1
|
Zheng T, Huang Y, Chu D, He S. COL22A1 Activates the PI3K/AKT Signaling Pathway to Sustain the Malignancy of Glioblastoma. Int J Genomics 2025; 2025:6587097. [PMID: 40438725 PMCID: PMC12119163 DOI: 10.1155/ijog/6587097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 11/21/2024] [Accepted: 04/29/2025] [Indexed: 06/01/2025] Open
Abstract
Background: Glioblastoma (GBM) represents an aggressive malignancy in the central nervous system, with a poor prognosis. Despite ongoing research efforts, there is still a lack of effective treatments, leading to the need for new therapeutic targets. Collagen plays a crucial role in the extracellular matrix and can impact the progression of cancer. Yet the potential involvement of COL22A1 (Collagen Type XXII Alpha 1 chain) in GBM has not been investigated. Materials and Methods: The expression of COL22A1 was evaluated in both clinical GBM samples and the Gene Expression Profiling Interactive Analysis (GEPIA) database. Following COL22A1 knockdown in GBM cells, functional assays were conducted to assess proliferation, migration, and invasion. The influence of COL22A1 on oncogenic signaling pathways was analyzed through luciferase reporter assays and interventions with pharmacological agents. In vivo experiments were performed using a nude mouse xenograft model. Results: COL22A1 expression was significantly higher in GBM tissues and was linked with a poor prognosis. Silencing COL22A1 suppressed proliferation, migration, and invasion of GBM cells and impeded tumorigenesis in vivo. On a mechanistic level, COL22A1 impacted the PI3K/AKT signaling cascade, demonstrated by decreased FOXO transcriptional activity and lower levels of phosphorylated PI3K (p-PI3K) and phosphorylated AKT (p-AKT). Furthermore, stimulating the PI3K/AKT pathway partially mitigated the impact of COL22A1 silencing. Conclusion: COL22A1 plays a crucial role in dictating the malignancy of GBM through regulating the PI3K/AKT signaling pathway. Targeting COL22A1 could present a novel approach for GBM management.
Collapse
Affiliation(s)
- Tao Zheng
- Department of Neurosurgery, Xi'an International Medical Center Hospital, Xi'an City, Shaanxi Province, China
| | - Yuanzhi Huang
- Department of Neurosurgery, Xi'an International Medical Center Hospital, Xi'an City, Shaanxi Province, China
| | - Dong Chu
- Department of Neurosurgery, Xi'an International Medical Center Hospital, Xi'an City, Shaanxi Province, China
| | - Shiming He
- Department of Neurosurgery, Xi'an International Medical Center Hospital, Xi'an City, Shaanxi Province, China
| |
Collapse
|
2
|
She H, Li TR, Zhao G, Yi L, Liu Q, Liu ZC, Pei HY, Li X, Zuo D, Mao Q, Li Y. Aberrant PLAC8 expression characterizes glioblastoma with temozolomide resistance and an immunosuppressive microenvironment. Cancer Lett 2025; 625:217805. [PMID: 40398706 DOI: 10.1016/j.canlet.2025.217805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 05/08/2025] [Accepted: 05/15/2025] [Indexed: 05/23/2025]
Abstract
Glioblastoma (GBM), Isocitrate Dehydrogenase-wildtype (IDH-WT) represents the most prevalent and clinically aggressive subtype of adult diffuse gliomas, typically associated with poor prognosis. Temozolomide (TMZ) remains the first-line chemotherapeutic agent for GBM; however, the emergence of TMZ resistance represents a major therapeutic obstacle in clinical practice. This study identifies placenta-specific 8 (PLAC8) as a novel mediator of TMZ resistance in IDH-WT GBM. Elevated PLAC8 expression was strongly correlated with poorer survival rates, higher tumor grades in glioma, establishing it as an independent prognostic factor. Notably, consistent upregulation of PLAC8 was observed in both TMZ-resistant GBM cells and TMZ-treated patients, suggesting its potential as a biomarker for TMZ resistance. Mechanistic studies revealed that PLAC8 regulates TMZ sensitivity in GBM cells through the AKT-mTOR signaling pathway. Additionally, integrated bioinformatics and clinical analyses demonstrated that PLAC8 expression positively correlates with immune cell infiltration while promoting an immunosuppressive tumor microenvironment and modulating immunotherapy-related biomarkers, suggesting its potential as a predictive biomarker for immunotherapy response. In conclusion, PLAC8 represents a promising biomarker and therapeutic target for overcoming TMZ resistance and guiding immunotherapy in GBM. This study provides valuable insights for the development of personalized treatment strategies aimed at improving patient outcomes.
Collapse
Affiliation(s)
- Han She
- Department of Anesthesiology, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, 400042, China
| | - Tian-Ran Li
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, 400038, China
| | - Guozhi Zhao
- Department of Urology Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Liang Yi
- Department of Neurosurgery, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, 400042, China
| | - Qing Liu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, 400038, China
| | - Zheng-Chao Liu
- Department of Anesthesiology, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, 400042, China
| | - Hao-Yu Pei
- Department of Anesthesiology, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, 400042, China
| | - Xunjia Li
- Department of Nephrology, The First Affiliated Hospital of Chongqing University of Chinese Medicine, Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400021, China
| | - Deyu Zuo
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Chongqing University of Chinese Medicine, Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400021, China; Department of Research and Development, Chongqing Precision Medical Industry Technology Research Institute, Chongqing, 400000, China.
| | - Qingxiang Mao
- Department of Anesthesiology, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, 400042, China.
| | - Yong Li
- Department of Anesthesiology, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, 400042, China.
| |
Collapse
|
3
|
Rana M, Liou KC, Thakur A, Nepali K, Liou JP. Advancing glioblastoma therapy: Learning from the past and innovations for the future. Cancer Lett 2025; 617:217601. [PMID: 40037502 DOI: 10.1016/j.canlet.2025.217601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/25/2025] [Accepted: 03/01/2025] [Indexed: 03/06/2025]
Abstract
Marred by a median survival of only around 12-15 months coupled with poor prognosis and effective therapeutic deprived drug armory, treatment/management of glioblastoma has proved to be a daunting task. Surgical resection, flanked by radiotherapy and chemotherapy with temozolomide, stands as the standard of care; however, this trimodal therapy often manifests limited efficacy due to the heterogeneous and highly infiltrative nature of GBM cells. In addition, the existence of the blood-brain barrier, tumor microenvironment, and the immunosuppressive nature of GBM, along with the encountered resistance of GBM cells towards conventional therapy, also hinders the therapeutic applications of chemotherapeutics in GBM. This review presents key insights into the molecular pathology of GBM, including genetic mutations, signaling pathways, and tumor microenvironment characteristics. Recent innovations such as immunotherapy, oncolytic viral therapies, vaccines, nanotechnology, electric field, and cancer neuroscience, as well as their clinical progress, have been covered. In addition, this compilation also encompasses a discussion on the role of personalized medicine in tailoring treatments based on individual tumor profiles, an approach that is gradually shifting the paradigm in GBM management. Endowed with the learnings imbibed from past failures coupled with the zeal to embrace novel/multidisciplinary approaches, researchers appear to be on the right track to pinpoint more effective and durable solutions in the context of GBM treatment.
Collapse
Affiliation(s)
- Mandeep Rana
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 110, Taiwan
| | - Ke-Chi Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 110, Taiwan
| | - Amandeep Thakur
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 110, Taiwan
| | - Kunal Nepali
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 110, Taiwan; TMU Research Center for Drug Discovery, Taipei Medical University, Taipei, 110, Taiwan; Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, 110, Taiwan.
| | - Jing-Ping Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 110, Taiwan; TMU Research Center for Drug Discovery, Taipei Medical University, Taipei, 110, Taiwan; Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, 110, Taiwan.
| |
Collapse
|
4
|
Han M, He W, Zhu W, Guo L. The role of protein lactylation in brain health and disease: current advances and future directions. Cell Death Discov 2025; 11:213. [PMID: 40307243 PMCID: PMC12043837 DOI: 10.1038/s41420-025-02408-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 02/19/2025] [Accepted: 03/18/2025] [Indexed: 05/02/2025] Open
Abstract
Lactate, the end product of glycolysis, plays a crucial role in cellular signaling and metabolism. The discovery of lactylation, a novel post-translational modification, has uncovered the role of lactate in regulating diseases, especially in the brain. Lactylation connects genetic encoding with protein function, thereby influencing key biological processes. Increasing evidence supports lactate-mediated lactylation as a critical modulator in neurological disorders. This review offers an overview of lactate metabolism and lactylation, highlighting recent advances in understanding the regulatory enzymes of lactylation and their role in the central nervous system. We investigate the impact of lactylation on brain dysfunctions, including neurodegenerative diseases, cerebrovascular disorders, neuroinflammation, brain tumors, and psychiatric conditions. Moreover, we highlight the therapeutic potential of targeting lactylation in treating brain disorders and outline key research gaps and future directions needed to advance this promising field.
Collapse
Affiliation(s)
- Mingrui Han
- Department of Medical Genetics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Queen Mary school, medical department, Nanchang University, Nanchang, Jiangxi, China
| | - Wenfeng He
- Department of Medical Genetics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.
| | - Wengen Zhu
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.
| | - Linjuan Guo
- Department of Cardiology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China.
| |
Collapse
|
5
|
Li Z, Du L, Du B, Ullah Z, Zhang Y, Tu Y, Zhou Y, Guo B. Inorganic and hybrid nanomaterials for NIR-II fluorescence imaging-guided therapy of Glioblastoma and perspectives. Theranostics 2025; 15:5616-5665. [PMID: 40365286 PMCID: PMC12068291 DOI: 10.7150/thno.112204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Accepted: 03/24/2025] [Indexed: 05/15/2025] Open
Abstract
Glioblastoma (GBM) is the most invasive and lethal brain tumor, with limited therapeutic options due to its highly infiltrative nature, resistance to conventional therapies, and blood-brain barriers. Recent advancements in near-infrared II (NIR-II) fluorescence imaging have facilitated greater tissue penetration, improved resolution, and real-time visualization of GBM, providing a promising approach for precise diagnosis and treatment. The inorganic and hybrid NIR-II fluorescent materials have developed rapidly for NIR-II fluorescence imaging-guided diagnosis and therapy of many diseases, including GBM. Herein, we offer a timely update to explore the contribution of inorganic/hybrid NIR-II fluorescent nanomaterials, such as quantum dots, rare-earth-doped nanoparticles, carbon-based nanomaterials, and metal nanoclusters in imaging-guided treatment for GBM. These nanomaterials provide high photostability, strong fluorescence intensity, and tunable optical properties, allowing for multimodal imaging and enhanced therapeutic efficacy. Additionally, their integration with modern therapeutic strategies, such as photothermal therapy, chemodynamic therapy, photodynamic therapy, sonodynamic therapy, and immunotherapy, has shown significant potential in overcoming the limitations of traditional treatments. Looking forward, future advancements including safe body clearance, long-term biocompatibility, efficient BBB penetration, and extended emission wavelengths beyond 1500 nm could enhance the theranostic outcomes. The integration of dual imaging with immunotherapy and AI-driven strategies will further enhance precision and accelerate the clinical translation of smart theranostic platforms for GBM treatment.
Collapse
Affiliation(s)
- Zhigang Li
- Department of Medical Imaging, Shenzhen Longhua District Central Hospital, Shenzhen Longhua District Key Laboratory of Neuroimaging, Shenzhen 518110, China
| | - Lixin Du
- Department of Medical Imaging, Shenzhen Longhua District Central Hospital, Shenzhen Longhua District Key Laboratory of Neuroimaging, Shenzhen 518110, China
| | - Binghua Du
- Department of Medical Imaging, Shenzhen Longhua District Central Hospital, Shenzhen Longhua District Key Laboratory of Neuroimaging, Shenzhen 518110, China
| | - Zia Ullah
- School of Science, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen 518055, China
| | - Yinghe Zhang
- School of Science, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen 518055, China
| | - Yanyang Tu
- Research Center, Huizhou Central People's Hospital, Guangdong Medical University, Huizhou City, Guangdong Province, China
| | - Ying Zhou
- Department of Pharmacy, Peking University First Hospital, Beijing, China
| | - Bing Guo
- School of Science, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen 518055, China
| |
Collapse
|
6
|
de Mendonça Fernandes GM, Wang W, Ahmadian SS, Jones D, Peng J, Giglio P, Venere M, Otero JJ. Epitranscriptomic analysis reveals clinical and molecular signatures in glioblastoma. Acta Neuropathol Commun 2025; 13:74. [PMID: 40217422 PMCID: PMC11987271 DOI: 10.1186/s40478-025-01966-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 02/18/2025] [Indexed: 04/14/2025] Open
Abstract
This study characterizes the glioblastoma (GB) epitranscriptomic landscape in patient who evolve to progressive disease (PD) or pseudo-progressive disease (psPD). Novel differences in N6-Methyladenosine (m6A) RNA methylation patterns between these groups are identified in the first biopsy. Retrospective data of patients that were eventually deemed to have progressive disease or pseudoprogressive disease was captured from the electronic health record, and RNA from the first resection specimen was utilized to evaluate N6-methyladenosine (m6A) biomarkers from FFPE samples. Molecular analysis of m6A methylation modified RNA employed ACA-based RNase MazF digestion. After Quantitative Normalization with ComBat to mitigate batch effects, we identifed differentially methylated transcripts and gene expression analyses, co-expression networks analyses with WGCNA, and subsequently performed gene set GO and KEGG enrichment analyses. Enrichments for metabolic biological processes and pathways were identified in our differential methylated transcripts and select module eigengene networks highlighted key co-expressed genes intricately tied to distinct phenotypes/traits in patients that would ultimately be deemed PD or psPD. Our study identified key genes and pathways modified by m6A RNA methylation associated with cell metabolism alterations, highlighting the importance of understanding m6A mechanisms leading to the oncometabolite accumulation governing PD versus psPD patients. Furthermore, these data indicate that epitranscriptomal differences between PD versus psPD are detected early in the disease course.
Collapse
Affiliation(s)
| | - Wesley Wang
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Saman Seyed Ahmadian
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Daniel Jones
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Jing Peng
- Center for Biostatistics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Pierre Giglio
- Department of Neuro-oncology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Monica Venere
- Department of Radiation Oncology, James Cancer Hospital and Comprehensive Cancer Center, The Ohio State University College of Medicine, Columbus, OH, USA
| | - José Javier Otero
- Departament of Cellular and Molecular Medicine, Florida International University Herbert Wertheim College of Medicine, Miami, FL, USA.
- Departament of Neuropathology and Clinical Informatics, Baptist Health South Florida, Miami, FL, USA.
| |
Collapse
|
7
|
Bărăian AI, Raduly L, Zănoagă O, Iacob BC, Barbu-Tudoran L, Dinte E, Berindan-Neagoe I, Bodoki E. Targeting JAK/STAT3 in glioblastoma cells using an alginate-PNIPAm molecularly imprinted hydrogel for the sustained release of ruxolitinib. Int J Biol Macromol 2025; 298:140025. [PMID: 39828178 DOI: 10.1016/j.ijbiomac.2025.140025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/19/2024] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
Glioblastoma (GBM) is a notoriously aggressive primary brain tumor characterized by elevated recurrence rates and poor overall survival despite multimodal treatment. Local treatment strategies for GBM are safer and more effective alternatives to systemic chemotherapy, directly tackling residual cancer cells in the resection cavity by circumventing the blood-brain barrier. Molecularly imprinted polymers (MIPs) are promising drug delivery systems due to their high-affinity binding cavities that enable tailored release kinetics. This study reports the development of a semi-synthetic polysaccharide MIP-based hydrogel intended for the post-surgical management of GBM. The biodegradable implant, made of calcium-crosslinked alginate-poly(N-isopropylacrylamide) graft copolymer, was designed for the sustained release of ruxolitinib (RUX) in the resection cavity, targeting the Janus kinase/Signal Transducer and Activator of Transcription-3 signaling pathway. The molecularly imprinted hydrogel demonstrated thermo-thickening and shear-thinning behavior, high entrapment efficiency of RUX (84.59 ± 0.73 %), and sustained release over 14 days, underscoring the advantages that molecular imprinting of the alginate matrix provides compared to conventional MIPs. The dose-dependent inhibitory effects of the imprinted hydrogel against U251 and A172 GBM cells were demonstrated by increased apoptosis, reduced confluence, colony formation, and delayed wound healing, whereas the non-imprinted hydrogel was biocompatible. The MIP hydrogel could be a safe and effective GBM treatment.
Collapse
Affiliation(s)
- Alexandra-Iulia Bărăian
- Department of Analytical Chemistry and Instrumental Analysis, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Lajos Raduly
- Research Centre for Functional Genomics, Biomedicine, and Translational Medicine, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Oana Zănoagă
- Research Centre for Functional Genomics, Biomedicine, and Translational Medicine, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Bogdan-Cezar Iacob
- Department of Analytical Chemistry and Instrumental Analysis, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | | | - Elena Dinte
- Department of Pharmaceutical Technology and Biopharmaceutics, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ioana Berindan-Neagoe
- Research Centre for Functional Genomics, Biomedicine, and Translational Medicine, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ede Bodoki
- Department of Analytical Chemistry and Instrumental Analysis, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania.
| |
Collapse
|
8
|
Ożarowski M, Karpiński TM, Czerny B, Kamiński A, Seremak-Mrozikiewicz A. Plant Alkaloids as Promising Anticancer Compounds with Blood-Brain Barrier Penetration in the Treatment of Glioblastoma: In Vitro and In Vivo Models. Molecules 2025; 30:1561. [PMID: 40286187 PMCID: PMC11990316 DOI: 10.3390/molecules30071561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/08/2025] [Accepted: 03/21/2025] [Indexed: 04/29/2025] Open
Abstract
Glioblastoma (GBM) is one of the most invasive central nervous system tumors, with rising global incidence. Therapy resistance and poor prognosis highlight the urgent need for new anticancer drugs. Plant alkaloids, a largely unexplored yet promising class of compounds, have previously contributed to oncology treatments. While past reviews provided selective insights, this review aims to collectively compare data from the last decade on (1) plant alkaloid-based anticancer drugs, (2) alkaloid transport across the blood-brain barrier (BBB) in vitro and in vivo, (3) alkaloid mechanisms of action in glioblastoma models (in vitro, in vivo, ex vivo, and in silico), and (4) cytotoxicity and safety profiles. Additionally, innovative drug delivery systems (e.g., nanoparticles and liposomes) are discussed. Focusing on preclinical studies of single plant alkaloids, this review includes 22 botanical families and 28 alkaloids that demonstrated anti-GBM activity. Most alkaloids act in a concentration-dependent manner by (1) reducing glioma cell viability, (2) suppressing proliferation, (3) inhibiting migration and invasion, (4) inducing cell death, (5) downregulating Bcl-2 and key signaling pathways, (6) exhibiting antiangiogenic effects, (7) reducing tumor weight, and (8) improving survival rates. The toxic and adverse effect analysis suggests that alkaloids such as noscapine, lycorine, capsaicin, chelerythrine, caffeine, boldine, and colchicine show favorable therapeutic potential. However, tetrandrine, nitidine, harmine, harmaline, cyclopamine, cocaine, and brucine may pose greater risks than benefits. Piperine's toxicity and berberine's poor bioavailability suggest the need for novel drug formulations. Several alkaloids (kukoamine A, cyclovirobuxine D, α-solanine, oxymatrine, rutaecarpine, and evodiamine) require further pharmacological and toxicological evaluation. Overall, while plant alkaloids show promise in glioblastoma therapy, progress in assessing their BBB penetration remains limited. More comprehensive studies integrating glioma research and advanced drug delivery technologies are needed.
Collapse
Affiliation(s)
- Marcin Ożarowski
- Department of Biotechnology, Institute of Natural Fibres and Medicinal Plants—National Research Institute, Wojska Polskiego 71b, 60-630 Poznań, Poland
| | - Tomasz M. Karpiński
- Chair and Department of Medical Microbiology, Poznań University of Medical Sciences, Rokietnicka 10, 60-806 Poznań, Poland
| | - Bogusław Czerny
- Department of General Pharmacology and Pharmacoeconomics, Pomeranian Medical University in Szczecin, Żołnierska 48, 70-204 Szczecin, Poland;
- Institute of Natural Fibres and Medicinal Plants—National Research Institute, Wojska Polskiego 71b, 60-630 Poznań, Poland
| | - Adam Kamiński
- Department of Orthopaedics and Traumatology, Independent Public Clinical Hospital No. 1, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 71-252 Szczecin, Poland;
| | - Agnieszka Seremak-Mrozikiewicz
- Division of Perinatology and Women’s Disease, Poznań University of Medical Sciences, Polna 33, 60-535 Poznań, Poland;
- Laboratory of Molecular Biology in Division of Perinatology and Women’s Diseases, University of Medical Sciences, Polna 33, 60-535 Poznań, Poland
| |
Collapse
|
9
|
Hendriks TF, Birmpili A, de Vleeschouwer S, Heeren RM, Cuypers E. Integrating Rapid Evaporative Ionization Mass Spectrometry Classification with Matrix-Assisted Laser Desorption Ionization Mass Spectrometry Imaging and Liquid Chromatography-Tandem Mass Spectrometry to Unveil Glioblastoma Overall Survival Prediction. ACS Chem Neurosci 2025; 16:1021-1033. [PMID: 40007067 PMCID: PMC11926789 DOI: 10.1021/acschemneuro.4c00463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 01/24/2025] [Accepted: 02/19/2025] [Indexed: 02/27/2025] Open
Abstract
Glioblastoma multiforme (GBM) is a highly aggressive brain cancer with a median survival of 15 months. Despite advancements in conventional treatment approaches such as surgery and chemotherapy, the prognosis remains poor. This study investigates the use of rapid evaporative ionization mass spectrometry (REIMS) for real-time overall survival time classification of GBM samples and uses matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI) to compare lipidomic differences within GBM tumors. A total of 45 GBM biopsies were analyzed to develop a survival prediction model for IDH-wild type GBM. REIMS patterns from 28 patients were classified with a 97.7% correct classification rate, identifying key discriminators between short-term (0-12 months) and prolonged (>12 months) survivors. Cross-validation with additional samples showed that the model correctly classified short-term and prolonged survival with 66.7 and 69.4% accuracy, respectively. MALDI-MSI was performed to confirm the discriminators derived from REIMS data. Results indicated 42 and 33 discriminating features for short-term and prolonged survival, respectively. Proteomic profiling was performed by isolating tumor regions via laser-capture microdissection (LMD) and liquid chromatography-tandem mass spectrometry (LC-MS/MS). Subsequently, 1387 proteins were identified, of which 79 were significantly altered. In conclusion, this study shows that REIMS rapidly predicts glioblastoma survival times based on lipidomic profiles during electrosurgical dissection. MALDI-MSI confirmed that these differences were specific to the tumor region in the glioblastoma sections. LMD-guided LC-MS/MS-based proteomics revealed significantly altered pathways between short-term and prolonged survival. This research, including the comprehensive predictive survival model for GBM, could guide tumor resection surgeries based on accurate real-time tumor tissue identification as well as provide insights into overall survival mechanisms, possibly related to therapy response.
Collapse
Affiliation(s)
- Tim F.E. Hendriks
- The Maastricht
MultiModal Molecular Imaging (M4I) Institute, Division of Imaging
Mass Spectrometry (IMS), Maastricht University, Maastricht 6229 ER, The Netherlands
| | - Angeliki Birmpili
- The Maastricht
MultiModal Molecular Imaging (M4I) Institute, Division of Imaging
Mass Spectrometry (IMS), Maastricht University, Maastricht 6229 ER, The Netherlands
| | - Steven de Vleeschouwer
- Department
of Neurosurgery, UZ Leuven, and Laboratory for Experimental Neurosurgery
and Neuroanatomy, Department of Neurosciences and Leuven Brain Institute
(LBI), KU Leuven, Leuven 3000, Belgium
| | - Ron M.A. Heeren
- The Maastricht
MultiModal Molecular Imaging (M4I) Institute, Division of Imaging
Mass Spectrometry (IMS), Maastricht University, Maastricht 6229 ER, The Netherlands
| | - Eva Cuypers
- The Maastricht
MultiModal Molecular Imaging (M4I) Institute, Division of Imaging
Mass Spectrometry (IMS), Maastricht University, Maastricht 6229 ER, The Netherlands
| |
Collapse
|
10
|
Sun P, Liu F, Huo K, Wang J, Cheng Y, Shang S, Ma W, Yu J, Han J. Adiponectin facilitates the cell cycle, inhibits cell apoptosis and induces temozolomide resistance in glioblastoma via the Akt/mTOR pathway. Oncol Lett 2025; 29:127. [PMID: 39807099 PMCID: PMC11726000 DOI: 10.3892/ol.2025.14875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/22/2024] [Indexed: 01/16/2025] Open
Abstract
Adiponectin (ADN) regulates DNA synthesis, cell apoptosis and cell cycle to participate in the pathology and progression of glioblastoma. The present study aimed to further explore the effect of ADN on temozolomide (TMZ) resistance in glioblastoma and the underlying mechanism of action. Glioblastoma cell lines (U251 and U87-MG cells) were treated with ADN and TMZ at different concentrations; subsequently, 3.0 µg/ml ADN and 1.0 mM TMZ were selected as the optimal concentrations for the experimental conditions. LY294002 (a PI3K inhibitor) was added to ADN or ADN + TMZ-treated glioblastoma cell lines. Cell growth rate was determined using the Cell Counting Kit-8 assay, the apoptotic rate and cell cycle were evaluated using Annexin V/propidium iodide and cell cycle assays, and p-Akt (Thr308), p-Akt (Ser473), Akt, p-mTOR, c-caspase 3, caspase 3, Bax, cyclin B1 and cyclin D1 expression was determined by western blotting. Adiponectin receptor (ADIPOR) 1 and ADIPOR2 were expressed in glioblastoma cell lines. The glioblastoma cell line growth rate was increased by ADN in a concentration- and time-dependent manner. ADN inhibited glioblastoma cell line apoptosis and facilitated cell cycle. Of note, ADN activated the Akt/mTOR pathway and the addition of LY294002 reversed the effect of ADN, indicating that ADN activated the Akt/mTOR pathway to suppress apoptosis and promote cell cycle in glioblastoma cell lines. Notably, TMZ inhibited glioblastoma cell line growth, promoted apoptosis and increased G2 phase cell cycle arrest. However, the addition of ADN reversed the effect of TMZ in glioblastoma cell lines, disclosing that ADN induced TMZ resistance. Markedly, ADN-mediated TMZ resistance was further attenuated by LY294002, suggesting that ADN activated the Akt/mTOR pathway to induce TMZ resistance in glioblastoma cell lines. In conclusion, ADN activated the Akt/mTOR pathway to facilitate cell cycle, inhibit cell apoptosis and induce TMZ resistance in glioblastoma.
Collapse
Affiliation(s)
- Peng Sun
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Fude Liu
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Kang Huo
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Jianyi Wang
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yawen Cheng
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Suhang Shang
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Wenlong Ma
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Jia Yu
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Jianfeng Han
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
11
|
Pouyan A, Ghorbanlo M, Eslami M, Jahanshahi M, Ziaei E, Salami A, Mokhtari K, Shahpasand K, Farahani N, Meybodi TE, Entezari M, Taheriazam A, Hushmandi K, Hashemi M. Glioblastoma multiforme: insights into pathogenesis, key signaling pathways, and therapeutic strategies. Mol Cancer 2025; 24:58. [PMID: 40011944 PMCID: PMC11863469 DOI: 10.1186/s12943-025-02267-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 02/07/2025] [Indexed: 02/28/2025] Open
Abstract
Glioblastoma multiforme (GBM) is the most prevalent and aggressive primary brain tumor in adults, characterized by a poor prognosis and significant resistance to existing treatments. Despite progress in therapeutic strategies, the median overall survival remains approximately 15 months. A hallmark of GBM is its intricate molecular profile, driven by disruptions in multiple signaling pathways, including PI3K/AKT/mTOR, Wnt, NF-κB, and TGF-β, critical to tumor growth, invasion, and treatment resistance. This review examines the epidemiology, molecular mechanisms, and therapeutic prospects of targeting these pathways in GBM, highlighting recent insights into pathway interactions and discovering new therapeutic targets to improve patient outcomes.
Collapse
Affiliation(s)
- Ashkan Pouyan
- Department of Neurosurgery, Faculty of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Masoud Ghorbanlo
- Department of Anesthesiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Masoud Eslami
- Department of Neurosurgery, Kerman University of Medical Sciences, Kerman, Iran
| | - Majid Jahanshahi
- Department of Neurosurgery, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ehsan Ziaei
- Department of Neurosurgery, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Salami
- Department of Neurosurgery, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khatere Mokhtari
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Koorosh Shahpasand
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Laboratory Medicine and Pathology, Institute for Translational Neuroscience, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Tohid Emami Meybodi
- Neuroscience Research Center, Iran University of Medical Sciences, Tehran, Iran.
- Functional Neurosurgery Research Center, Shohada Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Kiavash Hushmandi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
- Department of Epidemiology, University of Tehran, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
12
|
Sabaghan S, Srivastava R, Yadav P, Kumari M, Soni R, Beri S, Jha SK. Exploring Ketones in Chrysopogon zizanioides: A Computational Molecular Dynamic Approach to c-Met Modulation. Mol Biotechnol 2025:10.1007/s12033-025-01377-w. [PMID: 39969662 DOI: 10.1007/s12033-025-01377-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 01/07/2025] [Indexed: 02/20/2025]
Abstract
Glioblastoma demands the designing of potential drugs as there is no specific treatment available. In this study, we employed computational screening techniques to identify potential modulators of the c-Met receptor from a library of 273 Chrysopogon zizanioides derived compounds which can pass blood brain barrier (BBB) due to their low molecular weight and BBB permeability. Through rigorous molecular docking simulations utilizing Auto Dock Vina plugin integrated with Chimera software, Ketone (C29H56O) (IMPHY012701) emerged as a standout candidate, exhibiting a lower binding energy compared to the reference molecule, AMG 337 which was used as a control compound. The optimal orientation of Ketone (C29H56O) (IMPHY012701) within the c-Met receptor's active site was elucidated, indicating favourable molecular interactions conducive to stable binding. Ketone (C29H56O) (IMPHY012701) shows equilibrium state during 50 ns simulation with least root mean square deviation (RMSD) and root mean square fluctuation (RMSF) values. Notably, Ketone (C29H56O) (IMPHY012701) demonstrated superior binding affinity relative to the control compound, underscoring its potential as a lead for further investigation. This study underscores the utility of computational approaches in drug discovery from natural sources and highlights Ketone (C29H56O) (IMPHY012701) as a promising candidate for the modulation of c-Met-mediated signalling pathways, warranting further experimental validation and exploration of its pharmacological properties.
Collapse
Affiliation(s)
- Somayeh Sabaghan
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Rashi Srivastava
- Chemical and Biochemical Engineering, Indian Institute of Technology, Patna, India
| | - Pardeep Yadav
- Department of Biotechnology, School of Applied and Life Science, Uttaranchal University, Dehradun, Uttrakhand, 248007, India
| | - Muskan Kumari
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Renuka Soni
- Clinical Research Associate, Meliora Kidney and Urology Institute, Chandigarh, India
| | - Shanuja Beri
- Department of Zoology, Kalindi College, University of Delhi, Delhi, 110008, India
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, India.
- Department of Zoology, Kalindi College, University of Delhi, Delhi, 110008, India.
- Centre for Himalayan Studies, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
13
|
Zeng J, Tong S, Liu J, Liu S, Mungur R, Chen S. MiR-433 inhibits cell invasion of glioblastoma via direct targeting TRPM8 based on bioinformatic analysis and experimental validation. Gene 2025; 936:149121. [PMID: 39581355 DOI: 10.1016/j.gene.2024.149121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 11/13/2024] [Accepted: 11/21/2024] [Indexed: 11/26/2024]
Abstract
Understanding the essential role of miRNA in regulating cell invasion in glioblastoma opens up new avenues for targeted therapeutic interventions in the future. By screening out eligible miRNA expression data sets from the GEO database, the WGCNA package based on the R language is further used to construct a co-expression network model of the chip data set, to identify modules related to disease states and perform pivotal miRNA screening on the related modules. The target relationship between miRNA and TRPM8 was verified by bioinformatics and luciferase gene report, and the effect of miRNA overexpression on TRPM8 protein level was analyzed by Western blot. The result of miR-433 overexpression on the invasion ability of glioblastoma cells in vitro was examined by scratch test and Transwell invasion test. The results of this study indicate that the selected target miR-433 has a strong binding relationship with TRPM8 and can effectively regulate its expression. Furthermore, overexpression of miR-433 was found to inhibit the invasion ability of glioblastoma cells by targeting TRPM8. These data demonstrate that miR-433 can target TRPM8 to inhibit glioblastoma cell invasion.
Collapse
Affiliation(s)
- Jianping Zeng
- Department of Neurosurgery, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University. Nanchang 330006, Jiangxi Province, PR China.
| | - Shoufang Tong
- Department of Transfusion Medicine, Tiantai People's Hospital of Zhejiang Province (Tiantai Branch of Zhejiang Provincial People's Hospital) Hangzhou Medical College, Taizhou, Zhejiang, PR China
| | - Jing Liu
- Department of Pharmacy, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University. Nanchang 330006, Jiangxi Province, PR China
| | - Shuai Liu
- Department of Neurosurgery, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University. Nanchang 330006, Jiangxi Province, PR China
| | - Rajneesh Mungur
- Department of Neurosurgery, The First Affiliated Hospital of Zhejiang University, Hangzhou 310000, Zhejiang Province, PR China
| | - Shangshi Chen
- Department of Neurosurgery, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University. Nanchang 330006, Jiangxi Province, PR China.
| |
Collapse
|
14
|
Bora Yildiz C, Du J, Mohan KN, Zimmer-Bensch G, Abdolahi S. The role of lncRNAs in the interplay of signaling pathways and epigenetic mechanisms in glioma. Epigenomics 2025; 17:125-140. [PMID: 39829063 PMCID: PMC11792803 DOI: 10.1080/17501911.2024.2442297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 12/10/2024] [Indexed: 01/22/2025] Open
Abstract
Gliomas, highly aggressive tumors of the central nervous system, present overwhelming challenges due to their heterogeneity and therapeutic resistance. Glioblastoma multiforme (GBM), the most malignant form, underscores this clinical urgency due to dismal prognosis despite aggressive treatment regimens. Recent advances in cancer research revealed signaling pathways and epigenetic mechanisms that intricately govern glioma progression, offering multifaceted targets for therapeutic intervention. This review explores the dynamic interplay between signaling events and epigenetic regulation in the context of glioma, with a particular focus on the crucial roles played by non-coding RNAs (ncRNAs). Through direct and indirect epigenetic targeting, ncRNAs emerge as key regulators shaping the molecular landscape of glioblastoma across its various stages. By dissecting these intricate regulatory networks, novel and patient-tailored therapeutic strategies could be devised to improve patient outcomes with this devastating disease.
Collapse
Affiliation(s)
- Can Bora Yildiz
- Division of Neuroepigenetics, Institute of Zoology (Biology 2), RWTH Aachen University, Aachen, Germany
- Research Training Group 2416 Multi Senses – Multi Scales, RWTH Aachen University, Aachen, Germany
| | - Jian Du
- Division of Neuroepigenetics, Institute of Zoology (Biology 2), RWTH Aachen University, Aachen, Germany
| | - K. Naga Mohan
- Molecular Biology and Genetics Laboratory, Department of Biological Sciences, Hyderabad, India
| | - Geraldine Zimmer-Bensch
- Division of Neuroepigenetics, Institute of Zoology (Biology 2), RWTH Aachen University, Aachen, Germany
- Research Training Group 2416 Multi Senses – Multi Scales, RWTH Aachen University, Aachen, Germany
| | - Sara Abdolahi
- Division of Neuroepigenetics, Institute of Zoology (Biology 2), RWTH Aachen University, Aachen, Germany
| |
Collapse
|
15
|
Turpo-Peqqueña AG, Luna-Prado S, Valencia-Arce RJ, Del-Carpio-Carrazco FL, Gómez B. A Theoretical Study on the Efficacy and Mechanism of Combined YAP-1 and PARP-1 Inhibitors in the Treatment of Glioblastoma Multiforme Using Peruvian Maca Lepidium meyenii. Curr Issues Mol Biol 2025; 47:40. [PMID: 39852155 PMCID: PMC11763394 DOI: 10.3390/cimb47010040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/25/2024] [Accepted: 01/05/2025] [Indexed: 01/26/2025] Open
Abstract
Glioblastoma multiforme (GBM) is one of the most aggressive and treatment-resistant forms of brain cancer. Current therapeutic strategies, including surgery, chemotherapy, and radiotherapy, often fail due to the tumor's ability to develop resistance. The proteins YAP-1 (Yes-associated protein 1) and PARP-1 (Poly-(ADP-ribose)-polymerase-1) have been implicated in this resistance, playing crucial roles in cell proliferation and DNA repair mechanisms, respectively. This study explored the inhibitory potential of natural compounds from Lepidium meyenii (Peruvian Maca) on the YAP-1 and PARP-1 protein systems to develop novel therapeutic strategies for GBM. By molecular dynamics simulations, we identified N-(3-Methoxybenzyl)-(9Z,12Z,15Z)- octadecatrienamide (DK5) as the most promising natural inhibitor for PARP-1 and stearic acid (GK4) for YAP-1. Although synthetic inhibitors, such as Olaparib (ODK) for PARP-1 and Verteporfin (VER) for YAP-1, only VER was superior to the naturally occurring molecule and proved a promising alternative. In conclusion, natural compounds from Lepidium meyenii (Peruvian Maca) offer a potentially innovative approach to improve GBM treatment, complementing existing therapies with their inhibitory action on PARP-1 and YAP-1.
Collapse
Affiliation(s)
- Albert Gabriel Turpo-Peqqueña
- Centro de Investigación en Ingeniería Molecular–CIIM, Universidad Católica de Santa María, Urb. San José s/n, Umacollo, Arequipa 04013, Peru; (A.G.T.-P.); (S.L.-P.); (R.J.V.-A.); (F.L.D.-C.-C.)
- Facultad de Medicina Humana, Universidad Católica de Santa María, Urb. San José s/n, Umacollo, Arequipa 04013, Peru
- Facultad de Biología, Universidad Nacional de San Agustín, Av. Alcides Carrión s/n, Arequipa 04001, Peru
| | - Sebastian Luna-Prado
- Centro de Investigación en Ingeniería Molecular–CIIM, Universidad Católica de Santa María, Urb. San José s/n, Umacollo, Arequipa 04013, Peru; (A.G.T.-P.); (S.L.-P.); (R.J.V.-A.); (F.L.D.-C.-C.)
- Facultad de Ciencias Farmacéuticas, Bioquímicas y Biotecnológicas, Universidad Católica de Santa María, Urb. San José s/n, Umacollo, Arequipa 04013, Peru
| | - Renato Javier Valencia-Arce
- Centro de Investigación en Ingeniería Molecular–CIIM, Universidad Católica de Santa María, Urb. San José s/n, Umacollo, Arequipa 04013, Peru; (A.G.T.-P.); (S.L.-P.); (R.J.V.-A.); (F.L.D.-C.-C.)
- Facultad de Ciencias Farmacéuticas, Bioquímicas y Biotecnológicas, Universidad Católica de Santa María, Urb. San José s/n, Umacollo, Arequipa 04013, Peru
| | - Fabio Leonardo Del-Carpio-Carrazco
- Centro de Investigación en Ingeniería Molecular–CIIM, Universidad Católica de Santa María, Urb. San José s/n, Umacollo, Arequipa 04013, Peru; (A.G.T.-P.); (S.L.-P.); (R.J.V.-A.); (F.L.D.-C.-C.)
- Facultad de Ciencias Farmacéuticas, Bioquímicas y Biotecnológicas, Universidad Católica de Santa María, Urb. San José s/n, Umacollo, Arequipa 04013, Peru
| | - Badhin Gómez
- Centro de Investigación en Ingeniería Molecular–CIIM, Universidad Católica de Santa María, Urb. San José s/n, Umacollo, Arequipa 04013, Peru; (A.G.T.-P.); (S.L.-P.); (R.J.V.-A.); (F.L.D.-C.-C.)
- Facultad de Ciencias Farmacéuticas, Bioquímicas y Biotecnológicas, Universidad Católica de Santa María, Urb. San José s/n, Umacollo, Arequipa 04013, Peru
| |
Collapse
|
16
|
Markov AV, Moralev AD, Odarenko KV. Sesquiterpene Lactones as Promising Anti-Glioblastoma Drug Candidates Exerting Complex Effects on Glioblastoma Cell Viability and Proneural-Mesenchymal Transition. Biomedicines 2025; 13:133. [PMID: 39857717 PMCID: PMC11761231 DOI: 10.3390/biomedicines13010133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/26/2024] [Accepted: 01/02/2025] [Indexed: 01/27/2025] Open
Abstract
Glioblastoma is one of the most aggressive brain cancers, characterized by active infiltrative growth and high resistance to radiotherapy and chemotherapy. Sesquiterpene triterpenoids (STLs) and their semi-synthetic analogs are considered as a promising source of novel anti-tumor agents due to their low systemic toxicity and multi-target pharmacological effects on key processes associated with tumor progression. The current review aims to systematize the knowledge on the anti-glioblastoma potential of STLs accumulated over the last decade and to identify key processes in glioblastoma cells that are most susceptible to the action of STLs. An analysis of published data clearly demonstrated that STLs, which can successfully cross the blood-brain barrier, exert a complex inhibitory effect on glioblastoma cells through the induction of the "mitochondrial dysfunction-oxidative stress-apoptosis" axis, the inhibition of glucose metabolism and cell cycle phase transition, and the suppression of glioblastoma cell motility and invasion through the blockade of proneural-mesenchymal transition. Taken together, this review highlights the promising anti-glioblastoma potential of STLs, which are not only able to induce glioblastoma cell death, but also effectively affect their diffusive spread, and suggests the possible directions for further investigation of STLs in the context of glioblastoma to better understand their mechanism of action.
Collapse
Affiliation(s)
- Andrey V. Markov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrent’ev Avenue 8, 630090 Novosibirsk, Russia; (A.D.M.); (K.V.O.)
| | | | | |
Collapse
|
17
|
Sipos D, Raposa BL, Freihat O, Simon M, Mekis N, Cornacchione P, Kovács Á. Glioblastoma: Clinical Presentation, Multidisciplinary Management, and Long-Term Outcomes. Cancers (Basel) 2025; 17:146. [PMID: 39796773 PMCID: PMC11719842 DOI: 10.3390/cancers17010146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 12/24/2024] [Accepted: 01/02/2025] [Indexed: 01/13/2025] Open
Abstract
Glioblastoma, the most common and aggressive primary brain tumor in adults, presents a formidable challenge due to its rapid progression, treatment resistance, and poor survival outcomes. Standard care typically involves maximal safe surgical resection, followed by fractionated external beam radiation therapy and concurrent temozolomide chemotherapy. Despite these interventions, median survival remains approximately 12-15 months, with a five-year survival rate below 10%. Prognosis is influenced by factors such as patient age, molecular characteristics, and the extent of resection. Patients with IDH-mutant tumors or methylated MGMT promoters generally have improved survival, while recurrent glioblastoma is associated with a median survival of only six months, as therapies in these cases are often palliative. Innovative treatments, including TTFields, add incremental survival benefits, extending median survival to around 20.9 months for eligible patients. Symptom management-addressing seizures, headaches, and neurological deficits-alongside psychological support for patients and caregivers is essential to enhance quality of life. Emerging targeted therapies and immunotherapies, though still limited in efficacy, show promise as part of an evolving treatment landscape. Continued research and clinical trials remain crucial to developing more effective treatments. This multidisciplinary approach, incorporating diagnostics, personalized therapy, and supportive care, aims to improve outcomes and provides a hopeful foundation for advancing glioblastoma management.
Collapse
Affiliation(s)
- David Sipos
- Department of Medical Imaging, Faculty of Health Sciences, University of Pécs, 7621 Pécs, Hungary;
- Dr. József Baka Diagnostic, Radiation Oncology, Research and Teaching Center, “Moritz Kaposi” Teaching Hospital, Guba Sándor Street 40, 7400 Kaposvár, Hungary
| | - Bence L. Raposa
- Institute of Pedagogy of Health and Nursing Sciences, Faculty of Health Sciences, University of Pécs, Vörösmarty Str. 4, 7621 Pécs, Hungary;
| | - Omar Freihat
- Department of Public Health, College of Health Science, Abu Dhabi University, Abu Dhabi P.O. Box 59911, United Arab Emirates;
| | - Mihály Simon
- Department of Oncoradiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
| | - Nejc Mekis
- Medical Imaging and Radiotherapy Department, University of Ljubljana, Zdravstvena Pot 5, 100 Ljubljana, Slovenia;
| | - Patrizia Cornacchione
- Dipartimento di Diagnostica per Immagini e Radioterapia Oncologica, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy;
| | - Árpád Kovács
- Department of Medical Imaging, Faculty of Health Sciences, University of Pécs, 7621 Pécs, Hungary;
- Department of Oncoradiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
| |
Collapse
|
18
|
Mohapatra K, Mishra K, Pattnaik A, Gourisaria MK, Saxena S, Das S. Brain tumor progression analysis: A comprehensive review. RADIOMICS AND RADIOGENOMICS IN NEURO-ONCOLOGY 2025:167-180. [DOI: 10.1016/b978-0-443-18509-0.00005-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
19
|
Gong H, Yang X, An L, Zhang W, Liu X, Shu L, Yang L. PCSK5 downregulation promotes the inhibitory effect of andrographolide on glioblastoma through regulating STAT3. Mol Cell Biochem 2025; 480:521-533. [PMID: 38553549 DOI: 10.1007/s11010-024-04977-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 02/24/2024] [Indexed: 01/03/2025]
Abstract
Proprotein convertase subtilisin/kexin type 5 (PCSK5) is a member of the proprotein convertase (PC) family, which processes immature proteins into functional proteins and plays an important role in the process of cell migration and transformation. Andrographolide is a non-peptide compound with PC inhibition and antitumor activity. Our research aimed to investigate the functional role of PCSK5 downregulation combined with Andro on GBM progression. Results from the cancer genome atlas (TCGA) and clinical samples revealed a significant upregulation of PCSK5 in GBM tissues than in non-tumor brain tissues. Higher expression of PCSK5 was correlated with advanced GBM stages and worse patient prognosis. PCSK5 knockdown attenuated the epithelial-mesenchymal transition (EMT)-like properties of GBM cells induced by IL-6. PCSK5 knockdown in combination with Andro treatment significantly inhibited the proliferation and invasion of GBM cells in vitro, as well as tumor growth in vivo. Mechanistically, PCSK5 downregulation reduced the expression of p-STAT3 and Matrix metalloproteinases (MMPs), which could be rescued by the p-STAT3 agonist. STAT3 silencing downregulated the expression of MMPs without affecting PCSK5. Furthermore, Andro in combination with PCSK5 silencing significantly inhibited STAT3/MMPs axis. These observations provided evidence that PCSK5 functioned as a potential tumor promoter by regulating p-STAT3/MMPs and the combination of Andro with PCSK5 silencing might be a good strategy to prevent GBM progression.
Collapse
Affiliation(s)
- Huiyuan Gong
- Department of Immunology, Basic Medical College, Guizhou Medical University, No.6, Ankang Road, Guian New District, Guiyang, 550004, Guizhou, People's Republic of China
| | - Xiaomin Yang
- Department of Immunology, Basic Medical College, Guizhou Medical University, No.6, Ankang Road, Guian New District, Guiyang, 550004, Guizhou, People's Republic of China
| | - Lijun An
- Department of Immunology, Basic Medical College, Guizhou Medical University, No.6, Ankang Road, Guian New District, Guiyang, 550004, Guizhou, People's Republic of China
| | - Wangming Zhang
- Department of Immunology, Basic Medical College, Guizhou Medical University, No.6, Ankang Road, Guian New District, Guiyang, 550004, Guizhou, People's Republic of China
| | - Xiaohua Liu
- Department of Immunology, Basic Medical College, Guizhou Medical University, No.6, Ankang Road, Guian New District, Guiyang, 550004, Guizhou, People's Republic of China
| | - Liping Shu
- Department of Immunology, Basic Medical College, Guizhou Medical University, No.6, Ankang Road, Guian New District, Guiyang, 550004, Guizhou, People's Republic of China
| | - Liuqi Yang
- Department of Immunology, Basic Medical College, Guizhou Medical University, No.6, Ankang Road, Guian New District, Guiyang, 550004, Guizhou, People's Republic of China.
| |
Collapse
|
20
|
Saraiva JT, Dos Santos FDS, Bona NP, da Silveira LM, Simões WS, da Silva GBDO, da Silva JA, Domingues WB, Nascimento MC, Campos VF, Spanevello RM, Pedra NS, Stefanello FM. Antitumor Effect of Butia odorata Hydroalcoholic Extract on C6 and U87MG Glioma Cell Lines: Impact on Redox Status and Inflammation Signaling. Neurochem Res 2024; 50:56. [PMID: 39671046 DOI: 10.1007/s11064-024-04305-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/27/2024] [Accepted: 11/29/2024] [Indexed: 12/14/2024]
Abstract
Among the spectrum of gliomas, glioblastoma stands out as the most aggressive brain tumor affecting the central nervous system. In addressing this urgent medical challenge, exploring therapeutic alternatives becomes imperative to enhance the patient's prognosis. In this regard, Butia odorata (BO) fruit emerges as a promising candidate due to its array of bioactive compounds, including flavonoids, phenolic acids, and carotenoids, known for their antioxidant, anti-inflammatory, and antitumor properties. Thus, this study aimed to investigate the impact of standardized hydroalcoholic extract of BO on rat C6 and human U87MG glioma cell lines. Cells were exposed to varying extract concentrations (125-2000 μg/mL) for intervals of 0, 2, 4, 6, 24, 48, or 72 h. Then, cell viability, proliferation, colony formation, redox equilibrium parameters, cell migration, and the relative mRNA expression of genes related to gliomagenesis were evaluated. Our findings revealed a reduction in viability, proliferation, colony formation, reactive oxygen species, and nitrite levels in both glioma cell lines upon exposure to the extract. Conversely, an increase in sulfhydryl content and the activity of superoxide dismutase and catalase were observed in both glioma cell lines. No significant changes in viability and proliferation were observed in astrocytes. Furthermore, in the C6 cells only, the BO extract reduced the migration and downregulated the relative mRNA expression of matrix metalloproteinase-2, O6-methylguanine-DNA methyltransferase, nuclear factor-kappa B, interleukin-6 genes, and upregulated caspase-3 gene. These results underscore the promising anti-glioma potential of BO extract, attributed to its diverse bioactive composition.
Collapse
Affiliation(s)
- Juliane Torchelsen Saraiva
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, CEP 96010-900, Brazil
| | - Francieli da Silva Dos Santos
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, CEP 96010-900, Brazil
| | - Natália Pontes Bona
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, CEP 96010-900, Brazil
| | - Larissa Menezes da Silveira
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, CEP 96010-900, Brazil
| | - William Sanabria Simões
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, CEP 96010-900, Brazil
| | - Giulia Bueno de Oliveira da Silva
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, CEP 96010-900, Brazil
| | - Júlia Araújo da Silva
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, CEP 96010-900, Brazil
| | - William Borges Domingues
- Programa de Pós-Graduação em Biotecnologia - Laboratório de Genômica Estrutural, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - Mariana Cavalcanti Nascimento
- Programa de Pós-Graduação em Biotecnologia - Laboratório de Genômica Estrutural, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - Vinicius Farias Campos
- Programa de Pós-Graduação em Biotecnologia - Laboratório de Genômica Estrutural, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - Roselia Maria Spanevello
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - Nathalia Stark Pedra
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - Francieli Moro Stefanello
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, CEP 96010-900, Brazil.
| |
Collapse
|
21
|
Kalitin N, Koroleva N, Lushnikova A, Babaeva M, Samoylenkova N, Savchenko E, Smirnova G, Borisova Y, Kostarev A, Karamysheva A, Pavlova G. N-Glycoside of Indolo[2,3- a]pyrrolo[3,4- c]carbazole LCS1269 Exerts Anti-Glioblastoma Effects by G2 Cell Cycle Arrest and CDK1 Activity Modulation: Molecular Docking Studies, Biological Investigations, and ADMET Prediction. Pharmaceuticals (Basel) 2024; 17:1642. [PMID: 39770484 PMCID: PMC11676706 DOI: 10.3390/ph17121642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 11/28/2024] [Accepted: 11/29/2024] [Indexed: 01/04/2025] Open
Abstract
Background/Objectives: Indolo[2,3-a]pyrrolo[3,4-c]carbazole scaffold is successfully used as an efficient structural motif for the design and development of different antitumor agents. In this study, we investigated the anti-glioblastoma therapeutic potential of glycosylated indolocarbazole analog LCS1269 utilizing in vitro, in vivo, and in silico approaches. Methods: Cell viability was estimated by an MTT assay. The distribution of cell cycle phases was monitored using flow cytometry. Mitotic figures were visualized by fluorescence microscopy. Quantitative RT-PCR was used to evaluate the gene expression. The protein expression was assessed by Western blotting. Molecular docking and computational ADMET were approved for the probable protein target simulations and predicted pharmacological assessments, respectively. Results: Our findings clearly suggest that LCS1269 displayed a significant cytotoxic effect against diverse glioblastoma cell lines and patient-derived glioblastoma cultures as well as strongly suppressed xenograft growth in nude mice. LCS1269 exhibited more potent anti-proliferative activity toward glioblastoma cell lines and patient-derived glioblastoma cultures compared to conventional drug temozolomide. We further demonstrated that LCS1269 treatment caused the severe G2 phase arrest of cell cycle in a dose-dependent manner. Mechanistically, we proposed that LCS1269 could affect the CDK1 activity both by targeting active site of this enzyme and indirectly, in particular through the modulation of the Wee1/Myt1 and FOXM1/Plk1 signaling pathways, and via p21 up-regulation. LCS1269 also showed favorable pharmacological characteristics in in silico ADME prediction in comparison with staurosporine, rebeccamycin, and becatecarin as reference drugs. Conclusions: Further investigations of LCS1269 as an anti-glioblastoma medicinal agent could be very promising.
Collapse
Affiliation(s)
- Nikolay Kalitin
- Laboratory of Tumor Cell Genetics, N.N. Blokhin National Medical Research Center of Oncology, Kashirskoe Shosse 24, 115478 Moscow, Russia;
| | - Natalia Koroleva
- Laboratory of Oncogenomics, N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia; (N.K.); (A.L.)
| | - Anna Lushnikova
- Laboratory of Oncogenomics, N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia; (N.K.); (A.L.)
| | - Maria Babaeva
- Molecular Medicine, Universitätsmedizin Berlin, 10117 Berlin, Germany;
| | - Nadezhda Samoylenkova
- Laboratory of Molecular and Cellular Neurogenetics, N.N. Burdenko National Medical Research Center of Neurosurgery, 125047 Moscow, Russia; (N.S.); (E.S.); (G.P.)
| | - Ekaterina Savchenko
- Laboratory of Molecular and Cellular Neurogenetics, N.N. Burdenko National Medical Research Center of Neurosurgery, 125047 Moscow, Russia; (N.S.); (E.S.); (G.P.)
| | - Galina Smirnova
- Laboratory of Biochemical Pharmacology and Tumor Models, N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia; (G.S.); (Y.B.)
| | - Yulia Borisova
- Laboratory of Biochemical Pharmacology and Tumor Models, N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia; (G.S.); (Y.B.)
| | - Alexander Kostarev
- Max Planck Institute for Biology, University of Tübingen, 72074 Tübingen, Germany;
| | - Aida Karamysheva
- Laboratory of Tumor Cell Genetics, N.N. Blokhin National Medical Research Center of Oncology, Kashirskoe Shosse 24, 115478 Moscow, Russia;
| | - Galina Pavlova
- Laboratory of Molecular and Cellular Neurogenetics, N.N. Burdenko National Medical Research Center of Neurosurgery, 125047 Moscow, Russia; (N.S.); (E.S.); (G.P.)
- Laboratory of Neurogenetics and Developmental Genetics, Institute of Higher Nervous Activity and Neurophysiology of RAS, 117485 Moscow, Russia
| |
Collapse
|
22
|
Varachev V, Susova O, Mitrofanov A, Naskhletashvili D, Krasnov G, Ikonnikova A, Bezhanova S, Semenova V, Sevyan N, Prozorenko E, Ammour Y, Bekyashev A, Nasedkina T. Genomic Profiling in Glioma Patients to Explore Clinically Relevant Markers. Int J Mol Sci 2024; 25:13004. [PMID: 39684714 PMCID: PMC11641329 DOI: 10.3390/ijms252313004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 11/23/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
Gliomas are a heterogeneous group of brain tumors, among which the most aggressive subtype is glioblastoma, accounting for 60% of cases in adults. Available systemic treatment options are few and ineffective, so new approaches to therapies for glioblastoma are in high demand. In total, 131 patients with diffuse glioma were studied. Paired tumor–normal samples were sequenced on the Illumina platform; the panel included 812 genes associated with cancer development. Molecular profiles in clinically distinct groups were investigated. In low-grade glioma (LGG) patients (n = 18), the most common mutations were IDH1/2 (78%), ATRX (33%), TP53 (44%), PIK3CA (17%), and co-deletion 1p/19q (22%). In high-grade glioma (HGG) patients (n = 113), more frequently affected genes were CDKN2A/B (33%), TERTp (71%), PTEN (60%), TP53 (27%), and EGFR (40%). The independent predictors of better prognosis were tumor grade and IDH1/2 mutations. In IDH—wildtype glioblastoma patients, a history of other precedent cancer was associated with worse overall survival (OS), while re-operation and bevacizumab therapy increased OS. Also, among genetic alterations, TERTp mutation and PTEN deletion were markers of poor prognosis. Nine patients received molecular targeted therapy, and the results were evaluated. The search for molecular changes associated with tumor growth and progression is important for diagnosis and choice of therapy.
Collapse
Affiliation(s)
- Viacheslav Varachev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (V.V.); (G.K.); (A.I.); (V.S.)
| | - Olga Susova
- N.N. Blokhin Russian Cancer Research Center of the Ministry of Health of the Russian Federation, 115478 Moscow, Russia; (O.S.); (A.M.); (D.N.); (S.B.); (N.S.); (E.P.); (A.B.)
| | - Alexei Mitrofanov
- N.N. Blokhin Russian Cancer Research Center of the Ministry of Health of the Russian Federation, 115478 Moscow, Russia; (O.S.); (A.M.); (D.N.); (S.B.); (N.S.); (E.P.); (A.B.)
| | - David Naskhletashvili
- N.N. Blokhin Russian Cancer Research Center of the Ministry of Health of the Russian Federation, 115478 Moscow, Russia; (O.S.); (A.M.); (D.N.); (S.B.); (N.S.); (E.P.); (A.B.)
| | - George Krasnov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (V.V.); (G.K.); (A.I.); (V.S.)
| | - Anna Ikonnikova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (V.V.); (G.K.); (A.I.); (V.S.)
| | - Svetlana Bezhanova
- N.N. Blokhin Russian Cancer Research Center of the Ministry of Health of the Russian Federation, 115478 Moscow, Russia; (O.S.); (A.M.); (D.N.); (S.B.); (N.S.); (E.P.); (A.B.)
| | - Vera Semenova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (V.V.); (G.K.); (A.I.); (V.S.)
| | - Nadezhda Sevyan
- N.N. Blokhin Russian Cancer Research Center of the Ministry of Health of the Russian Federation, 115478 Moscow, Russia; (O.S.); (A.M.); (D.N.); (S.B.); (N.S.); (E.P.); (A.B.)
| | - Evgenii Prozorenko
- N.N. Blokhin Russian Cancer Research Center of the Ministry of Health of the Russian Federation, 115478 Moscow, Russia; (O.S.); (A.M.); (D.N.); (S.B.); (N.S.); (E.P.); (A.B.)
| | - Yulia Ammour
- I.I. Mechnikov Research Institute for Vaccines and Sera, 105064 Moscow, Russia;
| | - Ali Bekyashev
- N.N. Blokhin Russian Cancer Research Center of the Ministry of Health of the Russian Federation, 115478 Moscow, Russia; (O.S.); (A.M.); (D.N.); (S.B.); (N.S.); (E.P.); (A.B.)
| | - Tatiana Nasedkina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (V.V.); (G.K.); (A.I.); (V.S.)
| |
Collapse
|
23
|
Sharma B, Agriantonis G, Shafaee Z, Twelker K, Bhatia ND, Kuschner Z, Arnold M, Agcon A, Dave J, Mestre J, Arora S, Ghanta H, Whittington J. Role of Podoplanin (PDPN) in Advancing the Progression and Metastasis of Glioblastoma Multiforme (GBM). Cancers (Basel) 2024; 16:4051. [PMID: 39682237 DOI: 10.3390/cancers16234051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 11/22/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
Glioblastoma multiforme (GBM) is a malignant primary brain tumor categorized as a Grade 4 astrocytic glioma by the World Health Organization (WHO). Some of the established risk factors of GBM include inherited genetic syndromes, body mass index, alcohol consumption, use of non-steroidal anti-inflammatory drugs (NSAIDs), and therapeutic ionizing radiation. Vascular anomalies, including local and peripheral thrombosis, are common features of GBM. Podoplanin (PDPN), a ligand of the C-type lectin receptor (CLEC-2), promotes platelet activation, aggregation, venous thromboembolism (VTE), lymphatic vessel formation, and tumor metastasis in GBM patients. It is regulated by Prox1 and is expressed in developing and adult mammalian brains. It was initially identified on lymphatic endothelial cells (LECs) as the E11 antigen and on fibroblastic reticular cells (FRCs) of lymphoid organs and thymic epithelial cells as gp38. In recent research studies, its expression has been linked with prognosis in GBM. PDPN-expressing cancer cells are highly pernicious, with a mutant aptitude to form stem cells. Such cells, on colocalization to the surrounding tissues, transition from epithelial to mesenchymal cells, contributing to the malignant carcinogenesis of GBM. PDPN can be used as an independent prognostic factor in GBM, and this review provides strong preclinical and clinical evidence supporting these claims.
Collapse
Affiliation(s)
- Bharti Sharma
- Department of Surgery, NYC Health and Hospitals, Elmhurst Hospital Center, New York, NY 11373, USA
- Department of Surgery, Icahn School of Medicine at the Mount Sinai Hospital, New York, NY 10029, USA
| | - George Agriantonis
- Department of Surgery, NYC Health and Hospitals, Elmhurst Hospital Center, New York, NY 11373, USA
- Department of Surgery, Icahn School of Medicine at the Mount Sinai Hospital, New York, NY 10029, USA
| | - Zahra Shafaee
- Department of Surgery, NYC Health and Hospitals, Elmhurst Hospital Center, New York, NY 11373, USA
- Department of Surgery, Icahn School of Medicine at the Mount Sinai Hospital, New York, NY 10029, USA
| | - Kate Twelker
- Department of Surgery, NYC Health and Hospitals, Elmhurst Hospital Center, New York, NY 11373, USA
- Department of Surgery, Icahn School of Medicine at the Mount Sinai Hospital, New York, NY 10029, USA
| | - Navin D Bhatia
- Department of Surgery, NYC Health and Hospitals, Elmhurst Hospital Center, New York, NY 11373, USA
- Department of Surgery, Icahn School of Medicine at the Mount Sinai Hospital, New York, NY 10029, USA
| | - Zachary Kuschner
- Department of Surgery, NYC Health and Hospitals, Elmhurst Hospital Center, New York, NY 11373, USA
- Department of Surgery, Icahn School of Medicine at the Mount Sinai Hospital, New York, NY 10029, USA
| | - Monique Arnold
- Department of Emergency Medicine, Icahn School of Medicine at the Mount Sinai Hospital, New York, NY 10029, USA
| | - Aubrey Agcon
- Department of Surgery, NYC Health and Hospitals, Elmhurst Hospital Center, New York, NY 11373, USA
| | - Jasmine Dave
- Department of Surgery, NYC Health and Hospitals, Elmhurst Hospital Center, New York, NY 11373, USA
- Department of Surgery, Icahn School of Medicine at the Mount Sinai Hospital, New York, NY 10029, USA
| | - Juan Mestre
- Department of Surgery, NYC Health and Hospitals, Elmhurst Hospital Center, New York, NY 11373, USA
- Department of Surgery, Icahn School of Medicine at the Mount Sinai Hospital, New York, NY 10029, USA
| | - Shalini Arora
- Department of Surgery, NYC Health and Hospitals, Elmhurst Hospital Center, New York, NY 11373, USA
- Department of Surgery, Icahn School of Medicine at the Mount Sinai Hospital, New York, NY 10029, USA
| | - Hima Ghanta
- Department of Surgery, NYC Health and Hospitals, Elmhurst Hospital Center, New York, NY 11373, USA
- Department of Surgery, Icahn School of Medicine at the Mount Sinai Hospital, New York, NY 10029, USA
| | - Jennifer Whittington
- Department of Surgery, NYC Health and Hospitals, Elmhurst Hospital Center, New York, NY 11373, USA
- Department of Surgery, Icahn School of Medicine at the Mount Sinai Hospital, New York, NY 10029, USA
| |
Collapse
|
24
|
Tang Q, Ren T, Bai P, Wang X, Zhao L, Zhong R, Sun G. Novel strategies to overcome chemoresistance in human glioblastoma. Biochem Pharmacol 2024; 230:116588. [PMID: 39461382 DOI: 10.1016/j.bcp.2024.116588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 10/16/2024] [Accepted: 10/21/2024] [Indexed: 10/29/2024]
Abstract
Temozolomide (TMZ) is currently the first-line chemotherapeutic agent for the treatment of glioblastoma multiforme (GBM). However, the inherent heterogeneity of GBM often results in suboptimal outcomes, particularly due to varying degrees of resistance to TMZ. Over the past several decades, O6-methylguanine-DNA methyltransferase (MGMT)-mediated DNA repair pathway has been extensively investigated as a target to overcome TMZ resistance. Nonetheless, the combination of small molecule covalent MGMT inhibitors with TMZ and other chemotherapeutic agents has frequently led to adverse clinical effects. Recently, additional mechanisms contributing to TMZ resistance have been identified, including epidermal growth factor receptor (EGFR) mutations, overactivation of intracellular signalling pathways, energy metabolism reprogramming or survival autophagy, and changes in tumor microenvironment (TME). These findings suggest that novel therapeutic strategies targeting these mechanisms hold promise for overcoming TMZ resistance in GBM patients. In this review, we summarize the latest advancements in understanding the mechanisms underlying intrinsic and acquired TMZ resistance. Additionally, we compile various small-molecule compounds with potential to mitigate chemoresistance in GBM. These mechanism-based compounds may enhance the sensitivity of GBM to TMZ and related chemotherapeutic agents, thereby improving overall survival rates in clinical practice.
Collapse
Affiliation(s)
- Qing Tang
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Ting Ren
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Peiying Bai
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Xin Wang
- Department of Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100029, China
| | - Lijiao Zhao
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Rugang Zhong
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Guohui Sun
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
25
|
Thiruvengadam R, Dareowolabi BO, Moon EY, Kim JH. Nanotherapeutic strategy against glioblastoma using enzyme inhibitors. Biomed Pharmacother 2024; 181:117713. [PMID: 39615164 DOI: 10.1016/j.biopha.2024.117713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/30/2024] [Accepted: 11/25/2024] [Indexed: 12/21/2024] Open
Abstract
Glioblastoma is the most aggressive brain cancer and thus patients with glioblastoma have a severely low 5-year survival rate (<5 %). Glioblastoma damages neural centers, causing severe depression, anxiety, and cognitive disorders. Glioblastoma is highly resistant to most of available anti-tumor medications, due to heterogeneity of glioblastoma as well as the presence of stem-like cells. To overcome the challenges in the current medications against glioblastoma, novel medications that are effective in treating the aggressive and heterogenous glioblastoma should be developed. Enzyme inhibitor and nanomedicine have been getting attention because of effective anticancer efficacies of enzyme inhibitors and a role of nanomedicine as effective carrier of chemotherapeutic drugs by targeting specific tumor areas. Furthermore, a tumor-initiating neuroinflammatory microenvironment, which is crucial for glioblastoma progression, was linked with several carcinogenesis pathways. Therefore, in this review, first we summarize neuroinflammation and glioblastoma-related neuropathways. Second, we discuss the importance of enzyme inhibitors targeting specific proteins in relation with neuroinflammation and glioblastoma-related molecular mechanisms. Third, we summarize recent findings on the significance of nanotherapeutic anticancer drugs developed using natural or synthetic enzyme inhibitors against glioblastoma as well as currently available Food and Drug Administration (FDA)-approved drugs against glioblastoma.
Collapse
Affiliation(s)
- Rekha Thiruvengadam
- Department of Integrative Bioscience & Biotechnology, Sejong University, Seoul 05006, Republic of Korea
| | | | - Eun-Yi Moon
- Department of Integrative Bioscience & Biotechnology, Sejong University, Seoul 05006, Republic of Korea
| | - Jin Hee Kim
- Department of Integrative Bioscience & Biotechnology, Sejong University, Seoul 05006, Republic of Korea.
| |
Collapse
|
26
|
Kirishima M, Yokoyama S, Akahane T, Higa N, Uchida H, Yonezawa H, Matsuo K, Yamamoto J, Yoshimoto K, Hanaya R, Tanimoto A. Prognosis prediction via histological evaluation of cellular heterogeneity in glioblastoma. Sci Rep 2024; 14:24955. [PMID: 39438642 PMCID: PMC11496527 DOI: 10.1038/s41598-024-76826-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024] Open
Abstract
Glioblastomas (GBMs) are the most aggressive types of central nervous system tumors. Although certain genomic alterations have been identified as prognostic biomarkers of GBMs, the histomorphological features that predict their prognosis remain elusive. In this study, following an integrative diagnosis of 227 GBMs based on the 2021 World Health Organization classification system, the cases were histologically fractionated by cellular variations and abundance to evaluate the relationship between cellular heterogeneity and prognosis in combination with O-6-methylguanine-DNA methyltransferase gene promoter methylation (mMGMTp) status. GBMs comprised four major cell types: astrocytic, pleomorphic, gemistocytic, and rhabdoid cells. t-distributed stochastic neighbor embedding analysis using the histological abundance of heterogeneous cell types identified two distinct groups with significantly different prognoses. In individual cell component analysis, the abundance of gemistocytes showed a significantly favorable prognosis but confounding to mMGMTp status. Conversely, the abundance of epithelioid cells was correlated with the unfavorable prognosis. Linear model analysis showed the favorable prognostic utility of quantifying gemistocytic and epithelioid cells, independent of mMGMTp. The evaluation of GBM cell histomorphological heterogeneity is more effective for prognosis prediction in combination with mMGMTp analysis, indicating that histomorphological analysis is a practical and useful prognostication tool in an integrative diagnosis of GBMs.
Collapse
Affiliation(s)
- Mari Kirishima
- Department of Pathology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Seiya Yokoyama
- Department of Pathology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Toshiaki Akahane
- Department of Pathology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
- Center for Human Genome and Gene Analysis, Kagoshima University Hospital, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Nayuta Higa
- Department of Neurosurgery, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Hiroyuki Uchida
- Department of Neurosurgery, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Hajime Yonezawa
- Department of Neurosurgery, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Kei Matsuo
- Department of Pathology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Junkoh Yamamoto
- Department of Neurosurgery, University of Occupational and Environmental Health, Yahatanishi-Ku, Kitakyushu, 807-8555, Japan
| | - Koji Yoshimoto
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Ryosuke Hanaya
- Department of Neurosurgery, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan.
| | - Akihide Tanimoto
- Department of Pathology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan.
- Center for Human Genome and Gene Analysis, Kagoshima University Hospital, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan.
- Center for the Research of Advanced Diagnosis and Therapy of Cancer, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan.
| |
Collapse
|
27
|
Hasan S, Mahmud Z, Hossain M, Islam S. Harnessing the role of aberrant cell signaling pathways in glioblastoma multiforme: a prospect towards the targeted therapy. Mol Biol Rep 2024; 51:1069. [PMID: 39424705 DOI: 10.1007/s11033-024-09996-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024]
Abstract
Glioblastoma Multiforme (GBM), designated as grade IV by the World Health Organization, is the most aggressive and challenging brain tumor within the central nervous system. Around 80% of GBM patients have a poor prognosis, with a median survival of 12-15 months. Approximately 90% of GBM cases originate from normal glial cells via oncogenic processes, while the remainder arise from low-grade tumors. GBM is notorious for its heterogeneity, high recurrence rates, invasiveness, and aggressive behavior. Its malignancy is driven by increased invasive migration, proliferation, angiogenesis, and reduced apoptosis. Throughout various stages of central nervous system (CNS) development, pivotal signaling pathways, including Wnt/β-catenin, Sonic hedgehog signaling (Shh), PI3K/AKT/mTOR, Ras/Raf/MAPK/ERK, STAT3, NF-КB, TGF-β, and Notch signaling, orchestrate the growth, proliferation, differentiation, and migration of neural progenitor cells in the brain. Numerous upstream and downstream regulators within these signaling pathways have been identified as significant contributors to the development of human malignancies. Disruptions or aberrant activations in these pathways are linked to gliomagenesis, enhancing the invasiveness, progression, and aggressiveness of GBM, along with epithelial to mesenchymal transition (EMT) and the presence of glioma stem cells (GSCs). Traditional GBM treatment involves surgery, radiotherapy, and chemotherapy with Temozolomide (TMZ). However, most patients experience tumor recurrence, leading to low survival rates. This review provides an overview of the major cell signaling pathways involved in gliomagenesis. Furthermore, we explore the signaling pathways leading to therapy resistance and target key molecules within these signaling pathways, paving the way for the development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Subbrina Hasan
- Laboratory of Neuroscience and Neurogenetics, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Zimam Mahmud
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, 1000, Bangladesh.
| | - Mahmud Hossain
- Laboratory of Neuroscience and Neurogenetics, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, 1000, Bangladesh.
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, 1000, Bangladesh.
| | - Sohidul Islam
- Department of Biochemistry & Microbiology, North South University, Dhaka, 1229, Bangladesh
| |
Collapse
|
28
|
Molavand M, Ebrahimnezhade N, Kiani A, Yousefi B, Nazari A, Majidinia M. Regulation of autophagy by non-coding RNAs in human glioblastoma. Med Oncol 2024; 41:260. [PMID: 39375229 DOI: 10.1007/s12032-024-02513-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 09/18/2024] [Indexed: 10/09/2024]
Abstract
Glioblastoma, a lethal form of brain cancer, poses substantial challenges in treatment due to its aggressive nature and resistance to standard therapies like radiation and chemotherapy. Autophagy has a crucial role in glioblastoma progression by supporting cellular homeostasis and promoting survival under stressful conditions. Non-coding RNAs (ncRNAs) play diverse biological roles including, gene regulation, chromatin remodeling, and the maintenance of cellular homeostasis. Emerging evidence reveals the intricate regulatory mechanisms of autophagy orchestrated by non-coding RNAs (ncRNAs) in glioblastoma. The diverse roles of these ncRNAs in regulating crucial autophagy-related pathways, including AMPK/mTOR signaling, the PI3K/AKT pathway, Beclin1, and other autophagy-triggering system regulation, sheds light on ncRNAs biological mechanisms in the proliferation, invasion, and therapy response of glioblastoma cells. Furthermore, the clinical implications of targeting ncRNA-regulated autophagy as a promising therapeutic strategy for glioblastoma treatment are in the spotlight of ongoing studies. In this review, we delve into our current understanding of how ncRNAs regulate autophagy in glioblastoma, with a specific focus on microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), and their intricate interplay with therapy response.
Collapse
Affiliation(s)
- Mehran Molavand
- Student Research Commitee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Niloufar Ebrahimnezhade
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran
| | - Arash Kiani
- Student Research Commite, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Bahman Yousefi
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran.
- Molecular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Ahmad Nazari
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran.
- Tehran University of Medical Sciences, Tehran, Iran.
| | - Maryam Majidinia
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
29
|
Cunha Silva L, Branco F, Cunha J, Vitorino C, Gomes C, Carrascal MA, Falcão A, Miguel Neves B, Teresa Cruz M. The potential of exosomes as a new therapeutic strategy for glioblastoma. Eur J Pharm Biopharm 2024; 203:114460. [PMID: 39218361 DOI: 10.1016/j.ejpb.2024.114460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 07/30/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024]
Abstract
Glioblastoma (GBM) stands for the most common and aggressive type of brain tumour in adults. It is highly invasive, which explains its short rate of survival. Little is known about its risk factors, and current therapy is still ineffective. Hence, efforts are underway to develop novel and effective treatment approaches against this type of cancer. Exosomes are being explored as a promising strategy for conveying and delivering therapeutic cargo to GBM cells. They can fuse with the GBM cell membrane and, consequently, serve as delivery systems in this context. Due to their nanoscale size, exosomes can cross the blood-brain barrier (BBB), which constitutes a significant hurdle to most chemotherapeutic drugs used against GBM. They can subsequently inhibit oncogenes, activate tumour suppressor genes, induce immune responses, and control cell growth. However, despite representing a promising tool for the treatment of GBM, further research and clinical studies regarding exosome biology, engineering, and clinical applications still need to be completed. Here, we sought to review the application of exosomes in the treatment of GBM through an in-depth analysis of the scientific and clinical studies on the entire process, from the isolation and purification of exosomes to their design and transformation into anti-oncogenic drug delivery systems. Surface modification of exosomes to enhance BBB penetration and GBM-cell targeting is also a topic of discussion.
Collapse
Affiliation(s)
- Leonor Cunha Silva
- Faculty of Pharmacy, FFUC, University of Coimbra, Coimbra 3000-548, Portugal
| | - Francisco Branco
- Faculty of Pharmacy, FFUC, University of Coimbra, Coimbra 3000-548, Portugal
| | - Joana Cunha
- Faculty of Pharmacy, FFUC, University of Coimbra, Coimbra 3000-548, Portugal
| | - Carla Vitorino
- Faculty of Pharmacy, FFUC, University of Coimbra, Coimbra 3000-548, Portugal; Coimbra Chemistry Centre, Institute of Molecular Sciences - IMS, Department of Chemistry, University of Coimbra, Coimbra 3004 535, Portugal
| | - Célia Gomes
- Coimbra Institute for Clinical and Biomedical Research, iCBR, Faculty of Medicine, University of Coimbra, Coimbra 3000-548, Portugal; Center for Innovation in Biomedicine and Biotechnology, CIBB, University of Coimbra, Coimbra 3000-504, Portugal
| | - Mylène A Carrascal
- Tecnimede Group, Sintra 2710-089, Portugal; Center for Neuroscience and Cell Biology, CNC, University of Coimbra, Coimbra 3004-504, Portugal
| | - Amílcar Falcão
- Faculty of Pharmacy, FFUC, University of Coimbra, Coimbra 3000-548, Portugal; Coimbra Institute for Biomedical Imaging and Translational Research, CIBIT, University of Coimbra, Coimbra 3000-548, Portugal
| | - Bruno Miguel Neves
- Department of Medical Sciences and Institute of Biomedicine, iBiMED, University of Aveiro, Aveiro 3810-193, Portugal
| | - Maria Teresa Cruz
- Faculty of Pharmacy, FFUC, University of Coimbra, Coimbra 3000-548, Portugal; Coimbra Institute for Clinical and Biomedical Research, iCBR, Faculty of Medicine, University of Coimbra, Coimbra 3000-548, Portugal; Center for Neuroscience and Cell Biology, CNC, University of Coimbra, Coimbra 3004-504, Portugal.
| |
Collapse
|
30
|
Sarkar S, Patranabis S. Immunomodulatory signalling networks in glioblastoma multiforme: a comprehensive review of therapeutic approaches. Hum Cell 2024; 37:1355-1377. [PMID: 39085713 DOI: 10.1007/s13577-024-01112-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024]
Abstract
Glioblastoma multiforme is a very aggressive type of cancer with high mortality and poor prognosis worldwide. Advanced treatment options with an understanding of the molecules and signalling mechanisms involved in this type of cancer have the potential to increase targeted therapy and decrease off-target effects, resistance, and recurrence. Glioblastoma multiforme (GBM) presents a complex tumour microenvironment with numerous cellular components and an extracellular matrix comprising multiple components. A deeper understanding of these components and corresponding signalling pathways can increase the success of immune checkpoint inhibitors in the treatment of GBM. The discovery of specific molecular changes and biomarkers has led to the investigation of tailored treatments for individual patients. Combination therapies targeting multiple pathways or utilizing different modalities are emerging as a promising strategy albeit with challenges in drug delivery to the brain. The review presents a comprehensive update of the various immunomodulatory signalling networks in GBM and highlights the corresponding therapeutic approaches by targeting them.
Collapse
|
31
|
Mitobe Y, Suzuki S, Nakamura K, Nakagawa-Saito Y, Takenouchi S, Togashi K, Sugai A, Sonoda Y, Kitanaka C, Okada M. CEP-1347 Boosts Chk2-Mediated p53 Activation by Ionizing Radiation to Inhibit the Growth of Malignant Brain Tumor Cells. Int J Mol Sci 2024; 25:9473. [PMID: 39273420 PMCID: PMC11395301 DOI: 10.3390/ijms25179473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Radiation therapy continues to be the cornerstone treatment for malignant brain tumors, the majority of which express wild-type p53. Therefore, the identification of drugs that promote the ionizing radiation (IR)-induced activation of p53 is expected to increase the efficacy of radiation therapy for these tumors. The growth inhibitory effects of CEP-1347, a known inhibitor of MDM4 expression, on malignant brain tumor cell lines expressing wild-type p53 were examined, alone or in combination with IR, by dye exclusion and/or colony formation assays. The effects of CEP-1347 on the p53 pathway, alone or in combination with IR, were examined by RT-PCR and Western blot analyses. The combination of CEP-1347 and IR activated p53 in malignant brain tumor cells and inhibited their growth more effectively than either alone. Mechanistically, CEP-1347 and IR each reduced MDM4 expression, while their combination did not result in further decreases. CEP-1347 promoted IR-induced Chk2 phosphorylation and increased p53 expression in concert with IR in a Chk2-dependent manner. The present results show, for the first time, that CEP-1347 is capable of promoting Chk2-mediated p53 activation by IR in addition to inhibiting the expression of MDM4 and, thus, CEP-1347 has potential as a radiosensitizer for malignant brain tumors expressing wild-type p53.
Collapse
Affiliation(s)
- Yuta Mitobe
- Department of Molecular Cancer Science, School of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
- Department of Neurosurgery, School of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Shuhei Suzuki
- Department of Molecular Cancer Science, School of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
- Department of Clinical Oncology, Yamagata Prefectural Shinjo Hospital, 720-1 Kanazawa, Shinjo, Yamagata 996-8585, Japan
| | - Kazuki Nakamura
- Department of Molecular Cancer Science, School of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
- Department of Neurosurgery, School of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Yurika Nakagawa-Saito
- Department of Molecular Cancer Science, School of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Senri Takenouchi
- Department of Molecular Cancer Science, School of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Keita Togashi
- Department of Molecular Cancer Science, School of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
- Department of Ophthalmology and Visual Sciences, School of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Asuka Sugai
- Department of Molecular Cancer Science, School of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Yukihiko Sonoda
- Department of Neurosurgery, School of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Chifumi Kitanaka
- Department of Molecular Cancer Science, School of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
- Research Institute for Promotion of Medical Sciences, Faculty of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Masashi Okada
- Department of Molecular Cancer Science, School of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| |
Collapse
|
32
|
Hajimohammadebrahim-Ketabforoush M, Zali A, Shahmohammadi M, Hamidieh AA. Metformin and its potential influence on cell fate decision between apoptosis and senescence in cancer, with a special emphasis on glioblastoma. Front Oncol 2024; 14:1455492. [PMID: 39267853 PMCID: PMC11390356 DOI: 10.3389/fonc.2024.1455492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/12/2024] [Indexed: 09/15/2024] Open
Abstract
Despite reaching enormous achievements in therapeutic approaches worldwide, GBM still remains the most incurable malignancy among various cancers. It emphasizes the necessity of adjuvant therapies from the perspectives of both patients and healthcare providers. Therefore, most emerging studies have focused on various complementary and adjuvant therapies. Among them, metabolic therapy has received special attention, and metformin has been considered as a treatment in various types of cancer, including GBM. It is clearly evident that reaching efficient approaches without a comprehensive evaluation of the key mechanisms is not possible. Among the studied mechanisms, one of the more challenging ones is the effect of metformin on apoptosis and senescence. Moreover, metformin is well known as an insulin sensitizer. However, if insulin signaling is facilitated in the tumor microenvironment, it may result in tumor growth. Therefore, to partially resolve some paradoxical issues, we conducted a narrative review of related studies to address the following questions as comprehensively as possible: 1) Does the improvement of cellular insulin function resulting from metformin have detrimental or beneficial effects on GBM cells? 2) If these effects are detrimental to GBM cells, which is more important: apoptosis or senescence? 3) What determines the cellular decision between apoptosis and senescence?
Collapse
Affiliation(s)
- Melika Hajimohammadebrahim-Ketabforoush
- Student Research Committee, Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Zali
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Shahmohammadi
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Ali Hamidieh
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
33
|
Ahmadpour V, Modarresi M, Eftekhari M, Saeedi M, Karimi N, Rasekhian M. Chemical composition of essential and fixed oils of Tagetes erecta fruits (Iran) and their implications in inhibition of cancer signaling. Sci Rep 2024; 14:19667. [PMID: 39181940 PMCID: PMC11344814 DOI: 10.1038/s41598-024-70582-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024] Open
Abstract
The current research was conducted to explore, for the first time, Tagetes erecta L. (family Asteraceae) fruits from northwest Iran in terms of the chemical composition of essential and fixed oils, their cytotoxic activities, and the inhibitory effect of essential oil on the PI3K/AKT/mTOR signaling pathway. The volatile oil was obtained through hydrodistillation (Clevenger apparatus). According to gas chromatography-mass spectrometry analysis, the essential oil was rich in cyclic monoterpenoids, 2-isopropyl-5-methyl-3-cyclohexen-1-one (19.99%), D-limonene (12.75%), terpinolene (11.64%) and also the saturated fatty acid palmitic acid (19.09%). Furthermore, the seeds of T. erecta were extracted using hexane by the maceration method. The analysis of fatty acid profile of the fixed oil by gas chromatography-flame ionization detector (GC-FID) demonstrated that the most predominant fatty acids in fixed oil were linoleic acid (59.53%), palmitic acid (13.70%), stearic acid (10.20%), and oleic acid (9.20%). The cytotoxic activity of essential oil, crude oil, and fraction A (obtained from fixed oil) were evaluated by using the MTT assay on MCF7 (human breast cancer cell line), PC3 (human prostate cancer cell line), and U87MG (human glioblastoma cell line). Finally, the effect of essential oil on inhibiting the PI3K/Akt/mTOR signaling pathway was evaluated using real-time PCR. The essential oil exhibited vigorous cytotoxic activity on the U87MG cell line, with an IC50 value of 32.65 μg/mL. Interestingly, the essential oil significantly inhibited the PI3K/AKT/mTOR cascade compared to the non-treated group. Our results suggest that the essential oil holds promise as an anticancer agent for glioblastoma cell lines. To the best of our knowledge, this study is the first to report on the profile of the essential oil of T. erecta fruits and its implications for targeting the PI3K/AKT/mTOR signaling pathway.
Collapse
Affiliation(s)
- Vahideh Ahmadpour
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Masoud Modarresi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Pharmacognosy and Pharmaceutical Biotechnology, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mahdieh Eftekhari
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Pharmacognosy and Pharmaceutical Biotechnology, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mina Saeedi
- Medicinal Plants Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Persian Medicine and Pharmacy Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Negar Karimi
- Department of Pharmacognosy and Pharmaceutical Biotechnology, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mahsa Rasekhian
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
- Department of Pharmacognosy and Pharmaceutical Biotechnology, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
34
|
El Hachimy I, Kabelma D, Echcharef C, Hassani M, Benamar N, Hajji N. A comprehensive survey on the use of deep learning techniques in glioblastoma. Artif Intell Med 2024; 154:102902. [PMID: 38852314 DOI: 10.1016/j.artmed.2024.102902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 04/28/2024] [Accepted: 06/02/2024] [Indexed: 06/11/2024]
Abstract
Glioblastoma, characterized as a grade 4 astrocytoma, stands out as the most aggressive brain tumor, often leading to dire outcomes. The challenge of treating glioblastoma is exacerbated by the convergence of genetic mutations and disruptions in gene expression, driven by alterations in epigenetic mechanisms. The integration of artificial intelligence, inclusive of machine learning algorithms, has emerged as an indispensable asset in medical analyses. AI is becoming a necessary tool in medicine and beyond. Current research on Glioblastoma predominantly revolves around non-omics data modalities, prominently including magnetic resonance imaging, computed tomography, and positron emission tomography. Nonetheless, the assimilation of omic data-encompassing gene expression through transcriptomics and epigenomics-offers pivotal insights into patients' conditions. These insights, reciprocally, hold significant value in refining diagnoses, guiding decision- making processes, and devising efficacious treatment strategies. This survey's core objective encompasses a comprehensive exploration of noteworthy applications of machine learning methodologies in the domain of glioblastoma, alongside closely associated research pursuits. The study accentuates the deployment of artificial intelligence techniques for both non-omics and omics data, encompassing a range of tasks. Furthermore, the survey underscores the intricate challenges posed by the inherent heterogeneity of Glioblastoma, delving into strategies aimed at addressing its multifaceted nature.
Collapse
Affiliation(s)
| | | | | | - Mohamed Hassani
- Cancer Division, Faculty of medicine, Department of Biomolecular Medicine, Imperial College, London, United Kingdom
| | - Nabil Benamar
- Moulay Ismail University of Meknes, Meknes, Morocco; Al Akhawayn University in Ifrane, Ifrane, Morocco.
| | - Nabil Hajji
- Cancer Division, Faculty of medicine, Department of Biomolecular Medicine, Imperial College, London, United Kingdom; Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, Virgen Macarena University Hospital, University of Seville, Seville, Spain
| |
Collapse
|
35
|
Giammona A, Commisso M, Bonanomi M, Remedia S, Avesani L, Porro D, Gaglio D, Bertoli G, Lo Dico A. A Novel Strategy for Glioblastoma Treatment by Natural Bioactive Molecules Showed a Highly Effective Anti-Cancer Potential. Nutrients 2024; 16:2389. [PMID: 39125270 PMCID: PMC11314145 DOI: 10.3390/nu16152389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/12/2024] [Accepted: 07/20/2024] [Indexed: 08/12/2024] Open
Abstract
Glioblastoma (GBM) is a severe form of brain tumor that has a high fatality rate. It grows aggressively and most of the time results in resistance to traditional treatments like chemo- and radiotherapy and surgery. Biodiversity, beyond representing a big resource for human well-being, provides several natural compounds that have shown great potential as anticancer drugs. Many of them are being extensively researched and significantly slow GBM progression by reducing the proliferation rate, migration, and inflammation and also by modulating oxidative stress. Here, the use of some natural compounds, such as Allium lusitanicum, Succisa pratensis, and Dianthus superbus, was explored to tackle GBM; they showed their impact on cell number reduction, which was partially given by cell cycle quiescence. Furthermore, a reduced cell migration ability was reported, accomplished by morphological cytoskeleton changes, which even highlighted a mesenchymal-epithelial transition. Furthermore, metabolic studies showed an induced cell oxidative stress modulation and a massive metabolic rearrangement. Therefore, a new therapeutic option was suggested to overcome the limitations of conventional treatments and thereby improve patient outcomes.
Collapse
Affiliation(s)
- Alessandro Giammona
- Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), Segrate, 20054 Milan, Italy
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
| | - Mauro Commisso
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
- Department of Biotechnology, University of Verona, 15, Strada Le Grazie, 37134 Verona, Italy
| | - Marcella Bonanomi
- Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), Segrate, 20054 Milan, Italy
| | - Sofia Remedia
- Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), Segrate, 20054 Milan, Italy
| | - Linda Avesani
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
- Department of Biotechnology, University of Verona, 15, Strada Le Grazie, 37134 Verona, Italy
| | - Danilo Porro
- Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), Segrate, 20054 Milan, Italy
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
| | - Daniela Gaglio
- Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), Segrate, 20054 Milan, Italy
| | - Gloria Bertoli
- Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), Segrate, 20054 Milan, Italy
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
| | - Alessia Lo Dico
- Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), Segrate, 20054 Milan, Italy
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
| |
Collapse
|
36
|
Jezierzański M, Nafalska N, Stopyra M, Furgoł T, Miciak M, Kabut J, Gisterek-Grocholska I. Temozolomide (TMZ) in the Treatment of Glioblastoma Multiforme-A Literature Review and Clinical Outcomes. Curr Oncol 2024; 31:3994-4002. [PMID: 39057168 PMCID: PMC11275351 DOI: 10.3390/curroncol31070296] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/07/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Glioblastoma multiforme (GBM) is one of the most aggressive primary tumors of the central nervous system. It is associated with a very poor prognosis, with up to half of patients failing to survive the first year after diagnosis. It develops from glial tissue and belongs to the adult-type diffuse glioma group according to the WHO classification of 2021. Therapy for patients with GBM is currently based on surgical resection, radiation therapy, and chemotherapy, but despite many efforts, there has been minimal progress in tumor management. The most important chemotherapeutic agent in the treatment of this tumor is temozolomide (TMZ), a dacarbazine derivative that presents alkylating activity. It is usually administered to patients concurrently with radiation therapy after surgical resection of the tumor, which is defined as the Stupp protocol. Temozolomide demonstrates relatively good efficacy in therapy, but it could also present with several side effects. The resistance of GBM to the drug is currently the subject of work by specialists in the field of oncology, and its use in various regimens and patient groups may bring therapeutic benefits in the future. The aim of this review paper is to summarize the relevance of TMZ in the treatment of GBM based on recent reports.
Collapse
Affiliation(s)
- Marcin Jezierzański
- Faculty of Medicine, Silesian Medical University, 41-800 Zabrze, Poland; (N.N.); (M.S.); (T.F.)
| | - Natalia Nafalska
- Faculty of Medicine, Silesian Medical University, 41-800 Zabrze, Poland; (N.N.); (M.S.); (T.F.)
| | - Małgorzata Stopyra
- Faculty of Medicine, Silesian Medical University, 41-800 Zabrze, Poland; (N.N.); (M.S.); (T.F.)
| | - Tomasz Furgoł
- Faculty of Medicine, Silesian Medical University, 41-800 Zabrze, Poland; (N.N.); (M.S.); (T.F.)
| | - Michał Miciak
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland;
| | - Jacek Kabut
- Department of Oncology and Radiotherapy, Silesian Medical University, Ceglana 35, 40-514 Katowice, Poland; (J.K.); (I.G.-G.)
| | - Iwona Gisterek-Grocholska
- Department of Oncology and Radiotherapy, Silesian Medical University, Ceglana 35, 40-514 Katowice, Poland; (J.K.); (I.G.-G.)
| |
Collapse
|
37
|
Tong S, Wu J, Song Y, Fu W, Yuan Y, Zhong P, Liu Y, Wang B. IDH1-mutant metabolite D-2-hydroxyglutarate inhibits proliferation and sensitizes glioma to temozolomide via down-regulating ITGB4/PI3K/AKT. Cell Death Discov 2024; 10:317. [PMID: 38982076 PMCID: PMC11233597 DOI: 10.1038/s41420-024-02088-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/19/2024] [Accepted: 07/02/2024] [Indexed: 07/11/2024] Open
Abstract
The heterogeneous molecular subtypes of gliomas demonstrate varied responses to chemotherapy and distinct prognostic outcomes. Gliomas with Isocitrate dehydrogenase 1 (IDH1) mutation are associated with better outcomes and are more responsive to temozolomide (TMZ) compared to those without IDH1 mutation. IDH1-mutant gliomas elevate D-2-hydroxyglutarate (D-2HG) levels, with potential dual effects on tumor progression. Limited research has explored the potential anti-glioma effects of D-2HG in combination with TMZ. Clinical data from over 2500 glioma patients in our study confirms that those with IDH1 mutations exhibit enhanced responsiveness to TMZ chemotherapy and a significantly better prognosis compared to IDH1 wild-type patients. In subsequent cellular experiments, we found that the IDH1-mutant metabolite D-2HG suppresses Integrin subunit beta 4 (ITGB4) expression, and down-regulate the phosphorylation levels of PI3K and AKT, ultimately inhibiting cell proliferation while promoting apoptosis, thereby improving glioma prognosis. Additionally, we have demonstrated the synergistic effect of D-2HG and TMZ in anti-glioma therapy involved inhibiting the proliferation of glioma cells and promoting apoptosis. Finally, by integrating data from the CGGA and TCGA databases, it was validated that ITGB4 expression was lower in IDH1-mutant gliomas, and patients with lower ITGB4 expression were associated with better prognosis. These findings indicate that ITGB4 may be a promising therapeutic target for gliomas and D-2HG inhibits proliferation and sensitizes glioma to temozolomide via down-regulating ITGB4/PI3K/AKT. These findings drive theoretical innovation and research progress in glioma therapy.
Collapse
Affiliation(s)
- Shuangmei Tong
- Department of Pharmacy, Huashan Hospital, Fudan University School of Medicine, Shanghai, 200040, China
| | - Jian Wu
- Department of Pharmacy, Huashan Hospital, Fudan University School of Medicine, Shanghai, 200040, China
| | - Yun Song
- Department of Pharmacy, Huashan Hospital, Fudan University School of Medicine, Shanghai, 200040, China
| | - Wenhuan Fu
- Department of Pharmacy, Huashan Hospital, Fudan University School of Medicine, Shanghai, 200040, China
| | - Yifan Yuan
- Department of Neurosurgery, Huashan Hospital, Fudan University School of Medicine, Shanghai, 200040, China
| | - Pin Zhong
- Department of Neurosurgery, Huashan Hospital, Fudan University School of Medicine, Shanghai, 200040, China
| | - Yinlong Liu
- Department of Neurosurgery, Huashan Hospital, Fudan University School of Medicine, Shanghai, 200040, China.
| | - Bin Wang
- Department of Pharmacy, Huashan Hospital, Fudan University School of Medicine, Shanghai, 200040, China.
| |
Collapse
|
38
|
Chiang YC, Selvam P, Liu YX, Shih PC, Chen NF, Kuo HM, Lin HYH, Wen ZH, Chen WF. STAT3 phosphorylation inhibitor Bt354 exhibits anti-neoplastic activity in glioblastoma multiforme cells. ENVIRONMENTAL TOXICOLOGY 2024; 39:3292-3303. [PMID: 38415901 DOI: 10.1002/tox.24178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 11/28/2023] [Accepted: 01/18/2024] [Indexed: 02/29/2024]
Abstract
The high mortality rate of glioblastoma multiforme (GBM), a lethal primary brain tumor, is attributable to postsurgical recurrence. STAT3, an oncogenic protein, is a signal transducer and transcription activator encourages cancer cell migration and proliferation, which results in resistance to therapy. STAT3 inhibition reduces cancer metastasis and improves patient prognosis. Bt354, a small molecule STAT inhibitor, exhibits significant cytotoxic and anti-proliferative activities against certain cancer types. Here, we demonstrated that exposure of GBM cells (U87 MG) to Bt354 had a significant, concentration-dependent growth suppression. Bt354 also induced apoptosis and downregulated the expression of the epithelial-mesenchymal transition genes. Therefore, this study suggests the potential of Bt354 for treating GBM owing to its ability to induce cytotoxicity.
Collapse
Affiliation(s)
- Yi-Chun Chiang
- Department of Surgery, Division of Neurosurgery, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
| | - Padhmavathi Selvam
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - You-Xuan Liu
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Po-Chang Shih
- Institute of BioPharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Nan-Fu Chen
- Department of Surgery, Division of Neurosurgery, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Hsiao-Mei Kuo
- Department of Neurosurgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, College of Medicine, Kaohsiung, Taiwan
| | - Hugo You-Hsien Lin
- Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Wu-Fu Chen
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung, Taiwan
- Department of Neurosurgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, College of Medicine, Kaohsiung, Taiwan
| |
Collapse
|
39
|
Alorfi NM, Ashour AM, Alharbi AS, Alshehri FS. Targeting inflammation in glioblastoma: An updated review from pathophysiology to novel therapeutic approaches. Medicine (Baltimore) 2024; 103:e38245. [PMID: 38788009 PMCID: PMC11124608 DOI: 10.1097/md.0000000000038245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
Glioblastoma (GBM) is a highly aggressive primary malignant brain tumor with a dismal prognosis despite current treatment strategies. Inflammation plays an essential role in GBM pathophysiology, contributing to tumor growth, invasion, immunosuppression, and angiogenesis. As a result, pharmacological intervention with anti-inflammatory drugs has been used as a potential approach for the management of GBM. To provide an overview of the current understanding of GBM pathophysiology, potential therapeutic applications of anti-inflammatory drugs in GBM, conventional treatments of glioblastoma and emerging therapeutic approaches currently under investigation. A narrative review was carried out, scanning publications from 2000 to 2023 on PubMed and Google Scholar. The search was not guided by a set research question or a specific search method but rather focused on the area of interest. Conventional treatments such as surgery, radiotherapy, and chemotherapy have shown some benefits, but their effectiveness is limited by various factors such as tumor heterogeneity and resistance.
Collapse
Affiliation(s)
- Nasser M. Alorfi
- Pharmacology and Toxicology Department, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ahmed M. Ashour
- Pharmacology and Toxicology Department, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Adnan S. Alharbi
- Pharmacy Practice Department, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Fahad S. Alshehri
- Pharmacology and Toxicology Department, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
40
|
Sun Q, Wang Z, Xiu H, He N, Liu M, Yin L. Identification of candidate biomarkers for GBM based on WGCNA. Sci Rep 2024; 14:10692. [PMID: 38724609 PMCID: PMC11082160 DOI: 10.1038/s41598-024-61515-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 05/07/2024] [Indexed: 05/12/2024] Open
Abstract
Glioblastoma multiforme (GBM), the most aggressive form of primary brain tumor, poses a considerable challenge in neuro-oncology. Despite advancements in therapeutic approaches, the prognosis for GBM patients remains bleak, primarily attributed to its inherent resistance to conventional treatments and a high recurrence rate. The primary goal of this study was to acquire molecular insights into GBM by constructing a gene co-expression network, aiming to identify and predict key genes and signaling pathways associated with this challenging condition. To investigate differentially expressed genes between various grades of Glioblastoma (GBM), we employed Weighted Gene Co-expression Network Analysis (WGCNA) methodology. Through this approach, we were able to identify modules with specific expression patterns in GBM. Next, genes from these modules were performed Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis using ClusterProfiler package. Our findings revealed a negative correlation between biological processes associated with neuronal development and functioning and GBM. Conversely, the processes related to the cell cycle, glomerular development, and ECM-receptor interaction exhibited a positive correlation with GBM. Subsequently, hub genes, including SYP, TYROBP, and ANXA5, were identified. This study offers a comprehensive overview of the existing research landscape on GBM, underscoring the challenges encountered by clinicians and researchers in devising effective therapeutic strategies.
Collapse
Affiliation(s)
- Qinghui Sun
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, 571199, Hainan, China
| | - Zheng Wang
- Biotechnology and Biochemistry Laboratory, Hainan Medical University, Haikou, 571199, Hainan, China
| | - Hao Xiu
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, 571199, Hainan, China
| | - Na He
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, 571199, Hainan, China
| | - Mingyu Liu
- School of Stomatology, Hainan Medical University, Haikou, 571199, Hainan, China
| | - Li Yin
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, 571199, Hainan, China.
| |
Collapse
|
41
|
Pasdaran A, Grice ID, Hamedi A. A review of natural products and small-molecule therapeutics acting on central nervous system malignancies: Approaches for drug development, targeting pathways, clinical trials, and challenges. Drug Dev Res 2024; 85:e22180. [PMID: 38680103 DOI: 10.1002/ddr.22180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/09/2023] [Accepted: 03/19/2024] [Indexed: 05/01/2024]
Abstract
In 2021, the World Health Organization released the fifth edition of the central nervous system (CNS) tumor classification. This classification uses histopathology and molecular pathogenesis to group tumors into more biologically and molecularly defined entities. The prognosis of brain cancer, particularly malignant tumors, has remained poor worldwide, approximately 308,102 new cases of brain and other CNS tumors were diagnosed in the year 2020, with an estimated 251,329 deaths. The cost and time-consuming nature of studies to find new anticancer agents makes it necessary to have well-designed studies. In the present study, the pathways that can be targeted for drug development are discussed in detail. Some of the important cellular origins, signaling, and pathways involved in the efficacy of bioactive molecules against CNS tumorigenesis or progression, as well as prognosis and common approaches for treatment of different types of brain tumors, are reviewed. Moreover, different study tools, including cell lines, in vitro, in vivo, and clinical trial challenges, are discussed. In addition, in this article, natural products as one of the most important sources for finding new chemotherapeutics were reviewed and over 700 reported molecules with efficacy against CNS cancer cells are gathered and classified according to their structure. Based on the clinical trials that have been registered, very few of these natural or semi-synthetic derivatives have been studied in humans. The review can help researchers understand the involved mechanisms and design new goal-oriented studies for drug development against CNS malignancies.
Collapse
Affiliation(s)
- Ardalan Pasdaran
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacognosy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Irwin Darren Grice
- Institute for Glycomics, Griffith University, Gold Coast Campus, Southport, Queensland, Australia
- School of Medical Science, Griffith University, Gold Coast, Southport, Queensland, Australia
| | - Azadeh Hamedi
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacognosy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
42
|
Ahirwar K, Kumar A, Srivastava N, Saraf SA, Shukla R. Harnessing the potential of nanoengineered siRNAs carriers for target responsive glioma therapy: Recent progress and future opportunities. Int J Biol Macromol 2024; 266:131048. [PMID: 38522697 DOI: 10.1016/j.ijbiomac.2024.131048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/19/2024] [Accepted: 03/11/2024] [Indexed: 03/26/2024]
Abstract
Past scientific testimonials in the field of glioma research, the deadliest tumor among all brain cancer types with the life span of 10-15 months after diagnosis is considered as glioblastoma multiforme (GBM). Even though the availability of treatment options such as chemotherapy, radiotherapy, and surgery, are unable to completely cure GBM due to tumor microenvironment complexity, intrinsic cellular signalling, and genetic mutations which are involved in chemoresistance. The blood-brain barrier is accountable for restricting drugs entry at the tumor location and related biological challenges like endocytic degradation, short systemic circulation, and insufficient cellular penetration lead to tumor aggression and progression. The above stated challenges can be better mitigated by small interfering RNAs (siRNA) by knockdown genes responsible for tumor progression and resistance. However, siRNA encounters with challenges like inefficient cellular transfection, short circulation time, endogenous degradation, and off-target effects. The novel functionalized nanocarrier approach in conjunction with biological and chemical modification offers an intriguing potential to address challenges associated with the naked siRNA and efficiently silence STAT3, coffilin-1, EGFR, VEGF, SMO, MGMT, HAO-1, GPX-4, TfR, LDLR and galectin-1 genes in GBM tumor. This review highlights the nanoengineered siRNA carriers, their recent advancements, future perspectives, and strategies to overcome the systemic siRNA delivery challenges for glioma treatment.
Collapse
Affiliation(s)
- Kailash Ahirwar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, U.P. 226002, India
| | - Ankit Kumar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, U.P. 226002, India
| | - Nidhi Srivastava
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, U.P. 226002, India
| | - Shubhini A Saraf
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, U.P. 226002, India
| | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, U.P. 226002, India.
| |
Collapse
|
43
|
Esteves L, Caramelo F, Roda D, Carreira IM, Melo JB, Ribeiro IP. Identification of Novel Molecular and Clinical Biomarkers of Survival in Glioblastoma Multiforme Patients: A Study Based on The Cancer Genome Atlas Data. BIOMED RESEARCH INTERNATIONAL 2024; 2024:5582424. [PMID: 38606198 PMCID: PMC11008977 DOI: 10.1155/2024/5582424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/14/2024] [Accepted: 03/18/2024] [Indexed: 04/13/2024]
Abstract
Glioblastoma multiforme (GBM) is the most prevalent type of brain tumour; although advancements in treatment have been made, the median survival time for GBM patients has persisted at 15 months. This study is aimed at investigating the genetic alterations and clinical features of GBM patients to find predictors of survival. GBM patients' methylation and gene expression data along with clinical information from TCGA were retrieved. The most overrepresented pathways were identified independently for each omics dataset. From the genes found in at least 30% of these pathways, one gene that was identified in both sets was further examined using the Kaplan-Meier method for survival analysis. Additionally, three groups of patients who started radio and chemotherapy at different times were identified, and the influence of these variations in treatment modality on patient survival was evaluated. Four pathways that seemed to negatively impact survival and two with the opposite effect were identified. The methylation status of PRKCB was highlighted as a potential novel biomarker for patient survival. The study also found that treatment with chemotherapy prior to radiotherapy can have a significant impact on patient survival, which could lead to improvements in clinical management and therapeutic approaches for GBM patients.
Collapse
Affiliation(s)
- Luísa Esteves
- Cytogenetics and Genomics Laboratory, Institute of Cellular and Molecular Biology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Francisco Caramelo
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) and Center of Investigation on Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, Coimbra, Portugal
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB) and Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
- Laboratory of Biostatistics and Medical Informatics, iCBR-Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Domingos Roda
- Algarve Radiation Oncology Unit-Joaquim Chaves Saúde (JCS), Faro, Portugal
| | - Isabel Marques Carreira
- Cytogenetics and Genomics Laboratory, Institute of Cellular and Molecular Biology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) and Center of Investigation on Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, Coimbra, Portugal
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB) and Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - Joana Barbosa Melo
- Cytogenetics and Genomics Laboratory, Institute of Cellular and Molecular Biology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) and Center of Investigation on Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, Coimbra, Portugal
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB) and Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - Ilda Patrícia Ribeiro
- Cytogenetics and Genomics Laboratory, Institute of Cellular and Molecular Biology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) and Center of Investigation on Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, Coimbra, Portugal
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB) and Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| |
Collapse
|
44
|
Lan Z, Li X, Zhang X. Glioblastoma: An Update in Pathology, Molecular Mechanisms and Biomarkers. Int J Mol Sci 2024; 25:3040. [PMID: 38474286 PMCID: PMC10931698 DOI: 10.3390/ijms25053040] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/28/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and malignant type of primary brain tumor in adults. Despite important advances in understanding the molecular pathogenesis and biology of this tumor in the past decade, the prognosis for GBM patients remains poor. GBM is characterized by aggressive biological behavior and high degrees of inter-tumor and intra-tumor heterogeneity. Increased understanding of the molecular and cellular heterogeneity of GBM may not only help more accurately define specific subgroups for precise diagnosis but also lay the groundwork for the successful implementation of targeted therapy. Herein, we systematically review the key achievements in the understanding of GBM molecular pathogenesis, mechanisms, and biomarkers in the past decade. We discuss the advances in the molecular pathology of GBM, including genetics, epigenetics, transcriptomics, and signaling pathways. We also review the molecular biomarkers that have potential clinical roles. Finally, new strategies, current challenges, and future directions for discovering new biomarkers and therapeutic targets for GBM will be discussed.
Collapse
Affiliation(s)
| | | | - Xiaoqin Zhang
- Department of Pathology, School of Medicine, South China University of Technology, Guangzhou 510006, China; (Z.L.); (X.L.)
| |
Collapse
|
45
|
Abdoli Shadbad M, Nejadi Orang F, Baradaran B. CD133 significance in glioblastoma development: in silico and in vitro study. Eur J Med Res 2024; 29:154. [PMID: 38448914 PMCID: PMC10918901 DOI: 10.1186/s40001-024-01754-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/28/2024] [Indexed: 03/08/2024] Open
Abstract
BACKGROUND Glioblastoma multiform (GBM) is among the commonly diagnosed brain malignancies with poor prognosis. CD133 has been introduced as an oncogene in various cancers, like GBM. This study aimed to investigate the significance of CD133 in GBM development using in silico and in vitro techniques. METHOD The TCGA-GBM database was analyzed for the correlational and comparative studies. After selecting the U87MG cell line, CD133-siRNA was transfected into U87MG cells and treated with temozolomide. The cell viability, cell cycle, migration, clonogenicity, and apoptosis of groups were investigated using MTT, flow cytometry, wound-healing, colony formation, and annexin V/PI assays. Using qRT-PCR method, the mRNA expression levels of MMP16, SOX2, RAF1, MAP2K1, MAPK3, PIK3CA, AKT3, mTOR, CDK4, and BCL2 were studied. RESULTS CD133 silencing improves apoptosis rate, arrests the cell cycle at the sub-G1 phase, suppresses the clonogenicity of U87MG cells, and inhibits the PI3K/Akt and MAPK pathways via downregulating the RAF1, MAP2K1, MAPK3, PIK3CA, AKT3, and mTOR expression. Besides, combining CD133 silencing with temozolomide treatment considerably inhibits the migration of U87MG cells compared to temozolomide monotherapy. CONCLUSION CD133 can regulate the PI3K/Akt and MAPK pathways and modulate the clonogenicity, apoptosis, and cell cycle of GBM. Combining CD133 silencing with temozolomide treatment considerably increases apoptosis, arrests the cell cycle at the sub-G1, and suppresses migration of U87MG cells compared to temozolomide monotherapy.
Collapse
Affiliation(s)
- Mahdi Abdoli Shadbad
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Daneshgah St, Tabriz, Iran
| | - Fatemeh Nejadi Orang
- Immunology Research Center, Tabriz University of Medical Sciences, Daneshgah St, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Daneshgah St, Tabriz, Iran.
| |
Collapse
|
46
|
Obrador E, Moreno-Murciano P, Oriol-Caballo M, López-Blanch R, Pineda B, Gutiérrez-Arroyo JL, Loras A, Gonzalez-Bonet LG, Martinez-Cadenas C, Estrela JM, Marqués-Torrejón MÁ. Glioblastoma Therapy: Past, Present and Future. Int J Mol Sci 2024; 25:2529. [PMID: 38473776 PMCID: PMC10931797 DOI: 10.3390/ijms25052529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/10/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
Glioblastoma (GB) stands out as the most prevalent and lethal form of brain cancer. Although great efforts have been made by clinicians and researchers, no significant improvement in survival has been achieved since the Stupp protocol became the standard of care (SOC) in 2005. Despite multimodality treatments, recurrence is almost universal with survival rates under 2 years after diagnosis. Here, we discuss the recent progress in our understanding of GB pathophysiology, in particular, the importance of glioma stem cells (GSCs), the tumor microenvironment conditions, and epigenetic mechanisms involved in GB growth, aggressiveness and recurrence. The discussion on therapeutic strategies first covers the SOC treatment and targeted therapies that have been shown to interfere with different signaling pathways (pRB/CDK4/RB1/P16ink4, TP53/MDM2/P14arf, PI3k/Akt-PTEN, RAS/RAF/MEK, PARP) involved in GB tumorigenesis, pathophysiology, and treatment resistance acquisition. Below, we analyze several immunotherapeutic approaches (i.e., checkpoint inhibitors, vaccines, CAR-modified NK or T cells, oncolytic virotherapy) that have been used in an attempt to enhance the immune response against GB, and thereby avoid recidivism or increase survival of GB patients. Finally, we present treatment attempts made using nanotherapies (nanometric structures having active anti-GB agents such as antibodies, chemotherapeutic/anti-angiogenic drugs or sensitizers, radionuclides, and molecules that target GB cellular receptors or open the blood-brain barrier) and non-ionizing energies (laser interstitial thermal therapy, high/low intensity focused ultrasounds, photodynamic/sonodynamic therapies and electroporation). The aim of this review is to discuss the advances and limitations of the current therapies and to present novel approaches that are under development or following clinical trials.
Collapse
Affiliation(s)
- Elena Obrador
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Paz Moreno-Murciano
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
| | - María Oriol-Caballo
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Rafael López-Blanch
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Begoña Pineda
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Julia Lara Gutiérrez-Arroyo
- Department of Medicine, Jaume I University of Castellon, 12071 Castellon, Spain; (J.L.G.-A.); (A.L.); (C.M.-C.)
| | - Alba Loras
- Department of Medicine, Jaume I University of Castellon, 12071 Castellon, Spain; (J.L.G.-A.); (A.L.); (C.M.-C.)
| | - Luis G. Gonzalez-Bonet
- Department of Neurosurgery, Castellon General University Hospital, 12004 Castellon, Spain;
| | - Conrado Martinez-Cadenas
- Department of Medicine, Jaume I University of Castellon, 12071 Castellon, Spain; (J.L.G.-A.); (A.L.); (C.M.-C.)
| | - José M. Estrela
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
- Department of Physiology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain
| | | |
Collapse
|
47
|
Vagaggini C, Petroni D, D'Agostino I, Poggialini F, Cavallini C, Cianciusi A, Salis A, D'Antona L, Francesconi V, Manetti F, Damonte G, Musumeci F, Menichetti L, Dreassi E, Carbone A, Schenone S. Early investigation of a novel SI306 theranostic prodrug for glioblastoma treatment. Drug Dev Res 2024; 85:e22158. [PMID: 38349262 DOI: 10.1002/ddr.22158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/14/2023] [Accepted: 01/22/2024] [Indexed: 02/15/2024]
Abstract
Glioblastoma multiforme (GBM) is one of the most aggressive malignancies with a high recurrence rate and poor prognosis. Theranostic, combining therapeutic and diagnostic approaches, arises as a successful strategy to improve patient outcomes through personalized medicine. Src is a non-receptor tyrosine kinase (nRTK) whose involvement in GBM has been extensively demonstrated. Our previous research highlighted the effectiveness of the pyrazolo[3,4-d]pyrimidine SI306 and its more soluble prodrug CMP1 as Src inhibitors both in in vitro and in vivo GBM models. In this scenario, we decided to develop a theranostic prodrug of SI306, ProSI-DOTA(68 Ga) 1, which was designed to target GBM cells after hydrolysis and follow-up on the disease's progression and improve the therapy's outcome. First, the corresponding nonradioactive prodrug 2 was tested to evaluate its ADME profile and biological activity. It showed good metabolic stability, no inhibition of CYP3A4, suboptimal aqueous solubility, and slight gastrointestinal and blood-brain barrier passive permeability. Compound 2 exhibited a drastic reduction of cell vitality after 72 h on two different GBM cell lines (GL261 and U87MG). Then, 2 was subjected to complexation with the radionuclide Gallium-68 to give ProSI-DOTA(68 Ga) 1. The cellular uptake of 1 was evaluated on GBM cells, highlighting a slight but significant time-dependent uptake. The data obtained from our preliminary studies reflect the physiochemical properties of 1. The use of an alternative route of administration, such as the intranasal route, could overcome the physiochemical limitations and enhance the pharmacokinetic properties of 1, paving the way for its future development.
Collapse
Affiliation(s)
- Chiara Vagaggini
- Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, Siena, Italy
| | - Debora Petroni
- Institute of Clinical Physiology, Italian National Research Council (CNR), Pisa, Italy
| | - Ilaria D'Agostino
- Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, Siena, Italy
| | - Federica Poggialini
- Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, Siena, Italy
| | - Chiara Cavallini
- Institute of Clinical Physiology, Italian National Research Council (CNR), Pisa, Italy
| | | | - Annalisa Salis
- DIMES, Section of Biochemistry, University of Genova, Genova, Italy
| | - Lucia D'Antona
- Medical Genetics Unit, Mater Domini University Hospital, Catanzaro, Italy
- Department of Health Sciences, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | | | - Fabrizio Manetti
- Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, Siena, Italy
| | - Gianluca Damonte
- DIMES, Section of Biochemistry, University of Genova, Genova, Italy
| | | | - Luca Menichetti
- Institute of Clinical Physiology, Italian National Research Council (CNR), Pisa, Italy
| | - Elena Dreassi
- Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, Siena, Italy
| | - Anna Carbone
- Department of Pharmacy, University of Genoa, Genoa, Italy
| | | |
Collapse
|
48
|
Sumorek-Wiadro J, Zając A, Skalicka-Woźniak K, Rzeski W, Jakubowicz-Gil J. Furanocoumarins as Enhancers of Antitumor Potential of Sorafenib and LY294002 toward Human Glioma Cells In Vitro. Int J Mol Sci 2024; 25:759. [PMID: 38255833 PMCID: PMC10815922 DOI: 10.3390/ijms25020759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Furanocoumarins are naturally occurring compounds in the plant world, characterized by low molecular weight, simple chemical structure, and high solubility in most organic solvents. Additionally, they have a broad spectrum of activity, and their properties depend on the location and type of attached substituents. Therefore, the aim of our study was to investigate the anticancer activity of furanocoumarins (imperatorin, isoimperatorin, bergapten, and xanthotoxin) in relation to human glioblastoma multiforme (T98G) and anaplastic astrocytoma (MOGGCCM) cell lines. The tested compounds were used for the first time in combination with LY294002 (PI3K inhibitor) and sorafenib (Raf inhibitor). Apoptosis, autophagy, and necrosis were identified microscopically after straining with Hoechst 33342, acridine orange, and propidium iodide, respectively. The levels of caspase 3 and Beclin 1 were estimated by immunoblotting and for the blocking of Raf and PI3K kinases, the transfection with specific siRNA was used. The scratch test was used to assess the migration potential of glioma cells. Our studies showed that the anticancer activity of furanocoumarins strictly depended on the presence, type, and location of substituents. The obtained results suggest that achieving higher pro-apoptotic activity is determined by the presence of an isoprenyl moiety at the C8 position of the coumarin skeleton. In both anaplastic astrocytoma and glioblastoma, imperatorin was the most effective in induction apoptosis. Furthermore, the usage of imperatorin, alone and in combination with sorafenib or LY294002, decreased the migratory potential of MOGGCCM and T98G cells.
Collapse
Affiliation(s)
- Joanna Sumorek-Wiadro
- Department of Functional Anatomy and Cytobiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland; (J.S.-W.); (A.Z.); (W.R.)
| | - Adrian Zając
- Department of Functional Anatomy and Cytobiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland; (J.S.-W.); (A.Z.); (W.R.)
| | - Krystyna Skalicka-Woźniak
- Independent Laboratory of Natural Products Chemistry, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland;
| | - Wojciech Rzeski
- Department of Functional Anatomy and Cytobiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland; (J.S.-W.); (A.Z.); (W.R.)
- Department of Medical Biology, Institute of Rural Health, Jaczewskiego 2, 20-950 Lublin, Poland
| | - Joanna Jakubowicz-Gil
- Department of Functional Anatomy and Cytobiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland; (J.S.-W.); (A.Z.); (W.R.)
| |
Collapse
|
49
|
Subaiea GM, Syed RU, Afsar S, Alhaidan TMS, Alzammay SA, Alrashidi AA, Alrowaili SF, Alshelaly DA, Alenezi AMSRA. Non-coding RNAs (ncRNAs) and multidrug resistance in glioblastoma: Therapeutic challenges and opportunities. Pathol Res Pract 2024; 253:155022. [PMID: 38086292 DOI: 10.1016/j.prp.2023.155022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 01/24/2024]
Abstract
Non-coding RNAs (ncRNAs) have been recognized as pivotal regulators of transcriptional and post-transcriptional gene modulation, exerting a profound influence on a diverse array of biological and pathological cascades, including the intricate mechanisms underlying tumorigenesis and the acquisition of drug resistance in neoplastic cells. Glioblastoma (GBM), recognized as the foremost and most aggressive neoplasm originating in the brain, is distinguished by its formidable resistance to the cytotoxic effects of chemotherapeutic agents and ionizing radiation. Recent years have witnessed an escalating interest in comprehending the involvement of ncRNAs, particularly lncRNAs, in GBM chemoresistance. LncRNAs, a subclass of ncRNAs, have been demonstrated as dynamic modulators of gene expression at the epigenetic, transcriptional, and post-transcriptional levels. Disruption in the regulation of lncRNAs has been observed across various human malignancies, including GBM, and has been linked with developing multidrug resistance (MDR) against standard chemotherapeutic agents. The potential of targeting specific ncRNAs or their downstream effectors to surmount chemoresistance is also critically evaluated, specifically focusing on ongoing preclinical and clinical investigations exploring ncRNA-based therapeutic strategies for glioblastoma. Nonetheless, targeting lncRNAs for therapeutic objectives presents hurdles, including overcoming the blood-brain barrier and the brief lifespan of oligonucleotide RNA molecules. Understanding the complex relationship between ncRNAs and the chemoresistance characteristic in glioblastoma provides valuable insights into the fundamental molecular mechanisms. It opens the path for the progression of innovative and effective therapeutic approaches to counter the therapeutic challenges posed by this aggressive brain tumor. This comprehensive review highlights the complex functions of diverse ncRNAs, including miRNAs, circRNAs, and lncRNAs, in mediating glioblastoma's chemoresistance.
Collapse
Affiliation(s)
- Gehad Mohammed Subaiea
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia
| | - Rahamat Unissa Syed
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia.
| | - S Afsar
- Department of Virology, Sri Venkateswara University, Tirupathi, Andhra Pradesh 517502, India.
| | | | - Seham Ahmed Alzammay
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | | | | | | | | |
Collapse
|
50
|
Singh S, Barik D, Lawrie K, Mohapatra I, Prasad S, Naqvi AR, Singh A, Singh G. Unveiling Novel Avenues in mTOR-Targeted Therapeutics: Advancements in Glioblastoma Treatment. Int J Mol Sci 2023; 24:14960. [PMID: 37834408 PMCID: PMC10573615 DOI: 10.3390/ijms241914960] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/01/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023] Open
Abstract
The mTOR signaling pathway plays a pivotal and intricate role in the pathogenesis of glioblastoma, driving tumorigenesis and proliferation. Mutations or deletions in the PTEN gene constitutively activate the mTOR pathway by expressing growth factors EGF and PDGF, which activate their respective receptor pathways (e.g., EGFR and PDGFR). The convergence of signaling pathways, such as the PI3K-AKT pathway, intensifies the effect of mTOR activity. The inhibition of mTOR has the potential to disrupt diverse oncogenic processes and improve patient outcomes. However, the complexity of the mTOR signaling, off-target effects, cytotoxicity, suboptimal pharmacokinetics, and drug resistance of the mTOR inhibitors pose ongoing challenges in effectively targeting glioblastoma. Identifying innovative treatment strategies to address these challenges is vital for advancing the field of glioblastoma therapeutics. This review discusses the potential targets of mTOR signaling and the strategies of target-specific mTOR inhibitor development, optimized drug delivery system, and the implementation of personalized treatment approaches to mitigate the complications of mTOR inhibitors. The exploration of precise mTOR-targeted therapies ultimately offers elevated therapeutic outcomes and the development of more effective strategies to combat the deadliest form of adult brain cancer and transform the landscape of glioblastoma therapy.
Collapse
Affiliation(s)
- Shilpi Singh
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA
| | - Debashis Barik
- Center for Computational Natural Science and Bioinformatics, International Institute of Information Technology, Hyderabad 500032, India
| | - Karl Lawrie
- College of Saint Benedict, Saint John’s University, Collegeville, MN 56321, USA
| | - Iteeshree Mohapatra
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN 55108, USA
| | - Sujata Prasad
- MLM Medical Laboratories, LLC, Oakdale, MN 55128, USA
| | - Afsar R. Naqvi
- Department of Periodontics, College of Dentistry, University of Illinois, Chicago, IL 60612, USA
| | - Amar Singh
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA
| | - Gatikrushna Singh
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|