1
|
Gupta K, Soni N, Nema RK, Sahu N, Srivastava RK, Ratre P, Mishra PK. Microcystin-LR in drinking water: An emerging role of mitochondrial-induced epigenetic modifications and possible mitigation strategies. Toxicol Rep 2024; 13:101745. [PMID: 39411183 PMCID: PMC11474209 DOI: 10.1016/j.toxrep.2024.101745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024] Open
Abstract
Algal blooms are a serious menace to freshwater bodies all over the world. These blooms typically comprise cyanobacterial outgrowths that produce a heptapeptide toxin, Microcystin-LR (MC-LR). Chronic MC-LR exposure impairs mitochondrial-nuclear crosstalk, ROS generation, activation of DNA damage repair pathways, apoptosis, and calcium homeostasis by interfering with PC/MAPK/RTK/PI3K signaling. The discovery of the toxin's biosynthesis pathways paved the way for the development of molecular techniques for the early detection of microcystin. Phosphatase inhibition-based bioassays, high-performance liquid chromatography, and enzyme-linked immunosorbent tests have recently been employed to identify MC-LR in aquatic ecosystems. Biosensors are an exciting alternative for effective on-site analysis and field-based characterization. Here, we present a synthesis of evidence supporting MC-LR as a mitotoxicant, examine various detection methods, and propose a novel theory for the relevance of MC-LR-induced breakdown of mitochondrial machinery and its myriad biological ramifications in human health and disease.
Collapse
Affiliation(s)
- Kashish Gupta
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India
| | - Nikita Soni
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India
| | - Ram Kumar Nema
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India
| | - Neelam Sahu
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India
| | - Rupesh K. Srivastava
- Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Pooja Ratre
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India
| | - Pradyumna Kumar Mishra
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India
- Faculty of Medical Research, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
2
|
Mohanty S, Paul A, Banerjee S, Rajendran KV, Tripathi G, Das PC, Sahoo PK. Ultrastructural, molecular and haemato-immunological changes: Multifaceted toxicological effects of microcystin-LR in rohu, Labeo rohita. CHEMOSPHERE 2024; 358:142097. [PMID: 38657687 DOI: 10.1016/j.chemosphere.2024.142097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 04/26/2024]
Abstract
No water body is resilient to afflicts of algal bloom, if goes unmanaged. With the increasing trend of intensification, eutrophication and climate change, Labeo rohita (rohu) is highly anticipated to suffer from the deleterious effects of bloom and eventually its toxins. A comprehensive study was conducted to understand the toxicopathological effects of microcystin-LR (MC-LR) in rohu following intraperitoneal injection of 96 h-LD50 dose i.e., 713 μg kg-1. Substantial changes in micro- and ultrastructural level were evident in histopathology and transmission electron microscope (TEM) study. The haematological, biochemical, cellular and humoral innate immune biomarkers were significantly altered (p < 0.05) in MC-LR treated fish. The mRNA transcript levels of IL-1β, IL-10, IgM and IgZ in liver and kidney tissues were significantly up-regulated in 12 hpi and declined in 96 hpi MC-LR exposed fish. The relative mRNA expression of caspase 9 in the liver and kidney indicates mitochondrial-mediated apoptosis which was strongly supported by TEM study. In a nutshell, our study illustrates for the first time MC-LR induced toxicological implications in rohu displaying immunosuppression, enhanced oxidative stress, pathophysiology, modulation in mRNA transcription, genotoxicity, structural and ultrastructural alterations signifying it as a vulnerable species for MC-LR intoxication.
Collapse
Affiliation(s)
- Snatashree Mohanty
- ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, 751 002, India
| | - Anirban Paul
- ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, 751 002, India
| | | | - K V Rajendran
- ICAR- Central Institute of Fisheries Education, Mumbai, India; Central University of Kerala, Kasaragod, 671 316, India
| | | | - Pratap Chandra Das
- ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, 751 002, India
| | - Pramoda Kumar Sahoo
- ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, 751 002, India.
| |
Collapse
|
3
|
Kongsintaweesuk S, Klungsaeng S, Intuyod K, Techasen A, Pairojkul C, Luvira V, Pinlaor S, Pinlaor P. Microcystin-leucine arginine induces the proliferation of cholangiocytes and cholangiocarcinoma cells through the activation of the Wnt/β-catenin signaling pathway. Heliyon 2024; 10:e30104. [PMID: 38720699 PMCID: PMC11076882 DOI: 10.1016/j.heliyon.2024.e30104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/19/2024] [Accepted: 04/19/2024] [Indexed: 05/12/2024] Open
Abstract
Background Microcystin-leucine arginine (MC-LR) is a cyanobacterial hepatotoxic toxin found in water sources worldwide, including in northeastern Thailand, where opisthorchiasis-associated cholangiocarcinoma (CCA) is most prevalent. MC-LR is a potential carcinogen; however, its involvement in liver fluke-associated CCA remains ambiguous. Here, we aimed to evaluate the effect of MC-LR on the progression of CCA via the Wnt/β-catenin pathway in vitro. Methods Cell division, migration, cell cycle transition, and MC-LR transporter expression were evaluated in vitro through MTT assay, wound healing assay, flow cytometry, and immunofluorescence staining, respectively. Following a 24-h treatment of cultured cells with 1, 10, 100, and 1,000 nM of MC-LR, the proliferative effect of MC-LR on the Wnt/β-catenin signaling pathway was investigated using immunoblotting and qRT-PCR analysis. Immunohistochemistry was used to determine β-catenin expression in CCA tissue compared to adjacent tissue. Results Human immortalized cholangiocyte cells (MMNK-1) and a human cell line established from opisthorchiasis-associated CCA (KKU-213B) expressed the MC-LR transporter and internalized MC-LR. Exposure to 10 nM and 100 nM of MC-LR notably enhanced cells division and migration in both cell lines (P < 0.05) and markedly elevated the percentage of S phase cells (P < 0.05). MC-LR elevated PP2A expression by activating the Wnt/β-catenin signaling pathway and suppressing phosphatase activity. Inhibition of the β-catenin destruction complex genes (Axin1 and APC) led to the upregulation of β-catenin and its downstream target genes (Cyclin D1 and c-Jun). Inhibition of Wnt/β-catenin signaling by MSAB confirmed these results. Additionally, β-catenin was significantly expressed in cancerous tissue compared to adjacent areas (P < 0.001). Conclusions Our findings suggest that MC-LR promotes cell proliferation and progression of CCA through Wnt/β-catenin pathway. Further evaluation using invivo experiments is needed to confirm this observation. This finding could promote health awareness regarding MC-LR intake and risk of CCA.
Collapse
Affiliation(s)
- Suppakrit Kongsintaweesuk
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
- Medical Sciences Program, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sirinapha Klungsaeng
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Kitti Intuyod
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Anchalee Techasen
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
- School of Medical Technology, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Chawalit Pairojkul
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Vor Luvira
- Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Somchai Pinlaor
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Porntip Pinlaor
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
- School of Medical Technology, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
4
|
Ge K, Du X, Liu H, Meng R, Wu C, Zhang Z, Liang X, Yang J, Zhang H. The cytotoxicity of microcystin-LR: ultrastructural and functional damage of cells. Arch Toxicol 2024; 98:663-687. [PMID: 38252150 DOI: 10.1007/s00204-023-03676-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024]
Abstract
Microcystin-LR (MC-LR) is a toxin produced by cyanobacteria, which is widely distributed in eutrophic water bodies and has multi-organ toxicity. Previous cytotoxicity studies have mostly elucidated the effects of MC-LR on intracellular-related factors, proteins, and DNA at the molecular level. However, there have been few studies on the adverse effects of MC-LR on cell ultrastructure and function. Therefore, research on the cytotoxicity of MC-LR in recent years was collected and summarized. It was found that MC-LR can induce a series of cytotoxic effects, including decreased cell viability, induced autophagy, apoptosis and necrosis, altered cell cycle, altered cell morphology, abnormal cell migration and invasion as well as leading to genetic damage. The above cytotoxic effects were related to the damage of various ultrastructure and functions such as cell membranes and mitochondria. Furthermore, MC-LR can disrupt cell ultrastructure and function by inducing oxidative stress and inhibiting protein phosphatase activity. In addition, the combined toxic effects of MC-LR and other environmental pollutants were investigated. This review explored the toxic targets of MC-LR at the subcellular level, which will provide new ideas for the prevention and treatment of multi-organ toxicity caused by MC-LR.
Collapse
Affiliation(s)
- Kangfeng Ge
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Xingde Du
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Haohao Liu
- Department of Public Health, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, China
| | - Ruiyang Meng
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Chunrui Wu
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Zongxin Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiao Liang
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Jun Yang
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Huizhen Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
5
|
Zhao R, Li J, Wu C, Cai J, Li S, Li A, Zhong L. Reaction mechanism and detecting properties of a novel molecularly imprinted electrochemical sensor for microcystin based on three-dimensional AuNPs@MWCNTs/GQDs. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 88:572-585. [PMID: 37578875 PMCID: wst_2023_238 DOI: 10.2166/wst.2023.238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Microcystins with leucine arginine (MC-LR) is a virulent hepatotoxin, which is commonly present in polluted water with its demethylated derivatives [Dha7] MC-LR. This study reported a low-cost molecularly imprinted polymer network-based electrochemical sensor for detecting MC-LR. The sensor was based on a three-dimensional conductive network composed of multi-walled carbon nanotubes (MWCNTs), graphene quantum dots (GQDs), and gold nanoparticles (AuNPs). The molecularly imprinted polymer was engineered by quantum chemical computation utilizing p-aminothiophenol (p-ATP) and methacrylic acid (MAA) as dual functional monomers and L-arginine as a segment template. The electrochemical reaction mechanism of MC-LR on the sensor was studied for the first time, which is an irreversible electrochemical oxidation reaction involving an electron and two protons, and is controlled by a mixed adsorption-diffusion mechanism. The sensor exhibited a great detection response to MC-LR in the linear range of 0.08-2 μg/L, and the limit of detection (LOD) is 0.0027 μg/L (S/N = 3). In addition, the recoveries of the total amount of MC-LR and [Dha7] MC-LR in the actual sample by the obtained sensor were in the range from 91.4 to 116.7%, which indicated its great potential for environmental detection.
Collapse
Affiliation(s)
- Rujing Zhao
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Materials and Environmental Engineering, Modern Facility Agriculture Engineering Research Center of Fujian Universities, Fujian Polytechnic Normal University, Fuqing 350300, China; These two authors contributed equally to this paper. E-mail:
| | - Jin Li
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; These two authors contributed equally to this paper
| | - Chengsi Wu
- Qingdao Rely Environmental Technology Co., Ltd, Qindao, China
| | - Jun Cai
- Key Laboratory of Fermentation Engineering, Ministry of Education, Hubei University of Technology, Wuhan 430068, China
| | - Shiqian Li
- College of Materials and Environmental Engineering, Modern Facility Agriculture Engineering Research Center of Fujian Universities, Fujian Polytechnic Normal University, Fuqing 350300, China
| | - Aifeng Li
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Lian Zhong
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
6
|
Labohá P, Sychrová E, Brózman O, Sovadinová I, Bláhová L, Prokeš R, Ondráček J, Babica P. Cyanobacteria, cyanotoxins and lipopolysaccharides in aerosols from inland freshwater bodies and their effects on human bronchial cells. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 98:104073. [PMID: 36738853 DOI: 10.1016/j.etap.2023.104073] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 01/19/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Components of cyanobacterial water blooms were quantified in aerosols above agitated water surfaces of five freshwater bodies. The thoracic and respirable aerosol fraction (0.1-10 µm) was sampled using a high-volume sampler. Cyanotoxins microcystins were detected by LC-MS/MS at levels 0.3-13.5 ng/mL (water) and < 35-415 fg/m3 (aerosol). Lipopolysaccharides (endotoxins) were quantified by Pyrogene rFC assay at levels < 10-119 EU/mL (water) and 0.13-0.64 EU/m3 (aerosol). Cyanobacterial DNA was detected by qPCR at concentrations corresponding to 104-105 cells eq./mL (water) and 101-103 cells eq./m3 (aerosol). Lipopolysaccharides isolated from bloom samples induced IL-6 and IL-8 cytokine release in human bronchial epithelial cells Beas-2B, while extracted cyanobacterial metabolites induced both pro-inflammatory and cytotoxic effects. Bloom components detected in aerosols and their bioactivities observed in upper respiratory airway epithelial cells together indicate that aerosols formed during cyanobacterial water blooms could induce respiratory irritation and inflammatory injuries, and thus present an inhalation health risk.
Collapse
Affiliation(s)
- Petra Labohá
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, 61137 Brno, Czech Republic
| | - Eliška Sychrová
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, 61137 Brno, Czech Republic
| | - Ondřej Brózman
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, 61137 Brno, Czech Republic
| | - Iva Sovadinová
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, 61137 Brno, Czech Republic
| | - Lucie Bláhová
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, 61137 Brno, Czech Republic
| | - Roman Prokeš
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, 61137 Brno, Czech Republic; Department of Atmospheric Matter Fluxes and Long-range Transport, Global Change Research Institute of the Czech Academy of Sciences, Bělidla 986/4a, 60300 Brno, Czech Republic
| | - Jakub Ondráček
- Department of Aerosol Chemistry and Physics, Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, Rozvojová 135, 16502 Prague, Czech Republic
| | - Pavel Babica
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, 61137 Brno, Czech Republic; Department of Experimental Phycology and Ecotoxicology, Institute of Botany of the Czech Academy of Sciences, Lidická 25/27, 60200 Brno, Czech Republic.
| |
Collapse
|
7
|
Svirčev Z, Chen L, Sántha K, Drobac Backović D, Šušak S, Vulin A, Palanački Malešević T, Codd GA, Meriluoto J. A review and assessment of cyanobacterial toxins as cardiovascular health hazards. Arch Toxicol 2022; 96:2829-2863. [PMID: 35997789 PMCID: PMC9395816 DOI: 10.1007/s00204-022-03354-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 08/02/2022] [Indexed: 12/14/2022]
Abstract
Eutrophicated waters frequently support bloom-forming cyanobacteria, many of which produce potent cyanobacterial toxins (cyanotoxins). Cyanotoxins can cause adverse health effects in a wide range of organisms where the toxins may target the liver, other internal organs, mucous surfaces and the skin and nervous system. This review surveyed more than 100 studies concerning the cardiovascular toxicity of cyanotoxins and related topics. Over 60 studies have described various negative effects on the cardiovascular system by seven major types of cyanotoxins, i.e. the microcystin (MC), nodularin (NOD), cylindrospermopsin (CYN), anatoxin (ATX), guanitoxin (GNTX), saxitoxin (STX) and lyngbyatoxin (LTX) groups. Much of the research was done on rodents and fish using high, acutely toxin concentrations and unnatural exposure routes (such as intraperitoneal injection), and it is thus concluded that the emphasis in future studies should be on oral, chronic exposure of mammalian species at environmentally relevant concentrations. It is also suggested that future in vivo studies are conducted in parallel with studies on cells and tissues. In the light of the presented evidence, it is likely that cyanotoxins do not constitute a major risk to cardiovascular health under ordinary conditions met in everyday life. The risk of illnesses in other organs, in particular the liver, is higher under the same exposure conditions. However, adverse cardiovascular effects can be expected due to indirect effects arising from damage in other organs. In addition to risks related to extraordinary concentrations of the cyanotoxins and atypical exposure routes, chronic exposure together with co-existing diseases could make some of the cyanotoxins more dangerous to cardiovascular health.
Collapse
Affiliation(s)
- Zorica Svirčev
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, UNS, Trg Dositeja Obradovića 2, 21000, Novi Sad, Serbia.
- Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6A, 20520, Turku, Finland.
| | - Liang Chen
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology (IHB), Chinese Academy of Sciences (CAS), Wuhan, 430072, China
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Faculty of Water Resources and Hydroelectric Engineering, Xi'an University of Technology, Xi'an, 710048, China
| | - Kinga Sántha
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, UNS, Trg Dositeja Obradovića 2, 21000, Novi Sad, Serbia
| | - Damjana Drobac Backović
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, UNS, Trg Dositeja Obradovića 2, 21000, Novi Sad, Serbia
| | - Stamenko Šušak
- University of Novi Sad, Faculty of Medicine, UNS, Hajduk Veljkova 3, 21000, Novi Sad, Serbia
- Institute of Cardiovascular Diseases of Vojvodina, Sremska Kamenica, Serbia
| | - Aleksandra Vulin
- University of Novi Sad, Faculty of Medicine, UNS, Hajduk Veljkova 3, 21000, Novi Sad, Serbia
- Institute of Cardiovascular Diseases of Vojvodina, Sremska Kamenica, Serbia
| | - Tamara Palanački Malešević
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, UNS, Trg Dositeja Obradovića 2, 21000, Novi Sad, Serbia
| | - Geoffrey A Codd
- School of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
- School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Jussi Meriluoto
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, UNS, Trg Dositeja Obradovića 2, 21000, Novi Sad, Serbia
- Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6A, 20520, Turku, Finland
| |
Collapse
|
8
|
Mesquita FMD, de Oliveira DF, Caldeira DDAF, de Albuquerque JPC, Matta L, Faria CCD, Souza IIAD, Takiya CM, Fortunato RS, Nascimento JHM, de Oliveira Azevedo SMF, Zin WA, Maciel L. Subacute and sublethal ingestion of microcystin-LR impairs lung mitochondrial function by an oligomycin-like effect. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 93:103887. [PMID: 35598755 DOI: 10.1016/j.etap.2022.103887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/13/2022] [Accepted: 05/15/2022] [Indexed: 06/15/2023]
Abstract
Microcystin-LR (MC-LR) is a potent cyanotoxin that can reach several organs. However subacute exposure to sublethal doses of MC-LR has not yet well been studied. Herein, we evaluated the outcomes of subacute and sublethal MC-LR exposure on lungs. Male BALB/c mice were exposed to MC-LR by gavage (30 µg/kg) for 20 consecutive days, whereas CTRL mice received filtered water. Respiratory mechanics was not altered in MC-LR group, but histopathology disclosed increased collagen deposition, immunological cell infiltration, and higher percentage of collapsed alveoli. Mitochondrial function was extensively affected in MC-LR animals. Additionally, a direct in vitro titration of MC-LR revealed impaired mitochondrial function. In conclusion, MC-LR presented an intense deleterious effect on lung mitochondrial function and histology. Furthermore, MC-LR seems to exert an oligomycin-like effect in lung mitochondria. This study opens new perspectives for the understanding of the putative pulmonary initial mechanisms of damage resulting from oral MC-LR intoxication.
Collapse
Affiliation(s)
- Flávia Muniz de Mesquita
- Carlos Chagas Filho Institute of Biophysics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | | | | | - Leonardo Matta
- Carlos Chagas Filho Institute of Biophysics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Caroline Coelho de Faria
- Carlos Chagas Filho Institute of Biophysics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Itanna Isis Araujo de Souza
- Carlos Chagas Filho Institute of Biophysics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Christina Maeda Takiya
- Carlos Chagas Filho Institute of Biophysics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Rodrigo Soares Fortunato
- Carlos Chagas Filho Institute of Biophysics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | | | - Walter Araujo Zin
- Carlos Chagas Filho Institute of Biophysics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Leonardo Maciel
- Carlos Chagas Filho Institute of Biophysics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Campus Professor Geraldo Cidade, Universidade Federal do Rio de Janeiro, Duque de Caxias, RJ, Brazil.
| |
Collapse
|
9
|
Review of Cyanotoxicity Studies Based on Cell Cultures. J Toxicol 2022; 2022:5647178. [PMID: 35509523 PMCID: PMC9061046 DOI: 10.1155/2022/5647178] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/28/2022] [Accepted: 03/25/2022] [Indexed: 12/23/2022] Open
Abstract
Cyanotoxins (CTs) are a large and diverse group of toxins produced by the peculiar photosynthetic prokaryotes of the domain Cyanoprokaryota. Toxin-producing aquatic cyanoprokaryotes can develop in mass, causing “water blooms” or “cyanoblooms,” which may lead to environmental disaster—water poisoning, extinction of aquatic life, and even to human death. CT studies on single cells and cells in culture are an important stage of toxicological studies with increasing impact for their further use for scientific and clinical purposes, and for policies of environmental protection. The higher cost of animal use and continuous resistance to the use of animals for scientific and toxicological studies lead to a progressive increase of cell lines use. This review aims to present (1) the important results of the effects of CT on human and animal cell lines, (2) the methods and concentrations used to obtain these results, (3) the studied cell lines and their tissues of origin, and (4) the intracellular targets of CT. CTs reviewed are presented in alphabetical order as follows: aeruginosins, anatoxins, BMAA (β-N-methylamino-L-alanine), cylindrospermopsins, depsipeptides, lipopolysaccharides, lyngbyatoxins, microcystins, nodularins, cyanobacterial retinoids, and saxitoxins. The presence of all these data in a review allows in one look to advance the research on CT using cell cultures by facilitating the selection of the most appropriate methods, conditions, and cell lines for future toxicological, pharmacological, and physiological studies.
Collapse
|
10
|
Mun H, Townley HE. Mechanism of Action of the Sesquiterpene Compound Helenalin in Rhabdomyosarcoma Cells. Pharmaceuticals (Basel) 2021; 14:ph14121258. [PMID: 34959659 PMCID: PMC8703838 DOI: 10.3390/ph14121258] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 12/17/2022] Open
Abstract
Rhabdomyosarcoma (RMS) is the most frequent soft tissue sarcoma in paediatric patients. Relapsed or refractory RMS shows very low 5-year survival rates, which urgently necessitates new chemotherapy agents. Herein, the sesquiterpene lactone, helenalin, was investigated as a new potential therapeutic agent against the embryonal RMS (eRMS) and alveolar RMS (aRMS) cells. We have evaluated in vitro antiproliferative efficacy of helenalin on RMS cells by the MTT and wound healing assay, and estimated several cell death pathways by flow cytometry, confocal microscopy and immunoblotting. It was shown that helenalin was able to increase reactive oxygen species levels, decrease mitochondrial membrane potential, trigger endoplasmic reticulum stress and deactivate the NF-κB pathway. Confirmation was obtained through the use of antagonistic compounds which alleviated the effects of helenalin in the corresponding pathways. Our findings demonstrate that oxidative stress is the pivotal mechanism of action of helenalin in promoting RMS cell death in vitro.
Collapse
Affiliation(s)
- Hakmin Mun
- Nuffield Department of Women’s and Reproductive Health, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK;
| | - Helen Elizabeth Townley
- Nuffield Department of Women’s and Reproductive Health, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK;
- Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, UK
- Correspondence: ; Tel.: +44-01865283792
| |
Collapse
|
11
|
da Silva CG, Duque MD, Freire Nordi CS, Viana-Niero C. New insights into toxicity of microcystins produced by cyanobacteria using in silico ADMET prediction. Toxicon 2021; 204:64-71. [PMID: 34742780 DOI: 10.1016/j.toxicon.2021.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/28/2021] [Accepted: 11/01/2021] [Indexed: 11/16/2022]
Abstract
In silico methodologies can be used in the discovery of new drugs for measuring toxicity, predicting effects of substances not yet analyzed by in vivo methodologies. The ADMET Predictor® software (absorption, distribution, metabolism, elimination, and toxicity [ADMET]) was used in this work to predict toxic effects of microcystin variants MC-LR, MC-YR, MC-RR, and MC-HarHar. In the case of rodents, predictive results for all analyzed variants indicated carcinogenic potential. The predictive model of respiratory sensitivity in this group differentiated microcystins into 2 categories: sensitizer (MC-LR and -YR) and non-sensitizer (MC-HarHar and -RR). Predictive results for humans indicated that MC-LR and -RR are phospholipidosis inducers; on the other hand, MC-LR showed the highest predictive value of permeability in rabbit cornea and probability of crossing lipoprotein barriers (MC-LR>-YR>-HarHar>-RR). Considering bioavailable fractions, microcystins are more likely to cause biological effects in rats than humans, showing significant differences between models. The results of ADMET predictions add valuable information on microcystin toxicity, especially in the case of variants not yet studied experimentally.
Collapse
Affiliation(s)
- Cristiane Gonçalves da Silva
- Departamento de Microbiologia, Imunologia e Parasitologia [Department of Microbiology, Immunology and Parasitology], Universidade Federal de São Paulo [Federal University of São Paulo], Rua Botucatu, 862, São Paulo, SP, Zip Code: 04023-901, Brazil; Departamento de Ciências Farmacêuticas [Department of Pharmaceutical Sciences], Universidade Federal de São Paulo, Rua São Nicolau, 210, Diadema, SP, Zip Code: 09913-030, Brazil
| | - Marcelo Dutra Duque
- Departamento de Ciências Farmacêuticas [Department of Pharmaceutical Sciences], Universidade Federal de São Paulo, Rua São Nicolau, 210, Diadema, SP, Zip Code: 09913-030, Brazil
| | - Cristina Souza Freire Nordi
- Departamento de Ciências Ambientais [Department of Environmental Sciences], Universidade Federal de São Paulo, Rua Prof. Artur Riedel, 275, Diadema, SP, Zip Code: 09972-270, Brazil.
| | - Cristina Viana-Niero
- Departamento de Microbiologia, Imunologia e Parasitologia [Department of Microbiology, Immunology and Parasitology], Universidade Federal de São Paulo [Federal University of São Paulo], Rua Botucatu, 862, São Paulo, SP, Zip Code: 04023-901, Brazil
| |
Collapse
|
12
|
Ma Y, Liu H, Du X, Shi Z, Liu X, Wang R, Zhang S, Tian Z, Shi L, Guo H, Zhang H. Advances in the toxicology research of microcystins based on Omics approaches. ENVIRONMENT INTERNATIONAL 2021; 154:106661. [PMID: 34077854 DOI: 10.1016/j.envint.2021.106661] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 06/12/2023]
Abstract
Microcystins (MCs) are the most widely distributed cyanotoxins, which can be ingested by animals and human body in multiple ways, resulting in a threat to human health and the biodiversity of wildlife. Therefore, the study on toxic effects and mechanisms of MCs is one of the focuses of attention. Recently, the Omics techniques, i.e. genomics, transcriptomics, proteomics and metabolomics, have significantly contributed to the comprehensive understanding and revealing of the molecular mechanisms about the toxicity of MCs. This paper mainly reviews current literature using the Omics approaches to explore the toxicity mechanism of MCs in liver, gonad, spleen, brain, intestine and lung of multiple species. It was found that MCs can exert strong toxic effects on various metabolic activities and cell signal transduction in cell cycle, apoptosis, destruction of cell cytoskeleton and redox disorder, at protein, transcription and metabolism level. Meanwhile, it was also revealed that the alteration of non-coding RNAs (miRNA, circRNA and lncRNA, etc.) and gut microbiota plays an essential regulatory role in the toxic effects of MCs, especially in hepatotoxicity and reproductive toxicity. In addition, we summarized current research gaps and pointed out the future directions for research. The detailed information in this paper shows that the application and development of Omics techniques have significantly promoted the research on MCs toxicity, and it is also a valuable resource for exploring the toxic mechanism of MCs.
Collapse
Affiliation(s)
- Ya Ma
- College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Haohao Liu
- College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Xingde Du
- College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Ziang Shi
- Department of Clinical Medicine, Zhengzhou University, Zhengzhou, PR China
| | - Xiaohui Liu
- School of Basic Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Rui Wang
- College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Shiyu Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Zhihui Tian
- College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Linjia Shi
- College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Hongxiang Guo
- College of Life Sciences, Henan Agricultural University, Zhengzhou, PR China
| | - Huizhen Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, PR China.
| |
Collapse
|
13
|
|
14
|
Porzani SJ, Lima ST, Metcalf JS, Nowruzi B. In Vivo and In Vitro Toxicity Testing of Cyanobacterial Toxins: A Mini-Review. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 258:109-150. [PMID: 34622370 DOI: 10.1007/398_2021_74] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Harmful cyanobacterial blooms are increasing and becoming a worldwide concern as many bloom-forming cyanobacterial species can produce toxic metabolites named cyanotoxins. These include microcystins, saxitoxins, anatoxins, nodularins, and cylindrospermopsins, which can adversely affect humans, animals, and the environment. Different methods to assess these classes of compounds in vitro and in vivo include biological, biochemical, molecular, and physicochemical techniques. Furthermore, toxic effects not attributable to known cyanotoxins can be observed when assessing bloom material. In order to determine exposures to cyanotoxins and to monitor compliance with drinking and bathing water guidelines, it is necessary to have reliable and effective methods for the analysis of these compounds. Many relatively simple low-cost methods can be employed to rapidly evaluate the potential hazard. The main objective of this mini-review is to describe the assessment of toxic cyanobacterial samples using in vitro and in vivo bioassays. Newly emerging cyanotoxins, the toxicity of analogs, or the interaction of cyanobacteria and cyanotoxins with other toxicants, among others, still requires bioassay assessment. This review focuses on some biological and biochemical assays (MTT assay, Immunohistochemistry, Micronucleus Assay, Artemia salina assay, Daphnia magna test, Radionuclide recovery, Neutral red cytotoxicity and Comet assay, Enzyme-Linked Immunosorbent Assay (ELISA), Annexin V-FITC assay and Protein Phosphatase Inhibition Assay (PPIA)) for the detection and measurement of cyanotoxins including microcystins, cylindrospermopsins, anatoxin-a, saxitoxins, and nodularins. Although most bioassay analyses often confirm the presence of cyanotoxins at low concentrations, such bioassays can be used to determine whether some strains or blooms of cyanobacteria may produce other, as yet unknown toxic metabolites. This review also aims to identify research needs and data gaps concerning the toxicity assessment of cyanobacteria.
Collapse
Affiliation(s)
- Samaneh J Porzani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Stella T Lima
- Center for Nuclear Energy in Agriculture, University of Sao Paulo, Piracicaba, Brazil
| | | | - Bahareh Nowruzi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
15
|
He L, Liu L, Lin C, Ruan J, Liang X, Zhou Y, Wei L. Effects of MC-LR on histological structure and cell apoptosis in the kidney of grass carp (Ctenopharyngodon idella). FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:2005-2014. [PMID: 32712898 DOI: 10.1007/s10695-020-00833-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 05/30/2020] [Indexed: 06/11/2023]
Abstract
Microcystin-LR (MC-LR) is a well-known hepatotoxin; however, increasing evidence suggests that it might induce kidney injury. Grass carp (Ctenopharyngodon idella) is one of the most important farmed species and may be affected by MC-LR releasing into waterbody during cyanobacterial bloom. Here, this present study aimed to explore the nephrotoxicity of grass carp by MC-LR. The grass carp received a single intraperitoneal injection of different doses of MC-LR (0, 25, 75, and 100 μg/kg body weight (BW)), and the kidneys were isolated at 24 and 96 h post-injection (hpi). Histopathological examination revealed kidney lesions, with severe hemorrhage, necrosis of the interstitium, and dilation of Bowman's capsule in the 75 and 100 μg MC-LR/kg BW groups. Under transmission electron microscopy, a larger number of swelling and vacuolated degeneration of mitochondria were observed; moreover, apoptotic features, such as condensed chromatin and shrinkage of cells, were observed in the 75 and 100 μg MC-LR/kg BW groups at 96 hpi. MC-LR significantly upregulated the number of apoptotic cells in the 75 and 100 μg/kg BW groups at 96 hpi as indicated by terminal deoxynucleotidyl transferase (TdT) dUTP nick-end labeling (TUNEL) assay (P < 0. 05). The results of quantitative assays showed that the mRNA expression of Bax, caspase-9, and caspase-3 in grass carp kidney were significantly increased at 96 hpi in the 75 and 100 μg MC-LR/kg BW groups compared with that in the control group, but Bcl-2 mRNA expression was significantly decreased in all the treatment groups at 24 and 96 hpi. Taken together, these results indicated that MC-LR damaged the kidney structure and resulted in renal apoptosis which may occur via the mitochondrial pathway.
Collapse
Affiliation(s)
- Li He
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi Province, People's Republic of China
| | - Lin Liu
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi Province, People's Republic of China
| | - Changgao Lin
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi Province, People's Republic of China
| | - Jiming Ruan
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi Province, People's Republic of China
| | - Ximei Liang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi Province, People's Republic of China
| | - Ying Zhou
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi Province, People's Republic of China
| | - Lili Wei
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi Province, People's Republic of China.
| |
Collapse
|
16
|
Wang L, He L, Zeng H, Fu W, Wang J, Tan Y, Zheng C, Qiu Z, Luo J, Lv C, Huang Y, Shu W. Low-dose microcystin-LR antagonizes aflatoxin B1 induced hepatocarcinogenesis through decreasing cytochrome P450 1A2 expression and aflatoxin B1-DNA adduct generation. CHEMOSPHERE 2020; 248:126036. [PMID: 32045972 DOI: 10.1016/j.chemosphere.2020.126036] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/24/2020] [Accepted: 01/24/2020] [Indexed: 06/10/2023]
Abstract
Aflatoxin B1 (AFB1) and microcystin-LR (MC-LR) co-existed in food and water, and were associated with hepatocellular carcinoma (HCC). AFB1 induced HCC by activating oxidative stress and generating AFB1-DNA adducts, while MC-LR could promote HCC progression. However, whether they have co-effects in HCC progression remains uncertain. In this study, we found the antagonistic effects of MC-LR on AFB1 induced HCC when they were exposed simultaneously. Compared with single exposure to AFB1, co-exposed to MC-LR significantly repressed the AFB1 induced malignant transformation of human hepatic cells and the glutathione S-transferase Pi positive foci formation in rat livers. MC-LR inhibited AFB1 induced upregulation of cytochrome P450 family 1 subfamily A member 2 (CYP1A2) and reduced the AFB1-DNA adducts generation in both human hepatic cells and rat livers. These results suggest that when co-exposure with AFB1, MC-LR might repress hepatocarcinogenicity of AFB1, which might be associated with its repression on AFB1 induced CYP1A2 upregulation and activation.
Collapse
Affiliation(s)
- Lingqiao Wang
- Department of Environmental Hygiene, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Lixiong He
- The 8th Medical Center of Chinese PLA General Hospital, Beijing, 100094, China
| | - Hui Zeng
- Department of Environmental Hygiene, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Wenjuan Fu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Jia Wang
- Department of Environmental Hygiene, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Yao Tan
- Department of Environmental Hygiene, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Chuanfen Zheng
- Department of Health Education, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Zhiqun Qiu
- Department of Environmental Hygiene, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Jiaohua Luo
- Department of Environmental Hygiene, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Chen Lv
- Department of Environmental Hygiene, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Yujing Huang
- Department of Environmental Hygiene, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| | - Weiqun Shu
- Department of Environmental Hygiene, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| |
Collapse
|
17
|
Brózman O, Kubickova B, Babica P, Laboha P. Microcystin-LR Does Not Alter Cell Survival and Intracellular Signaling in Human Bronchial Epithelial Cells. Toxins (Basel) 2020; 12:E165. [PMID: 32156079 PMCID: PMC7150819 DOI: 10.3390/toxins12030165] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 01/18/2023] Open
Abstract
Changes in ecological and environmental factors lead to an increased occurrence of cyanobacterial water blooms, while secondary metabolites-producing cyanobacteria pose a threat to both environmental and human health. Apart from oral and dermal exposure, humans may be exposed via inhalation and/or swallowing of contaminated water and aerosols. Although many studies deal with liver toxicity, less information about the effects in the respiratory system is available. We investigated the effects of a prevalent cyanotoxin, microcystin-LR (MC-LR), using respiratory system-relevant human bronchial epithelial (HBE) cells. The expression of specific organic-anion-transporting polypeptides was evaluated, and the western blot analysis revealed the formation and accumulation of MC-LR protein adducts in exposed cells. However, MC-LR up to 20 μM neither caused significant cytotoxic effects according to multiple viability endpoints after 48-h exposure, nor reduced impedance (cell layer integrity) over 96 h. Time-dependent increase of putative MC-LR adducts with protein phosphatases was not associated with activation of mitogen-activated protein kinases ERK1/2 and p38 during 48-h exposure in HBE cells. Future studies addressing human health risks associated with inhalation of toxic cyanobacteria and cyanotoxins should focus on complex environmental samples of cyanobacterial blooms and alterations of additional non-cytotoxic endpoints while adopting more advanced in vitro models.
Collapse
Affiliation(s)
- Ondřej Brózman
- RECETOX, Faculty of Science, Masaryk University, Brno 62500, Czech Republic; (O.B.); (B.K.); (P.B.)
| | - Barbara Kubickova
- RECETOX, Faculty of Science, Masaryk University, Brno 62500, Czech Republic; (O.B.); (B.K.); (P.B.)
| | - Pavel Babica
- RECETOX, Faculty of Science, Masaryk University, Brno 62500, Czech Republic; (O.B.); (B.K.); (P.B.)
- Department of Experimental Phycology and Ecotoxicology, Institute of Botany, Czech Academy of Sciences, Brno 60200, Czech Republic
| | - Petra Laboha
- RECETOX, Faculty of Science, Masaryk University, Brno 62500, Czech Republic; (O.B.); (B.K.); (P.B.)
| |
Collapse
|
18
|
Zhang Q, Wang G, Xie Y, Gao Z, Liang Z, Pan Z, Wang G, Feng W. Mechanical Changes and Microfilament Reorganization Involved in Microcystin-LR-Promoted Cell Invasion in DU145 and WPMY Cells. Front Pharmacol 2020; 11:89. [PMID: 32174829 PMCID: PMC7054891 DOI: 10.3389/fphar.2020.00089] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 01/27/2020] [Indexed: 12/16/2022] Open
Abstract
Microcystin-leucine arginine (MC-LR) is a potent tumor initiator that can induce malignant cell transformation. Cellular mechanical characteristics are pivotal parameters that are closely related to cell invasion. The aim of this study is to determine the effect of MC-LR on mechanical parameters, microfilament, and cell invasion in DU145 and WPMY cells. Firstly, 10 μM MC-LR was selected as the appropriate concentration via cell viability assay. Subsequently, after MC-LR treatment, the cellular deformability and viscoelastic parameters were tested using the micropipette aspiration technique. The results showed that MC-LR increased the cellular deformability, reduced the cellular viscoelastic parameter values, and caused the cells to become softer. Furthermore, microfilament and microfilament-associated proteins were examined by immunofluorescence and Western blot, respectively. Our results showed that MC-LR induced microfilament reorganization and increased the expression of p-VASP and p-ezrin. Finally, the impact of MC-LR on cell invasion was evaluated. The results revealed that MC-LR promoted cell invasion. Taken together, our results suggested that mechanical changes and microfilament reorganization were involved in MC-LR-promoted cell invasion in DU145 and WPMY cells. Our data provide novel information to explain the toxicological mechanism of MC-LR.
Collapse
Affiliation(s)
- Qiang Zhang
- College of Bioscience and Technology, Weifang Medical University, Weifang, China
| | - Guihua Wang
- Department of Fundamental Veterinary, College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Yongfang Xie
- College of Bioscience and Technology, Weifang Medical University, Weifang, China
| | - Zhiqin Gao
- College of Bioscience and Technology, Weifang Medical University, Weifang, China
| | - Zumu Liang
- College of Bioscience and Technology, Weifang Medical University, Weifang, China
| | - Zhifang Pan
- College of Bioscience and Technology, Weifang Medical University, Weifang, China
| | - Guohui Wang
- College of Bioscience and Technology, Weifang Medical University, Weifang, China
| | - Weiguo Feng
- College of Bioscience and Technology, Weifang Medical University, Weifang, China
| |
Collapse
|
19
|
Alosman M, Cao L, Massey IY, Yang F. The lethal effects and determinants of microcystin-LR on heart: a mini review. TOXIN REV 2020. [DOI: 10.1080/15569543.2019.1711417] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Muwaffak Alosman
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, China
| | - Linghui Cao
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, China
| | - Isaac Yaw Massey
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, China
| | - Fei Yang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, China
- Key laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha, China
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| |
Collapse
|
20
|
Krishnan A, Koski G, Mou X. Characterization of microcystin-induced apoptosis in HepG2 hepatoma cells. Toxicon 2019; 173:20-26. [PMID: 31734250 DOI: 10.1016/j.toxicon.2019.11.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 11/01/2019] [Accepted: 11/11/2019] [Indexed: 12/25/2022]
Abstract
Microcystins (MCs) are a class of hepatotoxins that are commonly produced by freshwater cyanobacteria. MCs harm liver cells through inhibiting protein phosphatases 1 and 2A (PP1 and PP2A) and can produce dualistic effects, i.e., cell death and uncontrolled cellular proliferation. The induction of programmed cell death, i.e., apoptosis, in MC treated hepatic cells has been described previously; however, its exact pathway remains unclear. To address this, HepG2 human hepatoma cells were exposed to MC-LR, the most prevalent isomer of MCs, and morphological and physiological responses were examined. Microscopy and Alamar Blue assay showed that HepG2 cells responded to MC-LR treatment with apoptosis characteristics, such as clumping and shrinking of cells and detachment from the monolayer culture surface. A fluorescent caspase activation assay further revealed activation of all tested apoptosis-dependent caspases (i.e., caspase-3/7, 8 and 9) after 24 h of MC-LR treatment. Furthermore, caspase-8 was found being activated 4 h after MC-LR treatment, earlier than observed activation of caspase-9 (8 h after MC-LR treatment). These data demonstrated that MC-LR can induce apoptosis of HepG2 cells through both extrinsic and intrinsic pathways and that the extrinsic pathway may be activated before the intrinsic pathway. This indicates that extrinsic pathway is more sensitive than intrinsic pathway in MC induced apoptosis. This knowledge contributes to a better understanding of MC hepatotoxicity and can be further used for developing treatments for MC exposed hepatic cells.
Collapse
Affiliation(s)
- Anjali Krishnan
- Biological Science Department, Kent State University, Kent, OH 44242, United States
| | - Gary Koski
- Biological Science Department, Kent State University, Kent, OH 44242, United States
| | - Xiaozhen Mou
- Biological Science Department, Kent State University, Kent, OH 44242, United States.
| |
Collapse
|
21
|
Wu J, Liu H, Huang H, Yuan L, Liu C, Wang Y, Cheng X, Zhuang D, Xu M, Chen X, Losiewicz MD, Zhang H. p53-Dependent pathway and the opening of mPTP mediate the apoptosis of co-cultured Sertoli-germ cells induced by microcystin-LR. ENVIRONMENTAL TOXICOLOGY 2019; 34:1074-1084. [PMID: 31157505 DOI: 10.1002/tox.22808] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 05/17/2019] [Accepted: 05/19/2019] [Indexed: 06/09/2023]
Abstract
Microcystin-LR (MC-LR), a potent endotoxin, can induce reproductive toxicity. In order to investigate the role and mechanisms of apoptosis (p53-dependent and mitochondrial pathways) of germ cells induced by MC-LR, the co-cultured primary Sertoli-germ cells from Sprague-Dawley rats were used for the experiments. Expression levels of proteins, genes, and mitochondrial membrane potential (MMP) were obtained after exposing co-cultured Sertoli-germ cells to MC-LR with or without the addition of the p53 inhibitor, pifithrin-α (PFT-α), and MMP inhibitor, cyclosporin A (CsA). Results indicated that MC-LR could activate p53-dependent pathway-associated proteins in Sertoli-germ cells, leading to a decrease in MMP (indicating the opening of mitochondrial permeability transition pore [mPTP] and the release of Cytochrome-c [Cyt-c]) from the mitochondria into the cytoplasm and eventually the induction of apoptosis. PFT-α inhibited the expression ofp53, ameliorated the MMP of the co-cultured Sertoli-germ cells, and prevented the release of Cyt-c from the mitochondria into the cytoplasm, which reduces the occurrence of apoptosis. Similarly, the decreased release of Cyt-c from the mitochondria into the cytoplasm and the declined level of apoptosis in Sertoli-germ cells induced by MC-LR were observed after the addition of CsA. These results indicated that the apoptosis of the co-cultured Sertoli-germ cells induced by MC-LR was mediated by the p53-dependent pathway, with the involvement of the opening of mPTP.
Collapse
Affiliation(s)
- Jinxia Wu
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Haohao Liu
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Hui Huang
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Le Yuan
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Chuanrui Liu
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yueqin Wang
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Xuemin Cheng
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Donggang Zhuang
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Min Xu
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinghai Chen
- Department of Chemistry and Biochemistry, St Mary's University, San Antonio, Texas
| | - Michael D Losiewicz
- Department of Chemistry and Biochemistry, St Mary's University, San Antonio, Texas
| | - Huizhen Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
22
|
Zhang Q, Wu C, Sun Y, Li T, Fan G. Cytoprotective Effect of Morchella esculenta Protein Hydrolysate and Its Derivative Against H2O2-Induced Oxidative Stress. POL J FOOD NUTR SCI 2019. [DOI: 10.31883/pjfns/110134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
23
|
Wei L, He L, Fu J, Liu Y, Ruan J, Liu L, Zhong Q. Molecular characterization of caspase-8-like and its expression induced by microcystin-LR in grass carp (Ctenopharygodon idella). FISH & SHELLFISH IMMUNOLOGY 2019; 89:727-735. [PMID: 30981886 DOI: 10.1016/j.fsi.2019.04.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 03/31/2019] [Accepted: 04/10/2019] [Indexed: 06/09/2023]
Abstract
Caspase-8, an initiator caspase, plays a vital role in apoptosis. In this study, caspase-8-like (named as Cicaspase-8-like), a homologue of caspase-8, was identified in grass carp (Ctenopharygodon idella). The full-length cDNA sequence of CiCaspase-8-like was 1409 bp and contained a 162 bp 5'-UTR, a 239 bp 3'-UTR and a 1008 bp coding sequence. The putative amino acids sequence was 335 residues long, including a large subunit (P20) and a small subunit (P10), but lacking conserved death effector domains. A histidine active site DHSQMDAFVCCVLSHG and a cysteine active-site motif KPKLFFIQACQG were found in P20. Phylogenetic analysis showed that Cicaspase-8-like clustered with the caspase-8 and caspase-8-like of other fish and grouped closely with Carassius auratus caspase-8-like. Quantitative real-time PCR revealed that the Cicaspase-8-like mRNA were expressed constitutively in all tested tissues from healthy grass carp, with high expression level in the blood, spleen, liver and gill, indicating its role in immune reaction. The expression of Cicaspase-8-like mRNA was decreased significantly in the liver because of the stress caused by microcystin-LR (MC-LR) (75 and 100 μg MC-LR/kg BW) at 24 h and 96 h post injection (P < 0.05), but it was increased significantly in grass carp treated with 25 μg MC-LR/kg BW at 24 h (P < 0.05) post injection. Cleaved fragments of Cicaspase-8-like were observed using western blot analysis, and the expression of Cicaspase-8-like protein was increased after MC-LR treatments. Moreover, the expression of both caspase-9 and caspase-3 mRNA increased significantly after treatment with the three doses of MC-LR. TUNEL assay results showed remarkable changes in apoptosis after the MC-LR treatment. These results suggest that Cicaspase-8-like is an important caspase and plays an essential role in MC-LR-induced apoptosis.
Collapse
Affiliation(s)
- LiLi Wei
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi Province, 330045, PR China.
| | - Li He
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi Province, 330045, PR China
| | - Jianping Fu
- College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi Province, 330022, PR China
| | - Yi Liu
- College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi Province, 330022, PR China
| | - Jiming Ruan
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi Province, 330045, PR China
| | - Lin Liu
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi Province, 330045, PR China
| | - Qiwang Zhong
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, Jiangxi Province, 330045, PR China.
| |
Collapse
|
24
|
Han R, Zhang L, Gan W, Fu K, Jiang K, Ding J, Wu J, Han X, Li D. piRNA-DQ722010 contributes to prostate hyperplasia of the male offspring mice after the maternal exposed to microcystin-leucine arginine. Prostate 2019; 79:798-812. [PMID: 30900311 DOI: 10.1002/pros.23786] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 01/24/2019] [Accepted: 02/14/2019] [Indexed: 01/01/2023]
Abstract
BACKGROUND Microcystin-leucine arginine (MC-LR) could disrupt prostate development and cause prostate hyperplasia. But whether and how maternal and before-weaning MC-LR exposure causes prostate hyperplasia in male offspring by changing expression profile of P-element-induced wimpy (PIWI)-interacting RNAs (piRNAs) have not yet been reported. METHODS From the 12th day in the embryonic period to the 21st day after offspring birth, three groups of pregnant mice that were randomly assigned were exposed to 0, 10, and 50 μg/L of MC-LR through drinking water followed by the analyses of their male offspring. Abortion rate and litter size of maternal mice were recorded. The prostate histopathology was observed. Differential expressed piRNAs of prostate were screened by piRNA microarray analysis. Murine prostate cancer cell line (RM-1) was used for further mechanism study. Luciferase report assay was used to determine the relationship between piRNA-DQ722010 and polypeptide 3 (Pik3r3). RESULTS The downregulated expression of piRNA-DQ722010 was the most significant in piRNA microarray analysis in 10 μg/L MC-LR treated group, while Pik3r3 was significantly upregulated, consistent with the results that a distinct prostatic epithelial hyperplasia was observed and phosphoinositide-3-kinase (PI3K)/protien kinase B (AKT) signaling pathway was activated. Pik3r3 was verified as the target gene of piRNA-DQ722010. In addition, we found MC-LR decreased the expression of PIWI-like RNA-mediated gene silencing 2 (Piwil2) and 4 (Piwil4) both in vivo and in vitro, and both Piwil4 and Piwil2 could regulate the expression of DQ722010. CONCLUSION MC-LR caused downregulation of piRNA-DQ722010 and PIWI proteins, while piRNA-DQ722010 downregulation promoted activation of PI3K/AKT signaling pathway inducing prostate hyperplasia by upregulating the expression of Pik3r3. In contrast, piRNA-DQ722010 downregulation may be attributed to PIWI proteins downregulation.
Collapse
Affiliation(s)
- Ruitong Han
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Ling Zhang
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Weidong Gan
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Kai Fu
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Ke Jiang
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Jie Ding
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Jiang Wu
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Xiaodong Han
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Dongmei Li
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu, China
| |
Collapse
|
25
|
Khadgi N, Upreti AR. Photocatalytic degradation of Microcystin-LR by visible light active and magnetic, ZnFe 2O 4-Ag/rGO nanocomposite and toxicity assessment of the intermediates. CHEMOSPHERE 2019; 221:441-451. [PMID: 30654258 DOI: 10.1016/j.chemosphere.2019.01.046] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 12/22/2018] [Accepted: 01/06/2019] [Indexed: 06/09/2023]
Abstract
In this work, we aimed to study photocatalytic degradation of Microcystin-LR (MC-LR), a cyanotoxin known to cause acute as well as chronic toxicity and even mortality. The nanocomposite (NC) based on zinc ferrite (ZnFe2O4) was modified with graphene oxide (GO) and Ag nanoparticles (NPs) to enhance its photocatalytic properties under visible light. The so-formed ZnFe2O4-Ag/rGO NC exhibited superior performance in visible light allowing complete degradation of MC-LR within 120 min of treatment with pseudo rate constant, k = 0.0515 min-1, several times greater than other photocatalysts, TiO2 (k = 0.0009 min-1), ZnFe2O4 (k = 0.0021 min-1), ZnFe2O4-Ag (k = 0.0046 min-1) and ZnFe2O4/rGO (k = 0.007 min-1) respectively. The total organic carbon analysis revealed that only 22% of MC-LR was mineralized on 120 min of treatment time indicating presence of different intermediate by-products. The intermediates formed during photocatalytic treatment were identified using liquid chromatography-mass spectrometry (LCMS) based on which probable degradation pathways were proposed. The attack from OH radicals formed during the photocatalytic process resulted to hydroxylation and subsequent cleavage of diene bond. The toxicity assessment with Daphnia magna revealed that the degradation process has alleviated toxicity of the MC-LR and no toxic intermediates were formed during the treatment which is very important from eco-toxicological view point. Therefore, ZnFe2O4-Ag/rGO has a good potential in the field of environmental applications as visible light active and magnetic photocatalyst with enhanced performance.
Collapse
Affiliation(s)
- Nirina Khadgi
- Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing, 210098, PR China.
| | - Akhanda Raj Upreti
- Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing, 210098, PR China
| |
Collapse
|
26
|
Zhao S, Liu Y, Wang F, Xu D, Xie P. N-acetylcysteine protects against microcystin-LR-induced endoplasmic reticulum stress and germ cell apoptosis in zebrafish testes. CHEMOSPHERE 2018; 204:463-473. [PMID: 29679867 DOI: 10.1016/j.chemosphere.2018.04.020] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 04/03/2018] [Accepted: 04/04/2018] [Indexed: 06/08/2023]
Abstract
Previous studies have shown that microcystin-LR (MCLR) is a reproductive toxicant that induces germ cell apoptosis in the testes, but the underlying mechanisms have not been well understood. In this study, we investigated that MCLR induces germ cell apoptosis is through activation of endoplasmic reticulum (ER) stress and N-acetylcysteine (NAC), an antioxidant could protect against germ cell apoptosis by inhibiting the ER stress. Healthy male zebrafish were intraperitoneally injected with NAC (500 nM), beginning at 2 h before different doses of MCLR (0, 50, 100, 200 μg/kg). As expected, acute MCLR exposure resulted in oxidative stress and germ cell apoptosis in zebrafish testes. Further analysis showed that NAC significantly alleviated MCLR-induced testicular germ cell apoptosis and inhibited the caspase-dependent apoptotic proteins. Meanwhile H&E staining showed that NAC could rescue testicular damage induced by MCLR. Moreover, MCLR induced activation of ER stress which consequently triggered apoptosis in zebrafish testes. Interestingly, NAC was effective in improving the total antioxidant capacity (T-AOC) level and activity of antioxidant enzymes in NAC pretreated groups. NAC significantly attenuated MCLR-induced upregulation of GRP78 in testes. In addition, NAC significantly attenuated MCLR-triggered testicular eIF2s1 and MAPK8 activation, indicating that NAC counteracts MCLR-induced unfolded protein response (UPR) in testes. Taken together, the results observed in this study suggested that ER stress plays a critical role in germ cell apoptosis exposed to MCLR and NAC could protect against apoptosis via inhibiting ER stress in zebrafish testes.
Collapse
Affiliation(s)
- Sujuan Zhao
- School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Ying Liu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Fang Wang
- School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Dexiang Xu
- School of Public Health, Anhui Medical University, Hefei 230032, China.
| | - Ping Xie
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
27
|
Oliveira VR, Carvalho GMC, Casquilho NV, Moreira-Gomes MD, Soares RM, Azevedo SMFO, Lima LM, Barreiro EJ, Takiya CM, Zin WA. Lung and liver responses to 1- and 7-day treatments with LASSBio-596 in mice subchronically intoxicated by microcystin-LR. Toxicon 2017; 141:1-8. [PMID: 29097245 DOI: 10.1016/j.toxicon.2017.10.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 10/27/2017] [Accepted: 10/29/2017] [Indexed: 01/22/2023]
Abstract
Microcystin-LR (MC-LR) can cause serious injuries upon short- and long-term exposures that can be prevented by LASSBio-596 (LB-596), an anti-inflammatory compound. We aimed to test LB-596 following subchronic exposure to MC-LR. Swiss mice received 10 intraperitoneal injections of distilled water (DW) or MC-LR (20 μg/kg bw) every 2 days. On the 10th injection animals receiving DW were gavaged with DW or 50 mg/kg bw of LB-596 for 1 or 7 days (C1D, C7D, CL1D and CL7D groups), whereas those exposed to MC-LR received either DW or 50 mg/kg of LB-596 for 1 or 7 days (T1D, T7D, TL1D and TL7D groups). Twelve hours after the last gavage we assessed respiratory mechanics, and extracted lung and liver for histology, apoptosis, inflammatory biomarkers and MC-LR content. C1D, C7D, CL1D and CL7D were all similar. Mechanical parameters were significantly higher in T1D and T7D compared to the other groups. LB-596 reversed these changes on day 1 of administration. LB-596 reduced inflammatory mediators in lung and liver on day 1 of treatment. On day 7 apoptosis in liver and lung fell even more. Briefly, 7-day administration completely reversed lung and liver changes.
Collapse
Affiliation(s)
- Vinícius Rosa Oliveira
- Laboratory of Respiration Physiology, Carlos Chagas Filho Institute of Biophysics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Natália Vasconcelos Casquilho
- Laboratory of Respiration Physiology, Carlos Chagas Filho Institute of Biophysics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maria Diana Moreira-Gomes
- Laboratory of Respiration Physiology, Carlos Chagas Filho Institute of Biophysics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Superior Institute of Biomedical Sciences, Universidade Estadual do Ceará, Fortaleza, Brazil
| | - Raquel Moraes Soares
- NUMPEX-BIO - Multidisciplinar Center of Biological Research, Universidade Federal do Rio de Janeiro - Polo Xerém, Duque de Caxias, Brazil
| | - Sandra Maria F O Azevedo
- Laboratory of Ecophysiology and Toxicology of Cyanobacteria, Carlos Chagas Filho Institute of Biophysics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lidia Moreira Lima
- Laboratory of Evaluation and Synthesis of Bioactive Substances (LASSBio(®)), Institute of Biomedical Sciences, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Eliezer Jesus Barreiro
- Laboratory of Evaluation and Synthesis of Bioactive Substances (LASSBio(®)), Institute of Biomedical Sciences, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Christina Maeda Takiya
- Laboratory of Immunopathology, Carlos Chagas Filho Institute of Biophysics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Walter Araujo Zin
- Laboratory of Respiration Physiology, Carlos Chagas Filho Institute of Biophysics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
28
|
Bian Q, Lu J, Zhang L, Chi Y, Li Y, Guo H. Highly pathogenic avian influenza A virus H5N1 non-structural protein 1 is associated with apoptotic activation of the intrinsic mitochondrial pathway. Exp Ther Med 2017; 14:4041-4046. [PMID: 29067097 PMCID: PMC5647739 DOI: 10.3892/etm.2017.5056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 05/25/2017] [Indexed: 12/26/2022] Open
Abstract
Outbreaks of avian influenza A (H5N1) virus infection have significant health and economic consequences. Non-structural protein 1 (NS1) is an essential virulence factor of the highly pathogenic H5N1 avian influenza virus and of the apoptosis associated with the pathogenesis of H5N1. Previous studies have revealed that the NS1 protein is able to induce apoptosis via an extrinsic pathway. However, it remains unclear whether the intrinsic pathway is also associated with this apoptosis. The present study used a clone of the NS1 gene from avian influenza A/Jiangsu/1/2007 and observed the localization of the NS1 protein and cytochrome c release from mitochondria and the change of mitochondrial membrane potential (MMP) in lung cancer cells. Cytotoxicity was detected using an MTT assay and the number of apoptotic cells was counted using a flow cytometer. Following the isolation of mitochondria, western blotting was performed to compare cytochrome c release from the mitochondria in cells before and after apoptosis. The change of MMP was detected using JC-1 staining. Furthermore, the results reveal that the majority of the NS1 protein was localized in the cell nucleus, and that it may induce apoptosis of human lung epithelial cells. The apoptosis occurred with marked cytochrome c release from mitochondria and a change of the MMP. This indicated that the NS1 protein may be associated with apoptosis induced by an intrinsic mitochondrial pathway.
Collapse
Affiliation(s)
- Qian Bian
- Department of Toxicology and Function Assessment, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu 210009, P.R. China
| | - Jing Lu
- Department of Toxicology and Function Assessment, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu 210009, P.R. China
| | - Li Zhang
- Department of Toxicology and Function Assessment, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu 210009, P.R. China
| | - Ying Chi
- Department of Toxicology and Function Assessment, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu 210009, P.R. China
| | - Yan Li
- Department of Toxicology and Function Assessment, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu 210009, P.R. China
| | - Hongxiong Guo
- Department of Toxicology and Function Assessment, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu 210009, P.R. China
| |
Collapse
|
29
|
Roubicek DA, Souza-Pinto NCD. Mitochondria and mitochondrial DNA as relevant targets for environmental contaminants. Toxicology 2017; 391:100-108. [PMID: 28655544 DOI: 10.1016/j.tox.2017.06.012] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 06/20/2017] [Accepted: 06/21/2017] [Indexed: 10/19/2022]
Abstract
The mitochondrial DNA (mtDNA) is a closed circular molecule that encodes, in humans, 13 polypeptides components of the oxidative phosphorylation complexes. Integrity of the mitochondrial genome is essential for mitochondrial function and cellular homeostasis, and mutations and deletions in the mtDNA lead to oxidative stress, mitochondrial dysfunction and cell death. In vitro and in situ studies suggest that when exposed to certain genotoxins, mtDNA accumulates more damage than nuclear DNA, likely owing to its organization and localization in the mitochondrial matrix, which tends to accumulate lipophilic, positively charged molecules. In that regard, several relevant environmental and occupational contaminants have physical-chemical characteristics that indicate that they might accumulate in mitochondria and target mtDNA. Nonetheless, very little is known so far about mtDNA damage and mitochondrial dysfunction due to environmental exposure, either in model organisms or in humans. In this article, we discuss some of the characteristics of mtDNA which render it a potentially relevant target for damage by environmental contaminants, as well as possible functional consequences of damage/mutation accumulation. In addition, we review the data available in the literature focusing on mitochondrial effects of the most common classes of environmental pollutants. From that, we conclude that several lines of experimental evidence support the idea that mitochondria and mtDNA are susceptible and biologically relevant targets for pollutants, and more studies, including mechanistic ones, are needed to shed more light into the contribution of mitochondrial dysfunction to the environmental and human health effects of chemical exposure.
Collapse
Affiliation(s)
- Deborah A Roubicek
- Dept. of Environmental Analyses, São Paulo State Environmental Agency, CETESB, Av. Prof. Frederico Hermann Jr, 345, 05459-900, São Paulo, SP, Brazil
| | - Nadja C de Souza-Pinto
- Depto. de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo SP 05508-000, Brazil.
| |
Collapse
|
30
|
Zhang L, Zhang H, Zhang H, Benson M, Han X, Li D. Roles of piRNAs in microcystin-leucine-arginine (MC-LR) induced reproductive toxicity in testis on male offspring. Food Chem Toxicol 2017; 105:177-185. [PMID: 28414124 DOI: 10.1016/j.fct.2017.04.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 04/10/2017] [Accepted: 04/12/2017] [Indexed: 02/07/2023]
Abstract
In the present study, we evaluated the toxic effects on the testis of the male offspring of MC-LR exposure during fetal and lactational periods. Pregnant females were distributed into two experimental groups: control group and MC-LR group which were exposed to 0 and 10 μg/L of MC-LR, respectively, through drinking water separately during fetal and lactational periods. At the age of 30 days after birth, the male offspring were euthanized. The body weight, testis index, and histomorphology change were observed and the global changes of piwi-interacting RNA (piRNA) expression were evaluated. The results revealed that MC-LR was found in the testis of male offspring, body weight and testis index decreased significantly, and testicular tissue structure was damaged in the MC-LR group. In addition, the exposure to MC-LR resulted in an altered piRNA expression profile and an increase of the cell apoptosis and a decrease of the cell proliferation in the testis of the male offspring. It was reasonable to speculate that the toxic effects on reproductive system of the male offspring in MC-LR group might be mediated by piRNAs through the regulation of the target genes. As far as we are aware, this is the first report showing that MC-LR could play a role in disorder of proliferative and cell apoptosis in the testis of the male offspring by the maternal transmission effect of toxicity.
Collapse
Affiliation(s)
- Ling Zhang
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China.
| | - Hui Zhang
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China.
| | - Huan Zhang
- Department of Clinical and Experimental Medicine, Linköping University, SE-581 83 Linköping, Sweden.
| | - Mikael Benson
- Department of Clinical and Experimental Medicine, Linköping University, SE-581 83 Linköping, Sweden.
| | - Xiaodong Han
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China.
| | - Dongmei Li
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China.
| |
Collapse
|