of Food and Nutrition, Chung-Ang University, Gyeonggi-do 17546, South Korea
| | - S-J Oh
- Department of Food and Nutrition, Chung-Ang University, Gyeonggi-do 17546, South Korea
| | - B Nasan-Ulzii
- Department of Food and Nutrition, Chung-Ang University, Gyeonggi-do 17546, South Korea
| | - W Lee
- Technology Innovation Research Division, World Institute of Kimchi, Gwangju 61755, South Korea
| | - S W Hong
- Technology Innovation Research Division, World Institute of Kimchi, Gwangju 61755, South Korea.
| | - S Shin
- Department of Food and Nutrition, Chung-Ang University, Gyeonggi-do 17546, South Korea.
| |
Collapse
|
9
|
Kim HH, Jeong SH, Park MY, Bhosale PB, Abusaliya A, Heo JD, Kim HW, Seong JK, Kim TY, Park JW, Kim BS, Kim GS. The Skin Histopathology of Pro- and Parabiotics in a Mouse Model of Atopic Dermatitis. Nutrients 2024; 16:2903. [PMID: 39275219 PMCID: PMC11397434 DOI: 10.3390/nu16172903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/16/2024] Open
Abstract
As it has been revealed that the activation of human immune cells through the activity of intestinal microorganisms such as pro- and prebiotics plays a vital role, controlling the proliferation of beneficial bacteria and suppressing harmful bacteria in the intestine has become essential. The importance of probiotics, especially for skin health and the immune system, has led to the emergence of products in various forms, including probiotics, prebiotics, and parabiotics. In particular, atopic dermatitis (AD) produces hypersensitive immunosuppressive substances by promoting the differentiation and activity of immune regulatory T cells. As a result, it has been in the Th1 and Th2 immune balance through a mechanism that suppresses skin inflammation or allergic immune responses caused by bacteria. Furthermore, an immune mechanism has recently emerged that simultaneously controls the expression of IL-17 produced by Th17. Therefore, the anti-atopic effect was investigated by administering doses of anti-atopic candidate substances (Lactobacilus sakei CVL-001, Lactobacilus casei MCL, and Lactobacilus sakei CVL-001 Lactobacilus casei MCL mixed at a ratio of 4:3) in an atopy model using 2,4-dinitrochlorobenzene and observing symptom changes for 2 weeks to confirm the effect of pro-, para-, and mixed biotics on AD. First, the body weight and feed intake of the experimental animals were investigated, and total IgG and IgM were confirmed through blood biochemical tests. Afterward, histopathological staining was performed using H&E staining, Toluidine blue staining, Filaggrin staining, and CD8 antibody staining. In the treatment group, the hyperproliferation of the epidermal layer, the inflammatory cell infiltration of the dermal layer, the expression of CD8, the expression of filaggrin, and the secretion of mast cells were confirmed to be significantly reduced. Lastly, small intestine villi were observed through a scanning microscope, and scoring evaluation was performed through skin damage. Through these results, it was confirmed that AD was reduced when treated with pro-, para-, and mixed biotics containing probiotics and parabiotics.
Collapse
Affiliation(s)
- Hun Hwan Kim
- Research Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Se Hyo Jeong
- Research Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Min Yeong Park
- Research Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Pritam Bhagwan Bhosale
- Research Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Abuyaseer Abusaliya
- Research Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jeong Doo Heo
- Biological Resources Research Group, Gyeongnam Department of Environment Toxicology and Chemistry, Korea Institute of Toxicology, Jinju 52834, Republic of Korea
| | - Hyun Wook Kim
- Division of Animal Bioscience & Intergrated Biotechnology, Gyeongsang National University, Jinju 52725, Republic of Korea
| | - Je Kyung Seong
- Laboratory of Developmental Biology and Genomics, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Tae Yang Kim
- R&D Group, Kick the Hurdle, Changwon-si 51139, Republic of Korea
| | - Jeong Woo Park
- R&D Group, Kick the Hurdle, Changwon-si 51139, Republic of Korea
| | - Byeong Soo Kim
- R&D Group, Kick the Hurdle, Changwon-si 51139, Republic of Korea
| | - Gon Sup Kim
- Research Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
10
|
Lee MC, Hsu YJ, Chen MT, Kuo YW, Lin JH, Hsu YC, Huang YY, Li CM, Tsai SY, Hsia KC, Ho HH, Huang CC. Efficacy of Lactococcus lactis subsp. lactis LY-66 and Lactobacillus plantarum PL-02 in Enhancing Explosive Strength and Endurance: A Randomized, Double-Blinded Clinical Trial. Nutrients 2024; 16:1921. [PMID: 38931275 PMCID: PMC11206817 DOI: 10.3390/nu16121921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/14/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024] Open
Abstract
Probiotics are posited to enhance exercise performance by influencing muscle protein synthesis, augmenting glycogen storage, and reducing inflammation. This double-blind study randomized 88 participants to receive a six-week intervention with either a placebo, Lactococcus lactis subsp. lactis LY-66, Lactobacillus plantarum PL-02, or a combination of both strains, combined with a structured exercise training program. We assessed changes in maximal oxygen consumption (VO2max), exercise performance, and gut microbiota composition before and after the intervention. Further analyses were conducted to evaluate the impact of probiotics on exercise-induced muscle damage (EIMD), muscle integrity, and inflammatory markers in the blood, 24 and 48 h post-intervention. The results demonstrated that all probiotic groups exhibited significant enhancements in exercise performance and attenuation of muscle strength decline post-exercise exhaustion (p < 0.05). Notably, PL-02 intake significantly increased muscle mass, whereas LY-66 and the combination therapy significantly reduced body fat percentage (p < 0.05). Analysis of intestinal microbiota revealed an increase in beneficial bacteria, especially a significant rise in Akkermansia muciniphila following supplementation with PL-02 and LY-66 (p < 0.05). Overall, the combination of exercise training and supplementation with PL-02, LY-66, and their combination improved muscle strength, explosiveness, and endurance performance, and had beneficial effects on body composition and gastrointestinal health, as evidenced by data obtained from non-athlete participants.
Collapse
Affiliation(s)
- Mon-Chien Lee
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan 333325, Taiwan; (M.-C.L.); (Y.-J.H.)
- Center for General Education, Taipei Medical University, Taipei 110301, Taiwan
| | - Yi-Ju Hsu
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan 333325, Taiwan; (M.-C.L.); (Y.-J.H.)
| | - Mu-Tsung Chen
- Committee on General Studies, Shih Chien University, Taipei City 104, Taiwan;
| | - Yi-Wei Kuo
- Functional R&D Department, Research and Design Center, Glac Biotech Co., Ltd., Tainan City 744, Taiwan; (Y.-W.K.); (J.-H.L.); (Y.-Y.H.); (C.-M.L.); (H.-H.H.)
| | - Jia-Hung Lin
- Functional R&D Department, Research and Design Center, Glac Biotech Co., Ltd., Tainan City 744, Taiwan; (Y.-W.K.); (J.-H.L.); (Y.-Y.H.); (C.-M.L.); (H.-H.H.)
| | - Yu-Chieh Hsu
- Research Product Department, Research and Design Center, Glac Biotech Co., Ltd., Tainan City 744, Taiwan; (Y.-C.H.); (S.-Y.T.); (K.-C.H.)
| | - Yen-Yu Huang
- Functional R&D Department, Research and Design Center, Glac Biotech Co., Ltd., Tainan City 744, Taiwan; (Y.-W.K.); (J.-H.L.); (Y.-Y.H.); (C.-M.L.); (H.-H.H.)
| | - Ching-Min Li
- Functional R&D Department, Research and Design Center, Glac Biotech Co., Ltd., Tainan City 744, Taiwan; (Y.-W.K.); (J.-H.L.); (Y.-Y.H.); (C.-M.L.); (H.-H.H.)
| | - Shin-Yu Tsai
- Research Product Department, Research and Design Center, Glac Biotech Co., Ltd., Tainan City 744, Taiwan; (Y.-C.H.); (S.-Y.T.); (K.-C.H.)
| | - Ko-Chiang Hsia
- Research Product Department, Research and Design Center, Glac Biotech Co., Ltd., Tainan City 744, Taiwan; (Y.-C.H.); (S.-Y.T.); (K.-C.H.)
| | - Hsieh-Hsun Ho
- Functional R&D Department, Research and Design Center, Glac Biotech Co., Ltd., Tainan City 744, Taiwan; (Y.-W.K.); (J.-H.L.); (Y.-Y.H.); (C.-M.L.); (H.-H.H.)
- Research Product Department, Research and Design Center, Glac Biotech Co., Ltd., Tainan City 744, Taiwan; (Y.-C.H.); (S.-Y.T.); (K.-C.H.)
| | - Chi-Chang Huang
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan 333325, Taiwan; (M.-C.L.); (Y.-J.H.)
- Tajen University, Pingtung 907101, Taiwan
| |
Collapse
|
11
|
Hwang J, Kim J, Kim H. Improvement and application of recommended food score for hypertension in Korean adults: the Korean Genome and Epidemiology Study. Front Nutr 2024; 11:1400458. [PMID: 38946790 PMCID: PMC11211396 DOI: 10.3389/fnut.2024.1400458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/03/2024] [Indexed: 07/02/2024] Open
Abstract
Background Addressing dietary factors to lower blood pressure can be a crucial strategy at the population level to mitigate the risk of hypertension. In a prior investigation, a tailored food score was used as a dietary index relevant to hypertension among Korean adults. This current study aims to assess the association between the overall quality of the diet, taking into account more precise food components, and evaluate the risk of developing hypertension. Methods This prospective cohort study included 5,342 adults aged 40-70 without hypertension who participated in the Korean Genome and Epidemiology Study (KoGES) from 2001 to 2016. The improved Recommended Food Score for Hypertension (iRFSH) is a modified version of the Recommended Food Score to assess the consumption of foods recommended in the Dietary Approaches to Stop Hypertension (DASH) diet for Korean foods. A higher score reflects greater consumption of recommended foods, indicative of higher dietary quality. The maximum total score is 65. High blood pressure, which includes both hypertension and prehypertension, was analyzed using Cox proportional hazard regression models to examine its prospective relationship with iRFSH. Results Among 2,478 males and 2,864 females with 10.8 mean years of follow-up, a higher score of iRFSH was associated with a lower risk of hypertension in the highest quintile compared to the lowest quintile [total: hazard ratio (HR): 0.79; 95% confidence interval (CI): 0.72, 0.87; female: HR: 0.71; 95% CI: 0.62, 0.83]. Conclusion Higher iRFSH is associated with a lower incidence of hypertension. Our results suggest that the iRFSH may be a potential tool for assessing dietary quality and dietary patterns and predicting the risk of hypertension in Korean adults.
Collapse
Affiliation(s)
- Jiyoung Hwang
- Department of Nutritional Science and Food Management, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, Republic of Korea
| | - Jeongsu Kim
- Department of Nutritional Science and Food Management, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, Republic of Korea
| | - Hyesook Kim
- Department of Food and Nutrition, Wonkwang University, Iksan-si, Republic of Korea
| |
Collapse
|
12
|
Torres B, Sánchez MC, Virto L, Llama‐Palacios A, Ciudad MJ, Collado L. Use of probiotics in preventing and treating excess weight and obesity. A systematic review. Obes Sci Pract 2024; 10:e759. [PMID: 38903852 PMCID: PMC11187407 DOI: 10.1002/osp4.759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 04/12/2024] [Accepted: 04/30/2024] [Indexed: 06/22/2024] Open
Abstract
Background The prevalence of excess weight and obesity is increasing in an extremely concerning manner worldwide, with highly diverse therapies for current treatment. This review evaluated the scientific evidence of the past 10 years on the use of probiotics in treating excess weight and obesity in the absence of dieting. Materials A systematic review was conducted by searching for clinical trials on humans published in English in the PubMed, Scopus and Cochrane Central databases, using the combination of keywords "Overweight", "Probiotics" and "Obesity", and published between 2012 and 2022. Results Six published studies met the inclusion criteria. The review showed that, although there is a lack of consensus in the literature, the use of probiotics in the absence of dieting produced a significant reduction in body weight and body mass index in 66.6% of the reviewed studies, a significant reduction in waist circumference in 80.0% of the reviewed studies, and an improvement in total body fat mass and waist circumference. Conclusions This review showed evidence of a trend in preventing body weight gain and reducing weight through the use of probiotics in individuals with excess weight or obesity. A combination of various strains of the genera Bifidobacterium and Lactobacillus was the most effective.
Collapse
Affiliation(s)
- Belén Torres
- Faculty of MedicineDepartment of MedicineComplutense UniversityMadridSpain
| | - María C. Sánchez
- Faculty of MedicineDepartment of MedicineComplutense UniversityMadridSpain
- Faculty of MedicineGINTRAMIS Research Group (Translational Research Group on Microbiota and Health)Complutense UniversityMadridSpain
| | - Leire Virto
- Faculty of OpticsDepartment of Anatomy and EmbryologyComplutense UniversityMadridSpain
| | - Arancha Llama‐Palacios
- Faculty of MedicineDepartment of MedicineComplutense UniversityMadridSpain
- Faculty of MedicineGINTRAMIS Research Group (Translational Research Group on Microbiota and Health)Complutense UniversityMadridSpain
| | - María J. Ciudad
- Faculty of MedicineDepartment of MedicineComplutense UniversityMadridSpain
- Faculty of MedicineGINTRAMIS Research Group (Translational Research Group on Microbiota and Health)Complutense UniversityMadridSpain
| | - Luis Collado
- Faculty of MedicineDepartment of MedicineComplutense UniversityMadridSpain
- Faculty of MedicineGINTRAMIS Research Group (Translational Research Group on Microbiota and Health)Complutense UniversityMadridSpain
| |
Collapse
|
13
|
Kim H, Song EJ, Choi E, Kwon KW, Park JH, Shin SJ. Adjunctive administration of parabiotic Lactobacillus sakei CVL-001 ameliorates drug-induced toxicity and pulmonary inflammation during antibiotic treatment for tuberculosis. Int Immunopharmacol 2024; 132:111937. [PMID: 38569427 DOI: 10.1016/j.intimp.2024.111937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/18/2024] [Accepted: 03/25/2024] [Indexed: 04/05/2024]
Abstract
Tuberculosis (TB) treatment requires a long therapeutic duration and induces adverse effects such as hepatotoxicity, causing discontinuation of treatment. Reduced adherence to TB medications elevates the risk of recurrence and the development of drug resistance. Additionally, severe cavitary TB with a high burden of Mycobacterium tuberculosis (Mtb) and inflammation-mediated tissue damage may need an extended treatment duration, resulting in a higher tendency of drug-induced toxicity. We previously reported that the administration of Lactobacillus sakei CVL-001 (L. sakei CVL-001) regulates inflammation and improves mucosal barrier function in a murine colitis model. Since accumulating evidence has reported the functional roles of probiotics in drug-induced liver injury and pulmonary inflammation, we employed a parabiotic form of the L. sakei CVL-001 to investigate whether this supplement may provide beneficial effects on the reduction in drug-induced liver damage and pulmonary inflammation during chemotherapy. Intriguingly, L. sakei CVL-001 administration slightly reduced Mtb burden without affecting lung inflammation and weight loss in both Mtb-resistant and -susceptible mice. Moreover, L. sakei CVL-001 decreased T cell-mediated inflammatory responses and increased regulatory T cells along with an elevated antigen-specific IL-10 production, suggesting that this parabiotic may restrain excessive inflammation during antibiotic treatment. Furthermore, the parabiotic intervention significantly reduced levels of alanine aminotransferase, an indicator of hepatotoxicity, and cell death in liver tissues. Collectively, our data suggest that L. sakei CVL-001 administration has the potential to be an adjunctive therapy by reducing pulmonary inflammation and liver damage during anti-TB drug treatment and may benefit adherence to TB medication in lengthy treatment.
Collapse
Affiliation(s)
- Hagyu Kim
- Department of Microbiology, Institute for Immunology and Immunological Disease, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Eun-Jung Song
- Nodcure, Inc., 77 Yongbong-ro, Buk-gu, Gwangju 61186, South Korea
| | - Eunsol Choi
- Department of Microbiology, Institute for Immunology and Immunological Disease, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Kee Woong Kwon
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju, South Korea
| | - Jong-Hwan Park
- Nodcure, Inc., 77 Yongbong-ro, Buk-gu, Gwangju 61186, South Korea; Laboratory Animal Medicine, Animal Medical Institute, College of Veterinary Medicine, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, South Korea.
| | - Sung Jae Shin
- Department of Microbiology, Institute for Immunology and Immunological Disease, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea.
| |
Collapse
|
14
|
Saadati S, Naseri K, Asbaghi O, Yousefi M, Golalipour E, de Courten B. Beneficial effects of the probiotics and synbiotics supplementation on anthropometric indices and body composition in adults: A systematic review and meta-analysis. Obes Rev 2024; 25:e13667. [PMID: 38030409 DOI: 10.1111/obr.13667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 09/10/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023]
Abstract
Studies have suggested that probiotics and synbiotics can improve body weight and composition. However, randomized controlled trials (RCTs) demonstrated mixed results. Hence, we performed a systematic review and meta-analysis to evaluate the effectiveness of probiotics and synbiotics on body weight and composition in adults. We searched PubMed/Medline, Ovid/Medline, Scopus, ISI Web of Science, and Cochrane library up to April 2023 using related keywords. We included all RCTs investigating the effectiveness of probiotics and/or synbiotics supplementation on anthropometric indices and body composition among adults. Random-effects models were applied for performing meta-analyses. In addition, we conducted subgroup analyses and meta-regression to explore the non-linear and linear relationship between the length of follow-up and the changes in each outcome. We included a total of 200 trials with 12,603 participants in the present meta-analysis. Probiotics or synbiotics intake led to a significant decrease in body weight (weighted mean difference [WMD]: -0.91 kg; 95% CI: -1.08, -0.75; p < 0.001), body mass index (BMI) (WMD: -0.28 kg/m2 ; 95% CI: -0.36, -0.21; p < 0.001), waist circumference (WC) (WMD: -1.14 cm; 95% CI: -1.42, -0.87; p < 0.001), waist-to-hip ratio (WHR) (WMD: -0.01; 95% CI: -0.01, -0.00; p < 0.001), fat mass (FM) (WMD: -0.92 kg; 95% CI: -1.05, -0.79; p < 0.001), and percentage of body fat (%BF) (WMD: -0.68%; 95% CI: -0.94, -0.42; p < 0.001) compared to controls. There was no difference in fat-free mass (FFM) and lean body mass (LBM). Subgroup analyses indicated that probiotics or synbiotics administered as food or supplement resulted in significant changes in anthropometric indices and body composition. However, compared to controls, FM and %BF values were only reduced after probiotic consumption. Our results showed that probiotics or synbiotics have beneficial effects on body weight, central obesity, and body composition in adults and could be useful as an add on to weight loss products and medications.
Collapse
Affiliation(s)
- Saeede Saadati
- Department of Medicine, School of Clinical Sciences, Monash University, Melbourne, Australia
| | - Kaveh Naseri
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Omid Asbaghi
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Yousefi
- Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elnaz Golalipour
- Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Barbora de Courten
- Department of Medicine, School of Clinical Sciences, Monash University, Melbourne, Australia
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Australia
| |
Collapse
|
15
|
Jung H, Yun YR, Hong SW, Shin S. Association between kimchi consumption and obesity based on BMI and abdominal obesity in Korean adults: a cross-sectional analysis of the Health Examinees study. BMJ Open 2024; 14:e076650. [PMID: 38290970 PMCID: PMC10836382 DOI: 10.1136/bmjopen-2023-076650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2024] Open
Abstract
OBJECTIVE Previous animal studies have shown the anti-obesity effect of kimchi-derived probiotic lactic acid bacteria. However, only a few epidemiological studies have investigated the association between kimchi consumption and obesity. Therefore, we aim to assess this relationship in Korean adults. DESIGN Cross-sectional study. SETTING The Health Examinees study was conducted from 2004 to 2013. PARTICIPANTS This study analysed 115 726 participants aged 40-69 years enrolled in the Health Examinees study in Korea. PRIMARY AND SECONDARY OUTCOME MEASURES Obesity was defined as body mass index ≥25 kg/m2, and abdominal obesity was defined as waist circumference ≥90 cm in men and ≥85 cm in women. Kimchi consumption was assessed by the validated food frequency questionnaire. RESULTS In men, total kimchi consumption of 1-3 servings/day was related to a lower prevalence of obesity (OR: 0.875 in 1-2 servings/day and OR: 0.893 in 2-3 servings/day) compared with total kimchi consumption of <1 serving/day. Also, men with the highest baechu kimchi (cabbage kimchi) consumption had 10% lower odds of obesity and abdominal obesity. Participants who consumed kkakdugi (radish kimchi) ≥median were inversely associated with 8% in men and 11% in women with lower odds of abdominal obesity compared with non-consumers, respectively. CONCLUSIONS AND RELEVANCE Consumption of 1-3 servings/day of total kimchi was associated with a lower risk of obesity in men. Baechu kimchi was associated with a lower prevalence of obesity in men, and kkakdugi was associated with a lower prevalence of abdominal obesity in both men and women. However, since all results showed a 'J-shaped' association, it is recommended to limit excessive kimchi intake.
Collapse
Affiliation(s)
- Hyein Jung
- Department of Food and Nutrition, Chung Ang University, Anseong, South Korea
- Division of Cancer Prevention, National Cancer Center, Goyang, South Korea
| | - Ye-Rang Yun
- Technology Innovation Research Division, World Institute of Kimchi, Gwangju, South Korea
| | - Sung Wook Hong
- Technology Innovation Research Division, World Institute of Kimchi, Gwangju, South Korea
| | - Sangah Shin
- Department of Food and Nutrition, Chung Ang University, Anseong, South Korea
| |
Collapse
|
16
|
Baba Y, Saito Y, Kadowaki M, Azuma N, Tsuge D. Effect of Continuous Ingestion of Bifidobacteria and Inulin on Reducing Body Fat: A Randomized, Double-Blind, Placebo-Controlled, Parallel-Group Comparison Study. Nutrients 2023; 15:5025. [PMID: 38140284 PMCID: PMC10745352 DOI: 10.3390/nu15245025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/22/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Bifidobacterium animalis subsp. lactis GCL2505 has been shown to have several positive health effects, including improved defecation frequency and reduced visceral fat. It is known that combined intake of GCL2505 and inulin increases the total number of bifidobacteria compared with ingestion of GCL2505 alone. This randomized, double-blind, placebo-controlled, parallel-group study was conducted to confirm that consumption of GCL2505 and inulin reduces abdominal fat (n = 120). Participants consumed a test beverage containing 1 × 1010 colony-forming units of GCL2505 per 100 g and 2.0 g of inulin per 100 g for 12 weeks. A change in the visceral fat area (VFA) was set as the primary endpoint. There were significant reductions in VFA and total fat area. The intervention significantly increased the total number of bifidobacteria and affected the levels of several lipid markers. Regression analysis of bifidobacteria and measured parameters showed that total bifidobacteria correlated with VFA and body mass index (BMI), while endogenous bifidobacteria and Bifidobacterium animalis subsp. lactis correlated only with BMI, suggesting that increases in both contributed to the decrease in VFA. These results suggest that combined intake of GCL2505 and inulin improves the intestinal environment and reduces abdominal fat in association with the SCFA-mediated pathway.
Collapse
Affiliation(s)
- Yuhei Baba
- Dairy Business Division, Ezaki Glico Co., Ltd., 4-6-5 Utajima, Nishiyodogawa-Ku, Osaka 555-8502, Japan
| | - Yasuo Saito
- R&D Laboratory, Ezaki Glico Co., Ltd., 4-6-5 Utajima, Nishiyodogawa-Ku, Osaka 555-8502, Japan; (Y.S.); (M.K.); (N.A.)
| | - Mei Kadowaki
- R&D Laboratory, Ezaki Glico Co., Ltd., 4-6-5 Utajima, Nishiyodogawa-Ku, Osaka 555-8502, Japan; (Y.S.); (M.K.); (N.A.)
| | - Naoki Azuma
- R&D Laboratory, Ezaki Glico Co., Ltd., 4-6-5 Utajima, Nishiyodogawa-Ku, Osaka 555-8502, Japan; (Y.S.); (M.K.); (N.A.)
| | - Daisuke Tsuge
- Shinagawa Season Terrace Health Care Clinic, Shinagawa Season Terrace (5F), 1-2-70 Konan, Minato-Ku, Tokyo 108-0075, Japan;
| |
Collapse
|
17
|
Moszak M, Pelczyńska M, Wesołek A, Stenclik D, Bogdański P. Does gut microbiota affect the success of weight loss? Evidence and speculation. Nutrition 2023; 116:112111. [PMID: 37562188 DOI: 10.1016/j.nut.2023.112111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 08/12/2023]
Abstract
Obesity is a chronic state of excessive fat accumulation in the body, characterized by significant relapse and complicated by a range of health consequences. In the treatment of obesity, a holistic approach including diet, physical activity, pharmacotherapy, bariatric surgery, and psychological support is recommended. The implications of gut microbiota (GM) as a pathogenic factor in excess body weight have been discussed, and microbial-targeted therapies-including probiotics, prebiotics, and synbiotics-are considered adjuvant in obesity management. Many studies have focused on assessing the effectiveness of probiotics, prebiotics, or synbiotics in weight control, although with inconclusive results, mainly because of the significant heterogeneity of the studies (with different strains, doses, forms, interventional durations, and outcomes). It is also unclear whether using probiotics or synbiotics accompanied by weight loss dietary interventions or as a part of bariatric surgery will be more effective in obesity management, not only in the short-term but also for long-term weight loss maintenance. The aim of this study was to collect and compare the available scientific data on the effectiveness of probiotic or synbiotic supplementation (as a single therapy versus as part of dietary interventions, pharmacotherapy, or bariatric therapy) on weight control in obesity.
Collapse
Affiliation(s)
- Małgorzata Moszak
- Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences, Poznan, Poland.
| | - Marta Pelczyńska
- Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences, Poznan, Poland
| | - Agnieszka Wesołek
- Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences, Poznan, Poland; Doctoral School, Poznan University of Medical Sciences, Poznan, Poland
| | - Dominika Stenclik
- Student Scientific Club of Clinical Dietetics, Department of the Treatment of Obesity and Metabolic Disorders, and Clinical Dietetics, Poznan University of Medical Sciences, Poznan, Poland
| | - Paweł Bogdański
- Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
18
|
Ahmad J, Khan I, Zengin G, Mahomoodally MF. The gut microbiome in the fight against obesity: The potential of dietary factors. FASEB J 2023; 37:e23258. [PMID: 37843880 DOI: 10.1096/fj.202300864rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/17/2023]
Abstract
Obesity as a global public health burden has experienced a drastic growing trend recently. The management of obesity is challenging because of its complex etiology, and various factors are involved in its development, such as genetic and environmental factors. Different approaches are available to treat and/or manage obesity, including diet, physical activity, lifestyle changes, medications, and surgery. However, some of these approaches have inherent limitations and are closely associated with adverse effects. Therefore, probing into a novel/safe approach to treat and/or manage obesity is of fundamental importance. One such approach gaining renewed interest is the potential role of gut microbiota in obesity and its effectiveness in treating this condition. However, there is a dearth of comprehensive compilation of data on the potential role of the gut microbiome in obesity, particularly regarding dietary factors as a therapeutic approach. Therefore, this review aims to provide an updated overview of the role of gut microbiota in obesity, further highlighting the importance of dietary factors, particularly diet, prebiotics, and probiotics, as potential complementary and/or alternative therapeutic options. Moreover, the association of gut microbiota with obese or lean individuals has also been discussed.
Collapse
Affiliation(s)
- Jamil Ahmad
- Department of Human Nutrition, The University of Agriculture Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Imran Khan
- Department of Human Nutrition, The University of Agriculture Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Konya, Turkey
| | - Mohamad Fawzi Mahomoodally
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
- School of Engineering & Technology, Duy Tan University, Da Nang, Vietnam
| |
Collapse
|
19
|
Abstract
Overweight, obesity, undernutrition and their respective sequelae have devastating tolls on personal and public health worldwide. Traditional approaches for treating these conditions with diet, exercise, drugs and/or surgery have shown varying degrees of success, creating an urgent need for new solutions with long-term efficacy. Owing to transformative advances in sequencing, bioinformatics and gnotobiotic experimentation, we now understand that the gut microbiome profoundly impacts energy balance through diverse mechanisms affecting both sides of the energy balance equation. Our growing knowledge of microbial contributions to energy metabolism highlights new opportunities for weight management, including the microbiome-aware improvement of existing tools and novel microbiome-targeted therapies. In this Review, we synthesize current knowledge concerning the bidirectional influences between the gut microbiome and existing weight management strategies, including behaviour-based and clinical approaches, and incorporate a subject-level meta-analysis contrasting the effects of weight management strategies on microbiota composition. We consider how emerging understanding of the gut microbiome alters our prospects for weight management and the challenges that must be overcome for microbiome-focused solutions to achieve success.
Collapse
Affiliation(s)
- Rachel N Carmody
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA.
| | - Jordan E Bisanz
- Department of Biochemistry and Molecular Biology, Penn State Microbiome Center, Huck Institutes of the Life Sciences, The Pennsylvania State University, State College, PA, USA.
| |
Collapse
|
20
|
Mayta-Tovalino F, Diaz-Arocutipa C, Piscoya A, Hernandez AV. Effects of Probiotics on Intermediate Cardiovascular Outcomes in Patients with Overweight or Obesity: A Systematic Review and Meta-Analysis. J Clin Med 2023; 12:jcm12072554. [PMID: 37048636 PMCID: PMC10095238 DOI: 10.3390/jcm12072554] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/16/2023] [Accepted: 02/23/2023] [Indexed: 03/31/2023] Open
Abstract
Background: Clinical trials evaluating the effect of probiotics on cardiovascular intermediate outcomes have been scarce in recent years. We systematically evaluated the efficacy of probiotics on intermediate cardiovascular outcomes in patients with overweight or obesity. Methods: We searched for randomized controlled trials (RCTs) in four databases (until August 2021) that evaluated the effects of probiotics versus controls on intermediate cardiovascular outcomes. The outcomes were body mass index (BMI), weight, systolic blood pressure (SBP), diastolic blood pressure (DBP), glucose, low-density lipoprotein (LDL), and high-density lipoprotein (HDL) levels. Inverse variance random effects meta-analyses were used. The effects were reported as mean difference (MD), with their 95% confidence intervals (95% CI). The quality of evidence (QoE) was assessed with GRADE (grading of recommendations, assessment, development and evaluations) methodology. Results: A total of 25 RCTs were included (n = 2170), with a range of follow-up from two to six months. Probiotics likely reduced BMI (MD −0.27 kg/m2, 95%CI: −0.35 to −0.19; 17 RCTs; I2 = 26%, QoE: moderate), as well as likely reduced weight (MD −0.61 kg, 95%CI: −0.89 to −0.34; 15 RCTs; I2 = 0%, QoE: moderate), and may have slightly reduce LDL (MD −4.08 mg/dL; 95%CI: −6.99 to −1.17; 9 RCTs; I2 = 87%, QoE: low) in comparison to the controls. However, probiotics had no effect on SBP (MD −0.40 mmHg; 95%CI: −5.04 to 4.25; 7 RCTs; I2 = 100%, QoE: very low), DBP (MD −1.73 mmHg; 95%CI: −5.29 to 1.82; 5 RCTs; I2 = 98%, QoE: very low), glucose (MD −0.07 mg/dL; 95%CI −0.89 to 0.75; I2 = 96%, QoE: very low), HDL (MD −1.83 mg/dL; 95%CI: −4.14 to 2.47; 14 RCTs; I2 = 98%, QoE: very low), or triglycerides (MD −3.29 mg/dL, 95%CI −17.03 to 10.45; 14 RCTs, I2 = 95%, QoE: very low) compared to control arms, and the evidence was very uncertain. Conclusions: In obese or overweight patients, BMI, weight, and LDL were lower in patients who received probiotics compared to those who received controls. Other lipids, glucose, and blood pressure were not affected by the probiotics.
Collapse
|
21
|
Tan LJ, Yun YR, Hong SW, Shin S. Effect of kimchi intake on body weight of general community dwellers: a prospective cohort study. Food Funct 2023; 14:2162-2171. [PMID: 36752575 DOI: 10.1039/d2fo03900a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The impact of kimchi intake on weight management has been a topic of interest. We aimed to conduct an epidemiological study to investigate the association between kimchi intake and weight loss. Participants were selected from the Health Examinees cohort study. Kimchi intake was assessed by a 106-item semi-quantitative food frequency questionnaire, including four types of kimchi. Obesity was defined according to the Korean Society for the Study of Obesity guidelines. We performed a correlation analysis among all participants (N = 58 290) and conducted a prospective risk assessment analysis among participants with a baseline BMI value ≥25 kg m-2 (N = 20 066). In the correlation analysis, higher kimchi consumption was found to be associated with a lower increment in BMI change (men, β 0.169, 95% CI (0.025, 0.313); women, β 0.140, 95% CI (0.046, 0.236)) compared with the lower group. The risk assessment analysis indicated that moderate kimchi consumption is associated with normal weight development in men (Q3, hazard ratio, 1.28, 95% CI (1.06, 1.54)). Baechu [cabbage] kimchi intake also showed a significant association among men participants (all p for trend <0.05). In conclusion, moderate kimchi intake was associated with weight loss among middle-aged and older Koreans, especially in men.
Collapse
Affiliation(s)
- Li-Juan Tan
- Department of Food and Nutrition, Chung-Ang University, Gyeonggi-do 17546, South Korea.
| | - Ye-Rang Yun
- Technology Innovation Research Division, World Institute of Kimchi, Gwangju 61755, South Korea.
| | - Sung Wook Hong
- Technology Innovation Research Division, World Institute of Kimchi, Gwangju 61755, South Korea.
| | - Sangah Shin
- Department of Food and Nutrition, Chung-Ang University, Gyeonggi-do 17546, South Korea.
| |
Collapse
|
22
|
Prokopidis K, Giannos P, Kirwan R, Ispoglou T, Galli F, Witard OC, Triantafyllidis KK, Kechagias KS, Morwani-Mangnani J, Ticinesi A, Isanejad M. Impact of probiotics on muscle mass, muscle strength and lean mass: a systematic review and meta-analysis of randomized controlled trials. J Cachexia Sarcopenia Muscle 2023; 14:30-44. [PMID: 36414567 PMCID: PMC9891957 DOI: 10.1002/jcsm.13132] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/27/2022] [Accepted: 10/25/2022] [Indexed: 11/24/2022] Open
Abstract
Probiotics have shown potential to counteract sarcopenia, although the extent to which they can influence domains of sarcopenia such as muscle mass and strength in humans is unclear. The aim of this systematic review and meta-analysis was to explore the impact of probiotic supplementation on muscle mass, total lean mass and muscle strength in human adults. A literature search of randomized controlled trials (RCTs) was conducted through PubMed, Scopus, Web of Science and Cochrane Library from inception until June 2022. Eligible RCTs compared the effect of probiotic supplementation versus placebo on muscle and total lean mass and global muscle strength (composite score of all muscle strength outcomes) in adults (>18 years). To evaluate the differences between groups, a meta-analysis was conducted using the random effects inverse-variance model by utilizing standardized mean differences. Twenty-four studies were included in the systematic review and meta-analysis exploring the effects of probiotics on muscle mass, total lean mass and global muscle strength. Our main analysis (k = 10) revealed that muscle mass was improved following probiotics compared with placebo (SMD: 0.42, 95% CI: 0.10-0.74, I2 = 57%, P = 0.009), although no changes were revealed in relation to total lean mass (k = 12; SMD: -0.03, 95% CI: -0.19 - 0.13, I2 = 0%, P = 0.69). Interestingly, a significant increase in global muscle strength was also observed among six RCTs (SMD: 0.69, 95% CI: 0.33-1.06, I2 = 64%, P = 0.0002). Probiotic supplementation enhances both muscle mass and global muscle strength; however, no beneficial effects were observed in total lean mass. Investigating the physiological mechanisms underpinning different ageing groups and elucidating appropriate probiotic strains for optimal gains in muscle mass and strength are warranted.
Collapse
Affiliation(s)
- Konstantinos Prokopidis
- Department of Musculoskeletal Biology, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK.,Society of Meta-research and Biomedical Innovation, London, UK
| | - Panagiotis Giannos
- Society of Meta-research and Biomedical Innovation, London, UK.,Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, UK
| | - Richard Kirwan
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, UK
| | | | - Francesco Galli
- Department of Pharmaceutical Sciences, Lipidomics and Micronutrient Vitamins Laboratory and Human Anatomy Laboratory, University of Perugia, Perugia, Italy
| | - Oliver C Witard
- Faculty of Life Sciences and Medicine, Centre for Human and Applied Physiological Sciences, King's College London, London, UK
| | - Konstantinos K Triantafyllidis
- Society of Meta-research and Biomedical Innovation, London, UK.,Department of Nutrition & Dietetics, Musgrove Park Hospital, Taunton & Somerset NHS Foundation Trust, Taunton, UK
| | - Konstantinos S Kechagias
- Society of Meta-research and Biomedical Innovation, London, UK.,Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Jordi Morwani-Mangnani
- Department of Molecular Epidemiology, Leiden University Medical Center, Leiden, Netherlands
| | - Andrea Ticinesi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Masoud Isanejad
- Department of Musculoskeletal Biology, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| |
Collapse
|
23
|
Anti-obesity potential of heat-killed Lactiplantibacillus plantarum K8 in 3T3-L1 cells and high-fat diet mice. Heliyon 2023; 9:e12926. [PMID: 36699277 PMCID: PMC9868538 DOI: 10.1016/j.heliyon.2023.e12926] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 01/04/2023] [Accepted: 01/09/2023] [Indexed: 01/14/2023] Open
Abstract
Probiotics exert anti-obesity effects in high-fat diet (HFD) obese mice, but there are few studies on anti-obesity using heat-killed probiotics. Here, we investigated the effect of heat-killed Lactiplantibacillus plantarum K8 (K8HK) on the anti-differentiation of 3T3-L1 preadipocytes and on anti-obesity in HFD mice. K8HK decreased triglyceride (TG) accumulation in 3T3-L1 cells. Specifically, 1 × 109 CFU/mL K8HK showed the greatest anti-obesity effect, while the same concentration of live L. plantarum K8 (K8 Live) showed cytotoxicity. K8HK increased suppressor of cytokine signaling (SOCS)-1, which might affect the JAK2-STAT3 signaling pathway activated during differentiation. As a result, the levels of transcription factors of adipogenesis such as Peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT/enhancer binding protein α (C/EBPα) decreased in K8HK-treated cells. We also observed a decrease in the lipogenic enzymes and fatty acid binding protein 4 (FABP4). In the mouse study, oral ingestion of K8 Live and K8HK showed weight reduction and decrease in blood TG content at 12 weeks of feeding. In addition, TG synthesis was suppressed in liver and adipose tissues, and genes related to fat metabolism were suppressed. This study suggests that K8HK could be a good material to prevent obesity by inhibiting adipogenesis genes related to fat metabolism.
Collapse
|
24
|
Sohn M, Jung H, Lee WS, Kim TH, Lim S. Effect of Lactobacillus plantarum LMT1-48 on Body Fat in Overweight Subjects: A Randomized, Double-Blind, Placebo-Controlled Trial. Diabetes Metab J 2023; 47:92-103. [PMID: 35487505 PMCID: PMC9925147 DOI: 10.4093/dmj.2021.0370] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/08/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND We investigated whether Lactobacillus plantarum strain LMT1-48, isolated from Korean fermented foods and newborn feces, is a suitable probiotic supplement to treat overweight subjects. METHODS In this randomized, double-blind, placebo-controlled clinical trial, 100 volunteers with a body mass index of 25 to 30 kg/m2 were assigned randomly (1:1) to receive 2×1010 colony forming units of LMT1-48 or to a placebo treatment group. Body composition was measured by dual-energy X-ray absorptiometry, and abdominal visceral fat area (VFA) and subcutaneous fat area were measured by computed tomography scanning. Changes in body fat, VFA, anthropometric parameters, and biomarkers were compared between the two treatment groups (ClinicalTrials.gov number: NCT03759743). RESULTS After 12 weeks of treatment, the body weight decreased significantly from 76.6±9.4 to 75.7±9.2 kg in the LMT1-48 group but did not change in the placebo group (P=0.022 between groups). A similar pattern was found in abdominal VFA between the two groups (P=0.041). Serum insulin levels, the corresponding homeostasis model assessment of insulin resistance, and leptin levels decreased in the LMT1-48 group but increased in the placebo group (all P<0.05). Decrease in body weight and body mass index by treatment with LMT1-48 was correlated with increase in Lactobacillus levels significantly. LMT1-48 also increased Oscillibacter levels significantly, which were negatively correlated with triglyceride and alanine transaminase levels. CONCLUSION Administration of LMT1-48 decreased body weight, abdominal VFA, insulin resistance, and leptin levels in these subjects with overweight, suggesting its anti-obesogenic therapeutic potential.
Collapse
Affiliation(s)
- Minji Sohn
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Hyeyoung Jung
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | | | | | - Soo Lim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
- Corresponding author: Soo Lim https://orcid.org/0000-0002-4137-1671 Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, 82 Gumi-ro 173beon-gil, Bundang-gu, Seongnam 13620, Korea E-mail:
| |
Collapse
|
25
|
Dincer E, Kivanc M. Evaluation of metabolic activities and probiotic characteristics of two Latilactobacillus sakei strains isolated from pastırma. World J Microbiol Biotechnol 2022; 38:237. [DOI: 10.1007/s11274-022-03431-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 10/02/2022] [Indexed: 10/17/2022]
|
26
|
Wang D, Chen G, Tang Y, Li J, Huang R, Ye M, Ming J, Wu Y, Xu F, Lai X, Zhang Q, Zhang W. Correlation between autochthonous microbial communities and flavor profiles during the fermentation of mustard green paocai (Brassica juncea Coss.), a typical industrial-scaled salted fermented vegetable. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
27
|
Cho YG, Yang YJ, Yoon YS, Lee ES, Lee JH, Jeong Y, Kang CH. Effect of MED-02 Containing Two Probiotic Strains, Limosilactobacillus fermentum MG4231 and MG4244, on Body Fat Reduction in Overweight or Obese Subjects: A Randomized, Multicenter, Double-Blind, Placebo-Controlled Study. Nutrients 2022; 14:nu14173583. [PMID: 36079841 PMCID: PMC9460810 DOI: 10.3390/nu14173583] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/12/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
MED-02 is a complex supplement containing two probiotic strains, Limosilactobacillus fermentum MG4231 and MG4244, isolated from humans. The anti-obesity effects and safety profile of MED-02 were assessed in overweight and obese subjects. In this randomized, double-blinded, placebo-controlled, multicenter study, 100 healthy obese and overweight subjects aged 19–65 years with a body mass index (BMI) between 25 and 31.9 kg/m2 were recruited and randomized to receive a placebo or MED-02 (5 × 109 CFU/day). After 12 weeks of consumption, body fat mass (−1166.82 g vs. −382.08 g; p = 0.024) and body fat percentage (−0.85% vs. −0.11%; p = 0.030), as evaluated by dual-energy X-ray absorptiometry (DEXA) and body weight (−2.06 kg vs. −1.22 kg; p = 0.041), were significantly reduced in the MED-02 group compared to the placebo group. The safety profile did not differ among the groups. No serious adverse effects were observed in either group. These results suggest that MED-02 is a safe and beneficial probiotics that reduces body fat and body weight in overweight or obese individuals.
Collapse
Affiliation(s)
- Young Gyu Cho
- Department of Family Medicine, Seoul Paik Hospital, Inje University College of Medicine, Seoul 04551, Korea
| | - Yun Jun Yang
- Department of Family Medicine, Ilsan Paik Hospital, Inje University College of Medicine, Goyang 10380, Korea
- Correspondence:
| | - Yeong Sook Yoon
- Department of Family Medicine, Ilsan Paik Hospital, Inje University College of Medicine, Goyang 10380, Korea
| | - Eon Sook Lee
- Department of Family Medicine, Ilsan Paik Hospital, Inje University College of Medicine, Goyang 10380, Korea
| | - Jun Hyung Lee
- Department of Family Medicine, Ilsan Paik Hospital, Inje University College of Medicine, Goyang 10380, Korea
| | - Yulah Jeong
- MEDIOGEN, Co., Ltd., Biovalley 1-ro, Jecheon-si 27159, Korea
| | - Chang Ho Kang
- MEDIOGEN, Co., Ltd., Biovalley 1-ro, Jecheon-si 27159, Korea
| |
Collapse
|
28
|
Yu L, Chen Y, Duan H, Qiao N, Wang G, Zhao J, Zhai Q, Tian F, Chen W. Latilactobacillus sakei: a candidate probiotic with a key role in food fermentations and health promotion. Crit Rev Food Sci Nutr 2022; 64:978-995. [PMID: 35997270 DOI: 10.1080/10408398.2022.2111402] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Latilactobacillus sakei is used extensively in industrial production and food fermentations. The species is primarily derived from fermented meat and vegetable products and is also found in human feces. Genomics and metabolomics have revealed unique metabolic pathways in L. sakei and molecular mechanisms underlying its competitive advantages in different habitats, which are mostly attributed to its flexible carbohydrate metabolism, cold tolerance, acid and salt tolerance, ability to cope with oxygen changes, and heme uptake. In recent years, probiotic effects of L. sakei and its metabolites have been identified, including the ability to effectively alleviate metabolic syndrome, inflammatory bowel disease, and atopic dermatitis. This review summarizes the genomic and metabolic characteristics of L. sakei and its metabolites and describes their applications, laying a foundation for their expanded use across the food and healthcare industries.
Collapse
Affiliation(s)
- Leilei Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Research Laboratory for Probiotics at Jiangnan University, Wuxi, Jiangsu, China
| | - Ying Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Hui Duan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China
| | - Nanzhen Qiao
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Gang Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Research Laboratory for Probiotics at Jiangnan University, Wuxi, Jiangsu, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Research Laboratory for Probiotics at Jiangnan University, Wuxi, Jiangsu, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Research Laboratory for Probiotics at Jiangnan University, Wuxi, Jiangsu, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Research Laboratory for Probiotics at Jiangnan University, Wuxi, Jiangsu, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
29
|
Ghorbani Z, Kazemi A, Bartolomaeus TUP, Martami F, Noormohammadi M, Salari A, Löber U, Balou HA, Forslund SK, Mahdavi-Roshan M. The effect of probiotic and synbiotic supplementation on lipid parameters among patients with cardiometabolic risk factors: a systematic review and meta-analysis of clinical trials. Cardiovasc Res 2022; 119:933-956. [PMID: 35934838 DOI: 10.1093/cvr/cvac128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/28/2022] [Accepted: 07/08/2022] [Indexed: 11/12/2022] Open
Abstract
Although the available evidence emphasizes the beneficial effects of probiotics in normalizing various cardiometabolic markers, there is still substantial uncertainty in this regard. Thus, we set out to determine the effect sizes of probiotics on blood lipid parameters more coherently. A systematic literature search of the Medline (PubMed) and Scopus databases was conducted from inception to February 12, 2021, applying both MeSH terms and free text terms to find the relevant randomized controlled trials (RCTs). The meta-analysis was conducted based on a random-effect model to calculate the mean effect sizes demonstrated as weighted mean differences (WMD) and the 95% confidence intervals (95%CI). To explore the heterogeneity, the Cochrane Chi-squared test, and analysis of Galbraith plots were performed. Meta-analysis of data from 40 RCTs (n = 2795) indicated a significant decrease in serum/plasma triglyceride (WMD (95%CI) -12.26 (-17.11- -7.41) mg/dL; P-value <0.001; I2 (%)= 29.9; P heterogeneity = 0.034)), total cholesterol (with high heterogeneity) (WMD (95%CI) -8.43 (-11.90- -4.95) mg/dL; P-value <0.001; I2 (%) =56.8; P heterogeneity < 0.001), LDL-C (WMD (95%CI) -5.08 (-7.61, -2.56) mg/dL; P-value <0.001; I2 (%) =42.7; P heterogeneity =0.002), and HDL-C (with high heterogeneity) (WMD (95%CI) 1.14 (0.23, 2.05) mg/dL; P-value =0.014; I2 (%) = 59.8; P heterogeneity < 0.001) following receiving probiotic/synbiotic supplements. Collectively, the current preliminary evidence supports the effectiveness of probiotics/synbiotics in improving dyslipidemia and various lipid parameters more prominently among subjects with hyperlipidemia, diabetes, and metabolic syndrome. However, large and well conducted RCTs are required to provide further convincing support for these results.
Collapse
Affiliation(s)
- Zeinab Ghorbani
- Cardiovascular Diseases Research Center, Department of Cardiology, Heshmat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.,Department of Clinical Nutrition, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Asma Kazemi
- Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Theda U P Bartolomaeus
- Experimental and Clinical Research Center, A Cooperation of Charité-Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Lindenberger Weg 80, 13125, Berlin, Germany.,Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany.,Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site, Berlin, Berlin, Germany
| | - Fahimeh Martami
- School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Morvarid Noormohammadi
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Arsalan Salari
- Cardiovascular Diseases Research Center, Department of Cardiology, Heshmat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Ulrike Löber
- Experimental and Clinical Research Center, A Cooperation of Charité-Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Lindenberger Weg 80, 13125, Berlin, Germany.,Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany.,Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site, Berlin, Berlin, Germany
| | - Heydar Ali Balou
- Razi Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Sofia K Forslund
- Experimental and Clinical Research Center, A Cooperation of Charité-Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Lindenberger Weg 80, 13125, Berlin, Germany.,Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany.,Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site, Berlin, Berlin, Germany.,Structural and Computational Biology Unit, European Molecular Biology Laboratory, Structural and Computational Biology Unit, 69117 Heidelberg, Germany
| | - Marjan Mahdavi-Roshan
- Cardiovascular Diseases Research Center, Department of Cardiology, Heshmat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.,Department of Clinical Nutrition, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
30
|
Lee JH, Park JH. Host-microbial interactions in metabolic diseases: from diet to immunity. JOURNAL OF MICROBIOLOGY (SEOUL, KOREA) 2022; 60:561-575. [PMID: 35511325 DOI: 10.1007/s12275-022-2087-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/23/2022] [Accepted: 04/01/2022] [Indexed: 12/14/2022]
Abstract
Growing evidence suggests that the gut microbiome is an important contributor to metabolic diseases. Alterations in microbial communities are associated with changes in lipid metabolism, glucose homeostasis, intestinal barrier functions, and chronic inflammation, all of which can lead to metabolic disorders. Therefore, the gut microbiome may represent a novel therapeutic target for obesity, type 2 diabetes, and nonalcoholic fatty liver disease. This review discusses how gut microbes and their products affect metabolic diseases and outlines potential treatment approaches via manipulation of the gut microbiome. Increasing our understanding of the interactions between the gut microbiome and host metabolism may help restore the healthy symbiotic relationship between them.
Collapse
Affiliation(s)
- Ju-Hyung Lee
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Joo-Hong Park
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
31
|
Keathley J, Kearney M, Garneau V, Toro-Martín JD, Varin TV, Pilon G, Couture P, Marette A, Vohl MC, Couillard C. Changes in systolic blood pressure, postprandial glucose, and gut microbial composition following mango consumption in individuals with overweight and obesity. Appl Physiol Nutr Metab 2022; 47:565-574. [PMID: 35506190 DOI: 10.1139/apnm-2021-0637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study aimed to explore the impact of daily mango consumption (Mangifera indica) on cardiometabolic health and gut microbiota in individuals with overweight and obesity. Changes in cardiometabolic variables, gut microbiota diversity and composition, physical activity habits, and dietary intakes were assessed in 8 males and 19 females with overweight and obesity who consumed 280 g/day of mango pulp for 8 weeks. There were no significant changes in body weight, waist circumference, or plasma lipid levels. However, after consuming mangos for 8 weeks, participants showed a 3.5% reduction in systolic blood pressure (-4 ± 6 mm Hg, p = 0.011) as well as a 10.5% reduction in 2-hour plasma glucose concentration after a 75-g oral glucose tolerance test (-0.58 ± 1.03 mmol/L, p = 0.008). These beneficial cardiometabolic outcomes were accompanied with enhanced gut microbiota diversity and with changes in the abundance of specific gut bacterial species. Mango consumption may have beneficial effects on both blood pressure and glucose homeostasis in individuals with overweight and obesity. Further studies are warranted to determine the impact of long-term and regular mango intake on cardiometabolic risk factors of individuals with overweight and obesity, and the potential mechanisms linking gut microbial changes to those health benefits. This study was registered with clinicaltrials.gov as NCT03825276. Novelty: A 3.5% reduction in systolic blood pressure is noted after consuming mangos for 8 weeks. A 10.5% reduction in 2-hour plasma glucose concentration of an oral glucose tolerance test is observed after consuming mangos for 8 weeks. Mango consumption for 8 weeks may enhance gut microbial diversity and abundance of specific bacterial species.
Collapse
Affiliation(s)
- Justine Keathley
- Centre Nutrition, santé et société (NUTRISS), Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, QC G1V 0A6, Canada.,School of Nutrition, Université Laval, Québec, QC G1V 0A6, Canada
| | - Michèle Kearney
- Centre Nutrition, santé et société (NUTRISS), Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, QC G1V 0A6, Canada.,School of Nutrition, Université Laval, Québec, QC G1V 0A6, Canada
| | - Véronique Garneau
- Centre Nutrition, santé et société (NUTRISS), Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, QC G1V 0A6, Canada.,School of Nutrition, Université Laval, Québec, QC G1V 0A6, Canada
| | - Juan de Toro-Martín
- Centre Nutrition, santé et société (NUTRISS), Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, QC G1V 0A6, Canada.,School of Nutrition, Université Laval, Québec, QC G1V 0A6, Canada
| | - Thibault V Varin
- Centre Nutrition, santé et société (NUTRISS), Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, QC G1V 0A6, Canada
| | - Geneviève Pilon
- Centre Nutrition, santé et société (NUTRISS), Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, QC G1V 0A6, Canada.,Québec Heart and Lung Institute (IUCPQ) Research Centre, Québec, QC G1V 4G5, Canada
| | - Patrick Couture
- Centre Nutrition, santé et société (NUTRISS), Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, QC G1V 0A6, Canada
| | - André Marette
- Centre Nutrition, santé et société (NUTRISS), Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, QC G1V 0A6, Canada.,Québec Heart and Lung Institute (IUCPQ) Research Centre, Québec, QC G1V 4G5, Canada
| | - Marie-Claude Vohl
- Centre Nutrition, santé et société (NUTRISS), Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, QC G1V 0A6, Canada.,School of Nutrition, Université Laval, Québec, QC G1V 0A6, Canada
| | - Charles Couillard
- Centre Nutrition, santé et société (NUTRISS), Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, QC G1V 0A6, Canada.,School of Nutrition, Université Laval, Québec, QC G1V 0A6, Canada
| |
Collapse
|
32
|
Álvarez-Arraño V, Martín-Peláez S. Effects of Probiotics and Synbiotics on Weight Loss in Subjects with Overweight or Obesity: A Systematic Review. Nutrients 2021; 13:nu13103627. [PMID: 34684633 PMCID: PMC8540110 DOI: 10.3390/nu13103627] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/04/2021] [Accepted: 10/13/2021] [Indexed: 12/11/2022] Open
Abstract
Intestinal microbiota has been shown to be a potential determining factor in the development of obesity. The objective of this systematic review is to collect and learn, based on the latest available evidence, the effect of the use of probiotics and synbiotics in randomized clinical trials on weight loss in people with overweight and obesity. A search for articles was carried out in PubMed, Web of science and Scopus until September 2021, using search strategies that included the terms “obesity”, “overweight”, “probiotic”, “synbiotic”, “Lactobacillus”, “Bifidobacterium” and “weight loss”. Of the 185 articles found, only 27 complied with the selection criteria and were analyzed in the review, of which 23 observed positive effects on weight loss. The intake of probiotics or synbiotics could lead to significant weight reductions, either maintaining habitual lifestyle habits or in combination with energy restriction and/or increased physical activity for an average of 12 weeks. Specific strains belonging to the genus Lactobacillus and Bifidobacterium were the most used and those that showed the best results in reducing body weight. Both probiotics and synbiotics have the potential to help in weight loss in overweight and obese populations.
Collapse
Affiliation(s)
- Valentina Álvarez-Arraño
- Departamento de Medicina Preventiva y Salud Pública, Facultad de Medicina, Universidad de Granada, 18071 Granada, Spain;
| | - Sandra Martín-Peláez
- Departamento de Medicina Preventiva y Salud Pública, Facultad de Medicina, Universidad de Granada, 18071 Granada, Spain;
- Instituto de Investigación Biosanitaria de Granada, 18012 Granada, Spain
- Correspondence:
| |
Collapse
|
33
|
Health-Promoting Constituents and Selected Quality Parameters of Different Types of Kimchi: Fermented Plant Products. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2021; 2021:9925344. [PMID: 34336996 PMCID: PMC8321756 DOI: 10.1155/2021/9925344] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 07/01/2021] [Accepted: 07/09/2021] [Indexed: 12/13/2022]
Abstract
The aim of this study was to evaluate the quality and health-promoting constituents of several variants of kimchi obtained from Chinese cabbage, kohlrabi, white radish, and cucumbers. The level of dry matter, total soluble solids, ash, total acidity, pH, dietary fiber, and vitamins C, B1, and B2, as well as total polyphenols (TP) and antioxidant activity AA (ABTS, DPPH) in kimchi, were determined. In addition, color parameters were determined (L∗, a∗, b∗, C∗, and ho). Kimchi with the highest proportion of Chinese cabbage (63%) had the highest levels of dry matter (11.01 g), ash (2.57 g), and vitamins: C, B1, and B2 (51 mg, 52 μg, and 242 μg, respectively), expressed per 100 g of fresh weight. In addition, this product showed the highest total AA of 132.3 μmol Tx/g (ABTS) and 49.7 μmol Tx/g (DPPH) due to its high level of TP (194 mg/100 g). Cucumber-derived kimchi (85%) also had a high content of TP (147 mg/100 g) and high AA of 88.7 μmol Tx/g (ABTS) and 36.3 μmol Tx/g (DPPH). Additionally, stuffed kimchi from kohlrabi (88%) had the highest amounts of total dietary fiber, 3.65 g/100 g fresh weight. In all products, red (a∗) and yellow (b∗) were the dominant colors, with values of L∗ ranging between 32.63 and 53.16. In general, our studies have shown that depending on the raw materials used, kimchi is a good source of dietary fiber but also vitamins and polyphenols.
Collapse
|
34
|
Pontes KSDS, Guedes MR, Cunha MRD, Mattos SDS, Barreto Silva MI, Neves MF, Marques BCAA, Klein MRST. Effects of probiotics on body adiposity and cardiovascular risk markers in individuals with overweight and obesity: A systematic review and meta-analysis of randomized controlled trials. Clin Nutr 2021; 40:4915-4931. [PMID: 34358838 DOI: 10.1016/j.clnu.2021.06.023] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/20/2021] [Accepted: 06/23/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND & AIMS Evidence suggests that gut microbiota is a potential factor in the pathophysiology of both obesity and related metabolic disorders. While individual randomized controlled trials (RCTs) have evaluated the effects of probiotics on adiposity and cardiovascular disease (CVD) risk factors in subjects with overweight and obesity, the results are inconsistent. Thus, this systematic review and meta-analysis aimed to evaluate the effects of probiotic supplementation on body weight, body adiposity and CVD risk markers in overweight and obese subjects. METHODS A systematic search for RCTs published up to December 2020 was conducted in MEDLINE (via PubMed), EMBASE, Scopus and LILACS. Meta-analysis using a random-effects model was chosen to analyze the impact of combined trials. RESULTS Twenty-six RCTs (n = 1720) were included. Data pooling showed a significant effect of probiotics in reducing body weight (MD:-0.70 kg; 95%CI:-1.04,-0.35 kg; P < 0.0001), body mass index (BMI) (MD:-0.24 kg/m2; 95%CI:-0.35,-0.12 kg/m2; P = 0.0001), waist circumference (WC) (MD:-1.13 cm; 95%CI:-1.54,-0.73 cm; P < 0.0001), fat mass (MD:-0.71 kg; 95%CI:-1.10,-0.32 kg; P = 0.0004), tumor necrosis factor-α (MD:-0.16 pg/ml; 95%CI:-0.24,-0.08 pg/ml; P = 0.0001), insulin (MD:-0.85mcU/ml; 95%CI:-1.50,-0.21mcU/ml; P = 0.010), total cholesterol (MD:-0.16 mmol/l; 95%CI:-0.26,-0.05 mmol/l; P = 0.003) and LDL (MD:-0.09 mmol/l; 95%CI:-0.16,-0.03 mmol/l; P = 0.006) compared with control groups. There was a significant decrease in body weight, BMI and WC in studies using both single and multi-bacterial species. Decreases in body adiposity parameters were only observed in studies using a probiotic dose of ≥ 1010 CFU and for ≥8 weeks duration. CONCLUSIONS The present meta-analysis suggests that probiotics consumption may be helpful for improving body weight, body adiposity and some CVD risk markers in individuals with overweight and obesity. The review was registered on PROSPERO (International prospective register of systematic reviews): CRD42020183136.
Collapse
Affiliation(s)
- Karine Scanci da Silva Pontes
- Post-Graduation Program in Clinical and Experimental Pathophysiology, State University of Rio de Janeiro (UERJ), Av. Professor Manuel de Abreu, 444, Térreo - Rio de Janeiro, RJ, 20550-170, Brazil.
| | - Marcella Rodrigues Guedes
- Post-Graduation Program in Clinical and Experimental Pathophysiology, State University of Rio de Janeiro (UERJ), Av. Professor Manuel de Abreu, 444, Térreo - Rio de Janeiro, RJ, 20550-170, Brazil.
| | - Michelle Rabello da Cunha
- Department of Clinical Medicine, State University of Rio de Janeiro (UERJ), Av.Vinte e Oito de Setembro, 77 Sala 329, Rio de Janeiro, RJ, 20551-030, Brazil.
| | - Samanta de Souza Mattos
- Department of Clinical Medicine, State University of Rio de Janeiro (UERJ), Av.Vinte e Oito de Setembro, 77 Sala 329, Rio de Janeiro, RJ, 20551-030, Brazil.
| | - Maria Inês Barreto Silva
- Department of Applied Nutrition, Nutrition Institute, State University of Rio de Janeiro (UERJ), Rua São Francisco Xavier, 524 - Pavilhão João Lyra Filho, 12º Andar, Bloco D, Rio de Janeiro, RJ, 20559-900, Brazil; Department of Applied Nutrition, Nutrition School, Federal University of the State of Rio de Janeiro (UNIRIO), Av. Pasteur, 296, Botafogo, 3º Andar, Rio de Janeiro, RJ, 22290-250, Brazil.
| | - Mario Fritsch Neves
- Department of Clinical Medicine, State University of Rio de Janeiro (UERJ), Av.Vinte e Oito de Setembro, 77 Sala 329, Rio de Janeiro, RJ, 20551-030, Brazil.
| | - Bianca Cristina Antunes Alves Marques
- Department of Clinical Medicine, State University of Rio de Janeiro (UERJ), Av.Vinte e Oito de Setembro, 77 Sala 329, Rio de Janeiro, RJ, 20551-030, Brazil; Department of Nutrition and Dietetics, National Cancer Institute (INCA), Av. Binário do Porto, 831, Rio de Janeiro, RJ, 20081-250, Brazil.
| | - Márcia Regina Simas Torres Klein
- Department of Applied Nutrition, Nutrition Institute, State University of Rio de Janeiro (UERJ), Rua São Francisco Xavier, 524 - Pavilhão João Lyra Filho, 12º Andar, Bloco D, Rio de Janeiro, RJ, 20559-900, Brazil.
| |
Collapse
|
35
|
Lee SK. Don't Worry, Heavy Moms; Just Eat Your Broccoli(or Kimchi)! Co-diet of high-fiber and high-fat helps give birth to healthy offspring through gut microbiota-to-brain signaling. Mol Cells 2021; 44:422-424. [PMID: 34140427 PMCID: PMC8245314 DOI: 10.14348/molcells.2021.0118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 05/31/2021] [Indexed: 02/06/2023] Open
Affiliation(s)
- Sun-Kyung Lee
- Department of Life Sciences, Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
36
|
Zhao X, Zhong X, Liu X, Wang X, Gao X. Therapeutic and Improving Function of Lactobacilli in the Prevention and Treatment of Cardiovascular-Related Diseases: A Novel Perspective From Gut Microbiota. Front Nutr 2021; 8:693412. [PMID: 34164427 PMCID: PMC8215129 DOI: 10.3389/fnut.2021.693412] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 05/14/2021] [Indexed: 12/13/2022] Open
Abstract
The occurrence and development of cardiovascular-related diseases are associated with structural and functional changes in gut microbiota (GM). The accumulation of beneficial gut commensals contributes to the improvement of cardiovascular-related diseases. The cardiovascular-related diseases that can be relieved by Lactobacillus supplementation, including hypercholesterolemia, atherosclerosis, myocardial infarction, heart failure, type 2 diabetes mellitus, and obesity, have expanded. As probiotics, lactobacilli occupy a substantial part of the GM and play important functional roles through various GM-derived metabolites. Lactobacilli ultimately have a beneficial impact on lipid metabolism, inflammatory factors, and oxidative stress to relieve the symptoms of cardiovascular-related diseases. However, the axis and cellular process of gut commensal Lactobacillus in improving cardiovascular-related diseases have not been fully elucidated. Additionally, Lactobacillus strains produce diverse antimicrobial peptides, which help maintain intestinal homeostasis and ameliorate cardiovascular-related diseases. These strains are a field that needs to be further investigated immediately. Thus, this review demonstrated the mechanisms and summarized the evidence of the benefit of Lactobacillus strain supplementation from animal studies and human clinical trials. We also highlighted a broad range of lactobacilli candidates with therapeutic capability by mining their metabolites. Our study provides instruction in the development of lactobacilli as a functional food to improve cardiovascular-related diseases.
Collapse
Affiliation(s)
- Xin Zhao
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xinqin Zhong
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiao Liu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaoying Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiumei Gao
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
37
|
Sohn M, Na GY, Chu J, Joung H, Kim BK, Lim S. Efficacy and Safety of Lactobacillus plantarum K50 on Lipids in Koreans With Obesity: A Randomized, Double-Blind Controlled Clinical Trial. Front Endocrinol (Lausanne) 2021; 12:790046. [PMID: 35126309 PMCID: PMC8807682 DOI: 10.3389/fendo.2021.790046] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Only few studies have investigated the role of probiotics in the development of obesity. We aimed to determine the efficacy and safety of an intake of Lactobacillus plantarum K50 (LPK) on body fat and lipid profiles in people with obesity. METHODS This randomized, double-blind, placebo-controlled, clinical trial involved 81 adults with a body mass index of 25-30 kg/m2 who were assigned randomly to a diet including 4 × 109 colony-forming unit of LPK or a placebo. Changes in body fat, anthropometric parameters, and biomarkers of obesity were compared using a linear mixed-effect model. RESULTS After 12 weeks of treatment, body weight, fat mass, and abdominal fat area did not change significantly in the two groups. However, total cholesterol levels decreased from 209.4 ± 34.4 mg/dL to 203.5 ± 30.9 mg/dL in the LPK group, but increased from 194.7 ± 37.5 mg/dL to 199.9 ± 30.7 mg/dL in the placebo group (P = 0.037). Similarly, triglyceride levels decreased from 135.4 ± 115.8 mg/dL to 114.5 ± 65.9 mg/dL in the LPK group, with a significant difference between groups. LPK supplementation also tended to decrease leptin levels compared with placebo. It also changed the distribution of gut microbiota significantly, with an increase in L. plantarum and a decrease in Actinobacteria, both of whose changes in abundance were correlated with changes in visceral adiposity, with borderline significance. CONCLUSION A 12-week consumption of LPK reduced the total cholesterol and triglyceride levels significantly with favorable alterations in microbiota, suggesting potential benefits for controlling blood lipid profiles.
Collapse
Affiliation(s)
- Minji Sohn
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, South Korea
| | - Ga Yoon Na
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, South Korea
| | - Jaeryang Chu
- Microbiome Research Laboratory, Chong Kun Dang BiO Corporation (CKD BiO Corp.) Research Institute, Ansan, South Korea
| | - Hyunchae Joung
- Microbiome Research Laboratory, Chong Kun Dang BiO Corporation (CKD BiO Corp.) Research Institute, Ansan, South Korea
| | - Byung-Kook Kim
- Head of Probiotics & Microbiome Part, Chong Kun Dang Bio Corporation (CKD BiO Corp.) Research Institute, Ansan, South Korea
| | - Soo Lim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, South Korea
- *Correspondence: Soo Lim,
| |
Collapse
|
38
|
Bousquet J, Cristol JP, Czarlewski W, Anto JM, Martineau A, Haahtela T, Fonseca SC, Iaccarino G, Blain H, Fiocchi A, Canonica GW, Fonseca JA, Vidal A, Choi HJ, Kim HJ, Le Moing V, Reynes J, Sheikh A, Akdis CA, Zuberbier T. Nrf2-interacting nutrients and COVID-19: time for research to develop adaptation strategies. Clin Transl Allergy 2020; 10:58. [PMID: 33292691 PMCID: PMC7711617 DOI: 10.1186/s13601-020-00362-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/12/2020] [Indexed: 02/07/2023] Open
Abstract
There are large between- and within-country variations in COVID-19 death rates. Some very low death rate settings such as Eastern Asia, Central Europe, the Balkans and Africa have a common feature of eating large quantities of fermented foods whose intake is associated with the activation of the Nrf2 (Nuclear factor (erythroid-derived 2)-like 2) anti-oxidant transcription factor. There are many Nrf2-interacting nutrients (berberine, curcumin, epigallocatechin gallate, genistein, quercetin, resveratrol, sulforaphane) that all act similarly to reduce insulin resistance, endothelial damage, lung injury and cytokine storm. They also act on the same mechanisms (mTOR: Mammalian target of rapamycin, PPARγ:Peroxisome proliferator-activated receptor, NFκB: Nuclear factor kappa B, ERK: Extracellular signal-regulated kinases and eIF2α:Elongation initiation factor 2α). They may as a result be important in mitigating the severity of COVID-19, acting through the endoplasmic reticulum stress or ACE-Angiotensin-II-AT1R axis (AT1R) pathway. Many Nrf2-interacting nutrients are also interacting with TRPA1 and/or TRPV1. Interestingly, geographical areas with very low COVID-19 mortality are those with the lowest prevalence of obesity (Sub-Saharan Africa and Asia). It is tempting to propose that Nrf2-interacting foods and nutrients can re-balance insulin resistance and have a significant effect on COVID-19 severity. It is therefore possible that the intake of these foods may restore an optimal natural balance for the Nrf2 pathway and may be of interest in the mitigation of COVID-19 severity.
Collapse
Affiliation(s)
- Jean Bousquet
- Department of Dermatology and Allergy, Charité, Universitätsmedizin Berlin, Humboldt-Universität Zu Berlin, Berlin Institute of Health, Comprehensive Allergy Center, Berlin, Germany.
- University Hospital Montpellier, 273 avenue d'Occitanie, 34090, Montpellier, France.
- MACVIA-France, Montpellier, France.
| | - Jean-Paul Cristol
- Laboratoire de Biochimie et Hormonologie, PhyMedExp, Université de Montpellier, INSERM, CNRS, CHU, Montpellier, France
| | | | - Josep M Anto
- IMIM (Hospital del Mar Research Institute), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
- ISGlobAL, Barcelona, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain
| | - Adrian Martineau
- Institute for Population Health Sciences, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Tari Haahtela
- Skin and Allergy Hospital, Helsinki University Hospital, and University of Helsinki, Helsinki, Finland
| | - Susana C Fonseca
- GreenUPorto - Sustainable Agrifood Production Research Centre, DGAOT, Faculty of Sciences, University of Porto, Campus de Vairão, Vila do Conde, Portugal
| | - Guido Iaccarino
- Department of Advanced Biomedical Sciences, Federico II University, Napoli, Italy
| | - Hubert Blain
- Department of Geriatrics, Montpellier University Hospital, Montpellier, France
| | - Alessandro Fiocchi
- Division of Allergy, Department of Pediatric Medicine, The Bambino Gesu Children's Research Hospital Holy See, Rome, Italy
| | - G Walter Canonica
- Personalized Medicine Asthma and Allergy Clinic-Humanitas University & Research Hospital, IRCCS, Milano, Italy
| | - Joao A Fonseca
- CINTESIS, Center for Research in Health Technology and Information Systems, Faculdade de Medicina da Universidade do Porto; and Medida,, Lda Porto, Porto, Portugal
| | - Alain Vidal
- World Business Council for Sustainable Development (WBCSD) Maison de la Paix, Geneva, Switzerland
- AgroParisTech-Paris Institute of Technology for Life, Food and Environmental Sciences, Paris, France
| | - Hak-Jong Choi
- Microbiology and Functionality Research Group, Research and Development Division, World Institute of Kimchi, Gwangju, Korea
| | - Hyun Ju Kim
- SME Service Department, Strategy and Planning Division, World Institute of Kimchi, Gwangju, Korea
| | | | - Jacques Reynes
- Maladies Infectieuses et Tropicales, CHU, Montpellier, France
| | - Aziz Sheikh
- The Usher Institute of Population Health Sciences and Informatics, The University of Edinburgh, Edinburgh, UK
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Torsten Zuberbier
- Department of Dermatology and Allergy, Charité, Universitätsmedizin Berlin, Humboldt-Universität Zu Berlin, Berlin Institute of Health, Comprehensive Allergy Center, Berlin, Germany
| |
Collapse
|