1
|
Wei R, Wei P, Yuan H, Yi X, Aschner M, Jiang YM, Li SJ. Inflammation in Metal-Induced Neurological Disorders and Neurodegenerative Diseases. Biol Trace Elem Res 2024; 202:4459-4481. [PMID: 38206494 DOI: 10.1007/s12011-023-04041-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024]
Abstract
Essential metals play critical roles in maintaining human health as they participate in various physiological activities. Nonetheless, both excessive accumulation and deficiency of these metals may result in neurotoxicity secondary to neuroinflammation and the activation of microglia and astrocytes. Activation of these cells can promote the release of pro-inflammatory cytokines. It is well known that neuroinflammation plays a critical role in metal-induced neurotoxicity as well as the development of neurological disorders, such as Alzheimer's disease (AD), Parkinson's disease (PD), and multiple sclerosis (MS). Initially seen as a defense mechanism, persistent inflammatory responses are now considered harmful. Astrocytes and microglia are key regulators of neuroinflammation in the central nervous system, and their excessive activation may induce sustained neuroinflammation. Therefore, in this review, we aim to emphasize the important role and molecular mechanisms underlying metal-induced neurotoxicity. Our objective is to raise the awareness on metal-induced neuroinflammation in neurological disorders. However, it is not only just neuroinflammation that different metals could induce; they can also cause harm to the nervous system through oxidative stress, apoptosis, and autophagy, to name a few. The primary pathophysiological mechanism by which these metals induce neurological disorders remains to be determined. In addition, given the various pathways through which individuals are exposed to metals, it is necessary to also consider the effects of co-exposure to multiple metals on neurological disorders.
Collapse
Affiliation(s)
- Ruokun Wei
- Toxicology Department, School of Public Health, Guangxi Medical University, 22 Shuang-yong Rd., Nanning, 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, 22 Shuang-yong Rd., Nanning, 530021, Guangxi, China
| | - Peiqi Wei
- Toxicology Department, School of Public Health, Guangxi Medical University, 22 Shuang-yong Rd., Nanning, 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, 22 Shuang-yong Rd., Nanning, 530021, Guangxi, China
| | - Haiyan Yuan
- Toxicology Department, School of Public Health, Guangxi Medical University, 22 Shuang-yong Rd., Nanning, 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, 22 Shuang-yong Rd., Nanning, 530021, Guangxi, China
| | - Xiang Yi
- Toxicology Department, School of Public Health, Guangxi Medical University, 22 Shuang-yong Rd., Nanning, 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, 22 Shuang-yong Rd., Nanning, 530021, Guangxi, China
| | - Michael Aschner
- The Department of Molecular Pharmacology at Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Yue-Ming Jiang
- Toxicology Department, School of Public Health, Guangxi Medical University, 22 Shuang-yong Rd., Nanning, 530021, China.
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, 22 Shuang-yong Rd., Nanning, 530021, Guangxi, China.
| | - Shao-Jun Li
- Toxicology Department, School of Public Health, Guangxi Medical University, 22 Shuang-yong Rd., Nanning, 530021, China.
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, 22 Shuang-yong Rd., Nanning, 530021, Guangxi, China.
| |
Collapse
|
2
|
Stachowicz K. Regulation of COX-2 expression by selected trace elements and heavy metals: Health implications, and changes in neuronal plasticity. A review. J Trace Elem Med Biol 2023; 79:127226. [PMID: 37257334 DOI: 10.1016/j.jtemb.2023.127226] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/02/2023]
Abstract
Trace elements or trace metals are essential components of enzymes, proteins, hormones and play a key role in biochemical processes, cell growth and differentiation, as well as in neurotransmission, affecting human physiology. In nature there are also heavy metals that exhibit toxic effects on the human body, including the brain. The importance of trace elements has been established in neurodegenerative disorders, schizophrenia, depression among others. In parallel, an important regulatory element in the above diseases is cyclooxygenase-2 (COX-2), a modulator of the arachidonic acid (AA) pathway, and a cause of neuroinflammation, and glutamate (Glu) dysregulation, affecting calcium (Ca) metabolism in cells. This review presents the effects of major trace elements and heavy metals on COX-2 expression. Calcium (Ca), zinc (Zn), cadmium (Cd), vanadium (V), nickel (Ni), copper (Cu), and iron (Fe) can potentially increase COX-2 expression, inducing neuroinflammation and Glu excitotoxicity; while magnesium (Mg), lithium (Li), and selenium (Se) can potentially decrease COX-2 expression. The associated mechanisms are described in the article.
Collapse
Affiliation(s)
- Katarzyna Stachowicz
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland.
| |
Collapse
|
3
|
Nguyen HD. Prognostic biomarker prediction for glioma induced by heavy metals and their mixtures: An in-silico study. Toxicol Appl Pharmacol 2023; 459:116356. [PMID: 36563751 DOI: 10.1016/j.taap.2022.116356] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/02/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
Although there is an association between heavy metals and glioma, the molecular mechanisms involved in glioma development remain unclear. Therefore, this study aimed to assess the molecular mechanisms implicated in glioma development induced by heavy metals and their mixtures using various methodologies and databases (CTD, Google Scholar, PubMed, ScienceDirect, SpringerLink, miRNAsong, GeneMANIA, Metascape, MIENTURNET, UALCAN). I found that heavy metals, particularly arsenic, mercury, lead, and cadmium, as well as their mixtures, have substantial influences on the etiology of gliomas. "glioblastoma signaling pathways," "integrated cancer pathway," "central carbon metabolism in cancer," "microRNAs in cancer," "p53 signaling pathway," "chemical carcinogenesis-DNA adducts," "glioma," "TP53 network," and "MAPK signaling pathway" were the predominant molecular pathways implicated in the glioma development induced by the studied heavy metals and their mixtures. Five genes (SOD1, CAT, GSTP1, PTGS2, TNF), two miRNAs (hsa-miR-26b-5p and hsa-miR-143-3p), and transcription factors (DR1 and HNF4) were identified as key components related to combined heavy metal and glioma development. Physical interactions were found to be the most common among the heavy metals and their mixtures studied (ranging from 45.2% to 77.6%). The expression level of SOD1 was significantly lower in glioblastoma multiforma samples compared to normal samples, whereas GSTP1 and TP53 expression levels were significantly higher. Brain lower and grade glioma patients who had higher levels of TP53, hsa-miR-25, hsa-miR-34, hsa-miR-222, and hsa-miR-143 had a reduced likelihood of survival. Our findings suggest that further priority should be given to investigating the impact of specific heavy metals or their mixtures on these molecular processes.
Collapse
Affiliation(s)
- Hai Duc Nguyen
- Department of Pharmacy, College of Pharmacy, Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea.
| |
Collapse
|
4
|
Keringer P, Furedi N, Gaszner B, Miko A, Pakai E, Fekete K, Olah E, Kelava L, Romanovsky AA, Rumbus Z, Garami A. The hyperthermic effect of central cholecystokinin is mediated by the cyclooxygenase-2 pathway. Am J Physiol Endocrinol Metab 2022; 322:E10-E23. [PMID: 34779255 DOI: 10.1152/ajpendo.00223.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cholecystokinin (CCK) increases core body temperature via CCK2 receptors when administered intracerebroventricularly (icv). The mechanisms of CCK-induced hyperthermia are unknown, and it is also unknown whether CCK contributes to the fever response to systemic inflammation. We studied the interaction between central CCK signaling and the cyclooxygenase (COX) pathway. Body temperature was measured in adult male Wistar rats pretreated with intraperitoneal infusion of the nonselective COX enzyme inhibitor metamizol (120 mg/kg) or a selective COX-2 inhibitor, meloxicam, or etoricoxib (10 mg/kg for both) and, 30 min later, treated with intracerebroventricular CCK (1.7 µg/kg). In separate experiments, CCK-induced neuronal activation (with and without COX inhibition) was studied in thermoregulation- and feeding-related nuclei with c-Fos immunohistochemistry. CCK increased body temperature by ∼0.4°C from 10 min postinfusion, which was attenuated by metamizol. CCK reduced the number of c-Fos-positive cells in the median preoptic area (by ∼70%) but increased it in the dorsal hypothalamic area and in the rostral raphe pallidus (by ∼50% in both); all these changes were completely blocked with metamizol. In contrast, CCK-induced satiety and neuronal activation in the ventromedial hypothalamus were not influenced by metamizol. CCK-induced hyperthermia was also completely blocked with both selective COX-2 inhibitors studied. Finally, the CCK2 receptor antagonist YM022 (10 µg/kg icv) attenuated the late phases of fever induced by bacterial lipopolysaccharide (10 µg/kg; intravenously). We conclude that centrally administered CCK causes hyperthermia through changes in the activity of "classical" thermoeffector pathways and that the activation of COX-2 is required for the development of this response.NEW & NOTEWORTHY An association between central cholecystokinin signaling and the cyclooxygenase-prostaglandin E pathway has been proposed but remained poorly understood. We show that the hyperthermic response to the central administration of cholecystokinin alters the neuronal activity within efferent thermoeffector pathways and that these effects are fully blocked by the inhibition of cyclooxygenase. We also show that the activation of cyclooxygenase-2 is required for the hyperthermic effect of cholecystokinin and that cholecystokinin is a modulator of endotoxin-induced fever.
Collapse
Affiliation(s)
- Patrik Keringer
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Nora Furedi
- Department of Anatomy, Research Group for Mood Disorders, Centre for Neuroscience, Medical School and Szentagothai Research Centre, University of Pécs, Pécs, Hungary
| | - Balazs Gaszner
- Department of Anatomy, Research Group for Mood Disorders, Centre for Neuroscience, Medical School and Szentagothai Research Centre, University of Pécs, Pécs, Hungary
| | - Alexandra Miko
- Institute for Translational Medicine, Medical School and Szentagothai Research Centre, University of Pécs, Pécs, Hungary
| | - Eszter Pakai
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Kata Fekete
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Emoke Olah
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Leonardo Kelava
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | | | - Zoltan Rumbus
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Andras Garami
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| |
Collapse
|
5
|
Rabajdová M, Špaková I, Klepcová Z, Smolko L, Abrahamovská M, Urdzík P, Mareková M. Zinc(II) niflumato complex effects on MMP activity and gene expression in human endometrial cell lines. Sci Rep 2021; 11:19086. [PMID: 34580366 PMCID: PMC8476601 DOI: 10.1038/s41598-021-98512-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 09/08/2021] [Indexed: 11/23/2022] Open
Abstract
Endometriosis is a chronic inflammatory disease which increasingly affects young women under 35 years of age and leads to subfertility even infertility. Analysis of the cytotoxic effect of zinc(II) niflumato complex with neocuproine ([Zn(neo)(nif)2] or Zn-Nif) on immortalized human endometriotic cell line (12Z) and on control immortalized human endometrial stromal cell line (hTERT) was performed using xCELLigence technology for approximately 72 h following the treatment with Zn-Nif as well as cell viability Trypan Blue Assay. 12Z cell line proliferated more slowly compared to unaffected cells, whereas hTERT cells did not show similar behavior after treatment. The complex probably reduces the effect of pro-inflammatory pathways due to the effect of NSAID, while presence of zinc might reduce the level of ROS and regulate ER2 levels and MMP activity. The observed effects and high selectivity for rapidly proliferating cells with increased inflammatory activity suggest a good prognosis of successful decrease of endometriosis stage with this complex.
Collapse
Affiliation(s)
- Miroslava Rabajdová
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University, Trieda SNP 1, 040 11, Košice, Slovakia
| | - Ivana Špaková
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University, Trieda SNP 1, 040 11, Košice, Slovakia.
| | - Zuzana Klepcová
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University, Trieda SNP 1, 040 11, Košice, Slovakia
| | - Lukáš Smolko
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University, Trieda SNP 1, 040 11, Košice, Slovakia
| | - Michaela Abrahamovská
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University, Trieda SNP 1, 040 11, Košice, Slovakia
| | - Peter Urdzík
- Department of Gynaecology and Obstetrics, Faculty of Medicine, Pavol Jozef Šafárik University, Košice, Slovakia
| | - Mária Mareková
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University, Trieda SNP 1, 040 11, Košice, Slovakia
| |
Collapse
|
6
|
Smolko L, Špaková I, Klepcová Z, Dubayová K, Samoľová E, Rabajdová M, Mareková M. Zinc(II) niflumato complex with neocuproine: Synthesis, crystal structure, characterization and cytotoxic effects on human endometrial cell lines. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
7
|
Novel Thiosemicarbazones Sensitize Pediatric Solid Tumor Cell-Types to Conventional Chemotherapeutics through Multiple Molecular Mechanisms. Cancers (Basel) 2020; 12:cancers12123781. [PMID: 33334021 PMCID: PMC7765366 DOI: 10.3390/cancers12123781] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 12/11/2020] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Combination of chemotherapeutics for the treatment of childhood cancer can lead to the use of lower cytotoxic drug doses and better therapeutic tolerability (i.e., lower side effects) for patients. We discovered novel molecular targets of two lead thiosemicarbazone agents of the di-2-pyridylketone thiosemicarbazone class. These molecular targets include: cyclooxygenase, the DNA repair protein, O6-methylguanine DNA methyltransferase, mismatch repair proteins, and topoisomerase 2α. This research also identifies promising synergistic interactions of these thiosemicarbazones particularly with the standard chemotherapeutic, celecoxib. Abstract Combining low-dose chemotherapies is a strategy for designing less toxic and more potent childhood cancer treatments. We examined the effects of combining the novel thiosemicarbazones, di-2-pyridylketone 4-cyclohexyl-4-methyl-3-thiosemicarbazone (DpC), or its analog, di-2-pyridylketone-4,4-dimethyl-3-thiosemicarbazone (Dp44mT), with the standard chemotherapies, celecoxib (CX), etoposide (ETO), or temozolomide (TMZ). These combinations were analyzed for synergism to inhibit proliferation of three pediatric tumor cell-types, namely osteosarcoma (Saos-2), medulloblastoma (Daoy) and neuroblastoma (SH-SY5Y). In terms of mechanistic dissection, this study discovered novel thiosemicarbazone targets not previously identified and which are important for considering possible drug combinations. In this case, DpC and Dp44mT caused: (1) up-regulation of a major protein target of CX, namely cyclooxygenase-2 (COX-2); (2) down-regulation of the DNA repair protein, O6-methylguanine DNA methyltransferase (MGMT), which is known to affect TMZ resistance; (3) down-regulation of mismatch repair (MMR) proteins, MSH2 and MSH6, in Daoy and SH-SY5Y cells; and (4) down-regulation in all three cell-types of the MMR repair protein, MLH1, and also topoisomerase 2α (Topo2α), the latter of which is an ETO target. While thiosemicarbazones up-regulate the metastasis suppressor, NDRG1, in adult cancers, it is demonstrated herein for the first time that they induce NDRG1 in all three pediatric tumor cell-types, validating its role as a potential target. In fact, siRNA studies indicated that NDRG1 was responsible for MGMT down-regulation that may prevent TMZ resistance. Examining the effects of combining thiosemicarbazones with CX, ETO, or TMZ, the most promising synergism was obtained using CX. Of interest, a positive relationship was observed between NDRG1 expression of the cell-type and the synergistic activity observed in the combination of thiosemicarbazones and CX. These studies identify novel thiosemicarbazone targets relevant to childhood cancer combination chemotherapy.
Collapse
|
8
|
Metryka E, Kupnicka P, Kapczuk P, Simińska D, Tarnowski M, Goschorska M, Gutowska I, Chlubek D, Baranowska-Bosiacka I. Lead (Pb) as a Factor Initiating and Potentiating Inflammation in Human THP-1 Macrophages. Int J Mol Sci 2020; 21:ijms21062254. [PMID: 32214022 PMCID: PMC7139839 DOI: 10.3390/ijms21062254] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/12/2020] [Accepted: 03/21/2020] [Indexed: 01/03/2023] Open
Abstract
The aim of this study was to assess the influence of lead (Pb) at low concentrations (imitating Pb levels in human blood in chronic environmental exposure to this metal) on interleukin 1β (IL-1β) and interleukin 6 (IL-6) concentrations and the activity and expression of COX-1 and COX-2 in THP-1 macrophages. Macrophages were cultured in vitro in the presence of Pb at concentrations of: 1.25 μg/dL; 2.5 μg/dL; 5 μg/dL; 10 μg/dL. The first two concentrations of Pb were selected on the basis of our earlier study, which showed that Pb concentration in whole blood (PbB) of young women living in the northern regions of Poland and in the cord blood of their newborn children was within this range (a dose imitating environmental exposure). Concentrations of 5 μg/dL and 10 μg/dL correspond to the previously permissible PbB concentrations in children or pregnant women, and adults. Our results indicate that even low concentrations of Pb cause an increase in production of inflammatory interleukins (IL-1β and IL-6), increases expression of COX-1 and COX-2, and increases thromboxane B2 and prostaglandin E2 concentration in macrophages. This clearly suggests that the development of inflammation is associated not only with COX-2 but also with COX-1, which, until recently, had only been attributed constitutive expression. It can be concluded that environmental Pb concentrations are able to activate the monocytes/macrophages similarly to the manner observed during inflammation.
Collapse
Affiliation(s)
- Emilia Metryka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72 Str., 70-111 Szczecin, Poland; (E.M.); (P.K.); (P.K.); (D.S.); (M.G.); (D.C.)
| | - Patrycja Kupnicka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72 Str., 70-111 Szczecin, Poland; (E.M.); (P.K.); (P.K.); (D.S.); (M.G.); (D.C.)
| | - Patrycja Kapczuk
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72 Str., 70-111 Szczecin, Poland; (E.M.); (P.K.); (P.K.); (D.S.); (M.G.); (D.C.)
| | - Donata Simińska
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72 Str., 70-111 Szczecin, Poland; (E.M.); (P.K.); (P.K.); (D.S.); (M.G.); (D.C.)
| | - Maciej Tarnowski
- Department of Physiology, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72 Str., 70-111 Szczecin, Poland;
| | - Marta Goschorska
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72 Str., 70-111 Szczecin, Poland; (E.M.); (P.K.); (P.K.); (D.S.); (M.G.); (D.C.)
| | - Izabela Gutowska
- Department of Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111, Poland;
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72 Str., 70-111 Szczecin, Poland; (E.M.); (P.K.); (P.K.); (D.S.); (M.G.); (D.C.)
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72 Str., 70-111 Szczecin, Poland; (E.M.); (P.K.); (P.K.); (D.S.); (M.G.); (D.C.)
- Correspondence:
| |
Collapse
|
9
|
Barczak K, Palczewska-Komsa M, Nowicka A, Chlubek D, Buczkowska-Radlińska J. Analysis of the Activity and Expression of Cyclooxygenases COX1 and COX2 in THP-1 Monocytes and Macrophages Cultured with Biodentine TM Silicate Cement. Int J Mol Sci 2020; 21:ijms21062237. [PMID: 32213831 PMCID: PMC7139705 DOI: 10.3390/ijms21062237] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 03/20/2020] [Indexed: 12/17/2022] Open
Abstract
BiodentineTM is a material based on hydrated calcium silicate with odontotropic properties. However, from the clinician’s perspective, every material used to fill a tooth—even those showing the optimal biochemical parameters—is in fact a foreign body introduced to the organism of the host. Therefore, apart from the chemical parameters of such materials, equally important is the so-called biocompatibility of such materials. The aim of the study was to investigate whether BiodentineTM, used in the regeneration of the pulp-dentine complex, may affect the expression of the enzymes cyclooxygenase 1 (COX1) and cyclooxygenase 2 (COX2) in THP-1 monocytes/macrophages and the amount of prostanoids synthesized by these enzymes-precursors of biologically active prostanoids such as prostaglandin E2 (PGE2) and thromboxane (TXB2) which are mediators of inflammation. An original aspect of this research is the use of the THP-1 monocyte/macrophage cell model and the use of biomaterial in direct contact with cells. In this way we tried to reflect the clinical conditions of regenerative pulp and periodontal tissue treatment using BiodentineTM. The results of our study showed a lack of macrophage activation (measured by flow cytometry) and a lack of stimulation of the expression of the studied cyclooxygenase enzymes (measured by Western blotting and fluorescent microscopy), as well as a lack of increase in the concentration (measured by ELISA method) of their inflammatory mediators (PGE2 and TXB2) in vitro incubated with BiodentineTM.
Collapse
Affiliation(s)
- Katarzyna Barczak
- Department of Conservative Dentistry and Endodontics, Pomeranian Medical University, Powstańców Wlkp 72, 70-111 Szczecin, Poland; (M.P.-K.); (A.N.); (J.B.-R.)
- Correspondence: ; Tel.: +48-914-661-648
| | - Mirona Palczewska-Komsa
- Department of Conservative Dentistry and Endodontics, Pomeranian Medical University, Powstańców Wlkp 72, 70-111 Szczecin, Poland; (M.P.-K.); (A.N.); (J.B.-R.)
| | - Alicja Nowicka
- Department of Conservative Dentistry and Endodontics, Pomeranian Medical University, Powstańców Wlkp 72, 70-111 Szczecin, Poland; (M.P.-K.); (A.N.); (J.B.-R.)
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp, 70-111 Szczecin, Poland;
| | - Jadwiga Buczkowska-Radlińska
- Department of Conservative Dentistry and Endodontics, Pomeranian Medical University, Powstańców Wlkp 72, 70-111 Szczecin, Poland; (M.P.-K.); (A.N.); (J.B.-R.)
| |
Collapse
|
10
|
Lemaire J, Mireault M, Jumarie C. Zinc interference with Cd‐induced hormetic effect in differentiated Caco‐2 cells: Evidence for inhibition downstream ERK activation. J Biochem Mol Toxicol 2019; 34:e22437. [DOI: 10.1002/jbt.22437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 11/07/2019] [Accepted: 12/10/2019] [Indexed: 02/07/2023]
Affiliation(s)
- Joannie Lemaire
- Département des Sciences Biologiques, groupe TOXENUniversité du Québec à MontréalMontréal Québec Canada
| | - Myriam Mireault
- Département des Sciences Biologiques, groupe TOXENUniversité du Québec à MontréalMontréal Québec Canada
| | - Catherine Jumarie
- Département des Sciences Biologiques, groupe TOXENUniversité du Québec à MontréalMontréal Québec Canada
| |
Collapse
|
11
|
Goschorska M, Baranowska-Bosiacka I, Gutowska I, Metryka E, Skórka-Majewicz M, Chlubek D. Potential Role of Fluoride in the Etiopathogenesis of Alzheimer's Disease. Int J Mol Sci 2018; 19:ijms19123965. [PMID: 30544885 PMCID: PMC6320968 DOI: 10.3390/ijms19123965] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 12/06/2018] [Accepted: 12/06/2018] [Indexed: 12/18/2022] Open
Abstract
The etiopathogenesis of Alzheimer's disease has not been fully explained. Now, the disease is widely attributed both to genetic and environmental factors. It is believed that only a small percentage of new AD cases result solely from genetic mutations, with most cases attributed to environmental factors or to the interaction of environmental factors with preexistent genetic determinants. Fluoride is widespread in the environment and it easily crosses the blood⁻brain barrier. In the brain fluoride affects cellular energy metabolism, synthesis of inflammatory factors, neurotransmitter metabolism, microglial activation, and the expression of proteins involved in neuronal maturation. Finally, and of specific importance to its role in Alzheimer's disease, studies report fluoride-induced apoptosis and inflammation within the central nervous system. This review attempts to elucidate the potential relationship between the effects of fluoride exposure and the pathogenesis of Alzheimer's disease. We describe the impact of fluoride-induced oxidative stress and inflammation in the pathogenesis of AD and demonstrate a role for apoptosis in disease progression, as well as a mechanism for its initiation by fluoride. The influence of fluoride on processes of AD initiation and progression is complex and warrants further investigation, especially considering growing environmental fluoride pollution.
Collapse
Affiliation(s)
- Marta Goschorska
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powst. Wlkp. 72, 70-111 Szczecin, Poland.
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powst. Wlkp. 72, 70-111 Szczecin, Poland.
| | - Izabela Gutowska
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University in Szczecin, Broniewskiego 24, 71-460 Szczecin, Poland.
| | - Emilia Metryka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powst. Wlkp. 72, 70-111 Szczecin, Poland.
| | - Marta Skórka-Majewicz
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University in Szczecin, Broniewskiego 24, 71-460 Szczecin, Poland.
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powst. Wlkp. 72, 70-111 Szczecin, Poland.
| |
Collapse
|
12
|
Lee H, Roshanravan H, Wang Y, Okamoto K, Ryu J, Shrivastav S, Qu P, Kopp JB. ApoL1 renal risk variants induce aberrant THP-1 monocyte differentiation and increase eicosanoid production via enhanced expression of cyclooxygenase-2. Am J Physiol Renal Physiol 2018; 315:F140-F150. [PMID: 29357411 PMCID: PMC6087794 DOI: 10.1152/ajprenal.00254.2017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 01/02/2018] [Accepted: 01/08/2018] [Indexed: 01/09/2023] Open
Abstract
Apolipoprotein L1 ( ApoL1) genetic variants are strongly associated with kidney diseases. We investigated the role of ApoL1 variants in monocyte differentiation and eicosanoid production in macrophages, as activated tissue macrophages in kidney might contribute to kidney injury. In human monocyte THP-1 cells, transient overexpression of ApoL1 (G0, G1, G2) by transfection resulted in a 5- to 11-fold increase in CD14 and CD68 gene expression, similar to that seen with phorbol-12-myristate acetate treatment. All ApoL1 variants caused monocytes to differentiate into atypical M1 macrophages with marked increase in M1 markers CD80, TNF, IL1B, and IL6 and modest increase in the M2 marker CD163 compared with control cells. ApoL1-G1 transfection induced additional CD206 and TGFB1 expression, and ApoL1-G2 transfection induced additional CD204 and TGFB1 expression. Gene expression of prostaglandin E2 (PGE2) synthase and thromboxane synthase and both gene and protein expression of cyclooxygenase-2 (COX-2) were increased by ApoL1-G1 and -G2 variants compared with -G0 transfection. Higher levels of PGE2 and thromboxane B2, a stable metabolite of thromboxane A2, and transforming growth factor (TGF)-β1 were released into the supernatant of cultured THP-1 cells transfected with ApoL1-G1 and -G2, but not -G0. The increase in PGE2, thromboxane B2, and TGF-β1 was inhibited by COX-2-specific inhibitor CAY10404 but not by COX-1-specific inhibitor SC-560. These results demonstrate a novel role of ApoL1 variants in the regulation of monocyte differentiation and eicosanoid metabolism, which could modify the immune response and promote inflammatory signaling within the local targeted organs and tissues including the kidney.
Collapse
Affiliation(s)
- Hewang Lee
- Institute of Heart and Vessel Diseases, Second Hospital, Dalian Medical University , Dalian , China
- Kidney Disease Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland
| | - Hila Roshanravan
- Kidney Disease Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland
| | - Ying Wang
- Institute of Heart and Vessel Diseases, Second Hospital, Dalian Medical University , Dalian , China
| | - Koji Okamoto
- Kidney Disease Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland
| | - Junghwa Ryu
- Kidney Disease Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland
| | - Shashi Shrivastav
- Kidney Disease Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland
| | - Peng Qu
- Institute of Heart and Vessel Diseases, Second Hospital, Dalian Medical University , Dalian , China
| | - Jeffrey B Kopp
- Kidney Disease Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland
| |
Collapse
|
13
|
Goschorska M, Baranowska-Bosiacka I, Gutowska I, Tarnowski M, Piotrowska K, Metryka E, Safranow K, Chlubek D. Effect of acetylcholinesterase inhibitors donepezil and rivastigmine on the activity and expression of cyclooxygenases in a model of the inflammatory action of fluoride on macrophages obtained from THP-1 monocytes. Toxicology 2018; 406-407:9-20. [PMID: 29777723 DOI: 10.1016/j.tox.2018.05.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 05/09/2018] [Accepted: 05/11/2018] [Indexed: 12/31/2022]
Abstract
Inflammation is an important factor in the development of many diseases of the central nervous system, including Alzheimer's disease and other types of dementia. Given that acetylcholinesterase inhibitors are also currently believed to have anti-inflammatory properties, the purpose of this study was to investigate the effect of acetylcholinesterase inhibitors (rivastigmine, donepezil) on cyclooxygenase activity and expression using the proinflammatory action of fluoride (F-) on cultured macrophages obtained from THP-1 monocytes. COX-1 and COX-2 activity was determined through measurement of the products of prostaglandin E2 (PGE2) and thromboxane B2 (TXB2) in cell culture supernatants. Expression of COX-1 and COX-2 proteins was examined immunocytochemically, and mRNA expression was determined by qRT PCR. Our study confirmed the inhibitory effects of donepezil and rivastigmine on the production of PGE2, TXB2, COX-1 and COX-2 mRNA and protein expression in macrophages. We also demonstrated that the pro-inflammatory effect of fluoride may be reduced by the use of both drugs. The additive effect of these drugs cannot be ruled out, and effects other than those observed in the use of one drug should also be taken into account.
Collapse
Affiliation(s)
- Marta Goschorska
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72, Szczecin 70-111, Poland.
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72, Szczecin 70-111, Poland.
| | - Izabela Gutowska
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University, Broniewskiego 24, Szczecin 71-460, Poland.
| | - Maciej Tarnowski
- Department of Physiology, Pomeranian Medical University, Powstańców Wlkp. 72, Szczecin 70-111, Poland.
| | - Katarzyna Piotrowska
- Department of Physiology, Pomeranian Medical University, Powstańców Wlkp. 72, Szczecin 70-111, Poland.
| | - Emilia Metryka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72, Szczecin 70-111, Poland.
| | - Krzysztof Safranow
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72, Szczecin 70-111, Poland.
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72, Szczecin 70-111, Poland.
| |
Collapse
|
14
|
Pakai E, Tekus V, Zsiboras C, Rumbus Z, Olah E, Keringer P, Khidhir N, Matics R, Deres L, Ordog K, Szentes N, Pohoczky K, Kemeny A, Hegyi P, Pinter E, Garami A. The Neurokinin-1 Receptor Contributes to the Early Phase of Lipopolysaccharide-Induced Fever via Stimulation of Peripheral Cyclooxygenase-2 Protein Expression in Mice. Front Immunol 2018; 9:166. [PMID: 29459872 PMCID: PMC5807668 DOI: 10.3389/fimmu.2018.00166] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 01/18/2018] [Indexed: 12/20/2022] Open
Abstract
Neurokinin (NK) signaling is involved in various inflammatory processes. A common manifestation of systemic inflammation is fever, which is usually induced in animal models with the administration of bacterial lipopolysaccharide (LPS). A role for the NK1 receptor was shown in LPS-induced fever, but the underlying mechanisms of how the NK1 receptor contributes to febrile response, especially in the early phase, have remained unknown. We administered LPS (120 µg/kg, intraperitoneally) to mice with the Tacr1 gene, i.e., the gene encoding the NK1 receptor, either present (Tacr1+/+ ) or absent (Tacr1-/- ) and measured their thermoregulatory responses, serum cytokine levels, tissue cyclooxygenase-2 (COX-2) expression, and prostaglandin (PG) E2 concentration. We found that the LPS-induced febrile response was attenuated in Tacr1-/- compared to their Tacr1+/+ littermates starting from 40 min postinfusion. The febrigenic effect of intracerebroventricularly administered PGE2 was not suppressed in the Tacr1-/- mice. Serum concentration of pyrogenic cytokines did not differ between Tacr1-/- and Tacr1+/+ at 40 min post-LPS infusion. Administration of LPS resulted in amplification of COX-2 mRNA expression in the lungs, liver, and brain of the mice, which was statistically indistinguishable between the genotypes. In contrast, the LPS-induced augmentation of COX-2 protein expression was attenuated in the lungs and tended to be suppressed in the liver of Tacr1-/- mice compared with Tacr1+/+ mice. The Tacr1+/+ mice responded to LPS with a significant surge of PGE2 production in the lungs, whereas Tacr1-/- mice did not. In conclusion, the NK1 receptor is necessary for normal fever genesis. Our results suggest that the NK1 receptor contributes to the early phase of LPS-induced fever by enhancing COX-2 protein expression in the periphery. These findings advance the understanding of the crosstalk between NK signaling and the "cytokine-COX-2-prostaglandin E2" axis in systemic inflammation, thereby open up the possibilities for new therapeutic approaches.
Collapse
Affiliation(s)
- Eszter Pakai
- Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary
- Momentum Gastroenterology Multidisciplinary Research Group, Hungarian Academy of Sciences – University of Szeged, Szeged, Hungary
| | - Valeria Tekus
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pecs, Pecs, Hungary
- Janos Szentagothai Research Centre, University of Pecs, Pecs, Hungary
| | - Csaba Zsiboras
- Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary
| | - Zoltan Rumbus
- Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary
| | - Emoke Olah
- Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary
| | - Patrik Keringer
- Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary
| | - Nora Khidhir
- Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary
| | - Robert Matics
- Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary
| | - Laszlo Deres
- Janos Szentagothai Research Centre, University of Pecs, Pecs, Hungary
- First Department of Medicine, Medical School, University of Pecs, Pecs, Hungary
| | - Katalin Ordog
- Janos Szentagothai Research Centre, University of Pecs, Pecs, Hungary
- First Department of Medicine, Medical School, University of Pecs, Pecs, Hungary
| | - Nikolett Szentes
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pecs, Pecs, Hungary
- Janos Szentagothai Research Centre, University of Pecs, Pecs, Hungary
| | - Krisztina Pohoczky
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pecs, Pecs, Hungary
- Janos Szentagothai Research Centre, University of Pecs, Pecs, Hungary
| | - Agnes Kemeny
- Janos Szentagothai Research Centre, University of Pecs, Pecs, Hungary
- Department of Medical Biology, Medical School, University of Pecs, Pecs, Hungary
| | - Peter Hegyi
- Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary
- Momentum Gastroenterology Multidisciplinary Research Group, Hungarian Academy of Sciences – University of Szeged, Szeged, Hungary
- First Department of Medicine, University of Szeged, Szeged, Hungary
| | - Erika Pinter
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pecs, Pecs, Hungary
- Janos Szentagothai Research Centre, University of Pecs, Pecs, Hungary
| | - Andras Garami
- Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary
| |
Collapse
|
15
|
In Vitro Effect of 3D Plates Used for Surgical Treatment of Condylar Fractures on Prostaglandin E₂ (PGE₂) and Thromboxane B₂ (TXB₂) Concentration in THP-1 Macrophages. Int J Mol Sci 2017; 18:ijms18122638. [PMID: 29292766 PMCID: PMC5751241 DOI: 10.3390/ijms18122638] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/29/2017] [Accepted: 12/02/2017] [Indexed: 12/14/2022] Open
Abstract
Recent studies have shown promising results concerning the effectiveness of 3D plates in terms of stabilization of condylar fractures. Despite the use of new techniques and new materials, we can still observe certain side effects, including the immune reaction of the body, which may lead to the excessive inflammation. The aim of this paper was to determine how the production of prostaglandin E₂ (PGE₂) and thromboxane B₂ (TXB₂) in THP-1 monocytes/macrophages is influenced by the titanium 3D plates and dedicated screws. The experiments were conducted on THP-1 monocytic cell line and macrophages derived from a THP-1cells. The concentrations of PGE₂ and TXB₂ released were measured by using immunoassay kit. Verification of plate-induced activation of THP-1 monocytes and macrophages and initiation of inflammatory reaction was conducted by flow cytometry. Despite some differences in the content of the implant devices our results showed that these plates did not statistically significantly increase the production of these prostanoids. Osteosynthesis of condylar fractures using 3D titanium mini-plates seems to be a good alternative to traditional plates due to their lack of stimulating the cyclooxygenase-dependent production of prostanoids; limiting the development of inflammatory reactions.
Collapse
|
16
|
Kim J, Vaish V, Feng M, Field K, Chatzistamou I, Shim M. Transgenic expression of cyclooxygenase-2 (COX2) causes premature aging phenotypes in mice. Aging (Albany NY) 2017; 8:2392-2406. [PMID: 27750221 PMCID: PMC5115895 DOI: 10.18632/aging.101060] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 09/25/2016] [Indexed: 12/20/2022]
Abstract
Cyclooxygenase (COX) is a key enzyme in the biosynthesis of prostanoids, lipid signaling molecules that regulate various physiological processes. COX2, one of the isoforms of COX, is highly inducible in response to a wide variety of cellular and environmental stresses. Increased COX2 expression is thought to play a role in the pathogenesis of many age-related diseases. COX2 expression is also reported to be increased in the tissues of aged humans and mice, which suggests the involvement of COX2 in the aging process. However, it is not clear whether the increased COX2 expression is causal to or a result of aging. We have now addressed this question by creating an inducible COX2 transgenic mouse model. Here we show that post-natal expression of COX2 led to a panel of aging-related phenotypes. The expression of p16, p53, and phospho-H2AX was increased in the tissues of COX2 transgenic mice. Additionally, adult mouse lung fibroblasts from COX2 transgenic mice exhibited increased expression of the senescence-associated β-galactosidase. Our study reveals that the increased COX2 expression has an impact on the aging process and suggests that modulation of COX2 and its downstream signaling may be an approach for intervention of age-related disorders.
Collapse
Affiliation(s)
- Joohwee Kim
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA.,Center for Colon Cancer Research, University of South Carolina, Columbia, SC 29208, USA
| | - Vivek Vaish
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA.,Center for Colon Cancer Research, University of South Carolina, Columbia, SC 29208, USA
| | - Mingxiao Feng
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA.,Center for Colon Cancer Research, University of South Carolina, Columbia, SC 29208, USA
| | - Kevin Field
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Ioulia Chatzistamou
- Department of Pathology, Microbiology & Immunology, School of Medicine, University of South Carolina, Columbia, SC 29209, USA
| | - Minsub Shim
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA.,Center for Colon Cancer Research, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
17
|
Phuagkhaopong S, Ospondpant D, Kasemsuk T, Sibmooh N, Soodvilai S, Power C, Vivithanaporn P. Cadmium-induced IL-6 and IL-8 expression and release from astrocytes are mediated by MAPK and NF-κB pathways. Neurotoxicology 2017; 60:82-91. [DOI: 10.1016/j.neuro.2017.03.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 03/04/2017] [Accepted: 03/06/2017] [Indexed: 11/24/2022]
|
18
|
Cao H, Gao F, Xia B, Xiao Q, Guo X, Hu G, Zhang C. The co-induced effects of molybdenum and cadmium on the mRNA expression of inflammatory cytokines and trace element contents in duck kidneys. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 133:157-163. [PMID: 27448956 DOI: 10.1016/j.ecoenv.2016.07.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 06/05/2016] [Accepted: 07/06/2016] [Indexed: 06/06/2023]
Abstract
The aims of this study were determining the co-induced effects of dietary Cadmium (Cd) and high intake of Molybdenum (Mo) on renal toxicity in ducks. 240 healthy 11-day-old ducks were randomly divided into 6 groups, which were treated with Mo or/and Cd at different doses added to the basal diet for 120 days. Ducks of control group were fed with basal diet, LMo and HMo groups were fed with 15mg/kg Mo and 100mg/kg Mo respectively; ducks of Cd group were provided with 4mg/kg Cd which was added into basal diet. Two combination groups were treated with 15mg/kg Mo+4mg/kg Cd and 100mg/kg Mo+4mg/kg Cd respectively. On days 30, 60, 90 and 120, the mRNA expression levels of inflammatory cytokines and contents of trace elements were detected. In addition, transmission electron microscopic examination was used for ultrastructural studies. The results indicated that the mRNA expression levels of tumor necrosis factor-α (TNF-α), nuclear factor-kappa B (NF-κB), and cyclooxygenase-2 (COX-2) showed an upward tendency in treatment groups in comparison with control group, and in the later period of the experiment it showed a significant rise in joint groups compared with the Mo and Cd group (P<0.01); the contents of copper (Cu) and iron (Fe) decreased in joint groups in the later period (P<0.05) while the contents of Mo and Cd significantly increased (P<0.01); zinc (Zn) and selenium (Se) concentration had a slight downtrend in treated groups, but showed no significant difference (P>0.05). The ultrastructural analysis showed that kidney tissues were severely injured in joint groups on day 120. These results suggested that the combination of Mo and Cd could aggravate damages to the kidney. In addition, dietary of Mo or/and Cd caused the decrease of Cu, Fe, Zn, and Se contents, inflammatory response and pathological lesions whose mechanism is somehow linked with Mo and Cd deposition in kidney.
Collapse
Affiliation(s)
- Huabin Cao
- Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agriculture University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Feiyan Gao
- Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agriculture University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Bing Xia
- Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agriculture University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Qingyang Xiao
- Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agriculture University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Xiaoquan Guo
- Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agriculture University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Guoliang Hu
- Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agriculture University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China.
| | - Caiying Zhang
- Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agriculture University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China.
| |
Collapse
|
19
|
Kosik-Bogacka DI, Baranowska-Bosiacka I, Kolasa-Wołosiuk A, Lanocha-Arendarczyk N, Gutowska I, Korbecki J, Namięta H, Rotter I. The inflammatory effect of infection with Hymenolepis diminuta via the increased expression and activity of COX-1 and COX-2 in the rat jejunum and colon. Exp Parasitol 2016; 169:69-76. [PMID: 27466058 DOI: 10.1016/j.exppara.2016.07.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 07/20/2016] [Accepted: 07/22/2016] [Indexed: 01/10/2023]
Abstract
The aim of this study was to determine whether Hymenolepis diminuta may affect the expression and activity of cyclooxygenase 1 (COX-1) and cyclooxygenase 2 (COX-2), resulting in the altered levels of their main products - prostaglandins (PGE2) and thromboxane B2 (TXB2). The study used the same experimental model as in our previous studies in which we had observed changes in the transepithelial ion transport, tight junctions and in the indicators of oxidative stress, in both small and large intestines of rats infected with H. diminuta. In this paper, we investigated not only the site of immediate presence of the tapeworm (jejunum), but also a distant site (colon). Inflammation related to H. diminuta infection is associated with the increased expression and activation of cyclooxygenase (COX), enzyme responsible for the synthesis of PGE2 and TXB2, local hormones contributing to the enhanced inflammatory reaction in the jejunum and colon in the infected rats. The increased COX expression and activity is probably caused by the increased levels of free radicals and the weakening of the host's antioxidant defense induced by the presence of the parasite. Our immunohistochemical analysis showed that H. diminuta infection affected not only the intensity of the immunodetection of COX but also the enzyme protein localization within intestinal epithelial cells - from the entire cytoplasm to apical/basal regions of cells, or even to the nucleus.
Collapse
Affiliation(s)
- D I Kosik-Bogacka
- Department of Biology and Medical Parasitology, Pomeranian Medical University, Szczecin, Poland.
| | - I Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Szczecin, Poland
| | - A Kolasa-Wołosiuk
- Department of Histology and Embryology, Pomeranian Medical University, Szczecin, Poland
| | - N Lanocha-Arendarczyk
- Department of Biology and Medical Parasitology, Pomeranian Medical University, Szczecin, Poland
| | - I Gutowska
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University, Szczecin, Poland
| | - J Korbecki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Szczecin, Poland
| | - H Namięta
- Department of Biology and Medical Parasitology, Pomeranian Medical University, Szczecin, Poland
| | - I Rotter
- Independent Laboratory of Medical Rehabilitation, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
20
|
Minutoli L, Micali A, Pisani A, Puzzolo D, Bitto A, Rinaldi M, Pizzino G, Irrera N, Galfo F, Arena S, Pallio G, Mecchio A, Germanà A, Bruschetta D, Laurà R, Magno C, Marini H, Squadrito F, Altavilla D. Flavocoxid Protects Against Cadmium-Induced Disruption of the Blood–Testis Barrier and Improves Testicular Damage and Germ Cell Impairment in Mice [corrected]. Toxicol Sci 2015; 148:311-29. [PMID: 26424772 DOI: 10.1093/toxsci/kfv185] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Cadmium (Cd) causes male infertility. There is the need to identify safe treatments counteracting this toxicity. Flavocoxid is a flavonoid that induces a balanced inhibition of cyclooxygenase (COX)-1 and COX-2 peroxidase moieties and of 5-lipoxygenase (LOX) and has efficacy in the male genitourinary system. We investigated flavocoxid effects on Cd-induced testicular toxicity in mice. Swiss mice were divided into 4 groups: 2 control groups received 0.9% NaCl (vehicle; 1 ml/kg/day) or flavocoxid (20 mg/kg/day ip); 2 groups were challenged with cadmium chloride (CdCl2; 2 mg/kg/day ip) and administered with vehicle or flavocoxid. The treatment lasted for 1 or 2 weeks. The testes were processed for biochemical and morphological studies. CdCl2 increased phosphorylated extracellular signal-regulated kinase (p-ERK) 1/2, tumor necrosis factor (TNF)-α, COX-2, 5-LOX, malondialdehyde (MDA), B-cell-lymphoma (Bcl)-2-associated X protein (Bax), follicle-stimulating hormone (FSH), luteinizing hormone (LH), transforming growth factor (TGF) -β3, decreased Bcl-2, testosterone, inhibin-B, occludin, N-Cadherin, induced structural damages in the testis and disrupted the blood-testis barrier. Many TUNEL-positive germ cells and changes in claudin-11, occludin, and N-cadherin localization were present. Flavocoxid administration reduced, in a time-dependent way, p-ERK 1/2, TNF-α, COX-2, 5-LOX, MDA, Bax, FSH, LH, TGF-β3, augmented Bcl-2, testosterone, inhibin B, occludin, N-Cadherin, and improved the structural organization of the testis and the blood-testis barrier. Few TUNEL-positive germ cells were present and a morphological retrieval of the intercellular junctions was observed. In conclusion, flavocoxid has a protective anti-inflammatory, antioxidant, and antiapoptotic function against Cd-induced toxicity in mice testis. We suggest that flavocoxid may play a relevant positive role against environmental levels of Cd, otherwise deleterious to gametogenesis and tubular integrity.
Collapse
Affiliation(s)
| | - Antonio Micali
- Department of Biomedical Sciences and Morphological and Functional Images
| | - Antonina Pisani
- Department of Biomedical Sciences and Morphological and Functional Images
| | - Domenico Puzzolo
- Department of Biomedical Sciences and Morphological and Functional Images
| | | | | | | | | | | | - Salvatore Arena
- Department of Paediatric, Gynaecological Microbiological and Biomedical Sciences
| | | | - Anna Mecchio
- *Department of Clinical and Experimental Medicine
| | | | - Daniele Bruschetta
- Department of Biomedical Sciences and Morphological and Functional Images
| | - Rosaria Laurà
- Department of Biological and Environmental Sciences and
| | - Carlo Magno
- Department of Human Pathology, University of Messina, Messina, Italy
| | | | | | - Domenica Altavilla
- Department of Paediatric, Gynaecological Microbiological and Biomedical Sciences
| |
Collapse
|
21
|
Olszowski T, Gutowska I, Baranowska-Bosiacka I, Piotrowska K, Korbecki J, Kurzawski M, Chlubek D. The Effect of Cadmium on COX-1 and COX-2 Gene, Protein Expression, and Enzymatic Activity in THP-1 Macrophages. Biol Trace Elem Res 2015; 165:135-44. [PMID: 25645360 PMCID: PMC4424267 DOI: 10.1007/s12011-015-0234-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 01/11/2015] [Indexed: 01/20/2023]
Abstract
The aim of this study was to examine the effects of cadmium in concentrations relevant to those detected in human serum on cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2) expression at mRNA, protein, and enzyme activity levels in THP-1 macrophages. Macrophages were incubated with various cadmium chloride (CdCl2) solutions for 48 h at final concentrations of 5 nM, 20 nM, 200 nM, and 2 μM CdCl2. The mRNA expression and protein levels of COXs were analyzed with RT-PCR and Western blotting, respectively. Prostaglandin E2 (PGE2) and stable metabolite of thromboxane B2 (TXB2) concentrations in culture media were determined using ELISA method. Our study demonstrates that cadmium at the highest tested concentrations modulates COX-1 and COX-2 at mRNA level in THP-1 macrophages; however, the lower tested cadmium concentrations appear to inhibit COX-1 protein expression. PGE2 and TXB2 production is not altered by all tested Cd concentrations; however, the significant stimulation of PGE2 and TXB2 production is observed when macrophages are exposed to both cadmium and COX-2 selective inhibitor, NS-398. The stimulatory effect of cadmium on COXs at mRNA level is not reflected at protein and enzymatic activity levels, suggesting the existence of some posttranscriptional, translational, and posttranslational events that result in silencing of those genes' expression.
Collapse
Affiliation(s)
- Tomasz Olszowski
- Department of Hygiene and Epidemiology, Pomeranian Medical University, Powstańców Wlkp. 72 Av, 70-111 Szczecin, Poland
| | - Izabela Gutowska
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University, Broniewskiego 24 Str, 71-460 Szczecin, Poland
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72 Av, 70-111 Szczecin, Poland
| | - Katarzyna Piotrowska
- Department of Physiology, Pomeranian Medical University, Powstańców Wlkp. 72 Av, 70-111 Szczecin, Poland
| | - Jan Korbecki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72 Av, 70-111 Szczecin, Poland
| | - Mateusz Kurzawski
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University, Powstańców Wlkp. 72 Av, 70-111 Szczecin, Poland
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72 Av, 70-111 Szczecin, Poland
| |
Collapse
|
22
|
HONG HUA, JANG BYEONGCHURL. Prednisone inhibits the IL-1β-induced expression of COX-2 in HEI-OC1 murine auditory cells through the inhibition of ERK-1/2, JNK-1 and AP-1 activity. Int J Mol Med 2014; 34:1640-6. [DOI: 10.3892/ijmm.2014.1967] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 10/01/2014] [Indexed: 11/05/2022] Open
|
23
|
Khoi PN, Xia Y, Lian S, Kim HD, Kim DH, Joo YE, Chay KO, Kim KK, Jung YD. Cadmium induces urokinase-type plasminogen activator receptor expression and the cell invasiveness of human gastric cancer cells via the ERK-1/2, NF-κB, and AP-1 signaling pathways. Int J Oncol 2014; 45:1760-1768. [PMID: 25069788 DOI: 10.3892/ijo.2014.2558] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 07/03/2014] [Indexed: 11/06/2022] Open
Abstract
Cadmium exposure has been linked to human cancers, including stomach cancer. In this study, the effects of cadmium on urokinase-type plasminogen activator receptor (uPAR) expression in human gastric cancer cells and the underlying signal transduction pathways were investigated. Cadmium induced uPAR expression in a time- and concentration-dependent manner. Cadmium also induced uPAR promoter activity. Additionally, cadmium induced the activation of extracellular signal regulated kinase-1/2 (ERK-1/2), p38 mitogen-activated protein kinase (MAPK), and the activation of c-Jun amino terminal kinase (JNK). A specific inhibitor of MEK-1 (PD98059) inhibited cadmium-induced uPAR expression, while JNK and p38 MAPK inhibitors did not. Expression vectors encoding dominant-negative MEK-1 (pMCL-K97M) also prevented cadmium-induced uPAR promoter activity. Site-directed mutagenesis and electrophoretic mobility shift studies showed that sites for the transcription factors nuclear factor (NF)-κB and activator protein-1 (AP-1) were involved in cadmium-induced uPAR transcription. Suppression of the cadmium-induced uPAR promoter activity by a mutated-type NF-κB-inducing kinase and I-κB and an AP-1 decoy oligonucleotide confirmed that the activation of NF-κB and AP-1 are essential for cadmium-induced uPAR upregulation. Cells pretreated with cadmium showed markedly enhanced invasiveness and this effect was partially abrogated by uPAR-neutralizing antibodies and by inhibitors of ERK-1/2, NF-κB, and AP-1. These results suggest that cadmium induces uPAR expression via ERK-1/2, NF-κB, and AP-1 signaling pathways and, in turn, stimulates cell invasiveness in human gastric cancer AGS cells.
Collapse
Affiliation(s)
- Pham Ngoc Khoi
- Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 501-190, Republic of Korea
| | - Yong Xia
- Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 501-190, Republic of Korea
| | - Sen Lian
- Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 501-190, Republic of Korea
| | - Ho Dong Kim
- Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 501-190, Republic of Korea
| | - Do Hyun Kim
- Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 501-190, Republic of Korea
| | - Young Eun Joo
- Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 501-190, Republic of Korea
| | - Kee-Oh Chay
- Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 501-190, Republic of Korea
| | - Kyung Keun Kim
- Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 501-190, Republic of Korea
| | - Young Do Jung
- Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 501-190, Republic of Korea
| |
Collapse
|