1
|
Dong Y, Meng F, Wang J, Wei J, Zhang K, Qin S, Li M, Wang F, Wang B, Liu T, Zhong W, Cao H. Desulfovibrio vulgaris flagellin exacerbates colorectal cancer through activating LRRC19/TRAF6/TAK1 pathway. Gut Microbes 2025; 17:2446376. [PMID: 39718561 DOI: 10.1080/19490976.2024.2446376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/22/2024] [Accepted: 12/18/2024] [Indexed: 12/25/2024] Open
Abstract
The initiation and progression of colorectal cancer (CRC) are intimately associated with genetic, environmental and biological factors. Desulfovibrio vulgaris (DSV), a sulfate-reducing bacterium, has been found excessive growth in CRC patients, suggesting a potential role in carcinogenesis. However, the precise mechanisms underlying this association remain incompletely understood. We have found Desulfovibrio was abundant in high-fat diet-induced Apcmin/+ mice, and DSV, a member of Desulfovibrio, triggered colonocyte proliferation of germ-free mice. Furthermore, the level of DSV progressively rose from healthy individuals to CRC patients. Flagella are important accessory structures of bacteria, which can help them colonize and enhance their invasive ability. We found that D. vulgaris flagellin (DVF) drove the proliferation, migration, and invasion of CRC cells and fostered the growth of CRC xenografts. DVF enriched the epithelial-mesenchymal transition (EMT)-associated genes and characterized the facilitation of DVF on EMT. Mechanistically, DVF induced EMT through a functional transmembrane receptor called leucine-rich repeat containing 19 (LRRC19). DVF interacted with LRRC19 to modulate the ubiquitination of tumor necrosis factor receptor-associated factor (TRAF)6, rather than TRAF2. This interaction drove the ubiquitination of pivotal molecule TAK1, further enhancing its autophosphorylation and ultimately contributing to EMT. Collectively, DVF interacts with LRRC19 to activate the TRAF6/TAK1 signaling pathway, thereby promoting the EMT of CRC. These data shed new light on the role of gut microbiota in CRC and establish a potential clinical therapeutic target.
Collapse
Affiliation(s)
- Yue Dong
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Fanyi Meng
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Jingyi Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Jingge Wei
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Kexin Zhang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Siqi Qin
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Mengfan Li
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Fucheng Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Tianyu Liu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Weilong Zhong
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Hailong Cao
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| |
Collapse
|
2
|
Patnaik R, Varghese RL, Banerjee Y. Selective Modulation of PAR-2-Driven Inflammatory Pathways by Oleocanthal: Attenuation of TNF-α and Calcium Dysregulation in Colorectal Cancer Models. Int J Mol Sci 2025; 26:2934. [PMID: 40243559 PMCID: PMC11988659 DOI: 10.3390/ijms26072934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/15/2025] [Accepted: 03/19/2025] [Indexed: 04/18/2025] Open
Abstract
Colorectal cancer (CRC) remains a principal contributor to oncological mortality worldwide, with chronic inflammation serving as a fundamental driver of its pathogenesis. Protease-activated receptor-2 (PAR-2), a G-protein-coupled receptor, orchestrates inflammation-driven tumorigenesis by potentiating NF-κB and Wnt/β-catenin signaling, thereby fostering epithelial-mesenchymal transition (EMT), immune evasion, and therapeutic resistance. Despite its pathological significance, targeted modulation of PAR-2 remains an underexplored avenue in CRC therapeutics. Oleocanthal (OC), a phenolic constituent of extra virgin olive oil, is recognized for its potent anti-inflammatory and anti-cancer properties; however, its regulatory influence on PAR-2 signaling in CRC is yet to be elucidated. This study interrogates the impact of OC on PAR-2-mediated inflammatory cascades using HT-29 and Caco-2 CRC cell lines subjected to lipopolysaccharide (LPS)-induced activation of PAR-2. Expression levels of PAR-2 and TNF-α were quantified through Western blotting and RT-PCR, while ELISA assessed TNF-α secretion. Intracellular calcium flux, a pivotal modulator of PAR-2-driven oncogenic inflammation, was evaluated via Fluo-4 calcium assays. LPS markedly elevated PAR-2 expression at both mRNA and protein levels in CRC cells (p < 0.01, one-way ANOVA). OC administration (20-150 μg/mL) elicited a dose-dependent suppression of PAR-2, with maximal inhibition at 100-150 μg/mL (p < 0.001, Tukey's post hoc test). Concomitant reductions in TNF-α transcription (p < 0.01) and secretion (p < 0.001) were observed, corroborating the anti-inflammatory efficacy of OC. Additionally, OC ameliorated LPS-induced calcium dysregulation, restoring intracellular calcium homeostasis in a concentration-dependent manner (p < 0.01). Crucially, OC exhibited selectivity for PAR-2, leaving PAR-1 expression unaltered (p > 0.05), underscoring its precision as a therapeutic agent. These findings position OC as a selective modulator of PAR-2-driven inflammation in CRC, disrupting the pro-tumorigenic microenvironment through attenuation of TNF-α secretion, calcium dysregulation, and oncogenic signaling pathways. This study furnishes mechanistic insights into OC's potential as a nutraceutical intervention in inflammation-associated CRC. Given the variability in OC bioavailability and content in commercial olive oil, future investigations should delineate optimal dosing strategies and in vivo efficacy to advance its translational potential in CRC therapy.
Collapse
Affiliation(s)
- Rajashree Patnaik
- Department of Basic Medical Sciences, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai 505055, United Arab Emirates; (R.P.); (R.L.V.)
| | - Riah Lee Varghese
- Department of Basic Medical Sciences, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai 505055, United Arab Emirates; (R.P.); (R.L.V.)
| | - Yajnavalka Banerjee
- Department of Basic Medical Sciences, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai 505055, United Arab Emirates; (R.P.); (R.L.V.)
- Centre for Medical Education, School of Medicine, University of Dundee Ninewells Hospital Dundee, Dundee DD2 1SG, UK
| |
Collapse
|
3
|
Fan S, Wang W, Che W, Xu Y, Jin C, Dong L, Xia Q. Nanomedicines Targeting Metabolic Pathways in the Tumor Microenvironment: Future Perspectives and the Role of AI. Metabolites 2025; 15:201. [PMID: 40137165 PMCID: PMC11943624 DOI: 10.3390/metabo15030201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 02/19/2025] [Accepted: 02/27/2025] [Indexed: 03/27/2025] Open
Abstract
Background: Tumor cells engage in continuous self-replication by utilizing a large number of resources and capabilities, typically within an aberrant metabolic regulatory network to meet their own demands. This metabolic dysregulation leads to the formation of the tumor microenvironment (TME) in most solid tumors. Nanomedicines, due to their unique physicochemical properties, can achieve passive targeting in certain solid tumors through the enhanced permeability and retention (EPR) effect, or active targeting through deliberate design optimization, resulting in accumulation within the TME. The use of nanomedicines to target critical metabolic pathways in tumors holds significant promise. However, the design of nanomedicines requires the careful selection of relevant drugs and materials, taking into account multiple factors. The traditional trial-and-error process is relatively inefficient. Artificial intelligence (AI) can integrate big data to evaluate the accumulation and delivery efficiency of nanomedicines, thereby assisting in the design of nanodrugs. Methods: We have conducted a detailed review of key papers from databases, such as ScienceDirect, Scopus, Wiley, Web of Science, and PubMed, focusing on tumor metabolic reprogramming, the mechanisms of action of nanomedicines, the development of nanomedicines targeting tumor metabolism, and the application of AI in empowering nanomedicines. We have integrated the relevant content to present the current status of research on nanomedicines targeting tumor metabolism and potential future directions in this field. Results: Nanomedicines possess excellent TME targeting properties, which can be utilized to disrupt key metabolic pathways in tumor cells, including glycolysis, lipid metabolism, amino acid metabolism, and nucleotide metabolism. This disruption leads to the selective killing of tumor cells and disturbance of the TME. Extensive research has demonstrated that AI-driven methodologies have revolutionized nanomedicine development, while concurrently enabling the precise identification of critical molecular regulators involved in oncogenic metabolic reprogramming pathways, thereby catalyzing transformative innovations in targeted cancer therapeutics. Conclusions: The development of nanomedicines targeting tumor metabolic pathways holds great promise. Additionally, AI will accelerate the discovery of metabolism-related targets, empower the design and optimization of nanomedicines, and help minimize their toxicity, thereby providing a new paradigm for future nanomedicine development.
Collapse
Affiliation(s)
| | | | | | | | | | - Lei Dong
- State Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing 100081, China; (S.F.); (W.W.); (W.C.); (Y.X.); (C.J.)
| | - Qin Xia
- State Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing 100081, China; (S.F.); (W.W.); (W.C.); (Y.X.); (C.J.)
| |
Collapse
|
4
|
Li J, Jiang L, Kai H, Zhou Y, Cao J, Tang W. Identifying preeclampsia-associated key module and hub genes via weighted gene co-expression network analysis. Sci Rep 2025; 15:1364. [PMID: 39779839 PMCID: PMC11711461 DOI: 10.1038/s41598-025-85599-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 01/03/2025] [Indexed: 01/11/2025] Open
Abstract
Preeclampsia (PE) is a common hypertensive disease in women with pregnancy. With the development of bioinformatics, WGCNA was used to explore specific biomarkers to provide therapy targets efficiently. All samples were obtained from gene expression omnibus (GEO), then we used a package named "WGCNA" to construct a scale-free co-expression network and modules related to PE. Next, the search tool for the retrieval of interacting genes database (STRING) was adopted to structure the protein-protein interaction (PPI) of genes in the hub module. Furthermore, the MCODE plug-in was applied to discern hub clusters of the PPI network. We also utilized clusterprofiler to execute the functional analysis. Finally, hub genes were selected via Venn Plot and confirmed by quantitative real-time polymerase chain reaction. Through the co-expression networks and modules, we ensured the turquoise module was the most significant one related to PE. Functional analysis implied these genes were mainly enriched in the organic hydroxy compound metabolic process and Phosphatidylinositol signal system. Due to connectivity, the PPI network showed that GAPDH and VEGFA were the most conspicuous. Lastly, the Venn Plot screened eight hub genes (LDHA, ENG, OCRL, PIK3CB, FLT1, HK2, PKM, and LEP). LDHA was confirmed to be downregulated in PE tissues (P<0.001). This study revealed vital module and hub genes associated with preeclampsia and indicated that LDHA might be a therapeutic target in the future.
Collapse
Affiliation(s)
- Jie Li
- Department of Operating Room Nursing Group, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu, China
| | - Lingling Jiang
- Department of Gynaecology and Obstetrics, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu, China
| | - Haili Kai
- Department of Gynaecology and Obstetrics, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu, China
| | - Yang Zhou
- Department of Gynaecology and Obstetrics, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu, China
| | - Jiachen Cao
- Department of Gynaecology and Obstetrics, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu, China
| | - Weichun Tang
- Department of Gynaecology and Obstetrics, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu, China.
| |
Collapse
|
5
|
Shamloo S, Schloßhauer JL, Tiwari S, Fischer KD, Ghebrechristos Y, Kratzenberg L, Bejoy AM, Aifantis I, Wang E, Imig J. RNA Binding of GAPDH Controls Transcript Stability and Protein Translation in Acute Myeloid Leukemia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.02.626357. [PMID: 39677748 PMCID: PMC11642814 DOI: 10.1101/2024.12.02.626357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Dysregulation of RNA binding proteins (RBPs) is a hallmark in cancerous cells. In acute myeloid leukemia (AML) RBPs are key regulators of tumor proliferation. While classical RBPs have defined RNA binding domains, RNA recognition and function in AML by non-canonical RBPs (ncRBPs) remain unclear. Given the inherent complexity of targeting AML broadly, our goal was to uncover potential ncRBP candidates critical for AML survival using a CRISPR/Cas-based screening. We identified the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as a pro-proliferative factor in AML cells. Based on cross-linking and immunoprecipitation (CLIP), we are defining the global targetome, detecting novel RNA targets mainly located within 5'UTRs, including GAPDH, RPL13a, and PKM. The knockdown of GAPDH unveiled genetic pathways related to ribosome biogenesis, translation initiation, and regulation. Moreover, we demonstrated a stabilizing effect through GAPDH binding to target transcripts including its own mRNA. The present findings provide new insights on the RNA functions and characteristics of GAPDH in AML.
Collapse
|
6
|
Li Z, Lu W, Yin F, Huang A. YBX1 as a prognostic biomarker and potential therapeutic target in hepatocellular carcinoma: A comprehensive investigation through bioinformatics analysis and in vitro study. Transl Oncol 2024; 45:101965. [PMID: 38688048 PMCID: PMC11070759 DOI: 10.1016/j.tranon.2024.101965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 02/08/2024] [Accepted: 04/16/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUNDS Y-box binding protein 1 (YBX1) is a DNA/RNA binding protein known to contribute to the progression of various malignancies, however, a comprehensive pan-cancer analysis to investigate YBX1 across a broad spectrum of cancer types has not yet been conducted. METHODS We utilized the TIMER database for a comprehensive pan-cancer analysis and assessed YBX-1 expression via the TCGA and GEO databases. The relationship between YBX-1 expression and tumor-infiltrating cells was examined using TIMER and the R programming language. To evaluate the prognostic value of YBX1, we performed Kaplan-Meier plots and Cox regression analyses. Through LinkedOmics, we identified genes significantly correlated with YBX-1. The WEB-based Gene SeT AnaLysis Toolkit was used for KEGG pathway enrichment analysis. Additionally, using shRNA-mediated knockdown, we explored the potential role of YBX1 in tumor cell biology. RESULTS Our study identifies pronounced overexpression of YBX-1 across multiple cancer types, correlating with adverse outcomes, notably in liver hepatocellular carcinoma (LIHC). A distinct association between elevated YBX-1 expression and heightened immune cell infiltration suggests YBX-1's potential role in reshaping the tumor microenvironment. Intriguingly, our KEGG pathway analysis indicated a tight nexus between YBX-1 expression and lipid metabolism. Moreover, the suppression of YBX-1 via shRNA revealed diminished cellular proliferation and marked reductions in crucial molecules steering the fatty acid synthesis pathway, implicating YBX-1's potential regulatory role in lipid metabolism within LIHC. CONCLUSIONS YBX-1 serves as a favorable prognostic indicator in various cancers, particularly in liver hepatocellular carcinoma. Targeting YBX1 in HCC offers potential therapeutic strategies. This work paves the way for fresh insights into targeted therapeutic approaches for cancers, especially benefiting liver hepatocellular carcinoma patients.
Collapse
Affiliation(s)
- Zizhen Li
- Department of Medical Oncology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510000, China
| | - Wenhua Lu
- State Key Laboratory of Oncology in Southern China, Sun Yat-Sen University Cancer Center, Guangzhou 510000, China
| | - Feng Yin
- State Key Laboratory of Oncology in Southern China, Sun Yat-Sen University Cancer Center, Guangzhou 510000, China
| | - Amin Huang
- Department of Medical Oncology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510000, China.
| |
Collapse
|
7
|
He Z, Lyu J, Lyu L, Long X, Xu B. Identification of a metabolism-linked genomic signature for prognosis and immunotherapeutic efficiency in metastatic skin cutaneous melanoma. Medicine (Baltimore) 2024; 103:e38347. [PMID: 38847706 PMCID: PMC11155616 DOI: 10.1097/md.0000000000038347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 05/03/2024] [Indexed: 06/10/2024] Open
Abstract
Metastatic skin cutaneous melanoma (MSCM) is the most rapidly progressing/invasive skin-based malignancy, with median survival rates of about 12 months. It appears that metabolic disorders accelerate disease progression. However, correlations between metabolism-linked genes (MRGs) and prognosis in MSCM are unclear, and potential mechanisms explaining the correlation are unknown. The Cancer Genome Atlas (TCGA) was utilized as a training set to develop a genomic signature based on the differentially expressed MRGs (DE-MRGs) between primary skin cutaneous melanoma (PSCM) and MSCM. The Gene Expression Omnibus (GEO) was utilized as a validation set to verify the effectiveness of genomic signature. In addition, a nomogram was established to predict overall survival based on genomic signature and other clinic-based characteristics. Moreover, this study investigated the correlations between genomic signature and tumor micro-environment (TME). This study established a genomic signature consisting of 3 genes (CD38, DHRS3, and TYRP1) and classified MSCM patients into low and high-risk cohorts based on the median risk scores of MSCM cases. It was discovered that cases in the high-risk cohort had significantly lower survival than cases in the low-risk cohort across all sets. Furthermore, a nomogram containing this genomic signature and clinic-based parameters was developed and demonstrated high efficiency in predicting MSCM case survival times. Interestingly, Gene Set Variation Analysis results indicated that the genomic signature was involved in immune-related physiological processes. In addition, this study discovered that risk scoring was negatively correlated with immune-based cellular infiltrations in the TME and critical immune-based checkpoint expression profiles, indicating that favorable prognosis may be influenced in part by immunologically protective micro-environments. A novel 3-genomic signature was found to be reliable for predicting MSCM outcomes and may facilitate personalized immunotherapy.
Collapse
Affiliation(s)
- Zhongshun He
- Department of Oral and Maxillofacial Surgery, Kunming Medical University School and Hospital of Stomatology, Kunming, China
- Yunnan Key Laboratory of Stomatology, Kunming, China
| | - Jing Lyu
- Department of Physiology, Kunming Medical University, Kunming, Yunnan, China
| | - Lechun Lyu
- Technology Transfer Center, Kunming Medical University, Kunming, Yunnan, China
| | - Xiaolin Long
- Yunnan Bestai Biotechnology Co., Ltd., Kunming, Yunnan, China
| | - Biao Xu
- Department of Oral and Maxillofacial Surgery, Kunming Medical University School and Hospital of Stomatology, Kunming, China
- Yunnan Key Laboratory of Stomatology, Kunming, China
| |
Collapse
|
8
|
Li Z, Lu W, Yin F, Zeng P, Li H, Huang A. Overexpression of TNFSF11 reduces GPX4 levels and increases sensitivity to ferroptosis inducers in lung adenocarcinoma. J Transl Med 2024; 22:340. [PMID: 38594779 PMCID: PMC11005202 DOI: 10.1186/s12967-024-05112-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 03/20/2024] [Indexed: 04/11/2024] Open
Abstract
BACKGROUND Lung adenocarcinoma (LUAD), the most common and lethal subtype of lung cancer, continues to be a major health concern worldwide. Despite advances in targeted and immune therapies, only a minority of patients derive substantial benefits. As a result, the urgent need for novel therapeutic strategies to improve lung cancer treatment outcomes remains undiminished. METHODS In our study, we employed the TIMER database to scrutinize TNFSF11 expression across various cancer types. We further examined the differential expression of TNFSF11 in normal and tumor tissues utilizing the TCGA-LUAD dataset and tissue microarray, and probed the associations between TNFSF11 expression and clinicopathological parameters within the TCGA-LUAD dataset. We used the GSE31210 dataset for external validation. To identify genes strongly linked to TNFSF11, we engaged LinkedOmics and conducted a KEGG pathway enrichment analysis using the WEB-based Gene SeT AnaLysis Toolkit. Moreover, we investigated the function of TNFSF11 through gene knockdown or overexpression approaches and explore its function in tumor cells. The therapeutic impact of ferroptosis inducers in tumors overexpressing TNFSF11 were also investigated through in vivo and in vitro experiments. Through these extensive analyses, we shed light on the potential role of TNFSF11 in lung adenocarcinoma, underscoring potential therapeutic targets for this malignancy. RESULTS This research uncovers the overexpression of TNFSF11 in LUAD patients and its inverse correlation with peroxisome-related enzymes. By utilizing gene knockdown or overexpression assays, we found that TNFSF11 was negatively associated with GPX4. Furthermore, cells with TNFSF11 overexpression were relatively more sensitive to the ferroptosis inducers. CONCLUSIONS Our research has provided valuable insights into the role of TNFSF11, revealing its negative regulation of GPX4, which could be influential in crafting therapeutic strategies. These findings set the stage for further exploration into the mechanisms underpinning the relationship between TNFSF11 and GPX4, potentially opening up new avenues for precision medicine in the treatment of LUAD.
Collapse
Affiliation(s)
- Zizhen Li
- Department of Medical Oncology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510000, China
| | - Wenhua Lu
- State Key Laboratory of Oncology in Southern China, Sun Yat-Sen University Cancer Center, Guangzhou, 510000, China
| | - Feng Yin
- State Key Laboratory of Oncology in Southern China, Sun Yat-Sen University Cancer Center, Guangzhou, 510000, China
| | - Peiting Zeng
- Department of Hematology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Heping Li
- Department of Medical Oncology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510000, China.
| | - Amin Huang
- Department of Medical Oncology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510000, China.
| |
Collapse
|
9
|
Mohammadi E, Dashti S, Shafizade N, Jin H, Zhang C, Lam S, Tahmoorespur M, Mardinoglu A, Sekhavati MH. Drug repositioning for immunotherapy in breast cancer using single-cell analysis. NPJ Syst Biol Appl 2024; 10:37. [PMID: 38589404 PMCID: PMC11001976 DOI: 10.1038/s41540-024-00359-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/13/2024] [Indexed: 04/10/2024] Open
Abstract
Immunomodulatory peptides, while exhibiting potential antimicrobial, antifungal, and/or antiviral properties, can play a role in stimulating or suppressing the immune system, especially in pathological conditions like breast cancer (BC). Thus, deregulation of these peptides may serve as an immunotherapeutic strategy to enhance the immune response. In this meta-analysis, we utilized single-cell RNA sequencing data and known therapeutic peptides to investigate the deregulation of these peptides in malignant versus normal human breast epithelial cells. We corroborated our findings at the chromatin level using ATAC-seq. Additionally, we assessed the protein levels in various BC cell lines. Moreover, our in-house drug repositioning approach was employed to identify potential drugs that could positively impact the relapse-free survival of BC patients. Considering significantly deregulated therapeutic peptides and their role in BC pathology, our approach aims to downregulate B2M and SLPI, while upregulating PIGR, DEFB1, LTF, CLU, S100A7, and SCGB2A1 in BC epithelial cells through our drug repositioning pipeline. Leveraging the LINCS L1000 database, we propose BRD-A06641369 for B2M downregulation and ST-4070043 and BRD-K97926541 for SLPI downregulation without negatively affecting the MHC complex as a significantly correlated pathway with these two genes. Furthermore, we have compiled a comprehensive list of drugs for the upregulation of other selected immunomodulatory peptides. Employing an immunotherapeutic approach by integrating our drug repositioning pipeline with single-cell analysis, we proposed potential drugs and drug targets to fortify the immune system against BC.
Collapse
Affiliation(s)
- Elyas Mohammadi
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.
- Department of Animal Science, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Samira Dashti
- Department of Internal Medicine, Mashhad University of Medical Science, Mashhad, Iran
| | - Neda Shafizade
- Department of Internal Medicine, Mashhad University of Medical Science, Mashhad, Iran
| | - Han Jin
- Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Cheng Zhang
- Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Simon Lam
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | | | - Adil Mardinoglu
- Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, Sweden
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK
| | | |
Collapse
|
10
|
Yaman M, Pirim D. Investigation of Common Pathways and Putative Biomarker Candidates of Colorectal Cancer and Insomnia by Using Integrative In-Silico Approaches. IRANIAN JOURNAL OF BIOTECHNOLOGY 2024; 22:e3827. [PMID: 39220338 PMCID: PMC11364928 DOI: 10.30498/ijb.2024.422185.3827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 03/09/2024] [Indexed: 09/04/2024]
Abstract
Background Colorectal cancer (CRC) is one of the leading causes of cancer-related mortalities across the globe. Accumulating evidence shows that individuals having sleep disorders such as insomnia are at high risk of developing CRC, yet the association of sleep disorders with CRC risk is still unclear. Here, we investigated the potential molecular connections between CRC and insomnia using integrative in silico approaches. Objective This study aims to explore the potential molecular connections between CRC and insomnia utilizing integrative in-silico methodologies. Methods and Methods Gene expression microarray datasets for CRC and insomnia samples were retrieved from the NCBI-GEO database and analyzed using R. Functional enrichment analysis of common differentially expressed genes (DEGs) was performed by the g: Profiler tool. Cytoscape software was used to construct a protein-protein interaction network and hub gene identification. Expression profiles of hub genes in TCGA datasets were also determined, and predicted miRNAs targeting hub genes were analyzed by miRNA target prediction tools. Results Our results revealed a total of 113 shared DEGs between the CRC and insomnia datasets. Six genes (HSP8A, GAPDH, HSP90AA1, EEF1G, RPS6, and RPLP0), which were also differently expressed in TCGA datasets, were prioritized as hub genes and were found to be enriched in pathways related to protein synthesis. hsa-miR-324-3p, hsa-miR-769-3p, and hsa-miR-16-5p were identified as promising miRNA biomarkers for two diseases. Conclusions Our in-silico analysis provides promising evidence of the molecular link between CRC and insomnia and highlights multiple potential molecular biomarkers and pathways. Validation of the results by wet lab work can be utilized for novel translational and precision medicine applications to alleviate the public health burden of CRC.
Collapse
Affiliation(s)
- Metehan Yaman
- Institute of Natural and Applied Sciences, Department of Molecular Biology and Genetics, Bursa Uludag University, Bursa, Türkiye
| | - Dilek Pirim
- Institute of Natural and Applied Sciences, Department of Molecular Biology and Genetics, Bursa Uludag University, Bursa, Türkiye
- Institute of Health Sciences, Department of Translational Medicine, Bursa Uludag University, Bursa, Türkiye
- Department of Molecular Biology and Genetics, Bursa Uludag University, Bursa, Türkiye
| |
Collapse
|
11
|
Zhitkevich A, Bayurova E, Avdoshina D, Zakirova N, Frolova G, Chowdhury S, Ivanov A, Gordeychuk I, Palefsky JM, Isaguliants M. HIV-1 Reverse Transcriptase Expression in HPV16-Infected Epidermoid Carcinoma Cells Alters E6 Expression and Cellular Metabolism, and Induces a Hybrid Epithelial/Mesenchymal Cell Phenotype. Viruses 2024; 16:193. [PMID: 38399969 PMCID: PMC10892743 DOI: 10.3390/v16020193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
The high incidence of epithelial malignancies in HIV-1 infected individuals is associated with co-infection with oncogenic viruses, such as high-risk human papillomaviruses (HR HPVs), mostly HPV16. The molecular mechanisms underlying the HIV-1-associated increase in epithelial malignancies are not fully understood. A collaboration between HIV-1 and HR HPVs in the malignant transformation of epithelial cells has long been anticipated. Here, we delineated the effects of HIV-1 reverse transcriptase on the in vitro and in vivo properties of HPV16-infected cervical cancer cells. A human cervical carcinoma cell line infected with HPV16 (Ca Ski) was made to express HIV-1 reverse transcriptase (RT) by lentiviral transduction. The levels of the mRNA of the E6 isoforms and of the factors characteristic to the epithelial/mesenchymal transition were assessed by real-time RT-PCR. The parameters of glycolysis and mitochondrial respiration were determined using Seahorse technology. RT expressing Ca Ski subclones were assessed for the capacity to form tumors in nude mice. RT expression increased the expression of the E6*I isoform, modulated the expression of E-CADHERIN and VIMENTIN, indicating the presence of a hybrid epithelial/mesenchymal phenotype, enhanced glycolysis, and inhibited mitochondrial respiration. In addition, the expression of RT induced phenotypic alterations impacting cell motility, clonogenic activity, and the capacity of Ca Ski cells to form tumors in nude mice. These findings suggest that HIV-RT, a multifunctional protein, affects HPV16-induced oncogenesis, which is achieved through modulation of the expression of the E6 oncoprotein. These results highlight a complex interplay between HIV antigens and HPV oncoproteins potentiating the malignant transformation of epithelial cells.
Collapse
Affiliation(s)
- Alla Zhitkevich
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 119991 Moscow, Russia; (E.B.); (D.A.); (G.F.); (I.G.)
| | - Ekaterina Bayurova
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 119991 Moscow, Russia; (E.B.); (D.A.); (G.F.); (I.G.)
- Gamaleya National Research Center for Epidemiology and Microbiology, 123098 Moscow, Russia;
| | - Darya Avdoshina
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 119991 Moscow, Russia; (E.B.); (D.A.); (G.F.); (I.G.)
| | - Natalia Zakirova
- Centre for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, 119991 Moscow, Russia;
| | - Galina Frolova
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 119991 Moscow, Russia; (E.B.); (D.A.); (G.F.); (I.G.)
| | - Sona Chowdhury
- Division of Infectious Diseases, Department of Medicine, University of California, San Francisco, CA 94143, USA; (S.C.); (J.M.P.)
| | - Alexander Ivanov
- Gamaleya National Research Center for Epidemiology and Microbiology, 123098 Moscow, Russia;
- Centre for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, 119991 Moscow, Russia;
| | - Ilya Gordeychuk
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 119991 Moscow, Russia; (E.B.); (D.A.); (G.F.); (I.G.)
- Gamaleya National Research Center for Epidemiology and Microbiology, 123098 Moscow, Russia;
| | - Joel M. Palefsky
- Division of Infectious Diseases, Department of Medicine, University of California, San Francisco, CA 94143, USA; (S.C.); (J.M.P.)
| | - Maria Isaguliants
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| |
Collapse
|
12
|
Ghasemi F, Farkhondeh T, Samarghandian S, Ghasempour A, Shakibaie M. Oncogenic Alterations of Metabolism Associated with Resistance to Chemotherapy. Curr Mol Med 2024; 24:856-866. [PMID: 37350008 DOI: 10.2174/1566524023666230622104625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 04/12/2023] [Accepted: 04/20/2023] [Indexed: 06/24/2023]
Abstract
Metabolic reprogramming in cancer cells is a strategy to meet high proliferation rates, invasion, and metastasis. Also, several researchers indicated that the cellular metabolism changed during the resistance to chemotherapy. Since glycolytic enzymes play a prominent role in these alterations, the ability to reduce resistance to chemotherapy drugs is promising for cancer patients. Oscillating gene expression of these enzymes was involved in the proliferation, invasion, and metastasis of cancer cells. This review discussed the roles of some glycolytic enzymes associated with cancer progression and resistance to chemotherapy in the various cancer types.
Collapse
Affiliation(s)
- Fahimeh Ghasemi
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
- Department of Medical Biotechnology, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Tahereh Farkhondeh
- Department of Toxicology and Pharmacology, School of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Healthy Ageing Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Alireza Ghasempour
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Mehdi Shakibaie
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
- Department of Pharmaceutics and Nanotechnology, School of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
13
|
Mobeen SA, Saxena P, Jain AK, Deval R, Riazunnisa K, Pradhan D. Integrated bioinformatics approach to unwind key genes and pathways involved in colorectal cancer. J Cancer Res Ther 2023; 19:1766-1774. [PMID: 38376276 DOI: 10.4103/jcrt.jcrt_620_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 12/13/2021] [Indexed: 02/21/2024]
Abstract
BACKGROUND Colorectal cancer (CRC) is the fifth leading cause of death in India. Until now, the exact pathogenesis concerning CRC signaling pathways is largely unknown; however, the diseased condition is believed to deteriorate with lifestyle, aging, and inherited genetic disorders. Hence, the identification of hub genes and therapeutic targets is of great importance for disease monitoring. OBJECTIVE Identification of hub genes and targets for identification of candidate hub genes for CRC diagnosis and monitoring. MATERIALS AND METHODS The present study applied gene expression analysis by integrating two profile datasets (GSE20916 and GSE33113) from NCBI-GEO database to elucidate the potential key candidate genes and pathways in CRC. Differentially expressed genes (DEGs) between CRC (195 CRC tissues) and healthy control (46 normal mucosal tissue) were sorted using GEO2R tool. Further, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis were performed using Cluster Profiler in Rv. 3.6.1. Moreover, protein-protein interactions (PPI), module detection, and hub gene identification were accomplished and visualized through the Search Tool for the Retrieval of Interacting Genes, Molecular Complex Detection (MCODE) plug-in of Cytoscape v3.8.0. Further hub genes were imported into ToppGene webserver for pathway analysis and prognostic expression analysis was conducted using Gene Expression Profiling Interactive Analysis webserver. RESULTS A total of 2221 DEGs, including 1286 up-regulated and 935down-regulated genes mainly enriched in signaling pathways of NOD-like receptor, FoxO, AMPK signalling and leishmaniasis. Three key modules were detected from PPI network using MCODE. Besides, top 20 high prioritized hub genes were selected. Further, prognostic expression analysis revealed ten of the hub genes, namely IL1B, CD44, Glyceraldehyde-3-phosphate dehydrogenase (GAPDH, MMP9, CREB1, STAT1, vascular endothelial growth factor (VEGFA), CDC5 L, Ataxia-telangiectasia mutated (ATM + and CDH1 to be differently expressed in normal and cancer patients. CONCLUSION The present study proposed five novel therapeutic targets, i.e., ATM, GAPDH, CREB1, VEGFA, and CDH1 genes that might provide new insights into molecular oncogenesis of CRC.
Collapse
Affiliation(s)
- Syeda Anjum Mobeen
- Department of Biotechnology and Bioinformatics, Yogi Vemana University, Andhra Pradesh, India
| | - Pallavi Saxena
- Biomedical Informatics Centre, Indian Council of Medical Research, National Institute of Pathology, New Delhi, India
- Department of Biotechnology, Invertis University, Bareilly, Uttar Pradesh, India
| | - Arun Kumar Jain
- Biomedical Informatics Centre, Indian Council of Medical Research, National Institute of Pathology, New Delhi, India
| | - Ravi Deval
- Department of Biotechnology, Invertis University, Bareilly, Uttar Pradesh, India
| | - Khateef Riazunnisa
- Department of Biotechnology and Bioinformatics, Yogi Vemana University, Andhra Pradesh, India
| | | |
Collapse
|
14
|
Wang J, Yu X, Cao X, Tan L, Jia B, Chen R, Li J. GAPDH: A common housekeeping gene with an oncogenic role in pan-cancer. Comput Struct Biotechnol J 2023; 21:4056-4069. [PMID: 37664172 PMCID: PMC10470192 DOI: 10.1016/j.csbj.2023.07.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 07/23/2023] [Accepted: 07/24/2023] [Indexed: 09/05/2023] Open
Abstract
Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) is one of the most prominent housekeeping proteins and is widely used as an internal control in some semi-quantitative assays. In addition to glycolysis, GAPDH is involved in several cancer-related biological processes and has been reported to be commonly dysregulated in multiple cancer types. Therefore, its role in the physiological process of cancer needs to be urgently elucidated. Pan-cancer analysis indicated that GAPDH is ubiquitously highly expressed in most cancer types, and that patients with a high GAPDH expression of in tumor tissues have a poor prognosis. The concordance of GAPDH expression in tumors with the infiltration of immune cells and immune checkpoints implies a certain association between GAPDH and the tumor microenvironment as well as tumor development. Gene Set Enrichment Analysis revealed that GAPDH may contribute to multiple important cancer-related pathways and biological processes. Multi-omics analysis and in vitro cell experiments revealed that GAPDH overexpression is regulated by DNA copy number amplification and promoter methylation modification. Importantly, a transcription factor, forkhead box M1 (FOXM1), which is capable of regulating GAPDH expression, was also identified and was confirmed to be an oncogene and ubiquitously highly expressed in multiple cancer types. Semi-quantitative chromatin immunoprecipitation, quantitative PCR, and dual-luciferase assays showed that FOXM1 mainly binds to the promoter region of GAPDH in two cancer cell lines. The present findings revealed the implication of GAPDH in tumor development, thus bringing attention to this important molecule and casting doubts on its role as an internal reference gene in cancer studies.
Collapse
Affiliation(s)
- Jin Wang
- Department of Toxicology, School of Public Health, Suzhou Medical College of Soochow University, Soochow University, 199 Ren'ai Road, Suzhou, 215123, China
| | - Xueting Yu
- Department of Toxicology, School of Public Health, Suzhou Medical College of Soochow University, Soochow University, 199 Ren'ai Road, Suzhou, 215123, China
| | - Xiyuan Cao
- Department of Toxicology, School of Public Health, Suzhou Medical College of Soochow University, Soochow University, 199 Ren'ai Road, Suzhou, 215123, China
| | - Lirong Tan
- Department of Toxicology, School of Public Health, Suzhou Medical College of Soochow University, Soochow University, 199 Ren'ai Road, Suzhou, 215123, China
| | - Beibei Jia
- Department of Toxicology, School of Public Health, Suzhou Medical College of Soochow University, Soochow University, 199 Ren'ai Road, Suzhou, 215123, China
| | - Rui Chen
- Department of Respiratory Medicine, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, 215004, China
| | - Jianxiang Li
- Department of Toxicology, School of Public Health, Suzhou Medical College of Soochow University, Soochow University, 199 Ren'ai Road, Suzhou, 215123, China
| |
Collapse
|
15
|
El Sayed SM. Biochemical Origin of the Warburg Effect in Light of 15 Years of Research Experience: A Novel Evidence-Based View (An Expert Opinion Article). Onco Targets Ther 2023; 16:143-155. [PMID: 36911533 PMCID: PMC9997657 DOI: 10.2147/ott.s397593] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/10/2023] [Indexed: 03/07/2023] Open
Abstract
Cancer cells strongly upregulate glucose uptake and glycolysis to produce vital biomolecules for cancer cell survival, proliferation, and metastasis as ATP, lipids, proteins, nucleotides, and lactate. The Warburg effect is tumours' unique glucose oxidation to give lactate (not pyruvate) even in the presence of oxygen. Nicotinamide adenine dinucleotide (NAD/NADH.H) is used in glycolysis via glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and lactate dehydrogenase (LDH). Both catalyse reversible biochemical reactions to produce 1,3-diphosphoglycerate and lactate, respectively. In this expert opinion and based on published evidence, the author suggests that: "In transformed cells and hyperglycolytic cancer cells, the Warburg effect (permanent conversion of pyruvate to lactate) occurs secondary to a vicious cycle and a closed circuit between GAPDH and LDH (reaction of carcinogenesis) causing increased endogenous oxidative stress and subsequent carcinogenesis. Mitochondrial defects in cancer cells cause hyperglycolysis resulting in NADH.H accumulation (produced during GAPDH step) that obligatorily drives LDH to become an irreversible reaction in the direction of lactate formation (Warburg effect) but not pyruvate formation. Likewise, LDH oxidizes NADH.H producing excessive NAD+ that secondarily drives GAPDH reaction to be irreversible to produce NADH.H and so on. Pyruvate is an antioxidant while lactate is pro-oxidant, causing increased endogenous oxidative stress in cancer cells, tumour's hypoxia and obligatory hyperglycolysis with NADH.H overproduction (GAPDH step) to be consumed in the LDH step for lactate production and NAD+ generation (utilized by GAPDH) and so on". This confirms Warburg's origin of cancer cells. Best anticancer applications based on this hypothesis are: breaking this closed vicious circle using siRNA to target GAPDH and LDH, avoiding strong oxidants (as many cancer chemotherapeutics), and using strong antioxidants for causing antioxidant-oxidant antagonism or antioxidant-lactate antagonism to inhibit the Warburg effect. Strong natural antioxidants of prophetic medicine (related to Prophet Muhammad peace be upon him) such as Zamzam water, Nigella sativa, costus, Ajwa date fruit, olive oil, Al-hijamah and natural honey are strongly recommended to prevent and antagonize the Warburg effect.
Collapse
Affiliation(s)
- Salah Mohamed El Sayed
- Department of Clinical Biochemistry & Molecular Medicine, Taibah College of Medicine, Taibah University, Al-Madinah Al-Munawwarah, Saudi Arabia.,Department of Medical Biochemistry, Faculty of Medicine, Sohag University, Sohag, Egypt.,Prophetic Medicine Course and Research, Taibah College of Medicine, Taibah University, Al-Madinah Al-Munawwarah, Saudi Arabia
| |
Collapse
|
16
|
Wu WS, Chen RF, Cheng CC, Wei JL, Lin CF, You RI, Chen YC, Lee MC, Chen YC. Suppressing of Src-Hic-5-JNK-AKT Signaling Reduced GAPDH Expression for Preventing the Progression of HuCCT1 Cholangiocarcinoma. Pharmaceutics 2022; 14:pharmaceutics14122698. [PMID: 36559193 PMCID: PMC9784408 DOI: 10.3390/pharmaceutics14122698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/17/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022] Open
Abstract
Cholangiocarcinoma (CCA) is a malignant neoplasm of the bile ducts, being the second most common type of cancer in the liver, and most patients are diagnosed at a late stage with poor prognosis. Targeted therapy aiming at receptors tyrosine kinases (RTKs) such as c-Met or EGFR have been developed but with unsatisfactory outcomes. In our recent report, we found several oncogenic molecules downstream of RTKs, including hydrogen peroxide clone-5 (Hic-5), Src, AKT and JNK, were elevated in tissues of a significant portion of metastatic CCAs. By inhibitor studies and a knockdown approach, these molecules were found to be within the same signal cascade responsible for the migration of HuCCT1 cells, a conventionally used CCA cell line. Herein, we also found Src inhibitor dasatinib and Hic-5 siRNA corporately suppressed HuCCT1 cell invasion. Moreover, dasatinib inhibited the progression of the HuCCT1 tumor on SCID mice skin coupled with decreasing the expression of Hic-5 and EGFR and the activities of Src, AKT and JNK. In addition, we found a glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and several cytoskeletal molecules such as tubulin and cofilin were dramatically decreased after a long-term treatment of the HuCCT1 tumor with a high dose of dasatinib. Specifically, GAPDH was shown to be a downstream effector of the Hic-5/Src/AKT cascade involved in HuCCT1 cell migration. On the other hand, TFK1, another CCA cell line without Hic-5 expression, exhibited very low motility, whereas an ectopic Hic-5 expression enhanced the activation of Src and AKT and marginally increased TFK1 migration. In the future, it is tempting to investigate whether cotargeting Src, Hic-5 and/or GAPDH is efficient for preventing CCA progression in future clinical trials.
Collapse
Affiliation(s)
- Wen-Sheng Wu
- Division of General Surgery, Department of Surgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
- Institute of Medical Sciences, Tzu Chi University, Hualien 970, Taiwan
| | - Rui-Fang Chen
- Division of General Surgery, Department of Surgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
| | - Chuan-Chu Cheng
- Division of General Surgery, Department of Surgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
| | - Jia-Ling Wei
- Division of General Surgery, Department of Surgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
| | - Chen-Fang Lin
- Division of General Surgery, Department of Surgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
| | - Ren-In You
- Department of Laboratory Medicine and Biotechnology, College of Medicine, Tzu Chi University, Hualien 970, Taiwan
| | - Yen-Chang Chen
- Department of Anatomical Pathology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
- Department of Pathology, School of Medicine, Tzu Chi University, Hualien 970, Taiwan
| | - Ming-Che Lee
- Division of General Surgery, Department of Surgery, Wan Fang Hospital, Taipei Medical University, Taipei 110, Taiwan
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Yen-Cheng Chen
- Division of General Surgery, Department of Surgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
- School of Medicine, Tzu Chi University, Hualien 970, Taiwan
- Correspondence:
| |
Collapse
|
17
|
Jayathirtha M, Whitham D, Alwine S, Donnelly M, Neagu AN, Darie CC. Investigating the Function of Human Jumping Translocation Breakpoint Protein (hJTB) and Its Interacting Partners through In-Solution Proteomics of MCF7 Cells. Molecules 2022; 27:8301. [PMID: 36500393 PMCID: PMC9740069 DOI: 10.3390/molecules27238301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/16/2022] [Accepted: 11/16/2022] [Indexed: 11/30/2022] Open
Abstract
Human jumping translocation breakpoint (hJTB) gene is located on chromosome 1q21 and is involved in unbalanced translocation in many types of cancer. JTB protein is ubiquitously present in normal cells but it is found to be overexpressed or downregulated in various types of cancer cells, where this protein and its isoforms promote mitochondrial dysfunction, resistance to apoptosis, genomic instability, proliferation, invasion and metastasis. Hence, JTB could be a tumor biomarker for different types of cancer, such as breast cancer (BC), and could be used as a drug target for therapy. However, the functions of the protein or the pathways through which it increases cell proliferation and invasiveness of cancer cells are not well-known. Therefore, we aim to investigate the functions of JTB by using in-solution digestion-based cellular proteomics of control and upregulated and downregulated JTB protein in MCF7 breast cancer cell line, taking account that in-solution digestion-based proteomics experiments are complementary to the initial in-gel based ones. Proteomics analysis allows investigation of protein dysregulation patterns that indicate the function of the protein and its interacting partners, as well as the pathways and biological processes through which it functions. We concluded that JTB dysregulation increases the epithelial-mesenchymal transition (EMT) potential and cell proliferation, harnessing cytoskeleton organization, apical junctional complex, metabolic reprogramming, and cellular proteostasis. Deregulated JTB expression was found to be associated with several proteins involved in mitochondrial organization and function, oxidative stress (OS), apoptosis, and interferon alpha and gamma signaling. Consistent and complementary to our previous results emerged by using in-gel based proteomics of transfected MCF7 cells, JTB-related proteins that are overexpressed in this experiment suggest the development of a more aggressive phenotype and behavior for this luminal type A non-invasive/poor-invasive human BC cell line that does not usually migrate or invade compared with the highly metastatic MDA-MB-231 cells. This more aggressive phenotype of MCF7 cells related to JTB dysregulation and detected by both in-gel and in-solution proteomics could be promoted by synergistic upregulation of EMT, Mitotic spindle and Fatty acid metabolism pathways. However, in both JTB dysregulated conditions, several downregulated JTB-interacting proteins predominantly sustain antitumor activities, attenuating some of the aggressive phenotypical and behavioral traits promoted by the overexpressed JTB-related partners.
Collapse
Affiliation(s)
- Madhuri Jayathirtha
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA
| | - Danielle Whitham
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA
| | - Shelby Alwine
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA
| | - Mary Donnelly
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA
| | - Anca-Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, “AlexandruIoanCuza” University of Iasi, Carol I bvd. No. 20A, 700505 Iasi, Romania
| | - Costel C. Darie
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA
| |
Collapse
|
18
|
Mitchell AV, Wu J, Meng F, Dong L, Block CJ, Song WM, Zhang B, Li J, Wu G. DDR2 coordinates EMT and metabolic reprogramming as a shared effector of FOXQ1 and SNAI1. CANCER RESEARCH COMMUNICATIONS 2022; 2:1388-1403. [PMID: 36713812 PMCID: PMC9881645 DOI: 10.1158/2767-9764.crc-22-0013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 08/03/2022] [Accepted: 09/26/2022] [Indexed: 02/02/2023]
Abstract
While multiple transcription factors (TFs) have been recognized to drive epithelial-mesenchymal transition (EMT) in cancer, their interdependence and context-dependent functions are poorly understood. In this study, we show that FOXQ1 and SNAI1 act as independent TFs within the EMT program with a shared ability to upregulate common EMT TFs without reciprocally impacting the expression of one another. Despite this independence, human mammary epithelial cells (HMLE) with ectopic expression of either FOXQ1 or SNAI1 share a common gene set that is enriched for a DDR2 coexpression signature. Further analysis identified DDR2 as the most upregulated receptor tyrosine kinase and a shared downstream effector of FOXQ1 and SNAI1 in triple-negative breast cancer (TNBC) cell lines. Alteration of DDR2 expression in either FOXQ1 or SNAI1 driven EMT models or in TNBC cells resulted in a profound change of cell motility without significantly impacting EMT marker expression, cell morphology, or the stem cell population. Lastly, we demonstrated that knockdown of DDR2 in the FOXQ1-driven EMT model and TNBC cell line significantly altered the global metabolic profile, including glutamine-glutamate and Aspartic acid recycling.
Collapse
Affiliation(s)
- Allison V. Mitchell
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan
| | - Jason Wu
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan
- Department of Biology, Purdue University, West Lafayette, Indiana
| | - Fanyan Meng
- Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, P.R. China
| | - Lun Dong
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan
- Department of Breast Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, P.R. China
| | - C. James Block
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan
| | - Won-min Song
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn Mount Sinai School of Medicine, New York, New York
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn Mount Sinai School of Medicine, New York, New York
| | - Jing Li
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan
| | - Guojun Wu
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan
| |
Collapse
|
19
|
Paul S, Ghosh S, Kumar S. Tumor glycolysis, an essential sweet tooth of tumor cells. Semin Cancer Biol 2022; 86:1216-1230. [PMID: 36330953 DOI: 10.1016/j.semcancer.2022.09.007] [Citation(s) in RCA: 159] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 09/23/2022] [Accepted: 09/28/2022] [Indexed: 11/06/2022]
Abstract
Cancer cells undergo metabolic alterations to meet the immense demand for energy, building blocks, and redox potential. Tumors show glucose-avid and lactate-secreting behavior even in the presence of oxygen, a process known as aerobic glycolysis. Glycolysis is the backbone of cancer cell metabolism, and cancer cells have evolved various mechanisms to enhance it. Glucose metabolism is intertwined with other metabolic pathways, making cancer metabolism diverse and heterogeneous, where glycolysis plays a central role. Oncogenic signaling accelerates the metabolic activities of glycolytic enzymes, mainly by enhancing their expression or by post-translational modifications. Aerobic glycolysis ferments glucose into lactate which supports tumor growth and metastasis by various mechanisms. Herein, we focused on tumor glycolysis, especially its interactions with the pentose phosphate pathway, glutamine metabolism, one-carbon metabolism, and mitochondrial oxidation. Further, we describe the role and regulation of key glycolytic enzymes in cancer. We summarize the role of lactate, an end product of glycolysis, in tumor growth, and the metabolic adaptations during metastasis. Lastly, we briefly discuss limitations and future directions to improve our understanding of glucose metabolism in cancer.
Collapse
Affiliation(s)
- Sumana Paul
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, 400076 Mumbai, India
| | - Saikat Ghosh
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Sushil Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, 400076 Mumbai, India.
| |
Collapse
|
20
|
Warburg effect in colorectal cancer: the emerging roles in tumor microenvironment and therapeutic implications. J Hematol Oncol 2022; 15:160. [PMID: 36319992 PMCID: PMC9628128 DOI: 10.1186/s13045-022-01358-5] [Citation(s) in RCA: 135] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 09/26/2022] [Indexed: 11/07/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer and the second leading cause of cancer-related death worldwide. Countless CRC patients undergo disease progression. As a hallmark of cancer, Warburg effect promotes cancer metastasis and remodels the tumor microenvironment, including promoting angiogenesis, immune suppression, cancer-associated fibroblasts formation and drug resistance. Targeting Warburg metabolism would be a promising method for the treatment of CRC. In this review, we summarize information about the roles of Warburg effect in tumor microenvironment to elucidate the mechanisms governing Warburg effect in CRC and to identify novel targets for therapy.
Collapse
|
21
|
Schwager SC, Mosier JA, Padmanabhan RS, White A, Xing Q, Hapach LA, Taufalele PV, Ortiz I, Reinhart-King CA. Link between glucose metabolism and epithelial-to-mesenchymal transition drives triple-negative breast cancer migratory heterogeneity. iScience 2022; 25:105190. [PMID: 36274934 PMCID: PMC9579510 DOI: 10.1016/j.isci.2022.105190] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 07/07/2022] [Accepted: 09/20/2022] [Indexed: 11/26/2022] Open
Abstract
Intracellular and environmental cues result in heterogeneous cancer cell populations with different metabolic and migratory behaviors. Although glucose metabolism and epithelial-to-mesenchymal transition have previously been linked, we aim to understand how this relationship fuels cancer cell migration. We show that while glycolysis drives single-cell migration in confining microtracks, fast and slow cells display different migratory sensitivities to glycolysis and oxidative phosphorylation inhibition. Phenotypic sorting of highly and weakly migratory subpopulations (MDA+, MDA-) reveals that more mesenchymal, highly migratory MDA+ preferentially use glycolysis while more epithelial, weakly migratory MDA- utilize mitochondrial respiration. These phenotypes are plastic and MDA+ can be made less glycolytic, mesenchymal, and migratory and MDA- can be made more glycolytic, mesenchymal, and migratory via modulation of glucose metabolism or EMT. These findings reveal an intrinsic link between EMT and glucose metabolism that controls migration. Identifying mechanisms fueling phenotypic heterogeneity is essential to develop targeted metastatic therapeutics.
Collapse
Affiliation(s)
- Samantha C. Schwager
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37212 USA
| | - Jenna A. Mosier
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37212 USA
| | - Reethi S. Padmanabhan
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37212 USA
| | - Addison White
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37212 USA
| | - Qinzhe Xing
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37212 USA
| | - Lauren A. Hapach
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Paul V. Taufalele
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37212 USA
| | - Ismael Ortiz
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37212 USA
| | | |
Collapse
|
22
|
Yuan ZL, Liu XD, Zhang ZX, Li S, Tian Y, Xi K, Cai J, Yang XM, Liu M, Xing GG. Activation of GDNF-ERK-Runx1 signaling contributes to P2X3R gene transcription and bone cancer pain. iScience 2022; 25:104936. [PMID: 36072549 PMCID: PMC9441333 DOI: 10.1016/j.isci.2022.104936] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/15/2022] [Accepted: 08/10/2022] [Indexed: 11/24/2022] Open
Abstract
Bone cancer pain is a common symptom in cancer patients with bone metastases and its underlying mechanisms remain unknown. Here, we report that Runx1 directly upregulates the transcriptional activity of P2X3 receptor (P2X3R) gene promoter in PC12 cells. Knocking down Runx1 in dorsal root ganglion (DRG) neurons suppresses the functional upregulation of P2X3R, attenuates neuronal hyperexcitability and pain hypersensitivity in tumor-bearing rats, whereas overexpressing Runx1 promotes P2X3R gene transcription in DRG neurons, induces neuronal hyperexcitability and pain hypersensitivity in naïve rats. Activation of GDNF-GFRα1-Ret-ERK signaling is required for Runx1-mediated P2X3R gene transcription in DRG neurons, and contributes to neuronal hyperexcitability and pain hypersensitivity in tumor-bearing rats. These findings indicate that the Runx1-mediated P2X3R gene transcription resulted from activation of GDNF-GFRα1-Ret-ERK signaling contributes to the sensitization of DRG neurons and pathogenesis of bone cancer pain. Our findings identify a potentially targetable mechanism that may cause bone metastasis-associated pain in cancer patients.
Collapse
Affiliation(s)
- Zhu-Lin Yuan
- Neuroscience Research Institute, Peking University, Beijing 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
- Key Laboratory for Neuroscience, Ministry of Education of China and National Health Commission of China, Beijing 100191, China
| | - Xiao-Dan Liu
- Neuroscience Research Institute, Peking University, Beijing 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
- Key Laboratory for Neuroscience, Ministry of Education of China and National Health Commission of China, Beijing 100191, China
| | - Zi-Xian Zhang
- Neuroscience Research Institute, Peking University, Beijing 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
- Key Laboratory for Neuroscience, Ministry of Education of China and National Health Commission of China, Beijing 100191, China
| | - Song Li
- Neuroscience Research Institute, Peking University, Beijing 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
- Key Laboratory for Neuroscience, Ministry of Education of China and National Health Commission of China, Beijing 100191, China
| | - Yue Tian
- Neuroscience Research Institute, Peking University, Beijing 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
- Key Laboratory for Neuroscience, Ministry of Education of China and National Health Commission of China, Beijing 100191, China
| | - Ke Xi
- Neuroscience Research Institute, Peking University, Beijing 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
- Key Laboratory for Neuroscience, Ministry of Education of China and National Health Commission of China, Beijing 100191, China
| | - Jie Cai
- Neuroscience Research Institute, Peking University, Beijing 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
- Key Laboratory for Neuroscience, Ministry of Education of China and National Health Commission of China, Beijing 100191, China
| | - Xiao-Mei Yang
- Department of Human Anatomy and Embryology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Min Liu
- Neuroscience Research Institute, Peking University, Beijing 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
- Key Laboratory for Neuroscience, Ministry of Education of China and National Health Commission of China, Beijing 100191, China
| | - Guo-Gang Xing
- Neuroscience Research Institute, Peking University, Beijing 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
- Key Laboratory for Neuroscience, Ministry of Education of China and National Health Commission of China, Beijing 100191, China
| |
Collapse
|
23
|
Albaradei S, Albaradei A, Alsaedi A, Uludag M, Thafar MA, Gojobori T, Essack M, Gao X. MetastaSite: Predicting metastasis to different sites using deep learning with gene expression data. Front Mol Biosci 2022; 9:913602. [PMID: 35936793 PMCID: PMC9353773 DOI: 10.3389/fmolb.2022.913602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/29/2022] [Indexed: 12/03/2022] Open
Abstract
Deep learning has massive potential in predicting phenotype from different omics profiles. However, deep neural networks are viewed as black boxes, providing predictions without explanation. Therefore, the requirements for these models to become interpretable are increasing, especially in the medical field. Here we propose a computational framework that takes the gene expression profile of any primary cancer sample and predicts whether patients' samples are primary (localized) or metastasized to the brain, bone, lung, or liver based on deep learning architecture. Specifically, we first constructed an AutoEncoder framework to learn the non-linear relationship between genes, and then DeepLIFT was applied to calculate genes' importance scores. Next, to mine the top essential genes that can distinguish the primary and metastasized tumors, we iteratively added ten top-ranked genes based upon their importance score to train a DNN model. Then we trained a final multi-class DNN that uses the output from the previous part as an input and predicts whether samples are primary or metastasized to the brain, bone, lung, or liver. The prediction performances ranged from AUC of 0.93-0.82. We further designed the model's workflow to provide a second functionality beyond metastasis site prediction, i.e., to identify the biological functions that the DL model uses to perform the prediction. To our knowledge, this is the first multi-class DNN model developed for the generic prediction of metastasis to various sites.
Collapse
Affiliation(s)
- Somayah Albaradei
- Computer Electrical and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Asim Alsaedi
- King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
- King Abdulaziz Medical City, Jeddah, Saudi Arabia
| | - Mahmut Uludag
- Computer Electrical and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Maha A. Thafar
- Computer Electrical and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- College of Computers and Information Technology, Taif University, Taif, Saudi Arabia
| | - Takashi Gojobori
- Computer Electrical and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Magbubah Essack
- Computer Electrical and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Xin Gao
- Computer Electrical and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
24
|
Singh K, Rustagi Y, Abouhashem AS, Tabasum S, Verma P, Hernandez E, Pal D, Khona DK, Mohanty SK, Kumar M, Srivastava R, Guda PR, Verma SS, Mahajan S, Killian JA, Walker LA, Ghatak S, Mathew-Steiner SS, Wanczyk K, Liu S, Wan J, Yan P, Bundschuh R, Khanna S, Gordillo GM, Murphy MP, Roy S, Sen CK. Genome-wide DNA hypermethylation opposes healing in chronic wound patients by impairing epithelial-to-mesenchymal transition. J Clin Invest 2022; 132:157279. [PMID: 35819852 PMCID: PMC9433101 DOI: 10.1172/jci157279] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 07/07/2022] [Indexed: 12/15/2022] Open
Abstract
An extreme chronic wound tissue microenvironment causes epigenetic gene silencing. An unbiased whole-genome methylome was studied in the wound-edge tissue of patients with chronic wounds. A total of 4,689 differentially methylated regions (DMRs) were identified in chronic wound-edge skin compared with unwounded human skin. Hypermethylation was more frequently observed (3,661 DMRs) in the chronic wound-edge tissue compared with hypomethylation (1,028 DMRs). Twenty-six hypermethylated DMRs were involved in epithelial-mesenchymal transition (EMT). Bisulfite sequencing validated hypermethylation of a predicted specific upstream regulator TP53. RNA-Seq analysis was performed to qualify findings from methylome analysis. Analysis of the downregulated genes identified the TP53 signaling pathway as being significantly silenced. Direct comparison of hypermethylation and downregulated genes identified 4 genes, ADAM17, NOTCH, TWIST1, and SMURF1, that functionally represent the EMT pathway. Single-cell RNA-Seq studies revealed that these effects on gene expression were limited to the keratinocyte cell compartment. Experimental murine studies established that tissue ischemia potently induces wound-edge gene methylation and that 5′-azacytidine, inhibitor of methylation, improved wound closure. To specifically address the significance of TP53 methylation, keratinocyte-specific editing of TP53 methylation at the wound edge was achieved by a tissue nanotransfection-based CRISPR/dCas9 approach. This work identified that reversal of methylation-dependent keratinocyte gene silencing represents a productive therapeutic strategy to improve wound closure.
Collapse
Affiliation(s)
- Kanhaiya Singh
- Department of Surgery, Indiana University School of Medicine, Indianapolis, United States of America
| | - Yashika Rustagi
- Department of Surgery, Indiana University School of Medicine, Indianapolis, United States of America
| | - Ahmed S Abouhashem
- Department of Surgery, Indiana University School of Medicine, Indianapolis, United States of America
| | - Saba Tabasum
- Department of Surgery, Indiana University School of Medicine, Indianapolis, United States of America
| | - Priyanka Verma
- Department of Surgery, Indiana University School of Medicine, Indianapolis, United States of America
| | - Edward Hernandez
- Department of Surgery, Indiana University School of Medicine, Indianapolis, United States of America
| | - Durba Pal
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Ropar, India
| | - Dolly K Khona
- Department of Surgery, Indiana University School of Medicine, Indianapolis, United States of America
| | - Sujit K Mohanty
- Department of Surgery, Indiana University School of Medicine, Indianapolis, United States of America
| | - Manishekhar Kumar
- Department of Surgery, Indiana University School of Medicine, Indianapolis, United States of America
| | - Rajneesh Srivastava
- Department of Surgery, Indiana University School of Medicine, Indianapolis, United States of America
| | - Poornachander R Guda
- Department of Surgery, Indiana University School of Medicine, Indianapolis, United States of America
| | - Sumit S Verma
- Department of Surgery, Indiana University School of Medicine, Indianapolis, United States of America
| | - Sanskruti Mahajan
- Department of Surgery, Indiana University School of Medicine, Indianapolis, United States of America
| | - Jackson A Killian
- Department of Physics, Ohio State University, Columbus, United States of America
| | - Logan A Walker
- Department of Physics, Ohio State University, Columbus, United States of America
| | - Subhadip Ghatak
- Department of Surgery, Indiana University School of Medicine, Indianapolis, United States of America
| | - Shomita S Mathew-Steiner
- Department of Surgery, Indiana University School of Medicine, Indianapolis, United States of America
| | - Kristen Wanczyk
- Department of Surgery, Indiana University School of Medicine, Indianapolis, United States of America
| | - Sheng Liu
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, United States of America
| | - Jun Wan
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, United States of America
| | - Pearlly Yan
- Comprehensive Cancer Center, Ohio State University, Columbus, United States of America
| | - Ralf Bundschuh
- Department of Physics, Ohio State University, Columbus, United States of America
| | - Savita Khanna
- Department of Surgery, Indiana University School of Medicine, Indianapolis, United States of America
| | - Gayle M Gordillo
- Department of Surgery, Indiana University School of Medicine, Indianapolis, United States of America
| | - Michael P Murphy
- Department of Surgery, Indiana University School of Medicine, Indianapolis, United States of America
| | - Sashwati Roy
- Department of Surgery, Indiana University School of Medicine, Indianapolis, United States of America
| | - Chandan K Sen
- Department of Surgery, Indiana University School of Medicine, Indianapolis, United States of America
| |
Collapse
|
25
|
Pathania S, Khan MI, Bandyopadhyay S, Singh SS, Rani K, Parashar TR, Jayaram J, Mishra PR, Srivastava A, Mathur S, Hari S, Vanamail P, Hariprasad G. iTRAQ proteomics of sentinel lymph nodes for identification of extracellular matrix proteins to flag metastasis in early breast cancer. Sci Rep 2022; 12:8625. [PMID: 35599267 PMCID: PMC9124668 DOI: 10.1038/s41598-022-12352-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 05/03/2022] [Indexed: 12/24/2022] Open
Abstract
Patients with early breast cancer are affected by metastasis to axillary lymph nodes. Metastasis to these nodes is crucial for staging and quality of surgery. Sentinel Lymph Node Biopsy that is currently used to assess lymph node metastasis is not effective. This necessitates identification of biomarkers that can flag metastasis. Early stage breast cancer patients were recruited. Surgical resection of breast was followed by identification of sentinel lymph nodes. Fresh frozen section biopsy was used to assign metastatic and non-metastatic sentinel lymph nodes. Discovery phase included iTRAQ proteomics coupled with mass spectrometric analysis to identify differentially expressed proteins. Data is available via ProteomeXchange with identifier PXD027668. Validation was done by bioinformatic analysis and ELISA. There were 2398 unique protein groups and 109 differentially expressed proteins comparing metastatic and non-metastatic lymph nodes. Forty nine proteins were up-regulated, and sixty proteins that were down regulated in metastatic group. Bioinformatic analysis showed ECM-receptor interaction pathways to be implicated in lymph node metastasis. ELISA confirmed up-regulation of ECM proteins in metastatic lymph nodes. ECM proteins have requisite parameters to be developed as a diagnostic tool to assess status of sentinel lymph nodes to guide surgical intervention in early breast cancer.
Collapse
|
26
|
Tumor Cell Glycolysis—At the Crossroad of Epithelial–Mesenchymal Transition and Autophagy. Cells 2022; 11:cells11061041. [PMID: 35326492 PMCID: PMC8947107 DOI: 10.3390/cells11061041] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 12/10/2022] Open
Abstract
Upregulation of glycolysis, induction of epithelial–mesenchymal transition (EMT) and macroautophagy (hereafter autophagy), are phenotypic changes that occur in tumor cells, in response to similar stimuli, either tumor cell-autonomous or from the tumor microenvironment. Available evidence, herein reviewed, suggests that glycolysis can play a causative role in the induction of EMT and autophagy in tumor cells. Thus, glycolysis has been shown to induce EMT and either induce or inhibit autophagy. Glycolysis-induced autophagy occurs both in the presence (glucose starvation) or absence (glucose sufficiency) of metabolic stress. In order to explain these, in part, contradictory experimental observations, we propose that in the presence of stimuli, tumor cells respond by upregulating glycolysis, which will then induce EMT and inhibit autophagy. In the presence of stimuli and glucose starvation, upregulated glycolysis leads to adenosine monophosphate-activated protein kinase (AMPK) activation and autophagy induction. In the presence of stimuli and glucose sufficiency, upregulated glycolytic enzymes (e.g., aldolase or glyceraldehyde 3-phosphate dehydrogenase) or decreased levels of glycolytic metabolites (e.g., dihydroxyacetone phosphate) may mimic a situation of metabolic stress (herein referred to as “pseudostarvation”), leading, directly or indirectly, to AMPK activation and autophagy induction. We also discuss possible mechanisms, whereby glycolysis can induce a mixed mesenchymal/autophagic phenotype in tumor cells. Subsequently, we address unresolved problems in this field and possible therapeutic consequences.
Collapse
|
27
|
Cellular mechanism of action of 2-nitroimidzoles as hypoxia-selective therapeutic agents. Redox Biol 2022; 52:102300. [PMID: 35430547 PMCID: PMC9038562 DOI: 10.1016/j.redox.2022.102300] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/05/2022] [Accepted: 03/18/2022] [Indexed: 02/06/2023] Open
Abstract
Solid tumours are often poorly oxygenated, which confers resistance to standard treatment modalities. Targeting hypoxic tumours requires compounds, such as nitroimidazoles (NIs), equipped with the ability to reach and become activated within diffusion limited tumour niches. NIs become selectively entrapped in hypoxic cells through bioreductive activation, and have shown promise as hypoxia directed therapeutics. However, little is known about their mechanism of action, hindering the broader clinical usage of NIs. Iodoazomycin arabinofuranoside (IAZA) and fluoroazomycin arabinofuranoside (FAZA) are clinically validated 2-NI hypoxic radiotracers with excellent tumour uptake properties. Hypoxic cancer cells have also shown preferential susceptibility to IAZA and FAZA treatment, making them ideal candidates for an in-depth study in a therapeutic setting. Using a head and neck cancer model, we show that hypoxic cells display higher sensitivity to IAZA and FAZA, where the drugs alter cell morphology, compromise DNA replication, slow down cell cycle progression and induce replication stress, ultimately leading to cytostasis. Effects of IAZA and FAZA on target cellular macromolecules (DNA, proteins and glutathione) were characterized to uncover potential mechanism(s) of action. Covalent binding of these NIs was only observed to cellular proteins, but not to DNA, under hypoxia. While protein levels remained unaffected, catalytic activities of NI target proteins, such as the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and the detoxification enzyme glutathione S-transferase (GST) were significantly curtailed in response to drug treatment under hypoxia. Intraperitoneal administration of IAZA was well-tolerated in mice and produced early (but transient) growth inhibition of subcutaneous mouse tumours. Hypoxic cells display preferential sensitivity to IAZA and FAZA. They alter cell morphology and induce cytostasis. IAZA and FAZA generate covalent adducts of proteins but not DNA. GAPDH and GST activities, but not protein levels, are significantly reduced.
Collapse
|
28
|
Chen N, He D, Cui J. A Neutrophil Extracellular Traps Signature Predicts the Clinical Outcomes and Immunotherapy Response in Head and Neck Squamous Cell Carcinoma. Front Mol Biosci 2022; 9:833771. [PMID: 35252353 PMCID: PMC8894649 DOI: 10.3389/fmolb.2022.833771] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 02/04/2022] [Indexed: 12/13/2022] Open
Abstract
Background: Neutrophil extracellular traps (NETs) play an important role in the occurrence, metastasis and immune escape of cancers. This study aimed to investigate NET-related genes, their clinical prognostic value and their correlation with immunotherapy and anticancer drugs in patients with head and neck squamous cell carcinoma (HNSCC). Methods: Differentially expressed NET-related genes in HNSCC were identified based on multiple public databases. To improve the clinical practicability and avoid overfitting, univariable, least absolute shrinkage and selection operator (LASSO) and multivariable Cox algorithms were used to construct a prognostic risk model. A nomogram was further used to explore the clinical value of the model. Internal and external validation were conducted to test the model. Furthermore, the immune microenvironment, immunophenoscore (IPS) and sensitivity to anticancer drugs in HNSCC patients with different prognostic risks were explored. Results: Six NET-related genes were screened to construct the risk model. In the training cohort, Kaplan–Meier (K-M) analysis showed that the overall survival (OS) of low-risk HNSCC patients was significantly better than that of high-risk HNSCC patients (p < 0.001). The nomogram also showed a promising prognostic value with a better C-index (0.726 vs 0.640) and area under the curve (AUC) (0.743 vs 0.706 at 3 years, 0.743 vs 0.645 at 5 years) than those in previous studies. Calibration plots and decision curve analysis (DCA) also showed the satisfactory predictive capacity of the nomogram. Internal and external validation further strengthened the credibility of the clinical prognostic model. The level of tumor mutational burden (TMB) in the high-risk group was significantly higher than that in the low-risk group (p = 0.017), and the TMB was positively correlated with the risk score (R = 0.11; p = 0.019). Moreover, the difference in immune infiltration was significant in HNSCC patients with different risks (p < 0.05). Furthermore, the IPS analysis indicated that anti-PD-1 (p < 0.001), anti-CTLA4 (p < 0.001) or combining immunotherapies (p < 0.001) were more beneficial for low-risk HNSCC patients. The response to anticancer drugs was also closely correlated with the expression of NET-related genes (p < 0.001). Conclusion: This study identified a novel prognostic model that might be beneficial to develop personalized treatment for HNSCC patients.
Collapse
Affiliation(s)
- Naifei Chen
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Dongsheng He
- Department of Medical Oncology, The First Hospital of Putian, Teaching Hospital, Fujian Medical University, Putian, China
| | - Jiuwei Cui
- Cancer Center, The First Hospital of Jilin University, Changchun, China
- *Correspondence: Jiuwei Cui,
| |
Collapse
|
29
|
Orozco Morales ML, Rinaldi CA, de Jong E, Lansley SM, Gummer JP, Olasz B, Nambiar S, Hope DE, Casey TH, Lee YCG, Leslie C, Nealon G, Shackleford DM, Powell AK, Grimaldi M, Balaguer P, Zemek RM, Bosco A, Piggott MJ, Vrielink A, Lake RA, Lesterhuis WJ. PPARα and PPARγ activation is associated with pleural mesothelioma invasion but therapeutic inhibition is ineffective. iScience 2022; 25:103571. [PMID: 34984327 PMCID: PMC8692993 DOI: 10.1016/j.isci.2021.103571] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/16/2021] [Accepted: 12/01/2021] [Indexed: 12/15/2022] Open
Abstract
Mesothelioma is a cancer that typically originates in the pleura of the lungs. It rapidly invades the surrounding tissues, causing pain and shortness of breath. We compared cell lines injected either subcutaneously or intrapleurally and found that only the latter resulted in invasive and rapid growth. Pleural tumors displayed a transcriptional signature consistent with increased activity of nuclear receptors PPARα and PPARγ and with an increased abundance of endogenous PPAR-activating ligands. We found that chemical probe GW6471 is a potent, dual PPARα/γ antagonist with anti-invasive and anti-proliferative activity in vitro. However, administration of GW6471 at doses that provided sustained plasma exposure levels sufficient for inhibition of PPARα/γ transcriptional activity did not result in significant anti-mesothelioma activity in mice. Lastly, we demonstrate that the in vitro anti-tumor effect of GW6471 is off-target. We conclude that dual PPARα/γ antagonism alone is not a viable treatment modality for mesothelioma.
Collapse
Affiliation(s)
- M. Lizeth Orozco Morales
- School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia
- National Centre for Asbestos Related Diseases, Nedlands, WA 6009, Australia
| | - Catherine A. Rinaldi
- School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia
- National Centre for Asbestos Related Diseases, Nedlands, WA 6009, Australia
- Centre for Microscopy Characterisation and Analysis, Nedlands, WA 6009, Australia
| | - Emma de Jong
- Telethon Kids Institute, University of Western Australia, West Perth, WA 6872, Australia
| | | | - Joel P.A. Gummer
- School of Science, Department of Science, Edith Cowan University, Joondalup, WA 6027, Australia
- UWA Medical School, The University of Western Australia, Crawley, WA 6009, Australia
| | - Bence Olasz
- School of Molecular Sciences, University of Western Australia, Crawley, WA 6009, Australia
| | - Shabarinath Nambiar
- School of Veterinary and Life Science, Murdoch University, Murdoch, WA 6150, Australia
| | - Danika E. Hope
- School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia
- National Centre for Asbestos Related Diseases, Nedlands, WA 6009, Australia
| | - Thomas H. Casey
- School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia
- National Centre for Asbestos Related Diseases, Nedlands, WA 6009, Australia
| | - Y. C. Gary Lee
- Institute for Respiratory Health, Nedlands, WA 6009, Australia
| | - Connull Leslie
- Department of Anatomical Pathology, PathWest Laboratory Medicine, QEII Medical Centre, Nedlands, WA 6009, Australia
| | - Gareth Nealon
- School of Molecular Sciences, University of Western Australia, Crawley, WA 6009, Australia
| | - David M. Shackleford
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Andrew K. Powell
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Marina Grimaldi
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier 34090, France
| | - Patrick Balaguer
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier 34090, France
| | - Rachael M. Zemek
- Telethon Kids Institute, University of Western Australia, West Perth, WA 6872, Australia
| | - Anthony Bosco
- Telethon Kids Institute, University of Western Australia, West Perth, WA 6872, Australia
| | - Matthew J. Piggott
- School of Molecular Sciences, University of Western Australia, Crawley, WA 6009, Australia
| | - Alice Vrielink
- School of Molecular Sciences, University of Western Australia, Crawley, WA 6009, Australia
| | - Richard A. Lake
- School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia
- National Centre for Asbestos Related Diseases, Nedlands, WA 6009, Australia
| | - W. Joost Lesterhuis
- School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia
- National Centre for Asbestos Related Diseases, Nedlands, WA 6009, Australia
- Telethon Kids Institute, University of Western Australia, West Perth, WA 6872, Australia
| |
Collapse
|
30
|
Colombo G, Gelardi ELM, Balestrero FC, Moro M, Travelli C, Genazzani AA. Insight Into Nicotinamide Adenine Dinucleotide Homeostasis as a Targetable Metabolic Pathway in Colorectal Cancer. Front Pharmacol 2021; 12:758320. [PMID: 34880756 PMCID: PMC8645963 DOI: 10.3389/fphar.2021.758320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 11/02/2021] [Indexed: 11/13/2022] Open
Abstract
Tumour cells modify their cellular metabolism with the aim to sustain uncontrolled proliferation. Cancer cells necessitate adequate amounts of NAD and NADPH to support several enzymes that are usually overexpressed and/or overactivated. Nicotinamide adenine dinucleotide (NAD) is an essential cofactor and substrate of several NAD-consuming enzymes, such as PARPs and sirtuins, while NADPH is important in the regulation of the redox status in cells. The present review explores the rationale for targeting the key enzymes that maintain the cellular NAD/NADPH pool in colorectal cancer and the enzymes that consume or use NADP(H).
Collapse
Affiliation(s)
- Giorgia Colombo
- Department of Pharmaceutical Sciences, Università Del Piemonte Orientale, Novara, Italy
| | | | | | - Marianna Moro
- Department of Pharmaceutical Sciences, Università Del Piemonte Orientale, Novara, Italy
| | - Cristina Travelli
- Department of Drug Sciences, Università Degli Studi di Pavia, Pavia, Italy
| | - Armando A. Genazzani
- Department of Pharmaceutical Sciences, Università Del Piemonte Orientale, Novara, Italy
| |
Collapse
|
31
|
Tošić I, Frank DA. STAT3 as a mediator of oncogenic cellular metabolism: Pathogenic and therapeutic implications. Neoplasia 2021; 23:1167-1178. [PMID: 34731785 PMCID: PMC8569436 DOI: 10.1016/j.neo.2021.10.003] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/16/2021] [Accepted: 10/17/2021] [Indexed: 02/07/2023] Open
Abstract
The oncogenic transcription factor signal transducer and activator of transcription 3 (STAT3) is activated constitutively in a wide array of human cancers. It is an appealing molecular target for novel therapy as it directly regulates expression of genes involved in cell proliferation, survival, angiogenesis, chemoresistance and immune responsiveness. In addition to these well-established oncogenic roles, STAT3 has also been found to mediate a wide array of functions in modulating cellular behavior. The transcriptional function of STAT3 is canonically regulated through tyrosine phosphorylation. However, STAT3 phosphorylated at a single serine residue can allow incorporation of this protein into the inner mitochondrial membrane to support oxidative phosphorylation (OXPHOS) and maximize the utility of glucose sources. Conflictingly, its canonical transcriptional activity suppresses OXPHOS and favors aerobic glycolysis to promote oncogenic behavior. Apart from mediating the energy metabolism and controversial effects on ATP production, STAT3 signaling modulates lipid metabolism of cancer cells. By mediating fatty acid synthesis and beta oxidation, STAT3 promotes employment of available resources and supports survival in the conditions of metabolic stress. Thus, the functions of STAT3 extend beyond regulation of oncogenic genes expression to pleiotropic effects on a spectrum of essential cellular processes. In this review, we dissect the current knowledge on activity and mechanisms of STAT3 involvement in transcriptional regulation, mitochondrial function, energy production and lipid metabolism of malignant cells, and its implications to cancer pathogenesis and therapy.
Collapse
Affiliation(s)
- Isidora Tošić
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Department of Biochemistry, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - David A Frank
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
32
|
Du M, Liang Y, Liu Z, Li X, Liang M, Zhou B, Gao Y. Identification of Key Genes Related to CD8+ T-Cell Infiltration as Prognostic Biomarkers for Lung Adenocarcinoma. Front Oncol 2021; 11:693353. [PMID: 34650911 PMCID: PMC8505972 DOI: 10.3389/fonc.2021.693353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 09/06/2021] [Indexed: 01/11/2023] Open
Abstract
Background CD8+ T cells are one of the central effector cells in the immune microenvironment. CD8+ T cells play a vital role in the development and progression of lung adenocarcinoma (LUAD). This study aimed to explore the key genes related to CD8+ T-cell infiltration in LUAD and to develop a novel prognosis model based on these genes. Methods With the use of the LUAD dataset from The Cancer Genome Atlas (TCGA), the differentially expressed genes (DEGs) were analyzed, and a co-expression network was constructed by weighted gene co-expression network analysis (WGCNA). Combined with the CIBERSORT algorithm, the gene module in WGCNA, which was the most significantly correlated with CD8+ T cells, was selected for the subsequent analyses. Key genes were then identified by co-expression network analysis, protein–protein interactions network analysis, and least absolute shrinkage and selection operator (Lasso)-penalized Cox regression analysis. A risk assessment model was built based on these key genes and then validated by the dataset from the Gene Expression Omnibus (GEO) database and multiple fluorescence in situ hybridization experiments of a tissue microarray. Results Five key genes (MZT2A, ALG3, ATIC, GPI, and GAPDH) related to prognosis and CD8+ T-cell infiltration were identified, and a risk assessment model was established based on them. We found that the risk score could well predict the prognosis of LUAD, and the risk score was negatively related to CD8+ T-cell infiltration and correlated with the advanced tumor stage. The results of the GEO database and tissue microarray were consistent with those of TCGA. Furthermore, the risk score was higher significantly in tumor tissues than in adjacent lung tissues and was correlated with the advanced tumor stage. Conclusions This study may provide a novel risk assessment model for prognosis prediction and a new perspective to explore the mechanism of tumor immune microenvironment related to CD8+ T-cell infiltration in LUAD.
Collapse
Affiliation(s)
- Minjun Du
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yicheng Liang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zixu Liu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xingkai Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mei Liang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Boxuan Zhou
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yushun Gao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
33
|
Ahmed H, Ajat M, Mahmood RI, Mansor R, Razak ISA, Al-Obaidi JR, Razali N, Jaji AZ, Danmaigoro A, Bakar MZA. LC-MS/MS Proteomic Study of MCF-7 Cell Treated with Dox and Dox-Loaded Calcium Carbonate Nanoparticles Revealed Changes in Proteins Related to Glycolysis, Actin Signalling, and Energy Metabolism. BIOLOGY 2021; 10:biology10090909. [PMID: 34571787 PMCID: PMC8466983 DOI: 10.3390/biology10090909] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/07/2021] [Accepted: 07/12/2021] [Indexed: 01/23/2023]
Abstract
Simple Summary This work revealed that DOX-Ar-CC-NPs have the ability to promote cell death in MCF-7 cells, showing high potency in drug delivery. DOX-Ar-CC-NPs prompts cell death of MCF-7 cancer cells in vivo. LC-MS/MS Proteomic experemnt showed alteration on the expression of proteins linked to actine signaling, carbohydrate metabolisim. Abstract One of the most prevalent death causes among women worldwide is breast cancer. This study aimed to characterise and differentiate the proteomics profiles of breast cancer cell lines treated with Doxorubicin (DOX) and Doxorubicin-CaCO3-nanoparticles (DOX-Ar-CC-NPs). This study determines the therapeutic potential of doxorubicin-loaded aragonite CaCO3 nanoparticles using a Liquid Chromatography/Mass Spectrometry analysis. In total, 334 proteins were expressed in DOX-Ar-CC-NPs treated cells, while DOX treatment expressed only 54 proteins. Out of the 334 proteins expressed in DOX-CC-NPs treated cells, only 36 proteins showed changes in abundance, while in DOX treated cells, only 7 out of 54 proteins were differentially expressed. Most of the 30 identified proteins that are differentially expressed in DOX-CC-NPs treated cells are key enzymes that have an important role in the metabolism of carbohydrates as well as energy, including: pyruvate kinase, ATP synthase, enolase, glyceraldehyde-3-phosphate dehydrogenase, mitochondrial ADP/ATP carrier, and trypsin. Other identified proteins are structural proteins which included; Keratin, α- and β-tubulin, actin, and actinin. Additionally, one of the heat shock proteins was identified, which is Hsp90; other proteins include Annexins and Human epididymis protein 4. While the proteins identified in DOX-treated cells were tubulin alpha-1B chain and a beta chain, actin cytoplasmic 1, annexin A2, IF rod domain-containing protein, and 78 kDa glucose-regulated protein. Bioinformatics analysis revealed the predicted canonical pathways linking the signalling of the actin cytoskeleton, ILK, VEGF, BAG2, integrin and paxillin, as well as glycolysis. This research indicates that proteomic analysis is an effective technique for proteins expression associated with chemotherapy drugs on cancer tumours; this method provides the opportunity to identify treatment targets for MCF-7 cancer cells, and a liquid chromatography-mass spectrometry (LC-MS/MS) system allowed the detection of a larger number of proteins than 2-DE gel analysis, as well as proteins with maximum pIs and high molecular weight.
Collapse
Affiliation(s)
- Hamidu Ahmed
- Natural Medicines and Products Research Laboratory (NaturMeds), Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
- Department of Sciences and Engineering, Federal Polytechnic Mubi, P.M.B 35, Mubi 650221, Adamawa, Nigeria
| | - Mokrish Ajat
- Department of Veterinary Preclinical Science, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (M.A.); (R.M.); (I.S.A.R.); (A.Z.J.); (A.D.)
| | - Rana I. Mahmood
- Department of Biomedical Engineering, College of Engineering, Al-Nahrain University, Baghdad 64021, Iraq;
| | - Rozaihan Mansor
- Department of Veterinary Preclinical Science, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (M.A.); (R.M.); (I.S.A.R.); (A.Z.J.); (A.D.)
| | - Intan Shameha Abdul Razak
- Department of Veterinary Preclinical Science, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (M.A.); (R.M.); (I.S.A.R.); (A.Z.J.); (A.D.)
| | - Jameel R. Al-Obaidi
- Department of Biology, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, Tanjong Malim 35900, Perak, Malaysia
- Correspondence: (J.R.A.-O.); (M.Z.A.B.)
| | - Nurhanani Razali
- Membranology Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1, Tancha, Onna-son, Kunigami-kun, Okinawa 904-0495, Japan;
| | - Alhaji Zubair Jaji
- Department of Veterinary Preclinical Science, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (M.A.); (R.M.); (I.S.A.R.); (A.Z.J.); (A.D.)
| | - Abubakar Danmaigoro
- Department of Veterinary Preclinical Science, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (M.A.); (R.M.); (I.S.A.R.); (A.Z.J.); (A.D.)
| | - Md Zuki Abu Bakar
- Natural Medicines and Products Research Laboratory (NaturMeds), Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
- Correspondence: (J.R.A.-O.); (M.Z.A.B.)
| |
Collapse
|
34
|
Hiu JJ, Yap MKK. The effects of Naja sumatrana venom cytotoxin, sumaCTX on alteration of the secretome in MCF-7 breast cancer cells following membrane permeabilization. Int J Biol Macromol 2021; 184:776-786. [PMID: 34174307 DOI: 10.1016/j.ijbiomac.2021.06.145] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/21/2021] [Accepted: 06/21/2021] [Indexed: 12/24/2022]
Abstract
Naja sumatrana venom cytotoxin (sumaCTX) is a basic protein which belongs to three-finger toxin family. It has been shown to induce caspase-dependent, mitochondrial-mediated apoptosis in MCF-7 cells at lower concentrations. This study aimed to investigate the alteration of secretome in MCF-7 cells following membrane permeabilization by high concentrations of sumaCTX, using label-free quantitative (LFQ) approach. The degree of membrane permeabilization of sumaCTX was determined by lactate dehydrogenase (LDH) assay and calcein-propidium iodide (PI) assays. LDH and calcein-PI assays revealed time-dependent membrane permeabilization within a narrow concentration range. However, as toxin concentrations increased, prolonged exposure of MCF-7 cells to sumaCTX did not promote the progression of membrane permeabilization. The secretome analyses showed that membrane permeabilization was an event preceding the release of intracellular proteins. Bioinformatics analyses of the LFQ secretome revealed the presence of 105 significantly distinguished proteins involved in metabolism, structural supports, inflammatory responses, and necroptosis in MCF-7 cells treated with 29.8 μg/mL of sumaCTX. Necroptosis was presumably an initial stress response in MCF-7 cells when exposed to high sumaCTX concentration. Collectively, sumaCTX-induced the loss of membrane integrity in a concentration-dependent manner, whereby the cell death pattern of MCF-7 cells transformed from apoptosis to necroptosis with increasing toxin concentrations.
Collapse
Affiliation(s)
- Jia Jin Hiu
- School of Science, Monash University Malaysia, Bandar Sunway, Malaysia.
| | - Michelle Khai Khun Yap
- School of Science, Monash University Malaysia, Bandar Sunway, Malaysia; Tropical Medicine and Biology Multidisciplinary Platform, Monash University Malaysia, Bandar Sunway, Malaysia.
| |
Collapse
|
35
|
Jia D, Park JH, Kaur H, Jung KH, Yang S, Tripathi S, Galbraith M, Deng Y, Jolly MK, Kaipparettu BA, Onuchic JN, Levine H. Towards decoding the coupled decision-making of metabolism and epithelial-to-mesenchymal transition in cancer. Br J Cancer 2021; 124:1902-1911. [PMID: 33859341 PMCID: PMC8184790 DOI: 10.1038/s41416-021-01385-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 03/17/2021] [Accepted: 03/25/2021] [Indexed: 02/07/2023] Open
Abstract
Cancer cells have the plasticity to adjust their metabolic phenotypes for survival and metastasis. A developmental programme known as epithelial-to-mesenchymal transition (EMT) plays a critical role during metastasis, promoting the loss of polarity and cell-cell adhesion and the acquisition of motile, stem-cell characteristics. Cells undergoing EMT or the reverse mesenchymal-to-epithelial transition (MET) are often associated with metabolic changes, as the change in phenotype often correlates with a different balance of proliferation versus energy-intensive migration. Extensive crosstalk occurs between metabolism and EMT, but how this crosstalk leads to coordinated physiological changes is still uncertain. The elusive connection between metabolism and EMT compromises the efficacy of metabolic therapies targeting metastasis. In this review, we aim to clarify the causation between metabolism and EMT on the basis of experimental studies, and propose integrated theoretical-experimental efforts to better understand the coupled decision-making of metabolism and EMT.
Collapse
Affiliation(s)
- Dongya Jia
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA.
| | - Jun Hyoung Park
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Harsimran Kaur
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, Karnataka, India
| | - Kwang Hwa Jung
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Sukjin Yang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Shubham Tripathi
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA
- PhD Program in Systems, Synthetic, and Physical Biology, Rice University, Houston, TX, USA
- Center for Theoretical Biological Physics and Department of Physics, Northeastern University, Boston, MA, USA
| | - Madeline Galbraith
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA
- Department of Physics and Astronomy, Rice University, Houston, TX, USA
| | - Youyuan Deng
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA
- Applied Physics Graduate Program, Rice University, Houston, TX, USA
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, Karnataka, India
| | - Benny Abraham Kaipparettu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA.
| | - José N Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA.
- Department of Physics and Astronomy, Rice University, Houston, TX, USA.
- Department of Chemistry, Rice University, Houston, TX, USA.
- Department of Biosciences, Rice University, Houston, TX, USA.
| | - Herbert Levine
- Center for Theoretical Biological Physics and Department of Physics, Northeastern University, Boston, MA, USA.
- Department of Bioengineering, Northeastern University, Boston, MA, USA.
| |
Collapse
|
36
|
Sung JY, Cheong JH. Pan-Cancer Analysis Reveals Distinct Metabolic Reprogramming in Different Epithelial-Mesenchymal Transition Activity States. Cancers (Basel) 2021; 13:cancers13081778. [PMID: 33917859 PMCID: PMC8068218 DOI: 10.3390/cancers13081778] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 03/30/2021] [Accepted: 04/05/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Recent genomic classification of tumors has stated that clinically refractory cancers aggregate as a distinct molecular subtype associated with epithelial–mesenchymal transition (EMT). EMT subtype tumors are clinically intractable due to shared malignant characteristics such as poor prognosis and metastasis and are resistant to chemotherapy and immune checkpoint blockades. Therefore, there is an urgent clinical need for the identification of potential therapeutic targets for this tumor subtype. Here, we profiled the metabolic signatures of 9452 samples across 31 cancer types based on EMT activity and identified that ~80 to 90% of cancer types had high carbohydrate and energy metabolism associated with the high EMT state. Furthermore, we identified CHST14 as a potential metabolic target for the EMT subtype for stomach cancer associated with reprogramming of energy metabolism. Our analyses identified metabolic reprogramming associated with EMT, suggesting metabolism-associated targets for clinically refractory cancer subtypes. Abstract Epithelial–mesenchymal transition (EMT) is critical for cancer development, invasion, and metastasis. Its activity influences metabolic reprogramming, tumor aggressiveness, and patient survival. Abnormal tumor metabolism has been identified as a cancer hallmark and is considered a potential therapeutic target. We profiled distinct metabolic signatures by EMT activity using data from 9452 transcriptomes across 31 different cancer types from The Cancer Genome Atlas. Our results demonstrated that ~80 to 90% of cancer types had high carbohydrate and energy metabolism, which were associated with the high EMT group. Notably, among the distinct EMT activities, metabolic reprogramming in different immune microenvironments was correlated with patient prognosis. Nine cancer types showed a significant difference in survival with the presence of high EMT activity. Stomach cancer showed elevated energy metabolism and was associated with an unfavorable prognosis (p < 0.0068) coupled with high expression of CHST14, indicating that it may serve as a potential drug target. Our analyses highlight the prevalence of cancer type-dependent EMT and metabolic reprogramming activities and identified metabolism-associated genes that may serve as potential therapeutic targets.
Collapse
Affiliation(s)
- Ji-Yong Sung
- Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul 03722, Korea;
| | - Jae-Ho Cheong
- Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul 03722, Korea;
- Department of Surgery, Yonsei University College of Medicine, Seoul 03722, Korea
- Yonsei Biomedical Research Institute, Yonsei University College of Medicine, Seoul 03722, Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
- Department of Biochemistry & Molecular Biology, Yonsei University College of Medicine, Seoul 03722, Korea
- Correspondence: ; Tel.: +82-2-2228-2094
| |
Collapse
|
37
|
Byun WS, Bae ES, Park SC, Kim WK, Shin J, Lee SK. Antitumor Activity of Asperphenin B by Induction of Apoptosis and Regulation of Glyceraldehyde-3-phosphate Dehydrogenase in Human Colorectal Cancer Cells. JOURNAL OF NATURAL PRODUCTS 2021; 84:683-693. [PMID: 33398999 DOI: 10.1021/acs.jnatprod.0c01155] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Colorectal cancer (CRC) is a common and intractable malignancy with a high mortality risk. Conventional chemotherapeutics are effective for patients with early stage CRC, but the majority of deaths of CRC patients are linked to acquired drug resistance or metastasis occurrence. Asperphenin B (1), a lipopeptidyl benzophenone isolated from a marine-derived Aspergillus sp. fungus, reportedly possesses antiproliferative activity against cancer cells. However, its antitumor activity and the underlying molecular mechanisms remain unexplored. In this study, 1 induced G2/M phase cell cycle arrest and subsequent apoptotic cell death and inhibited tumor growth in a xenograft model. The 1-induced G2/M phase arrest was associated with the regulation of checkpoint proteins, including Chk1/2 and Cdc25c. The 1-induced apoptosis was correlated with an upregulation of p53 and cleaved caspases and a downregulation of survivin. Further experiments revealed that 1-mediated suppression of migration and invasion of metastatic HCT116 cells was partially associated with the downregulation of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) expression. The antimetastatic potential of 1 was also confirmed by E-cadherin upregulation and N-cadherin and Snail downregulation, which were in turn associated with the GAPDH regulation. These findings highlight the potential use of 1 as a novel candidate for treating metastatic CRC with the modulation of GAPDH function.
Collapse
Affiliation(s)
- Woong Sub Byun
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Eun Seo Bae
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Sung Chul Park
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Won Kyung Kim
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Jongheon Shin
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Sang Kook Lee
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
38
|
Abstract
Oral squamous cell carcinoma (OSCC) is associated with oral Candida albicans infection, although it is unclear whether the fungus promotes the genesis and progression of OSCC or whether cancer facilitates fungal growth. In this study, we investigated whether C. albicans can potentiate OSCC tumor development and progression. In vitro, the presence of live C. albicans, but not Candida parapsilosis, enhanced the progression of OSCC by stimulating the production of matrix metalloproteinases, oncometabolites, protumor signaling pathways, and overexpression of prognostic marker genes associated with metastatic events. C. albicans also upregulated oncogenes in nonmalignant cells. Using a newly established xenograft in vivo mouse model to investigate OSCC-C. albicans interactions, oral candidiasis enhanced the progression of OSCC through inflammation and induced the overexpression of metastatic genes and significant changes in markers of the epithelial-mesenchymal transition. Finally, using the 4-nitroquinoline 1-oxide (4NQO) murine model, we directly correlate these in vitro and short-term in vivo findings with the progression of oncogenesis over the long term. Taken together, these data indicate that C. albicans upregulates oncogenes, potentiates a premalignant phenotype, and is involved in early and late stages of malignant promotion and progression of oral cancer. IMPORTANCE Oral squamous cell carcinoma (OSCC) is a serious health issue worldwide that accounts for 2% to 4% of all cancer cases. Previous studies have revealed a higher yeast carriage and diversity in oral cancer patients than in healthy individuals. Furthermore, fungal colonization in the oral cavity bearing OSCC is higher on the neoplastic epithelial surface than on adjacent healthy surfaces, indicating a positive association between oral yeast carriage and epithelial carcinoma. In addition to this, there is strong evidence supporting the idea that Candida contributes to carcinogenesis events in the oral cavity. Here, we show that an increase in Candida albicans burden promotes an oncogenic phenotype in the oral cavity.
Collapse
|
39
|
Meng F, Liu J, Lu T, Zang L, Wang J, He Q, Zhou A. SNHG1 knockdown upregulates miR-376a and downregulates FOXK1/Snail axis to prevent tumor growth and metastasis in HCC. MOLECULAR THERAPY-ONCOLYTICS 2021; 21:264-277. [PMID: 34095464 PMCID: PMC8143978 DOI: 10.1016/j.omto.2021.02.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 02/01/2021] [Indexed: 12/24/2022]
Abstract
Long non-coding RNAs (lncRNAs), microRNAs (miRNAs or miRs), and genes are emerging players in cancer progression. In the present study, we explored the roles and interactions of oncogenic lncRNA small nucleolar RNA host gene 1 (SNHG1), miR-376, forkhead box protein K1 (FOXK1), and Snail in hepatocellular carcinoma (HCC). Expression of SNHG1, miR-376, and FOXK1 in HCC was characterized in clinical HCC tissues of 75 patients with HCC. The interactions between SNHG1 and miR-376 and between miR-376 and FOXK1 were predicted and confirmed by dual-luciferase reporter gene and RNA immunoprecipitation assays. Overexpression and knockdown experiments were performed in HCC cells to examine the effects of the SNHG1/miR-376/FOXK1/Snail axis on viability, apoptosis, invasiveness, and migrating abilities. Their effects on tumor growth and metastasis were validated in nude mouse models. SNHG1 and FOXK1 were upregulated, and miR-376a was downregulated in HCC. SNHG1 knockdown contributed to suppression of HCC cell viability, invasion, and migration properties and promotion of apoptosis. SNHG1 could competitively bind to miR-376a to upregulate its target gene FOXK1, which upregulated Snail. SNHG1 knockdown delayed cancer progression both in vitro and in vivo by upregulating miR-376a and downregulating FOXK1 and Snail. SNHG1 knockdown exerts anti-tumor activity in HCC, suggesting a therapeutic target.
Collapse
Affiliation(s)
- Fanzhi Meng
- Department of Hepatobiliary Surgery, Linyi People's Hospital, Linyi 276000, P.R. China.,Prof. Dr. Cai's Laboratory, Linyi People's Hospital, Linyi 276000, P.R. China
| | - Jinghua Liu
- Department of Hepatobiliary Surgery, Linyi People's Hospital, Linyi 276000, P.R. China.,Prof. Dr. Cai's Laboratory, Linyi People's Hospital, Linyi 276000, P.R. China
| | - Tao Lu
- Shandong Coal Linyi Hot Spring Sanatorium, Linyi 276000, P.R. China
| | - Lanlan Zang
- Central Laboratory, Linyi People's Hospital, Linyi 276000, P.R. China
| | - Jing Wang
- Department of Radiology, Linyi People's Hospital, Linyi 276000, P.R. China
| | - Qiang He
- Department of Hepatobiliary Surgery, Linyi People's Hospital, Linyi 276000, P.R. China.,Prof. Dr. Cai's Laboratory, Linyi People's Hospital, Linyi 276000, P.R. China
| | - Aijin Zhou
- Department of Emergency, Linyi People's Hospital, Linyi 276000, P.R. China
| |
Collapse
|
40
|
Samec M, Liskova A, Koklesova L, Mersakova S, Strnadel J, Kajo K, Pec M, Zhai K, Smejkal K, Mirzaei S, Hushmandi K, Ashrafizadeh M, Saso L, Brockmueller A, Shakibaei M, Büsselberg D, Kubatka P. Flavonoids Targeting HIF-1: Implications on Cancer Metabolism. Cancers (Basel) 2021; 13:E130. [PMID: 33401572 PMCID: PMC7794792 DOI: 10.3390/cancers13010130] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/24/2020] [Accepted: 12/29/2020] [Indexed: 12/24/2022] Open
Abstract
Tumor hypoxia is described as an oxygen deprivation in malignant tissue. The hypoxic condition is a consequence of an imbalance between rapidly proliferating cells and a vascularization that leads to lower oxygen levels in tumors. Hypoxia-inducible factor 1 (HIF-1) is an essential transcription factor contributing to the regulation of hypoxia-associated genes. Some of these genes modulate molecular cascades associated with the Warburg effect and its accompanying pathways and, therefore, represent promising targets for cancer treatment. Current progress in the development of therapeutic approaches brings several promising inhibitors of HIF-1. Flavonoids, widely occurring in various plants, exert a broad spectrum of beneficial effects on human health, and are potentially powerful therapeutic tools against cancer. Recent evidences identified numerous natural flavonoids and their derivatives as inhibitors of HIF-1, associated with the regulation of critical glycolytic components in cancer cells, including pyruvate kinase M2(PKM2), lactate dehydrogenase (LDHA), glucose transporters (GLUTs), hexokinase II (HKII), phosphofructokinase-1 (PFK-1), and pyruvate dehydrogenase kinase (PDK). Here, we discuss the results of most recent studies evaluating the impact of flavonoids on HIF-1 accompanied by the regulation of critical enzymes contributing to the Warburg phenotype. Besides, flavonoid effects on glucose metabolism via regulation of HIF-1 activity represent a promising avenue in cancer-related research. At the same time, only more-in depth investigations can further elucidate the mechanistic and clinical connections between HIF-1 and cancer metabolism.
Collapse
Affiliation(s)
- Marek Samec
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (M.S.); (A.L.); (L.K.)
| | - Alena Liskova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (M.S.); (A.L.); (L.K.)
| | - Lenka Koklesova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (M.S.); (A.L.); (L.K.)
| | - Sandra Mersakova
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Mala Hora 4D, 03601 Martin, Slovakia; (S.M.); (J.S.)
| | - Jan Strnadel
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Mala Hora 4D, 03601 Martin, Slovakia; (S.M.); (J.S.)
| | - Karol Kajo
- Department of Pathology, St. Elizabeth Cancer Institute Hospital, 81250 Bratislava, Slovakia;
| | - Martin Pec
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia;
| | - Kevin Zhai
- Department of Physiology and Biophysics, Weill Cornell Medicine in Qatar, Education City, Qatar Foundation, Doha 24144, Qatar;
| | - Karel Smejkal
- Department of Natural Drugs, Faculty of Pharmacy, Masaryk University, Palackého třída 1946/1, 61200 Brno, Czech Republic;
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, 1477893855 Tehran, Iran;
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, 1419963114 Tehran, Iran;
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956 Istanbul, Turkey;
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956 Istanbul, Turkey
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Faculty of Pharmacy and Medicine, Sapienza University, 00185 Rome, Italy;
| | - Aranka Brockmueller
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, D-80336 Munich, Germany; (A.B.); (M.S.)
| | - Mehdi Shakibaei
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, D-80336 Munich, Germany; (A.B.); (M.S.)
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine in Qatar, Education City, Qatar Foundation, Doha 24144, Qatar;
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia;
| |
Collapse
|
41
|
Digging deeper through glucose metabolism and its regulators in cancer and metastasis. Life Sci 2020; 264:118603. [PMID: 33091446 DOI: 10.1016/j.lfs.2020.118603] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/04/2020] [Accepted: 10/12/2020] [Indexed: 12/13/2022]
Abstract
Glucose metabolism enzymes and transporters play major role in cancer development and metastasis. In this study, we discuss glucose metabolism, transporters, receptors, hormones, oncogenes and tumor suppressors which interact with glucose metabolism and we try to discuss their major role in cancer development and cancer metabolism. We try to highlight the. Metabolic changes in cancer and metastasis upregulation of glycolysis is observed in many primary and metastatic cancers and aerobic glycolysis is the most favorable mechanism for glucose metabolism in cancer cells, and it is a kind of evolutionary change. The question that is posed at this juncture is: Can we use aerobic glycolysis phenotype and enzymes beyond this mechanism in estimating cancer prognosis and metastasis? Lactate is a metabolite of glucose metabolism and it is a key player in cancer and metastasis in both normoxic and hypoxic condition so lactate dehydrogenase can be a good prognostic biomarker. Furthermore, monocarboxylic transporter which is the main lactate transporter can be good target in therapeutic studies. Glycolysis enzymes are valuable enzymes in cancer and metastasis diagnosis and can be used as therapeutic targets in cancer treatment. Designing a diagnostic and prognostic profile for cancer metastasis seems to be possible base on glycolysis enzymes and glucose transporters. Also, glucose metabolism enzymes and agents can give us a clear vision in estimating cancer metastasis. We can promote a panel of genes that detect genetic changes in glucose metabolism agents to diagnose cancer metastasis.
Collapse
|
42
|
Yao F, Yan C, Zhang Y, Shen L, Zhou D, Ni J. Identification of blood protein biomarkers for breast cancer staging by integrative transcriptome and proteome analyses. J Proteomics 2020; 230:103991. [PMID: 32971305 DOI: 10.1016/j.jprot.2020.103991] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 08/10/2020] [Accepted: 09/18/2020] [Indexed: 11/26/2022]
Abstract
Breast cancer is the most common malignancy for women. Accurate prediction of breast cancer and its pathological stages is important for treatment decision-making. Although many studies have focused on discovering circulating biomarkers of breast cancer, no such biomarkers have been reported for different stages of this disease. In this study, we identified blood protein biomarkers for each stage of breast cancer by analyzing transcriptome and proteome data from patients. Analysis of the TCGA transcriptome datasets revealed that a large number of genes were differentially expressed in tumor samples of each stage of breast cancer compared with adjacent normal tissues. Blood-secretory proteins encoded by these genes were then predicted by bioinformatics programs. Furthermore, iTRAQ-based proteomic analysis was conducted for plasma samples of breast cancer patients with different stages. A portion of predicted blood-secretory proteins could be detected and verified differentially expressed. Finally, several proteins were chosen as potential blood protein biomarkers for different stages of breast cancer due to their consistent expression patterns at both mRNA and protein levels. Overall, our data provide new insights into diagnosis and classification of breast cancer as well as selection of optimal treatments. SIGNIFICANCE: We identified blood protein biomarkers for each stage of breast cancer by analyzing tissue-based transcriptome and blood-based proteome data from patients. To our knowledge, this is the first time to try to identify blood protein biomarkers for different stages of breast cancer via these integrative analyses. Our data may provide new insights into diagnosis and classification of breast cancer as well as selection of optimal treatment.
Collapse
Affiliation(s)
- Fang Yao
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, China.
| | - Chen Yan
- Department of Breast Surgery, The Second Clinical Medical College (Shenzhen People's Hospital) of Jinan University, Shenzhen, China; Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, China
| | - Yan Zhang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, China
| | - Liming Shen
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, China
| | - Dongxian Zhou
- Department of Breast Surgery, The Second Clinical Medical College (Shenzhen People's Hospital) of Jinan University, Shenzhen, China
| | - Jiazuan Ni
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, China
| |
Collapse
|
43
|
Abstract
The single gene, single protein, single function hypothesis is increasingly becoming obsolete. Numerous studies have demonstrated that individual proteins can moonlight, meaning they can have multiple functions based on their cellular or developmental context. In this review, we discuss moonlighting proteins, highlighting the biological pathways where this phenomenon may be particularly relevant. In addition, we combine genetic, cell biological, and evolutionary perspectives so that we can better understand how, when, and why moonlighting proteins may take on multiple roles.
Collapse
Affiliation(s)
- Nadia Singh
- Department of Biology, University of Oregon, Eugene, Oregon 97403, USA;
| | - Needhi Bhalla
- Department of Molecular Cell and Developmental Biology, University of California, Santa Cruz, California 95064, USA;
| |
Collapse
|
44
|
D'Angelo E, Lindoso RS, Sensi F, Pucciarelli S, Bussolati B, Agostini M, Collino F. Intrinsic and Extrinsic Modulators of the Epithelial to Mesenchymal Transition: Driving the Fate of Tumor Microenvironment. Front Oncol 2020; 10:1122. [PMID: 32793478 PMCID: PMC7393251 DOI: 10.3389/fonc.2020.01122] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 06/04/2020] [Indexed: 12/11/2022] Open
Abstract
The epithelial to mesenchymal transition (EMT) is an evolutionarily conserved process. In cancer, EMT can activate biochemical changes in tumor cells that enable the destruction of the cellular polarity, leading to the acquisition of invasive capabilities. EMT regulation can be triggered by intrinsic and extrinsic signaling, allowing the tumor to adapt to the microenvironment demand in the different stages of tumor progression. In concomitance, tumor cells undergoing EMT actively interact with the surrounding tumor microenvironment (TME) constituted by cell components and extracellular matrix as well as cell secretome elements. As a result, the TME is in turn modulated by the EMT process toward an aggressive behavior. The current review presents the intrinsic and extrinsic modulators of EMT and their relationship with the TME, focusing on the non-cell-derived components, such as secreted metabolites, extracellular matrix, as well as extracellular vesicles. Moreover, we explore how these modulators can be suitable targets for anticancer therapy and personalized medicine.
Collapse
Affiliation(s)
- Edoardo D'Angelo
- First Surgical Clinic, Department of Surgery, Oncology and Gastroenterology, University of Padova, Padua, Italy
- LIFELAB Program, Consorzio per la Ricerca Sanitaria–CORIS, Veneto Region, Padua, Italy
- Institute of Pediatric Research, Fondazione Citta della Speranza, Padua, Italy
| | - Rafael Soares Lindoso
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Institute of Science and Technology for Regenerative Medicine–REGENERA, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Francesca Sensi
- Institute of Pediatric Research, Fondazione Citta della Speranza, Padua, Italy
- Department of Molecular Sciences and Nanosystems, Cà Foscari University of Venice, Venice, Italy
| | - Salvatore Pucciarelli
- First Surgical Clinic, Department of Surgery, Oncology and Gastroenterology, University of Padova, Padua, Italy
| | - Benedetta Bussolati
- Department of Medical Sciences, Molecular Biotechnology Center, University of Torino, Turin, Italy
| | - Marco Agostini
- First Surgical Clinic, Department of Surgery, Oncology and Gastroenterology, University of Padova, Padua, Italy
- LIFELAB Program, Consorzio per la Ricerca Sanitaria–CORIS, Veneto Region, Padua, Italy
- Institute of Pediatric Research, Fondazione Citta della Speranza, Padua, Italy
| | - Federica Collino
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Department of Biomedical Sciences, University of Padova, Padua, Italy
- Pediatric Nephrology, Dialysis and Transplant Unit, Fondazione Ca' Granda, IRCCS Policlinico di Milano, Milan, Italy
| |
Collapse
|
45
|
Deng J, Zeng W, Kong W, Shi Y, Mou X, Guo J. Multi-Constrained Joint Non-Negative Matrix Factorization With Application to Imaging Genomic Study of Lung Metastasis in Soft Tissue Sarcomas. IEEE Trans Biomed Eng 2020; 67:2110-2118. [PMID: 31751222 DOI: 10.1109/tbme.2019.2954989] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
OBJECTIVE The study of pathogenic mechanism at the genetic level by imaging genetics methods enables to effectively reveal the association of histopathology and genetics. However, there is a lack of effective and accurate tools to establish association models from macroscopic to microscopic. METHODS The multi-constrained joint non-negative matrix factorization (MCJNMF) was developed for simultaneous integration of genomic data and image data to identify common modules related to disease. Two types of data matrices were projected onto a common feature space, in which heterogeneous variables with large coefficients in the same projected direction form a common module. Meanwhile, the correlation between original data features was integrated by using regularization constraints to improve the biological relevance. Sparsity constraints and orthogonal constraints were performed on decomposition factors to minimize the redundancy between different bases and to reduce algorithm complexity. RESULTS This algorithm was successfully performed on the module identification of lung metastasis in soft tissue sarcomas (STSs) by integrating FDG-PET image and DNA methylation data features. Multilevel analysis on the top extracted modules revealed that these modules were closely related to the lung metastasis. Particularly, several genes with diagnostic potential for lung metastasis can be discovered from high score modules. CONCLUSION This method not only can be applied for the accurate identification of patterns related to pathogenic mechanism of diseases, but also has a significant implication for discovering protein biomarkers. SIGNIFICANCE This method provides avenues for further studies of identifying complex association patterns of diseases according to different types of biological data.
Collapse
|
46
|
Viedma-Rodríguez R, Martínez-Hernández MG, Martínez-Torres DI, Baiza-Gutman LA. Epithelial Mesenchymal Transition and Progression of Breast Cancer Promoted by Diabetes Mellitus in Mice Are Associated with Increased Expression of Glycolytic and Proteolytic Enzymes. Discov Oncol 2020; 11:170-181. [PMID: 32557212 DOI: 10.1007/s12672-020-00389-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/10/2020] [Indexed: 01/06/2023] Open
Abstract
The development of breast cancer (BC) is influenced by age, overweight, obesity, metabolic syndrome, and diabetes mellitus (DM), which are associated with hyperglycemia, glucose intolerance, insulin resistance, and oxidative stress. High glucose concentration increases a metastatic phenotype in cultured breast cancer cells, promoting cell proliferation, reactive species production (ROS), epithelial mesenchymal transition (EMT), and expression of proteolytic enzymes. Our aim was to determine whether diabetes mellitus favor BC progression in mice and its association with changes in the content of ROS and glycolytic and proteolytic enzymes. Diabetes was induced in 7-week-old Balb/c mice, under 6-h fasting with a unique i. p. dose of streptozotocin 120 mg/kg. Furthermore, 4T1 breast cancer cells were injected beneath the nipple to induce tumors. G6PD, GAPDH, ENO1, uPA, uPAR, PAI-1, β-catenin, Snail, vimentin, and E-cadherin were measured by western blot and MPP-9 and MMP-2 by gel zymography. TBARS were measured as markers of the lipid peroxidation. Lower survival and increased tumor growth, together with marked EMT, were found in diabetic in comparison with nondiabetic mice. The effects of diabetes were associated with enhanced lipid peroxidation and higher levels of glycolytic (G6PD, GAPDH, and ENO1) and proteolytic (uPA, MMP-9) enzymes. Possibly, hyperglycemia and ROS led to faster progression of breast cancer in diabetic mice, fomenting EMT and the expression of glycolytic and proteolytic enzymes. These enzymes participate in the supply of energy and precursors for macromolecular biosynthesis and extracellular matrix degradation during breast cancer progression.
Collapse
Affiliation(s)
- Rubí Viedma-Rodríguez
- Unidad de Morfología y Función, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Avenida de los Barrios 1, Los Reyes Ixtacala, 54090, Tlalnepantla, Estado de México, Mexico
| | - María Guadalupe Martínez-Hernández
- Unidad de Morfología y Función, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Avenida de los Barrios 1, Los Reyes Ixtacala, 54090, Tlalnepantla, Estado de México, Mexico
| | - Dante Israel Martínez-Torres
- Unidad de Morfología y Función, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Avenida de los Barrios 1, Los Reyes Ixtacala, 54090, Tlalnepantla, Estado de México, Mexico
| | - Luis Arturo Baiza-Gutman
- Unidad de Morfología y Función, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Avenida de los Barrios 1, Los Reyes Ixtacala, 54090, Tlalnepantla, Estado de México, Mexico.
| |
Collapse
|
47
|
Glyceraldehyde-3-phosphate Dehydrogenase is a Multifaceted Therapeutic Target. Pharmaceutics 2020; 12:pharmaceutics12050416. [PMID: 32370188 PMCID: PMC7285110 DOI: 10.3390/pharmaceutics12050416] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 04/28/2020] [Accepted: 05/01/2020] [Indexed: 02/07/2023] Open
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a glycolytic enzyme whose role in cell metabolism and homeostasis is well defined, while its function in pathologic processes needs further elucidation. Depending on the cell context, GAPDH may bind a number of physiologically important proteins, control their function and correspondingly affect the cell’s fate. These interprotein interactions and post-translational modifications of GAPDH mediate its cytotoxic or cytoprotective functions in the manner of a Janus-like molecule. In this review, we discuss the functional features of the enzyme in cellular physiology and its possible involvement in human pathologies. In the last part of the article, we describe drugs that can be employed to modulate this enzyme’s function in some pathologic states.
Collapse
|
48
|
Rosendo-Chalma P, Antonio-Vejar V, Bigoni-Ordóñez GD, Patiño-Morales CC, Cano-García A, García-Carrancá A. CDH1 and SNAI1 are regulated by E7 from human papillomavirus types 16 and 18. Int J Oncol 2020; 57:301-313. [PMID: 32319591 DOI: 10.3892/ijo.2020.5039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 10/24/2019] [Indexed: 11/05/2022] Open
Abstract
A common characteristic of cancer types associated with viruses is the dysregulated expression of the CDH1 gene, which encodes E‑cadherin, in general by activation of DNA methyltransferases (Dnmts). In cervical cancer, E7 protein from high risk human papillomaviruses (HPVs) has been demonstrated to interact with Dnmt1 and histone deacetylase type 1 (HDAC1). The present study proposed that E7 may regulate the expression of CDH1 through two pathways: i) Epigenetic, including DNA methylation; and ii) Epigenetic‑independent, including the induction of negative regulators of CDH1 expression, such as Snail family transcriptional repressor Snai1 and Snai2. To test this hypothesis, HPV16‑ and HPV18‑positive cell lines were used to determine the methylation pattern of the CDH1 promoter and its expression in association with its negative regulators. Different methylation frequencies were identified in the CDH1 promoter in HeLa (88.24%) compared with SiHa (17.65%) and Ca Ski (0%) cell lines. Significant differences in the expression of SNAI1 were observed between these cell lines, and an inverse association was identified between the expression levels of SNAI1 and CDH1. In addition, suppressing E7 not only increased the expression of CDH1, but notably decreased the expression of SNAI1 and modified the methylation pattern of the CDH1 promoter. These results suggested that the expression of CDH1 was dependent on the expression of SNAI1 and was inversely associated with the expression of E7. The present results indicated that E7 from HPV16/18 regulated the expression of CDH1 by the two following pathways in which Snai1 is involved: i) Hypermethylation of the CDH1 promoter region and increasing expression of SNAI1, as observed in HeLa; and ii) Hypomethylation of the CDH1 promoter region and expression of SNAI1, as observed in SiHa. Therefore, the suppression of CDH1 and expression of SNAI1 may be considered to be biomarkers of metastasis in uterine cervical cancer.
Collapse
Affiliation(s)
- Pedro Rosendo-Chalma
- Programa de Doctorado en Ciencias Biomédicas, Instituto de Investigaciones Biomédicas (IIB), Universidad Nacional Autónoma de México (UNAM), Mexico City 10450, Mexico
| | - Verónica Antonio-Vejar
- Laboratorio de Virus y Cáncer, Unidad de Investigación Biomédica en Cáncer of Instituto de Investigaciones Biomédicas‑Universidad Nacional Autónoma de México (IIB‑UNAM) and División de Investigación Básica of Instituto Nacional de Cancerología‑Secretaría de Salud (INCan‑SSA), Mexico City 14080, Mexico
| | - Gabriele Davide Bigoni-Ordóñez
- Laboratorio de Virus y Cáncer, Unidad de Investigación Biomédica en Cáncer of Instituto de Investigaciones Biomédicas‑Universidad Nacional Autónoma de México (IIB‑UNAM) and División de Investigación Básica of Instituto Nacional de Cancerología‑Secretaría de Salud (INCan‑SSA), Mexico City 14080, Mexico
| | - Carlos César Patiño-Morales
- Laboratorio de Virus y Cáncer, Unidad de Investigación Biomédica en Cáncer of Instituto de Investigaciones Biomédicas‑Universidad Nacional Autónoma de México (IIB‑UNAM) and División de Investigación Básica of Instituto Nacional de Cancerología‑Secretaría de Salud (INCan‑SSA), Mexico City 14080, Mexico
| | - Amparo Cano-García
- Departamento de Bioquímica, Universidad Autónoma de Madrid (UAM), Instituto de Investigaciones Biomédicas 'Alberto Sols' (CSIC‑UAM), Instituto de Investigación Sanitaria del Hospital Universitario La Paz (IdiPAZ), Madrid 28029, Spain
| | - Alejandro García-Carrancá
- Laboratorio de Virus y Cáncer, Unidad de Investigación Biomédica en Cáncer of Instituto de Investigaciones Biomédicas‑Universidad Nacional Autónoma de México (IIB‑UNAM) and División de Investigación Básica of Instituto Nacional de Cancerología‑Secretaría de Salud (INCan‑SSA), Mexico City 14080, Mexico
| |
Collapse
|
49
|
Kreuzaler P, Panina Y, Segal J, Yuneva M. Adapt and conquer: Metabolic flexibility in cancer growth, invasion and evasion. Mol Metab 2020; 33:83-101. [PMID: 31668988 PMCID: PMC7056924 DOI: 10.1016/j.molmet.2019.08.021] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/05/2019] [Accepted: 08/14/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND It has been known for close to a century that, on average, tumors have a metabolism that is different from those found in healthy tissues. Typically, tumors show a biosynthetic metabolism that distinguishes itself by engaging in large scale aerobic glycolysis, heightened flux through the pentose phosphate pathway, and increased glutaminolysis among other means. However, it is becoming equally clear that non tumorous tissues at times can engage in similar metabolism, while tumors show a high degree of metabolic flexibility reacting to cues, and stresses in their local environment. SCOPE OF THE REVIEW In this review, we want to scrutinize historic and recent research on metabolism, comparing and contrasting oncogenic and physiological metabolic states. This will allow us to better define states of bona fide tumor metabolism. We will further contextualize the stress response and the metabolic evolutionary trajectory seen in tumors, and how these contribute to tumor progression. Lastly, we will analyze the implications of these characteristics with respect to therapy response. MAJOR CONCLUSIONS In our review, we argue that there is not one single oncogenic state, but rather a diverse set of oncogenic states. These are grounded on a physiological proliferative/wound healing program but distinguish themselves due to their large scale of proliferation, mutations, and transcriptional changes in key metabolic pathways, and the adaptations to widespread stress signals within tumors. We find evidence for the necessity of metabolic flexibility and stress responses in tumor progression and how these responses in turn shape oncogenic progression. Lastly, we find evidence for the notion that the metabolic adaptability of tumors frequently frustrates therapeutic interventions.
Collapse
|
50
|
Petushkova NA, Rusanov AL, Pyatnitskiy MA, Larina OV, Zgoda VG, Lisitsa AV, Luzgina NG. Proteomic characterization of HaCaT keratinocytes provides new insights into changes associated with SDS exposure. BIOMEDICAL DERMATOLOGY 2020. [DOI: 10.1186/s41702-019-0054-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Abstract
Background
Using human keratinocyte HaCaT cell line model, we screened for proteins that changed their content due to SDS exposure in non-toxic dose (25 μg/ml, as determined by the MTT assay and microscopic examination) during 48 h.
Methods
The altered level of proteins from HaCaT keratinocytes exposed to SDS was analyzed by LC-MS/MS approach and quantified using Progenesis LC software.
Results
The Pathview map of 131 upregulated proteins was built, and enhancement of glycolysis/gluconeogenesis was found.
Conclusions
The results of our study admit the possibility of promotion of the cutaneous neoplasia and/or the peculiarity of the response of immortalized keratinocytes to the SDS treatment and provide new insights into possible role of SDS as integrator of diverse signaling that influence cell fate decisions.
Collapse
|