1
|
Qi Y, Yan J, Huang X, Jiang X, Li R, Wan J, Li Y, Miao Z, Song Z, Liu Y, Zhang L, Zhang Z. Targeting Tumor-Associated Macrophage Polarization with Traditional Chinese Medicine Active Ingredients: Dual Reversal of Chemoresistance and Immunosuppression in Tumor Microenvironment. Pharmacol Res 2025; 216:107788. [PMID: 40414586 DOI: 10.1016/j.phrs.2025.107788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2025] [Revised: 05/12/2025] [Accepted: 05/19/2025] [Indexed: 05/27/2025]
Abstract
Chemotherapy resistance and immunosuppression are major causes of tumor treatment failure. The polarization state of tumor-associated macrophages (TAMs) is a central regulatory hub for both processes. Traditional Chinese medicine (TCM) has the characteristics of multi-component, multi-target, and multi-pathway. It regulating M1/M2 polarization is promising due to the high plasticity of TAMs. This review comprehensively explores the anti-tumor effects of TCM active components through multiple targets such as metabolic reprogramming. The mechanism includes regulating TAM's polarization, reversing chemotherapy resistance, and modulating immunosuppression. Furthermore, we also summarize the synergistic effects of TCM multi-component and the exploration of mechanisms promoted by new technologies. While most studies are still in the preclinical stage, these insights highlight the potential of TCM as a cancer treatment and highlight avenues for future research and clinical application to improve patient outcomes.
Collapse
Affiliation(s)
- Yafeng Qi
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China
| | - Jingnan Yan
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China
| | - Xixi Huang
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China
| | - Xiaodan Jiang
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China
| | - Rongrong Li
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China
| | - Jiayi Wan
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yangyang Li
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China
| | - Zhiming Miao
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China
| | - Zhongyang Song
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yongqi Liu
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China; Key Laboratory of Dunhuang Medicine and Transformation at Provincial and Ministerial Level, Gansu University of Chinese Medicine, Lanzhou, China; College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China.
| | - Liying Zhang
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China; College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China.
| | - Zhiming Zhang
- Department of Oncology, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, Gansu, 730000, China.
| |
Collapse
|
2
|
Sun J, Zhou S, Sun Y, Zeng Y. The clinical significance and potential therapeutic target of tumor-associated macrophage in non-small cell lung cancer. Front Med (Lausanne) 2025; 12:1541104. [PMID: 40370720 PMCID: PMC12076932 DOI: 10.3389/fmed.2025.1541104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 03/27/2025] [Indexed: 05/16/2025] Open
Abstract
One of the leading causes of cancer-related mortality globally is non-small cell lung cancer (NSCLC). It has become a significant public health concern due to its rising incidence rate and fatality. Tumor-associated macrophage (TAM) is important in the tumor microenvironment (TME) of NSCLC because they have an impact on the development, metastasis, and incidence of tumors. As a crucial element of the TME, TAM contributes to tumor immune evasion, facilitates tumor proliferation and metastasis, and modulates tumor angiogenesis, immunosuppression, and treatment resistance through the secretion of diverse cytokines, chemokines, and growth factors. Consequently, TAM assumes a multifaceted and intricate function in the onset, progression, and therapeutic response of NSCLC, serving as a crucial focal point for comprehending the tumor microenvironment and formulating novel therapeutic methods. The study aims to review the biological properties and potential processes of TAM in NSCLC, investigate its involvement in the clinical of NSCLC patients, and discuss its potential as a therapeutic target.
Collapse
Affiliation(s)
- Jiazheng Sun
- Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sirui Zhou
- Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yalu Sun
- Affiliated Hospital of Jining Medical University, Jining, China
| | - Yulan Zeng
- Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
Xi Z, Dai R, Ze Y, Jiang X, Liu M, Xu H. Traditional Chinese medicine in lung cancer treatment. Mol Cancer 2025; 24:57. [PMID: 40001110 PMCID: PMC11863959 DOI: 10.1186/s12943-025-02245-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 01/22/2025] [Indexed: 02/27/2025] Open
Abstract
Lung cancer remains a major global health challenge and one of the leading causes of cancer-related deaths worldwide. Despite significant advancements in treatment, challenges such as drug resistance, side effects, metastasis and recurrence continue to impact patient outcomes and quality of life. In response, there is growing interest in complementary and integrative approaches to cancer care. Traditional Chinese medicine (TCM), with its long history, abundant clinical experience, holistic perspective and individualized approach, has garnered increasing attention for its role in lung cancer prevention and management. This review provides a comprehensive overview of the advances in TCM for lung cancer treatment, covering its theoretical foundation, treatment principles, clinical experiences and evidence supporting its efficacy. We also provide a systematic summary of the preclinical mechanisms, through which TCM impacts lung cancer, including the induction of cell death, reversal of drug resistance, inhibition of metastasis and modulation of immune responses. Additionally, future prospects for TCM in lung cancer treatment are discussed, offering insights into its expanded application and integration with modern medicine to address this challenging disease.
Collapse
Affiliation(s)
- Zhichao Xi
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, China
| | - Rongchen Dai
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, China
| | - Yufei Ze
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, China
| | - Xue Jiang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, China
| | - Mengfan Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, China.
| | - Hongxi Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, China.
| |
Collapse
|
4
|
Wang M, Yang F, Kong J, Zong Y, Li Q, Shao B, Wang J. Traditional Chinese medicine enhances the effectiveness of immune checkpoint inhibitors in tumor treatment: A mechanism discussion. JOURNAL OF ETHNOPHARMACOLOGY 2025; 338:118955. [PMID: 39427737 DOI: 10.1016/j.jep.2024.118955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/08/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Immune checkpoint inhibitors (ICIs) have altered the landscape of tumor immunotherapy, offering novel therapeutic approaches alongside surgery, chemotherapy, and radiotherapy and significantly improving survival benefits. However, their clinical efficacy is limited in some patients, and their use may cause immune-related adverse events (irAEs). Integrating traditional Chinese medicine (TCM) with ICIs has demonstrated the potential to boost sensitization and reduce toxicity. Clinical trials and experimental explorations have confirmed that TCM and its active components synergistically enhance the effectiveness of ICIs. AIMS This narrative review summarizes the TCM practices that enhance the clinical efficacy and reduce irAEs of ICIs. This paper also summarizes the mechanism of experimental studies on the synergies of Chinese herbal decoctions, Chinese herbal preparation, and Chinese herbal active ingredients. Most of the studies on TCM combined with ICIs are basic experiments. We discussed the mechanism of TCM enhanced ICIs to provide reference for the research and development of TCM adjuvant immunotherapy. METHODS We conducted a literature search using PubMed and Chinese National Knowledge Infrastructure databases, with a focus on herbal decoction, Chinese medicine preparations, and active ingredients that boost the effectiveness of ICIs and reduce irAEs. The search keywords were "ICIs and traditional Chinese medicine", "PD-1 and traditional Chinese medicine", "PD-L1 and traditional Chinese medicine", "CTLA-4 and traditional Chinese medicine", "IDO1 and traditional Chinese medicine", "Tim-3 and traditional Chinese medicine", "TIGIT and traditional Chinese medicine", "irAEs and traditional Chinese medicine". The search period was from May 2014 to May 2024. Articles involving the use of TCM or its components in combination with ICIs and investigating the underlying mechanisms were screened. Finally, 30 Chinese medicines used in combination with ICIs were obtained to explore the mechanism. In the part of immune checkpoint molecules other than PD-1, there were few studies on the combined application of TCM, so studies involving the regulation of immune checkpoint molecules by TCM were included. RESULTS TCM has been shown to boost the effectiveness of ICIs and reduce irAEs. Researchers indicate that TCM and its active components can work synergistically with ICIs by regulating immune checkpoints PD-1, PD-L1, CTLA-4, and IDO1, regulating intestinal flora, improving tumor microenvironment and more. CONCLUSIONS Combining TCM with ICIs can play a better anti-tumor role, but larger samples and high-quality clinical trials are necessary to confirm this. Many Chinese medicines and their ingredients have been shown to sensitize ICIs in experimental studies, which provides a rich choice for the subsequent development of ICI enhancers.
Collapse
Affiliation(s)
- Manting Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China; National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Fan Yang
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Shandong, 250014, China; First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Shandong, 250014, China; National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jingwei Kong
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100007, China; National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yuhan Zong
- The Second School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Qin Li
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Bin Shao
- Department of Breast Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| | - Ji Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China; National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
5
|
Rao Z, Wang Z, Deng H, Su W, Huang X, Xu Z. Role of Traditional Chinese Medicine in Lung Cancer Management: A Review. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2025; 53:97-117. [PMID: 39880665 DOI: 10.1142/s0192415x25500053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
With the continuous advancements in modern medicine, significant progress has been made in the treatment of lung cancer. Current standard treatments, such as surgery, chemotherapy, radiotherapy, targeted therapy, and immunotherapy, have notably improved patient survival. However, the adverse effects associated with these therapies limit their use and impact the overall treatment process. Traditional Chinese medicine (TCM) has shown holistic, multi-target, and multi-level therapeutic effects. Numerous studies have highlighted the importance of TCM's role in the comprehensive management of lung cancer, demonstrating its benefits in inhibiting tumor growth, reducing complications, mitigating side effects, and enhancing the efficacy of conventional treatments. Here, we review the main mechanisms of TCM in combating lung cancer, inducing cancer cell cycle arrest and apoptosis. These include inhibiting lung cancer cell growth and proliferation, inhibiting cancer cell invasion and metastasis, suppressing angiogenesis and epithelial-mesenchymal transition (EMT), and modulating antitumor inflammatory responses and immune evasion. This paper aims to summarize recent advancements in the application of TCM for lung cancer, emphasizing its unique advantages and distinctive features. In promoting the benefits of TCM, we seek to provide valuable insights for the integrated treatment of lung cancer.
Collapse
Affiliation(s)
- Zhijing Rao
- Oncology Department, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine Shanghai, P. R. China
| | - Zhongqi Wang
- Oncology Department, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine Shanghai, P. R. China
| | - Haibin Deng
- Oncology Department, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine Shanghai, P. R. China
| | - Wan Su
- Oncology Department, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine Shanghai, P. R. China
| | - Xiaowei Huang
- Oncology Department, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine Shanghai, P. R. China
| | - Zhenye Xu
- Oncology Department, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine Shanghai, P. R. China
| |
Collapse
|
6
|
Chakraborty S, Cheng BYL, Edwards DL, Gonzalez JC, Chiu DKC, Zheng H, Scallan C, Guo X, Tan GS, Coffey GP, Conley PB, Hume PS, Janssen WJ, Byers DE, Mudd PA, Taubenberger J, Memoli M, Davis MM, Chua KF, Diamond MS, Andreakos E, Khatri P, Wang TT. Sialylated IgG induces the transcription factor REST in alveolar macrophages to protect against lung inflammation and severe influenza disease. Immunity 2025; 58:182-196.e10. [PMID: 39541970 PMCID: PMC11735284 DOI: 10.1016/j.immuni.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/15/2024] [Accepted: 10/04/2024] [Indexed: 11/17/2024]
Abstract
While most respiratory viral infections resolve with little harm to the host, severe symptoms arise when infection triggers an aberrant inflammatory response that damages lung tissue. Host regulators of virally induced lung inflammation have not been well defined. Here, we show that enrichment for sialylated, but not asialylated immunoglobulin G (IgG), predicted mild influenza disease in humans and was broadly protective against heterologous influenza viruses in a murine challenge model. Mechanistic studies show that sialylated IgG mediated this protection by inducing the transcription factor repressor element-1 silencing transcription factor (REST), which repressed nuclear factor κB (NF-κB)-driven responses, preventing severe lung inflammation and protecting lung function during influenza infection. Therapeutic administration of a recombinant, sialylated Fc molecule in clinical development similarly activated REST and protected against severe influenza disease, demonstrating that this pathway could be clinically harnessed. Overall, induction of REST through sialylated IgG signaling is a strategy to limit inflammatory disease sequelae in infections caused by antigenically distinct influenza strains.
Collapse
Affiliation(s)
- Saborni Chakraborty
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Bowie Yik-Ling Cheng
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Desmond L Edwards
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Joseph C Gonzalez
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA; Program in Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - David Kung-Chun Chiu
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Hong Zheng
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Courtney Scallan
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Xinrong Guo
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Gene S Tan
- J. Craig Venter Institute, La Jolla, San Diego, CA 92037, USA; Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, San Diego, CA 92037, USA
| | - Greg P Coffey
- Nuvig Therapeutics Inc., Redwood City, CA 94061, USA
| | | | - Patrick S Hume
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, National Jewish Health, Denver, CO 80206, USA
| | - William J Janssen
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, National Jewish Health, Denver, CO 80206, USA
| | - Derek E Byers
- Department of Medicine, Division of Pulmonology and Critical Care Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Philip A Mudd
- Department of Emergency Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Jeffery Taubenberger
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20852, USA
| | - Matthew Memoli
- LID Clinical Studies Unit, Laboratory of Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20852, USA
| | - Mark M Davis
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Program in Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; HHMI, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Katrin F Chua
- Department of Medicine, Division of Endocrinology, Gerontology, and Metabolism, Stanford University School of Medicine, Stanford, CA 94305, USA; Geriatric Research, Education, and Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; The Andrew M. and Jane M. Bursky Center for Human Immunology & Immunotherapy Programs, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Evangelos Andreakos
- Laboratory of Immunobiology, Center for Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Purvesh Khatri
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA; Program in Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Center for Biomedical Informatics Research, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Taia T Wang
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Program in Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Division of Infectious Diseases, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
7
|
LIU S, LI J, QUE Z, YU P, TIAN J. [Advances of Fundamental Research on Traditional Chinese Medicine in Regulation of Tumor-associated Macrophages for the Prevention and Treatment of
Lung Cancer Metastasis]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2024; 27:541-549. [PMID: 39147709 PMCID: PMC11331253 DOI: 10.3779/j.issn.1009-3419.2024.106.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Indexed: 08/17/2024]
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide, with metastasis being the primary cause of mortality in lung cancer patients, and its prevention and control efficacy remain limited. In recent years, immunotherapy has emerged as a promising direction for overcoming the bottleneck of metastasis. Macrophages, as essential components of innate immunity, participate in the entire process of tumor initiation and progression. Tumor-associated macrophages (TAMs) represent the most abundant immune population in the tumor microenvironment (TME), displaying both anti-tumor M1-like and pro-tumor M2-like phenotypes. The latter promotes tumor invasion and metastasis, angiogenesis, lymphangiogenesis, immune suppression, and reactivation of dormant disseminated tumor cells (DTCs), thereby facilitating tumor metastasis. In recent years, traditional Chinese medicine (TCM) has shown significant efficacy in inhibiting tumor metastasis and has been extensively validated. It exerts anti-tumor effects by reducing the recruitment of TAMs, inhibiting M2-like polarization, and modulating cytokines and proteins in the TME. This paper reviews the relationship between TAMs and lung cancer metastasis, elucidates the targets and mechanisms of TCM in regulating TAMs to prevent and treat lung cancer metastasis, aiming to provide insights into lung cancer prevention and treatment.
.
Collapse
|
8
|
Guo F, Kong W, Li D, Zhao G, Anwar M, Xia F, Zhang Y, Ma C, Ma X. M2-type tumor-associated macrophages upregulated PD-L1 expression in cervical cancer via the PI3K/AKT pathway. Eur J Med Res 2024; 29:357. [PMID: 38970071 PMCID: PMC11225336 DOI: 10.1186/s40001-024-01897-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 05/21/2024] [Indexed: 07/07/2024] Open
Abstract
BACKGROUND AND PURPOSE PD-1/PD-L1 inhibitors have become a promising therapy. However, the response rate is lower than 30% in patients with cervical cancer (CC), which is related to immunosuppressive components in tumor microenvironment (TME). Tumor-associated macrophages (TAMs), as one of the most important immune cells, are involved in the formation of tumor suppressive microenvironment. Therefore, it will provide a theoretical basis for curative effect improvement about the regulatory mechanism of TAMs on PD-L1 expression. METHODS The clinical data and pathological tissues of CC patients were collected, and the expressions of PD-L1, CD68 and CD163 were detected by immunohistochemistry. Bioinformatics was used to analyze the macrophage subtypes involved in PD-L1 regulation. A co-culture model was established to observe the effects of TAMs on the morphology, migration and invasion function of CC cells, and the regulatory mechanism of TAMs on PD-L1. RESULTS PD-L1 expression on tumor cells could predict the poor prognosis of patients. And there was a strong correlation between PD-L1 expression with CD163+TAMs infiltration. Similarly, PD-L1 expression was associated with M1/M2-type TAMs infiltration in bioinformatics analysis. The results of cell co-culture showed that M1/M2-type TAMs could upregulate PD-L1 expression, especially M2-type TAMs may elevate the PD-L1 expression via PI3K/AKT pathway. Meanwhile, M1/M2-type TAMs can affect the morphological changes, and enhance migration and invasion abilities of CC cells. CONCLUSIONS PD-L1 expression in tumor cells can be used as a prognostic factor and is closely related to CD163+TAMs infiltration. In addition, M2-type TAMs can upregulate PD-L1 expression in CC cells through PI3K/AKT pathway, enhance the migration and invasion capabilities, and affect the tumor progression.
Collapse
Affiliation(s)
- Fan Guo
- Department of Medical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, No 789 Suzhou Road, Urumqi, 830011, Xinjiang, China
- Postdoctoral Research Workstation of Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Weina Kong
- Department of Medical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, No 789 Suzhou Road, Urumqi, 830011, Xinjiang, China
| | - Dewei Li
- Center of Respiratory and Critical Care Medicine, The People's Hospital of the Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
| | - Gang Zhao
- Department of Blood Transfusion, Affiliated Traditional Chinese Medicine Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Miyessar Anwar
- Department of Medical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, No 789 Suzhou Road, Urumqi, 830011, Xinjiang, China
| | - Feifei Xia
- Department of Medical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, No 789 Suzhou Road, Urumqi, 830011, Xinjiang, China
| | - Yuanming Zhang
- Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Cailing Ma
- Department of Gynecology, The First Affiliated Hospital of Xinjiang Medical University, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, 137 Li Yu Shan South Road, Urumqi, 830054, Xinjiang, China.
| | - Xiumin Ma
- Department of Medical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, No 789 Suzhou Road, Urumqi, 830011, Xinjiang, China.
| |
Collapse
|
9
|
Seo CS. Simultaneous Quantification of Nine Target Compounds in Traditional Korean Medicine, Bopyeo-Tang, Using High-Performance Liquid Chromatography-Photodiode Array Detector and Ultra-Performance Liquid Chromatography-Tandem Mass Spectrometry. Molecules 2024; 29:1171. [PMID: 38474683 DOI: 10.3390/molecules29051171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/02/2024] [Accepted: 03/05/2024] [Indexed: 03/14/2024] Open
Abstract
Bopyeo-tang (BPT) is composed of six medicinal herbs (Morus alba L., Rehmannia glutinosa (Gaertn.) DC., Panax ginseng C.A.Mey., Aster tataricus L.f., Astragalus propinquus Schischkin, and Schisandra chinensis (Turcz.) Baill.) and has been used for the treatment of lung diseases. This study focused on establishing an analytical method that can simultaneously quantify nine target compounds (i.e., hydroxymethylfurfural, mulberroside A, chlorogenic acid, calycosin-7-O-glucoside, 3,5-dicaffeoylquinic acid, quercetin, kaempferol, schizandrin, and gomisin A) from a BPT sample using high-performance liquid chromatography with a photodiode array detector (HPLC-PDA) and ultra-performance liquid chromatography with tandem mass spectrometry (UPLC-MS/MS). The separation of compounds in both analyses was performed on a C18 reversed-phase column using the gradient elution of water-acetonitrile as the mobile phase. In particular, the multiple reaction monitoring mode was applied for quick and accurate detection in UPLC-MS/MS analysis. As a result of analyzing the two methods, HPLC-PDA and UPLC-MS/MS, the coefficient of determination of the regression equation for each compound was ≥0.9952, and recovery was 85.99-106.40% (relative standard deviation (RSD) < 9.58%). Precision testing of the nine compounds was verified (RSD < 10.0%). The application of these analytical assays under optimized conditions for quantitative analysis of the BPT sample gave 0.01-4.70 mg/g. Therefore, these two assays could be used successfully to gather basic data for clinical research and the quality control of BPT.
Collapse
Affiliation(s)
- Chang-Seob Seo
- KM Science Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| |
Collapse
|
10
|
Zhou Y, Wang F, Li G, Xu J, Zhang J, Gullen E, Yang J, Wang J. From immune checkpoints to therapies: understanding immune checkpoint regulation and the influence of natural products and traditional medicine on immune checkpoint and immunotherapy in lung cancer. Front Immunol 2024; 15:1340307. [PMID: 38426097 PMCID: PMC10902058 DOI: 10.3389/fimmu.2024.1340307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/29/2024] [Indexed: 03/02/2024] Open
Abstract
Lung cancer is a disease of global concern, and immunotherapy has brought lung cancer therapy to a new era. Besides promising effects in the clinical use of immune checkpoint inhibitors, immune-related adverse events (irAEs) and low response rates are problems unsolved. Natural products and traditional medicine with an immune-modulating nature have the property to influence immune checkpoint expression and can improve immunotherapy's effect with relatively low toxicity. This review summarizes currently approved immunotherapy and the current mechanisms known to regulate immune checkpoint expression in lung cancer. It lists natural products and traditional medicine capable of influencing immune checkpoints or synergizing with immunotherapy in lung cancer, exploring both their effects and underlying mechanisms. Future research on immune checkpoint modulation and immunotherapy combination applying natural products and traditional medicine will be based on a deeper understanding of their mechanisms regulating immune checkpoints. Continued exploration of natural products and traditional medicine holds the potential to enhance the efficacy and reduce the adverse reactions of immunotherapy.
Collapse
Affiliation(s)
- Yibin Zhou
- Department of Hematology and Oncology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Fenglan Wang
- Department of Hematology and Oncology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Guangda Li
- Department of Hematology and Oncology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jing Xu
- Department of Hematology and Oncology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jingjing Zhang
- Department of Hematology and Oncology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Elizabeth Gullen
- Department of Pharmacology, Yale Medical School, New Haven, CT, United States
| | - Jie Yang
- Department of Hematology and Oncology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jing Wang
- Department of Hematology and Oncology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
11
|
Jia W, Yu H, Song L, Wang J, Niu S, Zang G, Liang M, Liu J, Na R. Development of clinical trials for non-small cell lung cancer drugs in China from 2005 to 2023. Front Med (Lausanne) 2023; 10:1239351. [PMID: 38034540 PMCID: PMC10687557 DOI: 10.3389/fmed.2023.1239351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 11/02/2023] [Indexed: 12/02/2023] Open
Abstract
Objective Over the past few decades, the development of anti-cancer drugs in China has made outstanding achievements based on the support of national policies. To assess the progress of non-small cell lung cancer (NSCLC) drugs, we conducted a statistical analysis of clinical trials of drugs targeting NSCLC in China from 2005 to 2023. Methods We downloaded, screened and analysed the data from three official websites, the Centre for Drug Evaluation of China National Medical Products Administration website (NMPA), ClinicalTrials.gov and the Chinese Clinical Trial Registry (ChiCTR). Results From January 1, 2005 to April 15, 2023, a total of 1,357 drug clinical trials that met the standards were included, and the number of registered drug clinical trials has been increasing year by year, reaching the maximum of 199 in 2021. Among them, the maximum of 462 items (34.05%) in phase II clinical trials, followed by 333 (24.54%) in phase III clinical trials, and 139 (10.24%) in phase IV clinical trials. In all drug clinical trials, industry sponsored trials (ISTs) have 722 items (53.21%), which are higher than investigator-initiated trials (IITs). The clinical trials of chemical drugs have a maximum of 723 items (53.28%), while biopharmaceuticals have grown rapidly in the past 10 years, with a total of 374 (27.56%), and 48.19% of the drug clinical trials of combined medication. In addition, the geographical distribution of the leading units and participating units of Chinese drug clinical trials are uneven, and economic regions such as Beijing, Shanghai, Jiangsu are obviously ahead of other regions. Conclusion From 2005 to 2023, the clinical trials of registered drugs for the treatment of NSCLC increased rapidly. Among them, due to the development of immunotherapy, the clinical trials of biopharmaceuticals and drugs for combined medication are growing most rapidly, while the exploration of the original drugs is a little far from enough. Our research provides a direction for the future drug clinical trials of NSCLC, laying foundation for further extending the survival rate of patients with NSCLC.
Collapse
Affiliation(s)
- Wanying Jia
- Department of Pharmacy, Chi Feng Municipal Hospital, Chifeng, China
| | - Haiyan Yu
- Department of Pharmacy, Chi Feng Municipal Hospital, Chifeng, China
| | - Li Song
- Qingdao Women and Children’s Hospital, National Drug Clinical Trial Institute Office, Qingdao, China
| | - Jian Wang
- Department of Pharmacy Supplement, Chi Feng Municipal Hospital, Chifeng, China
| | - Shuyu Niu
- Department of Pharmacy, Chi Feng Municipal Hospital, Chifeng, China
| | - Guojie Zang
- Chifeng Clinical Medicine College of Inner Mongolia Medical University, Chifeng, China
| | - Mingjie Liang
- Department of Pharmacy, Chi Feng Municipal Hospital, Chifeng, China
| | - Jinwei Liu
- Department of Pharmacy, Chi Feng Municipal Hospital, Chifeng, China
| | - Risu Na
- Clinical Science of Stomatology, Chi Feng Municipal Hospital, Chifeng, China
| |
Collapse
|
12
|
Yu YX, Wang S, Liu ZN, Zhang X, Hu ZX, Dong HJ, Lu XY, Zheng JB, Cui HJ. Traditional Chinese medicine in the era of immune checkpoint inhibitor: theory, development, and future directions. Chin Med 2023; 18:59. [PMID: 37210537 DOI: 10.1186/s13020-023-00751-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 04/13/2023] [Indexed: 05/22/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) have revolutionized cancer management and have been widely applied; however, they still have some limitations in terms of efficacy and toxicity. There are multiple treatment regimens in Traditional Chinese Medicine (TCM) that play active roles in combination with Western medicine in the field of oncology treatment. TCM with ICIs works by regulating the tumor microenvironment and modulating gut microbiota. Through multiple targets and multiple means, TCM enhances the efficacy of ICIs, reverses resistance, and effectively prevents and treats ICI-related adverse events based on basic and clinical studies. However, there have been few conclusions on this topic. This review summarizes the development of TCM in cancer treatment, the mechanisms underlying the combination of TCM and ICIs, existing studies, ongoing trials, and prospects for future development.
Collapse
Affiliation(s)
- Yi-Xuan Yu
- Graduate School, Beijing University of Chinese Medicine, Beijing, 100029, China
- Oncology Department of Integrative Medicine, China-Japan Friendship Hospital, No.2 Yinghua East Road, Chaoyang District, Beijing, 100029, China
| | - Shuo Wang
- Oncology Department of Integrative Medicine, China-Japan Friendship Hospital, No.2 Yinghua East Road, Chaoyang District, Beijing, 100029, China
| | - Zhe-Ning Liu
- Graduate School, Beijing University of Chinese Medicine, Beijing, 100029, China
- Oncology Department of Integrative Medicine, China-Japan Friendship Hospital, No.2 Yinghua East Road, Chaoyang District, Beijing, 100029, China
| | - Xu Zhang
- Graduate School, Beijing University of Chinese Medicine, Beijing, 100029, China
- Oncology Department of Integrative Medicine, China-Japan Friendship Hospital, No.2 Yinghua East Road, Chaoyang District, Beijing, 100029, China
| | - Zi-Xin Hu
- Graduate School, Beijing University of Chinese Medicine, Beijing, 100029, China
- Oncology Department of Integrative Medicine, China-Japan Friendship Hospital, No.2 Yinghua East Road, Chaoyang District, Beijing, 100029, China
| | - Hui-Jing Dong
- Graduate School, Beijing University of Chinese Medicine, Beijing, 100029, China
- Oncology Department of Integrative Medicine, China-Japan Friendship Hospital, No.2 Yinghua East Road, Chaoyang District, Beijing, 100029, China
| | - Xing-Yu Lu
- Graduate School, Beijing University of Chinese Medicine, Beijing, 100029, China
- Oncology Department of Integrative Medicine, China-Japan Friendship Hospital, No.2 Yinghua East Road, Chaoyang District, Beijing, 100029, China
| | - Jia-Bin Zheng
- Oncology Department of Integrative Medicine, China-Japan Friendship Hospital, No.2 Yinghua East Road, Chaoyang District, Beijing, 100029, China.
| | - Hui-Juan Cui
- Oncology Department of Integrative Medicine, China-Japan Friendship Hospital, No.2 Yinghua East Road, Chaoyang District, Beijing, 100029, China.
| |
Collapse
|
13
|
Zhao LM, Shi AD, Yang Y, Liu ZL, Hu XQ, Shu LZ, Tang YC, Zhang ZL. Advances in molecular and cell therapy for immunotherapy of cholangiocarcinoma. Front Oncol 2023; 13:1140103. [PMID: 37064120 PMCID: PMC10090456 DOI: 10.3389/fonc.2023.1140103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/17/2023] [Indexed: 03/31/2023] Open
Abstract
Cholangiocarcinoma (CCA) is a highly malignant tumor of the hepatobiliary system that has failed to respond to many traditional therapies to a certain extent, including surgery, chemotherapy and radiotherapy. In recent years, the new therapeutic schemes based on immunology have fundamentally changed the systemic treatment of various malignant tumors to a certain extent. In view of the immunogenicity of CCA, during the occurrence and development of CCA, some immunosuppressive substances are released from cells and immunosuppressive microenvironment is formed to promote the escape immune response of its own cells, thus enhancing the malignancy of the tumor and reducing the sensitivity of the tumor to drugs. Some immunotherapy regimens for cholangiocarcinoma have produced good clinical effects. Immunotherapy has more precise characteristics and less adverse reactions compared with traditional treatment approaches. However, due to the unique immune characteristics of CCA, some patients with CCA may not benefit in the long term or not benefit at all after current immunotherapy. At present, the immunotherapy of CCA that have been clinically studied mainly include molecular therapy and cell therapy. In this article, we generalized and summarized the current status of immunotherapy strategies including molecular therapy and cell therapy in CCA in clinical studies, and we outlined our understanding of how to enhance the clinical application of these immunotherapy strategies.
Collapse
Affiliation(s)
- Li-ming Zhao
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - An-da Shi
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Yan Yang
- Department of General Surgery, Shanxian Central Hospital, Heze, China
| | - Zeng-li Liu
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
- Department of General Surgery, Qilu Hospital (Qingdao), Shandong University, Jinan, China
| | - Xiao-Qiang Hu
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Li-Zhuang Shu
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Yong-chang Tang
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
- *Correspondence: Yong-chang Tang, ; Zong-li Zhang,
| | - Zong-li Zhang
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
- *Correspondence: Yong-chang Tang, ; Zong-li Zhang,
| |
Collapse
|
14
|
Zhang J, Gao J, Cui J, Wang Y, Jin Y, Zhang D, Lin D, Lin J. Tumor-associated macrophages in tumor progression and the role of traditional Chinese medicine in regulating TAMs to enhance antitumor effects. Front Immunol 2022; 13:1026898. [PMID: 36311793 PMCID: PMC9611775 DOI: 10.3389/fimmu.2022.1026898] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 09/27/2022] [Indexed: 11/24/2022] Open
Abstract
Purpose To emphasize the importance of tumor-associated macrophages (TAMs) in tumor immunity and to describe the ways in which extracts from Traditional Chinese Medicine (TCM) achieve tumor therapy by modulating macrophages. Significance By summarizing these available data, this review focused on TAMs and TCM and can build the foundation for future research on antitumor therapeutics. Methods In this review, we summarized the key functions of TAMs in cancer development and overviewed literature on TCM targeting TAMs together with other immune cells aiming to enhance antitumor immunity. Conclusions With an indispensable role in antitumor immunity, TAMs contribute to tumor progression, migration, invasion, angiogenesis, lymphangiogenesis, and immunosuppressive microenvironment. In recent years, TCM has gradually gained attention as a potential antitumor adjunctive therapy in preclinical and clinical trials. TCM is also a regulator of cytokine secretion and cell surface molecule expression in balancing the tumor microenvironment (TME), especially macrophage activation and polarization. Therefore, it is believed that TCM could serve as modifiers with immunomodulatory capability.
Collapse
Affiliation(s)
- Jiatong Zhang
- The Clinical Department, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jiafeng Gao
- The Clinical Department, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jingwen Cui
- The Clinical Department, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yongqiang Wang
- The Preventive Department, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yipeng Jin
- The Clinical Department, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Di Zhang
- The Clinical Department, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Degui Lin
- The Clinical Department, College of Veterinary Medicine, China Agricultural University, Beijing, China
- *Correspondence: Degui Lin, ; Jiahao Lin,
| | - Jiahao Lin
- The Clinical Department, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Center of Research and Innovation of Chinese Traditional Veterinary Medicine, China Agricultural University, Beijing, China
- *Correspondence: Degui Lin, ; Jiahao Lin,
| |
Collapse
|
15
|
Chen H, Zheng M, Zhang W, Long Y, Xu Y, Yuan M. Research Status of Mouse Models for Non-Small-Cell Lung Cancer (NSCLC) and Antitumor Therapy of Traditional Chinese Medicine (TCM) in Mouse Models. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:6404853. [PMID: 36185084 PMCID: PMC9519343 DOI: 10.1155/2022/6404853] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 08/31/2022] [Indexed: 11/25/2022]
Abstract
Non-small-cell lung cancer (NSCLC) is known as one of the most lethal cancers, causing more than 1 million deaths annually worldwide. Therefore, the development of novel therapeutic drugs for NSCLC has become an urgent need. Herein, various mouse models provide great convenience not only for researchers but also for the development of antitumor drug. Meanwhile, TCM, as a valuable and largely untapped resource pool for modern medicine, provides research resources for the treatment of various diseases. Until now, cell-derived xenograft (CDX) model, patient-derived xenograft (PDX) model, syngeneic model, orthotopic model, humanized mouse model (HIS), and genetically engineered mouse models (GEMMs) have been reported in TCM evaluation. This review shows the role and current status of kinds of mouse models in antitumor research and summarizes the application progress of TCM including extracts, formulas, and isolated single molecules for NSCLC therapy in various mouse models; more importantly, it provides a theoretical exploration of what kind of mouse models is ideal for TCM efficacy evaluation in future. However, there are still huge challenges and limitations in the development of mouse models specifically for the TCM research, and none of the available models are perfectly matching the characteristics of TCM, which suppress the tumor growth through various mechanisms, especially by regulating immune function. Nevertheless, with fully functional immune system existing in syngeneic model and humanized mouse model (HIS), it is still suggested that these two models are more suitable for development of TCM especially for TCM extracts or formulas. Moreover, continued efforts are needed to generate more reliable mouse models to test TCM formulas in future research.
Collapse
Affiliation(s)
- Hongkui Chen
- Shanghai Lidebiotech Co. Ltd., Shanghai 201203, China
| | - Min Zheng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Wenhui Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, China
| | - Yuan Long
- Shanghai Lidebiotech Co. Ltd., Shanghai 201203, China
| | - Yu Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, China
| | - Man Yuan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, China
| |
Collapse
|
16
|
Pe KCS, Saetung R, Yodsurang V, Chaotham C, Suppipat K, Chanvorachote P, Tawinwung S. Triple-negative breast cancer influences a mixed M1/M2 macrophage phenotype associated with tumor aggressiveness. PLoS One 2022; 17:e0273044. [PMID: 35960749 PMCID: PMC9374254 DOI: 10.1371/journal.pone.0273044] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 08/02/2022] [Indexed: 12/05/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is characterized by excessive accumulation of tumor-infiltrating immune cells, including tumor-associated macrophages (TAMs). TAMs consist of a heterogeneous population with high plasticity and are associated with tumor aggressiveness and poor prognosis. Moreover, breast cancer cells can secrete factors that influence TAM polarization. Therefore, this study aimed to evaluate the crosstalk between cancer cells and macrophages in the context of TNBC. Cytokine-polarized M2 macrophage were used as control. Distinct from the classical M2 macrophage, TAMs generated from TNBC-conditioned media upregulated both M1- and M2-associated genes, and secreted both the anti-inflammatory cytokine interleukin IL-10 and the proinflammatory cytokine IL-6 and tumor necrosis factor- α. Theses TNBC-induced TAMs exert aggressive behavior of TNBC cells. Consistently, TCGA and MTABRIC analyses of human breast cancer revealed upregulation of M1- associated genes in TNBC comparing with non-TNBC. Among these M1-associated genes, CXCL10 and IL1B were revealed to be independent prognostic factors for disease progression. In conclusion, TNBC cells induce macrophage polarization with a mixture of M1 and M2 phenotypes. These cancer-induced TAMs further enhance tumor cell growth and aggressiveness.
Collapse
Affiliation(s)
- Kristine Cate S. Pe
- Faculty of Pharmaceutical Sciences, Department of Pharmacology and Physiology, Chulalongkorn University, Bangkok, Thailand
| | - Rattana Saetung
- Faculty of Pharmaceutical Sciences, Department of Pharmacology and Physiology, Chulalongkorn University, Bangkok, Thailand
| | - Varalee Yodsurang
- Faculty of Pharmaceutical Sciences, Department of Pharmacology and Physiology, Chulalongkorn University, Bangkok, Thailand
| | - Chatchai Chaotham
- Faculty of Pharmaceutical Sciences, Department of Biochemistry and Microbiology, Chulalongkorn University, Bangkok, Thailand
| | - Koramit Suppipat
- Faculty of Medicine, Department of Research Affair, Chulalongkorn University, Bangkok, Thailand
- Cellular Immunotherapy Research Unit, Chulalongkorn University, Bangkok, Thailand
| | - Pithi Chanvorachote
- Faculty of Pharmaceutical Sciences, Department of Pharmacology and Physiology, Chulalongkorn University, Bangkok, Thailand
| | - Supannikar Tawinwung
- Faculty of Pharmaceutical Sciences, Department of Pharmacology and Physiology, Chulalongkorn University, Bangkok, Thailand
- Cellular Immunotherapy Research Unit, Chulalongkorn University, Bangkok, Thailand
- * E-mail:
| |
Collapse
|
17
|
Study on the Action Mechanism of the Yifei Jianpi Tongfu Formula in Treatment of Colorectal Cancer Lung Metastasis Based on Network Analysis, Molecular Docking, and Experimental Validation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:6229444. [PMID: 35942366 PMCID: PMC9356795 DOI: 10.1155/2022/6229444] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/28/2022] [Indexed: 11/18/2022]
Abstract
Objective The lung is the second most common site of colorectal cancer (CRC) metastasis. This study aims to investigate the therapeutic effects and potential action mechanisms of Yifei Jianpi Tongfu formula (YJTF) in CRC lung metastasis in a comprehensive and systematic way by network analysis, molecular docking, and experimental verification. Methods The main ingredients in YJTF were screened from the Traditional Chinese Medicine System Pharmacology Database and Analysis Platform (TCMSP) and Traditional Chinese Medicine Integrated Database (TCMID), and the disease-related targets from the Online Mendelian Inheritance in Man (OMIM) and GeneCards and the compound-related targets from SwissTargetPrediction were collected. Then, Metascape was used for pathway annotation and enrichment analysis, and meanwhile, a protein-protein interaction (PPI) network was constructed. Molecular docking was carried out to investigate interactions between the active compounds and the potential targets. The in vivo effect of YJTF on CRC lung metastasis was observed in a tail vein injection mouse model. Results A total of 243 active compounds and 81 disease-related targets of YJTF were selected for analysis. The results of multiple network analysis showed that the core targets of YJTF were enriched onto various cancer-related pathways, especially focal adhesion and adherens junction. The results of molecular docking demonstrated that all core compounds (quercetin, kaempferol, luteolin, apigenin, and isorhamnetin) were capable of binding with AKT1, EGFR, SRC, ESR1, and PTGS2. Experimental validation in vivo demonstrated that YJTF combined with oxaliplatin could significantly reduce the number of lung metastases and improve the quality of life in mice. Further research suggested that YJTF inhibited CRC lung metastasis probably by modulating epithelial-to-mesenchymal transition (EMT). Conclusions According to the analysis, YJTF can be considered as an effective adjuvant therapy for CRC lung metastasis.
Collapse
|
18
|
Sadoughi F, Dana PM, Homayoonfal M, Sharifi M, Asemi Z. Molecular basis of melatonin protective effects in metastasis: A novel target of melatonin. Biochimie 2022; 202:15-25. [DOI: 10.1016/j.biochi.2022.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 05/19/2022] [Accepted: 05/19/2022] [Indexed: 11/16/2022]
|
19
|
Wu D, Liu X, Mu J, Yang J, Wu F, Zhou H. Therapeutic Approaches Targeting Proteins in Tumor-Associated Macrophages and Their Applications in Cancers. Biomolecules 2022; 12:biom12030392. [PMID: 35327584 PMCID: PMC8945446 DOI: 10.3390/biom12030392] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 02/11/2022] [Accepted: 02/28/2022] [Indexed: 02/07/2023] Open
Abstract
Tumor-associated macrophages (TAMs) promote tumor proliferation, invasion, angiogenesis, stemness, therapeutic resistance, and immune tolerance in a protein-dependent manner. Therefore, the traditional target paradigms are often insufficient to exterminate tumor cells. These pro-tumoral functions are mediated by the subsets of macrophages that exhibit canonical protein markers, while simultaneously having unique transcriptional features, which makes the proteins expressed on TAMs promising targets during anti-tumor therapy. Herein, TAM-associated protein-dependent target strategies were developed with the aim of either reducing the numbers of TAMs or inhibiting the pro-tumoral functions of TAMs. Furthermore, the recent advances in TAMs associated with tumor metabolism and immunity were extensively exploited to repolarize these TAMs to become anti-tumor elements and reverse the immunosuppressive tumor microenvironment. In this review, we systematically summarize these current studies to fully illustrate the TAM-associated protein targets and their inhibitors, and we highlight the potential clinical applications of targeting the crosstalk among TAMs, tumor cells, and immune cells in anti-tumor therapy.
Collapse
Affiliation(s)
- Deyang Wu
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, Frontier Innovation Center for Dental Medicine Plus, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (D.W.); (J.M.); (J.Y.)
| | - Xiaowei Liu
- State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu 610041, China;
| | - Jingtian Mu
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, Frontier Innovation Center for Dental Medicine Plus, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (D.W.); (J.M.); (J.Y.)
| | - Jin Yang
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, Frontier Innovation Center for Dental Medicine Plus, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (D.W.); (J.M.); (J.Y.)
| | - Fanglong Wu
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, Frontier Innovation Center for Dental Medicine Plus, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (D.W.); (J.M.); (J.Y.)
- Correspondence: (F.W.); (H.Z.)
| | - Hongmei Zhou
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, Frontier Innovation Center for Dental Medicine Plus, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (D.W.); (J.M.); (J.Y.)
- Correspondence: (F.W.); (H.Z.)
| |
Collapse
|
20
|
Huang J, Li JX, Ma LR, Xu DH, Wang P, Li LQ, Yu LL, Li Y, Li RZ, Zhang H, Zheng YH, Tang L, Yan PY. Traditional Herbal Medicine: A Potential Therapeutic Approach for Adjuvant Treatment of Non-small Cell Lung Cancer in the Future. Integr Cancer Ther 2022; 21:15347354221144312. [PMID: 36567455 PMCID: PMC9806388 DOI: 10.1177/15347354221144312] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 11/17/2022] [Accepted: 11/23/2022] [Indexed: 12/27/2022] Open
Abstract
Lung carcinoma is the primary reason for cancer-associated mortality, and it exhibits the highest mortality and incidence in developed and developing countries. Non-small cell lung cancer (NSCLC) and SCLC are the 2 main types of lung cancer, with NSCLC contributing to 85% of all lung carcinoma cases. Conventional treatment mainly involves surgery, chemoradiotherapy, and immunotherapy, but has a dismal prognosis for many patients. Therefore, identifying an effective adjuvant therapy is urgent. Historically, traditional herbal medicine has been an essential part of complementary and alternative medicine, due to its numerous targets, few side effects and substantial therapeutic benefits. In China and other East Asian countries, traditional herbal medicine is increasingly popular, and is highly accepted by patients as a clinical adjuvant therapy. Numerous studies have reported that herbal extracts and prescription medications are effective at combating tumors. It emphasizes that, by mainly regulating the P13K/AKT signaling pathway, the Wnt signaling pathway, and the NF-κB signaling pathway, herbal medicine induces apoptosis and inhibits the proliferation and migration of tumor cells. The present review discusses the anti-NSCLC mechanisms of herbal medicines and provides options for future adjuvant therapy in patients with NSCLC.
Collapse
Affiliation(s)
- Jie Huang
- Macau University of Science and
Technology, Taipa, Macau, China
| | - Jia-Xin Li
- Macau University of Science and
Technology, Taipa, Macau, China
| | - Lin-Rui Ma
- Macau University of Science and
Technology, Taipa, Macau, China
| | - Dong-Han Xu
- Macau University of Science and
Technology, Taipa, Macau, China
| | - Peng Wang
- Macau University of Science and
Technology, Taipa, Macau, China
| | - Li-Qi Li
- Macau University of Science and
Technology, Taipa, Macau, China
| | - Li-Li Yu
- Macau University of Science and
Technology, Taipa, Macau, China
| | - Yu Li
- Macau University of Science and
Technology, Taipa, Macau, China
| | - Run-Ze Li
- Second Affiliated Hospital of Guangzhou
University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Hao Zhang
- Macau University of Science and
Technology, Taipa, Macau, China
| | - Yu-Hong Zheng
- Macau University of Science and
Technology, Taipa, Macau, China
| | - Ling Tang
- Southern Medical University, Guangzhou,
Guangdong, China
- Guangdong Provincial Key Laboratory of
Chinese Medicine Pharmaceutics, Guangzhou, Guangdong, China
- Guangdong Provincial Engineering
Laboratory of Chinese Medicine Preparation Technology, Guangzhou, Guangdong,
China
| | - Pei-Yu Yan
- Macau University of Science and
Technology, Taipa, Macau, China
| |
Collapse
|
21
|
Chen H, Sun Q, Zhang C, She J, Cao S, Cao M, Zhang N, Adiila AV, Zhong J, Yao C, Wang Y, Xia H, Lan L. Identification and Validation of CYBB, CD86, and C3AR1 as the Key Genes Related to Macrophage Infiltration of Gastric Cancer. Front Mol Biosci 2021; 8:756085. [PMID: 34950700 PMCID: PMC8688826 DOI: 10.3389/fmolb.2021.756085] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/08/2021] [Indexed: 12/12/2022] Open
Abstract
Gastric cancer (GC) is rampant around the world. Most of the GC cases are detected in advanced stages with poor prognosis. The identification of marker genes for early diagnosis is of great significance. Studying the tumor environment is helpful to acknowledge the process of tumorigenesis, development, and metastasis. Twenty-two kinds of immune cells were calculated by CIBERSORT from Gene Expression Omnibus (GEO) database. Subsequently, higher infiltration of macrophages M0 was discovered in GC compared with normal tissues. WGCNA was utilized to construct the network and then identify key modules and genes related to macrophages in TCGA. Finally, 18 hub genes were verified. In the PPI bar chart, the top 3 genes were chosen as hub genes involved in most pathways. On the TIMER and THPA websites, it is verified that the expression levels of CYBB, CD86, and C3AR1 genes in tumor tissues were higher than those in normal tissues. These genes may work as biomarkers or targets for accurate diagnosis and treatment of GC in the future. Our findings may be a new strategy for the treatment of GC.
Collapse
Affiliation(s)
- Haiyan Chen
- Institute for Cancer Research, School of Basic Medical Science of Xi’an Jiaotong University, Xi’an, China
| | - Qi Sun
- Department of Pathology, School of Basic Medical Sciences and Sir Run Run Hospital and Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing, China
| | - Cangang Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, China
| | - Junjun She
- Department of High Talent and General Surgery and Center for Gut Microbiome Research and Med-X Institute, the First Affiliated Hospital of Xi’an Jiao Tong University, Xi’an, China
| | - Shuai Cao
- Department of Orthopedics, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Meng Cao
- Institute for Cancer Research, School of Basic Medical Science of Xi’an Jiaotong University, Xi’an, China
| | - Nana Zhang
- Institute for Cancer Research, School of Basic Medical Science of Xi’an Jiaotong University, Xi’an, China
| | - Ayarick Vivian Adiila
- Institute for Cancer Research, School of Basic Medical Science of Xi’an Jiaotong University, Xi’an, China
| | - Jinjin Zhong
- Institute for Cancer Research, School of Basic Medical Science of Xi’an Jiaotong University, Xi’an, China
| | - Chengyun Yao
- Jiangsu Cancer Hospital and the Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Institute of Cancer Research, Nanjing, China
| | - Yili Wang
- Institute for Cancer Research, School of Basic Medical Science of Xi’an Jiaotong University, Xi’an, China
| | - Hongping Xia
- Department of Pathology, School of Basic Medical Sciences and Sir Run Run Hospital and Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing, China
- Department of High Talent and General Surgery and Center for Gut Microbiome Research and Med-X Institute, the First Affiliated Hospital of Xi’an Jiao Tong University, Xi’an, China
| | - Linhua Lan
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
22
|
Ri MH, Ma J, Jin X. Development of natural products for anti-PD-1/PD-L1 immunotherapy against cancer. JOURNAL OF ETHNOPHARMACOLOGY 2021; 281:114370. [PMID: 34214644 DOI: 10.1016/j.jep.2021.114370] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/13/2021] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The programmed cell death protein 1 (PD-1)/programmed death-ligand 1 (PD-L1) immune checkpoint is one of the most promising therapeutic targets for cancer immunotherapy, but several challenges remain in current anti-PD-1/PD-L1 therapy. Natural products, mainly derived from traditional medicine, could improve and expand anti-PD-1/PD-L1 therapy because of their advantages such as large diversity and multi-target effects. AIM OF THE STUDY This review summarize natural products, raw extracts, and traditional medicines with pharmacological effects associated with the PD-1/PD-L1 axis, particularly PD-L1. MATERIALS AND METHODS Electronic literature databases, including Web of Science, PubMed, and ScienceDirect, and online drugs and chemicals databases, including DrugBank, ZINC, PubChem, STITCH, and CTD, were searched without date limitation by February 2021. 'Natural product or herb or herbal plant or traditional medicine' and 'PD-L1' and 'Cancer immunotherapy' were used as the search keywords. Among 112 articles identified in database searching, 54 articles are full text articles, reporting in silico, in vitro, in vivo and clinical trials. 68 articles included are review articles and grey literature such as thesis and congress abstracts. RESULTS Several natural products and traditional medicines have exhibited diverse and multi-functional effects including direct blockade of PD-1/PD-L1 interactions, modulation of PD-L1 expression, and cooperation with PD-1/PD-L1 inhibitors. CONCLUSION Natural products and traditional medicines can facilitate the development of more effective and acceptable diverse strategies for anti-PD-1/PD-L1 therapy, but further exploration of natural products and pharmaceutical techniques is required.
Collapse
Affiliation(s)
- Myong Hak Ri
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China; Faculty of Life Science, Kim Il Sung University, Pyongyang, Democratic People's Republic of Korea
| | - Juan Ma
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| | - Xuejun Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| |
Collapse
|
23
|
Chen F, Li J, Wang H, Ba Q. Anti-Tumor Effects of Chinese Medicine Compounds by Regulating Immune Cells in Microenvironment. Front Oncol 2021; 11:746917. [PMID: 34722304 PMCID: PMC8551633 DOI: 10.3389/fonc.2021.746917] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 09/22/2021] [Indexed: 01/02/2023] Open
Abstract
As the main cause of death in the world, cancer is one of the major health threats for humans. In recent years, traditional Chinese medicine has gained great attention in oncology due to the features of multi-targets, multi-pathways, and slight side effects. Moreover, lots of traditional Chinese medicine can exert immunomodulatory effects in vivo. In the tumor microenvironment, tumor cells, immune cells as well as other stromal cells often coexist. With the development of cancer, tumor cells proliferate uncontrollably, metastasize aggressively, and modulate the proportion and status of immune cells to debilitate the antitumor immunity. Reversal of immunosuppressive tumor microenvironment plays an essential role in cancer prevention and therapy. Immunotherapy has become the most promising strategy for cancer therapy. Chinese medicine compounds can stimulate the activation and function of immune cells, such as promoting the maturation of dendritic cells and inducing the differentiation of myeloid-derived suppressor cells to dendritic cells and macrophages. In the present review, we summarize and discuss the effects of Chinese medicine compounds on immune cells in the tumor microenvironment, including innate immune cells (dendritic cells, natural killer cells, macrophages, and myeloid-derived suppressor cells) and adaptive immune cells (CD4+/CD8+ T lymphocytes and regulatory T cells), and the various immunomodulatory roles of Chinese medicine compounds in cancer therapy such as improving tumor-derived inflammation, enhancing the immunity after surgery or chemotherapy, blocking the immune checkpoints, et al., aiming to provide more thoughts for the anti-tumor mechanisms and applications of Chinese medicine compounds in terms of tumor immunity.
Collapse
Affiliation(s)
- Fengqian Chen
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingquan Li
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Wang
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Ba
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
24
|
Yang Y, Li N, Wang TM, Di L. Natural Products with Activity against Lung Cancer: A Review Focusing on the Tumor Microenvironment. Int J Mol Sci 2021; 22:ijms221910827. [PMID: 34639167 PMCID: PMC8509218 DOI: 10.3390/ijms221910827] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/05/2021] [Accepted: 10/05/2021] [Indexed: 12/24/2022] Open
Abstract
Lung cancer is one of the most prevalent malignancies worldwide. Despite the undeniable progress in lung cancer research made over the past decade, it is still the leading cause of cancer-related deaths and continues to challenge scientists and researchers engaged in searching for therapeutics and drugs. The tumor microenvironment (TME) is recognized as one of the major hallmarks of epithelial cancers, including the majority of lung cancers, and is associated with tumorigenesis, progression, invasion, and metastasis. Targeting of the TME has received increasing attention in recent years. Natural products have historically made substantial contributions to pharmacotherapy, especially for cancer. In this review, we emphasize the role of the TME and summarize the experimental proof demonstrating the antitumor effects and underlying mechanisms of natural products that target the TME. We also review the effects of natural products used in combination with anticancer agents. Moreover, we highlight nanotechnology and other materials used to enhance the effects of natural products. Overall, our hope is that this review of these natural products will encourage more thoughts and ideas on therapeutic development to benefit lung cancer patients.
Collapse
Affiliation(s)
| | - Ning Li
- Correspondence: (N.L.); (L.D.); Tel.: +86-551-6516-1115 (N.L.)
| | | | - Lei Di
- Correspondence: (N.L.); (L.D.); Tel.: +86-551-6516-1115 (N.L.)
| |
Collapse
|
25
|
Identifying PIF1 as a Potential Target of Wenxia Changfu Formula in Promoting Lung Cancer Cell Apoptosis: Bioinformatics Analysis and Biological Evidence. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:9942462. [PMID: 34608398 PMCID: PMC8487367 DOI: 10.1155/2021/9942462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 09/08/2021] [Indexed: 12/25/2022]
Abstract
Lung cancer remains the leading cause of cancer-related deaths worldwide. Traditional Chinese medicine (TCM) is a valuable resource of active natural products and plays an important role in cancer treatment with the advantages of high efficiency and safety. Wenxia Changfu formula (WCF) is modified from Dahuang Fuzi decoction from Han Dynasty and has been used for treating lung cancer in China. Our previous research showed that WCF had an antitumor effect in vivo and in vitro, while the mechanism has not been well illustrated. In this study, the effect of WCF on the proliferative ability in three lung cancer cells and one noncancerous human cell line was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. WCF suppressed A549, H460, and PC-9 cell viability in a dose-dependent manner, with no inhibition of noncancerous MRC-5 cells after 48 h treatment with WCF (0–50 mg/mL). Furthermore, we screened for genes in A549 cells using four WCF-treated samples and four control samples on a gene expression profile microarray. 21 genes were significantly downregulated by WCF, which may potentially play an important role in the proliferation of A549 cells. High-content screening evaluated whether silencing the 21 genes affected A549 cell growth. The results showed that PIF1 knockdown exhibited the most potent inhibition of cell proliferation compared with the other genes. Downregulation of PIF1 increased A549 cell apoptosis and the activity of caspase 3/7. Besides, RT-PCR showed that the expression levels of PIF1 mRNA decreased significantly in A549, H460, and PC-9 cells after WCF treatment. In conclusion, the present observations indicate that WCF may inhibit lung cancer cell proliferation by promoting apoptosis via regulating the expression of PIF1.
Collapse
|
26
|
The State of Immunotherapy in Hepatobiliary Cancers. Cells 2021; 10:cells10082096. [PMID: 34440865 PMCID: PMC8393650 DOI: 10.3390/cells10082096] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/02/2021] [Accepted: 08/13/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatobiliary cancers, including hepatocellular carcinoma (HCC), cholangiocarcinoma (CCA), and gallbladder carcinoma (GBC), are lethal cancers with limited therapeutic options. Curative-intent treatment typically involves surgery, yet recurrence is common and many patients present with advanced disease not amenable to an operation. Immunotherapy represents a promising approach to improve outcomes, but the immunosuppressive tumor microenvironment of the liver characteristic of hepatobiliary cancers has hampered the development and implementation of this therapeutic approach. Current immunotherapies under investigation include immune checkpoint inhibitors (ICI), the adoptive transfer of immune cells, bispecific antibodies, vaccines, and oncolytic viruses. Programmed cell death protein 1 (PD-1) and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) are two ICIs that have demonstrated utility in HCC, and newer immune checkpoint targets are being tested in clinical trials. In advanced CCA and GBC, PD-1 ICIs have resulted in antitumor responses, but only in a minority of select patients. Other ICIs are being investigated for patients with CCA and GBC. Adoptive transfer may hold promise, with reports of complete durable regression in metastatic CCA, yet this therapeutic approach may not be generalizable. Alternative approaches have been developed and promising results have been observed, but clinical trials are needed to validate their utility. While the treatment of hepatobiliary cancers involves unique challenges that these cancers present, the progress seen with ICIs and adoptive transfer has solidified immunotherapy as an important approach in these challenging patients with few other effective treatment options.
Collapse
|
27
|
Hang Q, Ying H, Cheng G, Yang S, Jin J, Chen Y, Chen Q, Jiang Y, Zhao Q, Fang M, Chen M, Lai X. [Prognostic Analysis of NSCLC Based on the Tumor-associated Macrophages, Tumor Neo-vessels and PD-L1 Expression in Tumor Microenvironment]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2021; 23:837-844. [PMID: 33070512 PMCID: PMC7583870 DOI: 10.3779/j.issn.1009-3419.2020.103.15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
背景与目的 肿瘤微环境是肿瘤细胞赖以生存的复杂环境。其中肿瘤相关巨噬细胞(tumor-associated macrophages, TAMs)、肿瘤新生血管及程序性死亡受体1/程序性死亡受体-配体1(programmed cell death protein 1/programmed cell death ligand 1, PD-1/PD-L1)作为关键部分,在肿瘤发生、发展过程中起重要作用,影响患者预后。本研究旨在阐明TAMs、肿瘤新生血管和PD-L1的表达与非小细胞肺癌(non-small cell lung cancer, NSCLC)临床病理特征的相关性,并探讨它们对NSCLC预后的影响。 方法 收集92例NSCLC患者的临床病理资料及手术标本,采用免疫组化法检测癌组织和癌旁组织中TAMs、肿瘤新生血管和PD-L1的表达,采用配备有Olympus-DP72图像采集系统的Olympus-BX51正置显微镜进行拍照并用Image-pro Plus 6.0软件进行半定量分析。 结果 癌组织与癌旁组织中TAMs、肿瘤新生血管和PD-L1的表达差异无统计学意义(P > 0.05)。根据肿瘤微环境中各组分的定量表达,可将其分为低、中、高表达组。癌组织中TAMs的低、中和高密度组的中位总生存(overall survival, OS)分别是36个月(95%CI: 25.3-46.7)、26个月(95%CI: 12.2-39.8)和16个月(95%CI: 9.4-22.6),差异具有统计学意义(P=0.016);肿瘤新生血管的低、中和高密度组的中位OS分别为30个月(95%CI: 22.5-37.5)、28个月(95%CI: 18.1-37.9)和25个月(95%CI: 14.6-35.4),差异无统计学意义(P=0.626);PD-L1的低、中和高表达组的中位OS分别为35个月(95%CI: 29.4-40.6),28个月(95%CI: 13.6-42.4)和17个月(95%CI: 10.5-23.5),差异具有统计学意义(P=0.002)。联合低、中和高表达组的中位OS分别为36个月(95%CI: 30.6-41.4)、26个月(95%CI: 19.2-32.8)和9个月(95%CI: 4.4-13.6),差异具有统计学意义(P=0.001)。Cox回归分析结果显示,病理分型、TAMs和PD-L1均为肺癌患者的独立预后因素。 结论 肿瘤微环境关键成分PD-L1及TAMs的表达与NSCLC患者的预后密切相关。
Collapse
Affiliation(s)
- Qingqing Hang
- The Second Clinical Medical College Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Hangjie Ying
- Zhejiang Key Laboratory of Radiation Oncology, Department of Thoracic Radiotherapy, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Guoping Cheng
- Department of Pathology, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Shifeng Yang
- Department of Pathology, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Jianan Jin
- The Second Clinical Medical College Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yamei Chen
- Zhejiang Key Laboratory of Radiation Oncology, Department of Thoracic Radiotherapy, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Qixun Chen
- Department of Thoracic Surgery, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Youhua Jiang
- Department of Thoracic Surgery, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Qiang Zhao
- Department of Thoracic Surgery, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Min Fang
- Zhejiang Key Laboratory of Radiation Oncology, Department of Thoracic Radiotherapy, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Ming Chen
- Zhejiang Key Laboratory of Radiation Oncology, Department of Thoracic Radiotherapy, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Xiaojing Lai
- Zhejiang Key Laboratory of Radiation Oncology, Department of Thoracic Radiotherapy, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
| |
Collapse
|
28
|
Deng XX, Jiao YN, Hao HF, Xue D, Bai CC, Han SY. Taraxacum mongolicum extract inhibited malignant phenotype of triple-negative breast cancer cells in tumor-associated macrophages microenvironment through suppressing IL-10 / STAT3 / PD-L1 signaling pathways. JOURNAL OF ETHNOPHARMACOLOGY 2021; 274:113978. [PMID: 33716082 DOI: 10.1016/j.jep.2021.113978] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Triple-negative breast cancer (TNBC) is the most aggressive and the worst prognosis breast cancer with limited treatment options. Taraxacum mongolicum (also called dandelion) is a traditional Chinese medicine has been used to treat mastitis, breast abscess, and hyperplasia of mammary glands since ancient times. In modern pharmacological research, dandelion has been proven with anti-breast cancer activities. We previously reported that dandelion extract could induce apoptosis in TNBC cells. However, its anti-tumor effects and mechanisms in the tumor microenvironment have not yet been elucidated. AIM OF THE STUDY Tumor-associated macrophages (TAMs) play an important role in regulating the interaction between tumor cells and the immune system. The present study aimed to investigate the effects and mechanisms of dandelion extract on TNBC cells under the microenvironment of TAMs, as well as its influence on the polarization of M2 macrophages. MATERIALS AND METHODS M2 macrophages were induced by phorbol-12-myristate 13-acetate (PMA) and interleukin 4 (IL-4), and verified by flow cytometry, quantitative RT-PCR (qRT-PCR), Western blotting, and ELISA. MDA-MB-231 and MDA-MB-468 TNBC cells were co-cultured with the supernatant of M2 macrophage which providing the TAMs microenvironment. The antitumor activity of dandelion extract in TNBC cells was evaluated by MTT assay. The invasive and migratory capacity of TNBC cells was measured by transwell assays. The expression of protein and gene was assessed by Western blotting and qRT-PCR, respectively. RESULTS TAMs microenvironment promoted the proliferation, migration, and invasion of TNBC cells. However, dandelion extract inhibited the malignant property of MDA-MB-231 and MDA-MB-468 cells induced by TAMs. Both of TAMs and IL-10 caused STAT3 activation and PD-L1 higher expression, the immunosuppressive molecules in TNBC cells, and this effect can be attenuated by IL-10 neutralizing antibody. Dandelion extract exerted inhibition on STAT3 and PD-L1 in TNBC cells under TAMs microenvironment. Furthermore, in M2 macrophages, dandelion extract remarkably promoted the expression of M1-like marker TNF-α, IL-8, and iNOS, but reduced M2-like marker IL-10, CD206, Arginase-1, and TGF-β. CONCLUSION Dandelion extract inhibited the proliferation, migration and invasion of TNBC cells in TAMs microenvironment through suppressing IL-10/STAT3/PD-L1 immunosuppressive signaling pathway. Furthermore, dandelion extract promoted the polarization of macrophages from M2 to M1 phenotype. Thus, our results indicated that dandelion may serve as a promising therapeutic strategy for TNBC by modulating tumor immune microenvironment.
Collapse
Affiliation(s)
- Xin-Xin Deng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Integration of Chinese and Western Medicine, Peking University Cancer Hospital and Institute, Beijing, 100142, PR China; Ningxia Medical University Pharmacy College, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Research Center of Modern Hui Medicine Engineering and Technology, Yinchuan, 750004, PR China
| | - Yan-Na Jiao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Integration of Chinese and Western Medicine, Peking University Cancer Hospital and Institute, Beijing, 100142, PR China
| | - Hui-Feng Hao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Integration of Chinese and Western Medicine, Peking University Cancer Hospital and Institute, Beijing, 100142, PR China
| | - Dong Xue
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Integration of Chinese and Western Medicine, Peking University Cancer Hospital and Institute, Beijing, 100142, PR China.
| | - Chang-Cai Bai
- Ningxia Medical University Pharmacy College, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Research Center of Modern Hui Medicine Engineering and Technology, Yinchuan, 750004, PR China.
| | - Shu-Yan Han
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Integration of Chinese and Western Medicine, Peking University Cancer Hospital and Institute, Beijing, 100142, PR China.
| |
Collapse
|
29
|
Hendricks-Wenger A, Hutchison R, Vlaisavljevich E, Allen IC. Immunological Effects of Histotripsy for Cancer Therapy. Front Oncol 2021; 11:681629. [PMID: 34136405 PMCID: PMC8200675 DOI: 10.3389/fonc.2021.681629] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/10/2021] [Indexed: 12/11/2022] Open
Abstract
Cancer is the second leading cause of death worldwide despite major advancements in diagnosis and therapy over the past century. One of the most debilitating aspects of cancer is the burden brought on by metastatic disease. Therefore, an ideal treatment protocol would address not only debulking larger primary tumors but also circulating tumor cells and distant metastases. To address this need, the use of immune modulating therapies has become a pillar in the oncology armamentarium. A therapeutic option that has recently emerged is the use of focal ablation therapies that can destroy a tumor through various physical or mechanical mechanisms and release a cellular lysate with the potential to stimulate an immune response. Histotripsy is a non-invasive, non-ionizing, non-thermal, ultrasound guided ablation technology that has shown promise over the past decade as a debulking therapy. As histotripsy therapies have developed, the full picture of the accompanying immune response has revealed a wide range of immunogenic mechanisms that include DAMP and anti-tumor mediator release, changes in local cellular immune populations, development of a systemic immune response, and therapeutic synergism with the inclusion of checkpoint inhibitor therapies. These studies also suggest that there is an immune effect from histotripsy therapies across multiple murine tumor types that may be reproducible. Overall, the effects of histotripsy on tumors show a positive effect on immunomodulation.
Collapse
Affiliation(s)
- Alissa Hendricks-Wenger
- Graduate Program in Translational Biology, Medicine and Health, Virginia Tech, Roanoke, VA, United States
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, United States
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, United States
| | - Ruby Hutchison
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, United States
| | - Eli Vlaisavljevich
- Graduate Program in Translational Biology, Medicine and Health, Virginia Tech, Roanoke, VA, United States
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, United States
- Institute for Critical Technology and Applied Sciences Center for Engineered Health, Virginia Tech, Blacksburg, VA, United States
| | - Irving Coy Allen
- Graduate Program in Translational Biology, Medicine and Health, Virginia Tech, Roanoke, VA, United States
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, United States
- Institute for Critical Technology and Applied Sciences Center for Engineered Health, Virginia Tech, Blacksburg, VA, United States
- Department of Basic Science Education, Virginia Tech Carilion School of Medicine, Roanoke, VA, United States
| |
Collapse
|
30
|
Yan QX, Pan Y, Huang HL, Zhao H. Therapeutic Potential of Natural Products in Lung Cancer. INT J PHARMACOL 2021. [DOI: 10.3923/ijp.2021.251.261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
31
|
Bailly C. Anticancer Properties of Lobetyolin, an Essential Component of Radix Codonopsis (Dangshen). NATURAL PRODUCTS AND BIOPROSPECTING 2021; 11:143-153. [PMID: 33161560 PMCID: PMC7981376 DOI: 10.1007/s13659-020-00283-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 11/02/2020] [Indexed: 05/13/2023]
Abstract
Lobetyolin (LBT) is a polyacetylene glycoside found in diverse medicinal plants but mainly isolated from the roots of Codonopsis pilosula, known as Radix Codonopsis or Dangshen. Twelve traditional Chinese medicinal preparations containing Radix Codonopsis were identified; they are generally used to tonify spleen and lung Qi and occasionally to treat cancer. Here we have reviewed the anticancer properties of Codonopsis extracts, LBT and structural analogs. Lobetyolin and lobetyolinin are the mono- and bis-glucosylated forms of the polyacetylenic compound lobetyol. Lobetyol and LBT have shown activities against several types of cancer (notably gastric cancer) and we examined the molecular basis of their activity. A down-regulation of glutamine metabolism by LBT has been evidenced, contributing to drug-induced apoptosis and tumor growth inhibition. LBT markedly reduces both mRNA and protein expression of the amino acid transporter Alanine-Serine-Cysteine Transporter 2 (ASCT2). Other potential targets are proposed here, based on the structural analogy with other anticancer compounds. LBT and related polyacetylene glycosides should be further considered as potential anticancer agents, but more work is needed to evaluate their efficacy, toxicity, and risk-benefit ratio.
Collapse
|
32
|
Liu J, Wang Y, Qiu Z, Lv G, Huang X, Lin H, Lin Z, Qu P. Impact of TCM on Tumor-Infiltrating Myeloid Precursors in the Tumor Microenvironment. Front Cell Dev Biol 2021; 9:635122. [PMID: 33748122 PMCID: PMC7969811 DOI: 10.3389/fcell.2021.635122] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 01/26/2021] [Indexed: 12/24/2022] Open
Abstract
The tumor microenvironment (TME) is composed of tumor cells, blood/lymphatic vessels, the tumor stroma, and tumor-infiltrating myeloid precursors (TIMPs) as a sophisticated pathological system to provide the survival environment for tumor cells and facilitate tumor metastasis. In TME, TIMPs, mainly including tumor-associated macrophage (TAM), tumor-associated dendritic cells (DCs), and myeloid-derived suppressor cells (MDSCs), play important roles in repressing the antitumor activity of T cell or other immune cells. Therefore, targeting those cells would be one novel efficient method to retard cancer progression. Numerous studies have shown that traditional Chinese medicine (TCM) has made extensive research in tumor immunotherapy. In the review, we demonstrate that Chinese herbal medicine (CHM) and its components induce tumor cell apoptosis, directly inhibiting tumor growth and invasion. Further, we discuss that TCM regulates TME to promote effective antitumor immune response, downregulates the numbers and function of TAMs/MDSCs, and enhances the antigen presentation ability of mature DCs. We also review the therapeutic effects of TCM herbs and their ingredients on TIMPs in TME and systemically analyze the regulatory mechanisms of TCM on those cells to have a deeper understanding of TCM in tumor immunotherapy. Those investigations on TCM may provide novel ideas for cancer treatment.
Collapse
Affiliation(s)
- Jinlong Liu
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Yuchen Wang
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Zhidong Qiu
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Guangfu Lv
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Xiaowei Huang
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - He Lin
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Zhe Lin
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Peng Qu
- Center for Cancer Research, National Cancer Institute, Frederick, MD, United States
| |
Collapse
|
33
|
Li Z, Feiyue Z, Gaofeng L. Traditional Chinese medicine and lung cancer--From theory to practice. Biomed Pharmacother 2021; 137:111381. [PMID: 33601147 DOI: 10.1016/j.biopha.2021.111381] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 02/04/2021] [Accepted: 02/08/2021] [Indexed: 12/11/2022] Open
Abstract
With the continuous breakthroughs in molecular biology and biochemistry, we have constantly made great progress in the treatment of lung cancer. There is no doubt that standard treatment (such as surgery, radiotherapy, chemotherapy, targeted therapy, and immunotherapy) has greatly improved the prognosis of lung cancer populations. In particular, the immunotherapy has brought more and more good news to countless lung cancer patients. In contrast to these standard treatments, traditional Chinese medicine (TCM) rarely has a profound and comprehensive overview in the field of lung cancer. This article will summarize the latest progress of TCM in lung cancer which is mainly non-small cell lung cancer (NSCLC) from theory to clinical practice, which would carry forward the sophisticated TCM and promote the development of modern medicine.
Collapse
Affiliation(s)
- Zhang Li
- Kunming Medical University, Kunming 650500, China; Department of Thoracic Tumor Surgery, Yunnan Cancer Center, Kunming 650118, China
| | - Zhang Feiyue
- Kunming Medical University, Kunming 650500, China; Department of Thoracic Tumor Surgery, Yunnan Cancer Center, Kunming 650118, China
| | - Li Gaofeng
- Department of Thoracic Tumor Surgery, Yunnan Cancer Center, Kunming 650118, China.
| |
Collapse
|
34
|
|
35
|
Park CR, Lee JS, Son CG, Lee NH. A survey of herbal medicines as tumor microenvironment-modulating agents. Phytother Res 2021; 35:78-94. [PMID: 32658314 DOI: 10.1002/ptr.6784] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/24/2020] [Accepted: 06/06/2020] [Indexed: 12/18/2022]
Abstract
The tumor microenvironment (TME) is extremely complex, involving extensive interactions among stromal cells, immune cells, and signaling molecules. Therefore, an approach targeting the TME has emerged as a promising therapeutic strategy. Herbal medicines consist of multiple active compounds, which have multi-target effects. Therefore, they have been regarded as potential anticancer agents; multiple studies have explored their effects on the TME. In this review, we report the effects of 29 single herb medicines or herbal formulas on the TME, based on the findings of 64 published studies. Specifically, we describe the effects of these herbal medicines on cancer-associated fibroblasts/tumor-associated fibroblasts, tumor-associated endothelial cells, myeloid-derived suppressor cells, and tumor-associated macrophages. Among the reviewed herbal medicines, the most promising TME-modulating effects were exhibited by curcumin, DHA, EGCG, resveratrol, and silibinin; these medicines showed the ability to regulate two or more components of the TME. The findings of this review support the notion that the combination of herbal medicines with conventional anticancer therapies are likely to exhibit a clinical benefit, which should be further explored in clinical trials.
Collapse
Affiliation(s)
- Chan-Ran Park
- Dept. of Clinical Oncology, Cheonan Korean Medicine Hospital of Daejeon University, Cheonan-si, Republic of Korea
- Liver and Immunology Research Center, Dunsan Korean Medicine Hospital of Daejeon University, Daejeon-si, Republic of Korea
- Dept. of Internal Medicine, Graduated School of Korean Medicine, University of Daejeon, Daejeon-si, Republic of Korea
| | - Jin-Seok Lee
- Liver and Immunology Research Center, Dunsan Korean Medicine Hospital of Daejeon University, Daejeon-si, Republic of Korea
- Dept. of Internal Medicine, Graduated School of Korean Medicine, University of Daejeon, Daejeon-si, Republic of Korea
| | - Chang-Gue Son
- Liver and Immunology Research Center, Dunsan Korean Medicine Hospital of Daejeon University, Daejeon-si, Republic of Korea
- Dept. of Internal Medicine, Graduated School of Korean Medicine, University of Daejeon, Daejeon-si, Republic of Korea
| | - Nam-Hun Lee
- Dept. of Clinical Oncology, Cheonan Korean Medicine Hospital of Daejeon University, Cheonan-si, Republic of Korea
- Liver and Immunology Research Center, Dunsan Korean Medicine Hospital of Daejeon University, Daejeon-si, Republic of Korea
- Dept. of Internal Medicine, Graduated School of Korean Medicine, University of Daejeon, Daejeon-si, Republic of Korea
| |
Collapse
|
36
|
Zhu S, Luo Z, Li X, Han X, Shi S, Zhang T. Tumor-associated macrophages: role in tumorigenesis and immunotherapy implications. J Cancer 2021; 12:54-64. [PMID: 33391402 PMCID: PMC7738842 DOI: 10.7150/jca.49692] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 09/24/2020] [Indexed: 12/12/2022] Open
Abstract
Tumor-associated macrophages (TAMs) occupy an important position in the tumor microenvironment (TME), they are a highly plastic heterogeneous population with complex effects on tumorigenesis and development. TAMs secrete a variety of cytokines, chemokines, and proteases, which promote the remodeling of extracellular matrix, tumor cell growth and metastasis, tumor vessel and lymphangiogenesis, and immunosuppression. TAMs with different phenotypes have different effects on tumor proliferation and metastasis. TAMs act a pivotal part in occurrence and development of tumors, and are very attractive target to inhibit tumor growth and metastasis in tumor immunotherapy. This article reviews the interrelationship between TAMs and tumor microenvironment and its related applications in tumor therapy.
Collapse
Affiliation(s)
- Shunyao Zhu
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Ziyi Luo
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xixi Li
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xi Han
- Xiaoshan Hosptital of Traditional Chinese Medicine, Hangzhou 311201, China
| | - Senlin Shi
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Ting Zhang
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| |
Collapse
|
37
|
Anticancer activities of TCM and their active components against tumor metastasis. Biomed Pharmacother 2020; 133:111044. [PMID: 33378952 DOI: 10.1016/j.biopha.2020.111044] [Citation(s) in RCA: 211] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/16/2020] [Accepted: 11/19/2020] [Indexed: 02/07/2023] Open
Abstract
Traditional Chinese Medicine (TCM) has the characteristics of multiple targets, slight side effects and good therapeutic effects. Good anti-tumor effects are shown by Traditional Chinese Medicine prescription, Chinese patent medicine, single Traditional Chinese Medicine and Traditional Chinese medicine monomer compound. Clinically, TCM prolonged the survival time of patients and improved the life quality of patients, due to less side effects. Cancer metastasis is a complex process involving numerous steps, multiple genes and their products. During the process of tumor metastasis, firstly, cancer cell increases its proliferative capacity by reducing autophagy and apoptosis, and then the cancer cell capacity is stimulated by increasing the ability of tumors to absorb nutrients from the outside through angiogenesis. Both of the two steps can increase tumor migration and invasion. Finally, the purpose of tumor metastasis is achieved. By inhibiting autophagy and apoptosis of tumor cells, angiogenesis and EMT outside the tumor can inhibit the invasion and migration of cancer, and consequently achieve the purpose of inhibiting tumor metastasis. This review explores the research achievements of Traditional Chinese Medicine on breast cancer, lung cancer, hepatic carcinoma, colorectal cancer, gastric cancer and other cancer metastasis in the past five years, summarizes the development direction of TCM on cancer metastasis research in the past five years and makes a prospect for the future.
Collapse
|
38
|
Fan Y, Ma Z, Zhao L, Wang W, Gao M, Jia X, Ouyang H, He J. Anti-tumor activities and mechanisms of Traditional Chinese medicines formulas: A review. Biomed Pharmacother 2020; 132:110820. [DOI: 10.1016/j.biopha.2020.110820] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/19/2020] [Accepted: 09/25/2020] [Indexed: 02/06/2023] Open
|
39
|
Zhang P, Zhang Y, Wang L, Lou W. Tumor-regulated macrophage type 2 differentiation promotes immunosuppression in laryngeal squamous cell carcinoma. Life Sci 2020; 267:118798. [PMID: 33220295 DOI: 10.1016/j.lfs.2020.118798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/04/2020] [Accepted: 11/16/2020] [Indexed: 10/23/2022]
Abstract
AIMS Tumor-associated macrophage (TAM) residing in tumor microenvironment as the major niche cell made remarkable contribution to tumor growth. However, the functional role of macrophage and its different differentiating state as well as the regulating mechanism in laryngeal squamous cell carcinoma (LSCC) remains not fully clear. MATERIALS AND METHODS LSCC samples were collected from patients. Human peripheral blood mononuclear cells (PBMC) were collected from volunteers' blood, and used for macrophage induction. Enzyme-Linked Immunosorbent Assay (ELISA) was performed to detect proinflammatory cytokines. Immunostaining was prepared to observe tumor tissues. KEY FINDINGS Here, we found the number of type 2 macrophage (MΦ2) and PDL-1 expression was increased in LSCC that was correlated with poor prognosis in patients with LSCC. Tumor cells induced macrophage into type 2 differentiation by TGF-β/Smad3 signaling. The primed MΦ2 produced IL-10 by activating JAK/STAT signaling that promoted PDL-1 expression in tumor cells leading to its immunosuppression. Inhibition of JAK/STAT signaling promoted tumor cells death from immune cells killing by regulating PDL-1 expression. Targeting cytokines TGF-β or IL-10 synergistically enhances the sensitivity of tumors to chemotherapy in vivo. SIGNIFICANCE In conclusion, our findings showed tumor cells and MΦ2 were bilaterally regulated through cytokines production that integrally advanced tumor progression through boosting anti-tumor immunity. It provides insight to develop immune strategies synergy with chemotherapy in treating laryngeal squamous cell carcinoma.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Yanfei Zhang
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Liang Wang
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Weihua Lou
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
40
|
Ge Z, Ding S. The Crosstalk Between Tumor-Associated Macrophages (TAMs) and Tumor Cells and the Corresponding Targeted Therapy. Front Oncol 2020; 10:590941. [PMID: 33224886 PMCID: PMC7670061 DOI: 10.3389/fonc.2020.590941] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/12/2020] [Indexed: 12/14/2022] Open
Abstract
Tumor microenvironment (TME) is composed of tumor cells and surrounding non-tumor stromal cells, mainly including tumor associated macrophages (TAMs), endothelial cells, and carcinoma-associated fibroblasts (CAFs). The TAMs are the major components of non-tumor stromal cells, and play an important role in promoting the occurrence and development of tumors. Macrophages originate from bone marrow hematopoietic stem cells and embryonic yolk sacs. There is close crosstalk between TAMs and tumor cells. With the occurrence of tumors, tumor cells secrete various chemokines to recruit monocytes to infiltrate tumor tissues and further promote their M2-type polarization. Importantly, M2-like TAMs can in turn accelerate tumor growth, promote tumor cell invasion and metastasis, and inhibit immune killing to promote tumor progression. Therefore, targeting TAMs in tumor tissues has become one of the principal strategies in current tumor immunotherapy. Current treatment strategies focus on reducing macrophage infiltration in tumor tissues and reprogramming TAMs to M1-like to kill tumors. Although these treatments have had some success, their effects are still limited. This paper mainly summarized the recruitment and polarization of macrophages by tumors, the support of TAMs for the growth of tumors, and the research progress of TAMs targeting tumors, to provide new treatment strategies for tumor immunotherapy.
Collapse
Affiliation(s)
- Zhe Ge
- School of Physical Education & Health Care, East China Normal University, Shanghai, China.,Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
| | - Shuzhe Ding
- School of Physical Education & Health Care, East China Normal University, Shanghai, China.,Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
| |
Collapse
|
41
|
Huang H, Fang J, Fan X, Miyata T, Hu X, Zhang L, Zhang L, Cui Y, Liu Z, Wu X. Advances in Molecular Mechanisms for Traditional Chinese Medicine Actions in Regulating Tumor Immune Responses. Front Pharmacol 2020; 11:1009. [PMID: 32733246 PMCID: PMC7360845 DOI: 10.3389/fphar.2020.01009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 06/22/2020] [Indexed: 12/19/2022] Open
Abstract
Traditional Chinese medicine (TCM) has been developed for thousands of years with its various biological activities. The interest in TCM in tumor prevention and treatment is rising with its synergistic effect on tumor cells and tumor immunosuppressive microenvironment (TIM). Characteristic of TCM fits well within the whole system and multi-target cancer treatment. Herein we discuss the underlying mechanisms of TCM actions in TIM via regulating immunosuppressive cells, including restoring the antigen presentation function of dendritic cells, enhancing NK cells-mediated killing activity, restraining the functions of myeloid cell-derived suppressor cells, and inhibiting cancer-associated fibroblasts. TCM also regulates tumor progression through enhancing immune response, preventing immune escape and inducing cell death of tumor cells, which triggers immune response in nearby cells. In addition, we discuss TCM in clinical applications and the advantages and disadvantages of TCM in cancer prevention and treatment, as well as current therapeutic challenges and strategies. It might be helpful for understanding the therapeutic potential of TCM for cancer in clinic.
Collapse
Affiliation(s)
- Han Huang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Jiansong Fang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiude Fan
- Center for Liver Disease Research, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH, United States
| | - Tatsunori Miyata
- Center for Liver Disease Research, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH, United States
| | - Xiaoyue Hu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Lihe Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Liangren Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Yimin Cui
- Department of Pharmacy, Peking University First Hospital, Beijing, China
| | - Zhenming Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Xiaoqin Wu
- Center for Liver Disease Research, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH, United States
| |
Collapse
|
42
|
Li JX, Huang JM, Jiang ZB, Li RZ, Sun A, Lai-Han Leung E, Yan PY. Current Clinical Progress of PD-1/PD-L1 Immunotherapy and Potential Combination Treatment in Non-Small Cell Lung Cancer. Integr Cancer Ther 2020; 18:1534735419890020. [PMID: 31838881 PMCID: PMC7242804 DOI: 10.1177/1534735419890020] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Conventional methods in treating non–small cell lung cancer contain surgery,
chemotherapy, radiotherapy, and targeted therapy, which have various defects.
Recently, with the deeper research on tumor immunity, immunotherapy has made the
breakthrough in the treatment of cancers. Especially developments of programmed
cell death-1/programmed cell death ligand-1 (PD-1/PD-L1) inhibitors bring the
therapy into a new stage. This review mainly focuses on introducing existing
monoclonal antibodies containing nivolumab, pembrolizumab, atezolizumab,
avelumab, and durvalumab, along with 3 ordinary biomarkers such as PD-L1
expression, tumor mutation burden, and microsatellite instability. By
understanding the resistance mechanism of anti-PD-1/L1 blockade, research is
further improving the survival benefit and expanding the benefit population. So,
PD-1/PD-L1 inhibitors begin to be combined with various therapeutic strategies
clinically. Discussion and comparison of their effectiveness and safety are also
comprehensively reviewed. Meanwhile, we explore the potential, the impact, and
mechanisms of combining traditional Chinese medicine with immunotherapy.
Collapse
Affiliation(s)
- Jia-Xin Li
- Macau University of Science and Technology, Macau, People's Republic of China
| | - Ju-Min Huang
- Macau University of Science and Technology, Macau, People's Republic of China
| | - Ze-Bo Jiang
- Macau University of Science and Technology, Macau, People's Republic of China
| | - Run-Ze Li
- Macau University of Science and Technology, Macau, People's Republic of China
| | - Ao Sun
- Macau University of Science and Technology, Macau, People's Republic of China
| | - Elaine Lai-Han Leung
- Macau University of Science and Technology, Macau, People's Republic of China.,Zhuhai Hospital of Integrated Traditional Chinese and Western Medicine, Zhuhai, People's Republic of China
| | - Pei-Yu Yan
- Macau University of Science and Technology, Macau, People's Republic of China
| |
Collapse
|
43
|
Lingling Z, Jiewei L, Li W, Danli Y, Jie Z, Wen L, Dan P, Lei P, Qinghua Z. Molecular regulatory network of PD-1/PD-L1 in non-small cell lung cancer. Pathol Res Pract 2020; 216:152852. [DOI: 10.1016/j.prp.2020.152852] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 01/03/2020] [Accepted: 02/04/2020] [Indexed: 12/18/2022]
|
44
|
Astragalus membranaceus-Derived Anti-Programmed Death-1 Monoclonal Antibodies with Immunomodulatory Therapeutic Effects against Tumors. BIOMED RESEARCH INTERNATIONAL 2020; 2020:3415471. [PMID: 32190660 PMCID: PMC7073506 DOI: 10.1155/2020/3415471] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 02/12/2020] [Indexed: 11/19/2022]
Abstract
Astragalus membranaceus polysaccharide (APS) components are main ingredients of TCM and have proven efficacy to activate T cells and B cells, enhancing immunity in humans. In this study, elevated cytokine and anti-PD-1 antibody titers were found in mice after immunization with APS. Therefore, phage-display technology was utilized to isolate specific anti-programmed death-1 (PD-1) antibodies from mice stimulated by APS and to confirm whether the isolated anti-PD-1 antibody could inhibit the interaction of PD-1 with the programmed death-ligand 1 (PD-L1), resulting in tumor growth inhibition. The isolated single-chain fragment variable (scFv) S12 exhibited the highest binding affinity of 20 nM to PD-1, completed the interaction between PD-1 and PD-L1, and blocked the effect of PD-L1-induced T cell exhaustion in peripheral blood mononuclear cells in vitro. In the animal model, the tumor growth inhibition effect after scFv S12 treatment was approximately 48%. However, meaningful synergistic effects were not observed when scFv S12 was used as a cotreatment with ixabepilone. Moreover, this treatment caused a reduction in the number of tumor-associated macrophages in the tumor tissue. These experimental results indirectly indicate the ability of APS to induce specific antibodies associated with the immune checkpoint system and the potential benefits for improving immunity in humans.
Collapse
|
45
|
He J, Yin P, Xu K. Effect and Molecular Mechanisms of Traditional Chinese Medicine on Tumor Targeting Tumor-Associated Macrophages. Drug Des Devel Ther 2020; 14:907-919. [PMID: 32184560 PMCID: PMC7053810 DOI: 10.2147/dddt.s223646] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 02/05/2020] [Indexed: 12/17/2022] Open
Abstract
Traditional Chinese medicine (TCM) has been used as a significant cancer treatment method for many years in China. It has been demonstrated that TCM could assist in inhibiting the growth of tumors and prolonging the survival rates of cancer patients. Although the mechanism of TCM are still not clear, accumulating evidence has shown that they may be related to the tumor microenvironment (TME). Tumor-associated macrophages (TAMs) play a significant role in TME and are polarized to two phenotypes, M1 (classically activated) and M2 (alternatively activated) TAMs. The two different phenotypes of TAMs play converse roles in the TME and M2-polarized tumor-associated macrophages (M2-TAMs) always lead to poor prognosis in cancer patients compared to M1-polarized tumor-associated macrophages (M1-TAMs). In this review, the potential correlation between TCM and TAMs (especially the M2 phenotype) in tumor progression and promising TCM strategies targeting TAMs in cancer are discussed.
Collapse
Affiliation(s)
- Jing He
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Peihao Yin
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Shanghai Putuo Central School of Clinical Medicine, Anhui Medicine University, Anhui, People’s Republic of China
- Interventional Cancer Institute of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Ke Xu
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Shanghai Putuo Central School of Clinical Medicine, Anhui Medicine University, Anhui, People’s Republic of China
- Interventional Cancer Institute of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| |
Collapse
|
46
|
Gao L, Yan SB, Yang J, Kong JL, Shi K, Ma FC, Huang LZ, Luo J, Yin SY, He RQ, Hu XH, Chen G. MiR-182-5p and its target HOXA9 in non-small cell lung cancer: a clinical and in-silico exploration with the combination of RT-qPCR, miRNA-seq and miRNA-chip. BMC Med Genomics 2020; 13:3. [PMID: 31906958 PMCID: PMC6945423 DOI: 10.1186/s12920-019-0648-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 12/19/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND MiR-182-5p, a cancer-related microRNA (miRNA), modulates tumorigenesis and patient outcomes in various human malignances. This study interroted the clinicopathological significance and molecular mechanisms of miR-182-5p in non-small cell lung cancer (NSCLC). METHODS The clinical significance of miR-182-5p in NSCLC subtypes was determined based on an analysis of 124 samples (lung adenocarcinomas [LUADs], n = 101; lung squamous cell carcinomas [LUSCs], n = 23) obtained from NSCLC patients and paired noncancer tissues and an analysis of data obtained from public miRNA-seq database, miRNA-chip database, and the scientific literature. The NSCLC samples (n = 124) were analyzed using the real-time quantitative polymerase chain reaction (RT-qPCR). Potential targets of miR-182-5p were identified using lists generated by miRWalk v.2.0, a comprehensive atlas of predicted and validated targets of miRNA-target interactions. Molecular events of miR-182-5p in NSCLC were unveiled based on a functional analysis of candidate targets. The association of miR-182-5p with one of the candidate target genes, homeobox A9 (HOXA9), was validated using in-house RT-qPCR and dual-luciferase reporter assays. RESULTS The results of the in-house RT-qPCR assays analysis of data obtained from public miRNA-seq databases, miRNA-chip databases, and the scientific literature all supported upregulation of the expression level of miR-182-5p level in NSCLC. Moreover, the in-house RT-qPCR data supported the influence of upregulated miR-182-5p on malignant progression of NSCLC. In total, 774 prospective targets of miR-182-5p were identified. These targets were mainly clustered in pathways associated with biological processes, such as axonogenesis, axonal development, and Ras protein signal transduction, as well as pathways involved in axonal guidance, melanogenesis, and longevity regulation, in multiple species. Correlation analysis of the in-house RT-qPCR data and dual-luciferase reporter assays confirmed that HOXA9 was a direct target of miR-182-5p in NSCLC. CONCLUSIONS The miR-182-5p expression level was upregulated in NSCLC tissues. MiR-182-5p may exert oncogenic influence on NSCLC through regulating target genes such as HOXA9.
Collapse
Affiliation(s)
- Li Gao
- Department of Pathology, the First Affiliated Hospital of Guangxi Medical University, Zhuang Autonomous Region, Nanning, 530021, Guangxi, China
| | - Shi-Bai Yan
- Department of Medical Oncology, the First Affiliated Hospital of Guangxi Medical University, Zhuang Autonomous Region, Nanning, 530021, Guangxi, China
| | - Jie Yang
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Zhuang Autonomous Region, Nanning, 530021, Guangxi, China
| | - Jin-Liang Kong
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Guangxi Medical University, Zhuang Autonomous Region, Nanning, 530021, Guangxi, China
| | - Ke Shi
- Department of Pathology, the First Affiliated Hospital of Guangxi Medical University, Zhuang Autonomous Region, Nanning, 530021, Guangxi, China
| | - Fu-Chao Ma
- Department of Medical Oncology, the First Affiliated Hospital of Guangxi Medical University, Zhuang Autonomous Region, Nanning, 530021, Guangxi, China
| | - Lin-Zhen Huang
- Department of Pathology, the First Affiliated Hospital of Guangxi Medical University, Zhuang Autonomous Region, Nanning, 530021, Guangxi, China
| | - Jie Luo
- Department of Medical Oncology, the Second Affiliated Hospital of Guangxi Medical University, Zhuang Autonomous Region, Nanning, 530021, Guangxi, China
| | - Shu-Ya Yin
- Department of Pathology, the First Affiliated Hospital of Guangxi Medical University, Zhuang Autonomous Region, Nanning, 530021, Guangxi, China
| | - Rong-Quan He
- Department of Medical Oncology, the First Affiliated Hospital of Guangxi Medical University, Zhuang Autonomous Region, Nanning, 530021, Guangxi, China
| | - Xiao-Hua Hu
- Department of Medical Oncology, the First Affiliated Hospital of Guangxi Medical University, Zhuang Autonomous Region, Nanning, 530021, Guangxi, China.
| | - Gang Chen
- Department of Pathology, the First Affiliated Hospital of Guangxi Medical University, Zhuang Autonomous Region, Nanning, 530021, Guangxi, China.
| |
Collapse
|
47
|
Xue D, Yang P, Wei Q, Li X, Lin L, Lin T. IL‑21/IL‑21R inhibit tumor growth and invasion in non‑small cell lung cancer cells via suppressing Wnt/β‑catenin signaling and PD‑L1 expression. Int J Mol Med 2019; 44:1697-1706. [PMID: 31573051 PMCID: PMC6777672 DOI: 10.3892/ijmm.2019.4354] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 08/02/2019] [Indexed: 11/07/2022] Open
Abstract
Lung cancer is considered to be one of the world's deadliest diseases, with non-small cell lung cancer (NSCLC) accounting for 85% of all lung cancer cases. The present study aimed to investigate the role and underlying mechanisms of interleukin-21 (IL-21), and its receptor IL-21R, in NSCLC. Lung tissues and blood samples of NSCLC were used to measure IL-21, IL-21R and programmed death 1 ligand 1 (PD-L1) expression using ELISA, western blot and immunohistochemistry analyses. Following treatment with different doses of IL-21, the proliferation, invasion and migration of human NSCLC cell line A549 was evaluated using a cell counting kit-8, colony formation, Transwell and scratch wound healing assays, respectively. Additionally, IL-21R and PD-L1 expression in A549 cells was detected using western blot analysis and immunofluorescence. IL-21R silencing was subsequently used to investigate its effects in cell proliferation, invasion and migration. PD-L1, IL-1β and tumor necrosis factor α (TNF-α) expression were measured. Finally, Wnt/β-catenin signaling expression was evaluated using western blot analysis following treatment with IL-21. Cells were then treated with lithium chloride (LiCl), which is an agonist of Wnt/β-catenin signaling, and the levels of PD-L1, IL-1β and TNF-α were detected. The results revealed that IL-21 and IL-21R expression in the lung tissues and blood samples of patients with NSCLC were decreased, while PD-L1 expression was increased, compared with normal tissues or healthy controls. Treatment of A549 cells with IL-21 upregulated IL-21R expression, downregulated PD-L1 and inhibited cell growth and metastasis in a dose-dependent manner. Following IL-21R silencing, the effects of IL-21 treatment were reversed, suggesting that IL-21 acted on A549 cells through binding to IL-21R. In addition, the results demonstrated that IL-21 treatment reduced the expression levels of proteins associated with the Wnt/β-catenin signaling, whereas activation of Wnt/β-catenin signaling with the LiCl agonist upregulated PD-L1, IL-1β and TNF-α expression. In conclusion, the IL-21/IL-21R axis reduced the growth and invasion of NSCLC cells via inhibiting Wnt/β-catenin signaling and PD-L1 expression. The present results may provide a novel molecular target for NSCLC diagnosis and therapy.
Collapse
Affiliation(s)
- Dan Xue
- Department of Respiratory Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Ping Yang
- Department of Respiratory Medicine, People's Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350001, P.R. China
| | - Qiongying Wei
- Department of Respiratory Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Xiaoping Li
- Department of Respiratory Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Lan Lin
- Department of Respiratory Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Tingyan Lin
- Department of Respiratory Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| |
Collapse
|
48
|
Lin TH, Chen SI, Su YC, Lin MC, Lin HJ, Huang ST. Conventional Western Treatment Combined With Chinese Herbal Medicine Alleviates the Progressive Risk of Lung Cancer in Patients With Chronic Obstructive Pulmonary Disease: A Nationwide Retrospective Cohort Study. Front Pharmacol 2019; 10:987. [PMID: 31572178 PMCID: PMC6753872 DOI: 10.3389/fphar.2019.00987] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 07/31/2019] [Indexed: 12/24/2022] Open
Abstract
Background and purpose: Lung cancer has high global incidence and mortality rates. Chronic obstructive pulmonary disease (COPD) is strongly associated with lung cancer and is an independent risk factor for lung cancer with or without smoking. Chinese herbal medicines (CHMs) are used to treat COPD. This study sought to determine whether CHM treatment effectively decreases the incidence of lung cancer in COPD patients receiving conventional Western medical treatment. Methods: Records obtained from the National Health Insurance Research Database (NHIRD) were used to identify 81,780 adults aged ≥18 years newly diagnosed with COPD in Taiwan between 2000 and 2010. Among them, 11,180 received CHMs after COPD diagnosis and 23,319 did not (non-CHM). After excluding patients with missing basic demographic information, each group consisted of 2,682 patients. Statistical methods analyzed the baseline characteristics for both groups and we performed a Cox proportional hazard regression analysis to examine the incidence of lung cancer. The cumulative incidence of lung cancer in COPD patients with or without CHM treatment was calculated by the Kaplan-Meier method. The association between herbs and formulas was examined by NodeXL to perform a network analysis of CHM. Results: COPD patients using CHM had a lower risk for lung cancer (adjusted hazards ratio [aHR] = 0.36, 95% confidence interval [CI] = 0.24–0.53, p < 0.001). Older age was associated with a higher risk of lung cancer: patients aged 40–59 years (aHR = 5.32, 95% CI = 2.19–12.94, p < 0.001) and those aged ≥60 years (aHR = 16.75, 95% CI = 7.54–37.23, p < 0.001) were at significantly greater risk compared with patients aged 18–39 years. CHM use was associated with a trend for a lower cumulative incidence of lung cancer compared with non-CHM use (p < 0.001). Among the 10 most commonly used single herbs and formulas used to decrease the risk of lung cancer in COPD patients, Fritillariae thunbergii was the most commonly used single herb and Xiao Qing Long Tang the most commonly used formula. Conclusion: The findings from this nationwide retrospective cohort study indicate that CHM as adjunctive therapy in COPD treatment regimens may reduce the risk of lung cancer in this vulnerable patient population.
Collapse
Affiliation(s)
- Tsai-Hui Lin
- Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Shu-I Chen
- Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Yuan-Chih Su
- Management Office for Health Data, China Medical University Hospital, Taichung, Taiwan
| | - Mei-Chen Lin
- Management Office for Health Data, China Medical University Hospital, Taichung, Taiwan
| | - Hung-Jen Lin
- Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan.,School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Sheng-Teng Huang
- Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan.,School of Chinese Medicine, China Medical University, Taichung, Taiwan.,An-Nan Hospital, China Medical University, Tainan, Taiwan.,Chinese Medicine Research Center, China Medical University, Taichung, Taiwan.,Research Center for Chinese Herbal Medicine, China Medical University, Taichung, Taiwan.,Cancer Research Center for Traditional Chinese Medicine, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
49
|
Lai YS, Wahyuningtyas R, Aui SP, Chang KT. Autocrine VEGF signalling on M2 macrophages regulates PD-L1 expression for immunomodulation of T cells. J Cell Mol Med 2018; 23:1257-1267. [PMID: 30456891 PMCID: PMC6349155 DOI: 10.1111/jcmm.14027] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 10/05/2018] [Accepted: 10/22/2018] [Indexed: 12/14/2022] Open
Abstract
M2‐polarized macrophages, on one hand, can promote tumour vascularization by producing proangiogenic factors, such as vascular endothelial growth factor (VEGF). On the other hand, the expression of VEGF receptors (VEGFR) in this cell lineage was also reported. Although the function of VEGF/VEGFR axis plays a pivotal role in macrophages infiltration and angiogenesis, however, there is still lack of the direct evidence to show the role of VEGF as an autocrine operating in M2 macrophages, particularly for immunomodulation. In our study, we surprisingly discovered that M2 macrophages polarized by baicalin can simultaneously express VEGF and its receptors. Taking advantage of this unique culture system, we were able to investigate the biological activity of M2 macrophages in response to the autocrine VEGF milieu. Our results showed that the expression of programmed death‐ligand 1 (PD‐L1) on M2 macrophages was significantly up‐regulated in autocrine VEGF milieu. Through the blockade of autocrine VEGF signalling, PD‐L1 expression on M2 macrophages was dramatically down‐regulated. Furthermore, transplantation of PD‐L1+ M2 macrophage stimulated by autocrine VEGF into allogeneic mice significantly suppressed host CD4+/CD8+ T cells in the peripheral blood and increased CD4+CD25+ regulatory T cells in the bone marrow. In conclusion, our findings provide a novel biological basis to support the current successful strategy using combined VEGF/PD‐1 signalling blockade in cancer therapy.
Collapse
Affiliation(s)
- Yin-Siew Lai
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung, Taiwan.,Flow Cytometry Center, Precision Instruments Center, Office of Research and Development, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Rika Wahyuningtyas
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung, Taiwan.,Departments of Fisheries and Marine Science, University of Brawijaya, Malang, Indonesia
| | - Shin-Peir Aui
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Ko-Tung Chang
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung, Taiwan.,Flow Cytometry Center, Precision Instruments Center, Office of Research and Development, National Pingtung University of Science and Technology, Pingtung, Taiwan
| |
Collapse
|
50
|
Chen Z, Guo P, Xie X, Yu H, Wang Y, Chen G. The role of tumour microenvironment: a new vision for cholangiocarcinoma. J Cell Mol Med 2018; 23:59-69. [PMID: 30394682 PMCID: PMC6307844 DOI: 10.1111/jcmm.13953] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 09/10/2018] [Indexed: 12/18/2022] Open
Abstract
Cholangiocarcinoma (CCA) is a relatively rare malignant and lethal tumour derived from bile duct epithelium and the morbidity is now increasing worldwide. This disease is difficult to diagnose at its inchoate stage and has poor prognosis. Therefore, a clear understanding of pathogenesis and major influencing factors is the key to develop effective therapeutic methods for CCA. In previous studies, canonical correlation analysis has demonstrated that tumour microenvironment plays an intricate role in the progression of various types of cancers including CCA. CCA tumour microenvironment is a dynamic environment consisting of authoritative tumour stromal cells and extracellular matrix where tumour stromal cells and cancer cells can thrive. CCA stromal cells include immune and non‐immune cells, such as inflammatory cells, endothelial cells, fibroblasts, and macrophages. Likewise, CCA tumour microenvironment contains abundant proliferative factors and can significantly impact the behaviour of cancer cells. Through abominably intricate interactions with CCA cells, CCA tumour microenvironment plays an important role in promoting tumour proliferation, accelerating neovascularization, facilitating tumour invasion, and preventing tumour cells from organismal immune reactions and apoptosis. This review summarizes the recent research progress regarding the connection between tumour behaviours and tumour stromal cells in CCA, as well as the mechanism underlying the effect of tumour stromal cells on the growth of CCA. A thorough understanding of the relationship between CCA and tumour stromal cells can shed some light on the development of new therapeutic methods for treating CCA.
Collapse
Affiliation(s)
- Ziyan Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Pengyi Guo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xiaozai Xie
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Haitao Yu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yi Wang
- Environmental and Public, Health School of Wenzhou Medical University, Wenzhou, China
| | - Gang Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|