1
|
Asiwe JN, Yovwin GD, Alawode MO, Isola T, Umukoro EK, Igbokwe VU, Asiwe N. Lutein protection against doxorubicin-induced liver damage in rats is associated with inhibition of oxido-inflammatory stress and modulation of Beclin-1/mTOR activities. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:5811-5822. [PMID: 39614892 DOI: 10.1007/s00210-024-03650-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 11/18/2024] [Indexed: 04/11/2025]
Abstract
A wide range of clinical applications are reported for doxorubicin (DOX), yet both people and research animals experience substantial tissue damage. However, the protective mechanism of lutein, a natural carotenoid against doxorubicin associated liver toxicity has not been fully studied. Therefore, the aim of this study is to investigate the protective mechanism of lutein in doxorubicin-induced liver damage. Twenty male Wistar rats were randomly assigned to four groups and treated as follows: group 1 was administered 10-ml/kg body weight of normal saline intraperitoneally for a duration of 28 days. Group 2 was administered doxorubicin (15-mg/kg body weight) intraperitoneally for 3 days in a row. Group 3 was administered intraperitoneal injections of lutein (40-mg/kg body weight) daily for 28 days, and group 4 was administered intraperitoneal injections of lutein (40-mg/kg body weight) daily for 28 days with last 3 days in a row (days 26, 27, and 28) of doxorubicin injection (15-mg/kg body weight). Our results showed that lutein reduced levels of AST, ALT, ALP, LDH, MDA, nitrite, beclin-1, caspase-3, IL-6 as well as TNF-α against the increase caused by doxorubicin. GSH, SOD, GST, catalase, mTOR as well as Bcl-2 were markedly increased by lutein against the harmful effect of doxorubicin. Moreso, lutein restored normal histoarchitecture as well as reduced fibrosis. In conclusion, lutein protection against doxorubicin-induced liver damage in male Wistar rat is associated with inhibition of oxidative stress, pro-inflammatory reactions, and modulation of Beclin-1/mTOR activities.
Collapse
Affiliation(s)
| | - Godwin D Yovwin
- Department of Family Medicine, Delta State University, Abraka, Nigeria
| | | | - Theodora Isola
- Department of Physiology, Atiba University, Oyo, Nigeria
| | | | | | - Nicholas Asiwe
- Department of Anatomy, University of Delta, Agbor, Nigeria
| |
Collapse
|
2
|
Panchalingam S, Kasivelu G. Harnessing marine bioactive compounds: In silico insights into therapeutics for rheumatoid arthritis and major depressive disorder. Comput Biol Chem 2025; 118:108452. [PMID: 40222053 DOI: 10.1016/j.compbiolchem.2025.108452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/17/2025] [Accepted: 03/28/2025] [Indexed: 04/15/2025]
Abstract
The quest for the discovery of novel therapeutic agents' increases day by day owing to the increased incidence of drug-resistant infections, chronic diseases, and a need for discovering novel treatments. Conventionally, the sources for molecules of drugs have remained from terrestrial plants and microorganisms, yet the chemical adaptability of marine organisms presents something very unique in chemical terms and remains an uncharted frontier. Marine bioactive compounds-chemicals produced by marine organisms that have positive health impacts on humans-attract particular interest due to their pharmaceutical potential. Marine organisms range from macroalgae (seaweeds), microalgae, and sponges to molluscs, echinoderms, and fish. Each of these categories generates a variety of bioactive compounds that have unique biochemical properties. Many marine-derived compounds have exhibited strong antimicrobial activity, anticancer activity and neuroprotective effects. Despite the enormous potential of marine bioactive compounds in drug discovery, several challenges like Accessibility and Sustainability, Complexity of Marine Compounds, and Regulation and Approval act as bottlenecks in taking them from the lab to the clinic. It is an imperative task to tackle these challenges for a complete development of marine pharmacopoeia. This review emphasizes on the possible application of chemicals emanating from marine sources as lead molecules for the prevention of major depressive disorder and rheumatoid arthritis.
Collapse
Affiliation(s)
- Santhiya Panchalingam
- Centre for Ocean Research, Sathyabama Institute of Science and Technology (Deemed to be University), Chennai, Tamil Nadu 600119, India
| | - Govindaraju Kasivelu
- Centre for Ocean Research, Sathyabama Institute of Science and Technology (Deemed to be University), Chennai, Tamil Nadu 600119, India.
| |
Collapse
|
3
|
Shanaida M, Mykhailenko O, Lysiuk R, Hudz N, Balwierz R, Shulhai A, Shapovalova N, Shanaida V, Bjørklund G. Carotenoids for Antiaging: Nutraceutical, Pharmaceutical, and Cosmeceutical Applications. Pharmaceuticals (Basel) 2025; 18:403. [PMID: 40143179 PMCID: PMC11945224 DOI: 10.3390/ph18030403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/24/2025] [Accepted: 03/06/2025] [Indexed: 03/28/2025] Open
Abstract
Background: Carotenoids are bioactive tetraterpenoid C40 pigments that are actively synthesized by plants, bacteria, and fungi. Compounds such as α-carotene, β-carotene, lycopene, lutein, astaxanthin, β-cryptoxanthin, fucoxanthin, and zeaxanthin have attracted increasing attention for their antiaging properties. They exhibit antioxidant, neuroprotective, and anti-inflammatory properties, contributing to the prevention and treatment of age-related diseases. Objectives: The aim of this study was to comprehensively analyze the pharmacological potential and biological mechanisms of carotenoids associated with age-related disorders and to evaluate their application in nutraceuticals, pharmaceuticals, and cosmeceuticals. Methods: A systematic review of studies published over the past two decades was conducted using the databases PubMed, Scopus, and Web of Science. The selection criteria included clinical, in silico, in vivo, and in vitro studies investigating the pharmacological and therapeutic effects of carotenoids. Results: Carotenoids demonstrate a variety of health benefits, including the prevention of age-related macular degeneration, cancer, cognitive decline, metabolic disorders, and skin aging. Their role in nutraceuticals is well supported by their ability to modulate oxidative stress and inflammatory pathways. In pharmaceuticals, carotenoids show promising results in formulations targeting neurodegenerative diseases and metabolic disorders. In cosmeceuticals, they improve skin health by protecting it against UV radiation and oxidative damage. However, bioavailability, optimal dosages, toxicity, and interactions with other bioactive compounds remain critical factors to maximize therapeutic efficacy and still require careful evaluation by scientists. Conclusions: Carotenoids are promising bioactive compounds for antiaging interventions with potential applications in a variety of fields. Further research is needed to optimize their formulas, improve bioavailability, and confirm their long-term safety and effectiveness, especially in the aging population.
Collapse
Affiliation(s)
- Mariia Shanaida
- Department of Pharmacognosy and Medical Botany, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine
- CONEM Ukraine Natural Drugs Research Group, 46001 Ternopil, Ukraine;
| | - Olha Mykhailenko
- Department of Pharmaceutical Chemistry, National University of Pharmacy, 61168 Kharkiv, Ukraine;
| | - Roman Lysiuk
- Department of Pharmacognosy and Botany, Danylo Halytsky Lviv National Medical University, 79010 Lviv, Ukraine; (R.L.); (N.S.)
- CONEM Ukraine Life Science Research Group, 79010 Lviv, Ukraine
| | - Nataliia Hudz
- Department of Drug Technology and Biopharmacy, Danylo Halytsky Lviv National Medical University, 79010 Lviv, Ukraine;
- Department of Pharmacy and Ecological Chemistry, University of Opole, 45-052 Opole, Poland;
| | - Radosław Balwierz
- Department of Pharmacy and Ecological Chemistry, University of Opole, 45-052 Opole, Poland;
| | - Arkadii Shulhai
- Department of Public Health and Healthcare Management, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine;
| | - Nataliya Shapovalova
- Department of Pharmacognosy and Botany, Danylo Halytsky Lviv National Medical University, 79010 Lviv, Ukraine; (R.L.); (N.S.)
| | - Volodymyr Shanaida
- CONEM Ukraine Natural Drugs Research Group, 46001 Ternopil, Ukraine;
- Design of Machine Tools, Instruments and Machines Department, Ternopil Ivan Puluj National Technical University, 46001 Ternopil, Ukraine
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine, 8610 Mo i Rana, Norway
| |
Collapse
|
4
|
Wang L, Li A, Zhang X, Iqbal M, Aabdin ZU, Xu M, Mo Q, Li J. Effect of Bacillus subtilis isolated from yaks on D-galactose-induced oxidative stress and hepatic damage in mice. Front Microbiol 2025; 16:1550556. [PMID: 40109966 PMCID: PMC11920168 DOI: 10.3389/fmicb.2025.1550556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 02/19/2025] [Indexed: 03/22/2025] Open
Abstract
Acute hepatic injury is a severe condition that is always accompanied by oxidative stress and inflammation, seriously threatening the health of the host. Probiotics have been shown to be involved in the regulation of antioxidant system and gut microbiota activity, but studies on the effects of yak derived Bacillus subtilis (B. subtilis) on acute liver injury and oxidative stress remain scarce. Here, we aim to explore the ameliorative effects of B. subtilis isolated from yaks on oxidative stress and hepatic injury caused by D-galactose, as well as the underlying processes. Results indicated that B. subtilis administration, particularly the BS3, significantly mitigated hepatic damage induced by D-galactose in mice as evidenced by ameliorating liver tissue damage as well as decreasing ALT (p < 0.05) and AST (p < 0.05) levels. Additionally, the B. subtilis intervention was demonstrated to enhance the antioxidant system in D-galactose-exposed mice, as manifested by increased T-AOC and SOD, alongside a decrease in MDA levels (p < 0.05). Meanwhile, B. subtilis intervention could effectively mitigate oxidative damage via modulating the Keap1/Nrf2 signaling pathway. Importantly, B. subtilis exhibited a pronounced protective effect against D-galactose-induced intestinal barrier dysfunction through improving tight junction proteins. The gut microbiota results suggest that BS3 alters the abundance of some gut flora such as Firmicutes phylum and Oscillibacter and Lachnospiraceae_NK4A136 genera, which affects the composition of the gut microbiota and reverses the decrease in the microbial richness index in mice. In summary, these findings demonstrated that B. subtilis isolated from yaks serve as a promising candidate to ameliorate oxidative damage and hepatic injury. Meanwhile, the positive regulation effect of B. subtilis on gut microbiota and intestinal mucosal barrier may be one of its underlying mechanisms to alleviate oxidative stress and hepatic injury.
Collapse
Affiliation(s)
- Lei Wang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Aoyun Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Xiaohu Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Mudassar Iqbal
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zain Ul Aabdin
- Department of Preventive Veterinary Medicine and Public Health, Faculty of Veterinary and Animal Sciences, Ziauddin University, Karachi, Pakistan
| | - Mengen Xu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Quan Mo
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jiakui Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- College of Animal Science, Xizang Agricultural and Animal Husbandry University, Nyingchi, China
| |
Collapse
|
5
|
Dash UC, Nayak V, Navani HS, Samal RR, Agrawal P, Singh AK, Majhi S, Mogare DG, Duttaroy AK, Jena AB. Understanding the molecular bridges between the drugs and immune cell. Pharmacol Ther 2025; 267:108805. [PMID: 39908660 DOI: 10.1016/j.pharmthera.2025.108805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 01/11/2025] [Accepted: 01/21/2025] [Indexed: 02/07/2025]
Abstract
The interactions of drugs with the host's immune cells determine the drug's efficacy and adverse effects in patients. Nonsteroidal Anti-Inflammatory Drugs (NSAID), such as corticosteroids, NSAIDs, and immunosuppressants, affect the immune cells and alter the immune response. Molecularly, drugs can interact with immune cells via cell surface receptors, changing the antigen presentation by modifying the co-stimulatory molecules and interacting with the signaling pathways of T cells, B cells, Natural killer (NK) cells, mast cells, basophils, and macrophages. Immunotoxicity, resulting from drug-induced changes in redox status, generation of Reactive Oxygen Species (ROS)/Reactive Nitrogen Species (RNS), and alterations in antioxidant enzymes within immune cells, leads to immunodeficiency. This, in turn, causes allergic reactions, autoimmune diseases, and cytokine release syndrome (CRS). The treatment options should include the evaluation of immune status and utilization of the concept of pharmacogenomics to minimize the chances of immunotoxicity. Many strategies in redox, like targeting the redox pathway or using redox-active agents, are available for the modulation of the immune system and developing drugs. Case studies highlight significant drug-immune cell interactions and patient outcomes, underscoring the importance of understanding these complexities. The future direction focuses on the drugs to deliver antiviral therapy, new approaches to immunomodulation, and modern technologies for increasing antidote effects with reduced toxicity. In conclusion, in-depth knowledge of the interaction between drugs and immune cells is critical to protect the patient from the adverse effects of the drug and improve therapeutic outcomes of the treatment process. This review focuses on the multifaceted interactions of drugs and their consequences at the cellular levels of immune cells.
Collapse
Affiliation(s)
- Umesh Chandra Dash
- School of Biotechnology, Campus 11, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Bhubaneswar, Odisha 751024, India
| | - Vinayak Nayak
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, India
| | - Hiten Shanker Navani
- Biological Materials Laboratory, CSIR- Central Leather Research Institute, Adyar, Chennai 600020, India
| | - Rashmi Rekha Samal
- CSIR-Institute of Minerals & Materials Technology, Bhubaneswar 751 013, India
| | - Palak Agrawal
- Unit de Microbiologie Structurale, Institut Pasteur, Paris, France
| | - Anup Kumar Singh
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune, India
| | - Sanatan Majhi
- Post Graduate Department of Biotechnology, Utkal University, Bhubaneswar 751004, Odisha, India
| | - Devraj Ganpat Mogare
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune, India
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0317 Oslo, Norway.
| | - Atala Bihari Jena
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune, India
| |
Collapse
|
6
|
Cheng C, Xu F, Pan XF, Wang C, Fan J, Yang Y, Liu Y, Sun L, Liu X, Xu Y, Zhou Y, Xiao C, Gou W, Miao Z, Yuan J, Shen L, Fu Y, Sun X, Zhu Y, Chen Y, Pan A, Zhou D, Zheng JS. Genetic mapping of serum metabolome to chronic diseases among Han Chinese. CELL GENOMICS 2025; 5:100743. [PMID: 39837327 PMCID: PMC11872534 DOI: 10.1016/j.xgen.2024.100743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 10/31/2024] [Accepted: 12/24/2024] [Indexed: 01/23/2025]
Abstract
Serum metabolites are potential regulators for chronic diseases. To explore the genetic regulation of metabolites and their roles in chronic diseases, we quantified 2,759 serum metabolites and performed genome-wide association studies (GWASs) among Han Chinese individuals. We identified 184 study-wide significant (p < 1.81 × 10-11) metabolite quantitative trait loci (metaboQTLs), 88.59% (163) of which were novel. Notably, we identified Asian-ancestry-specific metaboQTLs, including the SNP rs2296651 for taurocholic acid and taurochenodesoxycholic acid. Leveraging the GWAS for 37 clinical traits from East Asians, Mendelian randomization analyses identified 906 potential causal relationships between metabolites and clinical traits, including 27 for type 2 diabetes and 38 for coronary artery disease. Integrating genetic regulation of the transcriptome and proteome revealed putative regulators of several metabolites. In summary, we depict a landscape of the genetic architecture of the serum metabolome among Han Chinese and provide insights into the role of serum metabolites in chronic diseases.
Collapse
Affiliation(s)
- Chunxiao Cheng
- The Second Affiliated Hospital, School of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China; The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Hangzhou 310058, Zhejiang, China
| | - Fengzhe Xu
- Zhejiang Key Laboratory of Multi-Omics in Infection and Immunity, Center for Infectious Disease Research, School of Medicine, Westlake University, Hangzhou 310024, China; Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China
| | - Xiong-Fei Pan
- Section of Epidemiology and Population Health & Department of Gynecology and Obstetrics, Ministry of Education Key Laboratory of Birth Defects and Related Diseases of Women and Children & National Medical Products Administration Key Laboratory for Technical Research on Drug Products In Vitro and In Vivo Correlation, West China Second University Hospital, Sichuan University, Chengdu 610041, China; Shuangliu Institute of Women's and Children's Health, Shuangliu Maternal and Child Health Hospital, Chengdu 610200, China; West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Cheng Wang
- Department of Clinical Nutrition, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510012, China
| | - Jiayao Fan
- The Second Affiliated Hospital, School of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China; The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Hangzhou 310058, Zhejiang, China
| | - Yunhaonan Yang
- Section of Epidemiology and Population Health & Department of Gynecology and Obstetrics, Ministry of Education Key Laboratory of Birth Defects and Related Diseases of Women and Children & National Medical Products Administration Key Laboratory for Technical Research on Drug Products In Vitro and In Vivo Correlation, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Yuanjiao Liu
- Department of Epidemiology & Biostatistics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Lingyun Sun
- The Second Affiliated Hospital, School of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China; The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Hangzhou 310058, Zhejiang, China
| | - Xiaojuan Liu
- Department of Laboratory Medicine, Ministry of Education Key Laboratory of Birth Defects and Related Diseases of Women and Children, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Yue Xu
- The Second Affiliated Hospital, School of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China; The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Hangzhou 310058, Zhejiang, China
| | - Yuan Zhou
- The Second Affiliated Hospital, School of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China; The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Hangzhou 310058, Zhejiang, China
| | - Congmei Xiao
- Zhejiang Key Laboratory of Multi-Omics in Infection and Immunity, Center for Infectious Disease Research, School of Medicine, Westlake University, Hangzhou 310024, China; Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China
| | - Wanglong Gou
- Zhejiang Key Laboratory of Multi-Omics in Infection and Immunity, Center for Infectious Disease Research, School of Medicine, Westlake University, Hangzhou 310024, China; Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China
| | - Zelei Miao
- Zhejiang Key Laboratory of Multi-Omics in Infection and Immunity, Center for Infectious Disease Research, School of Medicine, Westlake University, Hangzhou 310024, China; Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China
| | - Jiaying Yuan
- Department of Science and Education & Shuangliu Institute of Women's and Children's Health, Shuangliu Maternal and Child Health Hospital, Chengdu, Sichuan 610200, China
| | - Luqi Shen
- Zhejiang Key Laboratory of Multi-Omics in Infection and Immunity, Center for Infectious Disease Research, School of Medicine, Westlake University, Hangzhou 310024, China; Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China
| | - Yuanqing Fu
- Zhejiang Key Laboratory of Multi-Omics in Infection and Immunity, Center for Infectious Disease Research, School of Medicine, Westlake University, Hangzhou 310024, China; Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China
| | - Xiaohui Sun
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yimin Zhu
- Department of Epidemiology & Biostatistics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yuming Chen
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - An Pan
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Dan Zhou
- The Second Affiliated Hospital, School of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China; The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Hangzhou 310058, Zhejiang, China.
| | - Ju-Sheng Zheng
- Zhejiang Key Laboratory of Multi-Omics in Infection and Immunity, Center for Infectious Disease Research, School of Medicine, Westlake University, Hangzhou 310024, China; Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China; Research Center for Industries of the Future, School of Life Sciences, Westlake University, Hangzhou 310024, China; Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China.
| |
Collapse
|
7
|
Abd-Elkareem E, Ahmed-Farid OAE, Said NM. Protective Efficacy of Astaxanthin Against Acrylonitrile-Induced Toxicity: Hematological Analysis and Histopathological and Immunoexpression Study of TGF-β in the Heart, Kidney, and Liver of Albino Rats. Cell Biochem Biophys 2025:10.1007/s12013-025-01684-8. [PMID: 39928274 DOI: 10.1007/s12013-025-01684-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2025] [Indexed: 02/11/2025]
Abstract
Scientific research is currently moving towards studies of natural antioxidants that could reduce the deleterious effects resulting from the toxicity of materials used in industry in order to preserve the environment and public health. Astaxanthin "king of antioxidants". is known for its remarkable protection against numerous environmentally harmful substances, but not against acrylonitrile, which is utilized in the manufacturing of plastics, rubber, and synthetic fibers. The goal of this investigation is to assess how astaxanthin can recover the normal CBC and normal organ architecture after acrylonitrile toxicity. Fifty rats were divided equally into five groups: positive control (acrylonitrile), negative control (saline), vehicle (corn oil), antioxidant (astaxanthin), and protective (astaxanthin + acrylonitrile). After sacrificing all the rats, CBC was done. Tissues of the heart, liver, and kidney were used for pathological examination and to assess TGF-β1 by immunohistochemistry, Our results showed an improvement in most of hematological parameters in the protective group compared to the acrylonitrile group. There was a significant improvement in RBC count, PCV, HB, RDW, and platelets, accompanied by a slight increase in MCV. Conversely, significant decreases were observed in PDW, MPV, MCH, and MCHC. Additionally, our results showed a slight decrease in WBCs and neutrophils, along with a slight increase in eosinophils and lymphocytes, and a significant increase in monocytes. There was a significant decrease in TGF-β1 level in rats treated with astaxanthin. All the organs showed an excellent recovery for the normal architecture. Astaxanthin can ameliorate acrylonitrile toxicity by restoring the normal levels of hematological parameters and histological structure.
Collapse
Affiliation(s)
- Elham Abd-Elkareem
- Biochemistry Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | | | - Noha Mohamed Said
- Biochemistry Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt.
| |
Collapse
|
8
|
Wang J, Xie J, Mei J. Research Progress Regarding Psychrotrophic Pseudomonas in Aquatic Products: Psychrophilic Characteristics, Spoilage Mechanisms, Detection Methods, and Control Strategies. Foods 2025; 14:363. [PMID: 39941956 PMCID: PMC11817643 DOI: 10.3390/foods14030363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/13/2025] [Accepted: 01/16/2025] [Indexed: 02/16/2025] Open
Abstract
Aquatic products are an important part of the human diet, but they are easily contaminated by Pseudomonas spp., which leads to food deterioration and economic loss. In this paper, the main characteristics of psychrotrophic Pseudomonas in aquatic products are reviewed, including its growth adaptation mechanism and biofilm formation ability at low temperatures, and the key role of psychrotrophic Pseudomonas in aquatic product spoilage is emphasized. Studies have shown that psychrotrophic Pseudomonas can produce a variety of volatile compounds by decomposing proteins and amino acids, affecting the sensory quality and safety of aquatic products. A variety of control strategies to extend the shelf life of aquatic products have been explored, including physical, chemical, and biological methods, particularly biofilm-specific inhibition techniques such as inhibition of quorum sensing and the application of natural antimicrobials. Future research should prioritize the development of novel anti-biofilm products to address the growing problem of psychrotrophic Pseudomonas contamination in the aquatic product industry to ensure food safety and public health.
Collapse
Affiliation(s)
- Jingjing Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China;
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China;
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai 201306, China
- Key Laboratory of Aquatic Products High-Quality Utilization, Storage and Transportation (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai 201306, China
| | - Jun Mei
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China;
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai 201306, China
- Key Laboratory of Aquatic Products High-Quality Utilization, Storage and Transportation (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai 201306, China
| |
Collapse
|
9
|
Joubert MBV, Ingaramo PI, Collins P, D'Alessandro ME. Astaxanthin improves lipotoxicity, lipid peroxidation and oxidative stress in kidney of sucrose-rich diet-fed rats. J Nutr Biochem 2025; 135:109779. [PMID: 39374743 DOI: 10.1016/j.jnutbio.2024.109779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 10/09/2024]
Abstract
Metabolic Syndrome (MS) is a cluster of metabolic risk factors, characterized by abdominal obesity, dyslipidemia, hypertension, insulin resistance, among others. The purpose of the study was to evaluate the astaxanthin (AXT) effects extracted from freshwater crab (Dilocarcinus pagei) at the Paraná Basin on lipotoxicity, lipid peroxidation and oxidative stress in the kidney of rats fed with a sucrose-rich diet (SRD). We hypothesized that daily administration of AXT prevents kidney damage by reducing lipotoxicity, lipid peroxidation, and reactive oxygen species (ROS), and by improving antioxidant enzyme defenses and crosstalk between NrF2 and NF-ĸB transcription factors. Male Wistar rats were fed a reference diet (RD), RD+AXT, SRD and SRD+AXT (AXT daily oral dose: [10 mg/kg body weight]) for 90 days. Systolic and diastolic blood pressure, biochemical assays in serum and urine were evaluated. Renal cortex samples were taken for histological analysis, determination of triglyceride content, ROS, thiobarbituric acid reactive substances (TBARS), catalase (CAT), glutathione peroxidase (GPx) and glutathione reductase (GR) enzyme activities and glutathione content (GSH). 4-HNE, NrF2, and NF-ĸB p65 expression were analyzed by immunohistochemistry. We demonstrated that daily oral supplementation of AXT to animals fed a SRD reduced systolic and diastolic blood pressure, histological renal damage, lipid accumulation, ROS and lipid peroxidation, and increased CAT and GPx activities. NrF2 protein expression in renal cortex was increased, whilst NF-ĸB p65 was reduced. AXT extracted from freshwater crabs (Dilocarcinus pagei) may be promising nutritional strategy for the prevention of renal alterations present in this model.
Collapse
Affiliation(s)
- Michelle Berenice Vega Joubert
- Laboratorio de Estudio de Enfermedades Metabólicas relacionadas con la Nutrición, Departamento de Ciencias Biológicas, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
| | - Paola Inés Ingaramo
- Departamento de Fisiopatología Ambiental, Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Cs. Biológicas. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
| | - Pablo Collins
- Departamento de Acuicultura, Instituto Nacional de Limnología (INALI), Universidad Nacional del Litoral- Consejo Nacional de Investigaciones Cientificas y Técnicas (CONICET), Santa Fe, Argentina
| | - María Eugenia D'Alessandro
- Laboratorio de Estudio de Enfermedades Metabólicas relacionadas con la Nutrición, Departamento de Ciencias Biológicas, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina.
| |
Collapse
|
10
|
Jusril NA, Mohd KS, Abd Mutalib N, Mohd Badiazaman AA. Chemical composition and pharmacological aspects of Malaysian stingless bee propolis: An up‑to‑date systematic review. Biomed Rep 2025; 22:9. [PMID: 39559820 PMCID: PMC11572029 DOI: 10.3892/br.2024.1887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/28/2024] [Indexed: 11/20/2024] Open
Abstract
Propolis is a sticky substance produced by stingless bees for construction and defence of their hive. It has notable anti-inflammatory, antioxidant, antibacterial, antifungal, anti-hyperglycemic, and wound healing effects. The present review summarised and examined the phytochemical properties, mode of action and current research prospects of Malaysian propolis. A database search using Google Scholar, Web of Science and ScienceDirect generated 780 references; 30 relevant articles were included in the present review, of which 23 were in vitro studies and 7 were in vivo or animal studies. Propolis demonstrated antioxidant, antibacterial, antifungal, anti-inflammatory and anti-hyperglycemic properties, indicating potential as a wound healing agent. Despite favourable findings, due to the scarcity of studies in the literature, more in-depth research and clinical validation on the synergistic effects, efficacy and optimum dosage of propolis are needed.
Collapse
Affiliation(s)
- Nor Atiqah Jusril
- School of Agriculture Science and Biotechnology, Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, Besut Campus, 22200 Besut, Terengganu Darul Iman, Malaysia
| | - Khamsah Suryati Mohd
- School of Agriculture Science and Biotechnology, Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, Besut Campus, 22200 Besut, Terengganu Darul Iman, Malaysia
| | - Nurliana Abd Mutalib
- Atta-ur-Rahman Institute for Natural Product Discovery (AuRIns), Level 9, FF3 Puncak Alam Campus, Universiti Teknologi MARA, 42300 Puncak Alam, Selangor Darul Ehsan, Malaysia
| | | |
Collapse
|
11
|
Chan L, Da‐Long C, Tseng Y, Liang C. Halobacteria Formula Improvement of Skin Care-A Randomized, Double-Blind, Placebo-Controlled Clinical Study. J Cosmet Dermatol 2025; 24:e16648. [PMID: 39485052 PMCID: PMC11743324 DOI: 10.1111/jocd.16648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/25/2024] [Indexed: 11/03/2024]
Abstract
BACKGROUND Halobacteria trueperi, an extremophilic microorganism thriving in high-salt environments, produces extracellular polysaccharides with potential anti-inflammatory and anti-aging properties. However, its clinical efficacy in skin improvement remains unclear. This study focuses on H. trueperi TCI66207, isolated from the Pacific Ocean at a depth of 662 m near Hualien, and its potential to enhance skin parameters, aiming to develop a novel functional formulation for pharmaceutical and cosmetic use. AIMS This sudy aims to evaluate the clinical efficacy of H. trueperi TCI66207 on various skin parameters and its potential for developing new functional cosmetic formulations. PATIENTS/METHODS A total of 40 subjects were recruited and randomly divided into two groups: the test group applied a serum containing H. trueperi TCI66207, while the placebo group used a basic serum. Subjects were instructed to apply the serum twice daily for 4 weeks. Skin parameters, including moisture, brightness, elasticity, pigmentation (spots and UV spots), texture, wrinkles, pores, and collagen density, were assessed before and after the 4-week application period. RESULTS After 4 weeks of using the H. trueperi TCI66207 serum, significant improvements were observed in all measured skin parameters compared to baseline, with notable enhancements in moisture, brightness, elasticity, texture, and collagen density, along with reductions in wrinkles, spots, and pore size. CONCLUSIONS Halobacteria trueperi TCI66207 serum demonstrates a clear ability to improve skin conditions and delay signs of aging, making it a promising candidate for the development of new cosmetic formulations with potent anti-aging and skin-rejuvenating properties.
Collapse
Affiliation(s)
- Leong‐Perng Chan
- Department of Otorhinolaryngology‐Head and Neck Surgery, Kaohsiung Municipal ta‐Tung HospitalKaohsiung Medical UniversityKaohsiungTaiwan
- Department of Otorhinolaryngology‐Head and Neck Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University HospitalKaohsiung Medical UniversityKaohsiungTaiwan
| | - Cheng Da‐Long
- Department of Computer and CommunicationShu‐Te UniversityKaohsiungTaiwan
| | - Ya‐Ping Tseng
- Institute of Basic Medical SciencesNational Cheng Kung UniversityTainanTaiwan
| | - Chia‐Hua Liang
- Department of Cosmetic Science and Institute of Cosmetic ScienceChia Nan University of Pharmacy and ScienceTainanTaiwan
| |
Collapse
|
12
|
Gonzalez DE, Dickerson BL, Johnson SE, Woodruff KE, Leonard M, Yoo C, Ko J, Xing D, Martinez V, Kendra J, Estes L, Sowinski RJ, Rasmussen CJ, Martin SE, Kreider RB. Impact of astaxanthin supplementation on markers of cardiometabolic health and tactical performance among firefighters. J Int Soc Sports Nutr 2024; 21:2427751. [PMID: 39568140 PMCID: PMC11583326 DOI: 10.1080/15502783.2024.2427751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 11/05/2024] [Indexed: 11/22/2024] Open
Abstract
RATIONALE Firefighters are at risk for cardiovascular disease due to occupational-related inflammation, oxidative stress, and lifestyle practices. Astaxanthin (AX) possesses anti-inflammatory/antioxidant and purported ergogenic properties. This study examined the impact of supplementing the diet with 12 mg/d AX for four weeks on markers of inflammation, oxidative stress, cardiometabolic health, exercise capacity, and occupation-related performance in career firefighters. METHODS In a randomized, double-blinded, placebo-controlled, crossover fashion, 15 male career firefighters (34.5 ± 7.4 years; 177.7 ± 7.0 cm; 95.6 ± 12.0 kg; 30.1 ± 2.9 kg/m2; 11.03 ± 6.85 years of service) ingested 12 mg/d of AX (AstaReal®, AstaReal AB, Nacka, SWE) or placebo (PLA) for four weeks while following a standardized resistance training program. After each treatment, testing sessions were completed to assess inflammatory markers, oxidative stress markers, cardiopulmonary exercise capacity, and performance to a fire ground test (FGT) consisting of nine fire suppressive activities. Data were analyzed using general linear model (GLM) analysis with repeated measures. Clinical significance was assessed via mean changes from baseline with 95% confidence intervals. RESULTS Analysis of mean percent changes from baseline revealed that AX supplementation lessened the inflammatory response to to performing an incremental maximal exercise test and attenuated increases in interleukin-1β, cortisol, and uric acid in response to performing fire suppressive activities compared to when they ingested PLA. However, most of these effects were within groups rather than between groups. Additionally, there was evidence that AX ingestion increased the ventilatory anaerobic threshold. Four weeks of AX supplementation did not significantly affect fasting markers of oxidative stress, blood lipids, performance during the FGT, general clinical chemistry panels, or self-reported side effects. CONCLUSIONS Results provide some evidence that AX supplementation may help mediate occupation-related inflammation in response to high-intensity, short-duration exercise in firefighters. More research is warranted to determine if long-term supplementation can improve cardiometabolic risk in this population. CLINICAL TRIAL REGISTRATION ISRCTN10901752.
Collapse
Affiliation(s)
- Drew E. Gonzalez
- Texas A&M University, Exercise and Sport Nutrition Lab, Department of Kinesiology and Sport Management, College Station, TX, USA
| | - Broderick L. Dickerson
- Texas A&M University, Exercise and Sport Nutrition Lab, Department of Kinesiology and Sport Management, College Station, TX, USA
| | - Sarah E. Johnson
- Texas A&M University, Exercise and Sport Nutrition Lab, Department of Kinesiology and Sport Management, College Station, TX, USA
| | - Kathryn E. Woodruff
- Texas A&M University, Exercise and Sport Nutrition Lab, Department of Kinesiology and Sport Management, College Station, TX, USA
| | - Megan Leonard
- Texas A&M University, Exercise and Sport Nutrition Lab, Department of Kinesiology and Sport Management, College Station, TX, USA
| | - Choongsung Yoo
- Texas A&M University, Exercise and Sport Nutrition Lab, Department of Kinesiology and Sport Management, College Station, TX, USA
| | - Joungbo Ko
- Texas A&M University, Exercise and Sport Nutrition Lab, Department of Kinesiology and Sport Management, College Station, TX, USA
| | - Dante Xing
- Texas A&M University, Exercise and Sport Nutrition Lab, Department of Kinesiology and Sport Management, College Station, TX, USA
| | - Victoria Martinez
- Texas A&M University, Exercise and Sport Nutrition Lab, Department of Kinesiology and Sport Management, College Station, TX, USA
| | - Jacob Kendra
- Texas A&M University, Exercise and Sport Nutrition Lab, Department of Kinesiology and Sport Management, College Station, TX, USA
| | - Landry Estes
- Texas A&M University, Exercise and Sport Nutrition Lab, Department of Kinesiology and Sport Management, College Station, TX, USA
| | - Ryan J. Sowinski
- Texas A&M University, Exercise and Sport Nutrition Lab, Department of Kinesiology and Sport Management, College Station, TX, USA
| | - Chris J. Rasmussen
- Texas A&M University, Exercise and Sport Nutrition Lab, Department of Kinesiology and Sport Management, College Station, TX, USA
| | - Steven E. Martin
- Texas A&M University, Sydney and JL Huffines Institute for Sports Medicine and Human Performance, Department of Kinesiology and Sport Management, College Station, TX, USA
| | - Richard B. Kreider
- Texas A&M University, Exercise and Sport Nutrition Lab, Department of Kinesiology and Sport Management, College Station, TX, USA
| |
Collapse
|
13
|
Sarker M, Chowdhury N, Bristy AT, Emran T, Karim R, Ahmed R, Shaki MM, Sharkar SM, Sayedur Rahman GM, Reza HM. Astaxanthin protects fludrocortisone acetate-induced cardiac injury by attenuating oxidative stress, fibrosis, and inflammation through TGF-β/Smad signaling pathway. Biomed Pharmacother 2024; 181:117703. [PMID: 39586138 DOI: 10.1016/j.biopha.2024.117703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/05/2024] [Accepted: 11/18/2024] [Indexed: 11/27/2024] Open
Abstract
Hypertensive rats serve as a good experimental model for studying the pathophysiology of cardiac hypertrophy and remodeling leading to heart failure. In this study, we aimed to analyze the effect of astaxanthin and possible mechanisms involved in alleviating oxidative stress, fibrosis and inflammation that triggers cardiac remodeling using male uninephrectomized Long Evans rats. Cardiac hypertrophy and hypertension were induced in rats termed as 'FCA-Salt rats' by an oral administration of fludrocortisone acetate (FCA) and 1 % NaCl in drinking water. Biochemical assays showed that FCA-Salt rats exhibited an upregulation of oxidative stress markers AOPP, MDA and downregulation of NO in heart and kidney, which was reversed by astaxanthin treatment. Astaxanthin further regularized the reduced activities of antioxidant enzymes GSH, SOD and CAT in these tissues. ELISA revealed that astaxanthin significantly reduced the inflammatory response by reducing the elevated levels of IL-1β, IL-17a, and TNF-α and pro-fibrotic marker TGF-β1 in plasma. Real-time qPCR depicted an upregulation of TNF-α, IL-1β, IL-6, IL-17A as well as signaling molecules TGF-β1, Smad2 and Smad3 in heart of FCA-Salt rats, which was reduced significantly by astaxanthin. Sirius red staining showed that the cardiac and renal fibrosis was significantly improved by astaxanthin treatment. Together, our results suggest that astaxanthin treatment is beneficial in protecting cardio-renal damage in hypertension through TGF-β/Smad signaling pathway, hence, this molecule may be considered for the maintenance of cardio-renal health.
Collapse
Affiliation(s)
- Manoneeta Sarker
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh
| | - Nowreen Chowdhury
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh
| | - Anika Tabassum Bristy
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh
| | - Tushar Emran
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh
| | - Reatul Karim
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh
| | - Rezwana Ahmed
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh
| | - Md Mostaid Shaki
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh
| | - Shazid Md Sharkar
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh
| | - G M Sayedur Rahman
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh
| | - Hasan Mahmud Reza
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh.
| |
Collapse
|
14
|
Hong M, Nie Z, Chen Z, Bao B. Astaxanthin attenuates diabetic kidney injury through upregulation of autophagy in podocytes and pathological crosstalk with mesangial cells. Ren Fail 2024; 46:2378999. [PMID: 39011603 PMCID: PMC467097 DOI: 10.1080/0886022x.2024.2378999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/07/2024] [Indexed: 07/17/2024] Open
Abstract
Objectives: Astaxanthin (ATX) is a strong antioxidant drug. This study aimed to investigate the effects of ATX on podocytes in diabetic nephropathy and the underlying renal protective mechanism of ATX, which leads to pathological crosstalk with mesangial cells.Methods: In this study, diabetic rats treated with ATX exhibited reduced 24-h urinary protein excretion and decreased blood glucose and lipid levels compared to vehicle-treated rats. Glomerular mesangial matrix expansion and renal tubular epithelial cell injury were also attenuated in ATX-treated diabetic rats compared to control rats.Results: ATX treatment markedly reduced the α-SMA and collagen IV levels in the kidneys of diabetic rats. Additionally, ATX downregulated autophagy levels. In vitro, compared with normal glucose, high glucose inhibited LC3-II expression and increased p62 expression, whereas ATX treatment reversed these changes. ATX treatment also inhibited α-SMA and collagen IV expression in cultured podocytes. Secreted factors (vascular endothelial growth factor B and transforming growth factor-β) generated by high glucose-induced podocytes downregulated autophagy in human mesangial cells (HMCs); however, this downregulation was upregulated when podocytes were treated with ATX.Conclusions: The current study revealed that ATX attenuates diabetes-induced kidney injury likely through the upregulation of autophagic activity in podocytes and its antifibrotic effects. Crosstalk between podocytes and HMCs can cause renal injury in diabetes, but ATX treatment reversed this phenomenon.
Collapse
Affiliation(s)
- Mengqi Hong
- Ningbo Ninth Hospital, Ningbo City, Zhejiang, China
- Division of Nephrology, Ningbo Urology and Nephrology Hospital, Ningbo City, Zhejiang, China
| | - Zhenyu Nie
- Division of Nephrology, Ningbo Urology and Nephrology Hospital, Ningbo City, Zhejiang, China
| | - Zhengyue Chen
- Division of Nephrology, Ningbo Urology and Nephrology Hospital, Ningbo City, Zhejiang, China
| | - BeiYan Bao
- Division of Nephrology, Ningbo Urology and Nephrology Hospital, Ningbo City, Zhejiang, China
| |
Collapse
|
15
|
Giercuszkiewicz-Hecold B, Kulka M, Czopowicz M, Wilczak J, Szarska E, Strzelec K, Grzeczka A, Graczyk S, Hryniszyn A, Mularczyk M, Marycz K, Cywińska A. The effect of long term astaxanthin supplementation on the antioxidant status of racing Arabian horses - preliminary study. Sci Rep 2024; 14:27991. [PMID: 39543175 PMCID: PMC11564757 DOI: 10.1038/s41598-024-77732-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/24/2024] [Indexed: 11/17/2024] Open
Abstract
Astaxanthin due to its strong antioxidant activity is believed to reduce oxidative stress and therefore is considered as feed additive in pathological conditions and also for the athletes. It is promoted by several equine web portals, however, data supporting that concept in horses is limited. Thus, the aim of this study was to evaluate the effect of astaxanthin supplementation on the parameters of oxidative status in 3 years old, racing Arabian horses during long term observation and the changes related to a single training session of high intensity. Six horses were supplemented with astaxanthin at a dose of 0.52-0.58 mg/kg BW and 7 received no supplementation. Astaxanthin supplementation resulted in the increase in total antioxidant status by 31.5%, accompanied by decreases in the amount of total thiobarbituric acid-reactive substances -TBARS and glutathione reductases - GR values by 34.5% and 45.4%, respectively, after 1 month and this effect persisted until the end of the observation. After individual training session the activities of glutathione peroxidases and GR were lower by 69% and 46%, respectively, and TBARS lower by 38% in supplemented horses. These results directly confirmed the beneficial effects of astaxanthin supplementation on the antioxidant status of race horses. Astaxanthin partially counterbalance the training-related oxidative stress, save the horse natural antioxidant defense, and shift the redox status towards a more reducing environment. At the same time, exercise-induced reactive oxygen species production at certain level was maintained and so that contributed to training progress.
Collapse
Affiliation(s)
| | - Marek Kulka
- Department of Pathology and Veterinary Diagnostics, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159c, 02-776, Warsaw, Poland
| | - Michał Czopowicz
- Division of Veterinary Epidemiology and Economics, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159c, 02-776, Warsaw, Poland
| | - Jacek Wilczak
- Department of Physiology, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159c, 02-776, Warsaw, Poland
| | - Ewa Szarska
- Military Institute of Hygiene and Epidemiology, Kozielska 4, 01-001, Warsaw, Poland
| | - Katarzyna Strzelec
- Department of Horse Breeding and Use, University of Life Sciences in Lublin, Akademicka 13, 20-950, Lublin, Poland
| | - Arkadiusz Grzeczka
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Lwowska 1, 87-100, Torun, Poland
| | - Szymon Graczyk
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Lwowska 1, 87-100, Torun, Poland
| | - Adrian Hryniszyn
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Lwowska 1, 87-100, Torun, Poland
| | - Malwina Mularczyk
- International Institute of Translational Medicine, Jesionowa 11, 55-114, Malin, Wisznia Mała, Poland
| | - Krzysztof Marycz
- International Institute of Translational Medicine, Jesionowa 11, 55-114, Malin, Wisznia Mała, Poland
- Department of Veterinary Medicine and Epidemiology, Veterinary Institute for Regenerative Cures, School of Veterinary Medicine, University of California, Davis, CA, 95516, USA
| | - Anna Cywińska
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Lwowska 1, 87-100, Torun, Poland.
| |
Collapse
|
16
|
Dong M, Zhang Z, Wang HP, Huang X, Wang X, Qin L. Discrimination and evaluation of commercial salmons by low-molecule-weight compounds: Oligopeptides and phosphatides. Food Chem 2024; 455:139777. [PMID: 38850970 DOI: 10.1016/j.foodchem.2024.139777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/03/2024] [Accepted: 05/19/2024] [Indexed: 06/10/2024]
Abstract
In this study, the overall sensory characteristics and low-molecule-weight compounds were analyzed to achieve the discrimination of different commercial salmons and investigate the salmon's sensory and nutritional quality. The results showed that above the overall sensory properties, O. mykiss, S. salar, and O. kisutch were the most satisfied salmons by the panel with the desirable texture and flavor, which displayed a large potential for growth in the consumption market. The alcohols and sulfur compounds were key volatile compounds contributing to typical aroma of O. masou and O. gorbuscha, response higher than others by 147% to 167%. The oligopeptides and phospholipids in salmon could be used as biomarkers for discrimination of these salmon. Oligopeptides were also closely related to the taste quality of salmon. Seventeen oligopeptides showed potential umami activity based on molecular docking results, especially Arg-Val and Ser-Asn, which were the key tastants contributing to the umami of salmon.
Collapse
Affiliation(s)
- Meng Dong
- School of Food Science and Technology, State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Zichun Zhang
- School of Food Science and Technology, State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Hao-Peng Wang
- School of Food Science and Technology, State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Xuhui Huang
- School of Food Science and Technology, State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Xusong Wang
- School of Food Science and Technology, State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Lei Qin
- School of Food Science and Technology, State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
17
|
Ayub Mohammed Salih S, Jabarpour M, Sedighi Gilani MA, Sajadi H, Saedi Marghmaleki M, Shabani Nashtaei M, Salem M, Amidi F. The effect of astaxanthin after varicocele surgery on antioxidant status and semen quality in infertile men: A triple-blind randomized clinical trial. Food Sci Nutr 2024; 12:7977-7988. [PMID: 39479675 PMCID: PMC11521721 DOI: 10.1002/fsn3.4365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 11/02/2024] Open
Abstract
Varicocele (VC) is widely recognized as a prevalent etiological factor contributing to male infertility. It has been established that the generation of reactive oxygen species (ROS) plays a significant role in the progression and development of VC. Antioxidants may regulate ROS levels in these patients. Astaxanthin (ASX) is a carotenoid compound with notable antioxidant and anti-inflammatory characteristics. The current study postulated that the administration of ASX following varicocelectomy (VCT) could potentially enhance antioxidant status and semen quality in these patients. A total of 40 infertile males with clinical VC and abnormal semen analyses were randomly assigned to take part in the current trial. For 3 months following surgery, the intervention group took ASX (6 mg/day) while the control group received a placebo. After intervention, semen parameters, antioxidant status, and pro-inflammatory cytokines were compared between the two groups. Regarding semen parameters, antioxidant treatment led to a significant improvement in total and progressive motility in the treatment group (p < 0.05). Additionally, ASX led to a considerable increase in the expression levels of NRF2, Keap1, SOD2, SOD3, and BCL2, though the enhancement in the expression level of SOD3 was not statistically significant (p > .05). However, ASX significantly decreased the BAX expression level (p < .05). Even though the level of total antioxidant capacity (TAC) of seminal fluid (SF) increased significantly in the treatment group (p < .05), the level of total oxidative stress (TOS) in SF did not differ substantially between treatment and control groups (p > .05). Based on inflammatory factors in SF, ASX led to a considerable reduction in levels of TNF-α, IL-1β, and IL-6 (p < .05). Our findings demonstrated that ASX treatment provides an important contribution to VCT outcomes by modulating antioxidant status and pro-inflammatory cytokines. Our results indicated that ASX may be beneficial as an adjuvant therapy for infertile men following VCT.
Collapse
Affiliation(s)
| | - Masoome Jabarpour
- Department of Anatomy, School of MedicineTehran University of Medical SciencesTehranIran
- Department of Infertility, Shariati HospitalTehran University of Medical SciencesTehranIran
| | - Mohammad Ali Sedighi Gilani
- Department of Infertility, Shariati HospitalTehran University of Medical SciencesTehranIran
- Department of Andrology, Reproductive Biomedicine Research CenterRoyan Institute for Reproductive Biomedicine, ACECRTehranIran
| | - Hesamoddin Sajadi
- Department of Andrology, Reproductive Biomedicine Research CenterRoyan Institute for Reproductive Biomedicine, ACECRTehranIran
| | | | - Maryam Shabani Nashtaei
- Department of Anatomy, School of MedicineTehran University of Medical SciencesTehranIran
- Department of Infertility, Shariati HospitalTehran University of Medical SciencesTehranIran
| | - Maryam Salem
- Department of Anatomy, School of MedicineTehran University of Medical SciencesTehranIran
| | - Fardin Amidi
- Department of Anatomy, School of MedicineTehran University of Medical SciencesTehranIran
- Department of Infertility, Shariati HospitalTehran University of Medical SciencesTehranIran
| |
Collapse
|
18
|
Saddiqa A, Faisal Z, Akram N, Afzaal M, Saeed F, Ahmed A, Almudaihim A, Touqeer M, Ahmed F, Asghar A, Saeed M, Hailu GG. Algal pigments: Therapeutic potential and food applications. Food Sci Nutr 2024; 12:6956-6969. [PMID: 39479711 PMCID: PMC11521690 DOI: 10.1002/fsn3.4370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/11/2024] [Accepted: 07/16/2024] [Indexed: 11/02/2024] Open
Abstract
Algae-derived natural compounds have shown significant potential in treating various health conditions, including cancer, obesity, diabetes, and inflammation. Recent advancements in nanotechnology have enabled the development of precise drug delivery systems and diagnostic tools utilizing these compounds. Central to this innovation are the vibrant pigments found in algae chlorophylls, carotenoids, and phycobiliproteins which not only impart color but also possess notable nutritional, medicinal, and antioxidant properties. These pigments are extensively used in supplements and the food industry for their health benefits. Emerging research highlights the role of algal pigments in promoting gut health by modulating gut microbiota. This review comprehensively examines the therapeutic benefits of algae, recent progress in algal-derived nanoparticle technology, and the synergistic effects of algae and their pigments on gut health. Novel insights and recent data underscore the transformative potential of algal compounds in modern medicine and nutrition.
Collapse
Affiliation(s)
- Ayesha Saddiqa
- Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Zargham Faisal
- Department of Human Nutrition and DieteticsIqra UniversityKarachiPakistan
| | - Noor Akram
- Food Safety & Biotechnology Lab, Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Muhammad Afzaal
- Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Farhan Saeed
- Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Aftab Ahmed
- Department of Nutritional SciencesGovernment College University FaisalabadFaisalabadPakistan
| | - Abeer Almudaihim
- Department of Clinical NutritionKing Saud Bin Abdulaziz University for Health SciencesRiyadhSaudi Arabia
| | - Muhammad Touqeer
- Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Faiyaz Ahmed
- Department of Basic Health Sciences, College of Applied Medical SciencesQassim UniversityBuraydahSaudi Arabia
| | - Aasma Asghar
- Department of Nutritional SciencesGovernment College University FaisalabadFaisalabadPakistan
| | - Mubarra Saeed
- Department of Food and NutritionGovernment College University FaisalabadFaisalabadPakistan
| | | |
Collapse
|
19
|
Jiang J, Xiao F, Yang L, Zeng Y, Chen J, Zhu H, Liu L. Protective effect of astaxanthin on chronic prostatitis/chronic pelvic pain syndrome in rat through modulating NF-κB signaling pathway. Transl Androl Urol 2024; 13:1971-1983. [PMID: 39434738 PMCID: PMC11491227 DOI: 10.21037/tau-24-190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/09/2024] [Indexed: 10/23/2024] Open
Abstract
Background Chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) is a common male urological disease characterized by chronic pelvic pain and various discomforts. Astaxanthin (AST) has multiple functions, including anti-inflammatory property, but it is unclear whether AST plays a key role in CP/CPPS and how it works. This study aimed to investigate the protective effect of AST on CP/CPPS in rats and the underlying mechanism. Methods A CP/CPPS rat model was induced by intraprostatic injection of carrageenan and the blood specimens and prostates were harvested for further research after oral administration of AST for 4 weeks. Results Tactile allodynia test showed that AST ameliorated chronic pelvic pain in a dose-depended manner. In addition, histological evaluation indicated that AST alleviated CP/CPPS rat prostate histological inflammation. Meanwhile, AST suppressed the expression of proinflammatory cytokines, including interleukin-1β (IL-1β), IL-6, IL-8, and tumor necrosis factor-α (TNF-α). Besides, AST inhibited the activities of prostaglandin E2 (PGE2) and cyclooxygenase 2 (COX2). Furthermore, AST decreased the activation of the nuclear factor-κB (NF-κB) signaling pathway. Conclusions Our study has shown that AST exerts an anti-inflammatory and protective effect against CP/CPPS and the function is mediated at least through the suppression of NF-κB signaling pathway. These results provide evidence of AST as the potential agents for the treatment of CP/CPPS.
Collapse
Affiliation(s)
- Jiahao Jiang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fei Xiao
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lanxin Yang
- School of Pharmacy, Wuhan University, Wuhan, China
| | - Yan Zeng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jing Chen
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hengcheng Zhu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lingqi Liu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
20
|
Flieger J, Forma A, Flieger W, Flieger M, Gawlik PJ, Dzierżyński E, Maciejewski R, Teresiński G, Baj J. Carotenoid Supplementation for Alleviating the Symptoms of Alzheimer's Disease. Int J Mol Sci 2024; 25:8982. [PMID: 39201668 PMCID: PMC11354426 DOI: 10.3390/ijms25168982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/12/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
Alzheimer's disease (AD) is characterized by, among other things, dementia and a decline in cognitive performance. In AD, dementia has neurodegenerative features and starts with mild cognitive impairment (MCI). Research indicates that apoptosis and neuronal loss occur in AD, in which oxidative stress plays an important role. Therefore, reducing oxidative stress with antioxidants is a natural strategy to prevent and slow down the progression of AD. Carotenoids are natural pigments commonly found in fruits and vegetables. They include lipophilic carotenes, such as lycopene, α- and β-carotenes, and more polar xanthophylls, for example, lutein, zeaxanthin, canthaxanthin, and β-cryptoxanthin. Carotenoids can cross the blood-brain barrier (BBB) and scavenge free radicals, especially singlet oxygen, which helps prevent the peroxidation of lipids abundant in the brain. As a result, carotenoids have neuroprotective potential. Numerous in vivo and in vitro studies, as well as randomized controlled trials, have mostly confirmed that carotenoids can help prevent neurodegeneration and alleviate cognitive impairment in AD. While carotenoids have not been officially approved as an AD therapy, they are indicated in the diet recommended for AD, including the consumption of products rich in carotenoids. This review summarizes the latest research findings supporting the potential use of carotenoids in preventing and alleviating AD symptoms. A literature review suggests that a diet rich in carotenoids should be promoted to avoid cognitive decline in AD. One of the goals of the food industry should be to encourage the enrichment of food products with functional substances, such as carotenoids, which may reduce the risk of neurodegenerative diseases.
Collapse
Affiliation(s)
- Jolanta Flieger
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| | - Alicja Forma
- Department of Forensic Medicine, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland; (A.F.); (M.F.); (G.T.)
| | - Wojciech Flieger
- Department of Plastic Surgery, St. John’s Cancer Center, ul. Jaczewskiego 7, 20-090 Lublin, Poland; (W.F.)
| | - Michał Flieger
- Department of Forensic Medicine, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland; (A.F.); (M.F.); (G.T.)
| | - Piotr J. Gawlik
- Department of Plastic Surgery, St. John’s Cancer Center, ul. Jaczewskiego 7, 20-090 Lublin, Poland; (W.F.)
| | - Eliasz Dzierżyński
- Department of Plastic Surgery, St. John’s Cancer Center, ul. Jaczewskiego 7, 20-090 Lublin, Poland; (W.F.)
| | - Ryszard Maciejewski
- Institute of Health Sciences, John Paul II Catholic University of Lublin, Konstantynów 1 H, 20-708 Lublin, Poland;
| | - Grzegorz Teresiński
- Department of Forensic Medicine, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland; (A.F.); (M.F.); (G.T.)
| | - Jacek Baj
- Department of Correct, Clinical and Imaging Anatomy, Medical University of Lublin, ul. Jaczewskiego 4, 20-090 Lublin, Poland;
| |
Collapse
|
21
|
Pružinská K, Chrastina M, Khademnematolahi S, Vyletelová V, Gajdošová L, Pastvová L, Dráfi F, Poništ S, Pašková Ľ, Kucharská J, Sumbalová Z, Muchová J, Martiniaková S, Bauerová K. Astaxanthin, Compared to Other Carotenoids, Increases the Efficacy of Methotrexate in Rat Adjuvant Arthritis. Int J Mol Sci 2024; 25:8710. [PMID: 39201397 PMCID: PMC11354740 DOI: 10.3390/ijms25168710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 09/02/2024] Open
Abstract
This in vivo study performed in rat adjuvant arthritis aims to advance the understanding of astaxanthin's therapeutic properties for the possible treatment of rheumatoid arthritis (RA) in monotherapy and along with the standard RA treatment, methotrexate (MTX), in combination therapy. The main goal was to elucidate astaxanthin's full therapeutic potential, evaluate its dose dependency, and compare its effects in monotherapy with other carotenoids such as β-carotene and β-cryptoxanthin (KXAN). Moreover, potential differences in therapeutic activity caused by using different sources of astaxanthin, synthetic (ASYN) versus isolated from Blakeslea trispora (ASTAP), were evaluated using one-way ANOVA (Tukey-Kramer post hoc test). KXAN was the most effective in reducing plasma MMP-9 levels in monotherapy, significantly better than MTX, and in reducing hind paw swelling. The differences in the action of ASTAP and ASYN have been observed across various biometric, anti-inflammatory, and antioxidative parameters. In combined therapy with MTX, the ASYN + MTX combination proved to be better. These findings, especially the significant anti-arthritic effect of KXAN and ASYN + MTX, could be the basis for further preclinical studies.
Collapse
Affiliation(s)
- Katarína Pružinská
- Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Malá Hora 10701/4A, 036 01 Martin, Slovakia;
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine SAS, 841 04 Bratislava, Slovakia; (M.C.); (S.K.); (F.D.); (S.P.)
| | - Martin Chrastina
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine SAS, 841 04 Bratislava, Slovakia; (M.C.); (S.K.); (F.D.); (S.P.)
| | - Sasan Khademnematolahi
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine SAS, 841 04 Bratislava, Slovakia; (M.C.); (S.K.); (F.D.); (S.P.)
- Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia
| | - Veronika Vyletelová
- Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, 832 32 Bratislava, Slovakia; (V.V.); (Ľ.P.)
| | - Lívia Gajdošová
- Institute of Medical Chemistry, Biochemistry and Clinical Biochemistry, Faculty of Medicine, Comenius University, Sasinkova 2, 813 72 Bratislava, Slovakia; (L.G.); (L.P.); (Z.S.); (J.M.)
| | - Lucia Pastvová
- Institute of Medical Chemistry, Biochemistry and Clinical Biochemistry, Faculty of Medicine, Comenius University, Sasinkova 2, 813 72 Bratislava, Slovakia; (L.G.); (L.P.); (Z.S.); (J.M.)
| | - František Dráfi
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine SAS, 841 04 Bratislava, Slovakia; (M.C.); (S.K.); (F.D.); (S.P.)
| | - Silvester Poništ
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine SAS, 841 04 Bratislava, Slovakia; (M.C.); (S.K.); (F.D.); (S.P.)
| | - Ľudmila Pašková
- Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, 832 32 Bratislava, Slovakia; (V.V.); (Ľ.P.)
| | - Jarmila Kucharská
- Pharmacobiochemical Laboratory of Third Department of Internal Medicine, Faculty of Medicine, Comenius University in Bratislava, Špitálska 24, 813 72 Bratislava, Slovakia;
| | - Zuzana Sumbalová
- Institute of Medical Chemistry, Biochemistry and Clinical Biochemistry, Faculty of Medicine, Comenius University, Sasinkova 2, 813 72 Bratislava, Slovakia; (L.G.); (L.P.); (Z.S.); (J.M.)
| | - Jana Muchová
- Institute of Medical Chemistry, Biochemistry and Clinical Biochemistry, Faculty of Medicine, Comenius University, Sasinkova 2, 813 72 Bratislava, Slovakia; (L.G.); (L.P.); (Z.S.); (J.M.)
| | - Silvia Martiniaková
- Department of Food Technology, Institute of Food Science and Nutrition, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia;
| | - Katarína Bauerová
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine SAS, 841 04 Bratislava, Slovakia; (M.C.); (S.K.); (F.D.); (S.P.)
| |
Collapse
|
22
|
Lee S, Son SK, Cho E, Yoo S, Jang EA, Kwak SH. Protective Role of Astaxanthin in Regulating Lipopolysaccharide-Induced Inflammation and Apoptosis in Human Neutrophils. Curr Issues Mol Biol 2024; 46:8567-8575. [PMID: 39194721 DOI: 10.3390/cimb46080504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/22/2024] [Accepted: 07/30/2024] [Indexed: 08/29/2024] Open
Abstract
Astaxanthin, a keto-carotenoid, is known to have potent antioxidant properties. This study aims to investigate the anti-inflammatory effect of astaxanthin and its mechanism in human neutrophils. The effects of astaxanthin on lipopolysaccharide (LPS)-stimulated human neutrophils were investigated in vitro. Neutrophils were isolated from healthy volunteers and stimulated with LPS in the presence and absence of astaxanthin. We assessed cytokine production, signaling pathway activation via mitogen-activated protein kinases (MAPKs) and nuclear factor kappa B (NF-κB), and apoptosis. Astaxanthin's impact was evaluated at different concentrations, and both pretreatment and cotreatment protocols were tested. The results demonstrated that astaxanthin significantly reduced the production of pro-inflammatory cytokines TNF-α and IL-1β in LPS-stimulated neutrophils. It effectively inhibited the phosphorylation of ERK1/2 MAPK, without notably affecting p38 MAPK or NF-κB pathways. Furthermore, astaxanthin promoted apoptosis in neutrophils, counteracting the apoptosis-delaying effects of LPS. These effects were more pronounced with pretreatment. In conclusion, astaxanthin has protective effects on inflammatory responses in neutrophils by reducing cytokine production and enhancing apoptosis while selectively modulating intracellular signaling pathways. Astaxanthin demonstrates significant potential as a therapeutic agent in the management of severe inflammatory conditions.
Collapse
Affiliation(s)
- Seongheon Lee
- Department of Anesthesiology and Pain Medicine, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Sung Kuk Son
- Department of Anesthesiology and Pain Medicine, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Eunye Cho
- Department of Anesthesiology and Pain Medicine, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Sungah Yoo
- Department of Anesthesiology and Pain Medicine, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Eun-A Jang
- Department of Anesthesiology and Pain Medicine, Chonnam National University Hospital, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Sang Hyun Kwak
- Department of Anesthesiology and Pain Medicine, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| |
Collapse
|
23
|
Laderian A, Ghasemi M, Mortazavi P, Mousavi Z, Ale-Ebrahim M. Hepatoprotective effect of astaxanthin against cholestasis liver fibrosis induced by bile duct ligation in adult Wistar rats. J Biochem Mol Toxicol 2024; 38:e23788. [PMID: 39087918 DOI: 10.1002/jbt.23788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 08/02/2024]
Abstract
In this study, we evaluated the hepatoprotective effects of astaxanthin, a natural carotenoid, against the cholestatic liver fibrosis induced by bile duct ligation (BDL). Toward this end, male rats were subjected to BDL and treated with astaxanthin for 35 days. Afterwards, their serum and liver biochemical factors were assessed. Also, histopathological and immunohistochemical analyses were performed to determine the fibrosis and the expression levels of alpha-smooth muscle actin (α-SMA) and transforming growth factor beta (TGF-ß1) in the liver tissue. Based on the results, BDL caused a significant increase in liver enzyme levels, blood lipids, and bilirubin, while decreasing the activity of superoxide dismutase(SOD), catalase (CAT), and glutathione (GSH) enzymes. Also, in the BDL rats, hepatocyte necrosis, infiltration of inflammatory lymphocytes, and hyperplasia of bile ducts were detected, along with a significant increase in α-SMA and TGF-ß1 expression. Astaxanthin, however, significantly prevented the BDL's detrimental effects. In all, 10 mg/kg of this drug maintained the bilirubin and cholesterol serum levels of BDL rats at normal levels. It also reduced the liver enzymes' activity and serum lipids, while increasing the SOD, CAT, and GSH activity in BDL rats. The expression of α-SMA and TGF-ß1 in the BDL rats treated with 10 mg/kg of astaxanthin was moderate (in 34%-66% of cells) and no considerable cholestatic fibrosis was observed in this group. However, administrating the 20 mg/kg of astaxanthin was not effective in this regard. These findings showed that astaxanthin could considerably protect the liver from cholestatic damage by improving the biochemical features and regulating the expression of related proteins.
Collapse
Affiliation(s)
- Azadeh Laderian
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences-Islamic Azad University, Tehran, Iran
| | - Maedeh Ghasemi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Pejman Mortazavi
- Department of Pathology, Faculty of Specialized Veterinary Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Zahra Mousavi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences-Islamic Azad University, Tehran, Iran
| | - Mahsa Ale-Ebrahim
- Department of Physiology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
24
|
Giercuszkiewicz-Hecold B, Kulka M, Czopowicz M, Szarska E, Strzelec K, Grzeczka A, Graczyk S, Wiśniewska M, Jędrzejkowska Z, Rumińska A, Marycz K, Cywińska A. Astaxanthin Supplementation Does Not Alter Training-Related Changes in Inflammatory Cytokine Profile in Arabian Racing Horses. Antioxidants (Basel) 2024; 13:905. [PMID: 39199150 PMCID: PMC11351528 DOI: 10.3390/antiox13080905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/18/2024] [Accepted: 07/23/2024] [Indexed: 09/01/2024] Open
Abstract
This study aimed to evaluate the oral supplementation of astaxanthin (ATX) on inflammatory markers in 3-year-old Arabian racehorses. Despite the recognized antioxidant and anti-inflammatory properties of ATX observed in vitro in rodent models and in human athletes, the effects in equine subjects remain unknown. This study involved a controlled trial with 14 horses receiving either ATX (six horses) or a placebo (eight horses), monitored over four months of race training. Inflammatory cytokines: TNFα, IFNγ, IL-6, IL-10, and prostaglandin E (PGE), were measured monthly to assess the impact of ATX on the inflammatory response. The results indicated no significant differences in measured parameters between the ATX and the control group during the study. However, a significant time-dependent decrease in TNFα and IFNγ levels (p = 0.001) was observed in both groups, suggesting that regular training naturally modulates inflammatory responses. Moreover, positive correlations were noted between TNFα and IFNγ (p < 0.001) in the early phase of the study and between IL-6 and IL-10 (p = 0.008) in the later phase. Hematological parameters remained stable and within reference ranges, indicating no adverse effects of ATX supplementation. Performance metrics, including the number of races completed and wins, showed no significant differences between groups, suggesting that ATX did not enhance athletic performance under the study conditions. Overall, while ATX supplementation affected neither cytokine levels nor performance in Arabian racehorses, the natural anti-inflammatory effects of regular training were evident. Further research is needed to explore potential benefits of ATX supplementation under different conditions, such as in horses with subclinical inflammation or varying training regimens, to fully clarify its role and applications in equine sports medicine.
Collapse
Affiliation(s)
| | - Marek Kulka
- Department of Pathology and Veterinary Diagnostics, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159c, 02-776 Warsaw, Poland;
| | - Michał Czopowicz
- Division of Veterinary Epidemiology and Economics, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159c, 02-776 Warsaw, Poland;
| | - Ewa Szarska
- Military Institute of Hygiene and Epidemiology, Kozielska 4, 01-001 Warsaw, Poland;
| | - Katarzyna Strzelec
- Department of Horse Breeding and Use, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland;
| | - Arkadiusz Grzeczka
- Student of the Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland; (A.G.); (S.G.); (M.W.)
- Department of Basic and Preclinical Sciences, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Lwowska 1, 87-100 Toruń, Poland
| | - Szymon Graczyk
- Student of the Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland; (A.G.); (S.G.); (M.W.)
- Department of Basic and Preclinical Sciences, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Lwowska 1, 87-100 Toruń, Poland
| | - Marta Wiśniewska
- Student of the Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland; (A.G.); (S.G.); (M.W.)
| | - Zofia Jędrzejkowska
- Student of the Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland; (A.G.); (S.G.); (M.W.)
| | - Aleksandra Rumińska
- Student of the Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland; (A.G.); (S.G.); (M.W.)
| | - Krzysztof Marycz
- International Institute of Translational Medicine, Jesionowa 11, Malin, 55-114 Wisznia Mała, Poland;
- Department of Veterinary Medicine and Epidemiology, Veterinary Institute for Regenerative Cures, School of Veterinary Medicine, University of California, Davis, CA 95516, USA
| | - Anna Cywińska
- Department of Basic and Preclinical Sciences, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Lwowska 1, 87-100 Toruń, Poland
| |
Collapse
|
25
|
Dang Y, Li Z, Yu F. Recent Advances in Astaxanthin as an Antioxidant in Food Applications. Antioxidants (Basel) 2024; 13:879. [PMID: 39061947 PMCID: PMC11273418 DOI: 10.3390/antiox13070879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
In recent years, astaxanthin as a natural substance has received widespread attention for its potential to replace traditional synthetic antioxidants and because its antioxidant activity exceeds that of similar substances. Based on this, this review introduces the specific forms of astaxanthin currently used as an antioxidant in foods, both in its naturally occurring forms and in artificially added forms involving technologies such as emulsion, microcapsule, film, nano liposome and nano particle, aiming to improve its stability, dispersion and bioavailability in complex food systems. In addition, research progress on the application of astaxanthin in various food products, such as whole grains, seafood and poultry products, is summarized. In view of the characteristics of astaxanthin, such as insolubility in water and sensitivity to light, heat, oxygen and humidity, the main research trends of astaxanthin-loaded systems with high encapsulation efficiency, good stability, good taste masking effect and cost-effectiveness are also pointed out. Finally, the possible sensory effects of adding astaxanthin to food aresummarized, providing theoretical support for the development of astaxanthin-related food.
Collapse
Affiliation(s)
- Yimeng Dang
- Haide College, Ocean University of China, Qingdao 266100, China; (Y.D.); (Z.L.)
| | - Zhixi Li
- Haide College, Ocean University of China, Qingdao 266100, China; (Y.D.); (Z.L.)
| | - Fanqianhui Yu
- Haide College, Ocean University of China, Qingdao 266100, China; (Y.D.); (Z.L.)
- Department of Computer Science and Technology, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
26
|
Chang W, Lv X, Zhu J, Shen JJ, Yao J, Liu Z, Chen Q. Multifunctional Nanotherapeutics with Long-Acting Release against Macular Degeneration by Minimally Invasive Administration. ACS NANO 2024. [PMID: 39018483 DOI: 10.1021/acsnano.4c04494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
Neovascular age-related macular degeneration (AMD), a leading cause of blindness, requires frequent intravitreal injection of antivascular endothelial growth factor (anti-VEGF), which could generate a succession of complications with poor patient compliance. The current VEGF-targeting therapies often fail in half of patients due to the complex pathologic microenvironment of excessive reactive oxygen species (ROS) production, and increased levels of inflammation are accompanied by choroidal neovascularization (CNV). We herein reported multifunctional nanotherapeutics featuring superior antioxidant and anti-inflammation properties that aim to reverse the pathological condition, alongside its strong targeted antiangiogenesis to CNV and its ability to provide long-term sustained bioactive delivery via the minimally invasive subconjunctival injection, so as to achieve satisfactory wet AMD treatment effects. Concretely, the nanomedicine was designed by coencapsulation of astaxanthin (AST), a red pigmented carotenoid known for its antioxidative, anti-inflammatory and antiapoptotic properties, and axitinib (AXI), a small molecule tyrosine kinase inhibitor that selectively targets the vascular epidermal growth factor receptor for antiangiogenesis, into the Food and Drug Administration (FDA) approved poly(lactic-co-glycolic acid) (PLGA), which forms the nanodrug of PLGA@AST/AXI. Our results demonstrated that a single-dose subconjunctival administration of PLGA@AST/AXI showed a rational synergistic effect by targeting various prevailing risk factors associated with wet AMD, ensuring persistent drug release profiles, maintaining good ocular biocompatibility, and causing no obvious mechanical damage. Such attributes are vital and hold significant potential in treating ocular posterior segment diseases. Moreover, this nanotherapeutic strategy represents a versatile and broad-spectrum nanoplatform, offering a promising alternative for the complex pathological progression of other neovascular diseases.
Collapse
Affiliation(s)
- Wanwan Chang
- School of Pharmacy, Faculty of Medicine & Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Macau SAR 999078, China
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215127, China
| | - Xinying Lv
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215127, China
| | - Jiafei Zhu
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215127, China
| | - Jing-Jing Shen
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215127, China
| | - Jing Yao
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
| | - Zhuang Liu
- School of Pharmacy, Faculty of Medicine & Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Macau SAR 999078, China
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215127, China
| | - Qian Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215127, China
| |
Collapse
|
27
|
Arsecularatne A, Kapini R, Liu Y, Chang D, Münch G, Zhou X. Combination Therapy for Sustainable Fish Oil Products: Improving Cognitive Function with n-3 PUFA and Natural Ingredients. Biomedicines 2024; 12:1237. [PMID: 38927446 PMCID: PMC11201817 DOI: 10.3390/biomedicines12061237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
Long-chain polyunsaturated omega-3 fatty acids (n-3 PUFAs), particularly docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), are recommended as beneficial dietary supplements for enhancing cognitive function. Although fish oil (FO) is renowned for its abundant n-3 PUFA content, combining FO with other natural products is considered as a viable option to support the sustainable development of FO products. This review aims to provide comprehensive insights into the advanced effects of combining FO or its components of DHA and EPA with natural products on protecting cognitive function. In two double-blind random control trials, no advanced effects were observed for adding curcumin to FO on cerebral function protection. However, 16 week's treatment of FO combined with vitamin E did not yield any advanced effects in cognitive factor scores. Several preclinical studies have demonstrated that combinations of FO with natural products can exhibit advanced effects in addressing pathological components in cognitive impairment, including neuroinflammation, oxidative stress, and neuronal survival. In conclusion, evidence from clinical trials for beneficial use of FO and natural ingredients combination is lacking. Greater cohesion is needed between preclinical and clinical data to substantiate the efficacy of FO and natural product combinations in preventing or slowing the progression of cognitive decline.
Collapse
Affiliation(s)
- Anthony Arsecularatne
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia; (A.A.); (R.K.); (D.C.); (G.M.)
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Rotina Kapini
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia; (A.A.); (R.K.); (D.C.); (G.M.)
- School of Science, Western Sydney University, Paramatta, NSW 2150, Australia
| | - Yang Liu
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia; (A.A.); (R.K.); (D.C.); (G.M.)
| | - Dennis Chang
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia; (A.A.); (R.K.); (D.C.); (G.M.)
| | - Gerald Münch
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia; (A.A.); (R.K.); (D.C.); (G.M.)
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Xian Zhou
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia; (A.A.); (R.K.); (D.C.); (G.M.)
| |
Collapse
|
28
|
Soliman MM, Alotaibi KS, Albattal SB, Althobaiti S, Al-Harthi HF, Mehmood A. Ameliorative impacts of astaxanthin against atrazine-induced renal toxicity through the modulation of ionic homeostasis and Nrf2 signaling pathways in mice. Toxicol Res (Camb) 2024; 13:tfae071. [PMID: 38720817 PMCID: PMC11074709 DOI: 10.1093/toxres/tfae071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 05/12/2024] Open
Abstract
Astaxanthin (ASX), a red pigment belonging to carotenoids, has antioxidant activity and anti-oxidative stress effect. Atrazine (ATZ), a frequently used herbicide, whose degradation products are the cause for nephrosis and other oxidative stress associated diseases. This study was aimed to reveal the potential protective mechanism of astaxanthin against atrazine-induced nephrosis. Atrazine was orally given (250 mg/kg bw) to the mice along with astaxanthin (100 mg/kg bw) for 28 days. Serum biochemical indicators, oxidative stress biomarkers, ATPase activities, ion concentration, histomorphology, and various renal genes expression linked with apoptosis, Nrf2 signaling pathway, and aquaporins (AQPs) were assessed. It was found that serum creatinine (SCr), blood urea nitrogen (BUN), and MDA levels were significantly increased after the treatment of atrazine, whereas serum renal oxidative stress indicators like CAT, GSH, T-AOC, SOD decreased. Renal histopathology showed that atrazine significantly damaged renal tissues. The activities of Ca 2+-Mg 2+-ATPase were increased whereas Na +-K +-ATPase decreased significantly (P < 0.05). Moreover, results confirmed that the expression of AQPs, Nrf2, and apoptosis genes were also altered after atrazine administration. Interestingly, astaxanthin supplementation significantly (P < 0.05) improved atrazine-induced nephrotoxicity via decreasing SCr, BUN, oxidative stress, ionic homeostasis and reversing the changes in AQPs, Nrf2, and apoptosis gene expression. These findings collectively suggested that astaxanthin has strong potential ameliorative impact against atrazine induced nephrotoxicity.
Collapse
Affiliation(s)
- Mohamed Mohamed Soliman
- Department of Clinical Laboratory Sciences, Turabah University College, Turabah, Taif University, Taif 21995, Saudi Arabia
| | - Khalid S Alotaibi
- General Science and English Language Department, College of Applied Sciences, AlMaarefa University, Riyadh 71666, Saudi Arabia
| | - Shatha B Albattal
- General Science and English Language Department, College of Applied Sciences, AlMaarefa University, Riyadh 71666, Saudi Arabia
| | - Saed Althobaiti
- Department of Biology, Turabah University College, Turabah, Taif University, Taif 21995, Saudi Arabia
| | - Helal F Al-Harthi
- Department of Biology, Turabah University College, Turabah, Taif University, Taif 21995, Saudi Arabia
| | - Arshad Mehmood
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| |
Collapse
|
29
|
Sharebiani H, Mokaram M, Mirghani M, Fazeli B, Stanek A. The Effects of Antioxidant Supplementation on the Pathologic Mechanisms of Metabolic Syndrome and Cardiovascular Disease Development. Nutrients 2024; 16:1641. [PMID: 38892574 PMCID: PMC11175159 DOI: 10.3390/nu16111641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/16/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
In people with obesity, diabetes, and hypertension, lipid and glucose metabolism and oxidative stress generation interact. This condition, known as a "metabolic syndrome" (MetS), presents a global challenge and appears to be the underlying mechanism for the development of cardiovascular diseases (CVDs). This review is designed based on evidence indicating the pathogenic mechanisms of MetS. In detail, we will look at the mechanisms of oxidative stress induction in MetS, the effects of elevated oxidative stress levels on the condition's pathophysiology, and matters related to endothelial function. According to different components of the MetS pathophysiological network, the effects of antioxidants and endothelial dysfunction are reviewed. After considering the strategic role of oxidative stress in the pathophysiology of MetS and its associated CVDs, oxidative stress management by antioxidant supplementation seems an appropriate therapeutic approach.
Collapse
Affiliation(s)
- Hiva Sharebiani
- VAS-European Independent Foundation in Angiology/Vascular Medicine, Via GB Grassi 74, 20157 Milan, Italy; (H.S.); (M.M.); (B.F.)
- Support Association of Patients of Buerger’s Disease, Buerger’s Disease NGO, Mashhad 9183785195, Iran;
| | - Mina Mokaram
- Support Association of Patients of Buerger’s Disease, Buerger’s Disease NGO, Mashhad 9183785195, Iran;
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 14115-175, Iran
| | - Melika Mirghani
- VAS-European Independent Foundation in Angiology/Vascular Medicine, Via GB Grassi 74, 20157 Milan, Italy; (H.S.); (M.M.); (B.F.)
- Support Association of Patients of Buerger’s Disease, Buerger’s Disease NGO, Mashhad 9183785195, Iran;
| | - Bahare Fazeli
- VAS-European Independent Foundation in Angiology/Vascular Medicine, Via GB Grassi 74, 20157 Milan, Italy; (H.S.); (M.M.); (B.F.)
- Support Association of Patients of Buerger’s Disease, Buerger’s Disease NGO, Mashhad 9183785195, Iran;
| | - Agata Stanek
- VAS-European Independent Foundation in Angiology/Vascular Medicine, Via GB Grassi 74, 20157 Milan, Italy; (H.S.); (M.M.); (B.F.)
- Department of Internal Medicine, Angiology and Physical Medicine, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Batorego 15 St., 41-902 Bytom, Poland
| |
Collapse
|
30
|
Leite MDMR, Bobrowski Rodrigues D, Brison R, Nepomuceno F, Bento ML, de Oliveira LDL. A Scoping Review on Carotenoid Profiling in Passiflora spp.: A Vast Avenue for Expanding the Knowledge on the Species. Molecules 2024; 29:1585. [PMID: 38611864 PMCID: PMC11013783 DOI: 10.3390/molecules29071585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 04/14/2024] Open
Abstract
The Passiflora genus is recognised for its ethnopharmacological, sensorial, and nutritional significance. Yet, the screening of its dietary and bioactive molecules has mainly targeted hydrophilic metabolites. Following the PRISMA-P protocol, this review assessed the current knowledge on carotenoid composition and analysis within Passiflora, examining 968 records from seven databases and including 17 studies focusing on carotenoid separation and identification in plant parts. Those publications originated in America and Asia. P. edulis was the most frequently examined species of a total of ten, while pulp was the most studied plant part (16 studies). Carotenoid analysis involved primarily high-performance liquid chromatography separation on C18 columns and detection using diode array detectors (64.71%). Most studies identified the provitamin A β-carotene and xanthophylls lutein and zeaxanthin, with their geometric configuration often neglected. Only one study described carotenoid esters. Besides the methodology's insufficient description, the lack of use of more accurate techniques and practices led to a high risk of bias in the carotenoid assignment in 17.65% of the articles. This review highlights the opportunity to broaden carotenoid studies to other species and parts within the diverse Passiflora genus, especially to wild, locally available fruits, which may have a strategic role in enhancing food diversity and security amidst climatic changes. Additionally, it urges the use of more accurate and efficient analytical methods based on green chemistry to better identify Passiflora carotenoids.
Collapse
Affiliation(s)
- Marina de Macedo Rodrigues Leite
- Department of Nutrition, University of Brasília (UnB), Campus Darcy Ribeiro, Brasilia 70910-900, DF, Brazil; (M.d.M.R.L.); (R.B.); (F.N.); (L.d.L.d.O.)
| | - Daniele Bobrowski Rodrigues
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Raquel Brison
- Department of Nutrition, University of Brasília (UnB), Campus Darcy Ribeiro, Brasilia 70910-900, DF, Brazil; (M.d.M.R.L.); (R.B.); (F.N.); (L.d.L.d.O.)
| | - Fernanda Nepomuceno
- Department of Nutrition, University of Brasília (UnB), Campus Darcy Ribeiro, Brasilia 70910-900, DF, Brazil; (M.d.M.R.L.); (R.B.); (F.N.); (L.d.L.d.O.)
| | - Maria Lua Bento
- Department of Pharmacy, University of Brasília (UnB), Campus de Ceilândia, Brasilia 72220-275, DF, Brazil;
| | - Lívia de Lacerda de Oliveira
- Department of Nutrition, University of Brasília (UnB), Campus Darcy Ribeiro, Brasilia 70910-900, DF, Brazil; (M.d.M.R.L.); (R.B.); (F.N.); (L.d.L.d.O.)
| |
Collapse
|
31
|
Juan-García A, Juan C, Taipale S, Vehniäinen ER. Beauvericin and enniatin B mycotoxins alter aquatic ecosystems: Effects on green algae. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 107:104415. [PMID: 38503354 DOI: 10.1016/j.etap.2024.104415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 03/14/2024] [Indexed: 03/21/2024]
Abstract
Myxotoxins can contaminate algal-based products and arrive to the food chain to consumers producing chronic toxicity effects. Here, we studied phytotoxicity of mycotoxins, beauvericin (BEA) and ennaitin B (ENN B) in four phytoplankton strains: Acutodesmus sp., Chlamydomonas reinhardtii, Haematococcus pluvialis, and Monoraphidium griffithii, which are all green algae. It was tested the capacity of clearing the media of BEA and ENN B at different concentrations by comparing nominal and measured quantifications. Results revealed that Acutodesmus sp. and C. reinhardtii tended to flow up and down growth rate without reaching values below 50% or 60%, respectively. On the other hand, for H. pluvialis and M. griffith, IC50 values were reached. Regarding the clearance of media, in individual treatment a decrease of the quantified mycotoxin between nominal and measured values was observed; while in binary treatment, differences among both values were higher and more noted for BEA than for ENN B.
Collapse
Affiliation(s)
- Ana Juan-García
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy and Food Science, University of Valencia, Av. Vicent Andrés Estellés s/n, València, Burjassot 46100, Spain; Department of Biological and Environmental Science, University of Jyväskylä, Survontie 9C, Jyväskylä FI-40014, Finland.
| | - Cristina Juan
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy and Food Science, University of Valencia, Av. Vicent Andrés Estellés s/n, València, Burjassot 46100, Spain
| | - Sami Taipale
- Department of Biological and Environmental Science, University of Jyväskylä, Survontie 9C, Jyväskylä FI-40014, Finland
| | - Eeva-Riikka Vehniäinen
- Department of Biological and Environmental Science, University of Jyväskylä, Survontie 9C, Jyväskylä FI-40014, Finland
| |
Collapse
|
32
|
Harrison DE, Strong R, Reifsnyder P, Rosenthal N, Korstanje R, Fernandez E, Flurkey K, Ginsburg BC, Murrell MD, Javors MA, Lopez-Cruzan M, Nelson JF, Willcox BJ, Allsopp R, Watumull DM, Watumull DG, Cortopassi G, Kirkland JL, Tchkonia T, Choi YG, Yousefzadeh MJ, Robbins PD, Mitchell JR, Acar M, Sarnoski EA, Bene MR, Salmon A, Kumar N, Miller RA. Astaxanthin and meclizine extend lifespan in UM-HET3 male mice; fisetin, SG1002 (hydrogen sulfide donor), dimethyl fumarate, mycophenolic acid, and 4-phenylbutyrate do not significantly affect lifespan in either sex at the doses and schedules used. GeroScience 2024; 46:795-816. [PMID: 38041783 PMCID: PMC10828146 DOI: 10.1007/s11357-023-01011-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/07/2023] [Indexed: 12/03/2023] Open
Abstract
In genetically heterogeneous (UM-HET3) mice produced by the CByB6F1 × C3D2F1 cross, the Nrf2 activator astaxanthin (Asta) extended the median male lifespan by 12% (p = 0.003, log-rank test), while meclizine (Mec), an mTORC1 inhibitor, extended the male lifespan by 8% (p = 0.03). Asta was fed at 1840 ± 520 (9) ppm and Mec at 544 ± 48 (9) ppm, stated as mean ± SE (n) of independent diet preparations. Both were started at 12 months of age. The 90th percentile lifespan for both treatments was extended in absolute value by 6% in males, but neither was significant by the Wang-Allison test. Five other new agents were also tested as follows: fisetin, SG1002 (hydrogen sulfide donor), dimethyl fumarate, mycophenolic acid, and 4-phenylbutyrate. None of these increased lifespan significantly at the dose and method of administration tested in either sex. Amounts of dimethyl fumarate in the diet averaged 35% of the target dose, which may explain the absence of lifespan effects. Body weight was not significantly affected in males by any of the test agents. Late life weights were lower in females fed Asta and Mec, but lifespan was not significantly affected in these females. The male-specific lifespan benefits from Asta and Mec may provide insights into sex-specific aspects of aging.
Collapse
Affiliation(s)
- David E Harrison
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA.
| | - Randy Strong
- Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center, San Antonio, TX, USA
- Education, and Clinical Center, Geriatric Research, San Antonio, TX, USA
- Research Service, South Texas Veterans Health Care System, San Antonio, TX, USA
- Department of Pharmacology, The University of Texas Health Science Center, San Antonio, TX, USA
| | - Peter Reifsnyder
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA
| | - Nadia Rosenthal
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA
| | - Ron Korstanje
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA
| | - Elizabeth Fernandez
- Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center, San Antonio, TX, USA
- Education, and Clinical Center, Geriatric Research, San Antonio, TX, USA
- Department of Pharmacology, The University of Texas Health Science Center, San Antonio, TX, USA
| | - Kevin Flurkey
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA
| | - Brett C Ginsburg
- Department of Psychiatry, The University of Texas Health Science Center, San Antonio, TX, USA
| | - Meredith D Murrell
- Department of Psychiatry, The University of Texas Health Science Center, San Antonio, TX, USA
| | - Martin A Javors
- Department of Psychiatry, The University of Texas Health Science Center, San Antonio, TX, USA
| | - Marisa Lopez-Cruzan
- Department of Psychiatry, The University of Texas Health Science Center, San Antonio, TX, USA
| | - James F Nelson
- Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center, San Antonio, TX, USA
- Department of Physiology, The University of Texas Health Sciences Center, San Antonio, TX, USA
| | - Bradley J Willcox
- John A. Burns School of Medicine, University of Hawai'I at Mānoa, Honolulu, HI, USA
| | - Richard Allsopp
- John A. Burns School of Medicine, University of Hawai'I at Mānoa, Honolulu, HI, USA
| | | | | | - Gino Cortopassi
- Department of Molecular Biosciences, University of California, Davis, CA, USA
| | | | | | | | | | | | | | - Murat Acar
- Department of Basic Medical Sciences, School of Medicine, Koç University, 34450, Istanbul, Turkey
| | - Ethan A Sarnoski
- Department of Internal Medicine, Yale University, New Haven, CT, USA
| | - Michael R Bene
- Department of Molecular Medicine, The University of Texas Health Sciences Center, San Antonio, TX, USA
| | - Adam Salmon
- Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center, San Antonio, TX, USA
- Education, and Clinical Center, Geriatric Research, San Antonio, TX, USA
- Research Service, South Texas Veterans Health Care System, San Antonio, TX, USA
- Department of Molecular Medicine, The University of Texas Health Sciences Center, San Antonio, TX, USA
| | - Navasuja Kumar
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Richard A Miller
- Department of Pathology and Geriatrics Center, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
33
|
Perumal E, Patil S, Karobari MI. Efficacy and Safety of Astaxanthin in the Management of Oral Submucous Fibrosis: A Preliminary Randomized Controlled Trial. Cureus 2024; 16:e54667. [PMID: 38524025 PMCID: PMC10960228 DOI: 10.7759/cureus.54667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 02/22/2024] [Indexed: 03/26/2024] Open
Abstract
BACKGROUND Oral submucous fibrosis (OSMF) is a chronic, potentially malignant disorder characterized by progressive fibrosis of the oral mucosa, leading to restricted mouth opening and discomfort. This study investigates the efficacy and safety of astaxanthin, a potent antioxidant and anti-inflammatory carotenoid, in the comprehensive management of OSMF. METHODS A randomized, double-blind, placebo-controlled trial was conducted with 68 eligible participants diagnosed with OSMF. Participants were randomly assigned to the experimental group (astaxanthin capsules, 5 mg twice daily) or the control group (placebo capsules) for 12 weeks. Primary outcomes included changes in mouth opening and burning sensation assessed by Visual Analog Scale (VAS). Adverse events were monitored to evaluate safety. RESULTS The experimental group demonstrated a statistically significant improvement in mouth opening compared to the control group over the 12-week intervention (p < 0.001). Additionally, the experimental group reported a significant reduction in burning sensation, as indicated by VAS scores (p < 0.001). Adverse events were generally mild and comparable between groups. CONCLUSION This study suggests that astaxanthin may have a positive impact on mouth opening and burning sensation in individuals with OSMF. The safety profile observed supports the feasibility of astaxanthin as a potential therapeutic adjunct in OSMF management. Further research with larger sample sizes and extended follow-up periods is warranted to validate these findings.
Collapse
Affiliation(s)
- Elumalai Perumal
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, IND
| | - Santosh Patil
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, IND
| | - Mohmed Isaqali Karobari
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, IND
| |
Collapse
|
34
|
Takahashi M, Takahashi K, Yamaguchi T, Kohama T, Hosokawa M. Functional roles and localization of hydrolases in the Japanese mitten crab Eriocheir japonica. Comp Biochem Physiol B Biochem Mol Biol 2024; 270:110932. [PMID: 38097062 DOI: 10.1016/j.cbpb.2023.110932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/07/2023] [Accepted: 12/07/2023] [Indexed: 12/18/2023]
Abstract
The Japanese mitten crab Eriocheir japonica inhabits rivers throughout Japan and is being cultivated for food. To conduct aquaculture efficiently, it is crucial to comprehend the physiological functions of the target organisms. However, there is a lack of fundamental information on Japanese mitten crabs. In this study, hydrolases were extracted from the midgut glands of Japanese mitten crabs and their metabolic activities were analyzed. An enzyme with hydrolytic activity was discovered within the cytosol of the midgut gland. Western blot analysis also revealed that the Japanese mitten crab contains a hydrolase with cross-reactivity to human carboxylesterase 1 (hCES1) antibodies. The substrate specificity of the S9 fraction of the midgut gland was investigated and, interestingly, it was revealed that it reacts well with indomethacin phenyl ester and fluorescein diacetate, which are substrates of hCES2, not substrates of hCES1. Furthermore, this enzyme was observed to metabolize the ester derivative of astaxanthin, which is a red pigment inherent to the Japanese mitten crab. These findings underscore the significance the midgut gland in the Japanese mitten crab as an important organ for metabolizing both endogenous and exogenous ester-type compounds.
Collapse
Affiliation(s)
| | | | - Taichi Yamaguchi
- Education and Research Center for Organisms Production, Okayama University of Science, Japan
| | - Takeshi Kohama
- Faculty of Risk and Crisis Management, Chiba Institute of Science, Japan
| | | |
Collapse
|
35
|
Debnath T, Bandyopadhyay TK, Vanitha K, Bobby MN, Nath Tiwari O, Bhunia B, Muthuraj M. Astaxanthin from microalgae: A review on structure, biosynthesis, production strategies and application. Food Res Int 2024; 176:113841. [PMID: 38163732 DOI: 10.1016/j.foodres.2023.113841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/27/2023] [Accepted: 12/06/2023] [Indexed: 01/03/2024]
Abstract
Astaxanthin is a red-colored secondary metabolite with excellent antioxidant properties, typically finds application as foods, feed, cosmetics, nutraceuticals, and medications. Astaxanthin is usually produced synthetically using chemicals and costs less as compared to the natural astaxanthin obtained from fish, shrimps, and microorganisms. Over the decades, astaxanthin has been naturally synthesized from Haematococcus pluvialis in commercial scales and remains exceptional, attributed to its higher bioactive properties as compared to synthetic astaxanthin. However, the production cost of algal astaxanthin is still high due to several bottlenecks prevailing in the upstream and downstream processes. To that end, the present study intends to review the recent trends and advancements in astaxanthin production from microalgae. The structure of astaxanthin, sources, production strategies of microalgal astaxanthin, and factors influencing the synthesis of microalgal astaxanthin were discussed while detailing the pathway involved in astaxanthin biosynthesis. The study also discusses the relevant downstream process used in commercial scales and details the applications of astaxanthin in various health related issues.
Collapse
Affiliation(s)
- Taniya Debnath
- Bioproducts Processing Research Laboratory (BPRL), Department of Bio Engineering, National Institute of Technology, Agartala, 799046, India
| | | | - Kondi Vanitha
- Department of Pharmaceutics, Vishnu Institute of Pharmaceutical Education and Research, Narsapur, Medak, Telangana, India
| | - Md Nazneen Bobby
- Department of Biotechnology, Vignan's Foundation for Science Technology and Research, Guntur 522213, Andhra Pradesh, India
| | - Onkar Nath Tiwari
- Centre for Conservation and Utilization of Blue Green Algae, Division of Microbiology, Indian Agricultural Research Institute (ICAR), New Delhi 110012, India.
| | - Biswanath Bhunia
- Bioproducts Processing Research Laboratory (BPRL), Department of Bio Engineering, National Institute of Technology, Agartala, 799046, India.
| | - Muthusivaramapandian Muthuraj
- Bioproducts Processing Research Laboratory (BPRL), Department of Bio Engineering, National Institute of Technology, Agartala, 799046, India; Department of Bio Engineering, National Institute of Technology, Agartala-799046, India.
| |
Collapse
|
36
|
Taha M, Elazab ST, Abdelbagi O, Saati AA, Babateen O, Baokbah TAS, Qusty NF, Mahmoud ME, Ibrahim MM, Badawy AM. Phytochemical analysis of Origanum majorana L. extract and investigation of its antioxidant, anti-inflammatory and immunomodulatory effects against experimentally induced colitis downregulating Th17 cells. JOURNAL OF ETHNOPHARMACOLOGY 2023; 317:116826. [PMID: 37348796 DOI: 10.1016/j.jep.2023.116826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/09/2023] [Accepted: 06/19/2023] [Indexed: 06/24/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Origanum majorana L. is a member of the Lamiaceae family and is commonly used in Egyptian cuisine as a seasoning and flavor enhancer. It is also recognized as a well-known traditional medicine in Egypt and is widely used for treating abdominal colic due to its antispasmodic properties. However, the protective effects of Origanum majorana L. against ulcerative colitis and its underlying mechanisms remain unclear. AIM OF THE STUDY This study aimed to identify the biologically active components present in methanol extracts of Origanum majorana L. using gas chromatography/mass spectrometry (GC/MS). Additionally, it aimed to investigate the therapeutic effects of these extracts on acetic acid-induced ulcerative colitis and elucidate the potential mechanisms involved. MATERIALS AND METHODS We conducted a GC-MS analysis of the methanolic extract obtained from Origanum majorana L. Thirty-two male rats were included in the study and divided into four experimental groups, with eight rats in each group: sham, UC, UC + O. majorana, and UC sulfasalazine. After euthanizing the rats, colon tissue samples were collected for gross and microscopic examinations, assessment of oxidative stress, and molecular evaluation. GC-MS analysis identified 15 components in the extracts. Pretreatment with O. majorana L. extract and sulfasalazine significantly improved the disease activity index (DAI) and resulted in notable improvements in macroscopic and microscopic colon findings. Additionally, both treatments demonstrated preventive effects against colonic oxidative damage by reducing the levels of malondialdehyde (MDA) and increasing the levels of the antioxidant systems superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH), which operate through the Nrf2/HO-1 signaling pathway. Moreover, these treatments downregulated the colonic inflammatory cascade by inhibiting NFκB, TNFα, IL-1β, IL6, IL23, IL17, COX-2, and iNOS, subsequently leading to downregulation of the JAK2/STAT3 signaling pathway and a decrease in the Th17 cell response. Furthermore, a reduction in the number of apoptotic epithelial cells that expressed caspase-3 was observed. CONCLUSION pretreatment with O. majorana L. extract significantly ameliorated acetic acid-induced ulcerative colitis. This effect could be attributed to the protective, antioxidant, anti-inflammatory, and anti-apoptotic properties of the extract.
Collapse
Affiliation(s)
- Medhat Taha
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt; Department of Anatomy, Al- Qunfudah Medical College, Umm Al-Qura University, Al-Qunfudhah, 28814, Saudi Arabia.
| | - Sara T Elazab
- Department of Pharmacology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Omer Abdelbagi
- Department of Pathology, Qunfudah Faculty of Medicine, Umm-Al-Qura University, Kingdom of Saudi Arabia, Makka, 24382, Saudi Arabia
| | - Abdullah A Saati
- Department of Community Medicine and Pilgrims Healthcare, Faculty of Medicine, Umm Al-Qura University, Makkah, 24382, Saudi Arabia
| | - Omar Babateen
- Department of Physiology, Faculty of Medicine, Umm Al-Qura University, Makkah, 24382, Saudi Arabia
| | - Tourki A S Baokbah
- Department of Medical Emergency Services, College of Health Sciences-AlQunfudah, Umm Al-Qura University, Al-Qunfudah, 28814, Saudi Arabia
| | - Naeem F Qusty
- Medical Laboratories Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, 24382, Saudi Arabia
| | - Mohamed Ezzat Mahmoud
- Histology Department, Damietta Faculty of Medicine, Al-Azhar University, Damietta, 34711, Egypt
| | - Mohie Mahmoud Ibrahim
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Alaa M Badawy
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
37
|
Chou P, Lu Y, Sheu M. Phellinus merrillii extracts induce apoptosis of vascular smooth muscle cells via intrinsic and extrinsic pathways. Food Sci Nutr 2023; 11:7900-7909. [PMID: 38107129 PMCID: PMC10724586 DOI: 10.1002/fsn3.3707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 09/05/2023] [Accepted: 09/09/2023] [Indexed: 12/19/2023] Open
Abstract
Restenosis frequently occurs after balloon angioplasty. Percutaneous coronary intervention (PCI)-induced artery damage is a significant part of triggering restenosis of the vascular smooth muscles (VSMC). This study aimed to study how ethanol extract of Phellinus merrillii (EPM) affected balloon injury-induced overgrowth of VSMC, indicating neointima formation. Firstly, our results demonstrated that EPM notably decreased VSMC viability. A fragmentation assay and Annexin V/Propidium Iodide apoptosis assay showed that higher doses of EPM significantly induced the apoptosis of VSMC after 24 h of exposure. Total protein extracted from VSMC treated with EPM in various time and concentration periods was then conducted in Western blotting analysis. Our data demonstrated that EPM substantially elevated the p53, p21, Fas, Bax, p-p38, and active caspase-3 protein expressions. The results indicated that EPM induces VSMC apoptosis via intrinsic and extrinsic pathways. Also, our results demonstrated that EPM effectively attenuated the balloon injury-induced neointima formation. In conclusion, the information offers a mechanism of EPM in inducing the VSMC apoptosis, thus as a potential interference for restenosis.
Collapse
Affiliation(s)
- Pei‐Yu Chou
- Department of NursingNational Chi Nan UniversityNantouTaiwan
| | - Ya‐Ting Lu
- Department of Hematology & OncologyTainan Municipal Hospital (Managed by Show Chwan Medical Care Corporation)Tainan CityTaiwan
| | - Ming‐Jyh Sheu
- Department of PharmacyChina Medical University, Beigang HospitalYunlin CountyTaiwan
- School of PharmacyChina Medical UniversityTaichung CityTaiwan
| |
Collapse
|
38
|
Bakac ER, Percin E, Gunes-Bayir A, Dadak A. A Narrative Review: The Effect and Importance of Carotenoids on Aging and Aging-Related Diseases. Int J Mol Sci 2023; 24:15199. [PMID: 37894880 PMCID: PMC10607816 DOI: 10.3390/ijms242015199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Aging is generally defined as a time-dependent functional decline that affects most living organisms. The positive increase in life expectancy has brought along aging-related diseases. Oxidative stress caused by the imbalance between pro-oxidants and antioxidants can be given as one of the causes of aging. At the same time, the increase in oxidative stress and reactive oxygen species (ROS) is main reason for the increase in aging-related diseases such as cardiovascular, neurodegenerative, liver, skin, and eye diseases and diabetes. Carotenoids, a natural compound, can be used to change the course of aging and aging-related diseases, thanks to their highly effective oxygen-quenching and ROS-scavenging properties. Therefore, in this narrative review, conducted using the PubMed, ScienceDirect, and Google Scholar databases and complying with the Scale for the Assessment of Narrative Review Articles (SANRA) guidelines, the effects of carotenoids on aging and aging-related diseases were analyzed. Carotenoids are fat-soluble, highly unsaturated pigments that occur naturally in plants, fungi, algae, and photosynthetic bacteria. A large number of works have been conducted on carotenoids in relation to aging and aging-related diseases. Animal and human studies have found that carotenoids can significantly reduce obesity and fatty liver, lower blood sugar, and improve liver fibrosis in cirrhosis, as well as reduce the risk of cardiovascular disease and erythema formation, while also lowering glycated hemoglobin and fasting plasma glucose levels. Carotenoid supplementation may be effective in preventing and delaying aging and aging-related diseases, preventing and treating eye fatigue and dry eye disease, and improving macular function. These pigments can be used to stop, delay, or treat aging-related diseases due to their powerful antioxidant, restorative, anti-proliferative, anti-inflammatory, and anti-aging properties. As an increasingly aging population emerges globally, this review could provide an important prospective contribution to public health.
Collapse
Affiliation(s)
- Elif Rabia Bakac
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Bezmialem Vakif University, 34065 Istanbul, Turkey
| | - Ece Percin
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Bezmialem Vakif University, 34065 Istanbul, Turkey
| | - Ayse Gunes-Bayir
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Bezmialem Vakif University, 34065 Istanbul, Turkey
| | - Agnes Dadak
- Institute of Pharmacology and Toxicology, Clinical Pharmacology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria;
| |
Collapse
|
39
|
Abbasian F, Alavi MS, Roohbakhsh A. Dietary carotenoids to improve hypertension. Heliyon 2023; 9:e19399. [PMID: 37662767 PMCID: PMC10472253 DOI: 10.1016/j.heliyon.2023.e19399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/04/2023] [Accepted: 08/22/2023] [Indexed: 09/05/2023] Open
Abstract
Hypertension is one of the major risk factors for cardiovascular diseases and the main reason for premature death in older adults. Although antihypertensive medications have been used frequently, hypertension prevalence has increased in the last decade. Lifestyle improvement is a cornerstone of hypertension prevention and control. High dietary consumptions of fruits and vegetables are linked to reduced risks of high blood pressure. Carotenoids are natural tetraterpene pigments produced by bacteria, fungi, algae, some animals, and various plants. Because of their high pharmacological potential and safety, they have been mentioned as unique therapeutic agents for a diverse range of diseases. Carotenoids modulate high blood pressure. They also have several additional benefits for the cardiovascular system, including antioxidative, anti-inflammatory, anti-atherogenic, and antiplatelet effects. They improve endothelial function and metabolic profile, as well. In the present article, we reviewed the literature data regarding carotenoids' influence on hypertension in both preclinical and clinical studies. Furthermore, we reviewed the underlying mechanisms associated with antihypertensive properties derived from in vitro and in vivo studies. Suppressing reactive oxygen species (ROS) production, Inhibiting angiotensin-II, endothelin-1, and oxidized low-density lipoprotein; and also nitric oxide enhancement are some of the mechanisms by which they lower blood pressure. The present article indicated that astaxanthine, β-carotene, bixin, capsanthin, lutein, crocin, and lycopene have antihypertensive properties. Having significant antioxidant properties, they can decrease high blood pressure and concomitant comorbidities.
Collapse
Affiliation(s)
- Firoozeh Abbasian
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohaddeseh Sadat Alavi
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Roohbakhsh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
40
|
Pappalardo I, Santarsiero A, Radice RP, Martelli G, Grassi G, de Oliveira MR, Infantino V, Todisco S. Effects of Extracts of Two Selected Strains of Haematococcus pluvialis on Adipocyte Function. Life (Basel) 2023; 13:1737. [PMID: 37629594 PMCID: PMC10455862 DOI: 10.3390/life13081737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/10/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Recently, microalgae are arousing considerable interest as a source of countless molecules with potential impacts in the nutraceutical and pharmaceutical fields. Haematococcus pluvialis, also named Haematococcus lacustris, is the largest producer of astaxanthin, a carotenoid exhibiting powerful health effects, including anti-lipogenic and anti-diabetic activities. This study was carried out to investigate the properties of two selected strains of H. pluvialis (FBR1 and FBR2) on lipid metabolism, lipolysis and adipogenesis using an in vitro obesity model. FBR1 and FBR2 showed no antiproliferative effect at the lowest concentration in 3T3-L1 adipocytes. Treatment with FBR2 extract reduced lipid deposition, detected via Oil Red O staining and the immunocontent of the adipogenic proteins PPARγ, ACLY and AMPK was revealed using Western blot analysis. Extracts from both strains induced lipolysis in vitro and reduced the secretion of interleukin-6 and tumor necrosis factor-α. Moreover, the FBR1 and FBR2 extracts improved mitochondrial function, reducing the levels of mitochondrial superoxide anion radical and increasing mitochondrial mass compared to untreated adipocytes. These findings suggest that FBR2 extract, more so than FBR1, may represent a promising strategy in overweight and obesity prevention and treatment.
Collapse
Affiliation(s)
- Ilaria Pappalardo
- Department of Science, University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy; (I.P.); (A.S.); (R.P.R.); (G.M.)
| | - Anna Santarsiero
- Department of Science, University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy; (I.P.); (A.S.); (R.P.R.); (G.M.)
| | - Rosa Paola Radice
- Department of Science, University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy; (I.P.); (A.S.); (R.P.R.); (G.M.)
- Bioinnova Srls, Via Ponte Nove Luci, 22, 85100 Potenza, Italy
| | - Giuseppe Martelli
- Department of Science, University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy; (I.P.); (A.S.); (R.P.R.); (G.M.)
| | - Giulia Grassi
- School of Agriculture, University of Basilicata, Forest, Food and Environmental Sciences, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy;
| | - Marcos Roberto de Oliveira
- Departamento de Bioquímica Rua Ramiro Barcelos, Universidade Federal do Rio Grande do Sul (UFRGS), 2600 Anexo Santa Cecília, Porto Alegre 90610-000, RS, Brazil;
| | - Vittoria Infantino
- Department of Science, University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy; (I.P.); (A.S.); (R.P.R.); (G.M.)
| | - Simona Todisco
- Department of Science, University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy; (I.P.); (A.S.); (R.P.R.); (G.M.)
| |
Collapse
|
41
|
Abdelazim K, Ghit A, Assal D, Dorra N, Noby N, Khattab SN, El Feky SE, Hussein A. Production and therapeutic use of astaxanthin in the nanotechnology era. Pharmacol Rep 2023; 75:771-790. [PMID: 37179259 PMCID: PMC10182848 DOI: 10.1007/s43440-023-00488-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 05/15/2023]
Abstract
Astaxanthin (AXT) is a red fat-soluble pigment found naturally in aquatic animals, plants, and various microorganisms and can be manufactured artificially using chemical catalysis. AXT is a xanthophyll carotenoid with a high potential for scavenging free radicals. Several studies have investigated AXT efficacy against diseases such as neurodegenerative, ocular, skin, and cardiovascular hypertension, diabetes, gastrointestinal and liver diseases, and immuno-protective functions. However, its poor solubility, low stability to light and oxygen, and limited bioavailability are major obstacles hindering its wide applications as a therapeutic agent or nutritional supplement. Incorporating AXT with nanocarriers holds great promise in enhancing its physiochemical properties. Nanocarriers are delivery systems with several benefits, including surface modification, bioactivity, and targeted medication delivery and release. Many approaches have been applied to enhance AXT's medicinal effect, including solid lipid nanoparticles, nanostructured lipid carriers (NLCs) and polymeric nanospheres. AXT nano-formulations have demonstrated a high antioxidant and anti-inflammatory effect, significantly affecting cancer in different organs. This review summarizes the most recent data on AXT production, characterization, biological activity, and therapeutic usage, focusing on its uses in the nanotechnology era.
Collapse
Affiliation(s)
- Karim Abdelazim
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Amr Ghit
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
- Department of Medicine and Aging Sciences, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Dina Assal
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
- Department of Biology, Biotechnology Program, American University in Cairo, Cairo, Egypt
| | - Neamat Dorra
- Department of Microbiology and Immunology, Faculty of Pharmacy, Sinai University—Kantara Branch, Ismailia, Egypt
| | - Nehad Noby
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Sherine N. Khattab
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Shaymaa Essam El Feky
- Radiation Sciences Department, Medical Research Institute, University of Alexandria, Alexandria, Egypt
| | - Ahmed Hussein
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| |
Collapse
|
42
|
Radwan B, Prabhakaran A, Rocchetti S, Matuszyk E, Keyes TE, Baranska M. Uptake and anti-inflammatory effects of liposomal astaxanthin on endothelial cells tracked by Raman and fluorescence imaging. Mikrochim Acta 2023; 190:332. [PMID: 37500736 PMCID: PMC10374751 DOI: 10.1007/s00604-023-05888-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 07/06/2023] [Indexed: 07/29/2023]
Abstract
Astaxanthin (AXT) is a lipophilic antioxidant and anti-inflammatory natural pigment whose cellular uptake and bioavailability could be improved via liposomal encapsulation. Endothelial cells (EC) line the lumen of all blood vessels and are tasked with multiple roles toward maintaining cardiovascular homeostasis. Endothelial dysfunction is linked to the development of many diseases and is closely interconnected with oxidative stress and vascular inflammation. The uptake of free and liposomal AXT into EC was investigated using Raman and fluorescence microscopies. AXT was either encapsulated in neutral or cationic liposomes. Enhanced uptake and anti-inflammatory effects of liposomal AXT were observed. The anti-inflammatory effects of liposomal AXT were especially prominent in reducing EC lipid unsaturation, lowering numbers of lipid droplets (LDs), and decreasing intercellular adhesion molecule 1 (ICAM-1) overexpression, which is considered a well-known marker for endothelial inflammation. These findings highlight the benefits of AXT liposomal encapsulation on EC and the applicability of Raman imaging to investigate such effects.
Collapse
Affiliation(s)
- Basseem Radwan
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348, Krakow, Poland
- Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Str., 30-387, Krakow, Poland
| | - Amrutha Prabhakaran
- School of Chemical Sciences and National Centre for Sensor Research, Dublin City University, Dublin 9, Ireland
| | - Stefano Rocchetti
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348, Krakow, Poland
| | - Ewelina Matuszyk
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348, Krakow, Poland
| | - Tia E Keyes
- School of Chemical Sciences and National Centre for Sensor Research, Dublin City University, Dublin 9, Ireland
| | - Malgorzata Baranska
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348, Krakow, Poland.
- Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Str., 30-387, Krakow, Poland.
| |
Collapse
|
43
|
Cunha SA, Borges S, Baptista-Silva S, Ribeiro T, Oliveira-Silva P, Pintado M, Batista P. Astaxanthin impact on brain: health potential and market perspective. Crit Rev Food Sci Nutr 2023; 64:11067-11090. [PMID: 37417323 DOI: 10.1080/10408398.2023.2232866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Nowadays, there is an emergent interest in new trend-driven biomolecules to improve health and wellbeing, which has become an interesting and promising field, considering their high value and biological potential. Astaxanthin is one of these promising biomolecules, with impressive high market growth, especially in the pharmaceutical and food industries. This biomolecule, obtained from natural sources (i.e., microalgae), has been reported in the literature to have several beneficial health effects due to its biological properties. These benefits seem to be mainly associated with Astaxanthin's high antioxidant and anti-inflammatory properties, which may act on several brain issues, thus attenuating symptoms. In this sense, several studies have demonstrated the impact of astaxanthin on a wide range of diseases, namely on brain disorders (such as Alzheimer's disease, Parkinson, depression, brain stroke and autism). Therefore, this review highlights its application in mental health and illness. Furthermore, a S.W.O.T. analysis was performed to display an approach from the market/commercial perspective. However, to bring the molecule to the market, there is still a need for more studies to increase deep knowledge regarding the real impact and mechanisms in the human brain.HIGHLIGHTSAstaxanthin has been mainly extracted from the algae Haematococcus pluvialisAstaxanthin, bioactive molecule with high antioxidant and anti-inflammatory propertiesAstaxanthin has an important protective effect on brain disordersAstaxanthin is highly marketable, mainly for food and pharmaceutical industries.
Collapse
Affiliation(s)
- Sara A Cunha
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | - Sandra Borges
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | - Sara Baptista-Silva
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | - Tânia Ribeiro
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | - Patrícia Oliveira-Silva
- Universidade Católica Portuguesa, Research Centre for Human Development, Human Neurobehavioral Laboratory, Porto, Portugal
| | - Manuela Pintado
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | - Patrícia Batista
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
- Universidade Católica Portuguesa, Research Centre for Human Development, Human Neurobehavioral Laboratory, Porto, Portugal
| |
Collapse
|
44
|
Alves PRMM, Fragoso MBT, Tenório MCS, Bueno NB, Goulart MOF, Oliveira ACM. The role played by oral antioxidant therapies in preventing and treating preeclampsia: An updated meta-analysis. Nutr Metab Cardiovasc Dis 2023; 33:1277-1292. [PMID: 37246073 DOI: 10.1016/j.numecd.2023.02.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 01/10/2023] [Accepted: 02/06/2023] [Indexed: 02/26/2023]
Abstract
AIMS Performing an up-to-date meta-analysis of oral antioxidant therapies and determining whether they are effective in preventing and/or treating preeclampsia (PE). DATA SYNTHESIS Search was performed in PubMed, CENTRAL, LILACS, Web of Science, and ScienceDirect databases. The risk of bias was assessed based on using Cochrane Collaboration's tool. A funnel plot was created, and Egger's and Peter's test was carried out to assess publication bias in the primary outcome of prevention studies. The overall quality of the evidence was assessed based on using the Grading of Recommendations Assessment, Developing and Evaluation (GRADE) tool; a formal protocol was published in the PROSPERO database (registration number CRD42022348992). In total, 32 studies were taken into consideration for analysis purposes; 22 studies focused on investigating preeclampsia prevention methods, whereas 10 focused on its treatment. Significant results associated with the incidence of preeclampsia were observed in prevention studies comprising 11,198 subjects and 1106 events in the control groups, as well as 11,156 subjects and 1048 events in the intervention groups (relative risk [RR]: 0.86, 95% confidence interval [CI]: [0.75, 0.99], P = 0.03; I2 = 44%, P = 0.02). With respect to outcomes associated with treatment studies, only intrauterine growth restriction has shown significant effects. Egger's and Peter's test has evidenced publication bias. Six outcomes in prevention studies were classified as having low quality and two as having moderate quality, whereas all three outcomes assessed in treatment studies were classified as having moderate quality. CONCLUSIONS Antioxidant therapy has shown beneficial effects on preeclampsia prevention; moreover, the positive impact of this therapy on intrauterine growth restriction was observed during the disease treatment.
Collapse
Affiliation(s)
- Palloma R M M Alves
- Faculdade de Nutrição, Universidade Federal de Alagoas, Campus A. C. Simões, BR 104 Norte, Km 96,7, Tabuleiro dos Martins, CEP 57.072-970, Maceió, Alagoas, Brazil.
| | - Marilene B T Fragoso
- Instituto de Química e Biotecnologia (IQB/UFAL), Universidade Federal de Alagoas, Campus A. C. Simões, BR 104 Norte, Km 96,7, Tabuleiro dos Martins, CEP 57.072-970, Maceió, Alagoas, Brazil; Rede Nordeste de Biotecnologia (RENORBIO), Universidade Federal de Alagoas, Campus A. C. Simões, BR 104 Norte, Km 96,7, Tabuleiro dos Martins, CEP 57.072-970, Maceió, Alagoas, Brazil.
| | - Micaely C S Tenório
- Instituto de Química e Biotecnologia (IQB/UFAL), Universidade Federal de Alagoas, Campus A. C. Simões, BR 104 Norte, Km 96,7, Tabuleiro dos Martins, CEP 57.072-970, Maceió, Alagoas, Brazil; Rede Nordeste de Biotecnologia (RENORBIO), Universidade Federal de Alagoas, Campus A. C. Simões, BR 104 Norte, Km 96,7, Tabuleiro dos Martins, CEP 57.072-970, Maceió, Alagoas, Brazil.
| | - Nassib B Bueno
- Faculdade de Nutrição, Universidade Federal de Alagoas, Campus A. C. Simões, BR 104 Norte, Km 96,7, Tabuleiro dos Martins, CEP 57.072-970, Maceió, Alagoas, Brazil.
| | - Marília O F Goulart
- Instituto de Química e Biotecnologia (IQB/UFAL), Universidade Federal de Alagoas, Campus A. C. Simões, BR 104 Norte, Km 96,7, Tabuleiro dos Martins, CEP 57.072-970, Maceió, Alagoas, Brazil; Rede Nordeste de Biotecnologia (RENORBIO), Universidade Federal de Alagoas, Campus A. C. Simões, BR 104 Norte, Km 96,7, Tabuleiro dos Martins, CEP 57.072-970, Maceió, Alagoas, Brazil.
| | - Alane C M Oliveira
- Faculdade de Nutrição, Universidade Federal de Alagoas, Campus A. C. Simões, BR 104 Norte, Km 96,7, Tabuleiro dos Martins, CEP 57.072-970, Maceió, Alagoas, Brazil.
| |
Collapse
|
45
|
Taghiyar S, Pourrajab F, Aarabi MH. Astaxanthin improves fatty acid dysregulation in diabetes by controlling the AMPK-SIRT1 pathway. EXCLI JOURNAL 2023; 22:502-515. [PMID: 37534224 PMCID: PMC10391612 DOI: 10.17179/excli2023-6132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/06/2023] [Indexed: 08/04/2023]
Abstract
Due to the rising prevalence of metabolic disorders, including type 2 diabetes (T2DM), new prevention and treatment strategies are needed. The aim was to examine the effect of astaxanthin (AST) on the major regulatory metabolism pathway SIRT-MAPK and fatty acid (FA) profile of plasma in patients with T2DM. This clinical trial included 68 T2DM patients randomly assigned to receive 10 mg/day of oral AST (n = 34) or placebo (n = 33) for 12 weeks. The expression level of SIRT1, AMPK activity, and the level of fatty acids in the serum were examined. The results showed that AST could modify the serum levels of saturated fatty acids (SFA) and polyunsaturated fatty acids (PUFA), particularly that of Arachidonic acid, from 11.31±0.35 to 8.52±0.72 %. Also, AST increased the expression and activity levels of SIRT1 and AMPK, respectively. Pearson analysis also revealed a significant association between AMPK activity and Linoleic acid serum (LA) levels (~ -0.604, p~0.013). AST can modify the FA profile of plasma by inducing metabolizing cells to uptake them. Also, it can activate the SIRT-AMPK pathway related to metabolism regulation. See also Figure 1(Fig. 1).
Collapse
Affiliation(s)
- Sana Taghiyar
- Department of Clinical Biochemistry, International Campus, Shahid Sadoughi University of Medical Science, Yazd, Iran
| | - Fatemeh Pourrajab
- Reproductive Immunology Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Hosein Aarabi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| |
Collapse
|
46
|
Liu S, Jia Y, Meng S, Luo Y, Yang Q, Pan Z. Mechanisms of and Potential Medications for Oxidative Stress in Ovarian Granulosa Cells: A Review. Int J Mol Sci 2023; 24:ijms24119205. [PMID: 37298157 DOI: 10.3390/ijms24119205] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/20/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Granulosa cells are essential for follicle initiation and development, and their abnormal function or apoptosis is a crucial factor leading to follicular atresia. A state of oxidative stress occurs when the balance between the production of reactive oxygen species and the regulation of the antioxidant system is disturbed. Oxidative stress is one of the most important causes of the abnormal function and apoptosis of granulosa cells. Oxidative stress in granulosa cells causes female reproductive system diseases, such as polycystic ovary syndrome and premature ovarian failure. In recent years, studies have confirmed that the mechanism of oxidative stress in granulosa cells is closely linked to the PI3K-AKT signaling pathway, MAPK signaling pathway, FOXO axis, Nrf2 pathway, NF-κB signaling pathway, and mitophagy. It has been found that drugs such as sulforaphane, Periplaneta americana peptide, and resveratrol can mitigate the functional damage caused by oxidative stress on granulosa cells. This paper reviews some of the mechanisms involved in oxidative stress in granulosa cells and describes the mechanisms underlying the pharmacological treatment of oxidative stress in granulosa cells.
Collapse
Affiliation(s)
- Siheng Liu
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Yunbing Jia
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Shirui Meng
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Yiran Luo
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Qi Yang
- College of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Zezheng Pan
- College of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| |
Collapse
|
47
|
Yang G, Liu X, Jing X, Wang J, Wang H, Chen F, Wang W, Shao Y, Cui X. Astaxanthin suppresses oxidative stress and calcification in vertebral cartilage endplate via activating Nrf-2/HO-1 signaling pathway. Int Immunopharmacol 2023; 119:110159. [PMID: 37054647 DOI: 10.1016/j.intimp.2023.110159] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/30/2023] [Accepted: 04/04/2023] [Indexed: 04/15/2023]
Abstract
BACKGROUND Cartilage endplate (CEP) degeneration is an important initiating factor leading to intervertebral disc degeneration (IVDD). Astaxanthin (Ast) is a natural lipid-soluble and red-orange carotenoid which possesses various biological activities, including antioxidant, anti-inflammatory, and anti-aging effects in multiple organisms. However, the effects and mechanism of Ast on endplate chondrocytes remain largely unknown. The objective of the current study was to investigate the effects and of Ast on CEP degeneration and its underlying molecular mechanisms. METHODS Tert-butyl hydroperoxide (TBHP) was used to mimic the IVDD pathological environment. We investigated the effects of Ast on the Nrf2 signaling pathway and damage-associated events. The IVDD model was constructed by surgical resection of L4 posterior elements to explore the role of Ast in vivo. RESULTS We found that the activation of the Nrf-2/HO-1 signaling pathway was enhanced by Ast, thus promoted mitophagy process, inhibited oxidative stress and CEP chondrocytes ferroptosis, eventually ameliorated extracellular matrix (ECM) degradation, CEP calcification and endplate chondrocytes apoptosis. Knockdown of Nrf-2 using siRNA inhibited Ast induced mitophagy process and its protective effect. Moreover, Ast inhibited oxidative stimulation-induced NF-κB activity and could ameliorate the inflammation response. The results also were confirmed by experiments in vivo, Ast alleviated IVDD development and CEP calcification. CONCLUSIONS Ast could protect vertebral cartilage endplate against oxidative stress and degeneration via activating Nrf-2/HO-1 pathway. Our results imply that Ast may serve as a potential therapeutic agent for IVDD progression and treatment.
Collapse
Affiliation(s)
- Guihe Yang
- Department of Spine Surgery, Shandong Provincial Hospital, Shandong University, Jinan 250000, China.
| | - Xiaoyang Liu
- Department of Spine Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250000, China.
| | - Xingzhi Jing
- Department of Spine Surgery, Shandong Provincial Hospital, Shandong University, Jinan 250000, China.
| | - Jinjin Wang
- Department of Spine Surgery, Shandong Provincial Hospital, Shandong University, Jinan 250000, China.
| | - Heran Wang
- Department of Spine Surgery, Shandong Provincial Hospital, Shandong University, Jinan 250000, China.
| | - Feifei Chen
- Department of Spine Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250000, China.
| | - Wenchao Wang
- Department of Spine Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250000, China.
| | - Yuandong Shao
- Department of Spine Surgery, Shandong Provincial Hospital, Shandong University, Jinan 250000, China; Department of Spine Surgery, Binzhou People's Hospital, Binzhou 256600, China.
| | - Xingang Cui
- Department of Spine Surgery, Shandong Provincial Hospital, Shandong University, Jinan 250000, China.
| |
Collapse
|
48
|
Rostami S, Alyasin A, Saedi M, Nekoonam S, Khodarahmian M, Moeini A, Amidi F. Astaxanthin ameliorates inflammation, oxidative stress, and reproductive outcomes in endometriosis patients undergoing assisted reproduction: A randomized, triple-blind placebo-controlled clinical trial. Front Endocrinol (Lausanne) 2023; 14:1144323. [PMID: 37020589 PMCID: PMC10067663 DOI: 10.3389/fendo.2023.1144323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 03/08/2023] [Indexed: 03/22/2023] Open
Abstract
Purpose In a randomized, triple-blind, placebo-controlled clinical trial (RCT) including 50 infertile women with endometriosis candidate for assisted reproductive techniques (ART), we studied the effect of Astaxanthin (AST) on pro-inflammatory cytokines, oxidative stress (OS) markers, and early pregnancy outcomes. Methods Before and after 12 weeks of AST treatment (6 mg per day), blood serum and follicular fluid (FF) samples were collected from 50 infertile women with endometriosis stage III/IV undergoing ART. Pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α) and OS markers (malondialdehyde [MDA], superoxide dismutase [SOD], catalase [CAT], and total antioxidant capacity [TAC]) were measured in the serum and FF. ART outcomes were also compared between the groups. Results Increased serum levels of TAC (398.661 ± 57.686 vs. 364.746 ± 51.569; P = 0.004) and SOD (13.458 ± 7.276 vs. 9.040 ± 5.155; P = 0.010) were observed after AST therapy in the treatment group. Furthermore, serum MDA (14.619 ± 2.505 vs. 15.939 ± 1.512; P = 0.031) decreased significantly following antioxidant treatment. In addition, significantly lower serum levels of IL-1β (4.515 ± 0.907 vs. 6.8760 ± 0.8478; P = 0.000), IL-6 (5.516 ± 0.646 vs. 5.0543 ± 0.709; P = 0.024) and TNF-α (2.520 ± 0.525 vs. 2.968 ± 0.548; P = 0.038) were observed after AST treatment. In addition, AST supplementation led to an improved number of oocytes retrieved (14.60 ± 7.79 vs. 9.84 ± 6.44; P = 0.043), number of mature (MII) oocytes (10.48 ± 6.665 vs. 6.72 ± 4.3; P = 0.041), and high-quality embryos (4.52 ± 2.41 vs. 2.72 ± 2.40; P = 0.024). Conclusion AST pretreatment can modulate inflammation and OS in endometriosis-induced infertile patients. ART outcomes also improved after 12 weeks of AST therapy. Our results suggest that AST can be a potential therapeutic target for infertile patients with endometriosis undergoing ART.
Collapse
Affiliation(s)
- Sahar Rostami
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ashraf Alyasin
- Department of Infertility, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Department of Obstetrics and Gynecology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mojtaba Saedi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeid Nekoonam
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahshad Khodarahmian
- Department of Infertility, Arash Women’s Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Ashraf Moeini
- Department of Gynecology and Obstetrics, Arash Women’s Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Department of Endocrinology and Female Infertility, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, Academic Center for Education, Culture, and Research (ACECR), Tehran, Iran
| | - Fardin Amidi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
49
|
Chen S, Wang J, Feng J, Xuan R. Research progress of Astaxanthin nano-based drug delivery system: Applications, prospects and challenges? Front Pharmacol 2023; 14:1102888. [PMID: 36969867 PMCID: PMC10034004 DOI: 10.3389/fphar.2023.1102888] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 03/01/2023] [Indexed: 03/11/2023] Open
Abstract
Astaxanthin (ASX) is a kind of carotenoid widely distributed in nature, which has been shown to extremely strong antioxidative effects and significant preventive and therapeutic effects on cancer, diabetes, cardiovascular disease, etc. However, its application in the medical field is greatly limited due to its poor water solubility, unstable chemical properties and other shortcomings. In recent years, the nano-based drug delivery systems such as nanoparticles, liposomes, nanoemulsions, nanodispersions, and polymer micelles, have been used as Astaxanthin delivery carriers with great potential for clinical applications, which have been proved that they can enhance the stability and efficacy of Astaxanthin and achieve targeted delivery of Astaxanthin. Herein, based on the pharmacological effects of Astaxanthin, we reviewed the characteristics of various drug delivery carriers, which is of great significance for improving the bioavailability of Astaxanthin.
Collapse
Affiliation(s)
- Siqian Chen
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
- School of Medicine, Ningbo University, Ningbo, China
| | - Jiayi Wang
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
- School of Medicine, Ningbo University, Ningbo, China
| | - Jiating Feng
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
- School of Medicine, Ningbo University, Ningbo, China
| | - Rongrong Xuan
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
- *Correspondence: Rongrong Xuan,
| |
Collapse
|
50
|
Haller OJ, Semendric I, George RP, Collins-Praino LE, Whittaker AL. The effectiveness of anti-inflammatory agents in reducing chemotherapy-induced cognitive impairment in preclinical models - A systematic review. Neurosci Biobehav Rev 2023; 148:105120. [PMID: 36906244 DOI: 10.1016/j.neubiorev.2023.105120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 03/03/2023] [Accepted: 03/04/2023] [Indexed: 03/11/2023]
Abstract
Chemotherapy-induced cognitive impairment (CICI) is a debilitating condition resulting from chemotherapy administration for cancer treatment. CICI is characterised by various cognitive impairments, including issues with learning, memory, and concentration, impacting quality of life. Several neural mechanisms are proposed to drive CICI, including inflammation, therefore, anti-inflammatory agents could ameliorate such impairments. Research is still in the preclinical stage; however, the efficacy of anti-inflammatories to reduce CICI in animal models is unknown. Therefore, a systematic review was conducted, with searches performed in PubMed, Scopus, Embase, PsycInfo and Cochrane Library. A total of 64 studies were included, and of the 50 agents identified, 41 (82%) reduced CICI. Interestingly, while non-traditional anti-inflammatory agents and natural compounds reduced impairment, the traditional agents were unsuccessful. Such results must be taken with caution due to the heterogeneity observed in terms of methods employed. Nevertheless, preliminary evidence suggests anti-inflammatory agents could be beneficial for treating CICI, although it may be critical to think beyond the use of traditional anti-inflammatories when considering which specific compounds to prioritise in development.
Collapse
Affiliation(s)
- Olivia J Haller
- School of Biomedicine, The University of Adelaide, Adelaide, South Australia 5005, Australia.
| | - Ines Semendric
- School of Biomedicine, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Rebecca P George
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy Campus, Roseworthy, South Australia 5371, Australia
| | | | - Alexandra L Whittaker
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy Campus, Roseworthy, South Australia 5371, Australia.
| |
Collapse
|