1
|
Himawan A, Korelidou A, Pérez-Moreno AM, Paris JL, Dominguez-Robles J, Vora LK, Permana AD, Larrañeta E, Graham R, Scott CJ, Donnelly RF. Formulation and evaluation of PVA-based composite hydrogels: physicochemical, leachables, and in vitro immunogenicity studies. J Mater Chem B 2025; 13:2431-2445. [PMID: 39813071 DOI: 10.1039/d4tb02181a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
This study explores the formulation and characterization of poly(vinyl alcohol) (PVA)-based composite hydrogels synthesized through solid-state crosslinking. Comprehensive assessments were conducted on their physicochemical properties, leachables, and immunogenicity. Swelling experiments demonstrated that the incorporation of poly(vinylpyrrolidone) (PVP) enhanced water retention, while chitosan had a minimal effect on swelling behavior. Qualitative analysis of leachables identified water-soluble components, including dehydrated PVA and PVP. Fourier-transform infrared (FTIR) spectroscopy confirmed the formation of ester bonds and indicated increased hydrogen bonding post-crosslinking. Thermal stability was validated by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA), with decomposition observed at 320-330 °C. X-ray diffraction (XRD) analysis revealed enhanced crystallinity following crosslinking. Solid-state nuclear magnetic resonance (NMR) further confirmed chemical changes consistent with the results from other characterization techniques. In vitro assays using DC2.4 mouse dendritic cells showed that hydrogel extracts inhibited cell proliferation without causing cytotoxicity or triggering significant immune responses. These findings highlight the hydrogels' biocompatibility and stability, supporting their potential for biomedical applications.
Collapse
Affiliation(s)
- Achmad Himawan
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7AF, UK.
- Department of Pharmaceutical Science and Technology, Faculty of Pharmacy, Universitas Hasanuddin, Makassar 90245, Indonesia
| | - Anna Korelidou
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7AF, UK.
| | - Ana M Pérez-Moreno
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Málaga 29590, Spain
- Universidad de Málaga, Málaga 29071, Spain
| | - Juan L Paris
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Málaga 29590, Spain
| | - Juan Dominguez-Robles
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Seville, Seville 41004, Spain
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7AF, UK.
| | - Andi Dian Permana
- Department of Pharmaceutical Science and Technology, Faculty of Pharmacy, Universitas Hasanuddin, Makassar 90245, Indonesia
| | - Eneko Larrañeta
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7AF, UK.
| | - Robert Graham
- School of Biological Science, Queen's University Belfast, Belfast BT9 7AF, UK
| | - Christopher J Scott
- Patrick G Johnson Centre for Cancer Research, Queen's University Belfast, Belfast BT97BL, UK
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7AF, UK.
| |
Collapse
|
2
|
Feng Z, Jia C, Han B, Chen X, Mei J, Qiao S, Wu X, Wu F. The Causal Role of Immune Cell Phenotypes and Inflammatory Factors in Childhood Asthma: Evidence From Mendelian Randomization. Pediatr Pulmonol 2025; 60:e27480. [PMID: 39950555 DOI: 10.1002/ppul.27480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 12/09/2024] [Accepted: 01/02/2025] [Indexed: 05/09/2025]
Abstract
OBJECTIVE This study utilizes Mendelian randomization (MR) to explore the causal relationship between immune cell phenotypes, inflammatory factors, and childhood asthma, aiming to enhance our understanding and management of the disease. METHODS A two-sample MR approach was used to explore the causal relationships between 731 immune cell phenotypes, 91 inflammatory factors, and childhood asthma. The main analysis was performed using inverse variance weighting (IVW), with additional methods like weighted median, MR-Egger, and weighted mode. Statistical significance was further assessed using false discovery rate (FDR) correction. Sensitivity analyses assessed heterogeneity (Cochran's Q test) and pleiotropy (MR-Egger, MR-PRESSO), while reverse causality was evaluated using the Steiger test. Findings were further validated through cohort studies and meta-analyses to ensure robustness. RESULTS Among 91 inflammatory factors, DNER, IL-18 R1, and Osteoprotegerin increased childhood asthma risk, while CDCP1 and VEGF-A were protective (p < 0.05). Of 731 immune cell phenotypes, 45 showed significant links to asthma, with protective effects from CD45RA+ CD8+ T cells and HLA-DR+ NK cells, and increased risk from IgD-CD38- B cells and CD8dim T cells (p < 0.05). Specific SSC-A parameters and higher MFI values for CD19, CD28, and CD3 were protective, while elevated MFI for CCR2 on monocytes and CD86 on myeloid dendritic cells increased risk. However, after further FDR correction, no statistically significant results were identified. Nonetheless, sensitivity and replication analyses, including meta-analysis, confirmed the robustness of these associations. CONCLUSIONS This study provides a comprehensive investigation into the complex interplay between immune system dysregulation and childhood asthma. By identifying specific inflammatory factors and immune cell phenotypes linked to asthma risk and protection, the findings offer valuable insights into disease pathogenesis. While these results highlight potential targets for precision-based therapeutic interventions, further research is needed to validate these associations and translate them into clinical applications.
Collapse
Affiliation(s)
- Zhoushan Feng
- Guangzhou Key Laboratory of Neonatal Intestinal Diseases, Department of Neonatology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Department of Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Chunhong Jia
- Guangzhou Key Laboratory of Neonatal Intestinal Diseases, Department of Neonatology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Department of Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Bin Han
- Department of Pediatric, Shenzhen Longgang District Second People's Hospital, Shenzhen, China
| | - Xiaochun Chen
- Guangzhou Key Laboratory of Neonatal Intestinal Diseases, Department of Neonatology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jingwen Mei
- Guangzhou Key Laboratory of Neonatal Intestinal Diseases, Department of Neonatology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Shicun Qiao
- Guangzhou Key Laboratory of Neonatal Intestinal Diseases, Department of Neonatology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xiaohong Wu
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Department of Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- Department of Pediatric, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- Department of Nursing, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Fan Wu
- Guangzhou Key Laboratory of Neonatal Intestinal Diseases, Department of Neonatology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Department of Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
3
|
Yang Y, Chen J, Gong F, Miao J, Lin M, Liu R, Wang C, Ge F, Chen W. Exploring the genetic associations and causal relationships between antibody responses, immune cells, and various types of breast cancer. Sci Rep 2024; 14:28579. [PMID: 39562684 PMCID: PMC11577091 DOI: 10.1038/s41598-024-79521-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/11/2024] [Indexed: 11/21/2024] Open
Abstract
BACKGROUND There may be potential associations between various pathogens, antibody immune responses, and breast cancer (BC), but the specific mechanisms and causal relationships remain unclear. METHODS First, multiple Mendelian randomization (MR) methods were used for univariable MR analysis to explore potential causal relationships between 34 antibody immune responses (related to 12 pathogens), 46 antibody immune responses (related to 13 pathogens), antibody responses post-COVID-19 vaccination, 731 immune cell types, and various BC subtypes (including overall BC, ER-positive, ER-negative, Luminal A, Luminal B, Luminal B HER2-negative, HER2-positive, and triple-negative BC). The primary results were then subjected to reverse MR analysis, heterogeneity testing using Cochran's Q, and horizontal pleiotropy testing. Robust findings were further used to design mediation pathways involving antibody immune responses, immune cells, and BC. After adjusting the effect estimates using multivariable MR (MVMR), a two-step mediation analysis was conducted to explore mediation pathways and mediation proportions. Finally, linkage disequilibrium score regression (LDSC) was applied to analyze the genetic correlation between phenotypes along mediation pathways, and cross-phenotype association analysis (CPASSOC) was performed to identify pleiotropic SNPs among three phenotypes along these pathways. Bayesian colocalization tests were conducted on pleiotropic SNPs using the multiple-trait-coloc (moloc). RESULTS We identified potential causal relationships between 15 antibody immune responses to 8 pathogens (Hepatitis B virus, Herpes Simplex Virus 2, Human Herpesvirus 6, Polyomavirus 2, BK polyomavirus, Cytomegalovirus, Helicobacter pylori, Chlamydia trachomatis), 250 immune cell phenotypes, and various BC subtypes. MVMR-adjusted mediation analysis revealed four potential mediation pathways. LDSC results showed no significant genetic correlation between phenotypes pairwise. CPASSOC analysis identified two potential mediation pathways with common pleiotropic SNPs (rs12121677, rs281378, rs2894250). However, none of these SNPs passed the Bayesian colocalization test by moloc. These results excluded horizontal pleiotropy, stabilizing MR analysis results. CONCLUSION This study utilized MR methods to analyze potential causal relationships between various antibody immune responses, immune cell types, and BC subtypes, identifying four potential regulatory mediation pathways. The findings of this study offer potential targets and research directions for virus-related and immunotherapy-related studies, providing a certain level of theoretical support. However, limitations such as GWAS sample size constraints and unclear specific pathophysiological mechanisms need further improvement and validation in future studies.
Collapse
Affiliation(s)
- Yang Yang
- Third Department of Breast Surgery, Peking University Cancer Hospital Yunnan Hospital, The Third Affiliated Hospital of Kunming Medical University & Yunnan Cancer Hospital, Kunming, 650118, China
| | - Jiayi Chen
- Third Department of Breast Surgery, Peking University Cancer Hospital Yunnan Hospital, The Third Affiliated Hospital of Kunming Medical University & Yunnan Cancer Hospital, Kunming, 650118, China
| | - Fuhong Gong
- Third Department of Breast Surgery, Peking University Cancer Hospital Yunnan Hospital, The Third Affiliated Hospital of Kunming Medical University & Yunnan Cancer Hospital, Kunming, 650118, China
| | - Jingge Miao
- Third Department of Breast Surgery, Peking University Cancer Hospital Yunnan Hospital, The Third Affiliated Hospital of Kunming Medical University & Yunnan Cancer Hospital, Kunming, 650118, China
| | - Mengping Lin
- Third Department of Breast Surgery, Peking University Cancer Hospital Yunnan Hospital, The Third Affiliated Hospital of Kunming Medical University & Yunnan Cancer Hospital, Kunming, 650118, China
| | - Ruimin Liu
- Third Department of Breast Surgery, Peking University Cancer Hospital Yunnan Hospital, The Third Affiliated Hospital of Kunming Medical University & Yunnan Cancer Hospital, Kunming, 650118, China
| | - Chenxi Wang
- Third Department of Breast Surgery, Peking University Cancer Hospital Yunnan Hospital, The Third Affiliated Hospital of Kunming Medical University & Yunnan Cancer Hospital, Kunming, 650118, China
| | - Fei Ge
- Department of Breast Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China.
| | - Wenlin Chen
- Third Department of Breast Surgery, Peking University Cancer Hospital Yunnan Hospital, The Third Affiliated Hospital of Kunming Medical University & Yunnan Cancer Hospital, Kunming, 650118, China.
| |
Collapse
|
4
|
Li Q, Tang X, Huang L, Wang T, Huang Y, Jiang S. Anti-allergic effect of vitamin C through inhibiting degranulation and regulating T H1/T H2 cell polarization. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:5955-5963. [PMID: 38415860 DOI: 10.1002/jsfa.13419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/26/2024] [Accepted: 02/26/2024] [Indexed: 02/29/2024]
Abstract
BACKGROUND Food allergy has become a global public health problem. This study aimed to explore the possible anti-allergic effect of vitamin C (VC). A rat basophilic leukemia (RBL)-2H3 cell degranulation model was used to assess the effect of VC on degranulation in vitro, and an ovalbumin (OVA)-induced BALB/c mouse allergy model was used to assess the anti-allergy effect of VC in vivo. RESULTS In vitro, VC significantly attenuated the release of β-hexosaminidase, tryptase and histamine, and also reduced cytokine production (interleukins 4 and 6, tumor necrosis factor α) significantly (P < 0.05), with the inhibitory effect demonstrating a positive correlation with VC dose. In vivo, compared with the OVA group, the levels of serum immunoglobulins E and G1 of the VC low-dose (VCL) group (50 mg kg-1) and high-dose (VCH) group (200 mg·kg-1) were significantly reduced (P < 0.05). Furthermore, the plasma histamine level was also significantly decreased (P < 0.05). Moreover, TH2 cell polarization in mice of the VCL and VCH groups was significantly inhibited (P < 0.05), promoting the TH1/TH2 cell polarization balance. Additionally, VC treatment enhanced the expression of CD80 (P < 0.05) in spleen and small intestine tissues, while significantly inhibiting the expression of CD86 (P < 0.05); notably, high-dose VC treatment was more effective. CONCLUSION VC exerted an anti-allergic effect through inhibiting degranulation and regulating TH1/TH2 cell polarization balance. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Qian Li
- College of Tourism and Culinary Science, Yangzhou University, Yangzhou, People's Republic of China
| | - Xinlei Tang
- College of Tourism and Culinary Science, Yangzhou University, Yangzhou, People's Republic of China
| | - Lu Huang
- College of Tourism and Culinary Science, Yangzhou University, Yangzhou, People's Republic of China
| | - Tao Wang
- College of Tourism and Culinary Science, Yangzhou University, Yangzhou, People's Republic of China
| | - Yutong Huang
- College of Tourism and Culinary Science, Yangzhou University, Yangzhou, People's Republic of China
| | - Songsong Jiang
- College of Tourism and Culinary Science, Yangzhou University, Yangzhou, People's Republic of China
- Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, Yangzhou, People's Republic of China
| |
Collapse
|
5
|
Bulondo F, Babensee JE. Optimization of Interleukin-10 incorporation for dendritic cells embedded in Poly(ethylene glycol) hydrogels. J Biomed Mater Res A 2024; 112:1317-1336. [PMID: 38562052 DOI: 10.1002/jbm.a.37714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 03/19/2024] [Accepted: 03/22/2024] [Indexed: 04/04/2024]
Abstract
Translational research in biomaterials and immunoengineering is leading to the development of novel advanced therapeutics to treat diseases such as cancer, autoimmunity, and viral infections. Dendritic cells (DCs) are at the center of these therapeutics given that they bridge innate and adaptive immunity. The biomaterial system developed herein uses a hydrogel carrier to deliver immunomodulatory DCs for amelioration of autoimmunity. This biomaterial vehicle is comprised of a poly (ethylene glycol)-4 arm maleimide (PEG-4MAL) hydrogels, conjugated with the immunosuppressive cytokine, interleukin-10, IL-10, and cross-linked with a collagenase-degradable peptide sequence for the injectable delivery of immunosuppressive DCs to an anatomical disease-relevant site of the cervical lymph nodes, for intended application to treat multiple sclerosis. The amount of IL-10 incorporated in the hydrogel was optimized to be 500 ng in vitro, based on immunological endpoints. At this concentration, DCs exhibited the best viability, most immunosuppressive phenotype, and protection against proinflammatory insult as compared with hydrogel-incorporated DCs with lower IL-10 loading amounts. Additionally, the effect of the degradability of the PEG-4MAL hydrogel on the release rate of incorporated IL-10 was assessed by varying the ratio of degradable peptides: VPM (degradable) and DTT (nondegradable) and measuring the IL-10 release rates. This IL-10-conjugated hydrogel delivery system for immunosuppressive DCs is set to be assessed for in vivo functionality as the immunosuppressive cytokine provides a tolerogenic environment that keeps DCs in their immature phenotype, which consequently enhances cell viability and optimizes the system's immunomodulatory functionality.
Collapse
Affiliation(s)
- Fredrick Bulondo
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
- Department of Biomedical Sciences and Engineering, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Julia E Babensee
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
| |
Collapse
|
6
|
Sousa AR, Cunha AF, Santos-Coquillat A, Estrada BH, Spiller KL, Barão M, Rodrigues AF, Simões S, Vilaça A, Ferreira L, Oliveira MB, Mano JF. Shape-Versatile Fixed Cellular Materials for Multiple Target Immunomodulation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405367. [PMID: 38739450 PMCID: PMC11272431 DOI: 10.1002/adma.202405367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Indexed: 05/16/2024]
Abstract
Therapeutic cells are usually administered as living agents, despite the risks of undesired cell migration and acquisition of unpredictable phenotypes. Additionally, most cell-based therapies rely on the administration of single cells, often associated with rapid in vivo clearance. 3D cellular materials may be useful to prolong the effect of cellular therapies and offer the possibility of creating structural volumetric constructs. Here, the manufacturing of shape-versatile fixed cell-based materials with immunomodulatory properties is reported. Living cell aggregates with different shapes (spheres and centimeter-long fibers) are fixed using a method compatible with maintenance of structural integrity, robustness, and flexibility of 3D constructs. The biological properties of living cells can be modulated before fixation, rendering an in vitro anti-inflammatory effect toward human macrophages, in line with a decreased activation of the nuclear factor kappa B (NF-κB) pathway that preponderantly correlated with the surface area of the materials. These findings are further corroborated in vivo in mouse skin wounds. Contact with fixed materials also reduces the proliferation of activated primary T lymphocytes, while promoting regulatory populations. The fixation of cellular constructs is proposed as a versatile phenotypic stabilization method that can be easily implemented to prepare immunomodulatory materials with therapeutic potential.
Collapse
Affiliation(s)
- Ana Rita Sousa
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Aveiro, 3810-193, Portugal
| | - Ana F Cunha
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Aveiro, 3810-193, Portugal
| | - Ana Santos-Coquillat
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Aveiro, 3810-193, Portugal
| | - Beatriz Hernaez Estrada
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, 3141 Chestnut Street, Philadelphia, PA, 19104, USA
| | - Kara L Spiller
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, 3141 Chestnut Street, Philadelphia, PA, 19104, USA
| | - Marta Barão
- CNC-Center for Neurosciences and Cell Biology, CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, 3004-517, Portugal
| | - Artur Filipe Rodrigues
- CNC-Center for Neurosciences and Cell Biology, CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, 3004-517, Portugal
| | - Susana Simões
- CNC-Center for Neurosciences and Cell Biology, CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, 3004-517, Portugal
| | - Andreia Vilaça
- CNC-Center for Neurosciences and Cell Biology, CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, 3004-517, Portugal
| | - Lino Ferreira
- CNC-Center for Neurosciences and Cell Biology, CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, 3004-517, Portugal
- FMUC-Faculty of Medicine, University of Coimbra, Coimbra, 3004-517, Portugal
| | - Mariana B Oliveira
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Aveiro, 3810-193, Portugal
| | - João F Mano
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Aveiro, 3810-193, Portugal
| |
Collapse
|
7
|
He S, Gubin MM, Rafei H, Basar R, Dede M, Jiang X, Liang Q, Tan Y, Kim K, Gillison ML, Rezvani K, Peng W, Haymaker C, Hernandez S, Solis LM, Mohanty V, Chen K. Elucidating immune-related gene transcriptional programs via factorization of large-scale RNA-profiles. iScience 2024; 27:110096. [PMID: 38957791 PMCID: PMC11217617 DOI: 10.1016/j.isci.2024.110096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/03/2024] [Accepted: 05/21/2024] [Indexed: 07/04/2024] Open
Abstract
Recent developments in immunotherapy, including immune checkpoint blockade (ICB) and adoptive cell therapy (ACT), have encountered challenges such as immune-related adverse events and resistance, especially in solid tumors. To advance the field, a deeper understanding of the molecular mechanisms behind treatment responses and resistance is essential. However, the lack of functionally characterized immune-related gene sets has limited data-driven immunological research. To address this gap, we adopted non-negative matrix factorization on 83 human bulk RNA sequencing (RNA-seq) datasets and constructed 28 immune-specific gene sets. After rigorous immunologist-led manual annotations and orthogonal validations across immunological contexts and functional omics data, we demonstrated that these gene sets can be applied to refine pan-cancer immune subtypes, improve ICB response prediction and functionally annotate spatial transcriptomic data. These functional gene sets, informing diverse immune states, will advance our understanding of immunology and cancer research.
Collapse
Affiliation(s)
- Shan He
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Matthew M. Gubin
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hind Rafei
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Rafet Basar
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Merve Dede
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xianli Jiang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Qingnan Liang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yukun Tan
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kunhee Kim
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Maura L. Gillison
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Katayoun Rezvani
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Weiyi Peng
- Department of Biology and Biochemistry, The University of Houston, Houston, TX, USA
| | - Cara Haymaker
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sharia Hernandez
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Luisa M. Solis
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vakul Mohanty
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ken Chen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
8
|
He S, Gubin MM, Rafei H, Basar R, Dede M, Jiang X, Liang Q, Tan Y, Kim K, Gillison ML, Rezvani K, Peng W, Haymaker C, Hernandez S, Solis LM, Mohanty V, Chen K. Elucidating immune-related gene transcriptional programs via factorization of large-scale RNA-profiles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.10.593433. [PMID: 38798470 PMCID: PMC11118452 DOI: 10.1101/2024.05.10.593433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Recent developments in immunotherapy, including immune checkpoint blockade (ICB) and adoptive cell therapy, have encountered challenges such as immune-related adverse events and resistance, especially in solid tumors. To advance the field, a deeper understanding of the molecular mechanisms behind treatment responses and resistance is essential. However, the lack of functionally characterized immune-related gene sets has limited data-driven immunological research. To address this gap, we adopted non-negative matrix factorization on 83 human bulk RNA-seq datasets and constructed 28 immune-specific gene sets. After rigorous immunologist-led manual annotations and orthogonal validations across immunological contexts and functional omics data, we demonstrated that these gene sets can be applied to refine pan-cancer immune subtypes, improve ICB response prediction and functionally annotate spatial transcriptomic data. These functional gene sets, informing diverse immune states, will advance our understanding of immunology and cancer research.
Collapse
|
9
|
Dobrovolskienė N, Balevičius R, Mlynska A, Žilionytė K, Aleksander Krasko J, Strioga M, Lieknina I, Pjanova D, Pašukonienė V. Immunomodulatory properties of bacteriophage derived dsRNA of different size and their use as anticancer vaccine adjuvants. Vaccine 2024; 42:512-521. [PMID: 38184395 DOI: 10.1016/j.vaccine.2023.12.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/14/2023] [Accepted: 12/21/2023] [Indexed: 01/08/2024]
Abstract
Dendritic cell (DC) based immunotherapy is one of the strategies to combat cancer invoking a patient's immune system. This form of anticancer immunotherapy employs adjuvants to enhance the immune response, triggering mechanisms of innate immunity and thus increase immunotherapeutic efficiency. A conventional adjuvant for DCs maturation during production of anticancer vaccines is bacterial LPS. Nevertheless, synthetic dsRNAs were also shown to stimulate different receptors on innate immune cells and to activate immune responses through induction of cytokines via toll-like receptors. In our study we investigated the potential of Larifan as dsRNA of natural origin to stimulate maturation of DCs with proinflammatory (possible antitumoral) activity and to compare these immunostimulatory properties between Larifan's fractions with different molecular lengths. To explore the suitability of this product for therapy, it is necessary to study the properties of its different fractions and compare them to standard adjuvants. We investigated the effect of Larifan's fractions on immune system stimulation in vivo by monitoring the survival time of tumor-bearing mice. Murine DCs produced in vitro using Larifan and its fractions together with tumor antigens during production were also characterized. All Larifan fractions resulted in inducing high expression of immunogenic markers CD40, CD80, CD86, CCR7, MHC II and lower secretion of the immunosuppressive cytokine IL-10, compared to the maturation with LPS in mDCs. The lowest expression of tolerogenic gene Ido1 and highest expression of the immunogenic genes Clec7a, Tnf, Icosl, Il12rb2, Cd209a were characteristic to the unfractionated dsRNA and short fraction FR15. In the mouse model the best overall survival rate was observed in mice treated with medium-length FR9 and FR15. We can state that both Larifan and its fractions were superior to LPS as vaccine adjuvants in stimulating phenotype and functional activity of mature DCs. DCs maturation using these factors induces a valuable anticancer immune response.
Collapse
Affiliation(s)
- Neringa Dobrovolskienė
- Laboratory of Immunology, National Cancer Institute, Santariškių g. 1, LT-08660 Vilnius, Lithuania.
| | - Ramojus Balevičius
- Life Sciences Center, Vilnius University, Saulėtekio al. 7, LT-10257 Vilnius, Lithuania.
| | - Agata Mlynska
- Laboratory of Immunology, National Cancer Institute, Santariškių g. 1, LT-08660 Vilnius, Lithuania; Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, Saulėtekio al. 11, LT-10223 Vilnius, Lithuania.
| | - Karolina Žilionytė
- Laboratory of Immunology, National Cancer Institute, Santariškių g. 1, LT-08660 Vilnius, Lithuania.
| | - Jan Aleksander Krasko
- Laboratory of Immunology, National Cancer Institute, Santariškių g. 1, LT-08660 Vilnius, Lithuania; Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, Saulėtekio al. 11, LT-10223 Vilnius, Lithuania.
| | - Marius Strioga
- Laboratory of Immunology, National Cancer Institute, Santariškių g. 1, LT-08660 Vilnius, Lithuania
| | - Ilva Lieknina
- Latvian Biomedical Research and Study Centre, Ratsupites Street 1, Riga LV-1067, Latvia.
| | - Dace Pjanova
- Latvian Biomedical Research and Study Centre, Ratsupites Street 1, Riga LV-1067, Latvia; Riga Stradins University, Ratsupites street 5., Riga LV-1067, Latvia.
| | - Vita Pašukonienė
- Laboratory of Immunology, National Cancer Institute, Santariškių g. 1, LT-08660 Vilnius, Lithuania; Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, Saulėtekio al. 11, LT-10223 Vilnius, Lithuania.
| |
Collapse
|
10
|
Wang Y, Song X, Jin M, Lu J. Characterization of the Immune Microenvironment and Identification of Biomarkers in Chronic Rhinosinusitis with Nasal Polyps Using Single-Cell RNA Sequencing and Transcriptome Analysis. J Inflamm Res 2024; 17:253-277. [PMID: 38229690 PMCID: PMC10790669 DOI: 10.2147/jir.s440409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/21/2023] [Indexed: 01/18/2024] Open
Abstract
Purpose Chronic rhinosinusitis is a prevalent condition in the field of otorhinolaryngology; however, its pathogenesis remains to be elucidated. The immunological defense of the nasal mucosa is significantly influenced by dendritic cells (DCs). We identified specific biological indicators linked to DCs and explored their significance in cases of chronic rhinosinusitis with nasal polyps (CRSwNP). Patients and Methods We categorized cells using single-cell RNA (scRNA) sequencing, and combined transcriptome sequencing was used to identify potential candidate genes for CRSwNP. We selected three biomarkers based on two algorithms and performed enrichment and immune correlation analyses. Biomarkers were verified using training and validation sets, receiver operating characteristic curves, immunohistochemistry, and quantitative real-time reverse-transcription PCR (qRT-PCR). Variations in biomarker expression were validated using pseudotime analysis. The networks of competing transcription factor (TF)-mRNA and competing endogenous RNA (ceRNA) were established, and the protein drugs associated with these biomarkers were predicted. Results Both scRNA-seq and transcriptome data showed that DCs immune infiltration was higher in the CRSwNP group than in the control group. Three DC-related biomarkers (NR4A1, CLEC4G, and CD163) were identified. In CRSwNP, NR4A1 expression decreased, whereas CLEC4G and CD163 expression increased. All biomarkers were shown to be involved in immunological and metabolic pathways by enrichment analysis. These biomarkers were associated with γδ T cells, effector memory CD4 + T cells, regulatory T cells, and immature DCs. According to pseudotime analysis, NR4A1 and CD163 expression decreased from high to low, whereas CLEC4G expression remained low. Conclusion We screened and identified potential DC-associated biomarkers of CRSwNP progression by integrating scRNA-seq with whole transcriptome sequencing. We analyzed the biological pathways in which they were involved, explored their molecular regulatory mechanisms and related drugs, and constructed ceRNA, TF-mRNA, and biomarker-drug networks to identify new CRSwNP treatment targets, laying the groundwork for the clinical management of CRSwNP.
Collapse
Affiliation(s)
- Yakun Wang
- Department of Pathology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, People’s Republic of China
| | - Xinyu Song
- Department of Otorhinolaryngology, Head and Neck Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, People’s Republic of China
| | - Mulan Jin
- Department of Pathology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, People’s Republic of China
| | - Jun Lu
- Department of Pathology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, People’s Republic of China
| |
Collapse
|
11
|
Shui Y, Hu X, Hirano H, Tsukamoto H, Guo WZ, Hasumi K, Ijima F, Fujino M, Li XK. Combined phospholipids adjuvant augments anti-tumor immune responses through activated tumor-associated dendritic cells. Neoplasia 2023; 39:100893. [PMID: 36893559 PMCID: PMC10018555 DOI: 10.1016/j.neo.2023.100893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/28/2023] [Indexed: 03/09/2023]
Abstract
Dendritic cells (DCs) can initiate both naïve and memory T cell activation, as the most potent antigen-presenting cells. For efficient anti-tumor immunity, it is essential to enhance the anti-tumoral activity of tumor-associated DCs (TADCs) or to potently restrain TADCs so that they remain immuno-stimulating cells. Combined phospholipids (cPLs) adjuvant may act through the activation of DCs. This study demonstrated the potential mechanism of tumor growth inhibition of cPLs adjuvant, and confirmed that cPLs adjuvant could induce the maturation and activation (upregulation of MHC-II, CD80, CD40, IL-1β, IL-12, IL-6 expression) of BMDCs in vitro. Then we isolated tumor infiltrating lymphocytes (TILs) from solid tumor and analyzed the phenotype and cytokines of TILs. The examination of the TILs revealed that cPLs adjuvant upregulated the expression of co-stimulatory molecules (MHC-II, CD86), phosphatidylserine (PS) receptor (TIM-4) on TADCs and enhanced the cytotoxic effect (CD107a), as well as pro-inflammatory cytokine production (IFN-γ, TNF-α, IL-2) by the tumor-resident T cells. Taken together, cPLs adjuvant may be an immune-potentiating adjuvant for cancer immunotherapy. This reagent may lead to the development of new approaches in DC-targeted cancer immunotherapy.
Collapse
Affiliation(s)
- Yifang Shui
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Xin Hu
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Hiroshi Hirano
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Hirotake Tsukamoto
- Department of Immunology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan; Division of Clinical Immunology and Cancer Immunotherapy, Center for Cancer Immunotherapy and Immunobiology, Graduate School of Medicine, Kyoto University, Japan
| | - Wen-Zhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | | | | | - Masayuki Fujino
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan; Management Department of Biosafety, Laboratory Animal, and Pathogen Bank, National Institute of Infectious Diseases, Tokyo, Japan.
| | - Xiao-Kang Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan.
| |
Collapse
|
12
|
Wang F, Han R, Chen S. An Overlooked and Underrated Endemic Mycosis-Talaromycosis and the Pathogenic Fungus Talaromyces marneffei. Clin Microbiol Rev 2023; 36:e0005122. [PMID: 36648228 PMCID: PMC10035316 DOI: 10.1128/cmr.00051-22] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Talaromycosis is an invasive mycosis endemic in tropical and subtropical Asia and is caused by the pathogenic fungus Talaromyces marneffei. Approximately 17,300 cases of T. marneffei infection are diagnosed annually, and the reported mortality rate is extremely high (~1/3). Despite the devastating impact of talaromycosis on immunocompromised individuals, particularly HIV-positive persons, and the increase in reported occurrences in HIV-uninfected persons, diagnostic and therapeutic approaches for talaromycosis have received far too little attention worldwide. In 2021, scientists living in countries where talaromycosis is endemic raised a global demand for it to be recognized as a neglected tropical disease. Therefore, T. marneffei and the infectious disease induced by this fungus must be treated with concern. T. marneffei is a thermally dimorphic saprophytic fungus with a complicated mycological growth process that may produce various cell types in its life cycle, including conidia, hyphae, and yeast, all of which are associated with its pathogenicity. However, understanding of the pathogenic mechanism of T. marneffei has been limited until recently. To achieve a holistic view of T. marneffei and talaromycosis, the current knowledge about talaromycosis and research breakthroughs regarding T. marneffei growth biology are discussed in this review, along with the interaction of the fungus with environmental stimuli and the host immune response to fungal infection. Importantly, the future research directions required for understanding this serious infection and its causative pathogenic fungus are also emphasized to identify solutions that will alleviate the suffering of susceptible individuals worldwide.
Collapse
Affiliation(s)
- Fang Wang
- Intensive Care Unit, Biomedical Research Center, Shenzhen Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - RunHua Han
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Shi Chen
- Intensive Care Unit, Biomedical Research Center, Shenzhen Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
- Department of Burn and Plastic Surgery, Biomedical Research Center, Shenzhen Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| |
Collapse
|
13
|
Liu Z, Fan Z, Liu J, Wang J, Xu M, Li X, Xu Y, Lu Y, Han C, Zhang Z. Melittin-Carrying Nanoparticle Suppress T Cell-Driven Immunity in a Murine Allergic Dermatitis Model. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204184. [PMID: 36638280 PMCID: PMC9982551 DOI: 10.1002/advs.202204184] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Allergic contact dermatitis (ACD) and atopic dermatitis (AD) are the most common human skin disorders. Although corticosteroids have been widely used to treat ACD and AD, the side effects of corticosteroids encourage researchers to explore new immunoregulatory treatments. Here, an immunomodulatory approach based on lipid nanoparticles carrying α-helical configurational melittin (α-melittin-NP) is developed to overcome T cell-mediated inflammatory reactions in an oxazolone (OXA)-induced contact hypersensitivity mouse model and OXA-induced AD-like mouse model. Intradermal injection of low-dose α-melittin-NPs prevents the skin damage caused by melittin administration alone and efficiently targeted lymph nodes. Importantly, melittin and α-melittin-NPs restrain RelB activity in dendritic cells (DCs) and further suppresses dendritic cell activation and maturation in lymph nodes. Furthermore, low-dose α-melittin-NPs leads to relief of antigen recognition-induced effector T cell arrest in the dermis and inhibited allergen-specific T cell proliferation and activation. Significantly, this approach successfully controls Th1-type cytokine release in the ACD model and restricts Th2-type cytokine and IgE release in the AD-like model. Overall, intradermal delivery of low-dose α-melittin-NPs efficiently elicits immunosuppression against T cell-mediated immune reactions, providing a promising therapeutic strategy for treating skin disorders not restricted to the lesion region.
Collapse
Affiliation(s)
- Zheng Liu
- Britton Chance Center and MOE Key Laboratory for Biomedical PhotonicsWuhan National Laboratory for OptoelectronicsHuazhong University of Science and TechnologyWuhanHubei430074China
| | - Zhan Fan
- Britton Chance Center and MOE Key Laboratory for Biomedical PhotonicsWuhan National Laboratory for OptoelectronicsHuazhong University of Science and TechnologyWuhanHubei430074China
| | - Jinxin Liu
- Britton Chance Center and MOE Key Laboratory for Biomedical PhotonicsWuhan National Laboratory for OptoelectronicsHuazhong University of Science and TechnologyWuhanHubei430074China
| | - Jialu Wang
- Britton Chance Center and MOE Key Laboratory for Biomedical PhotonicsWuhan National Laboratory for OptoelectronicsHuazhong University of Science and TechnologyWuhanHubei430074China
| | - Mengli Xu
- Britton Chance Center and MOE Key Laboratory for Biomedical PhotonicsWuhan National Laboratory for OptoelectronicsHuazhong University of Science and TechnologyWuhanHubei430074China
| | - Xinlin Li
- Britton Chance Center and MOE Key Laboratory for Biomedical PhotonicsWuhan National Laboratory for OptoelectronicsHuazhong University of Science and TechnologyWuhanHubei430074China
| | - Yilun Xu
- School of Biomedical EngineeringHainan UniversityHaikouHainan570228China
| | - Yafang Lu
- Britton Chance Center and MOE Key Laboratory for Biomedical PhotonicsWuhan National Laboratory for OptoelectronicsHuazhong University of Science and TechnologyWuhanHubei430074China
| | - Chenlu Han
- Britton Chance Center and MOE Key Laboratory for Biomedical PhotonicsWuhan National Laboratory for OptoelectronicsHuazhong University of Science and TechnologyWuhanHubei430074China
| | - Zhihong Zhang
- Britton Chance Center and MOE Key Laboratory for Biomedical PhotonicsWuhan National Laboratory for OptoelectronicsHuazhong University of Science and TechnologyWuhanHubei430074China
- School of Biomedical EngineeringHainan UniversityHaikouHainan570228China
| |
Collapse
|
14
|
Sun Y, Wang B, Hu Q, Zhang H, Lai X, Wang T, Zhao C, Wang J, Zhang X, Niu Q, He B, Jiang E, Shi M, Feng X, Luo Y. Loss of Lkb1 in CD11c + myeloid cells protects mice from diet-induced obesity while enhancing glucose intolerance and IL-17/IFN-γ imbalance. Cell Mol Life Sci 2023; 80:63. [PMID: 36781473 PMCID: PMC9925521 DOI: 10.1007/s00018-023-04707-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/04/2023] [Accepted: 01/22/2023] [Indexed: 02/15/2023]
Abstract
Adipose tissue CD11c+ myeloid cell is an independent risk factor associated with obesity and metabolic disorders. However, the underlying molecular basis remains elusive. Here, we demonstrated that liver kinase B1 (Lkb1), a key bioenergetic sensor, is involved in CD11c+ cell-mediated immune responses in diet-induced obesity. Loss of Lkb1 in CD11c+ cells results in obesity resistance but lower glucose tolerance, which accompanies tissue-specific immune abnormalities. The accumulation and CD80's expression of Lkb1 deficient adipose-tissue specific dendritic cells but not macrophages is restrained. Additionally, the balance of IL-17A and IFN-γ remarkably tips towards the latter in fat T cells and CD11c- macrophages. Mechanistically, IFN-γ promotes apoptosis of preadipocytes and inhibits their adipogenesis while IL-17A promotes the adipogenesis in vitro, which might account in part for the fat gain resistant phenotype. In summary, these findings reveal that Lkb1 is essential for fat CD11c+ dendritic cells responding to HFD exposure and provides new insights into the IL-17A/IFN-γ balance in HFD-induced obesity.
Collapse
Affiliation(s)
- Yunyan Sun
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300020, China.,Tianjin Institutes of Health Science, Tianjin, 301600, China.,Department of Hematology, Hematology Research Center of Yunnan Province, The First Affiliated Hospital of Kunming Medical University, Kunming, China.,Department of Hematology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Center, Kunming, China
| | - Bing Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300020, China.,Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Qianwen Hu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300020, China.,Tianjin Institutes of Health Science, Tianjin, 301600, China.,Department of Hematology, Hematology Research Center of Yunnan Province, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Haixiao Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300020, China.,Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Xun Lai
- Department of Hematology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Center, Kunming, China
| | - Tier Wang
- Department of Hematology, Hematology Research Center of Yunnan Province, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Chunxiao Zhao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300020, China.,Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Jiali Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300020, China.,Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Xi Zhang
- Department of Hematology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Center, Kunming, China
| | - Qing Niu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300020, China.,Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Baolin He
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300020, China.,Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Erlie Jiang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300020, China. .,Tianjin Institutes of Health Science, Tianjin, 301600, China.
| | - Mingxia Shi
- Department of Hematology, Hematology Research Center of Yunnan Province, The First Affiliated Hospital of Kunming Medical University, Kunming, China.
| | - Xiaoming Feng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300020, China. .,Tianjin Institutes of Health Science, Tianjin, 301600, China.
| | - Yuechen Luo
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300020, China. .,Tianjin Institutes of Health Science, Tianjin, 301600, China.
| |
Collapse
|
15
|
Moretto MM, Chen J, Meador M, Phan J, Khan IA. A Lower Dose of Infection Generates a Better Long-Term Immune Response against Toxoplasma gondii. Immunohorizons 2023; 7:177-190. [PMID: 36883950 PMCID: PMC10563383 DOI: 10.4049/immunohorizons.2300006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 02/11/2023] [Indexed: 03/09/2023] Open
Abstract
Toxoplasma gondii, an obligate intracellular pathogen, induces a strong immune response in the infected host. In the encephalitis model of infection, long-term protective immunity is mediated by CD8 T cells, with the CD4 T cell population providing important help. Most of the immune studies have used a 10- to 20-cyst dose of T. gondii, which leads to T cell dysfunctionality during the late phase of chronic infection and increases the chances of reactivation. In the current study, we compared the immune response of mice orally infected with either 2 or 10 cysts of T. gondii. During the acute phase, we demonstrate that the lower dose of infection generates a reduced number of CD4 and CD8 T cells, but the frequency of functional CD4 or CD8 T cells is similar in animals infected with two different doses. However, Ag-experienced T cells (both CD4 and CD8) are better maintained in lower dose-infected mice at 8 wk postinfection, with an increase number functional cells that exhibit lower multiple inhibitory receptor expression. In addition to better long-term T cell immunity, animals infected with a lower dose display reduced inflammation manifested by lesser Ag-specific T cell and cytokine responses during the very early stage of the acute infection. Our studies suggest a previously unappreciated role of dose-dependent early programming/imprinting of the long-term CD4/CD8 T cell response during T. gondii infection. These observations point to the need for an in-depth analysis of how early events shape long-term immunity against this pathogen.
Collapse
Affiliation(s)
- Magali M. Moretto
- Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University, Washington, DC
| | - Jie Chen
- Department of Medicine, The George Washington University, Washington, DC
| | - Morgan Meador
- Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University, Washington, DC
| | - Jasmine Phan
- Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University, Washington, DC
| | - Imtiaz A. Khan
- Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University, Washington, DC
| |
Collapse
|
16
|
Liu M, Thijssen S, Hennink WE, Garssen J, van Nostrum CF, Willemsen LM. Oral pretreatment with β-lactoglobulin derived peptide and CpG co-encapsulated in PLGA nanoparticles prior to sensitizations attenuates cow's milk allergy development in mice. Front Immunol 2023; 13:1053107. [PMID: 36703973 PMCID: PMC9872660 DOI: 10.3389/fimmu.2022.1053107] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 12/19/2022] [Indexed: 01/07/2023] Open
Abstract
Cow's milk allergy is a common food allergy among infants. Improved hygiene conditions and loss of microbial diversity are associated with increased risk of allergy development. The intestinal immune system is essential for oral tolerance induction. In this respect, bacterial CpG DNA is known to drive Th1 and regulatory T-cell (Treg) development via Toll-Like-Receptor 9 (TLR-9) signaling, skewing away from the allergic Th2 phenotype. We aimed to induce allergen specific tolerance via oral delivery of poly (lactic-co-glycolic acid) nanoparticles (NP) co-encapsulated with a selected β-lactoglobulin derived peptide (BLG-Pep) and TLR-9 ligand CpG oligodeoxynucleotide (CpG). In vivo, 3-4-week-old female C3H/HeOuJ mice housed in individually ventilated cages received 6-consecutive-daily gavages of either PBS, whey, BLG-Pep/NP, CpG/NP, a mixture of BLG-Pep/NP plus CpG/NP or co-encapsulated BLG-Pep+CpG/NP, before 5-weekly oral sensitizations with whey plus cholera toxin (CT) or only CT (sham) and were challenged with whey 5 days after the last sensitization. The co-encapsulated BLG-Pep+CpG/NP pretreatment, but not BLG-Pep/NP, CpG/NP or the mixture of BLG-Pep/NP plus CpG/NP, prevented the whey-induced allergic skin reactivity and prevented rise in serum BLG-specific IgE compared to whey-sensitized mice. Importantly, co-encapsulated BLG-Pep+CpG/NP pretreatment reduced dendritic cell (DC) activation and lowered the frequencies of PD-L1+ DC in the mesenteric lymph nodes compared to whey-sensitized mice. By contrast, co-encapsulated BLG-Pep+CpG/NP pretreatment increased the frequency of splenic PD-L1+ DC compared to the BLG-Pep/NP plus CpG/NP recipients, in association with lower Th2 development and increased Treg/Th2 and Th1/Th2 ratios in the spleen. Oral administration of PLGA NP co-encapsulated with BLG-Pep and CpG prevented rise in serum BLG-specific IgE and symptom development while lowering splenic Th2 cell frequency in these mice which were kept under strict hygienic conditions.
Collapse
Affiliation(s)
- Mengshan Liu
- Division of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands,Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Suzan Thijssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Wim E. Hennink
- Division of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands,Department of Immunology, Nutricia Research B.V., Utrecht, Netherlands
| | - Cornelus F. van Nostrum
- Division of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Linette E. M. Willemsen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands,*Correspondence: Linette E. M. Willemsen,
| |
Collapse
|
17
|
Zheng Z, Yu Y. A review of recent advances in exosomes and allergic rhinitis. Front Pharmacol 2022; 13:1096984. [PMID: 36588711 PMCID: PMC9799977 DOI: 10.3389/fphar.2022.1096984] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Allergic rhinitis is a chronic inflammatory disease of nasal mucosa caused by the presence of IgE after exposure to allergens, characterized by nasal irritation, hypersecretion of the nasal passages and sneezing, which frequently occurs in children and adolescents. There has been an increase in allergic rhinitis over the past few years due to air pollution. Exosomes have been discovered to be nano-sized vesicles, which contain a wide range of substances, including proteins and nucleic acids, numerous studies indicates that exosomes play a vital role in cells communication. Recently there have been more and more studies exploring the role of exosomes in allergic rhinitis. Therefore, here we will present a comprehensive review of the research on exosomes and their role in allergic rhinitis for the purpose of providing new understanding of potential value of exosomes applied to the treatment of allergic rhinitis.
Collapse
Affiliation(s)
- Zhong Zheng
- Department of Child Otorhinolaryngology, Anhui Provincial Children’s Hospital, Hefei, China,*Correspondence: Zhong Zheng,
| | - Yangyang Yu
- Department of Function Examination Center, Anhui Chest Hospital, Hefei, China
| |
Collapse
|
18
|
Han M, Ma J, Ouyang S, Wang Y, Zheng T, Lu P, Zheng Z, Zhao W, Li H, Wu Y, Zhang B, Hu R, Otsu K, Liu X, Wan Y, Li H, Huang G. The kinase p38α functions in dendritic cells to regulate Th2-cell differentiation and allergic inflammation. Cell Mol Immunol 2022; 19:805-819. [PMID: 35551270 PMCID: PMC9243149 DOI: 10.1038/s41423-022-00873-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 04/02/2022] [Accepted: 04/15/2022] [Indexed: 12/24/2022] Open
Abstract
Dendritic cells (DCs) play a critical role in controlling T helper 2 (Th2) cell-dependent diseases, but the signaling mechanism that triggers this function is not fully understood. We showed that p38α activity in DCs was decreased upon HDM stimulation and dynamically regulated by both extrinsic signals and Th2-instructive cytokines. p38α-specific deletion in cDC1s but not in cDC2s or macrophages promoted Th2 responses under HDM stimulation. Further study showed that p38α in cDC1s regulated Th2-cell differentiation by modulating the MK2−c-FOS−IL-12 axis. Importantly, crosstalk between p38α-dependent DCs and Th2 cells occurred during the sensitization phase, not the effector phase, and was conserved between mice and humans. Our results identify p38α signaling as a central pathway in DCs that integrates allergic and parasitic instructive signals with Th2-instructive cytokines from the microenvironment to regulate Th2-cell differentiation and function, and this finding may offer a novel strategy for the treatment of allergic diseases and parasitic infection.
Collapse
Affiliation(s)
- Miaomiao Han
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, 200031, Shanghai, China
| | - Jingyu Ma
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Suidong Ouyang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, 523808, Dongguan, China
| | - Yanyan Wang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, 523808, Dongguan, China
| | - Tingting Zheng
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.,Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, 523808, Dongguan, China
| | - Peishan Lu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, 523808, Dongguan, China
| | - Zihan Zheng
- Biomedical Analysis Center, Army Medical University, 400038, Chongqing, China
| | - Weiheng Zhao
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.,Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Hongjin Li
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.,Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 200437, Shanghai, China
| | - Yun Wu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, 523808, Dongguan, China
| | - Baohua Zhang
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.,Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, 200072, Shanghai, China
| | - Ran Hu
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.,Basic Department of Cancer Center, Shanghai Tenth People's Hospital of Tongji University, 200072, Shanghai, China
| | - Kinya Otsu
- Department of Cardiovascular Medicine, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan.,School of Cardiovascular Medicine and Sciences, King's College London, London, SE59NU, UK
| | - Xinguang Liu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, 523808, Dongguan, China
| | - Ying Wan
- Biomedical Analysis Center, Army Medical University, 400038, Chongqing, China.
| | - Huabin Li
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, 200031, Shanghai, China.
| | - Gonghua Huang
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China. .,Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, 523808, Dongguan, China.
| |
Collapse
|
19
|
Expression of Peripheral Blood DCs CD86, CD80, and Th1/Th2 in Sepsis Patients and Their Value on Survival Prediction. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:4672535. [PMID: 35309834 PMCID: PMC8926526 DOI: 10.1155/2022/4672535] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/08/2022] [Accepted: 02/16/2022] [Indexed: 11/17/2022]
Abstract
Objective. To explore the expression of peripheral blood dendritic cells (DCs) CD86, CD80, and Th1/Th2 in patients with sepsis and their value on survival prediction. Methods. 118 patients with sepsis from January 2019 to December 2020 were selected, According to the prognosis, the patients were divided into the death group (
) and survival group (
). The general data and pathogen division of the two groups were collected, and the levels of peripheral blood DCs CD86, CD80, and Th1/Th2; APACHE II score; inflammatory factor (procalcitonin (PCT)); and cell growth chemokine (GRO) were compared between the two groups heparin-binding protein (HBP) and myocardial enzyme indexes (creatine kinase (CK), creatine kinase isozyme (CK-MB), and lactate dehydrogenase (LDH)) to explore the relationship between CD86, CD80, Th1/Th2, and various serological indexes and the evaluation value of prognosis. Results. 124 strains of pathogenic bacteria were isolated from 118 patients, including 78 strains of gram-negative bacteria (62.90%), 31 strains of Gram-positive bacteria (25.00%), and 15 strains of fungi (12.10%). The scores of CD86, CD80, Th1, Th2, Th1/Th2, and APACHE II in the dead group were higher than those in the surviving group, and the difference was statistically significant (
). PCT, GRO-α, HBP, LDH, CK-MB, and CK levels of patients in death group were higher than those in survival group, and the difference was statistically significant (
). The levels of peripheral blood DCs CD86, CD80, and Th1/Th2 were positively correlated with PCT, GRO-α, HBP, LDH, CK-MB, and CK (
). ROC curve analysis showed that the AUC of the combined detection of DCs CD86, CD80, and Th1/Th2 in peripheral blood was 0.951, which was higher than 0.882, 0.883, and 0.734 of single index (
). Conclusion. All patients with sepsis have immune imbalance, and the peripheral blood CD86, CD80, and Th1/Th2 of the dead patients are higher than those of the survivors. The combined detection of these three indicators has the highest predictive value for the prognosis of patients.
Collapse
|
20
|
Kapoor K, Eissa N, Tshikudi D, Bernstein CN, Ghia JE. Impact of intrarectal chromofungin treatment on dendritic cells-related markers in different immune compartments in colonic inflammatory conditions. World J Gastroenterol 2021; 27:8138-8155. [PMID: 35068859 PMCID: PMC8704268 DOI: 10.3748/wjg.v27.i47.8138] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/12/2021] [Accepted: 12/08/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Chromofungin (CHR: chromogranin-A 47-66) is a chromogranin-A derived peptide with anti-inflammatory and anti-microbial properties. Ulcerative colitis (UC) is characterized by a colonic decrease of CHR and a dysregulation of dendritic CD11c+ cells.
AIM To investigate the association between CHR treatment and dendritic cells (DCs)-related markers in different immune compartments in colitis.
METHODS A model of acute UC-like colitis using dextran sulphate sodium (DSS) was used in addition to biopsies collected from UC patients.
RESULTS Intrarectal CHR treatment reduced the severity of DSS-induced colitis and was associated with a significant decrease in the expression of CD11c, CD40, CD80, CD86 and interleukin (IL)-12p40 in the inflamed colonic mucosa and CD11c, CD80, CD86 IL-6 and IL-12p40 within the mesenteric lymph nodes and the spleen. Furthermore, CHR treatment decreased CD80 and CD86 expression markers of splenic CD11c+ cells and decreased NF-κB expression in the colon and of splenic CD11c+ cells. In vitro, CHR decreased CD40, CD80, CD86 IL-6 and IL-12p40 expression in naïve bone marrow-derived CD11c+ DCs stimulated with lipopolysaccharide. Pharmacological studies demonstrated an impact of CHR on the NF-κB pathway. In patients with active UC, CHR level was reduced and showed a negative linear relationship with CD11c and CD86.
CONCLUSION CHR has protective properties against intestinal inflammation via the regulation of DC-related markers and CD11c+ cells. CHR could be a potential therapy of UC.
Collapse
Affiliation(s)
- Kunal Kapoor
- Department of Immunology, University of Manitoba, Winnipeg R3E0T5, MB, Canada
| | - Nour Eissa
- Department of Immunology, University of Manitoba, Winnipeg R3E0T5, MB, Canada
- Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg R3E0T5, MB, Canada
- Section of Gastroenterology, Department of Internal Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg R3E0T5, MB, Canada
- University of Manitoba IBD Clinical and Research Centre, University of Manitoba, Winnipeg R3E0T5, MB, Canada
| | - Diane Tshikudi
- Department of Immunology, University of Manitoba, Winnipeg R3E0T5, MB, Canada
| | - Charles N Bernstein
- Section of Gastroenterology, Department of Internal Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg R3E0T5, MB, Canada
- University of Manitoba IBD Clinical and Research Centre, University of Manitoba, Winnipeg R3E0T5, MB, Canada
| | - Jean-Eric Ghia
- Department of Immunology, University of Manitoba, Winnipeg R3E0T5, MB, Canada
- Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg R3E0T5, MB, Canada
- Section of Gastroenterology, Department of Internal Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg R3E0T5, MB, Canada
- University of Manitoba IBD Clinical and Research Centre, University of Manitoba, Winnipeg R3E0T5, MB, Canada
| |
Collapse
|
21
|
Ma J, Han M, Yang D, Zheng T, Hu R, Wang B, Ye Y, Liu J, Huang G. Vps33B in Dendritic Cells Regulates House Dust Mite-Induced Allergic Lung Inflammation. THE JOURNAL OF IMMUNOLOGY 2021; 207:2649-2659. [PMID: 34732466 DOI: 10.4049/jimmunol.2100502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 09/27/2021] [Indexed: 12/19/2022]
Abstract
Dendritic cells (DCs) are the most specialized APCs that play a critical role in driving Th2 differentiation, but the mechanism is not fully understood. Here we show that vacuolar protein sorting 33B (Vps33B) plays an important role in this process. Mice with Vps33b-specific deletion in DCs, but not in macrophages or T cells, were more susceptible to Th2-mediated allergic lung inflammation than wild-type mice. Deletion of Vps33B in DCs led to enhanced CD4+ T cell proliferation and Th2 differentiation. Moreover, Vps33B specifically restrained reactive oxygen species production in conventional DC1s to inhibit Th2 responses in vitro, whereas Vps33B in monocyte-derived DCs and conventional DC2s was dispensable for Th2 development in asthma pathogenesis. Taken together, our results identify Vps33B as an important molecule that mediates the cross-talk between DCs and CD4+ T cells to further regulate allergic asthma pathogenesis.
Collapse
Affiliation(s)
- Jingyu Ma
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Miaomiao Han
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Di Yang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tingting Zheng
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong, China; and
| | - Ran Hu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin Wang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong, China; and
| | - Youqiong Ye
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junling Liu
- Department of Biochemistry and Molecular Cell Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Gonghua Huang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China; .,Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong, China; and
| |
Collapse
|
22
|
Jeong H, Lee C, Lee J, Lee J, Hwang HS, Lee M, Na K. Hemagglutinin Nanoparticulate Vaccine with Controlled Photochemical Immunomodulation for Pathogenic Influenza-Specific Immunity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100118. [PMID: 34693665 PMCID: PMC8655185 DOI: 10.1002/advs.202100118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 08/27/2021] [Indexed: 06/13/2023]
Abstract
Recently, viral infectious diseases, including COVID-19 and Influenza, are the subjects of major concerns worldwide. One strategy for addressing these concerns focuses on nasal vaccines, which have great potential for achieving successful immunization via safe, easy, and affordable approaches. However, conventional nasal vaccines have major limitations resulting from fast removal when pass through nasal mucosa and mucociliary clearance hindering their effectiveness. Herein a nanoparticulate vaccine (NanoVac) exhibiting photochemical immunomodulation and constituting a new self-assembled immunization system of a photoactivatable polymeric adjuvant with influenza virus hemagglutinin for efficient nasal delivery and antigen-specific immunity against pathogenic influenza viruses is described. NanoVac increases the residence period of antigens and further enhances by spatiotemporal photochemical modulation in the nasal cavity. As a consequence, photochemical immunomodulation of NanoVacs successfully induces humoral and cellular immune responses followed by stimulation of mature dendritic cells, plasma cells, memory B cells, and CD4+ and CD8+ T cells, resulting in secretion of antigen-specific immunoglobulins, cytokines, and CD8+ T cells. Notably, challenge with influenza virus after nasal immunization with NanoVacs demonstrates robust prevention of viral infection. Thus, this newly designed vaccine system can serve as a promising strategy for developing vaccines that are active against current hazardous pathogen outbreaks and pandemics.
Collapse
Affiliation(s)
- Hayoon Jeong
- Department of Biomedical‐Chemical EngineeringThe Catholic University of KoreaBucheon‐siGyeonggi‐do14662Republic of Korea
- Department of BiotechnologyThe Catholic University of KoreaBucheon‐siGyeonggi‐do14662Republic of Korea
| | - Chung‐Sung Lee
- Department of BiotechnologyThe Catholic University of KoreaBucheon‐siGyeonggi‐do14662Republic of Korea
- Division of Advanced ProsthodonticsUniversity of California Los AngelesLos AngelesCA90095USA
- Department of Pharmaceutical Engineering and BiotechnologySun Moon UniversityAsan‐siChungcheongnam‐do31460Republic of Korea
| | - Jangsu Lee
- Department of Biomedical‐Chemical EngineeringThe Catholic University of KoreaBucheon‐siGyeonggi‐do14662Republic of Korea
- Department of BiotechnologyThe Catholic University of KoreaBucheon‐siGyeonggi‐do14662Republic of Korea
| | - Jonghwan Lee
- Department of BiotechnologyThe Catholic University of KoreaBucheon‐siGyeonggi‐do14662Republic of Korea
| | - Hee Sook Hwang
- Department of BiotechnologyThe Catholic University of KoreaBucheon‐siGyeonggi‐do14662Republic of Korea
- Department of Pharmaceutical EngineeringDankook UniversityCheonan‐siChungcheongnam‐do31116Republic of Korea
| | - Min Lee
- Division of Advanced ProsthodonticsUniversity of California Los AngelesLos AngelesCA90095USA
- Department of BioengineeringUniversity of California Los AngelesLos AngelesCA90095USA
| | - Kun Na
- Department of Biomedical‐Chemical EngineeringThe Catholic University of KoreaBucheon‐siGyeonggi‐do14662Republic of Korea
- Department of BiotechnologyThe Catholic University of KoreaBucheon‐siGyeonggi‐do14662Republic of Korea
| |
Collapse
|
23
|
Avşar T, Çelikyapi Erdem G, Terzioğlu G, Tahir Turanli E. Investigation of neuro-inflammatory parameters in a cuprizone induced mouse model of multiple sclerosis. Turk J Biol 2021; 45:644-655. [PMID: 34803461 PMCID: PMC8574193 DOI: 10.3906/biy-2104-88] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/27/2021] [Indexed: 01/02/2023] Open
Abstract
Cuprizone, copper chelator, treatment of mouse is a toxic model of multiple sclerosis (MS) in which oligodendrocyte death, demyelination and remyelination can be observed. Understanding T and B cell subset as well as their cytokines involved in MS pathogenesis still requires further scrutiny to better understand immune component of MS. The study presented here, aimed to evaluate relevant cytokines, lymphocytes, and gene expressions profiles during demyelination and remyelination in the cuprizone mouse model of MS. Eighty male C57BL/6J mice fed with 0.2% cuprizone for eight weeks. Cuprizone has been removed from the diet in the following eight weeks. Cuprizone treated and control mice sacrificed biweekly, and corpus callosum of the brain was investigated by staining. Lymphocyte cells of mice analyzed by flow cytometry with CD3e, CD11b, CD19, CD80, CD86, CD4, CD25 and FOXP3 antibodies. IFN-gamma, IL-1alpha, IL-2, IL-5, IL-6, IL-10, IL-17, TNF-alpha cytokines were analyzed in plasma samples. Neuregulin 1 (Nrg1), ciliary neurotrophic factor (Cntf) and C-X-C chemokine receptor type 4 (Cxcr4) gene expressions in corpus callosum sections of the mice brain were quantified. Histochemistry analysis showed that demyelination began at the fourth week of cuprizone administration and total demyelination occurred at the twelfth week in chronic model. Remyelination occurred at the fourth week of following withdrawal of cuprizone from diet. The level of mature and activated T cells, regulatory T cells, T helper cells and mature B cells increased during demyelination and decreased when cuprizone removed from diet. Further, both type 1 and type 2 cytokines together with the proinflammatory cytokines increased. The level of oligodendrocyte maturation and survival genes showed differential gene expression in parallel to that of demyelination and remyelination. In conclusion, for the first-time, involvement of both cellular immune response and antibody response as well as oligodendrocyte maturation and survival factors having role in demyelination and remyelination of cuprizone mouse model of MS have been shown.
Collapse
Affiliation(s)
- Timucin Avşar
- Medical Biology Department, School of Medicine, Bahçeşehir University, İstanbul Turkey
| | - Gökçe Çelikyapi Erdem
- Dr. Orhan Ocalgiray Molecular Biology and Genetics Research Center, İstanbul Technical University, İstanbul Turkey
| | - Gökhan Terzioğlu
- Department of Biotechnology, Institute of Science, Yeditepe University, İstanbul Turkey
| | - Eda Tahir Turanli
- Dr. Orhan Ocalgiray Molecular Biology and Genetics Research Center, İstanbul Technical University, İstanbul Turkey
- Molecular Biology and Genetics Department, Acıbadem University, İstanbul Turkey
| |
Collapse
|
24
|
Arukha AP, Freguia CF, Mishra M, Jha JK, Kariyawasam S, Fanger NA, Zimmermann EM, Fanger GR, Sahay B. Lactococcus lactis Delivery of Surface Layer Protein A Protects Mice from Colitis by Re-Setting Host Immune Repertoire. Biomedicines 2021; 9:1098. [PMID: 34572293 PMCID: PMC8470720 DOI: 10.3390/biomedicines9091098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 12/13/2022] Open
Abstract
Inflammatory bowel disease (IBD) is characterized by gastrointestinal inflammation comprised of Crohn's disease and ulcerative colitis. Centers for Disease Control and Prevention report that 1.3% of the population of the United States (approximately 3 million people) were affected by the disease in 2015, and the number keeps increasing over time. IBD has a multifactorial etiology, from genetic to environmental factors. Most of the IBD treatments revolve around disease management, by reducing the inflammatory signals. We previously identified the surface layer protein A (SlpA) of Lactobacillus acidophilus that possesses anti-inflammatory properties to mitigate murine colitis. Herein, we expressed SlpA in a clinically relevant, food-grade Lactococcus lactis to further investigate and characterize the protective mechanisms of the actions of SlpA. Oral administration of SlpA-expressing L. lactis (R110) mitigated the symptoms of murine colitis. Oral delivery of R110 resulted in a higher expression of IL-27 by myeloid cells, with a synchronous increase in IL-10 and cMAF in T cells. Consistent with murine studies, human dendritic cells exposed to R110 showed exquisite differential gene regulation, including IL-27 transcription, suggesting a shared mechanism between the two species, hence positioning R110 as potentially effective at treating colitis in humans.
Collapse
Affiliation(s)
- Ananta Prasad Arukha
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL 32608, USA; (A.P.A.); (M.M.)
- Comparative, Diagnostic and Population Medicine, University of Florida, Gainesville, FL 32608, USA;
| | | | - Meerambika Mishra
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL 32608, USA; (A.P.A.); (M.M.)
| | - Jyoti K. Jha
- Rise Therapeutics, Rockville, MD 20850, USA; (C.F.F.); (J.K.J.); (G.R.F.)
| | - Subhashinie Kariyawasam
- Comparative, Diagnostic and Population Medicine, University of Florida, Gainesville, FL 32608, USA;
| | | | - Ellen M. Zimmermann
- Division of Gastroenterology, University of Florida College of Medicine, Gainesville, FL 32608, USA;
| | - Gary R. Fanger
- Rise Therapeutics, Rockville, MD 20850, USA; (C.F.F.); (J.K.J.); (G.R.F.)
| | - Bikash Sahay
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL 32608, USA; (A.P.A.); (M.M.)
| |
Collapse
|
25
|
Singh A, Das D, Kurra S, Arava S, Gupta S, Sharma A. Dendritic cells and their associated pro-inflammatory cytokines augment to the inflammatory milieu in vitiligo skin. Cytokine 2021; 148:155598. [PMID: 34103210 DOI: 10.1016/j.cyto.2021.155598] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/21/2021] [Accepted: 05/26/2021] [Indexed: 01/02/2023]
Abstract
BACKGROUND AND AIM Vitiligo is a progressive, autoimmune, hypomelanotic acquired disorder of skin which is characterized by depigmentation. The initial immunological events of this diseases are still at enigma that includes breach of immune tolerance, and defect in antigen presentation. Hence, we aimed to explore role of Dendritic cells (DCs) and its associated cytokines in the pathogenesis of generalized vitiligo (GV) patients. METHODOLOGY For this case-control study, 20 active patients and controls were enrolled. Phenotypic characterization of myeloid and plasmacytoid DCs (mDCs, pDCs) were done by flow-cytometry. Primary culture of DCs was done by monocyte differentiation supplemented with rIL-4 and rGM-CSF. Functional analysis DCs related cytokines and co-stimulatory molecules (CD80, CD40) was done by ELISA and qPCR respectively. Tissue localization of DCs was evaluated by immunohistochemistry. RESULT The frequency of mDCs (0.3715% v/s 0.188%) and pDCs (0.2331% v/s 0.1156%) were elevated in patients as compared to controls. Circulatory level of IL-12, TNF-α were significantly higher whereas IFN-α was decreased in patients than controls. Similar results were obtained in the culture supernatants of patients. Relative mRNA expression profiling of co-stimulatory molecules (CD80, CD40) were found to be up regulated in patient's skin. Tissue localization of Langerhans cells (Langerin, CD1a+) were found to be significantly higher in patients. CONCLUSION Elevated frequency of mDCs and pDCs along with elevated levels of IL-12, TNF-α and CD80, CD40 may contribute in defective antigen presentation of DCs. Altered pro-inflammatory and anti-inflammatory cytokines along with tissue localization of Langerhans cells might be involved in the pathogenesis of GV. These DCs associated cytokines can be explored as a therapeutic target in future.
Collapse
Affiliation(s)
- Ashu Singh
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Dayasagar Das
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Santosh Kurra
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Sudheer Arava
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Somesh Gupta
- Department of Dermatology & Venereology, All India Institute of Medical Sciences, New Delhi, India
| | - Alpana Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
26
|
Rauer D, Gilles S, Wimmer M, Frank U, Mueller C, Musiol S, Vafadari B, Aglas L, Ferreira F, Schmitt‐Kopplin P, Durner J, Winkler JB, Ernst D, Behrendt H, Schmidt‐Weber CB, Traidl‐Hoffmann C, Alessandrini F. Ragweed plants grown under elevated CO 2 levels produce pollen which elicit stronger allergic lung inflammation. Allergy 2021; 76:1718-1730. [PMID: 33037672 DOI: 10.1111/all.14618] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Common ragweed has been spreading as a neophyte in Europe. Elevated CO2 levels, a hallmark of global climate change, have been shown to increase ragweed pollen production, but their effects on pollen allergenicity remain to be elucidated. METHODS Ragweed was grown in climate-controlled chambers under normal (380 ppm, control) or elevated (700 ppm, based on RCP4.5 scenario) CO2 levels. Aqueous pollen extracts (RWE) from control- or CO2 -pollen were administered in vivo in a mouse model for allergic disease (daily for 3-11 days, n = 5) and employed in human in vitro systems of nasal epithelial cells (HNECs), monocyte-derived dendritic cells (DCs), and HNEC-DC co-cultures. Additionally, adjuvant factors and metabolites in control- and CO2 -RWE were investigated using ELISA and untargeted metabolomics. RESULTS In vivo, CO2 -RWE induced stronger allergic lung inflammation compared to control-RWE, as indicated by lung inflammatory cell infiltrate and mediators, mucus hypersecretion, and serum total IgE. In vitro, HNECs stimulated with RWE increased indistinctively the production of pro-inflammatory cytokines (IL-8, IL-1β, and IL-6). In contrast, supernatants from CO2 -RWE-stimulated HNECs, compared to control-RWE-stimulated HNECS, significantly increased TNF and decreased IL-10 production in DCs. Comparable results were obtained by stimulating DCs directly with RWEs. The metabolome analysis revealed differential expression of secondary plant metabolites in control- vs CO2 -RWE. Mixes of these metabolites elicited similar responses in DCs as compared to respective RWEs. CONCLUSION Our results indicate that elevated ambient CO2 levels elicit a stronger RWE-induced allergic response in vivo and in vitro and that RWE increased allergenicity depends on the interplay of multiple metabolites.
Collapse
Affiliation(s)
- Denise Rauer
- Chair and Institute of Environmental Medicine UNIKA‐T, Technical University of Munich and Helmholtz Zentrum München Augsburg Germany
| | - Stefanie Gilles
- Chair and Institute of Environmental Medicine UNIKA‐T, Technical University of Munich and Helmholtz Zentrum München Augsburg Germany
| | - Maria Wimmer
- Center of Allergy & Environment (ZAUM) Technical University of Munich (TUM) and Helmholtz Zentrum München Munich Germany
- Members of the German Center of Lung Research (DZL) Munich Germany
| | - Ulrike Frank
- Institute of Biochemical Plant Pathology (BIOP) Helmholtz Zentrum München Neuherberg Germany
| | - Constanze Mueller
- BGC Research Unit Analytical BioGeoChemistry Helmholtz Zentrum München Neuherberg Germany
| | - Stephanie Musiol
- Center of Allergy & Environment (ZAUM) Technical University of Munich (TUM) and Helmholtz Zentrum München Munich Germany
- Members of the German Center of Lung Research (DZL) Munich Germany
| | - Behnam Vafadari
- Chair and Institute of Environmental Medicine UNIKA‐T, Technical University of Munich and Helmholtz Zentrum München Augsburg Germany
| | - Lorenz Aglas
- Department of Biosciences University of Salzburg Salzburg Austria
| | - Fatima Ferreira
- Department of Biosciences University of Salzburg Salzburg Austria
| | | | - Jörg Durner
- Institute of Biochemical Plant Pathology (BIOP) Helmholtz Zentrum München Neuherberg Germany
| | - Jana Barbro Winkler
- Research Unit Environmental Simulation Institute of Biochemical Plant Pathology Helmholtz Zentrum München Neuherberg Germany
| | - Dieter Ernst
- Institute of Biochemical Plant Pathology (BIOP) Helmholtz Zentrum München Neuherberg Germany
| | - Heidrun Behrendt
- Center of Allergy & Environment (ZAUM) Technical University of Munich (TUM) and Helmholtz Zentrum München Munich Germany
| | - Carsten B. Schmidt‐Weber
- Center of Allergy & Environment (ZAUM) Technical University of Munich (TUM) and Helmholtz Zentrum München Munich Germany
- Members of the German Center of Lung Research (DZL) Munich Germany
| | - Claudia Traidl‐Hoffmann
- Chair and Institute of Environmental Medicine UNIKA‐T, Technical University of Munich and Helmholtz Zentrum München Augsburg Germany
- Outpatient Clinic for Environmental Medicine University Clinic Augsburg Augsburg Germany
- Christine‐Kühne Center for Allergy Research and Education (CK‐Care) Davos Switzerland
| | - Francesca Alessandrini
- Center of Allergy & Environment (ZAUM) Technical University of Munich (TUM) and Helmholtz Zentrum München Munich Germany
- Members of the German Center of Lung Research (DZL) Munich Germany
| |
Collapse
|
27
|
Galarraga-Vinueza ME, Obreja K, Ramanauskaite A, Magini R, Begic A, Sader R, Schwarz F. Macrophage polarization in peri-implantitis lesions. Clin Oral Investig 2021; 25:2335-2344. [PMID: 32886246 PMCID: PMC7966129 DOI: 10.1007/s00784-020-03556-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 08/27/2020] [Indexed: 01/09/2023]
Abstract
OBJECTIVES To immunohistochemically characterize and correlate macrophage M1/M2 polarization status with disease severity at peri-implantitis sites. MATERIALS AND METHODS A total of twenty patients (n = 20 implants) diagnosed with peri-implantitis (i.e., bleeding on probing with or without suppuration, probing depths ≥ 6 mm, and radiographic marginal bone loss ≥ 3 mm) were included. The severity of peri-implantitis was classified according to established criteria (i.e., slight, moderate, and advanced). Granulation tissue biopsies were obtained during surgical therapy and prepared for immunohistological assessment and macrophage polarization characterization. Macrophages, M1, and M2 phenotypes were identified through immunohistochemical markers (i.e., CD68, CD80, and CD206) and quantified through histomorphometrical analyses. RESULTS Macrophages exhibiting a positive CD68 expression occupied a mean proportion of 14.36% (95% CI 11.4-17.2) of the inflammatory connective tissue (ICT) area. Positive M1 (CD80) and M2 (CD206) macrophages occupied a mean value of 7.07% (95% CI 5.9-9.4) and 5.22% (95% CI 3.8-6.6) of the ICT, respectively. The mean M1/M2 ratio was 1.56 (95% CI 1-12-1.9). Advanced peri-implantitis cases expressed a significantly higher M1 (%) when compared with M2 (%) expression. There was a significant correlation between CD68 (%) and M1 (%) expression and probing depth (PD) values. CONCLUSION The present immunohistochemical analysis suggests that macrophages constitute a considerable proportion of the inflammatory cellular composition at peri-implantitis sites, revealing a significant higher expression for M1 inflammatory phenotype at advanced peri-implantitis sites, which could possibly play a critical role in disease progression. CLINICAL RELEVANCE Macrophages have critical functions to establish homeostasis and disease. Bacteria might induce oral dysbiosis unbalancing the host's immunological response and triggering inflammation around dental implants. M1/M2 status could possibly reveal peri-implantitis' underlying pathogenesis.
Collapse
Affiliation(s)
- Maria Elisa Galarraga-Vinueza
- Department of Oral Surgery and Implantology, Johann Wolfgang Goethe-University, Carolinum, Frankfurt, Germany
- Post-Graduate Program in Implant Dentistry (PPGO), Federal University of Santa Catarina (UFSC), Florianopolis, SC, Brazil
- School of Dentistry, Universidad de Las Américas, Quito, Ecuador
| | - Karina Obreja
- Department of Oral Surgery and Implantology, Johann Wolfgang Goethe-University, Carolinum, Frankfurt, Germany
| | - Ausra Ramanauskaite
- Department of Oral Surgery and Implantology, Johann Wolfgang Goethe-University, Carolinum, Frankfurt, Germany
| | - Ricardo Magini
- Post-Graduate Program in Implant Dentistry (PPGO), Federal University of Santa Catarina (UFSC), Florianopolis, SC, Brazil
| | - Amira Begic
- Department of Oral Surgery and Implantology, Johann Wolfgang Goethe-University, Carolinum, Frankfurt, Germany
| | - Robert Sader
- Department for Oral, Cranio-Maxillofacial and Facial Plastic Surgery, Medical Center of the Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Frank Schwarz
- Department of Oral Surgery and Implantology, Johann Wolfgang Goethe-University, Carolinum, Frankfurt, Germany.
- Department of Oral Surgery, Universitätsklinikum Düsseldorf, Dusseldorf, Germany.
| |
Collapse
|
28
|
Tan KT, Li S, Panny L, Lin CC, Lin SC. Galangin ameliorates experimental autoimmune encephalomyelitis in mice via modulation of cellular immunity. J Immunotoxicol 2021; 18:50-60. [PMID: 33770444 DOI: 10.1080/1547691x.2021.1890863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Multiple sclerosis (MS) causes neurologic disabilities that effect musculature, sensory systems, and vision. This is largely due to demyelination of nerve fibers caused by chronic inflammation. Corticosteroid treatments ameliorate symptoms of MS, but do not successfully cure the disease itself. In the current study, the application of galangin, a phytochemical flavonoid extracted from the ginger family of Alpinis officinarum, on experimental autoimmune encephalomyelitis (EAE; mouse model for MS) was explored. This study investigated prophylactic and therapeutic activity of the drug and mechanisms by which it acts. The results revealed that galangin at 40 and 80 mg/kg could lower the incidence rate of MS, and alleviate clinical/pathological manifestations. Mice administered galangin presented with less limb paralysis, lower levels of inflammatory cell infiltrates, and decreased demyelination compared to vehicle controls. Levels of CD4+IFNγ+ (TH1) and CD4+IL-17A+ (TH17) cells in the spinal cords of EAE mice administered galangin were reduced and both cell types were not capable of expansion. More surprisingly, galangin inhibited antigen presentation and cytokine production by dendritic cells (DC). Formation of cytokines like IL-6, IL-12, and IL-23 were significantly decreased due to galangin in co-culture models of DC and T-cells. Taken together, the data lead one to conclude that galangin could potentially be used as a potent immunoregulatory agent to alleviate clinical symptoms and reduce the prevalence of MS.
Collapse
Affiliation(s)
- Kok-Tong Tan
- Department of Surgery, Tungs' Taichung MetroHarbor Hospital, Taichung, Taiwan.,Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Shiming Li
- Hubei Key Laboratory for Processing and Application of Catalytic Materials, College of Chemistry & Chemical Engineering, Huangang Normal University, Hubei, China
| | - Lauren Panny
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Chi-Chien Lin
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan.,Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.,Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan.,Department of Pharmacology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shih-Chao Lin
- Bachelor Degree Program in Marine Biotechnology, College of Life Sciences, National Taiwan Ocean University, Keelung, Taiwan
| |
Collapse
|
29
|
Wang W, Yu H, Pan Y, Shao S. Combined Treatment With H1 and H4 Receptor Antagonists Improves Th2 Inflammatory Responses in the Nasal Mucosa of Allergic Rhinitis Rats. Am J Rhinol Allergy 2021; 35:809-816. [PMID: 33726554 DOI: 10.1177/19458924211002604] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Histamine H1 receptor (H1R) antagonists are the first-line drugs for the treatment of allergic rhinitis (AR) at present. Emerging evidence supports an important role of histamine H4 receptor (H4R) in allergic diseases. However, information regarding the effects of combined treatment with H1 and H4 receptor antagonists in AR is limited. OBJECTIVES We aimed to assess the effects of combined treatment with H1R and H4R antagonists on Th2 inflammatory responses in the nasal mucosa of AR rats. METHODS Sprague Dawley rats were sensitized with ovalbumin and treated with H1R antagonist desloratadine or/and H4R antagonist JNJ7777120. Western blotting was used to assay the phenotypic markers of mature dendritic cells in the nasal mucosa, including major histocompatibility complex class II (MHC-II) and co-stimulatory molecules CD80, CD86 and OX40 ligand (OX40L). Th2 inflammatory cytokines including interleukin-4, 5 and 13 in nasal lavage fluids were determined by using enzyme-linked immunoassay. RESULTS The treatment with desloratadine alone down-regulated the CD86 expression, and decreased the production of Th2 cytokines, but had no impact on the expression of MHC-II, CD80 and OX40L. The administration of NJ7777120 alone reduced the levels of CD86, OX40L and Th2 cytokines, whereas MHC-II and CD80 expression was unaffected. The combination of desloratadine and JNJ7777120 showed more significant synergistic therapeutic effects than monotherapy. CONCLUSION H4R antagonist acted synergistically with H1R antagonist to reduce Th2 inflammatory responses by down-regulating CD86 and OX40L expression in the nasal mucosa of AR rats. The combination with H1R and H4R antagonists might be a new strategy for AR treatment.
Collapse
Affiliation(s)
- Weiwei Wang
- Department of Anatomy, School of Medicine, Huzhou University, Huzhou, China
| | - Hongwei Yu
- Department of Histology and Embryology, School of Medicine, Huzhou University, Huzhou, China
| | - Yongliang Pan
- Department of Histology and Embryology, School of Medicine, Huzhou University, Huzhou, China
| | - Shengwen Shao
- Department of Pathogenic Microbiology and Immunology, School of Medicine, Huzhou University, Huzhou, China
| |
Collapse
|
30
|
Afify SM, Pali-Schöll I, Hufnagl K, Hofstetter G, El-Bassuoni MAR, Roth-Walter F, Jensen-Jarolim E. Bovine Holo-Beta-Lactoglobulin Cross-Protects Against Pollen Allergies in an Innate Manner in BALB/c Mice: Potential Model for the Farm Effect. Front Immunol 2021; 12:611474. [PMID: 33746954 PMCID: PMC7977286 DOI: 10.3389/fimmu.2021.611474] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 01/14/2021] [Indexed: 12/14/2022] Open
Abstract
The lipocalin beta-lactoglobulin (BLG) is a major protein compound in cow's milk, and we detected it in cattle stable dust. BLG may be a novel player in the farm protective effect against atopic sensitization and hayfever. In previous studies, we demonstrated that only the ligand-filled holo-form of BLG prevented sensitization to itself. Here, we investigated whether holo-BLG could, in an innate manner, also protect against allergic sensitization to unrelated birch pollen allergens using a murine model. BALB/c mice were nasally pretreated four times in biweekly intervals with holo-BLG containing quercetin-iron complexes as ligands, with empty apo-BLG, or were sham-treated. Subsequently, mice were intraperitoneally sensitized two times with apo-BLG or with the unrelated birch pollen allergen apo-Bet v 1, adjuvanted with aluminum hydroxide. After subsequent systemic challenge with BLG or Bet v 1, body temperature drop was monitored by anaphylaxis imaging. Specific antibodies in serum and cytokines of BLG- and Bet v 1-stimulated splenocytes were analyzed by ELISA. Additionally, human peripheral blood mononuclear cells of pollen allergic subjects were stimulated with apo- versus holo-BLG before assessment by FACS. Prophylactic treatment with the holo-BLG resulted in protection against allergic sensitization and clinical reactivity also to Bet v 1 in an unspecific manner. Pretreatment with holo-BLG resulted in significantly lower BLG-as well as Bet v 1-specific antibodies and impaired antigen-presentation with significantly lower numbers of CD11c+MHCII+ cells expressing CD86. Pretreatment with holo-BLG also reduced the release of Th2-associated cytokines from Splenocytes in BLG-sensitized mice. Similarly, in vitro stimulation of PBMCs from birch pollen allergic subjects with holo-BLG resulted in a relative decrease of CD3+CD4+ and CD4+CRTh2 cells, but not of CD4+CD25+CD127- Treg cells, compared to apo-BLG stimulation. In conclusion, prophylactic treatment with holo-BLG protected against allergy in an antigen-specific and -unspecific manner by decreasing antigen presentation, specific antibody production and abrogating a Th2-response. Holo-BLG therefore promotes immune resilience against pollen allergens in an innate manner and may thereby contribute to the farm protective effect against atopic sensitization.
Collapse
Affiliation(s)
- Sheriene Moussa Afify
- The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University Vienna, Vienna, Austria.,Laboratory Medicine and Immunology Department, Faculty of Medicine, Menoufia University, Shibin El Kom, Egypt.,Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Isabella Pali-Schöll
- The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University Vienna, Vienna, Austria.,Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Karin Hufnagl
- The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University Vienna, Vienna, Austria
| | - Gerlinde Hofstetter
- The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University Vienna, Vienna, Austria
| | | | - Franziska Roth-Walter
- The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University Vienna, Vienna, Austria.,Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Erika Jensen-Jarolim
- The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University Vienna, Vienna, Austria.,Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.,Biomedical International R+D GmbH, Vienna, Austria
| |
Collapse
|
31
|
Yang D, Shen LX, Chen RF, Fu Y, Xu HY, Zhang LN, Liu DH. The Effect of Talaromyces marneffei Infection on CD86 Expression in THP-1 Cells. Infect Drug Resist 2021; 14:651-660. [PMID: 33642869 PMCID: PMC7903953 DOI: 10.2147/idr.s297160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 01/31/2021] [Indexed: 12/11/2022] Open
Abstract
Background Talaromyces marneffei (T. marneffei) is a destructive opportunistic dimorphic fungal which can cause lethiferous Talaromycosis, but the clearance of T. marneffei mainly depends on the innate immune response. Objective To investigate whether T. marneffei can inhibit the expression of CD86 in THP-1 cells after infection and discuss the potential mechanisms. Methods Western blot and immunoelectron microscopy were used to detect the CD86 expression on T. marneffei cultured on BHI medium at 37°C. Western blot, enzyme-linked immunoassay and immunofluorescence were used to detect the change of CD86 expression on macrophages incubating with T. marneffei. Enzyme-linked immunoassay was used to detect the content of CD86 in supernatant in the co-culture system. Immunohistochemistry and immunoelectron microscopy were used to detect the expression of CD86 on T. marneffei incubating with macrophages. Results T. marneffei did not express CD86 when cultured separately at 37°C detected by Western blot and immunoelectron microscopy, but it did express CD86 when incubated with macrophages detected by immunohistochemistry and immunoelectron microscopy. The CD86 expression of macrophages significantly decreased at 72 hours when infected with T. marneffei while the content of CD86 in supernatant significantly increased at 72 hours compared with the control group which were detected by Western blot, enzyme-linked immunoassay and immunofluorescence. Conclusion 1) After T. marneffei infection, CD86 expression on THP-1 decreased, and with the progression of infection, insufficient polarization of M1 macrophages gradually appeared; 2) T. marneffei may adsorb or uptake CD86 in supernatant produced by macrophages during the contact with THP-1 cells, thus leading to the consumption of CD86 in macrophages.
Collapse
Affiliation(s)
- Di Yang
- Department of Dermatology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People's Republic of China
| | - Lin-Xia Shen
- Department of Dermatology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People's Republic of China.,Department of Dermatology and Venereology, Huashan Hospital, Fudan University, Shanghai, 200040, People's Republic of China
| | - Ri-Feng Chen
- Department of Dermatology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People's Republic of China
| | - Yu Fu
- Department of Dermatology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People's Republic of China
| | - Hong-Yan Xu
- Department of Dermatology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People's Republic of China
| | - Li-Na Zhang
- Department of Dermatology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People's Republic of China
| | - Dong-Hua Liu
- Department of Dermatology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People's Republic of China.,Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Nanning, 530021, People's Republic of China
| |
Collapse
|
32
|
Wójcik P, Gęgotek A, Žarković N, Skrzydlewska E. Oxidative Stress and Lipid Mediators Modulate Immune Cell Functions in Autoimmune Diseases. Int J Mol Sci 2021; 22:ijms22020723. [PMID: 33450863 PMCID: PMC7828321 DOI: 10.3390/ijms22020723] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 12/15/2022] Open
Abstract
Autoimmune diseases, including psoriasis, systemic lupus erythematosus (SLE), and rheumatic arthritis (RA), are caused by a combination of environmental and genetic factors that lead to overactivation of immune cells and chronic inflammation. Since oxidative stress is a common feature of these diseases, which activates leukocytes to intensify inflammation, antioxidants could reduce the severity of these diseases. In addition to activating leukocytes, oxidative stress increases the production of lipid mediators, notably of endocannabinoids and eicosanoids, which are products of enzymatic lipid metabolism that act through specific receptors. Because the anti-inflammatory CB2 receptors are the predominant cannabinoid receptors in leukocytes, endocannabinoids are believed to act as anti-inflammatory factors that regulate compensatory mechanisms in autoimmune diseases. While administration of eicosanoids in vitro leads to the differentiation of lymphocytes into T helper 2 (Th2) cells, eicosanoids are also necessary for the different0iation of Th1 and Th17 cells. Therefore, their antagonists and/or the genetic deletion of their receptors abolish inflammation in animal models of psoriasis—RA and SLE. On the other hand, products of non-enzymatic lipid peroxidation, especially acrolein and 4-hydroxynonenal-protein adducts, mostly generated by an oxidative burst of granulocytes, may enhance inflammation and even acting as autoantigens and extracellular signaling molecules in the vicious circle of autoimmune diseases.
Collapse
Affiliation(s)
- Piotr Wójcik
- Department of Analytical Chemistry, Medical University of Bialystok, 15-222 Bialystok, Poland; (P.W.); (A.G.)
| | - Agnieszka Gęgotek
- Department of Analytical Chemistry, Medical University of Bialystok, 15-222 Bialystok, Poland; (P.W.); (A.G.)
| | - Neven Žarković
- Laboratory for Oxidative Stress, Rudjer Boskovic Institute, 10000 Zagreb, Croatia;
| | - Elżbieta Skrzydlewska
- Department of Analytical Chemistry, Medical University of Bialystok, 15-222 Bialystok, Poland; (P.W.); (A.G.)
- Correspondence:
| |
Collapse
|
33
|
Vroman H, Tindemans I, Lukkes M, van Nimwegen M, de Boer GM, Tramper-Stranders GA, Braunstahl GJ, Hendriks RW, Kool M. Type II conventional dendritic cells of asthmatic patients with frequent exacerbations have an altered phenotype and frequency. Eur Respir J 2020; 55:13993003.00859-2019. [PMID: 32217653 DOI: 10.1183/13993003.00859-2019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 02/04/2020] [Indexed: 11/05/2022]
Affiliation(s)
- Heleen Vroman
- Dept of Pulmonary Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Irma Tindemans
- Dept of Pulmonary Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Melanie Lukkes
- Dept of Pulmonary Medicine, Erasmus MC, Rotterdam, The Netherlands
| | | | - Geertje M de Boer
- Dept of Respiratory Medicine, Franciscus Gasthuis and Vlietland, Rotterdam, The Netherlands
| | | | - Gert-Jan Braunstahl
- Dept of Pulmonary Medicine, Erasmus MC, Rotterdam, The Netherlands.,Dept of Respiratory Medicine, Franciscus Gasthuis and Vlietland, Rotterdam, The Netherlands
| | - Rudi W Hendriks
- Dept of Pulmonary Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Mirjam Kool
- Dept of Pulmonary Medicine, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
34
|
Zheng X, Sun C, Yu R, Chu X, Xu J, Liu C, Zhao M, Xu X, Xia M, Wang C. CD13-specific ligand facilitates Xanthatin nanomedicine targeting dendritic cells for therapy of refractory allergic rhinitis. Int J Pharm 2020; 577:119034. [DOI: 10.1016/j.ijpharm.2020.119034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/27/2019] [Accepted: 01/11/2020] [Indexed: 01/15/2023]
|
35
|
Bakshi M, Kim TK, Porter L, Mwangi W, Mulenga A. Amblyomma americanum ticks utilizes countervailing pro and anti-inflammatory proteins to evade host defense. PLoS Pathog 2019; 15:e1008128. [PMID: 31756216 PMCID: PMC6897422 DOI: 10.1371/journal.ppat.1008128] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 12/06/2019] [Accepted: 10/05/2019] [Indexed: 02/07/2023] Open
Abstract
Feeding and transmission of tick-borne disease (TBD) agents by ticks are facilitated by tick saliva proteins (TSP). Thus, defining functional roles of TSPs in tick evasion is expected to reveal potential targets in tick-antigen based vaccines to prevent TBD infections. This study describes two types of Amblyomma americanum TSPs: those that are similar to LPS activate macrophage (MΦ) to express pro-inflammation (PI) markers and another set that suppresses PI marker expression by activated MΦ. We show that similar to LPS, three recombinant (r) A. americanum insulin-like growth factor binding-related proteins (rAamIGFBP-rP1, rAamIGFBP-rP6S, and rAamIGFBP-rP6L), hereafter designated as PI-rTSPs, stimulated both PBMC -derived MΦ and mice RAW 267.4 MΦ to express PI co-stimulatory markers, CD40, CD80, and CD86 and cytokines, TNFα, IL-1, and IL-6. In contrast, two A. americanum tick saliva serine protease inhibitors (serpins), AAS27 and AAS41, hereafter designated as anti-inflammatory (AI) rTSPs, on their own did not affect MΦ function or suppress expression of PI markers, but enhanced expression of AI cytokines (IL-10 and TGFβ) in MΦ that were pre-activated by LPS or PI-rTSPs. Mice paw edema test demonstrated that in vitro validated PI- and AI-rTSPs are functional in vivo since injection of HEK293-expressed PI-rTSPs (individually or as a cocktail) induced edema comparable to carrageenan-induced edema and was characterized by upregulation of CD40, CD80, CD86, TNF-α, IL-1, IL-6, and chemokines: CXCL1, CCL2, CCL3, CCL5, and CCL11, whereas the AI-rTSPs (individually and cocktail) were suppressive. We propose that the tick may utilize countervailing PI and AI TSPs to regulate evasion of host immune defenses whereby TSPs such as rAamIGFBP-rPs activate host immune cells and proteins such as AAS27 and AAS41 suppress the activated immune cells. Several studies have documented immuno-suppressive activities in whole tick saliva and salivary gland protein extracts. We have made contribution toward understanding the molecular basis of tick feeding, as we have described functions of defined tick saliva immuno-modulatory proteins. We have shown that A. americanum injects two groups of functionally opposed tick saliva proteins: those that could counter-intuitively be characterized as pro-host defense, and those that are expected to have anti-host immune defense functions. Based on our data, we propose that the tick evades host defense using countervailing pro- and anti- inflammatory proteins in which the pro-host defense tick saliva proteins stimulate host immune cells such as macrophages, and the anti-host defense tick saliva proteins suppress functions of the activated immune cells.
Collapse
Affiliation(s)
- Mariam Bakshi
- Department of Veterinary Pathobiology, College of Veterinary Medicine, TAMU, College Station, Texas, United States of America
| | - Tae Kwon Kim
- Department of Veterinary Pathobiology, College of Veterinary Medicine, TAMU, College Station, Texas, United States of America
| | - Lindsay Porter
- Department of Veterinary Pathobiology, College of Veterinary Medicine, TAMU, College Station, Texas, United States of America
| | - Waithaka Mwangi
- Department of Veterinary Pathobiology, College of Veterinary Medicine, TAMU, College Station, Texas, United States of America
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, United States of America
| | - Albert Mulenga
- Department of Veterinary Pathobiology, College of Veterinary Medicine, TAMU, College Station, Texas, United States of America
- * E-mail:
| |
Collapse
|
36
|
Zutshi S, Kumar S, Chauhan P, Bansode Y, Nair A, Roy S, Sarkar A, Saha B. Anti-Leishmanial Vaccines: Assumptions, Approaches, and Annulments. Vaccines (Basel) 2019; 7:vaccines7040156. [PMID: 31635276 PMCID: PMC6963565 DOI: 10.3390/vaccines7040156] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/24/2019] [Accepted: 10/08/2019] [Indexed: 12/17/2022] Open
Abstract
Leishmaniasis is a neglected protozoan parasitic disease that occurs in 88 countries but a vaccine is unavailable. Vaccination with live, killed, attenuated (physically or genetically) Leishmania have met with limited success, while peptide-, protein-, or DNA-based vaccines showed promise only in animal models. Here, we critically assess several technical issues in vaccination and expectation of a host-protective immune response. Several studies showed that antigen presentation during priming and triggering of the same cells in infected condition are not comparable. Altered proteolytic processing, antigen presentation, protease-susceptible sites, and intracellular expression of pathogenic proteins during Leishmania infection may vary dominant epitope selection, MHC-II/peptide affinity, and may deter the reactivation of desired antigen-specific T cells generated during priming. The robustness of the memory T cells and their functions remains a concern. Presentation of the antigens by Leishmania-infected macrophages to antigen-specific memory T cells may lead to change in the T cells' functional phenotype or anergy or apoptosis. Although cells may be activated, the peptides generated during infection may be different and cross-reactive to the priming peptides. Such altered peptide ligands may lead to suppression of otherwise active antigen-specific T cells. We critically assess these different immunological issues that led to the non-availability of a vaccine for human use.
Collapse
Affiliation(s)
| | - Sunil Kumar
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India.
| | - Prashant Chauhan
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India.
| | - Yashwant Bansode
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India.
| | - Arathi Nair
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India.
| | - Somenath Roy
- Department of Human Physiology with Community Health, Vidyasagar University, Midnapore 721102, India.
| | - Arup Sarkar
- Department of Biotechnology, Trident Academy of Creative Technology, Bhubaneswar 751024, India.
| | - Bhaskar Saha
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India.
- Department of Biotechnology, Trident Academy of Creative Technology, Bhubaneswar 751024, India.
| |
Collapse
|
37
|
Schröder T, Wiese AV, Ender F, Quell KM, Vollbrandt T, Duhn J, Sünderhauf A, Künstner A, Moreno-Fernandez ME, Derer S, Aherrahrou Z, Lewkowich I, Divanovic S, Sina C, Köhl J, Laumonnier Y. Short-term high-fat diet feeding protects from the development of experimental allergic asthma in mice. Clin Exp Allergy 2019; 49:1245-1257. [PMID: 31265181 DOI: 10.1111/cea.13454] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 06/11/2019] [Accepted: 06/17/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND A close association between obesity and asthma has been described. The nature of this association remains elusive, especially with respect to allergic asthma. Controversial findings exist regarding the impact of short-term high-fat diet (HFD) feeding on the development of allergic asthma. OBJECTIVE To delineate the impact of short-term HFD feeding on the development of experimental allergic asthma. METHODS Female C57BL/6JRJ mice were fed with a short-term HFD or chow diet (CD) for 12 weeks. Allergic asthma was induced by intraperitoneal OVA/alum sensitization followed by repeated OVA airway challenges. We determined airway hyperresponsiveness (AHR) and pulmonary inflammation by histologic and flow cytometric analysis of immune cells. Furthermore, we assessed the impact of HFD on dendritic cell (DC)-mediated activation of T cells. RESULTS Female mice showed a mild increase in body weight accompanied by mild metabolic alterations. Upon OVA challenge, CD-fed mice developed strong AHR and airway inflammation, which were markedly reduced in HFD-fed mice. Mucus production was similar in both treatment groups. OVA-induced increases in DC and CD4+ T-cell recruitment to the lungs were significantly attenuated in HFD-fed mice. MHC-II expression and CD40 expression in pulmonary CD11b+ DCs were markedly lower in HFD-fed compared to CD-fed mice, which was associated in vivo with a decreased T helper (Th) 1/17 differentiation and Treg formation without impacting Th2 differentiation. CONCLUSIONS/CLINICAL RELEVANCE These findings suggest that short-term HFD feeding attenuates the development of AHR, airway inflammation, pulmonary DC recruitment and MHC-II/CD40 expression leading to diminished Th1/17 but unchanged Th2 differentiation. Thus, short-term HFD feeding and associated metabolic alterations may have protective effects in allergic asthma development.
Collapse
Affiliation(s)
- Torsten Schröder
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany.,Institute of Nutritional Medicine, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Anna V Wiese
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Fanny Ender
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Katharina M Quell
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Tillman Vollbrandt
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany.,Cell Analysis Core Facility, University of Lübeck, Lübeck, Germany
| | - Jannis Duhn
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Annika Sünderhauf
- Institute of Nutritional Medicine, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Axel Künstner
- The Lübeck Institute of Experimental Dermatology, Group of Medical Systems Biology, University of Lübeck, Lübeck, Germany.,Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany
| | - Maria E Moreno-Fernandez
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.,Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Stefanie Derer
- Institute of Nutritional Medicine, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Zouhair Aherrahrou
- Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany.,DZHK (German Centre for Cardiovascular Research), University Heart Centre Lübeck, Lübeck, Germany
| | - Ian Lewkowich
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.,Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Senad Divanovic
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.,Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Christian Sina
- Institute of Nutritional Medicine, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Jörg Köhl
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany.,Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Yves Laumonnier
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| |
Collapse
|
38
|
sp 2-Iminosugar glycolipids as inhibitors of lipopolysaccharide-mediated human dendritic cell activation in vitro and of acute inflammation in mice in vivo. Eur J Med Chem 2019; 169:111-120. [PMID: 30870792 DOI: 10.1016/j.ejmech.2019.02.078] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/28/2019] [Accepted: 02/28/2019] [Indexed: 12/13/2022]
Abstract
Glycolipid mimetics consisting of a bicyclic polyhydroxypiperidine-cyclic carbamate core and a pseudoanomeric hydrophobic tail, termed sp2-iminosugar glycolipids (sp2-IGLs), target microglia during neuroinflammatory processes. Here we have synthesized and investigated new variants of sp2-IGLs for their ability to suppress the activation of human monocyte-derived dendritic cells (DCs) by lipopolysaccharide (LPS) signaling through Toll-like receptor 4. We report that the best lead was (1R)-1-dodecylsulfonyl-5N,6O-oxomethylidenenojirimycin (DSO2-ONJ), able to inhibit LPS-induced TNFα production and maturation of DCs. Immunovisualization experiments, using a mannoside glycolipid conjugate (MGC) that also suppress LPS-mediated DC activation as control, evidenced a distinct mode of action for the sp2-IGLs: unlike MGCs, DSO2-ONJ did not elicit internalization of the LPS co-receptor CD14 or induce its co-localization with the Toll-like receptor 4. In a mouse model of LPS-induced acute inflammation, DSO2-ONJ demonstrated anti-inflammatory activity by inhibiting the production of the pro-inflammatory interleukin-6. The ensemble of the data highlights sp2-IGLs as a promising new class of molecules against inflammation by interfering in Toll-like receptor intracellular signaling.
Collapse
|
39
|
Expression of CD80 and CD86 on B cells during coxsackievirus B3-induced acute myocarditis. Cent Eur J Immunol 2019; 44:364-369. [PMID: 32140047 PMCID: PMC7050056 DOI: 10.5114/ceji.2019.92786] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 09/21/2018] [Indexed: 02/01/2023] Open
Abstract
Introduction The pathogenesis of viral myocarditis (VMC) is unclear, but many studies have shown that VMC is associated with an excessive immune response. CD80 and CD86 are important costimulatory molecules that play a critical role in autoimmunity. However, whether CD80+/CD86+ B cells participate in the pathogenesis of acute VMC is unknown. Material and methods Male C57BL/6 mice were infected by intraperitoneal injection with coxsackievirus B3 (CVB3) to establish a VMC model. Control mice were administered phosphate-buffered saline intraperitoneally. At one week and two weeks post injection, histopathological changes in heart tissue were assessed with haematoxylin and eosin staining. The frequency of splenic CD80+/CD86+ B cells was measured with flow cytometry. Results The frequency of CD80+ B cells was significantly increased in VMC, while the frequency of CD86+ B cells was significantly decreased. Furthermore, the frequency of CD80+ B cells related to the severity of VMC. Conclusions These data show that CD80+/CD86+B cells are involved in the pathogenesis of VMC, with CD80+B cells being more important than CD86+B cells.
Collapse
|
40
|
Cho SW, Zhang YL, Ko YK, Shin JM, Lee JH, Rhee CS, Kim DY. Intranasal Treatment With 1, 25-Dihydroxyvitamin D3 Alleviates Allergic Rhinitis Symptoms in a Mouse Model. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2019; 11:267-279. [PMID: 30661318 PMCID: PMC6340801 DOI: 10.4168/aair.2019.11.2.267] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 09/24/2018] [Accepted: 10/10/2018] [Indexed: 01/09/2023]
Abstract
PURPOSE Vitamin D is a potent immunomodulator. However, its role in the pathogenesis of allergic rhinitis is unclear. METHODS The aim of this study was to evaluate the antiallergic effect of intranasally applied vitamin D in an allergic rhinitis mouse model. BALB/c mice were intraperitoneally sensitized with ovalbumin (OVA) and alum before they were intranasally challenged with OVA. Then, they were intranasally administered 1, 25-dihydroxyvitamin D3 (0.02 μg) or solvent. Allergic symptom scores, eosinophil infiltration, cytokine mRNA levels (interleukin [IL]-4, IL-5, IL-10, IL-13 and interferon-γ) in the nasal tissue, and serum total immunoglobulin E (IgE) and OVA-specific IgE, IgG1, and IgG2a were analyzed and compared with negative and positive control groups. Cervical lymph nodes (LNs) were harvested for flow cytometry analysis and cell proliferation assay. RESULTS In the treatment group, allergic symptom scores, eosinophil infiltration, and mRNA levels of IL-4 and IL-13 were significantly lower in the nasal tissue than in the positive control group. The IL-5 mRNA level, serum total IgE, and OVA-specific IgE and IgG1 levels decreased in the treatment group; however, the difference was not significant. In the cervical LNs, CD86 expression had been down-regulated in CD11c⁺major histocompatibility complex II-high (MHCIIhigh) in the treatment group. Additionally, IL-4 secretion in the lymphocyte culture from cervical LNs significantly decreased. CONCLUSIONS The results confirm the antiallergic effect of intranasal 1,25-dihydroxyvitamin D3. It decreases CD 86 expression among CD11c⁺MHCIIhigh cells and T-helper type 2-mediated inflammation in the cervical LNs. Therefore, topically applied 1,25-dihydroxyvitamin D3 can be a future therapeutic agent for allergic rhinitis.
Collapse
Affiliation(s)
- Sung Woo Cho
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Yu Lian Zhang
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea.,Center of Morphological Experiment, Medical College of Yanbian University, Yanji, China
| | - Young Kyung Ko
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Jae Min Shin
- Department of Otorhinolaryngology-Head and Neck Surgery, Soonchunhyang University Seoul Hospital, Soonchunhyang University College of Medicine, Seoul, Korea
| | - Jun Ho Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Chae Seo Rhee
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea.,Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Dong Young Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|
41
|
Abstract
The cluster of differentiation protein complex, CD80/CD86, regulates Th1/Th2 differentiation in autoimmune disease. In order to establish the effects of CD80/CD86 on Th17 cell differentiation in acute viral myocarditis (VMC), we infected C57BL/6 mice with Coxsackie virus B3 (CVB3) and examined the effects of the treatment with anti-CD80/CD86 monoclonal antibodies (mAbs) on Th17 cell differentiation in vivo. The effects of anti-CD80/CD86 mAbs on Th17 cell differentiation were further evaluated in vitro. The treatment with anti-CD80 mAb induced marked suppression of Th17 cell differentiation and ROR-γt mRNA expression, whereas anti-CD86 mAb alone had no effect, both in vivo and in vitro. Our finding that CD80 regulates Th17 differentiation supports the potential utility of anti-CD80 mAb as an effective new immunotherapeutic target in acute VMC.
Collapse
|
42
|
Yu Y, Wang L, Gu G. The correlation between Runx3 and bronchial asthma. Clin Chim Acta 2018; 487:75-79. [PMID: 30218658 DOI: 10.1016/j.cca.2018.09.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 09/07/2018] [Accepted: 09/12/2018] [Indexed: 12/20/2022]
Abstract
Runx3, a member of the Runt-related transcription factor family, has attracted extensive attention due to its important role in the development of immune systems, especially in the differentiation of T cells. Accumulated evidence indicated that altered expression of Runx3 regulates a variety of target genes in different tissues/cells. Studies in animal models suggested that Runx3 may regulate the development of T cell lineage including those of innate lymphoid cells, Treg cells and dendritic cells, which may contribute to the development of hypersensitivity and asthma. Specifically, Runx3 modulates Th1/Th2 balance and hence, the production of interleukins, which induce inflammatory responses. Understanding the roles and mechanisms of Runx3 in the regulation of immune function provides a basis for the design of novel preventive and treatment models for bronchial asthma. This article reviews published data from cell lines, animal models, and patients, concerning the relationship between Runx3 expression alteration and asthma. Epigenetic regulation of Runx3 by DNA hypermethylation and microRNA, and the implication of these pathways in asthma are also discussed.
Collapse
Affiliation(s)
- Yanyan Yu
- The children's hospital affiliated of Suzhou University, Suzhou 215000, Jiangsu Province, China.
| | - Leilei Wang
- Children Asthma Department, Lianyungang Maternal and Child Hospital Jiangsu Province, Lianyungang 222006, Jiangsu Province, China
| | - Guixiong Gu
- The children's hospital affiliated of Suzhou University, Suzhou 215000, Jiangsu Province, China.
| |
Collapse
|
43
|
Shi F, Zhang Y, Qiu C, Xiong Y, Li M, Shan A, Yang Y, Li B. Effects of inhaled corticosteroids on the expression of TNF family molecules in murine model of allergic asthma. Exp Lung Res 2018; 43:301-310. [PMID: 29140131 DOI: 10.1080/01902148.2017.1376129] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND The tumor necrosis factor superfamily member LIGHT (the official gene symbol approved by NCBI Gene Database), an inflammatory factor secreted by T cells after allergen exposure, recently discovered to play crucial roles in asthmatic airway remodeling. However, it is unclear whether LIGHT could be controlled by inhaled corticosteroids, a key component of asthma management. This study was to investigate the effects and potential mechanisms of inhaled budesonide on the expressions of LIGHT and its receptors (LTβR and HVEM) of lung tissues in ovalbumin-sensitized mice. MATERIALS AND METHODS Thirty-three BALB/c mice were randomly divided into the control, asthma model, and budesonide treatment groups (11 in each group). Mice were sensitized and challenged by OVA to develop mouse model of chronic asthma, and treated with aerosolized budesonide before OVA challenge. Bronchoalveolar lavage fluid (BALF) and lungs were obtained after the final OVA challenge. Protein and mRNA Levels of LIGHT, LTβR, and HVEM in the lungs were investigated by immunohistochemistry, image analysis, and real-time PCR. Expressions of IL-6 and IFN-γ in BALF were measured by ELISA. RESULTS Inhaled budesonide significantly reduced protein and mRNA levels of lung LIGHT, LTβR, and HVEM in asthmatic mice. Correspondingly, the number of eosinophils and neutrophils and IL-6 levels in BALF after budesonide treatment were found to be decreased, whereas the IFN-γ levels in BALF were increased. Moreover, the expressions of LIGHT and HVEM mRNA showed positive correlation with IL-6 levels in the treatment group. CONCLUSIONS Inhaled budesonide can down-regulate the expressions of LIGHT, LTβR, and HVEM in the lungs of asthmatic mice, and LIGHT/LTβR/HVEM interactions may be a potentially key target for asthma treatment.
Collapse
Affiliation(s)
- Fei Shi
- a Emergency Department , Jinan University, The Second Clinical College , NO. 1017 Dongmen north Road, Shenzhen , China
| | - Yarui Zhang
- b Biomedical Research Institute , Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center , NO. 1120 Lianhua Road, Shenzhen , China
| | - Chen Qiu
- c Pulmonary Department , Jinan University, The Second Clinical College , NO. 1017 Dongmen north Road, Shenzhen , China
| | - Yi Xiong
- b Biomedical Research Institute , Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center , NO. 1120 Lianhua Road, Shenzhen , China
| | - Manhui Li
- b Biomedical Research Institute , Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center , NO. 1120 Lianhua Road, Shenzhen , China
| | - Aijun Shan
- a Emergency Department , Jinan University, The Second Clinical College , NO. 1017 Dongmen north Road, Shenzhen , China
| | - Ying Yang
- a Emergency Department , Jinan University, The Second Clinical College , NO. 1017 Dongmen north Road, Shenzhen , China
| | - Binbin Li
- a Emergency Department , Jinan University, The Second Clinical College , NO. 1017 Dongmen north Road, Shenzhen , China
| |
Collapse
|
44
|
The Initiation of Th2 Immunity Towards Food Allergens. Int J Mol Sci 2018; 19:ijms19051447. [PMID: 29757238 PMCID: PMC5983584 DOI: 10.3390/ijms19051447] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 04/23/2018] [Accepted: 05/07/2018] [Indexed: 12/30/2022] Open
Abstract
In contrast with Th1 immune responses against pathogenic viruses and bacteria, the incipient events that generate Th2 responses remain less understood. One difficulty in the identification of universal operating principles stems from the diversity of entities against which cellular and molecular Th2 responses are produced. Such responses are launched against harmful macroscopic parasites and noxious substances, such as venoms, but also against largely innocuous allergens. This suggests that the established understanding about sense and recognition applied to Th1 responses may not be translatable to Th2 responses. This review will discuss processes and signals known to occur in Th2 responses, particularly in the context of food allergy. We propose that perturbations of homeostasis at barrier sites induced by external or internal subverters, which can activate or lower the threshold activation of the immune system, are the major requirement for allergic sensitization. Innate signals produced in the tissue under these conditions equip dendritic cells with a program that forms an adaptive Th2 response.
Collapse
|
45
|
Pir-B inhibits the DC function and disturbs the Th17/Treg balance in lung cancer murine model. Oncotarget 2017; 8:114710-114721. [PMID: 29383114 PMCID: PMC5777726 DOI: 10.18632/oncotarget.21763] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 09/18/2017] [Indexed: 11/25/2022] Open
Abstract
Paired immunoglobulin-like receptor B (Pir-B) was an inhibitory receptor expressed on the surfaces of dendritic cells (DCs). Pir-B inhibit T helper (Th) 1 response and induce Th2 cell differentiation, leading to the imbalance of Th1/Th2 cells. However, the role and potential mechanism of Pir-B on the balance of Th17/regulatory T cells (Tregs) is still largely unknown in lung cancer murine model. In the present study, the DC function and Th17/Treg balance were destroyed during the progression of lung cancer and this was accompanied by an increased expression of Pir-B. After transfection with Pir-B siRNA or administration of IL-6 in vitro, the decreased response of Th17 cells were restored, whereas the augmented differentiation of Tregs was diminished. Further, the transfer of Pir-B silenced DCs or the injection of IL-6 in vivo increased Th17 response and decreased Treg differentiation. Our study has demonstrated that Pir-B inhibits the DC function and disturbs the Th17/Treg balance via IL-6 pathway during the progression of lung cancer, contributing to inhibited antitumor immunity.
Collapse
|
46
|
Chen WQ, Xie ZZ, Wang X, Zhao JH, Hu Q, Chen YH, Gao WY, Liu Y. Influences of PON1 on airway inflammation and remodeling in bronchial asthma. J Cell Biochem 2017; 119:793-805. [PMID: 28657647 DOI: 10.1002/jcb.26242] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 06/27/2017] [Indexed: 01/31/2023]
Abstract
This study aims to explore the influences of Paraoxonase-1 (PON1) involved in airway inflammation and remodeling in asthma. Mice were divided into control, asthma, asthma + PON1 and asthma + NC groups, and asthma models were established via aerosol inhalation of ovalbumin (OVA). HE, Masson, and PAS stains were used to observe airway inflammation and remodeling, Giemsa staining to assess inflammatory cells in bronchoalveolar lavage fluid (BALF), qRT-PCR and Western blot to detect PON1 expression, lipid peroxidation and glutathione assays to quantify malondialdehyde (MDA) activity and glutathione peroxidase (GSH) levels, ELISA to determine inflammatory cytokines and immunoglobulin, and colorimetry to detect PON1 activities. Additionally, mice lung macrophages and fibroblasts were transfected with PON1 plasmid in vitro; ELISA and qRT-PCR were performed to understand the effects of PON1 on inflammatory cytokines secreted by lung macrophages, MTT assay for lung fibroblasts proliferation and qRT-PCR and Western blot for the expressions of PON1, COL1A1, and fibronectin. After overexpression of PON1, the asthma mice had decreased inflammatory cell infiltration, fibrosis degree, and airway wall thickness; inflammatory cells and inflammatory cytokines in BALF were also reduced, expressions of OVA-IgE and IgG1, and MDA activity were decreased, but the expressions of OVA-IgG2a and INF-γ and GSH levels were increased. Besides, PON1 significantly inhibited microphage expression of LPS-induced inflammatory cytokines, lung fibroblast proliferation, and COL1A1 and fibronectin expression. Thus, PON1 could relieve airway inflammation and airway remodeling in asthmatic mice and inhibit the secretion of LPS-induced macrophage inflammatory cytokines and the proliferation of lung fibroblasts.
Collapse
Affiliation(s)
- Wei-Qiang Chen
- Department of Respiratory and Critical Care Medicine, No.2 People's Hospital of Kunming, Kunming, Yunnan Province, P.R. China
| | - Zuo-Zhou Xie
- Department of Respiratory and Critical Care Medicine, No.2 People's Hospital of Kunming, Kunming, Yunnan Province, P.R. China
| | - Xiang Wang
- Department of Respiratory and Critical Care Medicine, No.2 People's Hospital of Kunming, Kunming, Yunnan Province, P.R. China
| | - Jin-Hong Zhao
- Department of Respiratory and Critical Care Medicine, No.2 People's Hospital of Kunming, Kunming, Yunnan Province, P.R. China
| | - Qin Hu
- Department of Respiratory and Critical Care Medicine, No.2 People's Hospital of Kunming, Kunming, Yunnan Province, P.R. China
| | - Ying-Hua Chen
- Department of Respiratory and Critical Care Medicine, No.2 People's Hospital of Kunming, Kunming, Yunnan Province, P.R. China
| | - Wen-Yong Gao
- Department of Respiratory and Critical Care Medicine, No.2 People's Hospital of Kunming, Kunming, Yunnan Province, P.R. China
| | - Yi Liu
- Department of Respiratory and Critical Care Medicine, No.2 People's Hospital of Kunming, Kunming, Yunnan Province, P.R. China
| |
Collapse
|
47
|
Chowdhury PH, Kitamura G, Honda A, Sawahara T, Hayashi T, Fukushima W, Kudo H, Ito S, Yoshida S, Ichinose T, Ueda K, Takano H. Synergistic effect of carbon nuclei and polyaromatic hydrocarbons on respiratory and immune responses. ENVIRONMENTAL TOXICOLOGY 2017; 32:2172-2181. [PMID: 28444933 DOI: 10.1002/tox.22430] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 03/28/2017] [Accepted: 04/06/2017] [Indexed: 06/07/2023]
Abstract
Particulate matter with aerodynamic diameter ≤2.5 μm (PM2.5 ) is generally composed of carbon nuclei associated with various organic carbons, metals, ions and biological materials. Among these components, polyaromatic hydrocarbons (PAHs) such as benzo(a)pyrene (BaP) and quinones have detrimental effects on airway epithelial cells and immunodisrupting effects, which leads to the exacerbation of respiratory allergies. The effects of PAHs and the carbon nuclei, separately as well as in combination, remain to be established. We investigated the effects of BaP, 9,10-phenanthroquinone (9,10-PQ), and 1,2-napthoquinone (1,2-NQ) and their combined effects with heated diesel exhaust particle (H-DEP) as carbon nuclei of typical PM2.5 . We exposed human airway epithelial cells (BEAS-2B), murine bone marrow-derived antigen-presenting cells (APCs), and murine splenocytes to BaP, 9,10-PQ, or 1,2-NQ in the presence and absence of H-DEP. Several important inflammatory cytokines and cell surface molecules were measured. PAHs alone did not have apparent cytotoxic effects on BEAS-2B, whereas combined exposure with H-DEP induced noticeable detrimental effects which mainly reflected the action of H-DEP itself. BaP increased CD86 expression as an APC surface molecule regardless of the presence or absence of H-DEP. None of the BaP, 9,10-PQ, or 1,2-NQ exposure alone or their combined exposure with H-DEP resulted in any significant activation of splenocytes. These results suggest that PAHs and carbon nuclei show additive effects, and that BaP with the carbon nuclei may contribute to exacerbations of allergic respiratory diseases including asthma by PM2.5 , especially via antigen-presenting cell activation.
Collapse
Affiliation(s)
- Pratiti H Chowdhury
- Environmental Health Division, Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Gaku Kitamura
- Environmental Health Division, Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Akiko Honda
- Environmental Health Division, Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Takahiro Sawahara
- Environmental Health Division, Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Tomohiro Hayashi
- Environmental Health Division, Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Wataru Fukushima
- Environmental Health Division, Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hitomi Kudo
- Environmental Health Division, Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Sho Ito
- Environmental Health Division, Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Seiichi Yoshida
- Department of Health Sciences, Oita University of Nursing and Health Sciences, Oita, Oita Prefecture, 870-1201, Japan
| | - Takamichi Ichinose
- Department of Health Sciences, Oita University of Nursing and Health Sciences, Oita, Oita Prefecture, 870-1201, Japan
| | - Kayo Ueda
- Environmental Health Division, Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hirohisa Takano
- Environmental Health Division, Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
48
|
Qiu YY, Zhang YW, Qian XF, Bian T. miR-371, miR-138, miR-544, miR-145, and miR-214 could modulate Th1/Th2 balance in asthma through the combinatorial regulation of Runx3. Am J Transl Res 2017; 9:3184-3199. [PMID: 28804539 PMCID: PMC5553871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 07/06/2017] [Indexed: 06/07/2023]
Abstract
Asthma is tightly related to the imbalance of Th1/Th2 cells, and Runx3 plays a pivotal role in the differentiation of T helper cells. The present study aimed to investigate dysregulated microRNAs that may target Runx3 in CD4+ T cells from asthmatic patients and reveal Runx3 function in Th1/Th2 balance regulation. We detected the levels of Th1- and Th2-related cytokines by ELISA and analyzed the differentiation marker gene of T helper cells by qRT-PCR. Results indicated that an imbalance of Th1/Th2 cells was present in our asthmatic subject. Runx3 expression was reduced in the CD4+ T cells from asthmatic patients. Overexpression of Runx3 could restore the Th1/Th2 balance. After performing microRNA microarray assay, we found a series of microRNAs that were considerably altered in the CD4+ T cells from asthmatic patients. Among these upregulated microRNAs, eight microRNAs that may target Runx3 were selected by bioinformatics prediction. Five microRNAs, namely miR-371, miR-138, miR-544, miR-145, and miR-214, were confirmed by qRT-PCR and selected as candidate microRNAs. Luciferase reporter assay showed that these five microRNAs could directly target the 3'-UTR of Runx3. However, only simultaneous inhibition of these five microRNAs could alter the expression of Runx3. Most importantly, only simultaneous inhibition could improve the Th1/Th2 balance. Thus, we suggest that miR-371, miR-138, miR-544, miR-145, and miR-214 can modulate the Th1/Th2 balance in asthma by regulating Runx3 in a combinatorial manner.
Collapse
Affiliation(s)
- Yu-Ying Qiu
- Department of Respiratory Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNo. 321 Zhongshan Road, Nanjing 210008, Jiangsu, China
| | - Ying-Wei Zhang
- Department of Respiratory Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNo. 321 Zhongshan Road, Nanjing 210008, Jiangsu, China
| | - Xiu-Fen Qian
- Department of Respiratory Medicine, Wuxi People’s Hospital Affiliated to Nanjing Medical UniversityNo. 299 Qingyang Road, Wuxi 214023, Jiangsu, China
| | - Tao Bian
- Department of Respiratory Medicine, Wuxi People’s Hospital Affiliated to Nanjing Medical UniversityNo. 299 Qingyang Road, Wuxi 214023, Jiangsu, China
| |
Collapse
|
49
|
Li L, Xu G, Duan C. TLR2 affects CD86 expression and inflammatory response in burn injury mice through regulation of p38. Biochem Cell Biol 2017; 95:549-555. [PMID: 28460187 DOI: 10.1139/bcb-2016-0210] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The aim of this study was to assess the effects of TLR2-p38-CD86 signaling pathways on the inflammatory response in a mouse model of burn injury. Wild-type (TLR2+/+) and mutant-type (TLR2-/-) mice were obtained, and a mouse burn injury model was constructed. Tissue samples were examined with hematoxylin and eosin staining and the transferase mediated nick end labeling (TUNEL) method. Macrophages were treated with TLR2 agonist and p38 inhibitor. The expression levels of TLR2, p38, CD86, IL-1β, and TNF-α were quantified by RT-qPCR, Western blot, and ELISA. When compared with the sham group, the burn group had a significantly higher rate of apoptosis as well as higher expressions of TLR2, p38, CD86, IL-1β, and TNF-α. Inhibiting TLR2 was shown to significantly reduce the expressions of p-p38, CD86, IL-1β, and TNF-α. In the results of in-vitro experiments, TLR2 agonist increased the expression of p-p38, CD86, IL-1β, and TNF-α, whereas a p38 inhibitor was shown to reduce the expression of CD86, IL-1β, and TNF-α. Our results suggest that the TLR2-p38-CD86 signaling pathway plays a vital role in inflammation associated with burn injury.
Collapse
Affiliation(s)
- Li Li
- Department of Burn and Plastic Surgery, Tangshan Gongren Hospital, Tangshan 063000, Hebei, China.,Department of Burn and Plastic Surgery, Tangshan Gongren Hospital, Tangshan 063000, Hebei, China
| | - Gang Xu
- Department of Burn and Plastic Surgery, Tangshan Gongren Hospital, Tangshan 063000, Hebei, China.,Department of Burn and Plastic Surgery, Tangshan Gongren Hospital, Tangshan 063000, Hebei, China
| | - Chenwang Duan
- Department of Burn and Plastic Surgery, Tangshan Gongren Hospital, Tangshan 063000, Hebei, China.,Department of Burn and Plastic Surgery, Tangshan Gongren Hospital, Tangshan 063000, Hebei, China
| |
Collapse
|