1
|
Konishi H, Saito T, Takahashi S, Tanaka H, Okuda K, Akutsu H, Dokoshi T, Sakatani A, Takahashi K, Ando K, Kashima S, Ueno N, Moriichi K, Ogawa N, Fujiya M. The butyrate derived from probiotic Clostridium butyricum exhibits an inhibitory effect on multiple myeloma through cell death induction. Sci Rep 2025; 15:11919. [PMID: 40195469 PMCID: PMC11976985 DOI: 10.1038/s41598-025-97038-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 04/02/2025] [Indexed: 04/09/2025] Open
Abstract
Multiple myeloma (MM) is a hematological malignancy characterized by a poor prognosis. While certain probiotics have been shown to produce antitumor molecules that inhibit solid tumor progression, it remains unclear whether probiotic-derived compounds can exert similar effects on hematological tumors, such as MM. In this study, we screened the cell-free culture supernatants (CFCS) of 24 probiotic strains for antitumor effects against multiple myeloma (MM) cells and identified that the CFCS from Clostridium butyricum (C. butyricum) demonstrated the most significant reduction in MM cell viability. Further fractionation of this CFCS through reverse-phase and gel filtration chromatography revealed a high enrichment of butyrate in the antitumor fraction, as confirmed by gas chromatography-mass spectrometry. Butyrate reduced MM cell viability in a concentration-dependent manner. Butyrate was significantly more cytotoxic to RPMI-8226 cells than peripheral blood mononuclear cells (PBMCs) isolated from two non-cancerous individuals. In the xenograft model of RPMI-8226 cells, butyrate showed significant inhibition of tumor formation. Cell cycle analysis showed that butyrate induced G1 phase arrest and increased sub-G1 phase, suggesting DNA fragmentation. Western blot analysis demonstrated that butyrate treatment led to cleaved poly ADP-ribose polymerase (PARP) accumulation. Additionally, flow cytometry showed an increase in annexin V positive MM cells, indicating apoptosis. Butyrate also exhibited synergistic antitumor activity when combined with bortezomib, a proteasome inhibitor. These findings suggest that probiotic-derived molecules, including butyrate, may enhance the therapeutic effect of hematological malignancy, such as MM.
Collapse
Affiliation(s)
- Hiroaki Konishi
- Department of Gastroenterology and Advanced Medical Sciences, Asahikawa Medical University, 2-1-1-1, Midorigaoka-Higashi, Asahikawa, Hokkaido, 078-8510, Japan.
- Division of Gastroenterology, Department of Internal Medicine, Asahikawa Medical University, 2-1-1-1, Midorigaoka-Higashi, Asahikawa, Hokkaido, 078-8510, Japan.
| | - Takeshi Saito
- Division of Hematology, Department of Internal Medicine, Asahikawa Medical University, 2-1-1-1, Midorigaoka-Higashi, Asahikawa, Hokkaido, 078-8510, Japan
| | - Shuichiro Takahashi
- Division of Hematology, Department of Internal Medicine, Asahikawa Medical University, 2-1-1-1, Midorigaoka-Higashi, Asahikawa, Hokkaido, 078-8510, Japan
| | - Hiroki Tanaka
- Division of Tumor Pathology, Department of Pathology, Asahikawa Medical University, 2-1 -1-1, Midorigaoka-Higashi, Asahikawa, Hokkaido, 078-8510, Japan
| | - Katsuhiro Okuda
- Department of Legal Medicine, Asahikawa Medical University, 2-1-1-1, Midorigaoka-Higashi, Asahikawa, Hokkaido, 078-8510, Japan
| | - Hiroaki Akutsu
- Central Laboratory for Research and Education, Research Technology Support Center, Asahikawa Medical University, 2-1-1-1, Midorigaoka-Higashi, Asahikawa, Hokkaido, 078-8510, Japan
| | - Tatsuya Dokoshi
- Division of Gastroenterology, Department of Internal Medicine, Asahikawa Medical University, 2-1-1-1, Midorigaoka-Higashi, Asahikawa, Hokkaido, 078-8510, Japan
- Department of Gastroenterological Sciences, Asahikawa Medical University, 2-1-1-1, Midorigaoka-Higashi, Asahikawa, Hokkaido, 078-8510, Japan
| | - Aki Sakatani
- Department of Gastroenterological Sciences, Asahikawa Medical University, 2-1-1-1, Midorigaoka-Higashi, Asahikawa, Hokkaido, 078-8510, Japan
| | - Keitaro Takahashi
- Division of Gastroenterology, Department of Internal Medicine, Asahikawa Medical University, 2-1-1-1, Midorigaoka-Higashi, Asahikawa, Hokkaido, 078-8510, Japan
| | - Katsuyoshi Ando
- Division of Gastroenterology, Department of Internal Medicine, Asahikawa Medical University, 2-1-1-1, Midorigaoka-Higashi, Asahikawa, Hokkaido, 078-8510, Japan
| | - Shin Kashima
- Division of Gastroenterology, Department of Internal Medicine, Asahikawa Medical University, 2-1-1-1, Midorigaoka-Higashi, Asahikawa, Hokkaido, 078-8510, Japan
| | - Nobuhiro Ueno
- Department of Gastroenterological Sciences, Asahikawa Medical University, 2-1-1-1, Midorigaoka-Higashi, Asahikawa, Hokkaido, 078-8510, Japan
| | - Kentaro Moriichi
- Division of Gastroenterology, Department of Internal Medicine, Asahikawa Medical University, 2-1-1-1, Midorigaoka-Higashi, Asahikawa, Hokkaido, 078-8510, Japan
- Department of Gastroenterological Sciences, Asahikawa Medical University, 2-1-1-1, Midorigaoka-Higashi, Asahikawa, Hokkaido, 078-8510, Japan
| | - Naoki Ogawa
- Central Laboratory for Research and Education, Research Technology Support Center, Asahikawa Medical University, 2-1-1-1, Midorigaoka-Higashi, Asahikawa, Hokkaido, 078-8510, Japan
| | - Mikihiro Fujiya
- Department of Gastroenterology and Advanced Medical Sciences, Asahikawa Medical University, 2-1-1-1, Midorigaoka-Higashi, Asahikawa, Hokkaido, 078-8510, Japan
- Division of Gastroenterology, Department of Internal Medicine, Asahikawa Medical University, 2-1-1-1, Midorigaoka-Higashi, Asahikawa, Hokkaido, 078-8510, Japan
- Department of Gastroenterological Sciences, Asahikawa Medical University, 2-1-1-1, Midorigaoka-Higashi, Asahikawa, Hokkaido, 078-8510, Japan
| |
Collapse
|
2
|
Hou S, Yu J, Li Y, Zhao D, Zhang Z. Advances in Fecal Microbiota Transplantation for Gut Dysbiosis-Related Diseases. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413197. [PMID: 40013938 PMCID: PMC11967859 DOI: 10.1002/advs.202413197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/22/2025] [Indexed: 02/28/2025]
Abstract
This article provides an overview of the advancements in the application of fecal microbiota transplantation (FMT) in treating diseases related to intestinal dysbiosis. FMT involves the transfer of healthy donor fecal microbiota into the patient's body, aiming to restore the balance of intestinal microbiota and thereby treat a variety of intestinal diseases such as recurrent Clostridioides difficile infection (rCDI), inflammatory bowel disease (IBD), constipation, short bowel syndrome (SBS), and irritable bowel syndrome (IBS). While FMT has shown high efficacy in the treatment of rCDI, further research is needed for its application in other chronic conditions. This article elaborates on the application of FMT in intestinal diseases and the mechanisms of intestinal dysbiosis, as well as discusses key factors influencing the effectiveness of FMT, including donor selection, recipient characteristics, treatment protocols, and methods for assessing microbiota. Additionally, it emphasizes the key to successful FMT. Future research should focus on optimizing the FMT process to ensure long-term safety and explore the potential application of FMT in a broader range of medical conditions.
Collapse
Affiliation(s)
- Shuna Hou
- Department of OrthopedicsThe Fourth Affiliated Hospital of China Medical UniversityChina Medical UniversityLiao NingShen Yang110032P. R. China
- Department of general surgeryThe Fourth Affiliated Hospital of China Medical UniversityChina Medical UniversityLiao NingShen Yang110032P. R. China
| | - Jiachen Yu
- Department of OrthopedicsThe Fourth Affiliated Hospital of China Medical UniversityChina Medical UniversityLiao NingShen Yang110032P. R. China
| | - Yongshuang Li
- Department of general surgeryThe Fourth Affiliated Hospital of China Medical UniversityChina Medical UniversityLiao NingShen Yang110032P. R. China
| | - Duoyi Zhao
- Department of OrthopedicsThe Fourth Affiliated Hospital of China Medical UniversityChina Medical UniversityLiao NingShen Yang110032P. R. China
| | - Zhiyu Zhang
- Department of OrthopedicsThe Fourth Affiliated Hospital of China Medical UniversityChina Medical UniversityLiao NingShen Yang110032P. R. China
| |
Collapse
|
3
|
Daniel N, Farinella R, Belluomini F, Fajkic A, Rizzato C, Souček P, Campa D, Hughes DJ. The relationship of the microbiome, associated metabolites and the gut barrier with pancreatic cancer. Semin Cancer Biol 2025; 112:43-57. [PMID: 40154652 DOI: 10.1016/j.semcancer.2025.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 02/26/2025] [Accepted: 03/19/2025] [Indexed: 04/01/2025]
Abstract
Pancreatic cancers have high mortality and rising incidence rates which may be related to unhealthy western-type dietary and lifestyle patterns as well as increasing body weights and obesity rates. Recent data also suggest a role for the gut microbiome in the development of pancreatic cancer. Here, we review the experimental and observational evidence for the roles of the oral, gut and intratumoural microbiomes, impaired gut barrier function and exposure to inflammatory compounds as well as metabolic dysfunction as contributors to pancreatic disease with a focus on pancreatic ductal adenocarcinoma (PDAC) initiation and progression. We also highlight some emerging gut microbiome editing techniques currently being investigated in the context of pancreatic disease. Notably, while the gut microbiome is significantly altered in PDAC and its precursor diseases, its utility as a diagnostic and prognostic tool is hindered by a lack of reproducibility and the potential for reverse causality in case-control cohorts. Future research should emphasise longitudinal and mechanistic studies as well as integrating lifestyle exposure and multi-omics data to unravel complex host-microbiome interactions. This will allow for deeper aetiologic and mechanistic insights that can inform treatments and guide public health recommendations.
Collapse
Affiliation(s)
- Neil Daniel
- Molecular Epidemiology of Cancer Group, UCD Conway Institute, School of Biomedical and Biomolecular Sciences, University College Dublin, Dublin, Ireland
| | | | | | - Almir Fajkic
- Department of Pathophysiology Faculty of Medicine, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | | | - Pavel Souček
- Laboratory of Pharmacogenomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic; Toxicogenomics Unit, National Institute of Public Health, Prague, Czech Republic
| | - Daniele Campa
- Department of Biology, University of Pisa, Pisa, Italy
| | - David J Hughes
- Molecular Epidemiology of Cancer Group, UCD Conway Institute, School of Biomedical and Biomolecular Sciences, University College Dublin, Dublin, Ireland.
| |
Collapse
|
4
|
Cheng H, Guo H, Wen C, Sun G, Tang F, Li Y. The dual role of gut microbiota in pancreatic cancer: new insights into onset and treatment. Ther Adv Med Oncol 2025; 17:17588359251324882. [PMID: 40093983 PMCID: PMC11909682 DOI: 10.1177/17588359251324882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 02/14/2025] [Indexed: 03/19/2025] Open
Abstract
Pancreatic cancer ranks among the most lethal digestive malignancies, exhibiting a steadily increasing incidence and mortality worldwide. Despite significant advances in cancer research, the 5-year survival rate remains below 10%, predominantly due to delayed diagnosis and limited therapeutic options. Concurrently, the gut microbiota-an integral component of host physiology-has emerged as a crucial player in the pathogenesis of pancreatic cancer. Mounting evidence indicates that alterations in gut microbial composition and function may influence tumor initiation, progression, and response to therapy. This review provides an in-depth examination of the intricate interplay between the gut microbiome and pancreatic cancer, highlighting potential diagnostic biomarkers and exploring microbiome-targeted therapeutic strategies to improve patient outcomes.
Collapse
Affiliation(s)
- Huijuan Cheng
- School of Life Sciences, Lanzhou University, Lanzhou, Gansu, P.R. China
- Gansu Provincial Key Laboratory of Environmental Oncology, Lanzhou University Second Hospital, Lanzhou, Gansu, P.R. China
| | - Hongkai Guo
- The Second School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, P.R. China
| | - Chengming Wen
- The Second School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, P.R. China
| | - Guodong Sun
- The Second School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, P.R. China
- Department of Medical Affairs, Lanzhou University First Hospital, Lanzhou, Gansu, P.R. China
| | - Futian Tang
- Gansu Provincial Key Laboratory of Environmental Oncology, Lanzhou University Second Hospital, Lanzhou, Gansu, P.R. China
| | - Yumin Li
- Gansu Provincial Key Laboratory of Environmental Oncology, Lanzhou University Second Hospital, No. 82, Cuiyingmen, Chengguan, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
5
|
Chen LY, Chen PL, Jiang ST, Lee HL, Liu YY, Chueh A, Lin JH, Chen CG, Hung CL, Hsu K. Increased Anion Exchanger-1 (Band 3) on the Red Blood Cell Membrane Accelerates Scavenging of Nitric Oxide Metabolites and Predisposes Hypertension Risks. FUNCTION 2025; 6:zqae052. [PMID: 39656872 PMCID: PMC11815584 DOI: 10.1093/function/zqae052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/07/2024] [Accepted: 12/02/2024] [Indexed: 12/17/2024] Open
Abstract
The erythrocyte membrane is highly specialized with ∼1 million anion exchanger-1 (AE1) per cell for rapid membrane permeation of HCO3-(aq), as most blood CO2(g) is carried in this hydrated anionic form. People with the GP.Mur blood type have more AE1 on their erythrocyte membrane, and they excrete CO2(g) more efficiently. Unexpectedly, GP.Mur/increased AE1 is also associated with higher blood pressure (BP). To solve this, we knocked the human GYP.Mur gene into C57BL/6J mice at 3'-UTR of GYPA to generate GPMur knock-in (KI) mice. KI of human GYP.Mur increased murine AE1 expression on the red blood cells (RBC). GPMur KI mice were naturally hypertensive, with normal kidney functions and lipid profiles. Blood NO3- [the stable nitric oxide (NO) reservoir] was significantly lower in the GPMur mice. GPMur KI also accelerated AE1-mediated NO2- influx into the RBCs and intraerythrocytic NO2-/NO processing. From tests with different categories of antihypertensives, hypertension in GPMur mice responded best to direct arterial vasodilator hydralazine, suggesting that vasodilator deficiency is the leading cause of "GPMur/AE1-triggered hypertension." In conclusion, we showed that GPMur/increased AE1 predisposed hypertension risks. Mechanistically, higher AE1 expression increased RBC membrane permeability for NO2- and consequently accelerated erythroid NO2-/NO metabolism; this is associated with lower NO bioavailability and higher BP. As hypertension affects a quarter of the world population and GP.Mur is a common Southeast Asian (SEA) blood type, this work may serve as a primer for "GPMur (biomarker)-based" therapeutic development for hypertension.
Collapse
Affiliation(s)
- Li-Yang Chen
- The Laboratory of Immunogenetics, Department of Medical Research, MacKay Memorial Hospital, Tamsui, New Taipei City 251020, Taiwan
| | - Pin-Lung Chen
- The Laboratory of Immunogenetics, Department of Medical Research, MacKay Memorial Hospital, Tamsui, New Taipei City 251020, Taiwan
| | - Si-Tse Jiang
- National Laboratory Animal Center, National Applied Research Laboratories, Taipei 106214, Taiwan
| | - Hui-Lin Lee
- The Laboratory of Immunogenetics, Department of Medical Research, MacKay Memorial Hospital, Tamsui, New Taipei City 251020, Taiwan
| | - Yen-Yu Liu
- Department of Critical Care Medicine, MacKay Memorial Hospital, Tamsui, New Taipei City 251020, Taiwan
- Institute of Biomedical Sciences, MacKay Medical College, New Taipei City 252005, Taiwan
- Division of Cardiology, Department of Internal Medicine, MacKay Memorial Hospital, Taipei 104217, Taiwan
| | - Alysa Chueh
- The Laboratory of Immunogenetics, Department of Medical Research, MacKay Memorial Hospital, Tamsui, New Taipei City 251020, Taiwan
| | - Jing-Heng Lin
- The Laboratory of Immunogenetics, Department of Medical Research, MacKay Memorial Hospital, Tamsui, New Taipei City 251020, Taiwan
| | - Caleb G Chen
- Department of Hematology, MacKay Memorial Hospital, Taipei 104217, Taiwan
- Department of Hematology, GCRC Laboratory, Mackay Memorial Hospital, New Taipei City 251020, Taiwan
- Institute of Molecular Medicine, National Tsing-Hua University, Hsin-Chu 300044, Taiwan
- MacKay Junior College of Medicine, Nursing, and Management, New Taipei City 252005, Taiwan
| | - Chung-Lieh Hung
- Institute of Biomedical Sciences, MacKay Medical College, New Taipei City 252005, Taiwan
- Division of Cardiology, Department of Internal Medicine, MacKay Memorial Hospital, Taipei 104217, Taiwan
| | - Kate Hsu
- The Laboratory of Immunogenetics, Department of Medical Research, MacKay Memorial Hospital, Tamsui, New Taipei City 251020, Taiwan
- Institute of Biomedical Sciences, MacKay Medical College, New Taipei City 252005, Taiwan
- MacKay Junior College of Medicine, Nursing, and Management, New Taipei City 252005, Taiwan
| |
Collapse
|
6
|
Jankowski WM, Fichna J, Tarasiuk-Zawadzka A. A systematic review of the relationship between gut microbiota and prevalence of pancreatic diseases. Microb Pathog 2025; 199:107214. [PMID: 39653281 DOI: 10.1016/j.micpath.2024.107214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 11/24/2024] [Accepted: 12/06/2024] [Indexed: 12/12/2024]
Abstract
Acute pancreatitis (AP) represents one of the most common gastrointestinal (GI) diseases; it can manifest in varying degrees of severity, sometimes leading to a life-threatening condition for the patient. Pancreatic ductal adenocarcinoma (PDAC), due to its high malignancy and uncertain prognosis, is widely regarded as one of the most fatal diseases. The increasing prevalence of AP and PDAC represents a major burden on public health and the healthcare system worldwide. The aim of this systematic review was to discuss the current state of knowledge regarding the relationship between the gut microbiota and the incidence, prognosis, diagnosis and treatment of AP and PDAC. To identify studies that analyzed the relationship between the gut microbiota and the occurrence/development of pancreatic diseases or PDAC, the online databases PubMed, Scopus and Google Scholar were searched between November 2023 and January 2024. Finally, 14 publications met the inclusion criteria (1. were conducted exclusively in humans and/or animals; 2. original, published in English in peer-reviewed journals after 2019; 3. described the relationship between gut microbiota and the occurrence of AP or PDAC). The collected studies indicated significant changes in the gut microbiota of patients with AP and PDAC. Moreover, they highlighted the presence of a relationship between the gut microbiota and the occurrence, course, treatment efficiency and prognosis of the disease in question. Further research is needed to understand precisely the relationship between the gut microbiota and the occurrence of pancreatic diseases and whether it may be a starting point for the development of modern forms of therapy based on the use of prebiotics and/or diet to restore the normal composition of the intestinal bacteria.
Collapse
Affiliation(s)
- Wojciech Michał Jankowski
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 5, 92-215, Lodz, Poland
| | - Jakub Fichna
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 5, 92-215, Lodz, Poland
| | - Aleksandra Tarasiuk-Zawadzka
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 5, 92-215, Lodz, Poland.
| |
Collapse
|
7
|
Ting YS, Wang YS, Liao EC, Chou HC, Chan HL. Investigate the relationship between Bacillus coagulans and its inhibition of chemotherapy-induced lung cancer resistance. Biotechnol Appl Biochem 2024; 71:1453-1478. [PMID: 39044536 DOI: 10.1002/bab.2641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 07/08/2024] [Indexed: 07/25/2024]
Abstract
Lung cancer is a leading cause of death globally, with lung adenocarcinoma being the most common subtype. Despite advancements in targeted therapy, drug resistance remains a major challenge. This study investigated the impact of Bacillus coagulans on drug resistance in lung adenocarcinoma cells. The cells were pretreated with B. coagulans culture filtrate (BCCF), and functional assays were performed, including cell proliferation, cell cycle, apoptosis, and immunofluorescence staining. Results showed that BCCF induced cell cycle arrest at the S phase, reducing cell proliferation and suppressing drug resistance marker P-glycoprotein expression in BCCF-treated resistant cells rather than BCCF-treated control cells. Moreover, drug-resistant cells exhibited the ability for epithelial-mesenchymal transition, which could contribute to their necrosis through the iron-mediated cell death pathway upon BCCF treatment. Proteomic analysis identified downregulation of DNA mismatch repair protein PMS2 after BCCF treatment. These findings suggest that B. coagulans may modulate the DNA repair pathway, influencing drug resistance in lung adenocarcinoma cells. In conclusion, this study highlights the potential impact of B. coagulans on drug-resistant lung adenocarcinoma cells. Further investigation and understanding of the regulatory mechanisms by which B. coagulans modulates drug resistance in lung adenocarcinoma can aid in the development of more effective treatment strategies to improve the prognosis of lung cancer patients.
Collapse
Affiliation(s)
- Yu-Shan Ting
- Institute of Bioinformatics and Structural Biology and Department of Medical Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Yi-Shiuan Wang
- Institute of Bioinformatics and Structural Biology and Department of Medical Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - En-Chi Liao
- Institute of Bioinformatics and Structural Biology and Department of Medical Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Hsiu-Chuan Chou
- Institute of Analytical and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Hong-Lin Chan
- Institute of Bioinformatics and Structural Biology and Department of Medical Sciences, National Tsing Hua University, Hsinchu, Taiwan
- Department of Medical Sciences, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
8
|
Ciernikova S, Sevcikova A, Mego M. Targeting the gut and tumor microbiome in cancer treatment resistance. Am J Physiol Cell Physiol 2024; 327:C1433-C1450. [PMID: 39437444 DOI: 10.1152/ajpcell.00201.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 10/18/2024] [Accepted: 10/18/2024] [Indexed: 10/25/2024]
Abstract
Therapy resistance represents a significant challenge in oncology, occurring in various therapeutic approaches. Recently, animal models and an increasing set of clinical trials highlight the crucial impact of the gut and tumor microbiome on treatment response. The intestinal microbiome contributes to cancer initiation, progression, and formation of distant metastasis. In addition, tumor-associated microbiota is considered a critical player in influencing tumor microenvironments and regulating local immune processes. Intriguingly, numerous studies have successfully identified pathogens within the gut and tumor microbiome that might be linked to a poor response to different therapeutic modalities. The unfavorable microbial composition with the presence of specific microbes participates in cancer resistance and progression via several mechanisms, including upregulation of oncogenic pathways, macrophage polarization reprogramming, metabolism of chemotherapeutic compounds, autophagy pathway modulation, enhanced DNA damage repair, inactivation of a proapoptotic cascade, and bacterial secretion of extracellular vesicles, promoting the processes in the metastatic cascade. Targeted elimination of specific intratumoral bacteria appears to enhance treatment response. However, broad-spectrum antibiotic pretreatment is mostly connected to reduced efficacy due to gut dysbiosis and lower diversity. Mounting evidence supports the potential of microbiota modulation by probiotics and fecal microbiota transplantation to improve intestinal dysbiosis and increase microbial diversity, leading to enhanced treatment efficacy while mitigating adverse effects. In this context, further research concerning the identification of clinically relevant microbiome signatures followed by microbiota-targeted strategies presents a promising approach to overcoming immunotherapy and chemotherapy resistance in refractory patients, improving their outcomes.
Collapse
Affiliation(s)
- Sona Ciernikova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Bratislava, Slovakia
| | - Aneta Sevcikova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Bratislava, Slovakia
| | - Michal Mego
- 2nd Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, Bratislava, Slovakia
| |
Collapse
|
9
|
Al-Asfour A, Bhardwaj RG, Karched M. Growth Suppression of Oral Squamous Cell Carcinoma Cells by Lactobacillus Acidophilus. Int Dent J 2024; 74:1151-1160. [PMID: 38679518 PMCID: PMC11561490 DOI: 10.1016/j.identj.2024.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/18/2024] [Accepted: 03/28/2024] [Indexed: 05/01/2024] Open
Abstract
OBJECTIVES Oral squamous cell carcinoma (OSCC) is a highly aggressive form of oral cancer. Probiotic lactobacilli have demonstrated anticancer effects, whilst their interaction with Streptococcus mutans in this context remains unexplored. The objective of this study was to investigate the antiproliferative effect of Lactobacillus acidophilus on OSCC and to understand the effect of S mutans on OSCCs and whether it affects the antiproliferative potential of L acidophilus when co-exposed to OSCC. METHODS The human head and neck squamous cell carcinoma cells of the oral cavity (HNO97 cell line) were exposed to cultures of L acidophilus and S mutans separately and in combination. Further, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was performed to assess the viability of HNO97 cells. Bacterial adhesion to HNO97 cells was examined by confocal microscopy and apoptosis by Nexin staining. To understand the underlying mechanism of apoptosis, expression of the tumour necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) gene and protein were determined by real-time polymerase chain reaction and quantitative enzyme-linked immunosorbent assay, respectively. RESULTS A significant decrease (53%-56%) in the viability of HNO97 cells on exposure to L acidophilus, S mutans, and the 2 species together demonstrated the antiproliferative activity of L acidophilus and S mutans. Both bacteria showed adhesion to HNO97 cells. The expression of the TRAIL gene increased 5-fold in HNO97 cells on treatment with L acidophilus and S mutans, which further increased to ∼17-fold with both species present. Expression levels of the TRAIL protein were significantly (P < .05) increased in bacteria-treated cell lysates. Further, bacteria-treated HNO97 cells exhibited lower live and intact cell percentages with higher proportions of cells in early and late apoptotic stages. CONCLUSIONS L acidophilus exhibits the antiproliferative activity against OSCC cells possibly partially via a TRAIL-induced mechanism of apoptosis, which is not affected by the presence of S mutans. These findings may encourage further investigation into the possible therapeutic application of probiotic L acidophilus in OSCC.
Collapse
Affiliation(s)
- Adel Al-Asfour
- Department of Surgical Sciences, College of Dentistry, Kuwait University, Kuwait City, Kuwait
| | - Radhika G Bhardwaj
- Oral Microbiology Research Laboratory, Department of Bioclinical Sciences, College of Dentistry, Kuwait University, Kuwait City, Kuwait; Department of Biotechnology, School of Arts and Science, American International University, Kuwait
| | - Maribasappa Karched
- Oral Microbiology Research Laboratory, Department of Bioclinical Sciences, College of Dentistry, Kuwait University, Kuwait City, Kuwait.
| |
Collapse
|
10
|
Guo X, Wang P, Li Y, Chang Y, Wang X. Microbiomes in pancreatic cancer can be an accomplice or a weapon. Crit Rev Oncol Hematol 2024; 194:104262. [PMID: 38199428 DOI: 10.1016/j.critrevonc.2024.104262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/19/2023] [Accepted: 01/04/2024] [Indexed: 01/12/2024] Open
Abstract
Recently, several investigations have linked the microbiome to pancreatic cancer progression. It is critical to reveal the role of different microbiomes in the occurrence, development, and treatment of pancreatic cancer. The current review summarizes the various microbiota types in pancreatic cancer while updating and supplementing the mechanisms of the representative gut, pancreatic, and oral microbiota, and their metabolites during its pathogenesis and therapeutic intervention. Several novel strategies have been introduced based on the tumor-associated microbiome to optimize the early diagnosis and prognosis of pancreatic cancer. The pros and cons involving different microbiomes in treating pancreatic cancer are discussed. The microbiome-related clinical trials for pancreatic cancer theranostics are outlined. This convergence of cutting-edge knowledge will provide feasible ideas for developing innovative therapies against pancreatic cancer.
Collapse
Affiliation(s)
- Xiaoyu Guo
- All authors are from the National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Pan Wang
- All authors are from the National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China.
| | - Yuan Li
- All authors are from the National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Yawei Chang
- All authors are from the National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Xiaobing Wang
- All authors are from the National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
11
|
Pourali G, Kazemi D, Chadeganipour AS, Arastonejad M, Kashani SN, Pourali R, Maftooh M, Akbarzade H, Fiuji H, Hassanian SM, Ghayour-Mobarhan M, Ferns GA, Khazaei M, Avan A. Microbiome as a biomarker and therapeutic target in pancreatic cancer. BMC Microbiol 2024; 24:16. [PMID: 38183010 PMCID: PMC10768369 DOI: 10.1186/s12866-023-03166-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 12/18/2023] [Indexed: 01/07/2024] Open
Abstract
Studying the effects of the microbiome on the development of different types of cancer has recently received increasing research attention. In this context, the microbial content of organs of the gastrointestinal tract has been proposed to play a potential role in the development of pancreatic cancer (PC). Proposed mechanisms for the pathogenesis of PC include persistent inflammation caused by microbiota leading to an impairment of antitumor immune surveillance and altered cellular processes in the tumor microenvironment. The limited available diagnostic markers that can currently be used for screening suggest the importance of microbial composition as a non-invasive biomarker that can be used in clinical settings. Samples including saliva, stool, and blood can be analyzed by 16 s rRNA sequencing to determine the relative abundance of specific bacteria. Studies have shown the potentially beneficial effects of prebiotics, probiotics, antibiotics, fecal microbial transplantation, and bacteriophage therapy in altering microbial diversity, and subsequently improving treatment outcomes. In this review, we summarize the potential impact of the microbiome in the pathogenesis of PC, and the role these microorganisms might play as biomarkers in the diagnosis and determining the prognosis of patients. We also discuss novel treatment methods being used to minimize or prevent the progression of dysbiosis by modulating the microbial composition. Emerging evidence is supportive of applying these findings to improve current therapeutic strategies employed in the treatment of PC.
Collapse
Affiliation(s)
- Ghazaleh Pourali
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Danial Kazemi
- Student Research Committee, Isfahan University of Medical Sciences, Hezar Jerib Street, Isfahan, Iran
| | | | - Mahshid Arastonejad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA
| | | | - Roozbeh Pourali
- Student Research Committee, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mina Maftooh
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamed Akbarzade
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Fiuji
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Ghayour-Mobarhan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Department of Medical Education, Falmer, Brighton, Sussex, BN1 9PH, UK
| | - Majid Khazaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- College of Medicine, University of Warith Al-Anbiyaa, Karbala, Iraq.
- School of Mechanical, Medical and Process Engineering, Science and Engineering Faculty, Queensland University of Technology, 2 George St, Brisbane City, QLD, 4000, Australia.
| |
Collapse
|
12
|
de Castilhos J, Tillmanns K, Blessing J, Laraño A, Borisov V, Stein-Thoeringer CK. Microbiome and pancreatic cancer: time to think about chemotherapy. Gut Microbes 2024; 16:2374596. [PMID: 39024520 PMCID: PMC11259062 DOI: 10.1080/19490976.2024.2374596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 06/26/2024] [Indexed: 07/20/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive cancer characterized by late diagnosis, rapid progression, and a high mortality rate. Its complex biology, characterized by a dense, stromal tumor environment with an immunosuppressive milieu, contributes to resistance against standard treatments like chemotherapy and radiation. This comprehensive review explores the dynamic role of the microbiome in modulating chemotherapy efficacy and outcomes in PDAC. It delves into the microbiome's impact on drug metabolism and resistance, and the interaction between microbial elements, drugs, and human biology. We also highlight the significance of specific bacterial species and microbial enzymes in influencing drug action and the immune response in the tumor microenvironment. Cutting-edge methodologies, including artificial intelligence, low-biomass microbiome analysis and patient-derived organoid models, are discussed, offering insights into the nuanced interactions between microbes and cancer cells. The potential of microbiome-based interventions as adjuncts to conventional PDAC treatments are discussed, paving the way for personalized therapy approaches. This review synthesizes recent research to provide an in-depth understanding of how the microbiome affects chemotherapy efficacy. It focuses on elucidating key mechanisms and identifying existing knowledge gaps. Addressing these gaps is crucial for enhancing personalized medicine and refining cancer treatment strategies, ultimately improving patient outcomes.
Collapse
Affiliation(s)
- Juliana de Castilhos
- Translational Microbiome Research, Internal Medicine I and M3 Research Center, University Hospital Tuebingen, Tübingen, Germany
- Cluster of Excellence “Controlling Microbes to Fight Infections” (CMFI), University of Tuebingen, Tübingen, Germany
| | - Katharina Tillmanns
- Translational Microbiome Research, Internal Medicine I and M3 Research Center, University Hospital Tuebingen, Tübingen, Germany
- Cluster of Excellence “Controlling Microbes to Fight Infections” (CMFI), University of Tuebingen, Tübingen, Germany
| | - Jana Blessing
- Translational Microbiome Research, Internal Medicine I and M3 Research Center, University Hospital Tuebingen, Tübingen, Germany
- Cluster of Excellence “Controlling Microbes to Fight Infections” (CMFI), University of Tuebingen, Tübingen, Germany
| | - Arnelyn Laraño
- Translational Microbiome Research, Internal Medicine I and M3 Research Center, University Hospital Tuebingen, Tübingen, Germany
- Cluster of Excellence “Controlling Microbes to Fight Infections” (CMFI), University of Tuebingen, Tübingen, Germany
| | - Vadim Borisov
- Translational Microbiome Research, Internal Medicine I and M3 Research Center, University Hospital Tuebingen, Tübingen, Germany
- Cluster of Excellence “Controlling Microbes to Fight Infections” (CMFI), University of Tuebingen, Tübingen, Germany
| | - Christoph K. Stein-Thoeringer
- Translational Microbiome Research, Internal Medicine I and M3 Research Center, University Hospital Tuebingen, Tübingen, Germany
- Cluster of Excellence “Controlling Microbes to Fight Infections” (CMFI), University of Tuebingen, Tübingen, Germany
| |
Collapse
|
13
|
Wu S, Wen S, An K, Xiong L, Zeng H, Niu Y, Yin T. Bibliometric analysis of global research trends between gut microbiota and pancreatic cancer: from 2004 to 2023. Front Microbiol 2023; 14:1281451. [PMID: 38088976 PMCID: PMC10715435 DOI: 10.3389/fmicb.2023.1281451] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/07/2023] [Indexed: 01/03/2025] Open
Abstract
BACKGROUND Pancreatic cancer (PC) is one of the most lethal malignancies of the digestive system and is expected to be the second leading cause of cancer-related death in the United States by 2030. A growing body of evidence suggests that the gut microbiota (GM) is intimately involved in the clinical diagnosis, oncogenic mechanism and treatment of PC. However, no bibliometric analysis of PC and GM has been reported. METHODS The literature on PC and GM was retrieved from the Web of Science Core Collection (WoSCC) database for the period from January 1, 2004 to April 25, 2023. Microsoft Excel 2021, CiteSpace, VOSviewer, Scimago Graphica, Graphpad Prism, Origin, the R package "bibliometrics" and the bibliometric online analysis program were used to visualize the publishing trends and hot spots in this field. RESULTS A total of 1,449 articles were included, including 918 articles and 531 reviews. Publishing had grown rapidly since 2017, with the 2023 expected to publish 268 articles. Unsurprisingly, the United States ranked highest in terms of number of literatures, H index and average citations. The University of California System was the most active institution, but Harvard University tended to be cited the most on average. The three most influential researchers were Robert M. Hoffman, Zhao Minglei, and Zhang Yong. Cancers had published the most papers, while Nature was the most cited journal. Keyword analysis and theme analysis indicated that "tumor microenvironment," "gemcitabine-resistance," "ductal adenocarcinoma," "gut microbiota" and "diagnosis" will be the hotspots and frontiers of research in the future. CONCLUSION In summary, the field is receiving increasing attention. We found that future hotspots of PC/GM research may focus on the mechanism of oncogenesis, flora combination therapy and the exploitation of new predictive biomarkers, which provides effective suggestions and new insights for scholars.
Collapse
Affiliation(s)
- Shuang Wu
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Su Wen
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kangli An
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liping Xiong
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Zeng
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yueyue Niu
- Department of Ophthalmology, Henan Provincial People’s Hospital, Clinical Medical College of Henan University, Zhengzhou, China
| | - Tiejun Yin
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
14
|
Ciernikova S, Sevcikova A, Drgona L, Mego M. Modulating the gut microbiota by probiotics, prebiotics, postbiotics, and fecal microbiota transplantation: An emerging trend in cancer patient care. Biochim Biophys Acta Rev Cancer 2023; 1878:188990. [PMID: 37742728 DOI: 10.1016/j.bbcan.2023.188990] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/13/2023] [Accepted: 09/13/2023] [Indexed: 09/26/2023]
Abstract
Treatment resistance, together with acute and late adverse effects, represents critical issues in the management of cancer patients. Promising results from preclinical and clinical research underline the emerging trend of a microbiome-based approach in oncology. Favorable bacterial species and higher gut diversity are associated with increased treatment efficacy, mainly in chemo- and immunotherapy. On the other hand, alterations in the composition and activity of gut microbial communities are linked to intestinal dysbiosis and contribute to high treatment-induced toxicity. In this Review, we provide an overview of studies concerning gut microbiota modulation in patients with solid and hematologic malignancies with a focus on probiotics, prebiotics, postbiotics, and fecal microbiota transplantation. Targeting the gut microbiome might bring clinical benefits and improve patient outcomes. However, a deeper understanding of mechanisms and large clinical trials concerning microbiome and immunological profiling is warranted to identify safe and effective ways to incorporate microbiota-based interventions in routine clinical practice.
Collapse
Affiliation(s)
- Sona Ciernikova
- Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, Bratislava, Slovakia.
| | - Aneta Sevcikova
- Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, Bratislava, Slovakia
| | - Lubos Drgona
- Department of Oncohematology, Comenius University and National Cancer Institute, Bratislava, Slovakia
| | - Michal Mego
- 2nd Department of Oncology, Comenius University and National Cancer Institute, Bratislava, Slovakia
| |
Collapse
|
15
|
Zhu Z, Yi B, Tang Z, Chen X, Li M, Xu T, Zhao Z, Tang C. Lactobacillus casei combined with Lactobacillus reuteri alleviate pancreatic cancer by inhibiting TLR4 to promote macrophage M1 polarization and regulate gut microbial homeostasis. BMC Cancer 2023; 23:1044. [PMID: 37904102 PMCID: PMC10614400 DOI: 10.1186/s12885-023-11557-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 10/22/2023] [Indexed: 11/01/2023] Open
Abstract
BACKGROUND Pancreatic cancer is a highly lethal disease with no effective treatments. Lactobacillus casei (L. casei) and Lactobacillus reuteri (L. reuteri) exhibited therapeutic effects on several cancers, but their roles in pancreatic cancer are unknown. This study aims to explore how L. casei & L. reuteri influence pancreatic cancer and the underlying mechanisms. METHODS Pancreatic cancer cells were treated with L. casei & L. reuteri and co-cultured with macrophages in a transwell system in vitro. Pancreatic cancer xenograft model was established and L. casei & L. reuteri was used to treat mice in vivo. MTT, CCK-8 assay or immunohistochemical staining were used to determine the proliferation of pancreatic cancer cells or tumor tissues. Transwell assay was applied to test the migration and invasion of pancreatic cells. RT-qPCR was utilized to assess TLR4 and MyD88 expressions in pancreatic cells or tumor tissues. WB, immunofluorescence staining, or flow cytometry was used to evaluate the M1/M2 polarization of macrophages. Besides, the composition of gut microbiota of tumor-bearing mice was determined by 16 S rRNA sequencing, and ultra-high performance liquid chromatography-mass spectrometry (UPLC-MS) untargeted metabolomics was used to evaluate the metabolic profiles of feces. RESULTS L. casei & L. reuteri inhibited the proliferation, migration, invasion of pancreatic cancer cells and pancreatic cancer cell-induced M2 polarization of macrophages by suppressing TLR4. Meanwhile, L. casei & L. reuteri repressed pancreatic cancer growth and promoted M1 macrophage polarization. Besides, L. casei & L. reuteri reduced fecal Alloprevotella and increased fecal azelate and glutamate in nude mice, while TLR4 inhibitor TAK-242 increased Clostridia UCG-014, azelate, uridine, methionine sulfoxide, oxypurinol, and decreased glyceryl monoester in the feces of pancreatic tumor-bearing mice. Fecal oxypurinol and glyceryl monoester levels were positively or negatively associated with gut Clostridia UCG-014 abundance, respectively. CONCLUSION L. casei & L. reuteri alleviate pancreatic cancer by inhibiting TLR4 to promote macrophage M1 polarization and regulate gut microbial homeostasis.
Collapse
Affiliation(s)
- Zemin Zhu
- Department of Hepatobiliary and Pancreatic Surgery, Zhuzhou Central Hospital, Zhuzhou, China
| | - Bo Yi
- Department of Hepatobiliary and Pancreatic Surgery, Zhuzhou Central Hospital, Zhuzhou, China
| | - Zikai Tang
- Department of Hepatobiliary and Pancreatic Surgery, Zhuzhou Central Hospital, Zhuzhou, China
| | - Xun Chen
- Department of Hepatobiliary and Pancreatic Surgery, Zhuzhou Central Hospital, Zhuzhou, China
- Department of Trauma Center, Zhuzhou Central Hospital, Zhuzhou, China
| | - Ming Li
- Department of Trauma Center, Zhuzhou Central Hospital, Zhuzhou, China
| | - Tao Xu
- Department of Hepatobiliary and Pancreatic Surgery, Zhuzhou Central Hospital, Zhuzhou, China
| | - Zhijian Zhao
- Department of Hepatobiliary and Pancreatic Surgery, Zhuzhou Central Hospital, Zhuzhou, China.
| | - Caixi Tang
- Department of Hepatobiliary and Pancreatic Surgery, Zhuzhou Central Hospital, Zhuzhou, China.
- Department of Trauma Center, Zhuzhou Central Hospital, Zhuzhou, China.
| |
Collapse
|
16
|
Qian J, Zhang X, Wei B, Tang Z, Zhang B. The correlation between gut and intra-tumor microbiota and PDAC: Etiology, diagnostics and therapeutics. Biochim Biophys Acta Rev Cancer 2023; 1878:188943. [PMID: 37355177 DOI: 10.1016/j.bbcan.2023.188943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/16/2023] [Accepted: 06/16/2023] [Indexed: 06/26/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the lethal cancers in the world and its 5-year survival rate is <10%. Due to the unique TME and dense tissue structure, its curative efficacy is far from satisfactory,the immunotherapy is even more invalid. According to the recent studies, the gut and tumor microbiota have been proved to play a key role in the development, progression and prognosis of PDAC. Based on the differences of microbiome composition observed in PDAC patients and normal pancreas, many researches have been made focusing on the latent communication between gut and intra-tumor microbiota and PDAC. In this review, we will demonstrate the potential mechanism of the oncogenic effects of GM and IM and their crucial effects on modulating the TME. Besides, we focus on their interaction with chemotherapeutic and immunotherapeutic drugs and inducing the drug resistance, thus enlightening the promising role to be used to monitor the occurrence of PDAC, accurately modulate the immune environment to promote the therapeutic efficacy and predict the prognosis.
Collapse
Affiliation(s)
- Jiwei Qian
- The Fourth affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China
| | - Xin Zhang
- The Fourth affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China
| | - Butian Wei
- The Fourth affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China
| | - Zhe Tang
- The Fourth affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China
| | - Bo Zhang
- The Second affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 31000, China.
| |
Collapse
|
17
|
Kinoshita N, Gessho M, Torii T, Ashida Y, Akamatsu M, Guo AK, Lee S, Katsuno T, Nakajima W, Budirahardja Y, Miyoshi D, Todokoro T, Ishida H, Nishikata T, Kawauchi K. The iron chelator deferriferrichrysin induces paraptosis via extracellular signal-related kinase activation in cancer cells. Genes Cells 2023; 28:653-662. [PMID: 37264202 DOI: 10.1111/gtc.13053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/08/2023] [Accepted: 05/22/2023] [Indexed: 06/03/2023]
Abstract
Cancer cells generally exhibit increased iron uptake, which contributes to their abnormal growth and metastatic ability. Iron chelators have thus recently attracted attention as potential anticancer agents. Here, we show that deferriferrichrysin (Dfcy), a natural product from Aspergillus oryzae acts as an iron chelator to induce paraptosis (a programmed cell death pathway characterized by ER dilation) in MCF-7 human breast cancer cells and H1299 human lung cancer cells. We first examined the anticancer efficacy of Dfcy in cancer cells and found that Dfcy induced ER dilation and reduced the number of viable cells. Extracellular signal-related kinase (ERK) was activated by Dfcy treatment, and the MEK inhibitor U0126, a small molecule commonly used to inhibit ERK activity, prevented the increase in ER dilation in Dfcy-treated cells. Concomitantly, the decrease in the number of viable cells upon treatment with Dfcy was attenuated by U0126. Taken together, these results demonstrate that the iron chelator Dfcy exhibits anticancer effects via induction of ERK-dependent paraptosis.
Collapse
Affiliation(s)
- Natsuki Kinoshita
- Frontiers of Innovative Research in Science and Technology, Konan University, Kobe, Japan
| | - Masaya Gessho
- Frontiers of Innovative Research in Science and Technology, Konan University, Kobe, Japan
| | - Takeru Torii
- Frontiers of Innovative Research in Science and Technology, Konan University, Kobe, Japan
| | - Yukako Ashida
- Frontiers of Innovative Research in Science and Technology, Konan University, Kobe, Japan
| | - Minori Akamatsu
- Frontiers of Innovative Research in Science and Technology, Konan University, Kobe, Japan
| | - Alvin Kunyao Guo
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore, Singapore
| | - Sunmin Lee
- Frontiers of Innovative Research in Science and Technology, Konan University, Kobe, Japan
| | - Tatsuya Katsuno
- Center of Anatomical, Pathological and Forensic Medical Researches, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Wataru Nakajima
- Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical School, Tokyo, Japan
| | - Yemima Budirahardja
- Frontiers of Innovative Research in Science and Technology, Konan University, Kobe, Japan
| | - Daisuke Miyoshi
- Frontiers of Innovative Research in Science and Technology, Konan University, Kobe, Japan
| | | | - Hiroki Ishida
- Research Institute, Gekkeikan Sake Co., Ltd, Kyoto, Japan
| | - Takahito Nishikata
- Frontiers of Innovative Research in Science and Technology, Konan University, Kobe, Japan
| | - Keiko Kawauchi
- Frontiers of Innovative Research in Science and Technology, Konan University, Kobe, Japan
| |
Collapse
|
18
|
Bai L, Yan X, Lv J, Qi P, Song X, Zhang L. Intestinal Flora in Chemotherapy Resistance of Biliary Pancreatic Cancer. BIOLOGY 2023; 12:1151. [PMID: 37627035 PMCID: PMC10452461 DOI: 10.3390/biology12081151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/18/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023]
Abstract
Biliary pancreatic malignancy has an occultic onset, a high degree of malignancy, and a poor prognosis. Most clinical patients miss the opportunity for surgical resection of the tumor. Systemic chemotherapy is still one of the important methods for the treatment of biliary pancreatic malignancies. Many chemotherapy regimens are available, but their efficacy is not satisfactory, and the occurrence of chemotherapy resistance is a major reason leading to poor prognosis. With the advancement of studies on intestinal flora, it has been found that intestinal flora is correlated with and plays an important role in chemotherapy resistance. The application of probiotics and other ways to regulate intestinal flora can improve this problem. This paper aims to review and analyze the research progress of intestinal flora in the chemotherapy resistance of biliary pancreatic malignancies to provide new ideas for treatment.
Collapse
Affiliation(s)
- Liuhui Bai
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (L.B.); (X.Y.); (J.L.); (P.Q.); (X.S.)
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Xiangdong Yan
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (L.B.); (X.Y.); (J.L.); (P.Q.); (X.S.)
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Jin Lv
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (L.B.); (X.Y.); (J.L.); (P.Q.); (X.S.)
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Ping Qi
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (L.B.); (X.Y.); (J.L.); (P.Q.); (X.S.)
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Xiaojing Song
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (L.B.); (X.Y.); (J.L.); (P.Q.); (X.S.)
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Lei Zhang
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (L.B.); (X.Y.); (J.L.); (P.Q.); (X.S.)
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
19
|
Bangolo AI, Trivedi C, Jani I, Pender S, Khalid H, Alqinai B, Intisar A, Randhawa K, Moore J, De Deugd N, Faisal S, Suresh SB, Gopani P, Nagesh VK, Proverbs-Singh T, Weissman S. Impact of gut microbiome in the development and treatment of pancreatic cancer: Newer insights. World J Gastroenterol 2023; 29:3984-3998. [PMID: 37476590 PMCID: PMC10354587 DOI: 10.3748/wjg.v29.i25.3984] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 05/24/2023] [Accepted: 06/12/2023] [Indexed: 06/28/2023] Open
Abstract
The gut microbiome plays an important role in the variation of pharmacologic response. This aspect is especially important in the era of precision medicine, where understanding how and to what extent the gut microbiome interacts with drugs and their actions will be key to individualizing therapy. The impact of the composition of the gut microbiome on the efficacy of newer cancer therapies such as immune checkpoint inhibitors and chimeric antigen receptor T-cell treatment has become an active area of research. Pancreatic adenocarcinoma (PAC) has a poor prognosis even in those with potentially resectable disease, and treatment options are very limited. Newer studies have concluded that there is a synergistic effect for immunotherapy in combination with cytotoxic drugs, in the treatment of PAC. A variety of commensal microbiota can affect the efficacy of conventional chemotherapy and immunotherapy by modulating the tumor microenvironment in the treatment of PAC. This review will provide newer insights on the impact that alterations made in the gut microbial system have in the development and treatment of PAC.
Collapse
Affiliation(s)
- Ayrton I Bangolo
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Chinmay Trivedi
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Ishan Jani
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Silvanna Pender
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Hirra Khalid
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Budoor Alqinai
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Alina Intisar
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Karamvir Randhawa
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Joseph Moore
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Nicoleta De Deugd
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Shaji Faisal
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Suchith Boodgere Suresh
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Parva Gopani
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Vignesh K Nagesh
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Tracy Proverbs-Singh
- Department of Gastrointestinal Malignancies, John Theurer Cancer Center, Hackensack, NJ 07601, United States
| | - Simcha Weissman
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| |
Collapse
|
20
|
Frenkel M, David A, Sapire K, Hausner D. Complementary and Integrative Medicine in Pancreatic Cancer. Curr Oncol Rep 2023; 25:231-242. [PMID: 36735141 DOI: 10.1007/s11912-023-01370-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2022] [Indexed: 02/04/2023]
Abstract
PURPOSE OF REVIEW Pancreatic cancer has high mortality and morbidity rates, associated with the issues of typically late diagnosis and the limited effectiveness of current treatments. Patients tend to experience multiple symptoms that can include anxiety, fear, depression, fatigue, weakness, peripheral neuropathy, and abdominal pain, which reduce quality of life (QoL) and may compromise the treatment continuum. Many of those symptoms are amenable to complementary and integrative medicine (CIM) therapies as a part of supportive and palliative care. This article reviews research findings on the beneficial effect of use of CIM modalities in regard to pancreatic cancer, with emphasis on pancreatic ductal adenocarcinoma (PDAC). RECENT FINDINGS Given the often-poor prognosis of the disease, patients with PDAC often seek integrative therapies to help manage the disease itself, to provide support through cancer treatment and its symptoms, and to provide emotional stress relief. Data is accumulating in the past few years on the potential benefits of CIM to the management of pancreatic cancer symptoms and treatment side effects, in order to augment supportive care. This data reveal that nutrition counselling; digestive enzyme therapy; microbiome support; dietary supplements; lifestyle interventions (physical activity and circadian health/sleep hygiene) appear to improve QoL of these patients through reduced symptom burden and meeting psychological needs, such as distress and fatigue. Acupuncture, mindfulness, yoga, reflexology, massage, and homeopathy may also contribute to symptom reduction, both physical and psychological, in all stages of the disease. There is supporting evidence that some CIM modalities may alleviate side effects and symptoms related to pancreatic cancer and its treatment, suggesting that practitioners might consider integrating these modalities in certain situations encountered in the treatment of pancreatic cancer. Further investigation is needed to define the optimal integration of CIM into the treatment and supportive care of patients affected by pancreatic cancer.
Collapse
Affiliation(s)
- Moshe Frenkel
- Complementary and Integrative Medicine Service, Oncology Division, Rambam Health Care Campus, Haifa, Israel.
| | - Adi David
- Tal Center for Integrative Medicine, Institute of Oncology, Chaim Sheba Medical Center, Ramat-Gan, Israel
| | - Kenneth Sapire
- Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David Hausner
- Tal Center for Integrative Medicine, Institute of Oncology, Chaim Sheba Medical Center, Ramat-Gan, Israel.,Palliative Care Service, Chaim Sheba Medical Center, Ramat Gan, Israel
| |
Collapse
|
21
|
Mahmood R, Voisin A, Olof H, Khorasaniha R, Lawal SA, Armstrong HK. Host Microbiomes Influence the Effects of Diet on Inflammation and Cancer. Cancers (Basel) 2023; 15:521. [PMID: 36672469 PMCID: PMC9857231 DOI: 10.3390/cancers15020521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
Cancer is the second leading cause of death globally, and there is a growing appreciation for the complex involvement of diet, microbiomes, and inflammatory processes culminating in tumorigenesis. Although research has significantly improved our understanding of the various factors involved in different cancers, the underlying mechanisms through which these factors influence tumor cells and their microenvironment remain to be completely understood. In particular, interactions between the different microbiomes, specific dietary factors, and host cells mediate both local and systemic immune responses, thereby influencing inflammation and tumorigenesis. Developing an improved understanding of how different microbiomes, beyond just the colonic microbiome, can interact with dietary factors to influence inflammatory processes and tumorigenesis will support our ability to better understand the potential for microbe-altering and dietary interventions for these patients in future.
Collapse
Affiliation(s)
- Ramsha Mahmood
- Department of Internal Medicine, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
| | - Athalia Voisin
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
| | - Hana Olof
- Department of Immunology, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
| | - Reihane Khorasaniha
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
| | - Samuel A. Lawal
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
| | - Heather K. Armstrong
- Department of Internal Medicine, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
- Department of Immunology, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
| |
Collapse
|
22
|
Binda C, Gibiino G, Sbrancia M, Coluccio C, Cazzato M, Carloni L, Cucchetti A, Ercolani G, Sambri V, Fabbri C. Microbiota in the Natural History of Pancreatic Cancer: From Predisposition to Therapy. Cancers (Basel) 2022; 15:cancers15010001. [PMID: 36611999 PMCID: PMC9817971 DOI: 10.3390/cancers15010001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/28/2022] [Accepted: 12/13/2022] [Indexed: 12/29/2022] Open
Abstract
Early microbiome insights came from gut microbes and their role among intestinal and extraintestinal disease. The latest evidence suggests that the microbiota is a true organ, capable of several interactions throughout the digestive system, attracting specific interest in the biliopancreatic district. Despite advances in diagnostics over the last few decades and improvements in the management of this disease, pancreatic cancer is still a common cause of cancer death. Microbiota can influence the development of precancerous disease predisposing to pancreatic cancer (PC). At the same time, neoplastic tissue shows specific characteristics in terms of diversity and phenotype, determining the short- and long-term prognosis. Considering the above information, a role for microbiota has also been hypothesized in the different phases of the PC approach, providing future revolutionary therapeutic insights. Microbiota-modulating therapies could open new issues in the therapeutic landscape. The aim of this narrative review is to assess the most updated evidence on microbiome in all the steps regarding pancreatic adenocarcinoma, from early development to response to antineoplastic therapy and long-term prognosis.
Collapse
Affiliation(s)
- Cecilia Binda
- Gastroenterology and Digestive Endoscopy Unit, Forlì-Cesena Hospitals, Ausl Romagna, 47121 Forlì-Cesena, Italy
| | - Giulia Gibiino
- Gastroenterology and Digestive Endoscopy Unit, Forlì-Cesena Hospitals, Ausl Romagna, 47121 Forlì-Cesena, Italy
- Correspondence: ; Tel.: +39-3488609557
| | - Monica Sbrancia
- Gastroenterology and Digestive Endoscopy Unit, Forlì-Cesena Hospitals, Ausl Romagna, 47121 Forlì-Cesena, Italy
| | - Chiara Coluccio
- Gastroenterology and Digestive Endoscopy Unit, Forlì-Cesena Hospitals, Ausl Romagna, 47121 Forlì-Cesena, Italy
| | - Maria Cazzato
- Gastroenterology and Digestive Endoscopy Unit, Forlì-Cesena Hospitals, Ausl Romagna, 47121 Forlì-Cesena, Italy
| | - Lorenzo Carloni
- Gastroenterology and Digestive Endoscopy Unit, Forlì-Cesena Hospitals, Ausl Romagna, 47121 Forlì-Cesena, Italy
- Department of Medical and Surgical Sciences—DIMEC, Alma Mater Studiorum, University of Bologna, 40138 Bologna, Italy
| | - Alessandro Cucchetti
- Department of Medical and Surgical Sciences—DIMEC, Alma Mater Studiorum, University of Bologna, 40138 Bologna, Italy
- General and Oncologic Surgery, Morgagni—Pierantoni Hospital, AUSL Romagna, 47121 Forlì, Italy
| | - Giorgio Ercolani
- Department of Medical and Surgical Sciences—DIMEC, Alma Mater Studiorum, University of Bologna, 40138 Bologna, Italy
- General and Oncologic Surgery, Morgagni—Pierantoni Hospital, AUSL Romagna, 47121 Forlì, Italy
| | - Vittorio Sambri
- Department of Medical and Surgical Sciences—DIMEC, Alma Mater Studiorum, University of Bologna, 40138 Bologna, Italy
- Microbiology Unit, Hub Laboratory, AUSL della Romagna, 47121 Cesena, Italy
| | - Carlo Fabbri
- Gastroenterology and Digestive Endoscopy Unit, Forlì-Cesena Hospitals, Ausl Romagna, 47121 Forlì-Cesena, Italy
| |
Collapse
|
23
|
Han Z, Zhang H, Lu L, Li X, Zhang C, Zhu J, Li C, Wang Q, Chen K. Research Progress in Intestinal Microecology in Pancreatic Cancer Diagnosis and Treatment. JOURNAL OF ONCOLOGY 2022; 2022:6069403. [PMID: 36510609 PMCID: PMC9741542 DOI: 10.1155/2022/6069403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/18/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022]
Abstract
The intestinal microbiota has an increasingly recognized role in the development of cancer, in which microbial interactions play a more important than expected role. Pancreatic cancer is a highly fatal disease, in which its mortality is closely related to its morbidity. Early detection is the best chance of improving survival. Through an in-depth understanding of the pancreatic cancer microbiota, we could establish screening or early diagnosis methods for pancreatic cancer, implement bacterial treatment, adjust the therapeutic effect, and even reduce adverse reactions. These would lead to new developments and provide hope for patients with pancreatic cancer. Herein, we review the progress in intestinal microbiology research to diagnose and treat pancreatic cancer.
Collapse
Affiliation(s)
- Zetao Han
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310000, China
| | - Haiyan Zhang
- Zhejiang Shuren College, Zhejiang Chinese Medical University, Hangzhou 310000, China
| | - Lu Lu
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310000, China
| | - Xin Li
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310000, China
| | - Caoyu Zhang
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310000, China
| | - Jiajie Zhu
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310000, China
| | - Chaonan Li
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310000, China
| | - Qingjing Wang
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310000, China
| | - Keda Chen
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310000, China
| |
Collapse
|
24
|
Ali A, Ara A, Kashyap MK. Gut microbiota: Role and Association with Tumorigenesis in Different Malignancies. Mol Biol Rep 2022; 49:8087-8107. [PMID: 35543828 DOI: 10.1007/s11033-022-07357-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/01/2022] [Accepted: 03/10/2022] [Indexed: 02/07/2023]
Abstract
The microbiota has been associated with different cancer and may vary from patient to patient. A specific microbial strain can alter the progression of cancer and therapeutic outcome in response to anti-cancer therapy. The variations in microbiota contributed due to the individual microbiome of the microorganism are responsible for diverse clinical outcomes. The expansion of microbiota subpopulation during dysbiosis can lead to toxin production, inducing inflammation and cancer. The microbiota can be a dual-edged sword because it can be tumor-suppressive or oncogenic in the case of the gut. The transition of cancer cells from early to late-stage also impacts the composition of the microbiota, and this alteration could change the behavior of cancer. Multi-omics platforms derived data from an individual's multi-dimensional data (DNA, mRNA, microRNA, protein, metabolite, microbiota, and microbiome), i.e., individualome, to exploit it for personalized tailored treatment for different cancers in a precise manner. A number of studies suggest the importance of microbiota and its add-in suitability to existing treatment options for different malignancies. Furthermore, in vitro, and in vivo studies and cancer clinical trials suggest that probiotics have driven modulation of gut microbiota and other sites discourage the aggressive behavior and progression of different cancers.
Collapse
Affiliation(s)
- Altamas Ali
- Department of Biosciences, Jamia Millia Islamia (A central University), Jamia Nagar, 110025, New Delhi, India
| | - Anam Ara
- Department of Biosciences, Jamia Millia Islamia (A central University), Jamia Nagar, 110025, New Delhi, India
| | - Manoj Kumar Kashyap
- Amity Stem Cell Institute/Amity Medical School, Amity University Haryana, Amity Education Valley, Panchgaon (Manesar), Gurugram, HR, 122413, India.
| |
Collapse
|
25
|
Amara S, Yang LV, Tiriveedhi V, Muzaffar M. Complex Role of Microbiome in Pancreatic Tumorigenesis: Potential Therapeutic Implications. Cells 2022; 11:1900. [PMID: 35741028 PMCID: PMC9221309 DOI: 10.3390/cells11121900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/05/2022] [Accepted: 06/08/2022] [Indexed: 12/12/2022] Open
Abstract
Pancreatic cancer (PC) is the fourth leading cause of cancer-related mortality with limited diagnostic and therapeutic options. Although immunotherapy has shown promise in the treatment of several cancers, its role in pancreatic cancer is rather limited. Several studies have focused on determining the role of the tumor microenvironment with cancer-cell-intrinsic events and tumor-infiltrating immune cellular properties. However, in the past decade, there has been emerging research aimed at delineating the role of the host microbiome, including the metabolites from microbes and host responses, on pancreatic tumorigenesis. Importantly, there is emerging evidence suggesting the beneficial role of a gut microbiome transplant to improve immunotherapeutic outcomes in cancer patients. In this review, we summarize the recent understanding of the role of the microbiome in pancreatic cancer progression, along with its clinical diagnostic and therapeutic implications.
Collapse
Affiliation(s)
- Suneetha Amara
- Division of Hematology/Oncology, Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA; (L.V.Y.); (M.M.)
| | - Li V. Yang
- Division of Hematology/Oncology, Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA; (L.V.Y.); (M.M.)
| | - Venkataswarup Tiriveedhi
- Department of Biological Sciences, Tennessee State University, Nashville, TN 37209, USA;
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37212, USA
| | - Mahvish Muzaffar
- Division of Hematology/Oncology, Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA; (L.V.Y.); (M.M.)
| |
Collapse
|
26
|
Sexton RE, Uddin MH, Bannoura S, Khan HY, Mzannar Y, Li Y, Aboukameel A, Al-Hallak MN, Al-Share B, Mohamed A, Nagasaka M, El-Rayes B, Azmi AS. Connecting the Human Microbiome and Pancreatic Cancer. Cancer Metastasis Rev 2022; 41:317-331. [PMID: 35366155 PMCID: PMC8976105 DOI: 10.1007/s10555-022-10022-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 03/02/2022] [Indexed: 11/02/2022]
Abstract
Pancreatic cancer is a deadly disease that is increasing in incidence throughout the world. There are no clear causal factors associated with the incidence of pancreatic cancer; however, some correlation to smoking, diabetes and alcohol has been described. Recently, a few studies have linked the human microbiome (oral and gastrointestinal tract) to pancreatic cancer development. A perturbed microbiome has been shown to alter normal cells while promoting cancer-related processes such as increased cell signaling, immune system evasion and invasion. In this article, we will review in detail the alterations within the gut and oral microbiome that have been linked to pancreatic cancer and explore the ability of other microbiomes, such as the lung and skin microbiome, to contribute to disease development. Understanding ways to identify a perturbed microbiome can result in advancements in pancreatic cancer research and allow for prevention, earlier detection and alternative treatment strategies for patients.
Collapse
Affiliation(s)
- Rachel E Sexton
- Department of Oncology, Wayne State University School of Medicine, Karmanos Cancer Institute, 4100 John R, Detroit, MI, 48201, USA
| | - Md Hafiz Uddin
- Department of Oncology, Wayne State University School of Medicine, Karmanos Cancer Institute, 4100 John R, Detroit, MI, 48201, USA
| | - Sahar Bannoura
- Department of Oncology, Wayne State University School of Medicine, Karmanos Cancer Institute, 4100 John R, Detroit, MI, 48201, USA
| | - Husain Yar Khan
- Department of Oncology, Wayne State University School of Medicine, Karmanos Cancer Institute, 4100 John R, Detroit, MI, 48201, USA
| | - Yousef Mzannar
- Department of Oncology, Wayne State University School of Medicine, Karmanos Cancer Institute, 4100 John R, Detroit, MI, 48201, USA
| | - Yiwei Li
- Department of Oncology, Wayne State University School of Medicine, Karmanos Cancer Institute, 4100 John R, Detroit, MI, 48201, USA
| | - Amro Aboukameel
- Department of Oncology, Wayne State University School of Medicine, Karmanos Cancer Institute, 4100 John R, Detroit, MI, 48201, USA
| | - Mohammad Najeeb Al-Hallak
- Department of Oncology, Wayne State University School of Medicine, Karmanos Cancer Institute, 4100 John R, Detroit, MI, 48201, USA
| | - Bayan Al-Share
- Department of Oncology, Wayne State University School of Medicine, Karmanos Cancer Institute, 4100 John R, Detroit, MI, 48201, USA
| | - Amr Mohamed
- UH Seidman Cancer Center, University Hospitals, Case Western Reserve University, Cleveland, OH, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Misako Nagasaka
- University of California, Irvine, UCI Health Chao Family Comprehensive Cancer Center, CA, Irvine, USA
| | - Bassel El-Rayes
- O'Neal Comprehensive Cancer Center, University of Alabama, AL, Tuscaloosa, USA
| | - Asfar S Azmi
- Department of Oncology, Wayne State University School of Medicine, Karmanos Cancer Institute, 4100 John R, Detroit, MI, 48201, USA.
| |
Collapse
|
27
|
Zhang Z, Tang D. The huge clinical potential of microbiota in the treatment of pancreatic cancer: The next frontier. Biochim Biophys Acta Rev Cancer 2022; 1877:188733. [PMID: 35483491 DOI: 10.1016/j.bbcan.2022.188733] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/18/2022] [Accepted: 04/21/2022] [Indexed: 02/07/2023]
Abstract
Microbes and their metabolites are found in all body organs; their interaction with body organs can influence inflammation, immunity, and cancer development. Pancreatic cancer development is closely related to intestinal, intrapancreatic, and oral flora. The microbiota plays a regulatory role in pancreatic cancer's malignant progression and treatment resistance. Thus, the study of microbiota-host interactions has emerged as a new hot topic in pancreatic cancer treatment, with microbiota control demonstrating significant clinical potential. This review summarizes recent advances in the clinical diagnosis and treatment of pancreatic cancer, emphasizing the enormous potential for operating microbiota in pancreatic cancer treatment.
Collapse
Affiliation(s)
- Zhilin Zhang
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Dong Tang
- Department of General Surgery, Institute of General Surgery, Clinical Medical College, Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou, China.
| |
Collapse
|
28
|
Isozaki S, Konishi H, Tanaka H, Yamamura C, Moriichi K, Ogawa N, Fujiya M. Probiotic-derived heptelidic acid exerts antitumor effects on extraintestinal melanoma through glyceraldehyde-3-phosphate dehydrogenase activity control. BMC Microbiol 2022; 22:110. [PMID: 35459092 PMCID: PMC9026996 DOI: 10.1186/s12866-022-02530-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 04/15/2022] [Indexed: 11/10/2022] Open
Abstract
Background Several microorganisms inhabit the mammalian gastrointestinal tract and are associated with the pathogenesis of various diseases, including cancer. Recent studies have indicated that several probiotics produce antitumor molecules and inhibit host tumor progression. We demonstrated that heptelidic acid (HA), a sesquiterpene lactone derived from the probiotic Aspergillus oryzae, exerts antitumor effects against pancreatic cancer in vitro and in vivo. In this study, the antitumor effects of HA against extraintestinal melanoma were assessed in vitro and in vivo. Results Sulforhodamine B (SRB) assay revealed that the growth of B16F10 cells was significantly inhibited by HA in a concentration-dependent manner. The enzymatic activity of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) decreased in proportion with the growth inhibition effect of HA. Moreover, oral HA administration significantly suppressed the growth of transplanted B16F10 tumors without any significant changes in biochemical test values. Moreover, GAPDH activity in the transplanted tumor tissues in the HA group significantly decreased compared with that in the PBS group. Conclusion This study suggests that orally administered HA was absorbed in the gastrointestinal tract, reached the cancer cells transplanted in the skin, and inhibited GAPDH activity, thereby inhibiting the growth of extraintestinal melanoma cells. Thus, this study proposes a novel system for extraintestinal tumor regulation via gut bacteria-derived bioactive mediators. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-022-02530-0.
Collapse
Affiliation(s)
- Shotaro Isozaki
- Division of Metabolism and Biosystemic Science, Gastroenterology, and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa, 078-8510, Japan.,Department of Forensic Medicine, Tokai University School of Medicine, Isehara, 259-1193, Japan
| | - Hiroaki Konishi
- Division of Metabolism and Biosystemic Science, Gastroenterology, and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa, 078-8510, Japan. .,Department of Gastroenterology and Advanced Medical Sciences, Department of Medicine, Asahikawa Medical University, Asahikawa, 078-8510, Japan.
| | - Hiroki Tanaka
- Division of Tumor Pathology, Department of Pathology, Asahikawa Medical University, Asahikawa, 078-8510, Japan
| | - Chikage Yamamura
- Division of Metabolism and Biosystemic Science, Gastroenterology, and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa, 078-8510, Japan
| | - Kentaro Moriichi
- Division of Metabolism and Biosystemic Science, Gastroenterology, and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa, 078-8510, Japan
| | - Naoki Ogawa
- Center for Advanced Research and Education, Asahikawa Medical University, Asahikawa, 078-8510, Japan
| | - Mikihiro Fujiya
- Division of Metabolism and Biosystemic Science, Gastroenterology, and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa, 078-8510, Japan.,Department of Gastroenterology and Advanced Medical Sciences, Department of Medicine, Asahikawa Medical University, Asahikawa, 078-8510, Japan
| |
Collapse
|
29
|
Chen Z, Zhang S, Dong S, Xu H, Zhou W. Association of the Microbiota and Pancreatic Cancer: Opportunities and Limitations. Front Immunol 2022; 13:844401. [PMID: 35309293 PMCID: PMC8928443 DOI: 10.3389/fimmu.2022.844401] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/07/2022] [Indexed: 11/13/2022] Open
Abstract
The human body is thoroughly colonized by a wide variety of microorganisms, termed microbiota. Pancreatic cancer, one of the most aggressive forms of cancer, is no exception. The microbiota of pancreatic cancer largely influences and even dominates the occurrence, development and outcome of pancreatic cancer in many ways. Studies have shown that microbiota could change the malignant phenotype and prognosis of pancreatic cancer by stimulating persistent inflammation, regulating the antitumor immune system, changing the tumor microenvironment and affecting cellular metabolism. This is why the association of the microbiota with pancreatic cancer is an emerging area of research that warrants further exploration. Herein, we investigated the potential microbial markers of pancreatic cancer, related research models, the mechanism of action of microbiota in pancreatic cancer, and pancreatic cancer-microbiota-related treatment.
Collapse
Affiliation(s)
- Zhou Chen
- Department of General Surgery, The First Hospital of Lanzhou University, The First Clinical Medical School of Lanzhou University, Lanzhou University, Lanzhou, China
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Shaofeng Zhang
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, China
| | - Shi Dong
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Hao Xu
- Department of General Surgery, The First Hospital of Lanzhou University, The First Clinical Medical School of Lanzhou University, Lanzhou University, Lanzhou, China
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Wence Zhou
- Department of General Surgery, The First Hospital of Lanzhou University, The First Clinical Medical School of Lanzhou University, Lanzhou University, Lanzhou, China
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| |
Collapse
|
30
|
Zhang T, Gao G, Sakandar HA, Kwok LY, Sun Z. Gut Dysbiosis in Pancreatic Diseases: A Causative Factor and a Novel Therapeutic Target. Front Nutr 2022; 9:814269. [PMID: 35242797 PMCID: PMC8885515 DOI: 10.3389/fnut.2022.814269] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/21/2022] [Indexed: 12/12/2022] Open
Abstract
Pancreatic-related disorders such as pancreatitis, pancreatic cancer, and type 1 diabetes mellitus (T1DM) impose a substantial challenge to human health and wellbeing. Even though our understanding of the initiation and progression of pancreatic diseases has broadened over time, no effective therapeutics is yet available for these disorders. Mounting evidence suggests that gut dysbiosis is closely related to human health and disease, and pancreatic diseases are no exception. Now much effort is under way to explore the correlation and eventually potential causation between the gut microbiome and the course of pancreatic diseases, as well as to develop novel preventive and/or therapeutic strategies of targeted microbiome modulation by probiotics, prebiotics, synbiotics, postbiotics, and fecal microbiota transplantation (FMT) for these multifactorial disorders. Attempts to dissect the intestinal microbial landscape and its metabolic profile might enable deep insight into a holistic picture of these complex conditions. This article aims to review the subtle yet intimate nexus loop between the gut microbiome and pancreatic diseases, with a particular focus on current evidence supporting the feasibility of preventing and controlling pancreatic diseases via microbiome-based therapeutics and therapies.
Collapse
Affiliation(s)
- Tao Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Guangqi Gao
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Hafiz Arbab Sakandar
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Lai-Yu Kwok
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Zhihong Sun
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, China
- *Correspondence: Zhihong Sun
| |
Collapse
|
31
|
Sevcikova A, Izoldova N, Stevurkova V, Kasperova B, Chovanec M, Ciernikova S, Mego M. The Impact of the Microbiome on Resistance to Cancer Treatment with Chemotherapeutic Agents and Immunotherapy. Int J Mol Sci 2022; 23:ijms23010488. [PMID: 35008915 PMCID: PMC8745082 DOI: 10.3390/ijms23010488] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/07/2021] [Accepted: 12/07/2021] [Indexed: 02/04/2023] Open
Abstract
Understanding the mechanisms of resistance to therapy in human cancer cells has become a multifaceted limiting factor to achieving optimal cures in cancer patients. Besides genetic and epigenetic alterations, enhanced DNA damage repair activity, deregulation of cell death, overexpression of transmembrane transporters, and complex interactions within the tumor microenvironment, other mechanisms of cancer treatment resistance have been recently proposed. In this review, we will summarize the preclinical and clinical studies highlighting the critical role of the microbiome in the efficacy of cancer treatment, concerning mainly chemotherapy and immunotherapy with immune checkpoint inhibitors. In addition to involvement in drug metabolism and immune surveillance, the production of microbiota-derived metabolites might represent the link between gut/intratumoral bacteria and response to anticancer therapies. Importantly, an emerging trend of using microbiota modulation by probiotics and fecal microbiota transplantation (FMT) to overcome cancer treatment resistance will be also discussed.
Collapse
Affiliation(s)
- Aneta Sevcikova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dúbravská Cesta 9, 845 05 Bratislava, Slovakia; (A.S.); (N.I.); (V.S.)
| | - Nikola Izoldova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dúbravská Cesta 9, 845 05 Bratislava, Slovakia; (A.S.); (N.I.); (V.S.)
- Department of Genetics, Faculty of Natural Sciences, Comenius University, 842 15 Bratislava, Slovakia
| | - Viola Stevurkova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dúbravská Cesta 9, 845 05 Bratislava, Slovakia; (A.S.); (N.I.); (V.S.)
| | - Barbora Kasperova
- Department of Oncohematology, Faculty of Medicine, Comenius University, Bratislava and National Cancer Institute, 833 10 Bratislava, Slovakia;
| | - Michal Chovanec
- 2nd Department of Oncology, Faculty of Medicine, Comenius University, Bratislava and National Cancer Institute, 833 10 Bratislava, Slovakia; (M.C.); (M.M.)
| | - Sona Ciernikova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dúbravská Cesta 9, 845 05 Bratislava, Slovakia; (A.S.); (N.I.); (V.S.)
- Correspondence: ; Tel.: +421-2-3229-5198
| | - Michal Mego
- 2nd Department of Oncology, Faculty of Medicine, Comenius University, Bratislava and National Cancer Institute, 833 10 Bratislava, Slovakia; (M.C.); (M.M.)
| |
Collapse
|
32
|
Pancreatic Cancer and Gut Microbiome-Related Aspects: A Comprehensive Review and Dietary Recommendations. Nutrients 2021; 13:nu13124425. [PMID: 34959977 PMCID: PMC8709322 DOI: 10.3390/nu13124425] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/04/2021] [Accepted: 12/08/2021] [Indexed: 12/12/2022] Open
Abstract
Gut microbiota plays a significant role in the human body providing many beneficial effects on the host. However, its dysbiotic alterations may affect the tumorigenic pathway and then trigger the development of pancreatic cancer. This dysbiosis can also modulate the aggressiveness of the tumor, influencing the microenvironment. Because pancreatic cancer is still one of the most lethal cancers worldwide with surgery as the only method that influences prognosis and has curative potential, there is a need to search for other strategies which will enhance the efficiency of standard therapy and improve patients' quality of life. The administration of prebiotics, probiotics, next-generation probiotics (Faecalibacterium prausnitzii, Akkermansia muciniphila), synbiotics, postbiotics, and fecal microbiota transplantation through multiple mechanisms affects the composition of the gut microbiota and may restore its balance. Despite limited data, some studies indicate that the aforementioned methods may allow to achieve better effect of pancreatic cancer treatment and improve therapeutic strategies for pancreatic cancer patients.
Collapse
|
33
|
Zhao X, Hengchao E, Dong H, Zhang Y, Qiu J, Qian Y, Zhou C. Combination of untargeted metabolomics approach and molecular networking analysis to identify unique natural components in wild Morchella sp. by UPLC-Q-TOF-MS. Food Chem 2021; 366:130642. [PMID: 34304135 DOI: 10.1016/j.foodchem.2021.130642] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 07/06/2021] [Accepted: 07/17/2021] [Indexed: 11/04/2022]
Abstract
Morchella sp. is a typical edible fungus. However, its unique natural products, especially bioactive composition, are rarely reported. In this study, an untargeted metabolomics approach combined with multivariate statistical analysis was employed to screen the differential metabolites in Morchella sp. compared to four other edible fungi. Among the screened 50-top differential metabolites, 18 compounds involving fatty acids and peptides showed higher content in Morchella sp.. A unique peptide of desferriferricrocin was identified. Subsequently, molecular networking analysis revealed three novel homologous compounds of desferriferricrocin, which were annotated as desferriferrichrome, desferriferrichrome C, and a new homolog not previously reported. These results were further verified by quantitative analysis. To the best of our knowledge, this is the first report of four peptides in Morchella sp..
Collapse
Affiliation(s)
- Xiaoyan Zhao
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China; Institute for Agro-food Standards and Testing Technology, Laboratory of Quality and Safety Risk Assessment for Agro-products (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai Academy of Agricultural Sciences, 1000 Jingqi Road, Shanghai 201403, China
| | - E Hengchao
- Institute for Agro-food Standards and Testing Technology, Laboratory of Quality and Safety Risk Assessment for Agro-products (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai Academy of Agricultural Sciences, 1000 Jingqi Road, Shanghai 201403, China
| | - Hui Dong
- Institute for Agro-food Standards and Testing Technology, Laboratory of Quality and Safety Risk Assessment for Agro-products (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai Academy of Agricultural Sciences, 1000 Jingqi Road, Shanghai 201403, China
| | - Yanmei Zhang
- Institute for Agro-food Standards and Testing Technology, Laboratory of Quality and Safety Risk Assessment for Agro-products (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai Academy of Agricultural Sciences, 1000 Jingqi Road, Shanghai 201403, China
| | - Jing Qiu
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Yongzhong Qian
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China.
| | - Changyan Zhou
- Institute for Agro-food Standards and Testing Technology, Laboratory of Quality and Safety Risk Assessment for Agro-products (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai Academy of Agricultural Sciences, 1000 Jingqi Road, Shanghai 201403, China.
| |
Collapse
|
34
|
Mohindroo C, Hasanov M, Rogers JE, Dong W, Prakash LR, Baydogan S, Mizrahi JD, Overman MJ, Varadhachary GR, Wolff RA, Javle MM, Fogelman DR, Lotze MT, Kim MP, Katz MHG, Pant S, Tzeng CWD, McAllister F. Antibiotic use influences outcomes in advanced pancreatic adenocarcinoma patients. Cancer Med 2021; 10:5041-5050. [PMID: 34250759 PMCID: PMC8335807 DOI: 10.1002/cam4.3870] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/14/2020] [Accepted: 12/31/2020] [Indexed: 12/21/2022] Open
Abstract
Recent studies defined a potentially important role of the microbiome in modulating pancreatic ductal adenocarcinoma (PDAC) and responses to therapies. We hypothesized that antibiotic usage may predict outcomes in patients with PDAC. We retrospectively analyzed clinical data of patients with resectable or metastatic PDAC seen at MD Anderson Cancer from 2003 to 2017. Demographic, chemotherapy regimen and antibiotic use, duration, type, and reason for indication were recorded. A total of 580 patients with PDAC were studied, 342 resected and 238 metastatic patients, selected retrospectively from our database. Antibiotic use, for longer than 48 hrs, was detected in 209 resected patients (61%) and 195 metastatic ones (62%). On resectable patients, we did not find differences in overall survival (OS) or progression‐free survival (PFS), based on antibiotic intake. However, in the metastatic cohort, antibiotic consumption was associated with a significantly longer OS (13.3 months vs. 9.0 months, HR 0.48, 95% CI 0.34–0.7, p = 0.0001) and PFS (4.4 months vs. 2 months, HR 0.48, 95% CI 0.34–0.68, p = <0.0001). In multivariate analysis, the impact of ATB remained significant for PFS (HR 0.59, p = 0.005) and borderline statistically significant for OS (HR 0.69, p = 0.06). When we analyzed by chemotherapy regimen, we found that patients who received gemcitabine‐based chemotherapy as first‐line therapy (n = 118) had significantly prolonged OS (HR 0.4, p 0.0013) and PFS (HR 0.55, p 0.02) if they received antibiotics, while those receiving 5FU‐based chemotherapy (n = 98) had only prolonged PFS (HR 0.54, p = 0.03). Antibiotics‐associated modulation of the microbiome is associated with better outcomes in patients with metastatic PDAC. We have analyzed the effect of antibiotics’ intake on two cohorts of patients with pancreatic adenocarcinoma, resectable, and metastatic. We have found that on the metastatic cohort, antibiotics use was significantly associated with better outcomes, particularly, on patients that received gemcitabine based‐chemotherapy as the first line.
Collapse
Affiliation(s)
- Chirayu Mohindroo
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Merve Hasanov
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jane E Rogers
- Pharmacy Clinical Programs, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Wenli Dong
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Laura R Prakash
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Seyda Baydogan
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jonathan D Mizrahi
- Department of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Michael J Overman
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Gauri R Varadhachary
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Robert A Wolff
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Milind M Javle
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - David R Fogelman
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Michael T Lotze
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Michael P Kim
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Matthew H G Katz
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Shubham Pant
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Investigation Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ching-Wei D Tzeng
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Florencia McAllister
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
35
|
Lu SY, Hua J, Xu J, Wei MY, Liang C, Meng QC, Liu J, Zhang B, Wang W, Yu XJ, Shi S. Microorganisms in chemotherapy for pancreatic cancer: An overview of current research and future directions. Int J Biol Sci 2021; 17:2666-2682. [PMID: 34326701 PMCID: PMC8315022 DOI: 10.7150/ijbs.59117] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 06/08/2021] [Indexed: 01/18/2023] Open
Abstract
Pancreatic cancer is a malignant tumor of the digestive system with a very high mortality rate. While gemcitabine-based chemotherapy is the predominant treatment for terminal pancreatic cancer, its therapeutic effect is not satisfactory. Recently, many studies have found that microorganisms not only play a consequential role in the occurrence and progression of pancreatic cancer but also modulate the effect of chemotherapy to some extent. Moreover, microorganisms may become an important biomarker for predicting pancreatic carcinogenesis and detecting the prognosis of pancreatic cancer. However, the existing experimental literature is not sufficient or convincing. Therefore, further exploration and experiments are imperative to understanding the mechanism underlying the interaction between microorganisms and pancreatic cancer. In this review, we primarily summarize and discuss the influences of oncolytic viruses and bacteria on pancreatic cancer chemotherapy because these are the two types of microorganisms that are most often studied. We focus on some potential methods specific to these two types of microorganisms that can be used to improve the efficacy of chemotherapy in pancreatic cancer therapy.
Collapse
Affiliation(s)
- Si-Yuan Lu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Jie Hua
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Jin Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Miao-Yan Wei
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Chen Liang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Qing-Cai Meng
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Jiang Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Bo Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Wei Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Xian-Jun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Si Shi
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| |
Collapse
|
36
|
Probiotic Aspergillus oryzae produces anti-tumor mediator and exerts anti-tumor effects in pancreatic cancer through the p38 MAPK signaling pathway. Sci Rep 2021; 11:11070. [PMID: 34040123 PMCID: PMC8154913 DOI: 10.1038/s41598-021-90707-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/17/2021] [Indexed: 12/19/2022] Open
Abstract
Intake of probiotics or fermented food produced by some probiotic bacteria is believed to exert anti-tumor functions in various cancers, including pancreatic cancer, because several studies have demonstrated the anti-tumor effects of probiotic bacteria in vitro and in vivo in animal carcinogenesis models. However, the mechanisms underlying the anticancer effects of probiotics on pancreatic cancer have not been clarified. In this study, we assessed the anti-tumor effects of probiotic bacteria against pancreatic cancer cells. Among the known probiotic bacteria, Aspergillus oryzae exhibited a strong pancreatic tumor suppression effect. The culture supernatant of A. oryzae was separated by HPLC. Heptelidic acid was identified as an anti-tumor molecule derived from A. oryzae by LC–MS and NMR analysis. The anti-tumor effect of heptelidic acid was exhibited in vitro and in vivo in a xenograft model of pancreatic cancer cells. The anti-tumor effect of heptelidic acid was exerted by the p38 MAPK signaling pathway. Heptelidic acid traverses the intestinal mucosa and exerts anti-tumor effects on pancreatic cancer cells. This is a novel anti-tumor mechanism induced by beneficial bacteria against pancreatic cancer in which bacterial molecules pass through the intestinal tract, reach the extra-intestinal organs, and then induce apoptosis via an inducible signaling pathway.
Collapse
|
37
|
Su M, Zhang Z, Zhou L, Han C, Huang C, Nice EC. Proteomics, Personalized Medicine and Cancer. Cancers (Basel) 2021; 13:2512. [PMID: 34063807 PMCID: PMC8196570 DOI: 10.3390/cancers13112512] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/12/2021] [Accepted: 05/17/2021] [Indexed: 02/05/2023] Open
Abstract
As of 2020 the human genome and proteome are both at >90% completion based on high stringency analyses. This has been largely achieved by major technological advances over the last 20 years and has enlarged our understanding of human health and disease, including cancer, and is supporting the current trend towards personalized/precision medicine. This is due to improved screening, novel therapeutic approaches and an increased understanding of underlying cancer biology. However, cancer is a complex, heterogeneous disease modulated by genetic, molecular, cellular, tissue, population, environmental and socioeconomic factors, which evolve with time. In spite of recent advances in treatment that have resulted in improved patient outcomes, prognosis is still poor for many patients with certain cancers (e.g., mesothelioma, pancreatic and brain cancer) with a high death rate associated with late diagnosis. In this review we overview key hallmarks of cancer (e.g., autophagy, the role of redox signaling), current unmet clinical needs, the requirement for sensitive and specific biomarkers for early detection, surveillance, prognosis and drug monitoring, the role of the microbiome and the goals of personalized/precision medicine, discussing how emerging omics technologies can further inform on these areas. Exemplars from recent onco-proteogenomic-related publications will be given. Finally, we will address future perspectives, not only from the standpoint of perceived advances in treatment, but also from the hurdles that have to be overcome.
Collapse
Affiliation(s)
- Miao Su
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China; (M.S.); (Z.Z.); (L.Z.); (C.H.)
| | - Zhe Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China; (M.S.); (Z.Z.); (L.Z.); (C.H.)
| | - Li Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China; (M.S.); (Z.Z.); (L.Z.); (C.H.)
| | - Chao Han
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China; (M.S.); (Z.Z.); (L.Z.); (C.H.)
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China; (M.S.); (Z.Z.); (L.Z.); (C.H.)
| | - Edouard C. Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
38
|
Tijeras-Raballand A, Hilmi M, Astorgues-Xerri L, Nicolle R, Bièche I, Neuzillet C. Microbiome and pancreatic ductal adenocarcinoma. Clin Res Hepatol Gastroenterol 2021; 45:101589. [PMID: 33607375 DOI: 10.1016/j.clinre.2020.101589] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 11/24/2020] [Indexed: 02/07/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) incidence and related-deaths are increasing worldwide. PDAC is characterized by poor prognosis due to late diagnosis, high metastatic capacity and resistance to therapy. This is partially due to its specific microenvironment, where the stroma is prominent over tumor cells. Besides the oral and gut microbiota, the intratumor microbiome, i.e. the bacterial and fungal microorganisms present within the tumor, was recently introduced as a new partner of the tumor microenvironment of PDAC modulating pancreatic carcinogenesis, intratumor immune infiltrates, and response to chemotherapy. In this review, we propose an overview of current knowledge about the roles of bacteria and fungi in PDAC development and biology, and discuss potential therapeutic implications.
Collapse
Affiliation(s)
| | - Marc Hilmi
- OncoMEGA, Lamorlaye, France; Medical Oncology Department, Curie Institute, Versailles Saint-Quentin University (UVQ), Paris Saclay University, Saint-Cloud, France
| | | | - Rémy Nicolle
- OncoMEGA, Lamorlaye, France; Carte d'Identité des Tumeurs (Tumors Identity Card), La Ligue Contre le Cancer, Paris, France
| | - Ivan Bièche
- Pharmacogenomic Unit, Genetic Department, Curie Institute, Paris, France
| | - Cindy Neuzillet
- OncoMEGA, Lamorlaye, France; Medical Oncology Department, Curie Institute, Versailles Saint-Quentin University (UVQ), Paris Saclay University, Saint-Cloud, France.
| |
Collapse
|
39
|
Zhang M, Lin H, Ge X, Xu Y. Overproduced CPSF4 Promotes Cell Proliferation and Invasion via PI3K-AKT Signaling Pathway in Oral Squamous Cell Carcinoma. J Oral Maxillofac Surg 2021; 79:1177.e1-1177.e14. [PMID: 33535057 DOI: 10.1016/j.joms.2020.12.047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 12/29/2020] [Accepted: 12/29/2020] [Indexed: 01/04/2023]
Abstract
PURPOSE Invasion and metastasis are major challenges in the treatment of oral cancer. We hypothesize that cleavage and polyadenylation specific factor 4 (CPSF4), a key mediator of cell growth and metastasis in several types of cancers, contributes to oral squamous cell carcinoma (OSCC) pathogenesis. MATERIALS AND METHODS The expression and production of CPSF4 in OSCC cell lines and tumor tissues were assessed by RT-PCR and western blot, respectively. The relationships between CPSF4 production and OSCC clinicopathological features were analyzed using immunohistochemistry. The effects of CPSF4 on viability, proliferation, migration, invasion, cell cycle distribution, and apoptosis of OSCC cells were measured by MTS assay, colony formation assay, wound-healing, transwell invasion assay, flow cytometry, and cell apoptosis assay, respectively. Western blot analysis was used to assess alteration of PI3K-AKT pathway member levels in cell lines transfected with CPSF4 siRNA. Mice xenograft models were used to determine the effect of CPSF4 on OSCC tumor growth in vivo. RESULTS CPSF4 was highly expressed in OSCC cell lines and tumor tissues compared with adjacent normal oral tissues. High CPSF4 expression was strongly correlated with vascular invasion (P = .004), distant metastasis (P = .001), and TNM stages (P = .001). Moreover, reduction of CPSF4 levels contributed to the inhibition of cell viability, proliferation, invasion and migration, and the induction of apoptosis in OSCC cell lines. Reduction of CPSF4 levels results in OSCC cell cycle arrest in G1 phase by targeting c-Myc. CPSF4 contributed to proliferation inhibition via PI3K-AKT signaling pathway. Reduction of CPSF4 levels inhibits OSCC tumor growth in vivo. CONCLUSIONS Our results suggest that CPSF4 supports OSCC invasion and metastasis and may be a promising therapeutic target for OSCC.
Collapse
Affiliation(s)
- Mingjie Zhang
- Resident, Department of Orthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Han Lin
- Resident, Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Xiaohan Ge
- Graduate Student, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Yue Xu
- Professor, Department of Orthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.
| |
Collapse
|
40
|
Badgeley A, Anwar H, Modi K, Murphy P, Lakshmikuttyamma A. Effect of probiotics and gut microbiota on anti-cancer drugs: Mechanistic perspectives. Biochim Biophys Acta Rev Cancer 2020; 1875:188494. [PMID: 33346129 DOI: 10.1016/j.bbcan.2020.188494] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 12/11/2020] [Accepted: 12/13/2020] [Indexed: 02/07/2023]
Abstract
Bacteria present in probiotics, particularly the common Lactobacillus and Bifidobacterium microbes, have been found to induce anti-cancer action by enhancing cancer cell apoptosis and protecting against oxidative stress. Probiotics supplements also decrease the cancer-producing microorganism Fusobacterium. Studies have demonstrated that gut microbiota modifies the effect of chemo/radiation therapy. Gut microbes not only enhance the action of chemotherapy drugs but also reduce the side effects of these medications. Additionally, gut microbes reduce immunotherapy toxicity, in particular, the presence of Bacteroidetes or Bifidobacterium decreases the development of colitis by ipilimumab therapy. Probiotics supplements containing Bifidobacterium also reduce chemotherapy-induced mucositis and radiation-induced diarrhea. This review focused on elucidating the mechanism behind the anti-cancer action of Bifidobacterium species. Available studies have revealed Bifidobacterium species decrease cancer cell proliferation via the inhibition of growth factor signaling as well as inducing mitochondrial-mediated apoptosis. Moreover, Bifidobacterium species reduce the adverse effects of chemo/immuno/radiation therapy by inhibiting proinflammatory cytokines. Further clinical studies are needed to identify the powerful and suitable Bifidobacterium strain for the development of adjuvant therapy to support chemo/immuno/radiation therapy.
Collapse
Affiliation(s)
- Aja Badgeley
- Department of Pharmaceutical Sciences, Jefferson College of Pharmacy, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Hina Anwar
- Department of Pharmaceutical Sciences, Jefferson College of Pharmacy, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Karan Modi
- Department of Pharmaceutical Sciences, Jefferson College of Pharmacy, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Paige Murphy
- Department of Pharmaceutical Sciences, Jefferson College of Pharmacy, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Ashakumary Lakshmikuttyamma
- Department of Pharmaceutical Sciences, Jefferson College of Pharmacy, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|