1
|
Singh A, Sonawane P, Kumar A, Singh H, Naumovich V, Pathak P, Grishina M, Khalilullah H, Jaremko M, Emwas AH, Verma A, Kumar P. Challenges and Opportunities in the Crusade of BRAF Inhibitors: From 2002 to 2022. ACS OMEGA 2023; 8:27819-27844. [PMID: 37576670 PMCID: PMC10413849 DOI: 10.1021/acsomega.3c00332] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 02/27/2023] [Indexed: 08/15/2023]
Abstract
Serine/threonine-protein kinase B-Raf (BRAF; RAF = rapidly accelerated fibrosarcoma) plays an important role in the mitogen-activated protein kinase (MAPK) signaling cascade. Somatic mutations in the BRAF gene were first discovered in 2002 by Davies et al., which was a major breakthrough in cancer research. Subsequently, three different classes of BRAF mutants have been discovered. This class includes class I monomeric mutants (BRAFV600), class II BRAF homodimer mutants (non-V600), and class III BRAF heterodimers (non-V600). Cancers caused by these include melanoma, thyroid cancer, ovarian cancer, colorectal cancer, nonsmall cell lung cancer, and others. In this study, we have highlighted the major binding pockets in BRAF protein, their active and inactive conformations with inhibitors, and BRAF dimerization and its importance in paradoxical activation and BRAF mutation. We have discussed the first-, second-, and third-generation drugs approved by the Food and Drug Administration and drugs under clinical trials with all four different binding approaches with DFG-IN/OUT and αC-IN/OUT for BRAF protein. We have investigated particular aspects and difficulties with all three generations of inhibitors. Finally, this study has also covered recent developments in synthetic BRAF inhibitors (from their discovery in 2002 to 2022), their unique properties, and importance in inhibiting BRAF mutants.
Collapse
Affiliation(s)
- Ankit
Kumar Singh
- Department
of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda 151401, India
| | - Pankaj Sonawane
- Department
of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda 151401, India
| | - Adarsh Kumar
- Department
of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda 151401, India
| | - Harshwardhan Singh
- Department
of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda 151401, India
| | - Vladislav Naumovich
- Laboratory
of Computational Modeling of Drugs, Higher Medical and Biological
School, South Ural State University, Chelyabinsk 454008, Russia
| | - Prateek Pathak
- Laboratory
of Computational Modeling of Drugs, Higher Medical and Biological
School, South Ural State University, Chelyabinsk 454008, Russia
| | - Maria Grishina
- Laboratory
of Computational Modeling of Drugs, Higher Medical and Biological
School, South Ural State University, Chelyabinsk 454008, Russia
| | - Habibullah Khalilullah
- Department
of Pharmaceutical Chemistry and Pharmacognosy, Unaizah College of
Pharmacy, Qassim University, Unayzah 51911, Saudi Arabia
| | - Mariusz Jaremko
- Smart-Health
Initiative and Red Sea Research Center, Division of Biological and
Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Abdul-Hamid Emwas
- Core
Laboratories, King Abdullah University of
Science and Technology, Thuwal 23955-6900, Saudi
Arabia
| | - Amita Verma
- Bioorganic
and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical
Sciences, Sam Higginbottom University of
Agriculture, Technology and Sciences, Prayagraj 211007, India
| | - Pradeep Kumar
- Department
of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda 151401, India
| |
Collapse
|
2
|
Fatemi I, Dehdashtian E, Pourhanifeh MH, Mehrzadi S, Hosseinzadeh A. Therapeutic Application of Melatonin in the Treatment of Melanoma: A Review. CURRENT CANCER THERAPY REVIEWS 2021. [DOI: 10.2174/1573394717666210526140950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Melanoma is an aggressive type of skin cancer, which is responsible for more deaths
than nonmelanoma skin cancers. Therapeutic strategies include targeted therapy, biochemotherapy,
immunotherapy, photodynamic therapy, chemotherapy, and surgical resection. Depending on the
clinical stage, single or combination therapy may be used to prevent and treat cancer. Due to resistance
development during treatment courses, the efficacy of mentioned therapies can be reduced.
In addition to resistance, these treatments have serious side effects for melanoma patients. According
to available reports, melatonin, a pineal indolamine with a wide spectrum of biological potentials,
has anticancer features. Furthermore, melatonin could protect against chemotherapy- and radiation-
induced adverse events and can sensitize cancer cells to therapy. The present review discusses
the therapeutic application of melatonin in the treatment of melanoma. This review was carried
out in PubMed, Web of Science, and Scopus databases comprising the date of publication period
from January 1976 to March 2021.
Collapse
Affiliation(s)
- Iman Fatemi
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman,Iran
| | - Ehsan Dehdashtian
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran,Iran
| | | | - Saeed Mehrzadi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran,Iran
| | - Azam Hosseinzadeh
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran,Iran
| |
Collapse
|
3
|
D Avó Luís AB, Seo MK. Has the development of cancer biomarkers to guide treatment improved health outcomes? THE EUROPEAN JOURNAL OF HEALTH ECONOMICS : HEPAC : HEALTH ECONOMICS IN PREVENTION AND CARE 2021; 22:789-810. [PMID: 33783662 PMCID: PMC8214594 DOI: 10.1007/s10198-021-01290-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 03/12/2021] [Indexed: 06/12/2023]
Abstract
During the last decade, testing the patient's biomarker status prior to the administration of corresponding co-dependent therapies has been emerging in clinical practice. These biomarker-guided therapies have promoted the promise of more personalized medicine, with the prescription of the right treatment to the right patient, while avoiding expensive ineffective drugs and adverse drug reactions. Cancer treatments have especially taken advantage of this technology. We assess how the introduction of biomarker tests guiding cancer therapy have affected the premature mortality and survival of cancer patients in Norway. Our findings suggest that, in general, cancer patients have benefited from both biomarker testing and more cancer drugs. Furthermore, we find that the total effect of biomarker testing on 3-year survival decreases as the number of drugs available increases, suggesting that the matching of patients with the appropriate treatment is better when fewer drugs are available.
Collapse
Affiliation(s)
- Ana Beatriz D Avó Luís
- Department of Economics, University of Bergen, Fosswinckelsgate 14, 5007, Bergen, Norway.
- Centre for Cancer Biomarkers (CCBIO), Faculty of Medicine, University of Bergen, Bergen, Norway.
| | - Mikyung Kelly Seo
- Centre for Cancer Biomarkers (CCBIO), Faculty of Medicine, University of Bergen, Bergen, Norway
- Department of Health Services Research and Policy, Faculty of Public Health and Policy, London School of Hygiene and Tropical Medicine, London, UK
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
4
|
Cutroneo P, Ingrasciotta Y, Isgrò V, Rullo EV, Berretta M, Fiorica F, Trifirò G, Guarneri C. Psoriasis and psoriasiform reactions secondary to immune checkpoint inhibitors. Dermatol Ther 2021; 34:e14830. [PMID: 33527643 DOI: 10.1111/dth.14830] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/22/2021] [Accepted: 01/23/2021] [Indexed: 12/15/2022]
Abstract
The advent of Immune Checkpoint Inhibitors (ICIs) as a standard of care for several cancers, including melanoma and head/neck squamous cell carcinoma has changed the therapeutic approach to these conditions, drawing at the same time the attention on some safety issues related to their use. To assess the incidence of psoriasis as a specific immune-related cutaneous adverse event attributing to ICIs using the Eudravigilance reporting system. All reports of adverse drug reactions (ADRs) concerning either exacerbation of psoriasis or de novo onset of psoriasis/psoriasiform reactions associated to the use of Cytotoxic T-Lymphocyte Antigen-4 (CTLA-4) inhibitors ipilimumab and tremelimumab, and the Programmed cell Death protein 1/Programmed Death-Ligand 1 (PD-1/PD-L1) inhibitors nivolumab, pembrolizumab, atezolizumab, durvalumab, avelumab, and cemiplimab were identified and extracted from the Eudravigilance reporting system, during the period between the date of market licensing (for each study drug) and 30 October 2020. 8213 reports of cutaneous ADRs associated with at least one of study drug have been recorded, of which 315 (3.8%) reporting psoriasis and/or psoriasiform reactions as ADR. In 70.8% of reports patients had pre-existing disease. ICIs-related skin toxicity is a well-established phenomenon, presenting with several conditions, sustained by an immune background based on the activity of some cells (CD4+/CD8+ T-cells, neutrophils, eosinophils, and plasmocytes), inflammatory mediators, chemokines, and tumor-specific antibodies. In this setting, psoriasis represents probably the most paradigmatic model of these reactions, thus requiring adequate recognition as no guidelines on management are now available.
Collapse
Affiliation(s)
- Paola Cutroneo
- Sicilian Regional Pharmacovigilance Center, University Hospital of Messina, Messina, Italy
| | - Ylenia Ingrasciotta
- Department of Biomedical and Dental Sciences and Morpho-Functional Imaging, Section of Pharmacology, University of Messina, Messina, Italy
| | - Valentina Isgrò
- Department of Biomedical and Dental Sciences and Morpho-Functional Imaging, Section of Pharmacology, University of Messina, Messina, Italy
| | - Emmanuele Venanzi Rullo
- Department of Clinical and Experimental Medicine, Section of Infectious Diseases, University of Messina, Messina, Italy
| | - Massimiliano Berretta
- Department of Clinical and Experimental Medicine, Section of Infectious Diseases, University of Messina, Messina, Italy
| | - Francesco Fiorica
- Department of Radiation Oncology, Mater Salutis Hospital, Verona, Italy
| | - Gianluca Trifirò
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Claudio Guarneri
- Department of Biomedical and Dental Sciences and Morpho-Functional Imaging, Section of Dermatology, University of Messina, Messina, Italy
| |
Collapse
|
5
|
Michielin O, Atkins MB, Koon HB, Dummer R, Ascierto PA. Evolving impact of long-term survival results on metastatic melanoma treatment. J Immunother Cancer 2020; 8:e000948. [PMID: 33037115 PMCID: PMC7549477 DOI: 10.1136/jitc-2020-000948] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2020] [Indexed: 12/31/2022] Open
Abstract
Melanoma treatment has been revolutionized over the past decade. Long-term results with immuno-oncology (I-O) agents and targeted therapies are providing evidence of durable survival for a substantial number of patients. These results have prompted consideration of how best to define long-term benefit and cure. Now more than ever, oncologists should be aware of the long-term outcomes demonstrated with these newer agents and their relevance to treatment decision-making. As the first tumor type for which I-O agents were approved, melanoma has served as a model for other diseases. Accordingly, discussions regarding the value and impact of long-term survival data in patients with melanoma may be relevant in the future to other tumor types. Current findings indicate that, depending on the treatment, over 50% of patients with melanoma may gain durable survival benefit. The best survival outcomes are generally observed in patients with favorable prognostic factors, particularly normal baseline lactate dehydrogenase and/or a low volume of disease. Survival curves from melanoma clinical studies show a plateau at 3 to 4 years, suggesting that patients who are alive at the 3-year landmark (especially in cases in which treatment had been stopped) will likely experience prolonged cancer remission. Quality-of-life and mixture-cure modeling data, as well as metrics such as treatment-free survival, are helping to define the value of this long-term survival. In this review, we describe the current treatment landscape for melanoma and discuss the long-term survival data with immunotherapies and targeted therapies, discussing how to best evaluate the value of long-term survival. We propose that some patients might be considered functionally cured if they have responded to treatment and remained treatment-free for at least 2 years without disease progression. Finally, we consider that, while there have been major advances in the treatment of melanoma in the past decade, there remains a need to improve outcomes for the patients with melanoma who do not experience durable survival.
Collapse
Affiliation(s)
- Olivier Michielin
- Oncology Department, Precision Oncology Center, Lausanne, Switzerland
- Oncology Department, Lausanne University Hospital, Lausanne, Switzerland
| | - Michael B Atkins
- Medical Oncology, Georgetown Lombardi Comprehensive Cancer Center and Oncology Academic Department, Georgetown University Medical Center, Washington, DC, USA
| | - Henry B Koon
- Clinical Research, Bristol Myers Squibb, Princeton, New Jersey, USA
| | | | - Paolo Antonio Ascierto
- Melanoma Cancer Immunotherapy and Innovative Therapy Unit, Istituto Nazionale Tumori IRCCS Fondazione Pascale, Naples, Italy
| |
Collapse
|
6
|
Facciolà A, Venanzi Rullo E, Ceccarelli M, D'Andrea F, Coco M, Micali C, Cacopardo B, Marino A, Cannavò SP, Di Rosa M, Condorelli F, Pellicanò GF, Guarneri C, Nunnari G. Malignant melanoma in HIV: Epidemiology, pathogenesis, and management. Dermatol Ther 2019; 33:e13180. [PMID: 31770477 DOI: 10.1111/dth.13180] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 11/23/2019] [Indexed: 12/23/2022]
Abstract
People affected by immunodeficiency, and especially those infected by HIV, are burdened by a higher risk of developing malignancies. It has been estimated that the incidence of melanoma in HIV-infected people is 2.6-fold higher than in uninfected ones. In this group of patients, melanoma shows a more aggressive phenotype and poorer survival rates compared to HIV-negative people. Standard guidelines of diagnosis and care do not exist yet. Studies suggest high index of suspicion and a low threshold for biopsy in HIV-positive patients regardless of their CD4+ count and the use of standard surgical margins for re-excision procedures. In case of diagnosis of melanoma in HIV-positive patients, a thorough search for metastatic disease is recommended because of the more aggressive course of this cancer in HIV-positive patients. Moreover, to rapidly find out any recurrence or metastatic disease after treatment, these patients need a close follow-up, every 3 months, for the first 2 years and at least twice yearly thereafter. Although surgery remains the main therapeutic option, application of immune checkpoint-based immunotherapy is being studied and seems to be promising. The aim of this review is to present the current knowledge and future options for melanoma diagnosis and treatment in people living with HIV.
Collapse
Affiliation(s)
- Alessio Facciolà
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Emmanuele Venanzi Rullo
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy.,Department of Pathology and Laboratory Medicine, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Manuela Ceccarelli
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy.,Department of Pathology and Laboratory Medicine, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Flavia D'Andrea
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Mariagiovanna Coco
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Cristina Micali
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Bruno Cacopardo
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Andrea Marino
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Serafinella P Cannavò
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Michelino Di Rosa
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Fabrizio Condorelli
- Department of Pharmacological Sciences, University of Oriental Piedmont "A. Avogadro", Novara, Italy
| | - Giovanni F Pellicanò
- Department of Human Pathology of the Adult and the Developmental Age "G. Barresi", University of Messina, Messina, Italy
| | - Claudio Guarneri
- Department of Biomedical Sciences and Morphologic and Functional Imaging, University of Messina, Messina, Italy
| | - Giuseppe Nunnari
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| |
Collapse
|
7
|
Manninen AA, Gardberg M, Juteau S, Ilmonen S, Jukonen J, Andersson N, Carpén O. BRAF immunohistochemistry predicts sentinel lymph node involvement in intermediate thickness melanomas. PLoS One 2019; 14:e0216043. [PMID: 31039200 PMCID: PMC6490950 DOI: 10.1371/journal.pone.0216043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 04/12/2019] [Indexed: 12/31/2022] Open
Abstract
Background Sentinel node biopsy (SNB) is an important step in melanoma staging and prognostication. It is commonly performed for patients with intermediate thickness melanomas, based on clinicopathological features. However, only 20–25% of patients eventually demonstrate nodal involvement. The aim of this study was to evaluate whether tissue biomarkers with links to melanoma biology, together with clinicopathological parameters, could aid in the prediction of sentinel node involvement and improve selection of patients for SNB. In addition, we examined the role of these clinical or biological markers in disease outcome. Methods We collected a case-control cohort of 140 intermediate thickness (Breslow 0,9–4,0mm) melanoma patients with or without SNB involvement matched for age, gender, Breslow thickness and location. From this cohort, we tested the predictive value of common clinicopathological parameters (ulceration, mitotic count and tumor regression) and FMNL-2, ezrin and BRAF V600E immunoreactivity, for sentinel node involvement and survival. We further analyzed the correlations in the superficial spreading melanoma subtype. Results Based on our case control analysis, of the markers, BRAF V600E status (p = 0.010) and mitotic count (p = 0.036) correlated with SNB involvement. SNB status was a strong independent prognosticator for recurrence free survival (RFS p<0.001), melanoma specific survival (MSS p = 0.000) and overall survival (OS p = 0.029). In the superficially spreading melanoma subgroup, BRAF V600E positivity indicated poorer RFS (p = 0.039) and OS (p = 0.012). By combining the Breslow thickness, mitotic count and BRAF immunohistochemistry, we identified a group of superficially spreading melanomas with an excellent survival probability independent of SNB status. Conclusions These results demonstrate that BRAF immunohistochemistry could serve as a useful addition to a marker panel for selecting intermediate thickness melanoma patients for SNB.
Collapse
Affiliation(s)
- Atte A. Manninen
- Department of Plastic Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Maria Gardberg
- Institute of Biomedicine, Research Center for Cancer, Infections and Immunity, University of Turku and Turku University Hospital, Turku, Finland
| | - Susanna Juteau
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Suvi Ilmonen
- Department of Plastic Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Joonas Jukonen
- Institute of Biomedicine, University of Helsinki, Helsinki, Finland
- Research Program in Systems Oncology, University of Helsinki, Helsinki, Finland
| | - Noora Andersson
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Olli Carpén
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program in Systems Oncology, University of Helsinki, Helsinki, Finland
- * E-mail:
| |
Collapse
|
8
|
Kim SH, Kil IS, Kwon OS, Kang BS, Lee DS, Lee HS, Lee JH, Park JW. Oxalomalate reduces tumor progression in melanoma via ROS-dependent proapoptotic and antiangiogenic effects. Biochimie 2019; 158:165-171. [DOI: 10.1016/j.biochi.2019.01.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 01/08/2019] [Indexed: 10/27/2022]
|
9
|
Piotrowska A, Wierzbicka J, Rybarczyk A, Tuckey RC, Slominski AT, Żmijewski MA. Vitamin D and its low calcemic analogs modulate the anticancer properties of cisplatin and dacarbazine in the human melanoma A375 cell line. Int J Oncol 2019; 54:1481-1495. [PMID: 30968156 PMCID: PMC6411347 DOI: 10.3892/ijo.2019.4725] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 01/14/2019] [Indexed: 12/11/2022] Open
Abstract
Melanoma represents a significant challenge in cancer treatment due to the high drug resistance of melanomas and the patient mortality rate. This study presents data indicating that nanomolar concentrations of the hormonally active form of vitamin D, 1α,25-dihydroxyvitamin D3 [1α,25(OH)2D3], its non-calcemic analogues 20S-hydroxyvitamin D3 and 21-hydroxypregnacalciferol, as well as the low-calcemic synthetic analog calcipotriol, modulate the efficacy of the anticancer drugs cisplatin and dacarbazine. It was observed that vitamin D analogs sensitized melanoma A375 cells to hydrogen peroxide used as an inducer of oxidative stress. On the other hand, only 1α,25(OH)2D3 resulted in a minor, but significant effect on the proliferation of melanoma cells treated simultaneously with dacarbazine, but not cisplatin. Notably, cisplatin (300 µM) exhibited a higher overall antiproliferative activity than dacarbazine. Cisplatin treatment of melanoma cells resulted in an induction of apoptosis as demonstrated by flow cytometry (accumulation of cells at the subG1 phase of the cell cycle), whereas dacarbazine caused G1/G0 cell cycle arrest, with the effects being improved by pre-treatment with vitamin D analogs. Treatment with cisplatin resulted in an initial increase in the level of reactive oxygen species (ROS). Dacarbazine caused transient stimulation of ROS levels and the mitochondrial membrane potential (Δψm) (after 1 or 3 h of treatment, respectively), but the effect was not detectable following prolonged (24 h) incubation with the drug. Vitamin D exhibited modulatory effects on the cells treated with dacarbazine, decreasing the half maximal inhibitory concentration (IC50) for the drug, stimulating G1/G0 arrest and causing a marked decrease in Δψm. Finally, cisplatin, dacarbazine and 1α,25(OH)2D3 displayed modulatory effects on the expression of ROS and vitamin D-associated genes in the melanoma A375 cells. In conclusion, nanomolar concentrations of 1,25(OH)2D3 only had minor effects on the proliferation of melanoma cells treated with dacarbazine, decreasing the relative IC50 value. However, co-treatment with vitamin D analogs resulted in the modulation of cell cycle and ROS responses, and affected gene expression, suggesting possible crosstalk between the signaling pathways of vitamin D and the anticancer drugs used in this study.
Collapse
Affiliation(s)
- Anna Piotrowska
- Department of Histology, Faculty of Medicine, Medical University of Gdansk, 80‑211 Gdansk, Poland
| | - Justyna Wierzbicka
- Department of Histology, Faculty of Medicine, Medical University of Gdansk, 80‑211 Gdansk, Poland
| | - Agnieszka Rybarczyk
- Department of Histology, Faculty of Medicine, Medical University of Gdansk, 80‑211 Gdansk, Poland
| | - Robert C Tuckey
- School of Molecular Sciences, Faculty of Science, The University of Western Australia, Perth, Western Australia 6009, Australia
| | - Andrzej T Slominski
- Department of Dermatology, Cancer Chemoprevention Program, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Michał A Żmijewski
- Department of Histology, Faculty of Medicine, Medical University of Gdansk, 80‑211 Gdansk, Poland
| |
Collapse
|
10
|
Falzone L, Salomone S, Libra M. Evolution of Cancer Pharmacological Treatments at the Turn of the Third Millennium. Front Pharmacol 2018; 9:1300. [PMID: 30483135 PMCID: PMC6243123 DOI: 10.3389/fphar.2018.01300] [Citation(s) in RCA: 546] [Impact Index Per Article: 78.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 10/23/2018] [Indexed: 12/11/2022] Open
Abstract
The medical history of cancer began millennia ago. Historical findings of patients with cancer date back to ancient Egyptian and Greek civilizations, where this disease was predominantly treated with radical surgery and cautery that were often ineffective, leading to the death of patients. Over the centuries, important discoveries allowed to identify the biological and pathological features of tumors, without however contributing to the development of effective therapeutic approaches until the end of the 1800s, when the discovery of X-rays and their use for the treatment of tumors provided the first modern therapeutic approach in medical oncology. However, a real breakthrough took place after the Second World War, with the discovery of cytotoxic antitumor drugs and the birth of chemotherapy for the treatment of various hematological and solid tumors. Starting from this epochal turning point, there has been an exponential growth of studies concerning the use of new drugs for cancer treatment. The second fundamental breakthrough in the field of oncology and pharmacology took place at the beginning of the '80s, thanks to molecular and cellular biology studies that allowed the development of specific drugs for some molecular targets involved in neoplastic processes, giving rise to targeted therapy. Both chemotherapy and target therapy have significantly improved the survival and quality of life of cancer patients inducing sometimes complete tumor remission. Subsequently, at the turn of the third millennium, thanks to genetic engineering studies, there was a further advancement of clinical oncology and pharmacology with the introduction of monoclonal antibodies and immune checkpoint inhibitors for the treatment of advanced or metastatic tumors, for which no effective treatment was available before. Today, cancer research is always aimed at the study and development of new therapeutic approaches for cancer treatment. Currently, several researchers are focused on the development of cell therapies, anti-tumor vaccines, and new biotechnological drugs that have already shown promising results in preclinical studies, therefore, in the near future, we will certainly assist to a new revolution in the field of medical oncology.
Collapse
Affiliation(s)
- Luca Falzone
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Salvatore Salomone
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.,Research Center for Prevention, Diagnosis and Treatment of Cancer (PreDiCT), University of Catania, Catania, Italy
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.,Research Center for Prevention, Diagnosis and Treatment of Cancer (PreDiCT), University of Catania, Catania, Italy
| |
Collapse
|
11
|
Liu Y, Zhi D, Wang X, Fei D, Zhang Z, Wu Z, Li Y, Chen P, Li H. Kushui Rose (R. Setate x R. Rugosa) decoction exerts antitumor effects in C. elegans by downregulating Ras/MAPK pathway and resisting oxidative stress. Int J Mol Med 2018; 42:1411-1417. [PMID: 29956725 PMCID: PMC6089776 DOI: 10.3892/ijmm.2018.3738] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 01/25/2018] [Indexed: 12/31/2022] Open
Abstract
Kushui rose (R. Setate x R. Rugosa) (KR) is a traditional Chinese medicine proven to be a potent antioxidant, and used for thousands of years. Approximately 30% of all human cancers relevant to mutational activated Ras, and over-activated Ras are accompanied by increased accumulation of reactive oxygen species (ROS). Thus, one way of developing anticancer drugs is to reduce ROS accumulation. Therefore, KR was predicted to have potential to combat over-activated Ras-related cancer. C. elegans with let‑60(gf)/ras mutant, which exhibited tumor-like symptoms of the multivulva phenotype, was employed to determine the effect of KR on Ras/MAPK pathway. Other strains of worms and H2DCF-DA dye were also applied to study the antioxidant stress capacity of KR. This study was aimed to determine whether KR has a potential effect on combat over-activated Ras-related cancer through resistance to oxidative stress. Our results showed that Kushui rose decoction (KRD) has potent antioxidant activity in vitro, and can inhibit over-activated Ras in vivo. Further, KRD significantly suppressed over-activated Ras/MAPK pathway by regulating oxidative stress-related proteins, such as forkhead transcription factor (DAF-16), glutathione S-transferase-4 (GST-4), superoxide dismutases (SODs) and heat shock protein-16.2 (HSP-16.2). However, essential oil and hydrosol of KR had no effect on over-activated Ras. Thus these results reminded us that people usually soak rose in hot water to prepare 'rose tea' as an effective way for health care. Thus, KRD was demonstrated to be a potential drug candidate for combating over-activated Ras-related cancer as an antioxidant.
Collapse
Affiliation(s)
- Yan Liu
- Gansu High Throughput Screening and Creation Center for Health Products, School of Pharmacy, Lanzhou University, Lanzhou, Gansu 730020
| | - Dejuan Zhi
- Gansu High Throughput Screening and Creation Center for Health Products, School of Pharmacy, Lanzhou University, Lanzhou, Gansu 730020
| | - Xin Wang
- Gansu High Throughput Screening and Creation Center for Health Products, School of Pharmacy, Lanzhou University, Lanzhou, Gansu 730020
- Gansu Tianrun Rose Research Institute of Lanzhou University, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Dongqing Fei
- Gansu High Throughput Screening and Creation Center for Health Products, School of Pharmacy, Lanzhou University, Lanzhou, Gansu 730020
| | - Zhanxin Zhang
- Gansu High Throughput Screening and Creation Center for Health Products, School of Pharmacy, Lanzhou University, Lanzhou, Gansu 730020
| | - Zhengrong Wu
- Gansu High Throughput Screening and Creation Center for Health Products, School of Pharmacy, Lanzhou University, Lanzhou, Gansu 730020
- Gansu Tianrun Rose Research Institute of Lanzhou University, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Yang Li
- Gansu High Throughput Screening and Creation Center for Health Products, School of Pharmacy, Lanzhou University, Lanzhou, Gansu 730020
- Gansu Tianrun Rose Research Institute of Lanzhou University, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Peng Chen
- Gansu High Throughput Screening and Creation Center for Health Products, School of Pharmacy, Lanzhou University, Lanzhou, Gansu 730020
- Gansu Tianrun Rose Research Institute of Lanzhou University, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Hongyu Li
- Gansu High Throughput Screening and Creation Center for Health Products, School of Pharmacy, Lanzhou University, Lanzhou, Gansu 730020
| |
Collapse
|
12
|
Basu R, Qian Y, Kopchick JJ. MECHANISMS IN ENDOCRINOLOGY: Lessons from growth hormone receptor gene-disrupted mice: are there benefits of endocrine defects? Eur J Endocrinol 2018; 178:R155-R181. [PMID: 29459441 DOI: 10.1530/eje-18-0018] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 02/19/2018] [Indexed: 12/12/2022]
Abstract
Growth hormone (GH) is produced primarily by anterior pituitary somatotroph cells. Numerous acute human (h) GH treatment and long-term follow-up studies and extensive use of animal models of GH action have shaped the body of GH research over the past 70 years. Work on the GH receptor (R)-knockout (GHRKO) mice and results of studies on GH-resistant Laron Syndrome (LS) patients have helped define many physiological actions of GH including those dealing with metabolism, obesity, cancer, diabetes, cognition and aging/longevity. In this review, we have discussed several issues dealing with these biological effects of GH and attempt to answer the question of whether decreased GH action may be beneficial.
Collapse
Affiliation(s)
- Reetobrata Basu
- Edison Biotechnology Institute, Ohio University, Athens, Ohio, USA
| | - Yanrong Qian
- Edison Biotechnology Institute, Ohio University, Athens, Ohio, USA
| | - John J Kopchick
- Edison Biotechnology Institute, Ohio University, Athens, Ohio, USA
- Ohio University Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, USA
| |
Collapse
|
13
|
Skarmoutsou E, Bevelacqua V, D' Amico F, Russo A, Spandidos DA, Scalisi A, Malaponte G, Guarneri C. FOXP3 expression is modulated by TGF‑β1/NOTCH1 pathway in human melanoma. Int J Mol Med 2018; 42:392-404. [PMID: 29620159 PMCID: PMC5979787 DOI: 10.3892/ijmm.2018.3618] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 04/04/2018] [Indexed: 12/18/2022] Open
Abstract
Forkhead box protein 3 (FOXP3) transcription factor is expressed by immune cells and several human cancers and is associated with tumor aggressiveness and unfavorable clinical outcomes. NOTCH and transforming growth factor-β (TGF-β) protumorigenic effects are mediated by FOXP3 expression in several cancer models; however, their interaction and role in melanoma is unknown. We investigated TGF-β-induced FOXP3 gene expression during NOTCH1 signaling inactivation. Primary (WM35) and metastatic melanoma (A375 and A2058) cell lines and normal melanocytes (NHEM) were used. FOXP3 subcellular distribution was evaluated by immuno cytochemical analysis. Gene expression levels were assessed by reverse transcription-quantitative polymerase chain reaction. Protein levels were assessed by western blot analysis. The γ-secretase inhibitor (GSI) was used for NOTCH1 inhibition and recombinant human (rh)TGF-β was used for melanoma cell stimulation. Cell proliferation and viability were respectively assessed by MTT and Trypan blue dye assays. FOXP3 mRNA and protein levels were progressively higher in WM35, A375 and A2058 cell lines compared to NHEM and their levels were further increased after stimulation with rh-TGF-β. TGF-β-mediated FOXP3 expression was mediated by NOTCH1 signaling. Inhibition of NOTCH1 with concomitant rh-TGF-β stimulation determined the reduction in gene expression and protein level of FOXP3. Finally, melanoma cell line proliferation and viability were reduced by NOTCH1 inhibition. The results show that nn increase in FOXP3 expression in metastatic melanoma cell lines is a potential marker of tumor aggressiveness and metastasis. NOTCH1 is a central mediator of TGF-β-mediated FOXP3 expression and NOTCH1 inhibition produces a significant reduction of melanoma cell proliferation and viability.
Collapse
Affiliation(s)
- Eva Skarmoutsou
- Department of Biomedical and Biotechnological Science, University of Catania, 95124 Catania, Italy
| | - Valentina Bevelacqua
- Department of Biomedical and Biotechnological Science, University of Catania, 95124 Catania, Italy
| | - Fabio D' Amico
- Department of Biomedical and Biotechnological Science, University of Catania, 95124 Catania, Italy
| | - Angela Russo
- Department of Biomedical and Biotechnological Science, University of Catania, 95124 Catania, Italy
| | - Demetrios A Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 71003 Heraklion, Crete, Greece
| | - Aurora Scalisi
- Unit of Oncologic Diseases, ASP‑Catania, 95100 Catania, Italy
| | - Grazia Malaponte
- Research Unit of the Catania Section of the Italian League Against Cancer, 95122 Catania, Italy
| | - Claudio Guarneri
- Department of Clinical and Experimental Medicine, Section of Dermatology, University of Messina, 98122 Messina, Italy
| |
Collapse
|
14
|
Xie B, Cao K, Li J, Chen J, Tang J, Chen X, Xia K, Zhou X, Cheng Y, Zhou J, Xie H. Hmgb1 inhibits Klotho expression and malignant phenotype in melanoma cells by activating NF-κB. Oncotarget 2018; 7:80765-80782. [PMID: 27779100 PMCID: PMC5348353 DOI: 10.18632/oncotarget.12623] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 09/26/2016] [Indexed: 12/26/2022] Open
Abstract
The molecular and cellular mechanisms behind the involvement of inflammation in melanoma have not been fully elucidated. In this study, knockdown of Hmgb1 expression increased apoptosis, reduced invasion and p-NF-κB expression, but increased Klotho protein level in melanoma tumor cells. The effect of Hmgb1 knockdown was overcome by LPS. Introduction of exogenous Hmgb1 significantly decreased apoptosis, increased invasion, elevated p-NF-κB, but lowered Klotho protein level in melanoma cells. The effect of exogenous Hmgb1 was agonized by NF-κB inhibitor CAPE. Hmgb1 knockdown activated, but exogenous Hmgb1 inactivated, p-IGF1R/p-PI3K p-85/p-Akt/p-mTOR signaling. Knockdown of Klotho gene expression significantly decreased apoptosis, increased invasion in melanoma cells, and inhibited xenograft A375 tumor growth. A significantly high percentage of cells stained positive for p-NF-κB, but negative for Klotho, in melanoma tissues compared to normal and benign skin tissues. The positive p-NF-κB and negative Klotho protein expression correlated with poor prognosis in melanoma patients. Multivariate analysis revealed an independent association between p-NF-κB / Klotho protein level and overall survival. In conclusion, Hmgb1 can inhibit Klotho gene expression and malignant phenotype in melanoma cells through activation of NF-κB signaling.
Collapse
Affiliation(s)
- Biao Xie
- Deptment of Plastic Surgery, Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China.,Department of Colorectal Surgery, Second Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, Hunan 410005, China
| | - Ke Cao
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Jinjin Li
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Jia Chen
- Deptment of Plastic Surgery, Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Jintian Tang
- Institute of Medical Physics and Engineering, Department of Engineering Physics, Tsinghua University, Beijing, 100084, China
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Kun Xia
- State Key Laboratory, Medical Genetic, Central South University, Changsha, Hunan 410008, China
| | - Xiao Zhou
- Department of Oncoplast & Reconstructure Surgery, Affiliated Tumor Hospital, Central South University, Changsha, Hunan 410013, China
| | - Yan Cheng
- School of Pharmacy, Central South University, Changsha, Hunan 410013, China
| | - Jianda Zhou
- Deptment of Plastic Surgery, Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Huiqing Xie
- Department of Rehabilitation, Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| |
Collapse
|
15
|
Falzone L, Salemi R, Travali S, Scalisi A, McCubrey JA, Candido S, Libra M. MMP-9 overexpression is associated with intragenic hypermethylation of MMP9 gene in melanoma. Aging (Albany NY) 2017; 8:933-44. [PMID: 27115178 PMCID: PMC4931845 DOI: 10.18632/aging.100951] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 04/19/2016] [Indexed: 12/13/2022]
Abstract
Tumor spreading is associated with the degradation of extracellular matrix proteins, mediated by the overexpression of matrix metalloproteinase 9 (MMP-9). Although, such overexpression was linked to epigenetic promoter methylation, the role of intragenic methylation was not clarified yet. Melanoma was used as tumor model to investigate the relationship between the DNA intragenic methylation of MMP9 gene and MMP-9 overexpression at transcriptional and protein levels. Computational analysis revealed DNA hypermethylation within the intragenic CpG-2 region of MMP9 gene in melanoma samples with high MMP-9 transcript levels. In vitro validation showed that CpG-2 hotspot region was hypermethylated in the A375 melanoma cell line with highest mRNA and protein levels of MMP-9, while low methylation levels were observed in the MEWO cell line where MMP-9 was undetectable. Concordant results were demonstrated in both A2058 and M14 cell lines. This correlation may give further insights on the role of MMP-9 upregulation in melanoma.
Collapse
Affiliation(s)
- Luca Falzone
- Department of Biomedical and Biotechnological Sciences, Laboratory of Translational Oncology and Functional Genomics, Section of General and Clinical Pathology and Oncology, University of Catania, 95124, Catania, Italy
| | - Rossella Salemi
- Department of Biomedical and Biotechnological Sciences, Laboratory of Translational Oncology and Functional Genomics, Section of General and Clinical Pathology and Oncology, University of Catania, 95124, Catania, Italy
| | - Salvatore Travali
- Department of Biomedical and Biotechnological Sciences, Laboratory of Translational Oncology and Functional Genomics, Section of General and Clinical Pathology and Oncology, University of Catania, 95124, Catania, Italy
| | | | - James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27858, USA
| | - Saverio Candido
- Department of Biomedical and Biotechnological Sciences, Laboratory of Translational Oncology and Functional Genomics, Section of General and Clinical Pathology and Oncology, University of Catania, 95124, Catania, Italy
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, Laboratory of Translational Oncology and Functional Genomics, Section of General and Clinical Pathology and Oncology, University of Catania, 95124, Catania, Italy
| |
Collapse
|
16
|
Tchernev G, Patterson JW, Bakardzhiev I, Lotti T, Lotti J, França K, Batashki A, Wollina U. Late Onset Achromatic Melanoma Arising in a Giant Congenital Melanocytic Nevus. Open Access Maced J Med Sci 2017; 5:533-534. [PMID: 28785352 PMCID: PMC5535677 DOI: 10.3889/oamjms.2017.077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 03/29/2017] [Accepted: 04/03/2017] [Indexed: 11/14/2022] Open
Abstract
A 61-year-old woman, with a lifelong history of a giant congenital melanocytic nevus in the occipital region with secondary development of giant melanoma is presented. Surgical excision was performed, and the histopathological evaluation confirmed the diagnosis of Giant Malignant Melanoma (GMM) with a maximum tumour thickness of 16 mm. Nowadays, there is tremendous uncertainty regarding how giant congenital melanocytic nevi (GCMN) should be treated. The standard approach to patients with late onset giant congenital melanocytic nevi (GCMN is based on two main considerations: (1) obtain an acceptable cosmetic results with the purpose to decrease the psychosocial inconvenience to each patient, and (2) to attempt to minimise the risk of development of malignant transformation. Unfortunately complete surgical removal of the GCMN is usually difficult and very often impossible without subsequent functional or cosmetic mutilations.
Collapse
Affiliation(s)
- Georgi Tchernev
- Department of Dermatology, Venereology and Dermatologic Surgery, Medical Institute of Ministry of Interior, and Onkoderma Polyclinic for Dermatology and Dermatologic Surgery, Sofia, Bulgaria
| | - James W Patterson
- Departments of Pathology and Dermatology, University of Virginia Health System, Hospital Expansion, 3rd Floor, 1215 Lee Street, Charlottesville, VA, USA
| | - Ilko Bakardzhiev
- Medical College, Medical University of Varna, Varna 9000, Bulgaria
| | - Torello Lotti
- Department of Biotechnology, Delft University of Technology, 2628 BC, Delft, The Netherlands
| | - Jacopo Lotti
- Department of Nuclear, Subnuclear and Radiation Physics, University of Rome "G. Marconi", Rome, Italy
| | - Katlein França
- Institute for Bioethics & Health Policy; Department of Dermatology & Cutaneous Surgery; Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine - Miami, FL, USA
| | - Atanas Batashki
- Department of Special Surgery, Medical University of Plovdiv, bul. "Peshtersko shose" Nr 66, 4000, Plovdiv, Bulgaria
| | - Uwe Wollina
- Department of Dermatology and Allergology, Academic Teaching Hospital Dresden-Friedrichstadt, Friedrichstrasse 41, 01067, Dresden, Germany
| |
Collapse
|
17
|
Guarneri C, Tchernev G, Wollina U, Lotti T. A Misleading Anamnesis: Learning To Suspect. Open Access Maced J Med Sci 2017; 5:473-475. [PMID: 28785336 PMCID: PMC5535661 DOI: 10.3889/oamjms.2017.135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 05/01/2017] [Accepted: 05/02/2017] [Indexed: 11/16/2022] Open
Abstract
Leishmaniasis represents a complex, globally widespread opportunistic infection ranging from the visceral form, also called kala-azar, to the mucocutaneous and cutaneous disease. It is endemic in the Mediterranian Basin, Leishmania infantum being demonstrated as the main causative agent of autochthonous cases in Sicily, Italy. The long-term use of systemic antipsoriatic agents, including biotechnological drugs, may cause a higher susceptibility to opportunistic infections, so physicians maintain a high level of suspicion with treated patients. However, some skin tumours, because of the rare occurrence and/or the atypical clinical features, may mimic another kind of disease thus leading to a delay in diagnosis and treatment. An exemplary case is reported herein.
Collapse
Affiliation(s)
- Claudio Guarneri
- Universita degli Studi di Messina, Clinical and Experimental Medicine, Section of Dermatology, Messina 98122, Italy
| | - Georgi Tchernev
- Medical Institute of the Ministry of Interior, Dermatology, Venereology and Dermatologic Surgery; Onkoderma, Private Clinic for Dermatologic Surgery, Dermatology and Surgery, Sofia 1407, Bulgaria
| | - Uwe Wollina
- Krankenhaus Dresden-Friedrichstadt, Department of Dermatology and Venereology, Dresden, Sachsen, Germany
| | - Torello Lotti
- Universitario di Ruolo, Dipartimento di Scienze Dermatologiche, Università degli Studi di Firenze, Facoltà di Medicina e Chirurgia, Dermatology, Via Vittoria Colonna 11, Rome 00186, Italy
| |
Collapse
|
18
|
Basu R, Baumgaertel N, Wu S, Kopchick JJ. Growth Hormone Receptor Knockdown Sensitizes Human Melanoma Cells to Chemotherapy by Attenuating Expression of ABC Drug Efflux Pumps. HORMONES & CANCER 2017; 8:143-156. [PMID: 28293855 PMCID: PMC10355985 DOI: 10.1007/s12672-017-0292-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Accepted: 03/02/2017] [Indexed: 12/16/2022]
Abstract
Melanoma remains one of the most therapy-resistant forms of human cancer despite recent introductions of highly efficacious targeted therapies. The intrinsic therapy resistance of human melanoma is largely due to abundant expression of a repertoire of xenobiotic efflux pumps of the ATP-binding cassette (ABC) transporter family. Here, we report that GH action is a key mediator of chemotherapeutic resistance in human melanoma cells. We investigated multiple ABC efflux pumps (ABCB1, ABCB5, ABCB8, ABCC1, ABCC2, ABCG1, and ABCG2) reportedly associated with melanoma drug resistance in different human melanoma cells and tested the efficacy of five different anti-cancer compounds (cisplatin, doxorubicin, oridonin, paclitaxel, vemurafenib) with decreased GH action. We found that GH treatment of human melanoma cells upregulates expression of multiple ABC transporters and increases the EC50 of melanoma drug vemurafenib. Also, vemurafenib-resistant melanoma cells had upregulated levels of GH receptor (GHR) expression as well as ABC efflux pumps. GHR knockdown (KD) using siRNA in human melanoma cells treated with sub-EC50 doses of anti-tumor compounds resulted in significantly increased drug retention, decreased cell proliferation and increased drug efficacy, compared to mock-transfected controls. Our set of findings identify an unknown mechanism of GH regulation in mediating melanoma drug resistance and validates GHR as a unique therapeutic target for sensitizing highly therapy-resistant human melanoma cells to lower doses of anti-cancer drugs.
Collapse
Affiliation(s)
- Reetobrata Basu
- Edison Biotechnology Institute, Konneker Research Laboratory 206, Ohio University, Athens, OH, 45701, USA
- Molecular and Cell Biology Program, Ohio University, Athens, OH, USA
| | - Nicholas Baumgaertel
- Edison Biotechnology Institute, Konneker Research Laboratory 206, Ohio University, Athens, OH, 45701, USA
- Department of Biological Sciences, Ohio University, Athens, OH, USA
| | - Shiyong Wu
- Edison Biotechnology Institute, Konneker Research Laboratory 206, Ohio University, Athens, OH, 45701, USA
- Molecular and Cell Biology Program, Ohio University, Athens, OH, USA
| | - John J Kopchick
- Edison Biotechnology Institute, Konneker Research Laboratory 206, Ohio University, Athens, OH, 45701, USA.
- Molecular and Cell Biology Program, Ohio University, Athens, OH, USA.
- Heritage College of Osteopathic Medicine, Athens, OH, USA.
| |
Collapse
|
19
|
Avram S, Coricovac DE, Pavel IZ, Pinzaru I, Ghiulai R, Baderca F, Soica C, Muntean D, Branisteanu DE, Spandidos DA, Tsatsakis AM, Dehelean CA. Standardization of A375 human melanoma models on chicken embryo chorioallantoic membrane and Balb/c nude mice. Oncol Rep 2017; 38:89-99. [PMID: 28535001 PMCID: PMC5492638 DOI: 10.3892/or.2017.5658] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 05/08/2017] [Indexed: 01/07/2023] Open
Abstract
Cutaneous melanoma is a metastatic disease characterized by high resistance to treatment, the incidence of which has alarmingly increased worldwide over the past years. A thorough characterization of tumor onset, progression and metastasis is compulsory to overcome the gaps existent in melanoma biology. The present study suggests a well-established protocol and a detailed histological description of human melanoma models in ovo and in vivo obtained by the inoculation of A375 cells to chick embryo chorioallantoic membrane (CAM) and Balb/c nude mice. The inoculation of A375 cells on CAM led to the formation of compact primary and secondary tumors on day 4 post-inoculation, with mean surface area values of 2.2±0.4 mm2 and 1.5±0.3 mm2, respectively. Moreover, the vessels around the tumors presented a spike wheel pattern, indicating a strong angiogenic reaction. All the injected mice, apart from one, developed solid polypoid primary tumors with lobulated surfaces and intense vascularization, and achromic epithelioid malignant melanocytes with vesiculous nuclei and necrosis area were detected. Metastasis was histologically confirmed in only 30% of the mice with the tumor xenografts. These data indicate that the standardization protocols proposed are complex and reproducible, and can be further employed for the therapeutic surveillance of antiangiogenic and anticancer agents.
Collapse
Affiliation(s)
- Stefana Avram
- Department of Pharmacognosy, Faculty of Pharmacy, 'Victor Babeș' University of Medicine and Pharmacy Timisoara, Timisoara 30004, Romania
| | - Dorina-Elena Coricovac
- Department of Toxicology, Faculty of Pharmacy, 'Victor Babeș' University of Medicine and Pharmacy Timisoara, Timisoara 30004, Romania
| | - Ioana Zinuca Pavel
- Department of Pharmacognosy, Faculty of Pharmacy, 'Victor Babeș' University of Medicine and Pharmacy Timisoara, Timisoara 30004, Romania
| | - Iulia Pinzaru
- Department of Toxicology, Faculty of Pharmacy, 'Victor Babeș' University of Medicine and Pharmacy Timisoara, Timisoara 30004, Romania
| | - Roxana Ghiulai
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, 'Victor Babeș' University of Medicine and Pharmacy Timisoara, Timisoara 30004, Romania
| | - Flavia Baderca
- Department of Microscopic Morphology, Faculty of Medicine, 'Victor Babeș' University of Medicine and Pharmacy Timisoara, Timisoara 300041, Romania
| | - Codruta Soica
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, 'Victor Babeș' University of Medicine and Pharmacy Timisoara, Timisoara 30004, Romania
| | - Danina Muntean
- Department of Pathophysiology, Faculty of Medicine, 'Victor Babeș' University of Medicine and Pharmacy Timisoara, Timisoara 300041, Romania
| | - Daciana E Branisteanu
- Department of Dermatology and Venereology, 'Grigore T. Popa' University of Medicine and Pharmacy Iasi, Iasi 7000115, Romania
| | - Demetrios A Spandidos
- Laboratory of Clinical Virology, School of Medicine, University of Crete, Heraklion 71003, Greece
| | - Aristides M Tsatsakis
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, Heraklion 71003, Greece
| | - Cristina Adriana Dehelean
- Department of Toxicology, Faculty of Pharmacy, 'Victor Babeș' University of Medicine and Pharmacy Timisoara, Timisoara 30004, Romania
| |
Collapse
|
20
|
Labala S, Jose A, Chawla SR, Khan MS, Bhatnagar S, Kulkarni OP, Venuganti VVK. Effective melanoma cancer suppression by iontophoretic co-delivery of STAT3 siRNA and imatinib using gold nanoparticles. Int J Pharm 2017; 525:407-417. [PMID: 28373100 DOI: 10.1016/j.ijpharm.2017.03.087] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 03/12/2017] [Accepted: 03/31/2017] [Indexed: 01/06/2023]
Abstract
Co-delivery of chemotherapeutic agents improve anti-tumor efficacy and reduce cancer resistance. Here, we report development of layer-by-layer assembled gold nanoparticles (LbL-AuNP) containing anti-STAT3 siRNA and imatinib mesylate (IM) to treat melanoma. The combination treatment with STAT3 siRNA and IM in B16F10 melanoma cells showed greater suppression of STAT3 protein, decreased cell viability and increased apoptotic events compared with LbL-AuNP containing either STAT3 siRNA or IM. In vivo efficacy studies in melanoma tumor bearing mice showed that non-invasive topical iontophoretic administration (0.5mA/cm2) of LbL-AuNP was comparable with intratumoral administration. Co-delivery of STAT3 siRNA and IM using LbL-AuNP showed significant (p<0.05) reduction in percentage tumor volume, tumor weight and suppressed STAT3 protein expression compared with either STAT3 siRNA or IM loaded LbL-AuNP. Taken together, LbL-AuNP can be developed as nanocarrier system for co-delivery of siRNA and small molecule drugs for topical iontophoretic delivery.
Collapse
Affiliation(s)
- Suman Labala
- Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Shameerpet, Hyderabad 500078, India
| | - Anup Jose
- Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Shameerpet, Hyderabad 500078, India
| | - Sumeet Rajesh Chawla
- Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Shameerpet, Hyderabad 500078, India
| | - Mohammed Shareef Khan
- Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Shameerpet, Hyderabad 500078, India
| | - Shubhmita Bhatnagar
- Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Shameerpet, Hyderabad 500078, India
| | - Onkar Prakash Kulkarni
- Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Shameerpet, Hyderabad 500078, India
| | - Venkata Vamsi Krishna Venuganti
- Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Shameerpet, Hyderabad 500078, India.
| |
Collapse
|
21
|
Enewold L, Sharon E, Harlan LC. Metastatic Melanoma: Treatment and Survival in the US after the Introduction of Ipilimumab and Vemurafenib. Oncol Res Treat 2017; 40:174-183. [PMID: 28376479 PMCID: PMC5383086 DOI: 10.1159/000456014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 11/28/2016] [Indexed: 01/07/2023]
Abstract
INTRODUCTION The 5-year survival of metastatic melanoma is < 18%. Historically, treatment options were limited. In 2011, 2 new agents were approved. METHODS We re-abstracted the medical records of a random sample (n = 520) of metastatic melanoma patients who had been diagnosed in 2011 and reported to population-based registries in the U.S. We also queried their treating physicians. Factors associated with treatment and survival were assessed using logistic and Cox proportional hazards regressions, respectively. RESULTS 21.4% of patients received no treatment, 20.8% received ipilimumab and 57.5% of patients with BRAF-positive tumors received vemurafenib/dabrafenib. Receipt of ipilimumab was less likely among patients of 75 years or older (vs. < 55 years: odds ratio (OR) 0.32; 95% confidence interval (CI) 0.15-0.66) and patients without private/military insurance. 46.8% of patients received BRAF testing. Receipt of BRAF testing was less likely among patients of 65 years or more and uninsured patients (OR 0.22; 95% CI 0.07-0.65). Receipt of ipilimumab was associated with better survival during the first 18 months after diagnosis (hazard ratio (HR) 0.66; 95% CI 0.51-0.84) and vemurafenib/dabrafenib with better survival during the first 10 months after diagnosis (HR 0.51; 95% CI 0.36-0.73). CONCLUSION The initial dissemination of ipilimumab and vemurafenib/dabrafenib was limited. Additional research is needed to investigate the apparent lack of long-term survival benefit from these agents.
Collapse
Affiliation(s)
- Lindsey Enewold
- National Cancer Institute, 9609 Medical Center Drive, Bethesda, MD 20892-9762
| | - Elad Sharon
- National Cancer Institute, 9609 Medical Center Drive, Bethesda, MD 20892-9762
| | - Linda C Harlan
- National Cancer Institute, 9609 Medical Center Drive, Bethesda, MD 20892-9762
| |
Collapse
|
22
|
Guarneri C, Bevelacqua V, Polesel J, Falzone L, Cannavò PS, Spandidos DA, Malaponte G, Libra M. NF‑κB inhibition is associated with OPN/MMP‑9 downregulation in cutaneous melanoma. Oncol Rep 2017; 37:737-746. [PMID: 28075446 PMCID: PMC5355753 DOI: 10.3892/or.2017.5362] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 12/20/2016] [Indexed: 01/21/2023] Open
Abstract
The development of cutaneous melanoma is influenced by genetic factors, including BRAF mutations and environmental factors, such as ultraviolet exposure. Its progression has been also associated with the involvement of several tumour microenvironmental molecules. Among these, nuclear factor‑κB (NF‑κB) has been indicated as a key player of osteopontin (OPN) and matrix metalloproteinase‑9 (MMP‑9) activation. However, whether NF‑κB plays a role in the development and progression of melanoma in association with the OPN/MMP‑9 axis according to the BRAFV600E mutation status has not been investigated in detail to date. Thus, in the present study, in order to shed light on this matter, 148 patients with melanoma and 53 healthy donors were recruited for the analysis of OPN, MMP‑9 and NF‑κB. Significantly higher circulating levels of OPN and MMP‑9 were observed in the patients with melanoma when compared to the healthy donors. Similar data were obtained for NF‑κB p65 activity. The OPN levels did not differ significantly between melanomas with or without BRAFV600E mutation. However, as regards NF‑κB and MMP‑9, significant differences were observed between the melanomas with or without BRAFV600E mutation. To determine whether NF‑κB inhibition is associated with a decrease in the levels of OPN and MMP‑9, peripheral blood mononuclear cells from 29 patients with melanoma were treated with the NF‑κB inhibitor, dehydroxymethylepoxyquinomycin (DHMEQ), with or without OPN. As expected, the inhibition of NF‑κB induced a marked decrease in both the OPN and MMP‑9 levels. Furthermore, the decrease in MMP‑9 levels was higher among melanomas harbouring the BRAFV600E mutation. Overall, our data suggest that the activation of MMP‑9 is associated with the BRAFV600E mutation status. Furthermore, such an activation is mediated by NF‑κB, suggesting its role as therapeutic target in patients with melanoma.
Collapse
Affiliation(s)
- Claudio Guarneri
- Department of Clinical and Experimental Medicine, Section of Dermatology, University of Messina, I-98125 Messina, Italy
| | - Valentina Bevelacqua
- Department of Biomedical and Biotechnological Sciences, Section of General and Clinical Pathology and Oncology, University of Catania, I-95124 Catania, Italy
| | - Jerry Polesel
- Unit of Cancer Epidemiology, CRO Aviano National Cancer Institute, IRCCS, I-33081 Aviano, Italy
| | - Luca Falzone
- Department of Biomedical and Biotechnological Sciences, Section of General and Clinical Pathology and Oncology, University of Catania, I-95124 Catania, Italy
| | - Patrizia S. Cannavò
- Department of Clinical and Experimental Medicine, Section of Dermatology, University of Messina, I-98125 Messina, Italy
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, Heraklion 71003, Greece
| | - Grazia Malaponte
- Department of Biomedical and Biotechnological Sciences, Section of General and Clinical Pathology and Oncology, University of Catania, I-95124 Catania, Italy
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, Section of General and Clinical Pathology and Oncology, University of Catania, I-95124 Catania, Italy
| |
Collapse
|
23
|
Hofmann AL, Behr J, Singer J, Kuipers J, Beisel C, Schraml P, Moch H, Beerenwinkel N. Detailed simulation of cancer exome sequencing data reveals differences and common limitations of variant callers. BMC Bioinformatics 2017; 18:8. [PMID: 28049408 PMCID: PMC5209852 DOI: 10.1186/s12859-016-1417-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 12/10/2016] [Indexed: 12/30/2022] Open
Abstract
Background Next-generation sequencing of matched tumor and normal biopsy pairs has become a technology of paramount importance for precision cancer treatment. Sequencing costs have dropped tremendously, allowing the sequencing of the whole exome of tumors for just a fraction of the total treatment costs. However, clinicians and scientists cannot take full advantage of the generated data because the accuracy of analysis pipelines is limited. This particularly concerns the reliable identification of subclonal mutations in a cancer tissue sample with very low frequencies, which may be clinically relevant. Results Using simulations based on kidney tumor data, we compared the performance of nine state-of-the-art variant callers, namely deepSNV, GATK HaplotypeCaller, GATK UnifiedGenotyper, JointSNVMix2, MuTect, SAMtools, SiNVICT, SomaticSniper, and VarScan2. The comparison was done as a function of variant allele frequencies and coverage. Our analysis revealed that deepSNV and JointSNVMix2 perform very well, especially in the low-frequency range. We attributed false positive and false negative calls of the nine tools to specific error sources and assigned them to processing steps of the pipeline. All of these errors can be expected to occur in real data sets. We found that modifying certain steps of the pipeline or parameters of the tools can lead to substantial improvements in performance. Furthermore, a novel integration strategy that combines the ranks of the variants yielded the best performance. More precisely, the rank-combination of deepSNV, JointSNVMix2, MuTect, SiNVICT and VarScan2 reached a sensitivity of 78% when fixing the precision at 90%, and outperformed all individual tools, where the maximum sensitivity was 71% with the same precision. Conclusions The choice of well-performing tools for alignment and variant calling is crucial for the correct interpretation of exome sequencing data obtained from mixed samples, and common pipelines are suboptimal. We were able to relate observed substantial differences in performance to the underlying statistical models of the tools, and to pinpoint the error sources of false positive and false negative calls. These findings might inspire new software developments that improve exome sequencing pipelines and further the field of precision cancer treatment. Electronic supplementary material The online version of this article (doi:10.1186/s12859-016-1417-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ariane L Hofmann
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstr, Basel, 26, 4058, Switzerland.,Swiss Institute of Bioinformatics, Mattenstr, Basel, 26, 4058, Switzerland
| | - Jonas Behr
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstr, Basel, 26, 4058, Switzerland.,Swiss Institute of Bioinformatics, Mattenstr, Basel, 26, 4058, Switzerland
| | - Jochen Singer
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstr, Basel, 26, 4058, Switzerland.,Swiss Institute of Bioinformatics, Mattenstr, Basel, 26, 4058, Switzerland
| | - Jack Kuipers
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstr, Basel, 26, 4058, Switzerland.,Swiss Institute of Bioinformatics, Mattenstr, Basel, 26, 4058, Switzerland
| | - Christian Beisel
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstr, Basel, 26, 4058, Switzerland
| | - Peter Schraml
- Institute for Surgical Pathology, University Hospital Zurich, Schmelzbergstrasse 12, Zurich, 8091, Switzerland
| | - Holger Moch
- Institute for Surgical Pathology, University Hospital Zurich, Schmelzbergstrasse 12, Zurich, 8091, Switzerland
| | - Niko Beerenwinkel
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstr, Basel, 26, 4058, Switzerland. .,Swiss Institute of Bioinformatics, Mattenstr, Basel, 26, 4058, Switzerland.
| |
Collapse
|
24
|
Kaduwal S, Jeong WJ, Park JC, Lee KH, Lee YM, Jeon SH, Lim YB, Min DS, Choi KY. Sur8/Shoc2 promotes cell motility and metastasis through activation of Ras-PI3K signaling. Oncotarget 2016; 6:33091-105. [PMID: 26384305 PMCID: PMC4741751 DOI: 10.18632/oncotarget.5173] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 08/26/2015] [Indexed: 12/12/2022] Open
Abstract
Sur8 (also known as Shoc2) is a Ras-Raf scaffold protein that modulates signaling through extracellular signal-regulated kinase (ERK) pathway. Although Sur8 has been shown to be a scaffold protein of the Ras-ERK pathway, its interaction with other signaling pathways and its involvement in tumor malignancy has not been reported. We identified that Sur8 interacts with the p110α subunit of phosphatidylinositol 3-kinase (PI3K), as well as with Ras and Raf, and these interactions are increased in an epidermal growth factor (EGF)- and oncogenic Ras-dependent manner. Sur8 regulates cell migration and invasion via activation of Rac and matrix metalloproteinases (MMPs). Interestingly, using inhibitors of MEK and PI3K we found Sur8 mediates these cellular behaviors predominantly through PI3K pathway. We further found that human metastatic melanoma tissues had higher Sur8 content followed by activations of Akt, ERK, and Rac. Lentivirus-mediated Sur8-knockdown attenuated metastatic potential of highly invasive B16-F10 melanoma cells indicating the role of Sur8 in melanoma metastasis. This is the first report to identify the role of scaffold protein Sur8 in regulating cell motility, invasion, and metastasis through activation of both ERK and PI3K pathways.
Collapse
Affiliation(s)
- Saluja Kaduwal
- Translational Research Center for Protein Function Control, Yonsei University, Seoul, 120-749, Korea.,Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 120-749, Korea
| | - Woo-Jeong Jeong
- Translational Research Center for Protein Function Control, Yonsei University, Seoul, 120-749, Korea.,Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 120-749, Korea
| | - Jong-Chan Park
- Translational Research Center for Protein Function Control, Yonsei University, Seoul, 120-749, Korea.,Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 120-749, Korea
| | - Kug Hwa Lee
- Translational Research Center for Protein Function Control, Yonsei University, Seoul, 120-749, Korea.,Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 120-749, Korea
| | - Young-Mi Lee
- Translational Research Center for Protein Function Control, Yonsei University, Seoul, 120-749, Korea.,Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 120-749, Korea.,Current address: Division of Pharmacology and Translational Research, Hanmi Research Center, Hwaseong-si Gyeonggi-do, 445-813, Korea
| | - Soung-Hoo Jeon
- Translational Research Center for Protein Function Control, Yonsei University, Seoul, 120-749, Korea.,Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 120-749, Korea.,Current address: Department of Microbiology and Immunology, Xenotransplantation Research Center, Medical Research Center, Institute of Endemic Disease, Seoul National University College of Medicine, Seoul, 110-799, Korea
| | - Yong-Beom Lim
- Translational Research Center for Protein Function Control, Yonsei University, Seoul, 120-749, Korea.,Department of Materials Science and Engineering, Yonsei University, Seoul, 120-749, Korea
| | - Do Sik Min
- Translational Research Center for Protein Function Control, Yonsei University, Seoul, 120-749, Korea.,Department of Molecular Biology, College of Natural Science, Pusan National University, Pusan, 609-735, Korea
| | - Kang-Yell Choi
- Translational Research Center for Protein Function Control, Yonsei University, Seoul, 120-749, Korea.,Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 120-749, Korea
| |
Collapse
|
25
|
McCubrey JA, Rakus D, Gizak A, Steelman LS, Abrams SL, Lertpiriyapong K, Fitzgerald TL, Yang LV, Montalto G, Cervello M, Libra M, Nicoletti F, Scalisi A, Torino F, Fenga C, Neri LM, Marmiroli S, Cocco L, Martelli AM. Effects of mutations in Wnt/β-catenin, hedgehog, Notch and PI3K pathways on GSK-3 activity-Diverse effects on cell growth, metabolism and cancer. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:2942-2976. [PMID: 27612668 DOI: 10.1016/j.bbamcr.2016.09.004] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 08/14/2016] [Accepted: 09/02/2016] [Indexed: 02/07/2023]
Abstract
Glycogen synthase kinase-3 (GSK-3) is a serine/threonine kinase that participates in an array of critical cellular processes. GSK-3 was first characterized as an enzyme that phosphorylated and inactivated glycogen synthase. However, subsequent studies have revealed that this moon-lighting protein is involved in numerous signaling pathways that regulate not only metabolism but also have roles in: apoptosis, cell cycle progression, cell renewal, differentiation, embryogenesis, migration, regulation of gene transcription, stem cell biology and survival. In this review, we will discuss the roles that GSK-3 plays in various diseases as well as how this pivotal kinase interacts with multiple signaling pathways such as: PI3K/PTEN/Akt/mTOR, Ras/Raf/MEK/ERK, Wnt/beta-catenin, hedgehog, Notch and TP53. Mutations that occur in these and other pathways can alter the effects that natural GSK-3 activity has on regulating these signaling circuits that can lead to cancer as well as other diseases. The novel roles that microRNAs play in regulation of the effects of GSK-3 will also be evaluated. Targeting GSK-3 and these other pathways may improve therapy and overcome therapeutic resistance.
Collapse
Affiliation(s)
- James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University Greenville, NC 27858, USA.
| | - Dariusz Rakus
- Department of Animal Molecular Physiology, Institute of Experimental Biology, Wroclaw University, Wroclaw, Poland
| | - Agnieszka Gizak
- Department of Animal Molecular Physiology, Institute of Experimental Biology, Wroclaw University, Wroclaw, Poland
| | - Linda S Steelman
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University Greenville, NC 27858, USA
| | - Steve L Abrams
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University Greenville, NC 27858, USA
| | - Kvin Lertpiriyapong
- Department of Comparative Medicine, Brody School of Medicine at East Carolina University, USA
| | - Timothy L Fitzgerald
- Department of Surgery, Brody School of Medicine at East Carolina University, USA
| | - Li V Yang
- Department of Internal Medicine, Hematology/Oncology Section, Brody School of Medicine at East Carolina University, USA
| | - Giuseppe Montalto
- Biomedical Department of Internal Medicine and Specialties, University of Palermo, Palermo, Italy; Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| | - Melchiorre Cervello
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| | - Massimo Libra
- Department of Bio-medical Sciences, University of Catania, Catania, Italy
| | | | - Aurora Scalisi
- Unit of Oncologic Diseases, ASP-Catania, Catania 95100, Italy
| | - Francesco Torino
- Department of Systems Medicine, Chair of Medical Oncology, Tor Vergata University of Rome, Rome, Italy
| | - Concettina Fenga
- Department of Biomedical, Odontoiatric, Morphological and Functional Images, Occupational Medicine Section - Policlinico "G. Martino" - University of Messina, Messina 98125, Italy
| | - Luca M Neri
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Sandra Marmiroli
- Department of Surgery, Medicine, Dentistry and Morphology, University of Modena and Reggio Emilia, Modena, Italy
| | - Lucio Cocco
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Alberto M Martelli
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| |
Collapse
|
26
|
Zhang XY, Zhang PY. Genetics and epigenetics of melanoma. Oncol Lett 2016; 12:3041-3044. [PMID: 27899960 PMCID: PMC5103895 DOI: 10.3892/ol.2016.5093] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 08/03/2016] [Indexed: 11/05/2022] Open
Abstract
Cancer affects multiple organs in the body Malignant melanoma involves the invasion of skin and occasionally mucosal membrane or eye choroidal tissues. The incidence of cutaneous malignant melanoma is on the increase worldwide and is a major concern in current research. The increase is associated with UV irradiation-induced genetic aberrations that stimulate skin melanocytes to develop unlimited growth. This eventually leads to cell immortality, which in turn causes metastases. The present review examines the genetics and epigenetics of this pathological state together with recent perspectives of the therapeutic management of disease.
Collapse
Affiliation(s)
- Xiao-Ying Zhang
- Information Technology Institute, Nanjing, Jiangsu 221009, P.R. China
| | - Pei-Ying Zhang
- Department of Cardiology, Xuzhou Central Hospital, The Affiliated Xuzhou Hospital of Medical College of Southeast University, Xuzhou, Jiangsu 221009, P.R. China
| |
Collapse
|
27
|
Lei Y, Zhang B, Zhang Y, Zhao Y, Sun J, Zhang X, Yang S. Lentivirus-mediated downregulation of MAT2B inhibits cell proliferation and induces apoptosis in melanoma. Int J Oncol 2016; 49:981-90. [PMID: 27573889 DOI: 10.3892/ijo.2016.3603] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 05/31/2016] [Indexed: 11/06/2022] Open
Abstract
Malignant melanoma is the most lethal of skin cancers and its pathogenesis is complex and heterogeneous. The efficacy of conventional therapeutic regimens for melanoma remains limited. Thus, it is important to explore novel effective therapeutic targets in the treatment of melanoma. The MAT2B gene encodes for the regulatory subunit of methionine adenosyltransferase (MAT). Recent studies have suggested that MAT2B may have functional roles other than modulating catalytic activity of MAT. In order to identify the roles of MAT2B in the tumorigenesis of malignant melanoma, we compared MAT2B expression profile in melanoma tissues with that in benign nevus samples. We employed lentivirus-mediated RNAi to downregulate the expression of MAT2B in malignant melanoma cell lines (A375 and Mel-RM), and investigated the effects of MAT2B on cell growth, colony-formation ability and apoptosis in vitro, as well as tumor growth of a xenograft model in vivo. The expression levels of BCL2 and XAF1 proteins, which were closely related to tumor cell apoptosis, were analyzed by western blot analysis. Our data showed that MAT2B was elevated in both primary and metastatic melanoma tissues compared with benign nevus samples. Lentivirus-mediated downregulation of MAT2B suppressed cell growth, colony formation and induced apoptosis in A375 and Mel-RM cell lines in vitro, affected protein expression of BCL2 and XAF1, extended the transplanted tumor growth in vivo. These results indicated that MAT2B was critical in the proliferation of melanoma cells and tumorigenicity. It may be considered as a potential anti-melanoma therapeutic target.
Collapse
Affiliation(s)
- Yu Lei
- Institute of Dermatology and Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Bo Zhang
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Yaohua Zhang
- Institute of Dermatology, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Yuan Zhao
- Institute of Dermatology and Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Jingying Sun
- Institute of Dermatology and Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Xuejun Zhang
- Institute of Dermatology and Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Sen Yang
- Institute of Dermatology and Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| |
Collapse
|
28
|
Androutsopoulos VP, Fragiadaki I, Spandidos DA, Tosca A. The resveratrol analogue, 3,4,5,4'‑trans-tetramethoxystilbene, inhibits the growth of A375 melanoma cells through multiple anticancer modes of action. Int J Oncol 2016; 49:1305-14. [PMID: 27498704 DOI: 10.3892/ijo.2016.3635] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 07/13/2016] [Indexed: 11/06/2022] Open
Abstract
Resveratrol is a natural dietary product that has demonstrated multifaceted anticancer activity. Several analogues of resveratrol have been synthesized in an effort to enhance the pharmacological potency and improve the pharmacokinetic properties of the compound. 3,4,5,4'‑trans‑tetramethoxystilbene (3,4,5,4'‑TMS) is a methoxylated analogue of resveratrol that has demonstrated anti-proliferative activity in vitro (in cancer cell lines) and in vivo (in xenograft models). In the present study, the anticancer effects of 3,4,5,4'‑TMS in A375 human melanoma cells were examined. 3,4,5,4'‑TMS markedly inhibited the proliferation of A375 cells (IC50=0.7 µM), via a mechanism involving mitotic arrest at the prometaphase stage of cell division. This effect was accompanied by the upregulation of the expression of the mitogen activated protein kinases, JNK and p38, and the concomitant activation of p38, that was verified by the nuclear translocation of the phoshorylated form of the protein. The pharmacological inhibition of p38 by SB203580 (4 µM) attenuated the effects of 3,4,5,4'‑TMS, as demonstrated by decreased cell cycle progression at the mitotic phase. Furthermore, 3,4,5,4'‑TMS increased the total levels of Aurora A, while it inhibited the localization of the protein to the spindle poles. Finally, 3,4,5,4'‑TMS exhibited anti-metastatic activity, inhibiting A375 cell migration and the attachment of the cells to a collagen type IV-coated surface. Collectively, the data suggest that 3,4,5,4'‑TMS is an effective chemotherapeutic drug for the treatment of human melanoma and that it exerts its effects through multiple anticancer modes of action.
Collapse
Affiliation(s)
- Vasilis P Androutsopoulos
- Laboratory of Experimental Dermatology, University of Crete, Medical School, Heraklion 71003, Greece
| | - Irene Fragiadaki
- Laboratory of Experimental Dermatology, University of Crete, Medical School, Heraklion 71003, Greece
| | - Demetrios A Spandidos
- Laboratory of Clinical Virology, University of Crete, Medical School, Heraklion 71003, Greece
| | - Androniki Tosca
- Laboratory of Experimental Dermatology, University of Crete, Medical School, Heraklion 71003, Greece
| |
Collapse
|
29
|
Borrull A, Allard B, Wijkhuisen A, Herbet A, Lamourette P, Birouk W, Leiber D, Tanfin Z, Ducancel F, Boquet D, Couraud JY, Robin P. Rendomab B4, a monoclonal antibody that discriminates the human endothelin B receptor of melanoma cells and inhibits their migration. MAbs 2016; 8:1371-1385. [PMID: 27390909 DOI: 10.1080/19420862.2016.1208865] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Metastatic melanoma is an aggressive cancer with a poor prognostic, and the design of new targeted drugs to treat melanoma is a therapeutic challenge. A promising approach is to produce monoclonal antibodies (mAbs) against the endothelin B receptor (ETB), which is known to be overexpressed in melanoma and to contribute to proliferation, migration and vasculogenic mimicry associated with invasiveness of this cancer. We previously described rendomab-B1, a mAb produced by DNA immunization. It is endowed with remarkable characteristics in term of affinity, specificity and antagonist properties against human ETB expressed by the endothelial cells, but, surprisingly, had poor affinity for ETB expressed by melanoma cells. This characteristic strongly suggested the existence of a tumor-specific ETB form. In the study reported here, we identified a new mAb, rendomab-B4, which, in contrast to rendomab-B1, binds ETB expressed on UACC-257, WM-266-4 and SLM8 melanoma cells. Moreover, after binding to UACC-257 cells, rendomab-B4 is internalized and colocalizes with the endosomal protein EEA-1. Interestingly, rendomab-B4, despite its inability to compete with endothelin binding, is able to inhibit phospholipase C pathway and migration induced by endothelin. By contrast, rendomab-B4 fails to decrease ERK1/2 phosphorylation induced by endothelin, suggesting a biased effect on ETB. These particular properties make rendomab-B4 an interesting tool to analyze ETB-structure/function and a promising starting point for the development of new immunological tools in the field of melanoma therapeutics.
Collapse
Affiliation(s)
- Aurélie Borrull
- a CEA, iBiTec-S, SPI, Laboratoire d'Ingénierie des Anticorps pour la Santé , Gif-sur-Yvette , France.,b Université Paris Sud-11 , CNRS, UMR 8619, IBBMC , Orsay , France
| | - Bertrand Allard
- a CEA, iBiTec-S, SPI, Laboratoire d'Ingénierie des Anticorps pour la Santé , Gif-sur-Yvette , France
| | - Anne Wijkhuisen
- a CEA, iBiTec-S, SPI, Laboratoire d'Ingénierie des Anticorps pour la Santé , Gif-sur-Yvette , France.,c Université Paris Diderot, Sorbonne Paris Cité , Gif-sur-Yvette , France
| | - Amaury Herbet
- a CEA, iBiTec-S, SPI, Laboratoire d'Ingénierie des Anticorps pour la Santé , Gif-sur-Yvette , France
| | - Patricia Lamourette
- d CEA, iBiTec-S, SPI, Laboratoire d'Etude et de Recherche en Immunoanalyse , Gif-sur-Yvette , France
| | - Wided Birouk
- b Université Paris Sud-11 , CNRS, UMR 8619, IBBMC , Orsay , France
| | - Denis Leiber
- b Université Paris Sud-11 , CNRS, UMR 8619, IBBMC , Orsay , France
| | - Zahra Tanfin
- b Université Paris Sud-11 , CNRS, UMR 8619, IBBMC , Orsay , France
| | - Frédéric Ducancel
- a CEA, iBiTec-S, SPI, Laboratoire d'Ingénierie des Anticorps pour la Santé , Gif-sur-Yvette , France
| | - Didier Boquet
- a CEA, iBiTec-S, SPI, Laboratoire d'Ingénierie des Anticorps pour la Santé , Gif-sur-Yvette , France
| | - Jean-Yves Couraud
- a CEA, iBiTec-S, SPI, Laboratoire d'Ingénierie des Anticorps pour la Santé , Gif-sur-Yvette , France.,c Université Paris Diderot, Sorbonne Paris Cité , Gif-sur-Yvette , France
| | - Philippe Robin
- b Université Paris Sud-11 , CNRS, UMR 8619, IBBMC , Orsay , France
| |
Collapse
|
30
|
Jiang Y, Shi X, Zhao Q, Krauthammer M, Rothberg BEG, Ma S. Integrated analysis of multidimensional omics data on cutaneous melanoma prognosis. Genomics 2016; 107:223-30. [PMID: 27141884 PMCID: PMC4893887 DOI: 10.1016/j.ygeno.2016.04.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 04/05/2016] [Accepted: 04/23/2016] [Indexed: 01/09/2023]
Abstract
Multiple types of genetic, epigenetic, and genomic changes have been implicated in cutaneous melanoma prognosis. Many of the existing studies are limited in analyzing a single type of omics measurement and cannot comprehensively describe the biological processes underlying prognosis. As a result, the obtained prognostic models may be less satisfactory, and the identified prognostic markers may be less informative. The recently collected TCGA (The Cancer Genome Atlas) data have a high quality and comprehensive omics measurements, making it possible to more comprehensively and more accurately model prognosis. In this study, we first describe the statistical approaches that can integrate multiple types of omics measurements with the assistance of variable selection and dimension reduction techniques. Data analysis suggests that, for cutaneous melanoma, integrating multiple types of measurements leads to prognostic models with an improved prediction performance. Informative individual markers and pathways are identified, which can provide valuable insights into melanoma prognosis.
Collapse
Affiliation(s)
- Yu Jiang
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Memphis, TN 38152, USA; VA Cooperative Studies Program Coordinating Center, West Haven, CT 06516, USA
| | - Xingjie Shi
- Department of Statistics, Nanjing University of Finance and Economics, Nanjing, China
| | - Qing Zhao
- Merck Research Laboratories, 126 East Lincoln Avenue, RY34, Rahway, NJ 07065, USA
| | | | - Bonnie E Gould Rothberg
- Cancer Center, Department of Internal Medicine, Pathology, Chronic Disease Epidemiology, Yale University, New Haven, CT 06520, USA
| | - Shuangge Ma
- VA Cooperative Studies Program Coordinating Center, West Haven, CT 06516, USA; Department of Biostatistics, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
31
|
Pennisi M, Russo G, Di Salvatore V, Candido S, Libra M, Pappalardo F. Computational modeling in melanoma for novel drug discovery. Expert Opin Drug Discov 2016; 11:609-21. [PMID: 27046143 DOI: 10.1080/17460441.2016.1174688] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION There is a growing body of evidence highlighting the applications of computational modeling in the field of biomedicine. It has recently been applied to the in silico analysis of cancer dynamics. In the era of precision medicine, this analysis may allow the discovery of new molecular targets useful for the design of novel therapies and for overcoming resistance to anticancer drugs. According to its molecular behavior, melanoma represents an interesting tumor model in which computational modeling can be applied. Melanoma is an aggressive tumor of the skin with a poor prognosis for patients with advanced disease as it is resistant to current therapeutic approaches. AREAS COVERED This review discusses the basics of computational modeling in melanoma drug discovery and development. Discussion includes the in silico discovery of novel molecular drug targets, the optimization of immunotherapies and personalized medicine trials. EXPERT OPINION Mathematical and computational models are gradually being used to help understand biomedical data produced by high-throughput analysis. The use of advanced computer models allowing the simulation of complex biological processes provides hypotheses and supports experimental design. The research in fighting aggressive cancers, such as melanoma, is making great strides. Computational models represent the key component to complement these efforts. Due to the combinatorial complexity of new drug discovery, a systematic approach based only on experimentation is not possible. Computational and mathematical models are necessary for bringing cancer drug discovery into the era of omics, big data and personalized medicine.
Collapse
Affiliation(s)
- Marzio Pennisi
- a Department of Mathematics and Computer Science , University of Catania , Catania , Italy
| | - Giulia Russo
- b Department of Biomedical and Biotechnological Sciences , University of Catania , Catania , Italy
| | - Valentina Di Salvatore
- c Researcher at National Research Council , Institute of Neurological Sciences , Catania , Italy
| | - Saverio Candido
- b Department of Biomedical and Biotechnological Sciences , University of Catania , Catania , Italy
| | - Massimo Libra
- b Department of Biomedical and Biotechnological Sciences , University of Catania , Catania , Italy
| | | |
Collapse
|
32
|
Gardberg M, Heuser VD, Koskivuo I, Koivisto M, Carpén O. FMNL2/FMNL3 formins are linked with oncogenic pathways and predict melanoma outcome. JOURNAL OF PATHOLOGY CLINICAL RESEARCH 2016; 2:41-52. [PMID: 27499915 PMCID: PMC4858127 DOI: 10.1002/cjp2.34] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 12/02/2015] [Indexed: 01/19/2023]
Abstract
While most early (stage I‐II) melanomas are cured by surgery, recurrence is not uncommon. Prognostication by current clinicopathological parameters does not provide sufficient means for identifying patients who are at risk of developing metastases and in need of adjuvant therapy. Actin‐regulating formins may account for invasive properties of cancer cells, including melanoma. Here, we studied formin‐like protein 2 and 3 (FMNL2 and FMNL3) in melanoma by analysing their role in the invasive properties of melanoma cells and by evaluating whether FMNL2 expression is associated with melanoma outcome. Immunohistochemical characterization of FMNL2 in a cohort of 175 primary cutaneous stage I‐II melanomas indicated that high FMNL2 reactivity correlates with poor outcome as evaluated by recurrence free survival (p < 0.0001) or disease specific survival (p < 0.0001). In multivariate analysis, Breslow's thickness (p < 0.05) and FMNL2 expression (p < 0.001) remained as independent prognostic factors. Cellular studies revealed that FMNL2 is a component of filopodia in many melanoma cell lines. Inhibition of either FMNL2 or the closely related FMNL3 affected the maintenance of melanoma cell morphology and reduced migration. Finally, inhibition of the BRAF, PI3K and MAPK oncogenic pathways markedly reduced expression of both FMNL2 and FMNL3 in melanoma cells. The results suggest a major role for FMNL2/FMNL3 formins in melanoma biology and raise the possibility that the novel targeted melanoma drugs may interfere with the cellular properties regulated by these formins.
Collapse
Affiliation(s)
- Maria Gardberg
- Department of Pathology University of Turku and Turku University Hospital Turku Finland
| | - Vanina D Heuser
- Department of Pathology University of Turku and Turku University Hospital Turku Finland
| | - Ilkka Koskivuo
- Department of Plastic and General Surgery Turku University Hospital Turku Finland
| | - Mari Koivisto
- Department of Biostatistics University of Turku Turku Finland
| | - Olli Carpén
- Department of PathologyUniversity of Turku and Turku University HospitalTurkuFinland; Auria Biobank, Turku University HospitalTurkuFinland
| |
Collapse
|
33
|
Marzagalli M, Montagnani Marelli M, Casati L, Fontana F, Moretti RM, Limonta P. Estrogen Receptor β in Melanoma: From Molecular Insights to Potential Clinical Utility. Front Endocrinol (Lausanne) 2016; 7:140. [PMID: 27833586 PMCID: PMC5080294 DOI: 10.3389/fendo.2016.00140] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 10/12/2016] [Indexed: 12/14/2022] Open
Abstract
Cutaneous melanoma is an aggressive tumor; its incidence has been reported to increase fast in the past decades. Melanoma is a heterogeneous tumor, with most patients harboring mutations in the BRAF or NRAS oncogenes, leading to the overactivation of the MAPK/ERK and PI3K/Akt pathways. The current therapeutic approaches are based on therapies targeting mutated BRAF and the downstream pathway, and on monoclonal antibodies against the immune checkpoint blockade. However, treatment resistance and side effects are common events of these therapeutic strategies. Increasing evidence supports that melanoma is a hormone-related cancer. Melanoma incidence is higher in males than in females, and females have a significant survival advantage over men. Estrogens exert their effects through estrogen receptors (ERα and ERβ) that affect cancer growth in an opposite way: ERα is associated with a proliferative action and ERβ with an anticancer effect. ERβ is the predominant ER in melanoma, and its expression decreases in melanoma progression, supporting its role as a tumor suppressor. Thus, ERβ is now considered as an effective molecular target for melanoma treatment. 17β-estradiol was reported to inhibit melanoma cells proliferation; however, clinical trials did not provide the expected survival benefits. In vitro studies demonstrate that ERβ ligands inhibit the proliferation of melanoma cells harboring the NRAS (but not the BRAF) mutation, suggesting that ERβ activation might impair melanoma development through the inhibition of the PI3K/Akt pathway. These data suggest that ERβ agonists might be considered as an effective treatment strategy, in combination with MAPK inhibitors, for NRAS mutant melanomas. In an era of personalized medicine, pretreatment evaluation of the expression of ER isoforms together with the concurrent oncogenic mutations should be considered before selecting the most appropriate therapeutic intervention. Natural compounds that specifically bind to ERβ have been identified. These phytoestrogens decrease the proliferation of melanoma cells. Importantly, these effects are unrelated to the oncogenic mutations of melanomas, suggesting that, in addition to their ERβ activating function, these compounds might impair melanoma development through additional mechanisms. A better identification of the role of ERβ in melanoma development will help increase the therapeutic options for this aggressive pathology.
Collapse
Affiliation(s)
- Monica Marzagalli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | - Marina Montagnani Marelli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | - Lavinia Casati
- Department of Medical Biotechnologies and Translational Medicine, Università degli Studi di Milano, Milano, Italy
| | - Fabrizio Fontana
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | - Roberta Manuela Moretti
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | - Patrizia Limonta
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
- *Correspondence: Patrizia Limonta,
| |
Collapse
|
34
|
Zhao G, Han X, Zheng S, Li Z, Sha Y, Ni J, Sun Z, Qiao S, Song Z. Curcumin induces autophagy, inhibits proliferation and invasion by downregulating AKT/mTOR signaling pathway in human melanoma cells. Oncol Rep 2015; 35:1065-74. [PMID: 26573768 DOI: 10.3892/or.2015.4413] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 09/26/2015] [Indexed: 01/12/2023] Open
Abstract
Melanoma is the foremost malignant cutaneous cancer and it is extremely resistant to chemotherapy and radiotherapy. Curcumin is an active component of turmeric, the yellow spice derived from the rhizome of Curcuma longa, and is widely known for its anti-inflammatory and anti-cancerogenic properties. Several recent studies suggest that curcumin induces apoptosis by modulating multiple signaling pathways to exert its anticancer effect. In the present study, we investigated the effect of curcumin on the viability, invasion potential, cell cycle, autophagy and the AKT, mTOR, P70S6K proteins of AKT/mTOR signaling pathway in human melanoma A375 and C8161 cell lines in vitro and in an in vivo tumorigenesis model. Curcumin effectively inhibited the proliferation of melanoma cells in vitro and in vivo. It suppressed cell invasion, arrested the cancer cells at G2/M phase of the cell cycle, and induced autophagy. Furthermore, curcumin suppressed the activation of AKT, mTOR and P70S6K proteins. Curcumin, therefore, is a potent suppressor of cell viability and invasion, and simultaneously an inducer of autophagy in A375 and C8161 cells. Accordingly, curcumin could be a novel therapeutic candidate for the management of melanoma.
Collapse
Affiliation(s)
- Guangming Zhao
- Department of Dermatology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Xiaodong Han
- Department of Dermatology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Siwen Zheng
- Department of Dermatology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Zhen Li
- Department of Dermatology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Yang Sha
- Department of Dermatology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Jing Ni
- Department of Dermatology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Zhe Sun
- Department of Dermatology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Song Qiao
- Department of Dermatology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Zhiqi Song
- Department of Dermatology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| |
Collapse
|
35
|
Jarosz-Biej M, Smolarczyk R, Cichoń T, Kułach N, Czapla J, Matuszczak S, Szala S. Combined Tumor Cell-Based Vaccination and Interleukin-12 Gene Therapy Polarizes the Tumor Microenvironment in Mice. Arch Immunol Ther Exp (Warsz) 2015; 63:451-64. [PMID: 25801067 PMCID: PMC4633448 DOI: 10.1007/s00005-015-0337-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 02/09/2015] [Indexed: 12/22/2022]
Abstract
Tumor progression depends on tumor milieu, which influences neovasculature formation and immunosuppression. Combining immunotherapy with antiangiogenic/antivascular therapy might be an effective therapeutic approach. The aim of our study was to elaborate an anticancer therapeutic strategy based on the induction of immune response which leads to polarization of tumor milieu. To achieve this, we developed a tumor cell-based vaccine. CAMEL peptide was used as a B16-F10 cell death-inducing agent. The lysates were used as a vaccine to immunize mice bearing B16-F10 melanoma tumors. To further improve the therapeutic effect of the vaccine, we combined it with interleukin (IL)-12 gene therapy. IL-12, a cytokine with antiangiogenic properties, activates nonspecific and specific immune responses. We observed that combined therapy is significantly more effective (as compared with monotherapies) in inhibiting tumor growth. Furthermore, the tested combination polarizes the tumor microenvironment, which results in a switch from a proangiogenic/immunosuppressive to an antiangiogenic/immunostimulatory one. The switch manifests itself as a decreased number of tumor blood vessels, increased levels of tumor-infiltrating CD4+, CD8+ and NK cells, as well as lower level of suppressor lymphocytes (Treg). Our results suggest that polarizing tumor milieu by such combined therapy does inhibit tumor growth and seems to be a promising therapeutic strategy.
Collapse
Affiliation(s)
- Magdalena Jarosz-Biej
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-101, Gliwice, Poland.
| | - Ryszard Smolarczyk
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-101, Gliwice, Poland
| | - Tomasz Cichoń
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-101, Gliwice, Poland
| | - Natalia Kułach
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-101, Gliwice, Poland
- Department of Animal Physiology and Ecotoxycology, University of Silesia, Katowice, Poland
| | - Justyna Czapla
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-101, Gliwice, Poland
| | - Sybilla Matuszczak
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-101, Gliwice, Poland
| | - Stanisław Szala
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-101, Gliwice, Poland
| |
Collapse
|
36
|
Xiao L, Yang S, Hao J, Yuan X, Luo W, Jiang L, Hu Y, Fu Z, Zhang Y, Zou C. Endostar attenuates melanoma tumor growth via its interruption of b-FGF mediated angiogenesis. Cancer Lett 2015; 359:148-54. [PMID: 25597785 DOI: 10.1016/j.canlet.2015.01.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Revised: 11/25/2014] [Accepted: 01/08/2015] [Indexed: 12/31/2022]
Abstract
To develop optimal therapeutics is one of the hotspots in both clinical and basic melanoma studies. Previous studies indicate that fibroblast growth factors (b-FGF/FGF-2), an angiogenesis inducer beyond VEGF, might be a potential drug target in melanoma. As a novel anti-angiogenesis peptide drug, Endostar has shown promising therapeutic efficacy in non-small cell lung cancer. However, the effect of Endostar on b-FGF-induced angiogenesis in melanoma is unraveled. To this end, both in vivo and in vitro experiments were conducted and it was found that treatment of Endostar could inhibit tumor growth, which was accompanied by decreased micro-vessel density and serum b-FGF levels in a mouse melanoma model. In addition, treatment with Endostar in blood vessel endothelial cells could reduce their proliferation, cell migration and tube formation capacity in a dosage-dependent manner. Moreover, treatment of Endostar could also attenuate b-FGF-activated phosphorylation of p38 and ERK1/2 in HUVECs. These findings indicate that Endostar might exert its anti-tumor effect via suppressing b-FGF-induced angiogenesis and b-FGF-activated MAPK signaling pathway, suggesting that Endostar might be a potential choice for clinical melanoma treatment.
Collapse
Affiliation(s)
- Lijia Xiao
- Department of Clinical Laboratory, Nanshan affiliated Hospital of Guangdong Medical College, Shenzhen 518052, China
| | - ShuCai Yang
- Department of Surgery, School of Medicine, The Chinese University of Hong Kong, Hong Kong, China; Department of Laboratory Medicine, Yijishan Hospital, Wannan Medical College, Wuhu 241001, Anhui, China
| | - Jianhua Hao
- Department of Clinical Laboratory, Nanshan affiliated Hospital of Guangdong Medical College, Shenzhen 518052, China
| | - Xue Yuan
- Department of Pharmacology, Jiangsu Simcere Pharmaceutical Research Institute, 699-18 Xuan Wu Avenue, Nanjing 210042, China
| | - Wei Luo
- Department of Pharmacology, Jiangsu Simcere Pharmaceutical Research Institute, 699-18 Xuan Wu Avenue, Nanjing 210042, China
| | - Liping Jiang
- Department of Pharmacology, Jiangsu Simcere Pharmaceutical Research Institute, 699-18 Xuan Wu Avenue, Nanjing 210042, China
| | - Yang Hu
- Department of Pharmacology, Jiangsu Simcere Pharmaceutical Research Institute, 699-18 Xuan Wu Avenue, Nanjing 210042, China
| | - Zhongping Fu
- Department of Pharmacology, Jiangsu Simcere Pharmaceutical Research Institute, 699-18 Xuan Wu Avenue, Nanjing 210042, China
| | - Yun Zhang
- Department of Pharmacology, Jiangsu Simcere Pharmaceutical Research Institute, 699-18 Xuan Wu Avenue, Nanjing 210042, China
| | - Chang Zou
- Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, Shenzhen 518020, China; Department of Pharmacology, Jiangsu Simcere Pharmaceutical Research Institute, 699-18 Xuan Wu Avenue, Nanjing 210042, China.
| |
Collapse
|
37
|
Akhbari P, Whitehouse A, Boyne JR. Long non-coding RNAs drive metastatic progression in melanoma (Review). Int J Oncol 2014; 45:2181-6. [PMID: 25269471 DOI: 10.3892/ijo.2014.2691] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 08/21/2014] [Indexed: 11/06/2022] Open
Abstract
Metastatic melanoma is the leading cause of skin-cancer related deaths and while in recent years some progress has been made with targeted therapies, there remains an urgent unmet need for novel therapeutic treatments and reliable diagnostic, prognostic and predictive biomarkers. The emergence of next generation sequencing (NGS) has seen a growing appreciation for the role played by non-coding genomic transcripts in regulating gene expression and by extension impacting on disease progression. The long non-coding RNAs (lncRNAs) represent the most enigmatic of these new regulatory molecules. Our understanding of how lncRNAs regulate biological functions and their importance to disease aetiology, while still limited, is rapidly improving, in particular with regards to their role in cancer. Herein we review the identification of several lncRNAs shown to impact on melanoma disease progression and discuss how these molecules are operating at the molecular level.
Collapse
Affiliation(s)
- Pouria Akhbari
- Centre for Skin Sciences, University of Bradford, Bradford, UK
| | - Adrian Whitehouse
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - James R Boyne
- Centre for Skin Sciences, University of Bradford, Bradford, UK
| |
Collapse
|
38
|
Ostyn P, El Machhour R, Begard S, Kotecki N, Vandomme J, Flamenco P, Segard P, Masselot B, Formstecher P, Touil Y, Polakowska R. Transient TNF regulates the self-renewing capacity of stem-like label-retaining cells in sphere and skin equivalent models of melanoma. Cell Commun Signal 2014; 12:52. [PMID: 25223735 PMCID: PMC4172864 DOI: 10.1186/s12964-014-0052-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 08/26/2014] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND It is well established that inflammation promotes cancer, including melanoma, although the exact mechanisms involved are less known. In this study, we tested the hypothesis that inflammatory factors affect the cancer stem cell (CSC) compartment responsible for tumor development and relapse. RESULTS Using an inducible histone 2B-GFP fusion protein as a tracer of cell divisional history, we determined that tumor necrosis factor (TNF), which is a classical pro-inflammatory cytokine, enlarged the CSC pool of GFP-positive label-retaining cells (LRCs) in tumor-like melanospheres. Although these cells acquired melanoma stem cell markers, including ABCB5 and CD271, and self-renewal ability, they lost their capacity to differentiate, as evidenced by the diminished MelanA expression in melanosphere cells and the loss of pigmentation in a skin equivalent model of human melanoma. The undifferentiated cell phenotype could be reversed by LY294002, which is an inhibitor of the PI3K/AKT signaling pathway, and this reversal was accompanied by a significant reduction in CSC phenotypic markers and functional properties. Importantly, the changes induced by a transient exposure to TNF were long-lasting and observed for many generations after TNF withdrawal. CONCLUSIONS We conclude that pro-inflammatory TNF targets the quiescent/slow-cycling melanoma SC compartment and promotes PI3K/AKT-driven expansion of melanoma SCs most likely by preventing their asymmetrical self-renewal. This TNF effect is maintained and transferred to descendants of LRC CSCs and is manifested in the absence of TNF, suggesting that a transient exposure to inflammatory factors imprints long-lasting molecular and/or cellular changes with functional consequences long after inflammatory signal suppression. Clinically, these results may translate into an inflammation-triggered accumulation of quiescent/slow-cycling CSCs and a post-inflammatory onset of an aggressive tumor.
Collapse
Affiliation(s)
- Pauline Ostyn
- />Inserm U837 Jean-Pierre Aubert Research Center, Institut pour la Recherche sur le Cancer de Lille (IRCL), 1, Place de Verdun 59045, Lille Cedex, France
| | - Raja El Machhour
- />Inserm U837 Jean-Pierre Aubert Research Center, Institut pour la Recherche sur le Cancer de Lille (IRCL), 1, Place de Verdun 59045, Lille Cedex, France
| | - Severine Begard
- />Inserm U837 Jean-Pierre Aubert Research Center, Institut pour la Recherche sur le Cancer de Lille (IRCL), 1, Place de Verdun 59045, Lille Cedex, France
| | - Nuria Kotecki
- />Inserm U837 Jean-Pierre Aubert Research Center, Institut pour la Recherche sur le Cancer de Lille (IRCL), 1, Place de Verdun 59045, Lille Cedex, France
| | - Jerome Vandomme
- />Inserm U837 Jean-Pierre Aubert Research Center, Institut pour la Recherche sur le Cancer de Lille (IRCL), 1, Place de Verdun 59045, Lille Cedex, France
- />Univ Lille Nord de France, F-59000 Lille, France
| | - Pilar Flamenco
- />Inserm U837 Jean-Pierre Aubert Research Center, Institut pour la Recherche sur le Cancer de Lille (IRCL), 1, Place de Verdun 59045, Lille Cedex, France
| | - Pascaline Segard
- />Inserm U837 Jean-Pierre Aubert Research Center, Institut pour la Recherche sur le Cancer de Lille (IRCL), 1, Place de Verdun 59045, Lille Cedex, France
- />Univ Lille Nord de France, F-59000 Lille, France
| | - Bernadette Masselot
- />Inserm U837 Jean-Pierre Aubert Research Center, Institut pour la Recherche sur le Cancer de Lille (IRCL), 1, Place de Verdun 59045, Lille Cedex, France
- />Univ Lille Nord de France, F-59000 Lille, France
| | - Pierre Formstecher
- />Inserm U837 Jean-Pierre Aubert Research Center, Institut pour la Recherche sur le Cancer de Lille (IRCL), 1, Place de Verdun 59045, Lille Cedex, France
- />Univ Lille Nord de France, F-59000 Lille, France
- />CHULille, F-59000 Lille, France
| | - Yasmine Touil
- />Inserm U837 Jean-Pierre Aubert Research Center, Institut pour la Recherche sur le Cancer de Lille (IRCL), 1, Place de Verdun 59045, Lille Cedex, France
- />SIRIC ONCOLille, Lille, France
| | - Renata Polakowska
- />Inserm U837 Jean-Pierre Aubert Research Center, Institut pour la Recherche sur le Cancer de Lille (IRCL), 1, Place de Verdun 59045, Lille Cedex, France
| |
Collapse
|