1
|
Zheng J, Li Y, Zhang T, Fu Y, Long P, Gao X, Wang Z, Guan Z, Qi X, Hong W, Xiao Y. Endoplasmic reticulum stress and autophagy in cerebral ischemia/reperfusion injury: PERK as a potential target for intervention. Neural Regen Res 2025; 20:1455-1466. [PMID: 39075912 PMCID: PMC11624856 DOI: 10.4103/nrr.nrr-d-23-00794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/21/2023] [Accepted: 11/21/2023] [Indexed: 07/31/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202505000-00028/figure1/v/2024-07-28T173839Z/r/image-tiff Several studies have shown that activation of unfolded protein response and endoplasmic reticulum (ER) stress plays a crucial role in severe cerebral ischemia/reperfusion injury. Autophagy occurs within hours after cerebral ischemia, but the relationship between ER stress and autophagy remains unclear. In this study, we established experimental models using oxygen-glucose deprivation/reoxygenation in PC12 cells and primary neurons to simulate cerebral ischemia/reperfusion injury. We found that prolongation of oxygen-glucose deprivation activated the ER stress pathway protein kinase-like endoplasmic reticulum kinase (PERK)/eukaryotic translation initiation factor 2 subunit alpha (eIF2α)-activating transcription factor 4 (ATF4)-C/EBP homologous protein (CHOP), increased neuronal apoptosis, and induced autophagy. Furthermore, inhibition of ER stress using inhibitors or by siRNA knockdown of the PERK gene significantly attenuated excessive autophagy and neuronal apoptosis, indicating an interaction between autophagy and ER stress and suggesting PERK as an essential target for regulating autophagy. Blocking autophagy with chloroquine exacerbated ER stress-induced apoptosis, indicating that normal levels of autophagy play a protective role in neuronal injury following cerebral ischemia/reperfusion injury. Findings from this study indicate that cerebral ischemia/reperfusion injury can trigger neuronal ER stress and promote autophagy, and suggest that PERK is a possible target for inhibiting excessive autophagy in cerebral ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Ju Zheng
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou Province, China
- Guizhou Center for Disease Control and Prevention, Guiyang, Guizhou Province, China
| | - Yixin Li
- Department of Histology and Embryology, Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Ting Zhang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Yanlin Fu
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Peiyan Long
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Xiao Gao
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Zhengwei Wang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Zhizhong Guan
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Xiaolan Qi
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou Province, China
- Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guiyang, Guizhou Province, China
| | - Wei Hong
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou Province, China
- Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guiyang, Guizhou Province, China
| | - Yan Xiao
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou Province, China
- Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guiyang, Guizhou Province, China
| |
Collapse
|
2
|
Chen S, Zhu Y, Lin F, Jiang H, Liu H, Li S, Huang X, Mo Y, Wang J, Dai Q. Electroacupuncture protects against cerebral ischemia-reperfusion injury via regulating P2×7R expression. CEREBRAL CIRCULATION - COGNITION AND BEHAVIOR 2025; 8:100379. [PMID: 40092727 PMCID: PMC11908598 DOI: 10.1016/j.cccb.2025.100379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 02/02/2025] [Accepted: 02/14/2025] [Indexed: 03/19/2025]
Abstract
Background Ischemic stroke is a serious clinical condition that is challenging to cure; therefore, slowing down the depletion of ATP is crucial to enhancing the tolerance of ischemic tissue through preconditioning. Electroacupuncture (EA) preconditioning induces tolerance to cerebral ischemia; however, the underlying mechanism remains unclear. Objective The P2×7 receptor (P2×7R) mediates the stimulation of microglial cells and is involved in the development of cerebral ischemia-reperfusion (I/R) damage. We hypothesized that the protective effect of EA preconditioning is associated with the downregulation of P2×7R expression. Methods We performed EA at the "Baihui" and "Fengfu" for 30 min before establishing a rat model of cerebral I/R induced based on the middle cerebral artery occlusion model (MCAO). MCAO rats were administered a ventricular injection of 2 '(3')-O-(4-benzoyl) adenosine triphosphate (BzATP), a P2×7R agonist, 30 min before EA. Neurologic scoring, infarction volume, and expression of cytokines, Bcl-2 and Bax, Iba1, P2×7R, p38, and phosphorylated p38 (p-p38) in ischemia penumbra were detected 24 h after cerebral I/R. Results EA preconditioning ameliorated neurologic scoring, decreased infarction volume, and neuronal injury, and decreased cytokine release, while BzATP exacerbated cerebral I/R damage and inflammation events, unlike the favorable efficacy of EA. EA inhibited the expression of Iba-1, P2×7R, and p-p38/p38 in the ischemic penumbra, whereas BzATP reversed this effect. Conclusions EA could induce cerebral tolerance to I/R damage by suppressing P2×7R expression and release of inflammatory factors.
Collapse
Affiliation(s)
- Sijia Chen
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province, PR China
| | - Ye Zhu
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province, PR China
| | - Feihong Lin
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province, PR China
| | - Hanming Jiang
- Wenzhou Medical University, Wenzhou City, Zhejiang Province, PR China
| | - Haipeng Liu
- Department of Anesthesiology, Ningbo Second Hospital, Ningbo, Zhejiang, PR China
| | - Shan Li
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province, PR China
| | - Xuliang Huang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province, PR China
| | - Yunchang Mo
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province, PR China
| | - Junlu Wang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province, PR China
| | - Qinxue Dai
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province, PR China
| |
Collapse
|
3
|
Qiu Z, Ma J, Zhang X, Jiao M, Zhi L. Electroacupuncture combined with trigonelline inhibits pyroptosis in cerebral ischemia-reperfusion by suppressing autophagy via the PI3K/AKT/mTOR signaling pathway. Brain Res Bull 2025; 221:111200. [PMID: 39788460 DOI: 10.1016/j.brainresbull.2025.111200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/20/2024] [Accepted: 01/06/2025] [Indexed: 01/12/2025]
Abstract
BACKGROUND Electroacupuncture (EA) and trigonelline (TG) have been reported to be beneficial in alleviating cerebral ischemia/reperfusion injury (CIRI). However, the synergistic effects of EA and TG in CIRI and the underlying mechanism have not been demonstrated. METHODS Rats were subjected to middle cerebral artery occlusion (MCAO) surgery and reperfusion (MCAO/R) to establish a CIRI model. Neurological deficit score was evaluated using Garcia's scale. Cerebral infarction in rats was determined using TTC staining. Brain tissue morphology was assessed by HE staining. The expression of various proteins was measured using IF assay and western blot. RESULTS EA or TG treatment could effectively ameliorate neurological disorders, attenuate cerebral infarction and reduce neuronal damage in brain tissue in CIRI rats. In addition, EA or TG treatment suppressed autophagy and pyroptosis in CIRI rats. More importantly, synergistic effects of EA and TG intervention in CIRI rats were observed in ameliorating neuronal damage and suppressing autophagy and pyroptosis, while Rapa, an inducer of autophagy, strengthened these effects in MCAO/R-induced rats. Furthermore. Rapa reversed EA in combination with TG-mediated improvement of neuronal damage and suppression of autophagy and pyroptosis in CIRI rats. Notably, the PI3K/AKT/mTOR pathway was inactivated in CIRI rats and EA combined with TG enhanced the activation of the PI3K/AKT/mTOR pathway. LY294002, an inhibitor of the PI3K/AKT/mTOR pathway, stimulated autophagy and pyroptosis in CIRI rats and reversed EA combined with TG-mediated suppression of autophagy and pyroptosis. CONCLUSION EA combined with TG suppressed pyroptosis, which was dependent on inhibition of autophagy in CIRI rats through activation of the PI3K/AKT/mTOR signaling pathway.
Collapse
Affiliation(s)
- Zhengguo Qiu
- Department of Anesthesiology, Banan Hospital of Chongqing Medical University, Chongqing, PR China
| | - Jianbing Ma
- Department of Joint, Honghui Hospital, Xi'an Jiaotong University, No.555 Youyi East Road, Xi'an, Shaanxi 710054, PR China
| | - Xiaqing Zhang
- Department of Anesthesiology, The Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine, Xianyang, Shaanxi 712000, PR China
| | - Mingna Jiao
- Department of Anesthesiology, The Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine, Xianyang, Shaanxi 712000, PR China
| | - Liqiang Zhi
- Department of Joint, Honghui Hospital, Xi'an Jiaotong University, No.555 Youyi East Road, Xi'an, Shaanxi 710054, PR China.
| |
Collapse
|
4
|
Jiang H, Zhang C, Lin M, Yin Y, Deng S, Liu W, Zhuo B, Tian G, Du Y, Meng Z. Deciphering the mechanistic impact of acupuncture on the neurovascular unit in acute ischemic stroke: Insights from basic research in a narrative review. Ageing Res Rev 2024; 101:102536. [PMID: 39384155 DOI: 10.1016/j.arr.2024.102536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/27/2024] [Accepted: 10/01/2024] [Indexed: 10/11/2024]
Abstract
Ischemic stroke(IS), a severe acute cerebrovascular disease, not only imposes a heavy economic burden on society but also presents numerous challenges in treatment. During the acute phase, while thrombolysis and thrombectomy serve as primary treatments, these approaches are restricted by a narrow therapeutic window. During rehabilitation, commonly used neuroprotective agents struggle with their low drug delivery efficiency and inadequate preclinical testing, and the long-term pharmacological and toxicity effects of nanomedicines remain undefined. Meanwhile, acupuncture as a therapeutic approach is widely acknowledged for its effectiveness in treating IS and has been recommended by the World Health Organization (WHO) as an alternative and complementary therapy, even though its exact mechanisms remain unclear. This review aims to summarize the known mechanisms of acupuncture and electroacupuncture (EA) in the treatment of IS. Research shows that acupuncture treatment mainly protects the neurovascular unit through five mechanisms: 1) reducing neuronal apoptosis and promoting neuronal repair and proliferation; 2) maintaining the integrity of the blood-brain barrier (BBB); 3) inhibiting the overactivation and polarization imbalance of microglia; 4) regulating the movement of vascular smooth muscle (VSM) cells; 5) promoting the proliferation of oligodendrocyte precursors. Through an in-depth analysis, this review reveals the multi-level, multi-dimensional impact of acupuncture treatment on the neurovascular unit (NVU) following IS, providing stronger evidence and a theoretical basis for its clinical application.
Collapse
Affiliation(s)
- Hailun Jiang
- Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Department of Acupuncture, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Chao Zhang
- Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Department of Acupuncture, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Mengxuan Lin
- Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Department of Acupuncture, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Yu Yin
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shizhe Deng
- Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Department of Acupuncture, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Wei Liu
- Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Department of Acupuncture, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Bifang Zhuo
- Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Department of Acupuncture, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Guang Tian
- Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Department of Acupuncture, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Yuzheng Du
- Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Department of Acupuncture, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China.
| | - Zhihong Meng
- Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Department of Acupuncture, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China.
| |
Collapse
|
5
|
Zeng J, Cao J, Yang H, Wang X, Liu T, Chen Z, Shi F, Xu Z, Lin X. Overview of mechanism of electroacupuncture pretreatment for prevention and treatment of cardiovascular and cerebrovascular diseases. CNS Neurosci Ther 2024; 30:e14920. [PMID: 39361504 PMCID: PMC11448663 DOI: 10.1111/cns.14920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/19/2024] [Accepted: 08/01/2024] [Indexed: 10/05/2024] Open
Abstract
Cardio-cerebrovascular disease (CCVD) is a serious threat to huma strategy to prevent the occurrence and development of disease by giving electroacupuncture intervention before the disease occurs. EAP has been shown in many preclinical studies to relieve ischemic symptoms and improve damage from ischemia-reperfusion, with no comprehensive review of its mechanisms in cardiovascular disease yet. In this paper, we first systematically discussed the meridian and acupoint selection law of EAP for CCVD and focused on the progress of the mechanism of action of EAP for the prevention and treatment of CCVD. As a result, in preclinical studies, AMI and MCAO models are commonly used to simulate ischemic injury in CCVD, while MIRI and CI/RI models are used to simulate reperfusion injury caused by blood flow recovery after focal tissue ischemia. According to the meridian matching rules of EAP for CCVD, PC6 in the pericardial meridian is the most commonly used acupoint in cardiovascular diseases, while GV20 in the Du meridian is the most commonly used acupoint in cerebrovascular diseases. In terms of intervention parameters, EAP intervention generally lasts for 30 min, with acupuncture depths mostly between 1.5 and 5 mm, stimulation intensities mostly at 1 mA, and commonly used frequencies being low frequencies. In terms of molecular mechanisms, the key pathways of EAP in preventing and treating cardiovascular and cerebrovascular diseases are partially similar. EAP can play a protective role in cardiovascular and cerebrovascular diseases by promoting autophagy, regulating Ca2+ overload, and promoting vascular regeneration through anti-inflammatory reactions, antioxidant stress, and anti-apoptosis. Of course, both pathways involved have their corresponding specificities. When using EAP to prevent and treat cardiovascular diseases, it involves the metabolic pathway of glutamate, while when using EAP to prevent and treat cerebrovascular diseases, it involves the homeostasis of the blood-brain barrier and the release of neurotransmitters and nutritional factors. I hope these data can provide experimental basis and reference for the clinical promotion and application of EAP in CCVD treatment.
Collapse
Affiliation(s)
- Jiaming Zeng
- Research Center of Experimental Acupuncture Science, School of Acupuncture‐Moxibustion and TuinaTianjin University of Traditional Chinese MedicineTianjinChina
| | - Jiaojiao Cao
- Research Center of Experimental Acupuncture Science, School of Acupuncture‐Moxibustion and TuinaTianjin University of Traditional Chinese MedicineTianjinChina
| | - Haitao Yang
- Research Center of Experimental Acupuncture Science, School of Acupuncture‐Moxibustion and TuinaTianjin University of Traditional Chinese MedicineTianjinChina
| | - Xue Wang
- Research Center of Experimental Acupuncture Science, School of Acupuncture‐Moxibustion and TuinaTianjin University of Traditional Chinese MedicineTianjinChina
| | - Tingting Liu
- Research Center of Experimental Acupuncture Science, School of Acupuncture‐Moxibustion and TuinaTianjin University of Traditional Chinese MedicineTianjinChina
| | - Zhihan Chen
- Research Center of Experimental Acupuncture Science, School of Acupuncture‐Moxibustion and TuinaTianjin University of Traditional Chinese MedicineTianjinChina
| | - Fangyuan Shi
- Research Center of Experimental Acupuncture Science, School of Acupuncture‐Moxibustion and TuinaTianjin University of Traditional Chinese MedicineTianjinChina
| | - Zhifang Xu
- Research Center of Experimental Acupuncture Science, School of Acupuncture‐Moxibustion and TuinaTianjin University of Traditional Chinese MedicineTianjinChina
- Tianjin Key Laboratory of Modern Chinese Medicine Theory of Innovation and Application, School of Traditional Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionTianjinChina
| | - Xiaowei Lin
- Research Center of Experimental Acupuncture Science, School of Acupuncture‐Moxibustion and TuinaTianjin University of Traditional Chinese MedicineTianjinChina
- Tianjin Key Laboratory of Modern Chinese Medicine Theory of Innovation and Application, School of Traditional Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionTianjinChina
| |
Collapse
|
6
|
Liu X, Xie C, Wang Y, Xiang J, Chen L, Yuan J, Chen C, Tian H. Ferritinophagy and Ferroptosis in Cerebral Ischemia Reperfusion Injury. Neurochem Res 2024; 49:1965-1979. [PMID: 38834843 PMCID: PMC11233298 DOI: 10.1007/s11064-024-04161-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/07/2024] [Accepted: 05/22/2024] [Indexed: 06/06/2024]
Abstract
Cerebral ischemia-reperfusion injury (CIRI) is the second leading cause of death worldwide, posing a huge risk to human life and health. Therefore, investigating the pathogenesis underlying CIRI and developing effective treatments are essential. Ferroptosis is an iron-dependent mode of cell death, which is caused by disorders in iron metabolism and lipid peroxidation. Previous studies demonstrated that ferroptosis is also a form of autophagic cell death, and nuclear receptor coactivator 4(NCOA4) mediated ferritinophagy was found to regulate ferroptosis by interfering with iron metabolism. Ferritinophagy and ferroptosis are important pathogenic mechanisms in CIRI. This review mainly summarizes the link and regulation between ferritinophagy and ferroptosis and further discusses their mechanisms in CIRI. In addition, the potential treatment methods targeting ferritinophagy and ferroptosis for CIRI are presented, providing new ideas for the prevention and treatment of clinical CIRI in the future.
Collapse
Affiliation(s)
- Xiaoyue Liu
- School of Acupuncture-moxibustion, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Canming Xie
- School of Acupuncture-moxibustion, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Yao Wang
- School of Acupuncture-moxibustion, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Jing Xiang
- School of Acupuncture-moxibustion, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Litong Chen
- School of Acupuncture-moxibustion, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Jia Yuan
- School of Acupuncture-moxibustion, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Chutao Chen
- School of Acupuncture-moxibustion, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Haomei Tian
- School of Acupuncture-moxibustion, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, 410208, China.
| |
Collapse
|
7
|
Gelen V, Özkanlar S, Kara A, Yeşildağ A. Citrate-coated silver nanoparticles loaded with agomelatine provide neuronal therapy in acute cerebral ischemia/reperfusion of rats by inhibiting the oxidative stress, endoplasmic reticulum stress, and P2X7 receptor-mediated inflammasome. ENVIRONMENTAL TOXICOLOGY 2024; 39:1531-1543. [PMID: 38009636 DOI: 10.1002/tox.24021] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 10/31/2023] [Indexed: 11/29/2023]
Abstract
Cerebral ischemia and reperfusion are related to various situations like injuries after various traumas, oxidative stress, increased calcium ion, capillary hypoperfusion, microvascular hyperpermeability, leukocyte infiltration, and blood-brain barrier disruption. An antidepressant Agomelatine which is a melatonin receptor (MT1/MT2) agonist and serotonin receptor (5-HT2C) antagonist has been reported by studies to have antioxidant and anti-inflammatory effects. In our study, we aimed to detect the effects of citrate-coated silver nanoparticle-loaded agomelatine application on neurodegeneration, endoplasmic reticulum stress, autophagic and apoptotic cell death, inflammation, and P2X7R expression in the cerebral ischemia-reperfusion model to facilitate the passage of blood-brain barrier. Forty two Sprague-Dawley rats in total were divided into six equal groups (n:7) and applications were performed. Acute cerebral injury in the ischemia-reperfusion model was created 2 h after internal carotid artery ligation in rats and then at the 2nd hour of reperfusion citrate-coated silver nanoparticles loaded with Agomelatine were applied. Twenty four hours later, neurologic analysis on animals in experimental groups was performed, animals were decapitated and GSH, GPx, SOD, CAT, MDA, IL-1β, and TNF-α parameters were examined after taking blood and the cerebral tissue samples. As a result, it was determined that ischemia-reperfusion caused endoplasmic reticulum stress in the cerebral tissues and thus caused cellular injury.
Collapse
Affiliation(s)
- Volkan Gelen
- Department of Physiology, Faculty of Veterinary Medicine, Kafkas University, Kars, Turkey
| | - Seçkin Özkanlar
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Adem Kara
- Department of Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Turkey
| | - Ali Yeşildağ
- Department of Bioengineering, Faculty of Engineering and Architecture, Kafkas University, Kars, Turkey
| |
Collapse
|
8
|
Li YH, Zhang S, Tang L, Feng J, Jia J, Chen Y, Liu L, Zhou J. The Role of LincRNA-EPS/Sirt1/Autophagy Pathway in the Neuroprotection Process by Hydrogen against OGD/R-Induced Hippocampal HT22 Cells Injury. J Pers Med 2023; 13:631. [PMID: 37109017 PMCID: PMC10143835 DOI: 10.3390/jpm13040631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/07/2023] Open
Abstract
Cerebral ischemia/reperfusion (CI/R) injury causes high disability and mortality. Hydrogen (H2) enhances tolerance to an announced ischemic event; however, the therapeutic targets for the effective treatment of CI/R injury remain uncertain. Long non-coding RNA lincRNA-erythroid prosurvival (EPS) (lincRNA-EPS) regulate various biological processes, but their involvement in the effects of H2 and their associated underlying mechanisms still needs clarification. Herein, we examine the function of the lincRNA-EPS/Sirt1/autophagy pathway in the neuroprotection of H2 against CI/R injury. HT22 cells and an oxygen-glucose deprivation/reoxygenation (OGD/R) model were used to mimic CI/R injury in vitro. H2, 3-MA (an autophagy inhibitor), and RAPA (an autophagy agonist) were then administered, respectively. Autophagy, neuro-proinflammation, and apoptosis were evaluated by Western blot, enzyme-linked immunosorbent assay, immunofluorescence staining, real-time PCR, and flow cytometry. The results demonstrated that H2 attenuated HT22 cell injury, which would be confirmed by the improved cell survival rate and decreased levels of lactate dehydrogenase. Furthermore, H2 remarkably improved cell injury after OGD/R insult via decreasing pro-inflammatory factors, as well as suppressing apoptosis. Intriguingly, the protection of H2 against neuronal OGD/R injury was abolished by rapamycin. Importantly, the ability of H2 to promote lincRNA-EPS and Sirt1 expression and inhibit autophagy were abrogated by the siRNA-lincRNA-EPS. Taken together, the findings proved that neuronal cell injury caused by OGD/R is efficiently prevented by H2 via modulating lincRNA-EPS/Sirt1/autophagy-dependent pathway. It was hinted that lincRNA-EPS might be a potential target for the H2 treatment of CI/R injury.
Collapse
Affiliation(s)
- Ya-Hong Li
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Shun Zhang
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Lu Tang
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Jianguo Feng
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Jing Jia
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Ye Chen
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Department of Traditional Chinese Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou 646600, China
| | - Li Liu
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Jun Zhou
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
9
|
Combination of stem cell therapy and acupuncture to treat ischemic stroke: a prospective review. Stem Cell Res Ther 2022; 13:87. [PMID: 35241146 PMCID: PMC8896103 DOI: 10.1186/s13287-022-02761-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 01/17/2022] [Indexed: 12/03/2022] Open
Abstract
Stroke is the second leading cause globally that leads to severe disability and death. Stem cell therapy has been developed over the recent years to treat stroke and diminish the mortality and disability rate of brain injuries. Acupuncture, which can activate endogenous recovery via physical stimuli, has been applied to enhance the recovery and rehabilitation of stroke patients. Attempts have been made to combine stem cell therapy and acupuncture to treat stroke patients and have shown the promising results. This prospective review will look into the possible mechanisms of stem cell therapy and acupuncture and intend to undercover the potential benefit of the combined therapy. It intends to bridge the modern emerging stem cell therapy and traditional acupuncture at cellular and molecular levels and to demonstrate the potential benefit to improve clinical outcomes.
Collapse
|
10
|
Hong H, Xu HX, Meng JZ, Zhu BM. Electroacupuncture altered expression of microRNAs in Stat5 knockout obese mice. Acupunct Med 2021; 40:249-257. [PMID: 34892984 DOI: 10.1177/09645284211056345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Increasing evidence shows that miRNAs contribute to the establishment and development of obesity by affecting many biological and pathological processes, such as adipocyte differentiation, hepatic lipid metabolism, insulin resistance, and neurological regulation of obesity. As a clinical intervention approach, acupuncture has been shown to be effective in the treatment of obesity and other metabolic diseases. Our previous whole genome study in central nervous system (CNS)-specific Stat5 knockout (NKO) obese mice found that electroacupuncture (EA) could reduce body weight and promote white browning. OBJECTIVE To clarify the effect of EA on miRNAs and understand how it regulates gene expression. METHODS Twelve-week-old male Stat5NKO mice with body weight 20% greater than that of Stat5fl/fl (control) mice were divided into a Stat5NKO (model) group and EA-treated Stat5NKO + EA group. A cohort of Stat5fl/fl mice of the same age were included as the control group. EA was administered under isoflurane anesthesia at unilateral ST36 and ST44 daily (left and right sides were treated every other day), 6 times per week for a total of 4 weeks. The miRNA profile was generated and miRNA regulatory networks were analyzed in the Stat5 nestin-cre mice before and after EA treatment. Autophagy-related proteins in adipocytes were detected after over-expression of miR27a. RESULTS EA altered abnormal miRNA expression, including miRNA27a expression, and reduced the autophagy-related proteins ATG5 and ATG12. CONCLUSION We found that EA could regulate miRNA27a-mediated autophagy-related proteins and promote white fat browning, which may contribute to weight loss. To our knowledge, this is the first report of miRNAs potentially driving the effect of EA on white fat browning through the autophagy process.
Collapse
Affiliation(s)
- Hao Hong
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Hou-Xi Xu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jian-Zhong Meng
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Bing-Mei Zhu
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
11
|
Tian W, Zhu M, Zhou Y, Mao C, Zou R, Cui Y, Li S, Zhu J, Hu C. Electroacupuncture Pretreatment Alleviates Cerebral Ischemia-Reperfusion Injury by Regulating Mitophagy via mTOR-ULK1/FUNDC1 Axis in Rats. J Stroke Cerebrovasc Dis 2021; 31:106202. [PMID: 34775182 DOI: 10.1016/j.jstrokecerebrovasdis.2021.106202] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/28/2021] [Accepted: 10/21/2021] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVE Electroacupuncture (EA) pretreatment has been shown to alleviate cerebral ischemia-reperfusion (I/R) injury; however, the underlying mechanism remains unclear. To investigate the involvement of mTOR signaling in the protective role of EA in I/R-induced brain damage and mitochondrial injury. METHODS Sprague-Dawley male rats were pretreated with vehicle, EA (at Baihui and Shuigou acupoints), or rapamycin + EA for 30 min daily for 5 consecutive days, followed by the middle cerebral artery occlusion to induce I/R injury. The neurological functions of the rats were assessed using the Longa neurological deficit scores. The rats were sacrificed immediately after neurological function assessment. The brains were obtained for the measurements of cerebral infarct area. The mitochondrial structural alterations were observed under transmission electron microscopy. The mitochondrial membrane potential changes were detected by JC-1 staining. The alterations in autophagy-related protein expression were examined using Western blot analysis. RESULTS Compared with untreated I/R rats, EA-pretreated rats exhibited significantly decreased neurological deficit scores and cerebral infarct volumes. EA pretreatment also reversed I/R-induced mitochondrial structural abnormalities and loss of mitochondrial membrane potential. Furthermore, EA pretreatment downregulated the protein expression of LC3-II, p-ULK1, and FUNDC1 while upregulating the protein expression of p-mTORC1 and LC3-I. Rapamycin effectively blocked the above-mentioned effects of EA. CONCLUSION EA pretreatment at Baihui and Shuigou alleviates cerebral I/R injury and mitochondrial impairment in rats through activating the mTORC1 signaling. The suppression of autophagy-related p-ULK1/FUNDC1 pathway is involved in the neuroprotective effects of EA.
Collapse
Affiliation(s)
- Weiqian Tian
- Department of Anesthesiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, China
| | - Minmin Zhu
- Department of Anesthesiology, The Second Wuxi People's Hospital, Wuxi, Jiangsu, China
| | - Yudi Zhou
- Department of Anesthesiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, China
| | - Chenlu Mao
- Department of Anesthesiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, China
| | - Rong Zou
- Department of Anesthesiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yaomei Cui
- Department of Anesthesiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, China
| | - Sha Li
- Department of Anesthesiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, China
| | - Juan Zhu
- Department of Anesthesiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, China
| | - Cheng Hu
- Department of Anesthesiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, China.
| |
Collapse
|
12
|
Sengking J, Oka C, Wicha P, Yawoot N, Tocharus J, Chaichompoo W, Suksamrarn A, Tocharus C. Neferine Protects Against Brain Damage in Permanent Cerebral Ischemic Rat Associated with Autophagy Suppression and AMPK/mTOR Regulation. Mol Neurobiol 2021; 58:6304-6315. [PMID: 34498225 DOI: 10.1007/s12035-021-02554-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 09/04/2021] [Indexed: 01/26/2023]
Abstract
Neferine is the major alkaloid compound isolated from the seed embryos of lotus. Neferine has many pharmacological effects, such as anti-inflammatory, antioxidative stress, and antiapoptotic effects, and it maintains autophagic balance. The purpose of this study was to explore the mechanism by which neferine attenuates autophagy after permanent cerebral ischemia in rats. We performed permanent cerebral ischemia in rats by middle cerebral artery occlusion (pMCAO) for 12 h with or without administration of neferine or nimodipine, a calcium (Ca2+) channel blocker. Neuroprotective effects were determined by evaluating the infarct volume and neurological deficits. Autophagy and its signaling pathway were determined by evaluating the expression of phosphorylated AMP-activated protein kinase alpha (AMPKα), phosphorylated mammalian target of rapamycin (mTOR), beclin-1, microtubule-associated protein 1A/1B-light chain 3 class II (LC3-II), and p62 by western blotting. Autophagosomes were evaluated by transmission electron microscopy. Neferine treatment significantly reduced infarct volumes and improved neurological deficits. Neferine significantly attenuated the upregulation of autophagy-associated proteins such as LC3-II, beclin-1, and p62 as well as autophagosome formation, all of which were induced by pMCAO. Neferine exerted remarkable protection against cerebral ischemia, possibly via the regulation of autophagy mediated by the Ca2+-dependent AMPK/mTOR pathway.
Collapse
Affiliation(s)
- Jirakhamon Sengking
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Chio Oka
- Laboratory of Gene Function in Animals, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan
| | - Piyawadee Wicha
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nuttapong Yawoot
- Department of Physiology, Faculty of Medicine, Chiang Mai University, 50200, Chiang Mai, Thailand
| | - Jiraporn Tocharus
- Department of Physiology, Faculty of Medicine, Chiang Mai University, 50200, Chiang Mai, Thailand
| | - Waraluck Chaichompoo
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, 10240, Thailand
| | - Apichart Suksamrarn
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, 10240, Thailand
| | - Chainarong Tocharus
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Center for Research and Development of Natural Products for Health, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
13
|
Ajoolabady A, Wang S, Kroemer G, Penninger JM, Uversky VN, Pratico D, Henninger N, Reiter RJ, Bruno A, Joshipura K, Aslkhodapasandhokmabad H, Klionsky DJ, Ren J. Targeting autophagy in ischemic stroke: From molecular mechanisms to clinical therapeutics. Pharmacol Ther 2021; 225:107848. [PMID: 33823204 PMCID: PMC8263472 DOI: 10.1016/j.pharmthera.2021.107848] [Citation(s) in RCA: 174] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/23/2021] [Accepted: 04/01/2021] [Indexed: 01/18/2023]
Abstract
Stroke constitutes the second leading cause of death and a major cause of disability worldwide. Stroke is normally classified as either ischemic or hemorrhagic stroke (HS) although 87% of cases belong to ischemic nature. Approximately 700,000 individuals suffer an ischemic stroke (IS) in the US each year. Recent evidence has denoted a rather pivotal role for defective macroautophagy/autophagy in the pathogenesis of IS. Cellular response to stroke includes autophagy as an adaptive mechanism that alleviates cellular stresses by removing long-lived or damaged organelles, protein aggregates, and surplus cellular components via the autophagosome-lysosomal degradation process. In this context, autophagy functions as an essential cellular process to maintain cellular homeostasis and organismal survival. However, unchecked or excessive induction of autophagy has been perceived to be detrimental and its contribution to neuronal cell death remains largely unknown. In this review, we will summarize the role of autophagy in IS, and discuss potential strategies, particularly, employment of natural compounds for IS treatment through manipulation of autophagy.
Collapse
Affiliation(s)
- Amir Ajoolabady
- University of Wyoming College of Health Sciences, Laramie, WY 82071, USA
| | - Shuyi Wang
- University of Wyoming College of Health Sciences, Laramie, WY 82071, USA; School of Medicine Shanghai University, Shanghai 200444, China
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France; Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France; Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France; Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China; Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| | - Josef M Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Vienna, Austria; Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Vladimir N Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA; Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino, Moscow region 142290, Russia
| | - Domenico Pratico
- Alzheimer's Center at Temple, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Nils Henninger
- Department of Neurology, University of Massachusetts, Worcester, Massachusetts, USA; Department of Psychiatry, University of Massachusetts, Worcester, Massachusetts, USA
| | - Russel J Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Askiel Bruno
- Department of Neurology, Medical College of Georgia, Augusta University, GA 30912, USA
| | - Kaumudi Joshipura
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Center for Clinical Research and Health Promotion, University of Puerto Rico Medical Sciences Campus, San Juan, PR 00936-5067, Puerto Rico
| | | | - Daniel J Klionsky
- Life Sciences Institute and Departments of Molecular, Cellular and Developmental Biology and Biological Chemistry, University of Michigan, Ann Arbor 48109, USA.
| | - Jun Ren
- Department of Laboratory Medicine and Pathology, University of Washington Seattle, Seattle, WA 98195, USA; Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| |
Collapse
|
14
|
Liu H, Zhang B, Li XW, Du J, Feng PP, Cheng C, Zhu ZH, Lou KL, Ruan C, Zhou C, Sun XW. Acupuncture inhibits mammalian target of rapamycin, promotes autophagy and attenuates neurological deficits in a rat model of hemorrhagic stroke. Acupunct Med 2021; 40:59-67. [PMID: 34284645 DOI: 10.1177/09645284211028873] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Intracerebral hemorrhage (ICH) accounts for approximately 15% of all stroke cases. Previous studies suggested that acupuncture may improve ICH-induced neurological deficits. Therefore, we investigated the effects of acupuncture on neurological deficits in an animal model of ICH. METHODS Adult male Sprague-Dawley rats were injected with autologous blood (50 μL) into the right caudate nucleus. Additional rats underwent sham surgery as controls. ICH rats either received acupuncture (GV20 through GB7 on the side of the lesion) or sham acupuncture (1 cm to the right side of the traditional acupuncture point locations). Some ICH rats received acupuncture plus rapamycin injection into the right lateral ventricle. Neurological deficits in the various groups were assessed based on composite neurological score. The perihemorrhagic penumbra was analyzed by histopathology following hematoxylin-eosin staining. Levels of autophagy-related proteins light chain (LC)3 and p62 as well as of mammalian target of rapamycin (mTOR)-related proteins, and phosphorylated (p)-mTOR and p-S6K1 (ribosomal protein S6 kinase beta-1), were assessed by Western blotting. RESULTS Acupuncture significantly improved composite neurological scores 7 days after ICH (17.7 ± 1.49 vs 14.8 ± 1.32, p < 0.01). Acupuncture augmented autophagosome and autolysosome accumulation based on transmission electron microscopy. Acupuncture significantly increased expression of LC3 (p < 0.01) but decreased expression of p62 (p < 0.01). Acupuncture also reduced levels of p-mTOR and p-S6K1 (both p < 0.01). CONCLUSION Acupuncture improved neurological deficits in a rat model of ICH, possibly by inhibiting the mTOR pathway and activating autophagy.
Collapse
Affiliation(s)
- Hao Liu
- Department of Acupuncture and Moxibustion, Tongde Hospital of Zhejiang Province, Hangzhou, China.,Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, China
| | - Beng Zhang
- Heilongjiang University of Chinese Medicine, Harbin, China.,First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xin-Wei Li
- Department of Acupuncture and Moxibustion, Tongde Hospital of Zhejiang Province, Hangzhou, China.,Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, China
| | - Jia Du
- Department of Acupuncture and Moxibustion, Tongde Hospital of Zhejiang Province, Hangzhou, China.,Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, China
| | - Pei-Pei Feng
- Department of Acupuncture and Moxibustion, Tongde Hospital of Zhejiang Province, Hangzhou, China.,Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, China
| | - Chen Cheng
- Department of Acupuncture and Moxibustion, Tongde Hospital of Zhejiang Province, Hangzhou, China.,Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, China
| | - Zhong-Hua Zhu
- Department of Acupuncture and Moxibustion, Tongde Hospital of Zhejiang Province, Hangzhou, China.,Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, China
| | - Ke-Lang Lou
- Department of Acupuncture and Moxibustion, Tongde Hospital of Zhejiang Province, Hangzhou, China.,Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, China
| | - Chen Ruan
- Department of Acupuncture and Moxibustion, Tongde Hospital of Zhejiang Province, Hangzhou, China.,Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, China
| | - Chi Zhou
- Department of Acupuncture and Moxibustion, Tongde Hospital of Zhejiang Province, Hangzhou, China.,Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, China
| | - Xiao-Wei Sun
- Heilongjiang University of Chinese Medicine, Harbin, China.,First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
15
|
Guan R, Li Z, Dai X, Zou W, Yu X, Liu H, Chen Q, Teng W, Liu P, Liu X, Dong S. Electroacupuncture at GV20‑GB7 regulates mitophagy to protect against neurological deficits following intracerebral hemorrhage via inhibition of apoptosis. Mol Med Rep 2021; 24:492. [PMID: 33955500 PMCID: PMC8127033 DOI: 10.3892/mmr.2021.12131] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 02/24/2021] [Indexed: 01/07/2023] Open
Abstract
The acupuncture penetrating line of Baihui (GV20) to Qubin (GB7) spans the parietal, frontal and temporal lobes. The present study aimed to elucidate the mechanism by which electroacupuncture (EA) at GV20‑GB7 regulates mitophagy in intracerebral hemorrhage (ICH) and whether it serves a neuroprotective role. A whole blood‑induced ICH model was used. Mitophagy‑regulating proteins, including BCL/adenovirus E1B 19 kDa‑interacting protein 3 (BNIP3), PTEN‑induced putative kinase 1 (PINK1), Parkin and apoptosis‑associated proteins were detected by western blotting; autophagy following ICH was evaluated by immunofluorescent techniques; morphological characteristics of mitophagy were observed using transmission electron microscopy; and TUNEL assay was performed to determine the number of apoptotic cells. Immunohistochemistry was used to detect p53 expression. The protective role of EA (GV20‑GB7) via enhanced mitophagy and suppressed apoptosis in ICH was further confirmed by decreased modified neurological severity score. The results showed that EA (GV20‑GB7) treatment upregulated mitochondrial autophagy following ICH and inhibited apoptotic cell death. The mechanism underlying EA (GV20‑GB7) treatment may involve inhibition of p53, an overlapping protein of autophagy and apoptosis. EA (GV20‑GB7) treatment decreased neurobehavioral deficits following ICH but pretreatment with 3‑methyladenine counteracted the beneficial effects of EA (GV20‑GB7) treatment. In conclusion, EA (GV20‑GB7) improved recovery from ICH by regulating the balance between mitophagy and apoptosis.
Collapse
Affiliation(s)
- Ruiqiao Guan
- Department of Integrated Chinese and Western Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
- Department of Clinical Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
- The Third Department of Acupuncture and Moxibustion, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
- Clinical Key Laboratory of Integrated Chinese and Western Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
- Department of Traditional Chinese Medicine, London South Bank University, London SE1 6RD, UK
- The Clinic of Traditional Chinese Medicine, London Confucius Institute of Traditional Chinese Medicine, London SE1 0AA, UK
| | - Zhihao Li
- Department of Acupuncture and Moxibustion, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Chinese Medicine, Shanghai 200437, P.R. China
| | - Xiaohong Dai
- Department of Clinical Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
- The Third Department of Acupuncture and Moxibustion, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| | - Wei Zou
- Department of Clinical Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
- The Third Department of Acupuncture and Moxibustion, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| | - Xueping Yu
- Department of Clinical Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
- The Third Department of Acupuncture and Moxibustion, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| | - Hao Liu
- Department of Acupuncture and Moxibustion, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 315099, P.R. China
| | - Qiuxin Chen
- Department of Clinical Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
- The Third Department of Acupuncture and Moxibustion, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
- Clinical Key Laboratory of Integrated Chinese and Western Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| | - Wei Teng
- Department of Clinical Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
- The Third Department of Acupuncture and Moxibustion, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| | - Peng Liu
- Department of Clinical Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
- The Third Department of Acupuncture and Moxibustion, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| | - Xiaoying Liu
- Department of Clinical Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
- The Third Department of Acupuncture and Moxibustion, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| | - Shanshan Dong
- Department of Clinical Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
- The Third Department of Acupuncture and Moxibustion, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
- Clinical Key Laboratory of Integrated Chinese and Western Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| |
Collapse
|
16
|
Normobaric Oxygen (NBO) Therapy Reduces Cerebral Ischemia/Reperfusion Injury through Inhibition of Early Autophagy. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:7041290. [PMID: 34306153 PMCID: PMC8263229 DOI: 10.1155/2021/7041290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/31/2021] [Accepted: 06/20/2021] [Indexed: 11/17/2022]
Abstract
Objectives Normobaric oxygen (NBO) therapy has great clinical potential in the treatment of ischemic stroke, but its underlying mechanism is unknown. Our study aimed to investigate the role of autophagy during the application of NBO on cerebral ischemia/reperfusion injury. Methods Male Sprague Dawley rats received 2 hours of middle cerebral artery occlusion (MCAO), followed by 2, 6, or 24 hours of reperfusion. At the beginning of reperfusion, rats were randomly given NBO (95% O2) or room air (21% O2) for 2 hours. In some animals, 3-methyladenine (3-MA, autophagy inhibitor) was administered 10 minutes before reperfusion. The severity of the ischemic injury was determined by infarct volume, neurological deficit, and apoptotic cell death. Western blotting was used to determine the protein expression of autophagy and apoptosis, while mRNA expression of apoptotic molecules was detected by real-time PCR. Results NBO treatment after ischemia/reperfusion significantly decreased infarct volume and neurobehavioral defects. The increased expression of the autophagy markers, including microtubule-associated protein 1A light chain 3 (LC3) and Beclin 1, after ischemia/reperfusion was reversed by NBO, while promoting Sequestosome 1 (p62/SQSTM1) expression. In addition, NBO reduced cerebral apoptosis in association with alleviated BAX expression and increased BCL-2 expression. 3-MA reduced autophagy and apoptotic death but did not further improve NBO-attenuated ischemic damage. Conclusion NBO induced remarkable neuroprotection from ischemic injury, which was correlated with blocked autophagy activity.
Collapse
|
17
|
Cao BQ, Tan F, Zhan J, Lai PH. Mechanism underlying treatment of ischemic stroke using acupuncture: transmission and regulation. Neural Regen Res 2021; 16:944-954. [PMID: 33229734 PMCID: PMC8178780 DOI: 10.4103/1673-5374.297061] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The inflammatory response after cerebral ischemia/reperfusion is an important cause of neurological damage and repair. After cerebral ischemia/reperfusion, microglia are activated, and a large number of circulating inflammatory cells infiltrate the affected area. This leads to the secretion of inflammatory mediators and an inflammatory cascade that eventually causes secondary brain damage, including neuron necrosis, blood-brain barrier destruction, cerebral edema, and an oxidative stress response. Activation of inflammatory signaling pathways plays a key role in the pathological process of ischemic stroke. Increasing evidence suggests that acupuncture can reduce the inflammatory response after cerebral ischemia/reperfusion and promote repair of the injured nervous system. Acupuncture can not only inhibit the activation and infiltration of inflammatory cells, but can also regulate the expression of inflammation-related cytokines, balance the effects of pro-inflammatory and anti-inflammatory factors, and interfere with inflammatory signaling pathways. Therefore, it is important to study the transmission and regulatory mechanism of inflammatory signaling pathways after acupuncture treatment for cerebral ischemia/reperfusion injury to provide a theoretical basis for clinical treatment of this type of injury using acupuncture. Our review summarizes the overall conditions of inflammatory cells, mediators, and pathways after cerebral ischemia/reperfusion, and discusses the possible synergistic intervention of acupuncture in the inflammatory signaling pathway network to provide a foundation to explore the multiple molecular mechanisms by which acupuncture promotes nerve function restoration.
Collapse
Affiliation(s)
- Bing-Qian Cao
- Department of Neurology, Foshan Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Foshan, Guangdong Province, China
| | - Feng Tan
- Department of Neurology, Foshan Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Foshan, Guangdong Province, China
| | - Jie Zhan
- Department of Rehabilitation, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Peng-Hui Lai
- Department of Rehabilitation, Nan'ao People's Hospital Dapeng New District, Shenzhen, Guangdong Province, China
| |
Collapse
|
18
|
Sun X, Liu H, Sun Z, Zhang B, Wang X, Liu T, Pan T, Gao Y, Jiang X, Li H. Acupuncture protects against cerebral ischemia-reperfusion injury via suppressing endoplasmic reticulum stress-mediated autophagy and apoptosis. Mol Med 2020; 26:105. [PMID: 33167857 PMCID: PMC7653860 DOI: 10.1186/s10020-020-00236-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/26/2020] [Indexed: 02/08/2023] Open
Abstract
Background Acupuncture treatment possesses the neuroprotection potential to attenuate cerebral ischemia–reperfusion (I/R) injury. Endoplasmic reticulum (ER) stress has been suggested to be involved in the pathogenic mechanism of cerebral I/R injury. Whether acupuncture protects against cerebral I/R injury via regulating ER stress remains unclear. This study aimed to evaluate the role of ER stress in the neuroprotection of acupuncture against cerebral I/R injury and its underlying mechanisms. Methods Cerebral I/R injury was induced by middle cerebral artery occlusion (MCAO) in rats. Acupuncture was carried out at Baihui (GV 20), and Qubin (GB7) acupoints in rats immediately after reperfusion. The infarct volumes, neurological score, ER stress, autophagy and apoptosis were determined. Results Acupuncture treatment decreased infarct volume, neurological score and suppressed ER stress via inactivation of ATF-6, PERK, and IRE1 pathways in MCAO rats. Attributing to ER stress suppression, 4-PBA (ER stress inhibitor) promoted the beneficial effect of acupuncture against cerebral I/R injury. Whereas, ER stress activator tunicamycin significantly counteracted the neuroprotective effects of acupuncture. In addition, acupuncture restrained autophagy via regulating ER stress in MCAO rats. Finally, ER stress took part in the neuroprotective effect of acupuncture against apoptosis in cerebral I/R injury. Conclusions Our findings suggest that acupuncture offers neuroprotection against cerebral I/R injury, which is attributed to repressing ER stress-mediated autophagy and apoptosis.
Collapse
Affiliation(s)
- Xiaowei Sun
- Department of Acupuncture and Moxibustion, The First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Hao Liu
- Department of Acupuncture and Moxibustion, Tongde Hospital of Zhejiang Province, Zhejiang Institute of Traditional Chinese Medicine, Hangzhou, 310012, Zhejiang, People's Republic of China
| | - Zhongren Sun
- Key Laboratory of Acupuncture Clinical Neurobiology (Encephalopathy), Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Beng Zhang
- Department of Acupuncture and Moxibustion, Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, People's Republic of China
| | - Xinyu Wang
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Tingting Liu
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Tingting Pan
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Ying Gao
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Xicheng Jiang
- Department of Synopsis of the Golden Chamber, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin, 150040, People's Republic of China.
| | - Hongtao Li
- Department of Orthopaedics and Traumatology, The First Affiliated Hospital, Heilongjiang University of Chinese Medicine, 26 Heping Road, Harbin, 150040, Heilongjiang, People's Republic of China.
| |
Collapse
|
19
|
EA Ameliorated Depressive Behaviors in CUMS Rats and Was Related to Its Suppressing Autophagy in the Hippocampus. Neural Plast 2020; 2020:8860968. [PMID: 33029121 PMCID: PMC7527933 DOI: 10.1155/2020/8860968] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/07/2020] [Accepted: 09/11/2020] [Indexed: 12/14/2022] Open
Abstract
Autophagy is confirmed to be involved in the onset and development of depression, and some antidepressants took effect by influencing the autophagic process. Electroacupuncture (EA), as a common complementary treatment for depression, may share the mechanism of influencing autophagy in the hippocampus like antidepressants. To investigate that, sixty Sprague-Dawley rats firstly went through chronic unpredictable mild stress (CUMS) model establishment, and 15 rats were assigned to a control group. After modeling, 45 successfully CUMS-induced rats were randomly divided to 3 groups: CUMS, selective serotonin reuptake inhibitor (SSRI), and EA groups (15 rats per group), to accept different interventions for 2 weeks. A sucrose preference test (SPT), weighing, and open field test (OFT) were measurement for depressive behaviors of rats. Transmission electron microscope (TEM), immunohistochemistry (IHC), and western blot analysis were used to evaluate the autophagic changes. After that, depression-like behaviors were successfully induced in CUMS models and reversed by SSRI and EA treatments (both p < 0.05), but these two therapies had nonsignificant difference between each other (p > 0.05). Autolysosomes observed through TEM in the CUMS group were more than that in the control group. Their number and size in the SSRI and EA groups also decreased significantly. From IHC, the CUMS group showed enhanced positive expression of both Beclin1 and LC3 in CA1 after modeling (p < 0.05), and the LC3 level declined after EA treatments, which was verified by decreased LC3-II/LC3-I in western blot analysis. We speculated that CUMS-induced depression-like behavior was interacted with an autophagy process in the hippocampus, and EA demonstrated antidepressant effects by partly inhibiting autophagy with a decreased number of autolysosomes and level of LC3 along with LC3-II/LC3-I.
Collapse
|
20
|
Mei ZG, Huang YG, Feng ZT, Luo YN, Yang SB, Du LP, Jiang K, Liu XL, Fu XY, Deng YH, Zhou HJ. Electroacupuncture ameliorates cerebral ischemia/reperfusion injury by suppressing autophagy via the SIRT1-FOXO1 signaling pathway. Aging (Albany NY) 2020; 12:13187-13205. [PMID: 32620714 PMCID: PMC7377856 DOI: 10.18632/aging.103420] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 05/27/2020] [Indexed: 12/13/2022]
Abstract
Cerebral ischemia/reperfusion (CIR) injury occurs when blood flow is restored in the brain, causing secondary damage to the ischemic tissues. Previous studies have shown that electroacupuncture (EA) treatment contributes to brain protection against CIR injury through modulating autophagy. Studies indicated that SIRT1-FOXO1 plays a crucial role in regulating autophagy. Here we investigated the mechanisms underlying the neuroprotective effect of EA and its role in modulating autophagy via the SIRT1-FOXO1 signaling pathway in rats with CIR injury. EA pretreatment at "Baihui", "Quchi" and "Zusanli" acupoints (2/15Hz, 1mA, 30 min/day) was performed for 5 days before the rats were subjected to middle cerebral artery occlusion, and the results indicated that EA pretreatment substantially reduced the Longa score and infarct volume, increased the dendritic spine density and lessened autophagosomes in the peri-ischemic cortex of rats. Additionally, EA pretreatment also reduced the ratio of LC3-II/LC3-I, the levels of Ac-FOXO1 and Atg7, and the interaction of Ac-FOXO1 and Atg7, but increased the levels of p62, SIRT1, and FOXO1. The above effects were abrogated by the SIRT1 inhibitor EX527. Thus, we presume that EA pretreatment elicits a neuroprotective effect against CIR injury, potentially by suppressing autophagy via activating the SIRT1-FOXO1 signaling pathway.
Collapse
Affiliation(s)
- Zhi-Gang Mei
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang, Hubei, China
| | - Ya-Guang Huang
- Affiliated Renhe Hospital of China Three Gorges University, Yichang, Hubei, China
| | - Zhi-Tao Feng
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang, Hubei, China
| | - Ya-Nan Luo
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang, Hubei, China
| | - Song-Bai Yang
- Yichang Hospital of Traditional Chinese Medicine, Clinical Medical College of Traditional Chinese Medicine, China Three Gorges University, Yichang, Hubei, China
| | - Li-Peng Du
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang, Hubei, China
| | - Kang Jiang
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang, Hubei, China
| | - Xiao-Lu Liu
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang, Hubei, China
| | - Xian-Yun Fu
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang, Hubei, China
| | - Yi-Hui Deng
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Hua-Jun Zhou
- The Institute of Neurology, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, Hubei, China
| |
Collapse
|
21
|
Li L, Huang J. Rapamycin Pretreatment Alleviates Cerebral Ischemia/Reperfusion Injury in Dose-Response Manner Through Inhibition of the Autophagy and NFκB Pathways in Rats. Dose Response 2020; 18:1559325820946194. [PMID: 32874166 PMCID: PMC7436792 DOI: 10.1177/1559325820946194] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 05/21/2020] [Indexed: 01/02/2023] Open
Abstract
Although rapamycin can attenuate cerebral ischemia/reperfusion (I/R) injury, the potential roles of rapamycin on cerebral I/R injury remain largely controversial. The present work aims to evaluate underlying molecular mechanisms of rapamycin pretreatment on I/R injury. In total, 34 Sprague-Dawley rats were randomly grouped to 3 groups: sham group (n = 2), vehicle group (n = 16), and rapamycin-pretreatment group (n = 16). Before the focal cerebral ischemia was induced, those rats in the pretreatment group were intraperitoneally injected rapamycin (1 mg/kg body) for 20 hours, while rats in the vehicle group received same-volume saline. Then, rats in these 2 groups received focal cerebral ischemia for 3 and 6 hours, respectively (n = 8 in each group), which was followed by the application of reperfusion for 4, 24, 72 hours, and 1 week (n = 2 in each group). The results showed that the rapamycin pretreatment improved the memory functions of rats after I/R injury, which was evaluated using a Y-maze test. Rapamycin pretreatment significantly reduced the size of triphenyltetrazolium chloride infarction and decreased the expression of I/R injury markers. Moreover, the expression of LC-3 and NFκB was also significantly reduced after rapamycin pretreatment. Taken together, rapamycin pretreatment may alleviate cerebral I/R injury partly through inhibiting autophagic activities and NFκB pathways in rats.
Collapse
Affiliation(s)
- Liru Li
- Department of emergency medicine, Fengxian District Central Hospital, Shanghai, China
| | - Jie Huang
- Department of Chinese and Western Medicine, Shanghai Fengxian District Central Hospital, Shanghai, China
| |
Collapse
|
22
|
Wang MM, Zhang M, Feng YS, Xing Y, Tan ZX, Li WB, Dong F, Zhang F. Electroacupuncture Inhibits Neuronal Autophagy and Apoptosis via the PI3K/AKT Pathway Following Ischemic Stroke. Front Cell Neurosci 2020; 14:134. [PMID: 32477073 PMCID: PMC7242565 DOI: 10.3389/fncel.2020.00134] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 04/21/2020] [Indexed: 12/14/2022] Open
Abstract
Electroacupuncture (EA) is a safe and effective therapy for ischemic stroke in both clinical and laboratory settings. However, the underlying mechanism behind EA treatment for stroke remains unclear. Here, we aimed to evaluate whether EA treatment at the acupoints of Zusanli (ST36) and Quchi (LI11) exerted a neuroprotective effect on ischemic stroke rats by modulating autophagy and apoptosis via the PI3K/AKT/mTOR signaling pathway. EA was performed at 24 h following brain ischemia/reperfusion (I/R) for 30 min per day for 3 days. Our results indicated that EA treatment significantly decreased neurological deficits and cerebral infarct volume in ischemic stroke rats. Also, EA intervention markedly reduced neuronal apoptosis by suppressing the activation of cleaved caspase-3 (CCAS3) at 72 h following I/R, as shown by a Western blot analysis. Furthermore, EA treatment after ischemic stroke suppressed the ischemia activated expression level of LC3II/I and Atg7 and increased the ischemia inhibited expression level of PI3K, phosphorylation of mTOR, phosphorylation of AKT, P62 and LAMP1, hence mediating the autophagy level of the neurocyte, which was reversed by the PI3K inhibitor Dactolisib. In summary, our results indicate that the protective effects of EA treatment at points of Quchi (LI11) and Zusanli (ST36) in rats following cerebral I/R injury was associated with the inhibition of neuronal apoptosis and autophagy via activating the PI3K/AKT/mTOR signaling pathway.
Collapse
Affiliation(s)
- Man-Man Wang
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Min Zhang
- Department of Pathophysiology, Hebei Medical University, Shijiazhuang, China
| | - Ya-Shuo Feng
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ying Xing
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zi-Xuan Tan
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Wen-Bin Li
- Department of Pathophysiology, Hebei Medical University, Shijiazhuang, China
| | - Fang Dong
- Department of Clinical Laboratory Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Feng Zhang
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, China.,Hebei Provincial Orthopedic Biomechanics Key Laboratory, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
23
|
Zhang Y, Zhang X, Wei Q, Leng S, Li C, Han B, Bai Y, Zhang H, Yao H. Activation of Sigma-1 Receptor Enhanced Pericyte Survival via the Interplay Between Apoptosis and Autophagy: Implications for Blood-Brain Barrier Integrity in Stroke. Transl Stroke Res 2020; 11:267-287. [PMID: 31290080 DOI: 10.1007/s12975-019-00711-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 05/21/2019] [Accepted: 06/06/2019] [Indexed: 02/07/2023]
Abstract
Stroke is a cerebrovascular disorder that affects many people worldwide. Pericytes play an important role in stroke progression and recovery. The sigma-1 receptor (σ-1R) signaling pathway has been suggested as having promising neuroprotective potential in treating stroke; however, whether σ-1R activation regulates pericyte function remains unknown. The aim of this study was to elucidate the role of σ-1R and a novel σ-1R agonist in pericytes following ischemic stroke. An ischemic stroke animal model was induced by photothrombotic middle cerebral artery occlusion (pMCAO) in σ-1R knockout (KO) and wild-type (WT) mice. After pMCAO, there was significant pericyte loss and coverage in σ-1R KO mice compared with WT mice as determined using transmission electron microscopy, immunofluorescence staining, and western blot. Interestingly, a novel σ-1R agonist decreased infarct volume and blood-brain barrier damage with a concomitant amelioration of pericyte loss, as determined by western blot. Further studies indicated that cell apoptosis and autophagy were induced in an in vivo pMCAO ischemic stroke animal model and an in vitro oxygen glucose deprivation-treatment group. Inhibition of autophagy using a pharmacological approach significantly mitigated pericyte apoptosis, suggesting that autophagy was upstream of apoptosis in pericytes. Both in vivo and in vitro studies indicated that the σ-1R agonist significantly decreased cell apoptosis via inhibition of autophagy with a subsequent enhancement of pericyte survival. This study identified the unique roles for σ-1R in mediating pericyte survival via the regulation of the interplay between apoptosis and autophagy, suggesting that a novel σ-1R agonist may be a promising therapeutic agent for the treatment of stroke patients.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China.
| | | | - Qiangqiang Wei
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, Jiangsu, China
| | - Shuo Leng
- Center of Interventional Radiology and Vascular Surgery, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Cai Li
- Department of Neurology, Rizhao Hospital of Traditional Chinese Medicine, Rizhao, 276800, Shandong, China
| | - Bing Han
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Ying Bai
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Huibin Zhang
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, Jiangsu, China.
| | - Honghong Yao
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China.
- Institute of Life Sciences, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, 210096, Jiangsu, China.
| |
Collapse
|
24
|
Effect of Acupuncture on Oxidative Stress Induced by Cerebral Ischemia-Reperfusion Injury. Antioxidants (Basel) 2020; 9:antiox9030248. [PMID: 32204376 PMCID: PMC7139408 DOI: 10.3390/antiox9030248] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 12/13/2022] Open
Abstract
In this article, we review how acupuncture regulates oxidative stress to prevent ischemia–reperfusion injury. We electronically searched databases, including PubMed, Clinical Key and the Cochrane Library, from their inception to November 2019 by using the following medical subject headings and keywords: acupuncture, ischemia-reperfusion injury, oxidative stress, reactive oxygen species, and antioxidants. We concluded that acupuncture is effective in treating oxidation after ischemia-reperfusion injury. In addition to increasing the activity of antioxidant enzymes and downregulating the generation of reactive oxygen species (ROS), acupuncture also repairs the DNA, lipids, and proteins attacked by ROS and mediates downstream of the ROS pathway to apoptosis.
Collapse
|
25
|
Electroacupuncture pretreatment prevents ischemic stroke and inhibits Wnt signaling-mediated autophagy through the regulation of GSK-3β phosphorylation. Brain Res Bull 2020; 158:90-98. [PMID: 32142833 DOI: 10.1016/j.brainresbull.2020.03.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 02/06/2020] [Accepted: 03/02/2020] [Indexed: 12/11/2022]
Abstract
Electroacupuncture (EA), a traditional Chinese replacement therapy, is widely accepted to treat ischemic stroke. Increasing evidence show that autophagy is involved in the process of cerebral ischemia injury and the Wnt/GSK3β pathway, playing an important role in protecting central nervous system. In this study, rats were treated with EA prior to focal ischemia by middle cerebral artery occlusion (MCAO). Deficit score, infarct volumes and levels of autophagy markers, such as LC3I, LC3II and p62, were assessed with either PI3K inhibitor wortmannin or a GSK-3β inhibitor LiCl. Oxygen-glucose deprivation/re-oxygenation (OGD/R) was made in the primitive neuron in vitro, and was respectively treated with autophagy inhibitors 3-MA, LiCl, GSK3β siRNA, or mTOR inhibitor rapamycin. The results indicated that EA pretreatment increased the levels of autophagy marker LC3-II and reduced the levels of p62. Meanwhile, deficit outcome was improved, and infarct volumes were reduced by EA pretreatment. Furthermore, the beneficial effects of EA pretreatment were reversed by wortmannin. LiCl and GSK3β siRNA can mimic the neuroprotective effects of EA pretreatment by downregulating autophagy, and increasing protein levels of p-mTOR, p-GSK3β and β-catenin in OGD/R neurons. However, the protective effects of GSK3β siRNA were blocked by rapamycin. These results suggest that EA pretreatment induces tolerance to cerebral ischemia by inhibiting autophagy via the Wnt pathway through the inhibition of GSK3β.
Collapse
|
26
|
Electroacupuncture Pretreatment Elicits Neuroprotection Against Cerebral Ischemia-Reperfusion Injury in Rats Associated with Transient Receptor Potential Vanilloid 1-Mediated Anti-Oxidant Stress and Anti-Inflammation. Inflammation 2020; 42:1777-1787. [PMID: 31190106 DOI: 10.1007/s10753-019-01040-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Electroacupuncture (EA) pretreatment, electrical stimulation using metal needle at specific acupoints in advance, possesses the potential to prevent cerebral ischemia-reperfusion injury (CIRI). Transient receptor potential vanilloid 1 (TRPV-1) has been indicated to take part in cerebral protection of EA; however, the detailed mechanisms remain unclear. The aim of this study was to investigate whether neuroprotection of EA pretreatment against CIRI is associated with TRPV-1 and explore the underlying mechanisms. Middle cerebral artery occlusion (MCAO) was performed to induce CIRI after EA pretreatment at Baihui (GV20), bilateral Shenshu (BL23), and Sanyinjiao (SP6) acupoints in rats. Neurological deficit scores, infarct volumes, oxidative stress damage, inflammatory cytokine production, MAPK signaling activation, and the expression of TRPV-1 were assessed. EA pretreatment lowered neurological deficit scores, reduced infarct volumes, impeded oxidative stress injury, inhibited inflammatory cytokine production, curbed P38 phosphorylation, and suppressed TRPV-1 expression in MCAO rats. Attributing to inhibition of TRPV-1 expression, AMG-517 (TRPV-1 antagonist) showed the synergistic effect with EA pretreatment on the neuroprotection against ischemia-reperfusion injury. However, TRPV-1 agonists capsaicin significantly abrogated the neuroprotective effects of EA pretreatment in MCAO rats accompanying enhancement of TRPV-1 expression. These findings indicated EA pretreatment exerted neuroprotection in rats with cerebral ischemia-reperfusion injury, which at least partially were associated with TRPV1-mediated anti-oxidant stress and anti-inflammation via inhibiting P38 MAPK activation.
Collapse
|
27
|
Xu SY, Lv HQ, Li WQ, Hong H, Peng YJ, Zhu BM. Electroacupuncture Alleviates Cerebral Ischemia/Reperfusion Injury in Rats by Histone H4 Lysine 16 Acetylation-Mediated Autophagy. Front Psychiatry 2020; 11:576539. [PMID: 33391046 PMCID: PMC7775364 DOI: 10.3389/fpsyt.2020.576539] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/19/2020] [Indexed: 02/05/2023] Open
Abstract
Background: Electroacupuncture (EA) treatment in ischemic stroke has been highlighted recently; however, the specific mechanism is still elusive. Autophagy is considered a new target for cerebral ischemia/reperfusion (I/R), but whether it plays a role of protecting or causing rapid cell apoptosis remains unclear. Studies have reported that the reduction in lysine 16 of histone H4 acetylation coheres with autophagy induction. The primary purpose of the study was to explore whether EA could alleviate I/R via autophagy-mediated histone H4 lysine 16 acetylation in the middle cerebral artery occlusion (MCAO) rat model. Methods: One hundred and twenty male Sprague-Dawley rats were divided into five groups: control group, MCAO group, MCAO+EA group, MCAO+EA+hMOF siRNA group, and MCAO+EA+Sirt1 inhibitor group. EA was applied to "Baihui" (Du20) and "Renzhong" (Du26) at 5 min after modeling and 16 h after the first EA intervention. The structure and molecular markers of the rat brain were evaluated. Results: EA significantly alleviated I/R injury by upregulating the expressions of Sirt1, Beclin1, and LC3-II and downregulating the expressions of hMOF and H4K16ac. In contrast, the Sirt1 inhibitor lowered the increase in Sirt1, Beclin1, and LC3-II and enhanced the level of hMOF and H4K16ac expressions associated with EA treatment. Besides, ChIP assay revealed that the binding of H4K16ac in the Beclin1 promoter region of the autophagy target gene was significantly raised in the MCAO+EA group and MCAO+EA+hMOF siRNA group. Conclusions: EA treatment inhibited the H4K16ac process, facilitated autophagy, and alleviated I/R injury. These findings suggested that regulating histone H4 lysine 16 acetylation-mediated autophagy may be a key mechanism of EA at Du20 and Du26 to treat I/R.
Collapse
Affiliation(s)
- Shu-Ying Xu
- Department of Acupuncture and Rehabilitation, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - He-Qun Lv
- Department of Acupuncture and Encephalopathy, Yancheng Hospital of Traditional Chinese Medicine, Yancheng, China
| | - Wen-Qian Li
- Department of Acupuncture and Rehabilitation, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Hao Hong
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yong-Jun Peng
- Department of Acupuncture and Rehabilitation, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Bing-Mei Zhu
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
28
|
Cheng A, Lu Y, Huang Q, Zuo Z. Attenuating oxygen-glucose deprivation-caused autophagosome accumulation may be involved in sevoflurane postconditioning-induced protection in human neuron-like cells. Eur J Pharmacol 2019; 849:84-95. [PMID: 30710551 PMCID: PMC6414235 DOI: 10.1016/j.ejphar.2019.01.051] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 01/24/2019] [Accepted: 01/28/2019] [Indexed: 01/07/2023]
Abstract
Application of the commonly used volatile anesthetic sevoflurane after brain ischemia (sevoflurane postconditioning) attenuates ischemic brain injury. It is not known whether autophagy plays a role in this sevoflurane postconditioning-induced neuroprotection. Human SH-SY5Y cells were induced to become neuron-like cells. These cells were subjected to 1 h oxygen-glucose deprivation (OGD) and then exposed to sevoflurane for 1 h. Chloroquine, an inhibitor of autolysosomes, rapamycin, an autophagy inducer, or 3-methyladenine (3-MA), an autophagy inhibitor, were incubated with cells during OGD and sevoflurane exposure. OGD and the subsequent simulated reperfusion increased lactate dehydrogenase (LDH) release from the cells. This increase was dose-dependent inhibited by sevoflurane postconditioning. OGD increased the ratio of microtubule-associated protein 1 light chain 3 (LC3) II to LC3I and the expression of beclin-1 and p62. These increases were attenuated by sevoflurane. Sevoflurane alone did not have any effects on the expression of p62, beclin-1 and the ratio of LC3II to LC3I. Sevoflurane also enhanced the co-location of autophagosomes and lysosomes. Chloroquine increased the ratio of LC3II to LC3I, p62 and LDH release in cells subjected to OGD. Sevoflurane postconditioning attenuated OGD-induced inactivation of Akt and mechanistic target of rapamycin (mTOR). Inducing autophagosome generation by rapamycin attenuated sevoflurane postconditioning-reduced LDH release. Inhibition of autophagosome generation by 3-MA decreased OGD-induced LDH release. These results suggest that OGD increase autophagosome accumulation via increased formation of autophagosomes and reduced autophagosome clearance and that attenuation of OGD-induced autophagosome accumulation may contribute to sevoflurane postconditioning-induced cell protection.
Collapse
Affiliation(s)
- Aobing Cheng
- Department of Anesthesiology, University of Virginia, Charlottesville, VA 22901, USA; Department of Pathophysiology, Key Lab for Shock and Microcirculation Research, Southern Medical University, Guangzhou 510515, PR China; Department of Anesthesiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, Guangdong, PR China.
| | - Yang Lu
- Department of Anesthesiology, University of Virginia, Charlottesville, VA 22901, USA; Department of Anesthesiology, Second affiliated Hospital, Xi'an Jiao Tong University, Xian 710089, PR China.
| | - Qiaobing Huang
- Department of Pathophysiology, Key Lab for Shock and Microcirculation Research, Southern Medical University, Guangzhou 510515, PR China.
| | - Zhiyi Zuo
- Department of Anesthesiology, University of Virginia, Charlottesville, VA 22901, USA.
| |
Collapse
|
29
|
Huang YG, Tao W, Yang SB, Wang JF, Mei ZG, Feng ZT. Autophagy: novel insights into therapeutic target of electroacupuncture against cerebral ischemia/ reperfusion injury. Neural Regen Res 2019; 14:954-961. [PMID: 30761999 PMCID: PMC6404501 DOI: 10.4103/1673-5374.250569] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Electroacupuncture is known as an effective adjuvant therapy in ischemic cerebrovascular disease. However, its underlying mechanisms remain unclear. Studies suggest that autophagy, which is essential for cell survival and cell death, is involved in cerebral ischemia reperfusion injury and might be modulate by electroacupuncture therapy in key ways. This paper aims to provide novel insights into a therapeutic target of electroacupuncture against cerebral ischemia/reperfusion injury from the perspective of autophagy. Here we review recent studies on electroacupuncture regulation of autophagy-related markers such as UNC-51-like kinase-1 complex, Beclin1, microtubule-associated protein-1 light chain 3, p62, and autophagosomes for treating cerebral ischemia/reperfusion injury. The results of these studies show that electroacupuncture may affect the initiation of autophagy, vesicle nucleation, expansion and maturation of autophagosomes, as well as fusion and degradation of autophagolysosomes. Moreover, studies indicate that electroacupuncture probably modulates autophagy by activating the mammalian target of the rapamycin signaling pathway. This review thus indicates that autophagy is a therapeutic target of electroacupuncture treatment against ischemic cerebrovascular diseases.
Collapse
Affiliation(s)
- Ya-Guang Huang
- Medical College of China Three Gorges University, Yichang, Hubei Province, China
| | - Wei Tao
- Medical College of China Three Gorges University, Yichang, Hubei Province, China
| | - Song-Bai Yang
- Yichang Hospital of Traditional Chinese Medicine, Clinical Medical College of Traditional Chinese Medicine, China Three Gorges University, Yichang, Hubei Province, China
| | - Jin-Feng Wang
- Medical College of China Three Gorges University, Yichang, Hubei Province, China
| | - Zhi-Gang Mei
- Medical College of China Three Gorges University; Yichang Hospital of Traditional Chinese Medicine, Clinical Medical College of Traditional Chinese Medicine, China Three Gorges University, Yichang, Hubei Province, China
| | - Zhi-Tao Feng
- Medical College of China Three Gorges University, Yichang, Hubei Province, China
| |
Collapse
|
30
|
Cai W, Shen WD. Anti-Apoptotic Mechanisms of Acupuncture in Neurological Diseases: A Review. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2018; 46:515-535. [PMID: 29595076 DOI: 10.1142/s0192415x1850026x] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Apoptosis, known as programmed cell death, plays a significant role in the pathogenesis of neurological diseases. Most of these diseases can be obviously alleviated by means of acupuncture treatment. Current research studies have shown that the efficacy of acupuncture to these medical conditions is closely associated with the anti-apoptotic potentials. Mainly based on the acupuncture's anti-apoptotic efficacy in prevalent neurological disorders, including cerebral ischemia-reperfusion injury, Alzheimer's disease, depression or stress related-modes, spinal cord injuries, etc., this review comes to a conclusion that the anti-apoptotic effect of acupuncture treatment for neurological diseases, evidently reflected through Bcl-2, Bax or caspase expression change, results from regulating mitochondrial or autophagic dysfunction as well as reducing oxidative stress and inflammation. The possible mechanisms of acupuncture's anti-apoptotic effect are associated with a series of downstream signaling pathways and the up-regulated expression of neurotrophic factors. It is of great importance to illuminate the exact mechanisms of acupuncture treatment for neurological dysfunctions.
Collapse
Affiliation(s)
- Wa Cai
- 1 Department of Acupuncture, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Wei-Dong Shen
- 1 Department of Acupuncture, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| |
Collapse
|
31
|
Luo D, Chen R, Liang FX. Modulation of Acupuncture on Cell Apoptosis and Autophagy. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2017; 2017:8268736. [PMID: 29279719 PMCID: PMC5723958 DOI: 10.1155/2017/8268736] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 08/20/2017] [Accepted: 09/14/2017] [Indexed: 11/25/2022]
Abstract
Acupuncture has been historically practiced to treat medical disorders by mechanically stimulating specific acupoints. Despite its well-documented efficacy, its biological basis largely remains elusive. Recent studies suggested that cell apoptosis and autophagy might play key roles in acupuncture therapy. Therefore, we searched PubMed, Embase, Web of Science, and China National Knowledge Infrastructure (CNKI), aiming to find the potential relationship between acupuncture and cell apoptosis and autophagy. To provide readers with objective evidence, some problems regarding the design method, acupoints selection, acupuncture intervention measure, and related diseases existing in 40 related researches were shown in this review. These findings demonstrated that acupuncture has a potential role in modulating cell apoptosis and autophagy in animal models, suggesting it as a candidate mechanism in acupuncture therapy to maintain physiologic homeostasis.
Collapse
Affiliation(s)
- Dan Luo
- Department of Traditional Chinese Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Street, Wuhan, Hubei 430022, China
| | - Rui Chen
- Department of Traditional Chinese Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Street, Wuhan, Hubei 430022, China
| | - Feng-xia Liang
- Department of Acupuncture and Moxibustion, Hubei University of Traditional Chinese Medicine, No. 1 Tanhualin Street, Wuhan, Hubei 430060, China
| |
Collapse
|
32
|
Guo Y. Role of HIF-1a in regulating autophagic cell survival during cerebral ischemia reperfusion in rats. Oncotarget 2017; 8:98482-98494. [PMID: 29228704 PMCID: PMC5716744 DOI: 10.18632/oncotarget.21445] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 08/08/2017] [Indexed: 01/21/2023] Open
Abstract
Hypoxia-inducible factor-1a (HIF-1a) plays a beneficial role during cerebral ischemia reperfusion (IR), but the underlying molecular mechanisms are not completely understood. Here, we aimed to investigate the effects and molecular regulation of HIF-1a on brain cell apoptosis and autophagy during IR. We found that augmentation of HIF-1a in re-perfused hematopoietic cells significantly reduced brain damage, alleviated brain edema and improved neural function during IR, seemingly through two HIF-1a target genes BNIP3 and NIX, which were critical regulators for cell apoptosis and autophagic cell survival. in vitro, HIF-1a induced up-regulation of BNIP3 and NIX in human cortical neuron cells, HCN-1A. Inhibition of BNIP3 and NIX significantly attenuated HIF-1a-suppressed cell apoptosis and HIF-1a-induced cell autophagy. Together, these data suggest that HIF-1a may ameliorate brain damages during IR through BNIP3 and NIX -dependent augmentation of autophagic cell survival and reduction in cell apoptosis.
Collapse
Affiliation(s)
- Yongqing Guo
- Department of Anesthesiology, Shanxi Provincial People's Hospital, Taiyuan 030012, China
| |
Collapse
|
33
|
Mechanisms of Acupuncture Therapy for Cerebral Ischemia: an Evidence-Based Review of Clinical and Animal Studies on Cerebral Ischemia. J Neuroimmune Pharmacol 2017; 12:575-592. [DOI: 10.1007/s11481-017-9747-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 04/13/2017] [Indexed: 12/20/2022]
|
34
|
Feng D, Wang B, Wang L, Abraham N, Tao K, Huang L, Shi W, Dong Y, Qu Y. Pre-ischemia melatonin treatment alleviated acute neuronal injury after ischemic stroke by inhibiting endoplasmic reticulum stress-dependent autophagy via PERK and IRE1 signalings. J Pineal Res 2017; 62. [PMID: 28178380 DOI: 10.1111/jpi.12395] [Citation(s) in RCA: 223] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 12/16/2016] [Indexed: 02/06/2023]
Abstract
Melatonin has demonstrated a potential protective effect in central nervous system. Thus, it is interesting to determine whether pre-ischemia melatonin administration could protect against cerebral ischemia/reperfusion (IR)-related injury and the underlying molecular mechanisms. In this study, we revealed that IR injury significantly activated endoplasmic reticulum (ER) stress and autophagy in a middle cerebral artery occlusion mouse model. Pre-ischemia melatonin treatment was able to attenuate IR-induced ER stress and autophagy. In addition, with tandem RFP-GFP-LC3 adeno-associated virus, we demonstrated pre-ischemic melatonin significantly alleviated IR-induced autophagic flux. Furthermore, we showed that IR induced neuronal apoptosis through ER stress related signalings. Moreover, IR-induced autophagy was significantly blocked by ER stress inhibitor (4-PBA), as well as ER-related signaling inhibitors (PERK inhibitor, GSK; IRE1 inhibitor, 3,5-dibromosalicylaldehyde). Finally, we revealed that melatonin significantly alleviated cerebral infarction, brain edema, neuronal apoptosis, and neurological deficiency, which were remarkably abolished by tunicamycin (ER stress activator) and rapamycin (autophagy activator), respectively. In summary, our study provides strong evidence that pre-ischemia melatonin administration significantly protects against cerebral IR injury through inhibiting ER stress-dependent autophagy. Our findings shed light on the novel preventive and therapeutic strategy of daily administration of melatonin, especially among the population with high risk of cerebral ischemic stroke.
Collapse
Affiliation(s)
- Dayun Feng
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Bao Wang
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard medical school, Boston, MA, USA
| | - Lei Wang
- Department of Neurosurgery, The 463rd Hospital of PLA, Shenyang, China
| | - Neeta Abraham
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard medical school, Boston, MA, USA
| | - Kai Tao
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Lu Huang
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Wei Shi
- Department of Urology surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yushu Dong
- Department of Neurosurgery, General Hospital of Shenyang Military Area Command, Shenyang, China
| | - Yan Qu
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
35
|
Pengyue Z, Tao G, Hongyun H, Liqiang Y, Yihao D. Breviscapine confers a neuroprotective efficacy against transient focal cerebral ischemia by attenuating neuronal and astrocytic autophagy in the penumbra. Biomed Pharmacother 2017; 90:69-76. [PMID: 28343073 DOI: 10.1016/j.biopha.2017.03.039] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 03/06/2017] [Accepted: 03/14/2017] [Indexed: 12/31/2022] Open
Abstract
Breviscapine is a flavonoid derived from a traditional Chinese herb Erigerin breviscapus (Vant.) Hand-Mazz, and has been extensively used in clinical treatment for cerebral stroke in China, but the underlying pharmacological mechanisms are still unclear. In present study, we investigated whether breviscapine could confer a neuroprotection against cerebral ischemia injury by targeting autophagy mechanisms. A cerebral stroke model in Sprague-Dawley rats was prepared by middle cerebral artery occlusion (MCAO), rats were then randomly divided into 5 groups: MCAO+Bre group, rats were treated with breviscapine; MCAO+Tat-Beclin-1 group, animals were administrated with specific autophagy inducer Tat-Beclin-1; MCAO+Bre+Tat-Beclin-1 group, rats were treated with both breviscapine and Tat-Beclin-1, MCAO+saline group, rats received the same volume of physiological saline, and Sham surgery group. The autophagy levels in infarct penumbra were evaluated by western blotting, real-time PCR and immunofluorescence 7days after the insult. Meanwhile, infarct volume, brain water content and neurological deficit score were assessed. The results illustrated that the infarct volume, brain water content and neurofunctional deficiency were significantly reduced by 7days of breviscapine treatment in MCAO+Bre group, compared with those in MCAO+saline group. Meanwhile, the western blotting, quantitative PCR and immunofluorescence showed that the autophagy in both neurons and astrocytes at the penumbra were markedly attenuated by breviscapine admininstration. Moreover, these pharmacological effects of breviscapine could be counteracted by autophagy inducer Tat-Beclin-1. Our study suggests that breviscapine can provide a neuroprotection against transient focal cerebral ischemia, and this biological function is associated with attenuating autophagy in both neurons and astrocytes.
Collapse
Affiliation(s)
- Zhang Pengyue
- Department of morphology, Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Guo Tao
- Department of morphology, Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - He Hongyun
- Department of morphology, Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Yang Liqiang
- Department of morphology, Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Deng Yihao
- Department of morphology, Medical School, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
36
|
Study on the Mechanism of mTOR-Mediated Autophagy during Electroacupuncture Pretreatment against Cerebral Ischemic Injury. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:9121597. [PMID: 27547233 PMCID: PMC4980529 DOI: 10.1155/2016/9121597] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 05/23/2016] [Accepted: 06/19/2016] [Indexed: 12/19/2022]
Abstract
This study is aimed at investigating the association between the electroacupuncture (EA) pretreatment-induced protective effect against early cerebral ischemic injury and autophagy. EA pretreatment can protect cerebral ischemic and reperfusion injuries, but whether the attenuation of early cerebral ischemic injury by EA pretreatment was associated with autophagy is not yet clear. This study used the middle cerebral artery occlusion model to monitor the process of ischemic injury. For rats in the EA pretreatment group, EA pretreatment was conducted at Baihui acupoint before ischemia for 30 min for 5 consecutive days. The results suggested that EA pretreatment significantly increased the expression of autophagy in the cerebral cortical area on the ischemic side of rats. But the EA pretreatment-induced protective effects on the brain could be reversed by the specific inhibitor 3-methyladenine of autophagy. Additionally, the Pearson correlation analysis indicated that the impact of EA pretreatment on p-mTOR (2481) was negatively correlated with its impact on autophagy. In conclusion, the mechanism of EA pretreatment at Baihui acupoint against cerebral ischemic injury is mainly associated with the upregulation of autophagy expression, and its regulation of autophagy may depend on mTOR-mediated signaling pathways.
Collapse
|
37
|
Guo HD, Zhu J, Tian JX, Shao SJ, Xu YW, Mou FF, Han XJ, Yu ZH, Chen JL, Zhang DY, Zhang LS, Cui GH. Electroacupuncture improves memory and protects neurons by regulation of the autophagy pathway in a rat model of Alzheimer's disease. Acupunct Med 2016; 34:449-456. [PMID: 26895770 DOI: 10.1136/acupmed-2015-010894] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2016] [Indexed: 01/25/2023]
Abstract
BACKGROUND Acupuncture is a potential therapy for Alzheimer's disease (AD), but its clinical effects and underlying mechanisms are not fully understood. Emerging evidence suggests autophagy is involved in β-amyloid (Aβ) clearance. We hypothesised that electroacupuncture (EA) treatment of AD involves the autophagy pathway in rats. METHODS We injected 2μl Aβ1-40 bilaterally into the hippocampi of 42 rats to establish AD. Rats remained untreated (AD group, n=14) or received 24 EA treatments at GV20+BL23 over 28 days from day 7 post-injection with/without co-treatment with 3-methyladenine (3-MA), an autophagy inhibitor (AD+EA+3-MA and AD+EA groups, respectively, n=14 each). Cognitive function was evaluated by Morris water maze (MWM) testing. Hippocampi were examined by transmission electron microscopy (TEM) and stained with haematoxylin and eosin/transferase dUTP nick end labelling (TUNEL) to assess neuronal morphology/apoptosis, respectively. Protein expression of Beclin-1, LC3 and Aβ1-40 was examined. RESULTS In the MWM test, the AD+EA group showed an improvement in parameters consistent with improved learning/memory compared to untreated AD rats, and 3-MA attenuated these effects. EA mitigated cellular apoptosis resulting from Aβ infusion in the CA1 region and enhanced LC3II/LC3I ratios and Beclin-1 expression. Numerous autophagosome precursors and enlarged autophagosomes were observed by TEM in the hippocampi of EA-treated rats. Reduced Aβ levels, and co-localisation of Aβ and LC3II, were observed following EA treatment by immunofluorescence staining. EA+3-MA treated rats had much higher TUNEL-positive neurons, lower LC3II/LC3I ratios and Beclin-1 expression, and elevated Aβ levels compared with EA alone. CONCLUSIONS EA reduces neuronal apoptosis, enhances degradation of Aβ, and improves learning/memory in AD rats by upregulating the autophagy pathway.
Collapse
Affiliation(s)
- Hai-Dong Guo
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Zhu
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jin-Xin Tian
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shui-Jin Shao
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yan-Wu Xu
- Department of Biochemistry, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fang-Fang Mou
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiao-Jing Han
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhi-Hua Yu
- Central Laboratory, Shanghai Geriatric Institute of Chinese Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiu-Lin Chen
- Central Laboratory, Shanghai Geriatric Institute of Chinese Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Da-Yong Zhang
- Zhejiang University City College, Hangzhou, Zhejiang, China
| | - Li-Sheng Zhang
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guo-Hong Cui
- Department of Neurology, Shanghai No. 9 People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
38
|
Liu W, Shang G, Yang S, Huang J, Xue X, Lin Y, Zheng Y, Wang X, Wang L, Lin R, Tao J, Chen L. Electroacupuncture protects against ischemic stroke by reducing autophagosome formation and inhibiting autophagy through the mTORC1-ULK1 complex-Beclin1 pathway. Int J Mol Med 2015; 37:309-18. [PMID: 26647915 PMCID: PMC4716798 DOI: 10.3892/ijmm.2015.2425] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 11/12/2015] [Indexed: 11/06/2022] Open
Abstract
In a previous study by our group, we demonstrated that electroacupuncture (EA) activates the class I phosphoinositide 3-kinase (PI3K)/Akt signaling pathway. There is considerable evidence that the downstream mammalian target of rapamycin complex 1 (mTORC1) plays an important role in autophagy following ischemic stroke. The aim of the present study was to determine whether EA exerts a neuroprotective effect through mTORC1-mediated autophagy following ischemia/reperfusion injury. Our results revealed that EA at the LI11 and ST36 acupoints attenuated motor dysfunction, improved neurological deficit outcomes and decreased the infarct volumes. The number of autophagosomes, autolysosomes and lysosomes was decreased following treatment with EA. Simultaneously, the levels of the autophagosome membrane maker, microtubule-associated protein 1 light chain 3 beta (LC3B)II/I, Unc-51-like kinase 1 (ULK1), autophagy related gene 13 Atg13) and Beclin1 (ser14) were decreased, whereas mTORC1 expression was increased in the peri-infarct cortex. These results suggest that EA protects against ischemic stroke through the inhibition of autophagosome formation and autophagy, which is mediated through the mTORC1-ULK complex-Beclin1 pathway.
Collapse
Affiliation(s)
- Weilin Liu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Guanhao Shang
- The Fujian Province Key Laboratory of Motor Functional Rehabilitation, Fuzhou, Fujian 350001, P.R. China
| | - Shanli Yang
- Rehabilitation Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350001, P.R. China
| | - Jia Huang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Xiehua Xue
- Rehabilitation Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350001, P.R. China
| | - Yunjiao Lin
- The Fujian Province Key Laboratory of Motor Functional Rehabilitation, Fuzhou, Fujian 350001, P.R. China
| | - Yi Zheng
- The Fujian Province Key Laboratory of Motor Functional Rehabilitation, Fuzhou, Fujian 350001, P.R. China
| | - Xian Wang
- The Fujian Province Key Laboratory of Motor Functional Rehabilitation, Fuzhou, Fujian 350001, P.R. China
| | - Lulu Wang
- The Fujian Province Key Laboratory of Motor Functional Rehabilitation, Fuzhou, Fujian 350001, P.R. China
| | - Ruhui Lin
- The Fujian Province Key Laboratory of Motor Functional Rehabilitation, Fuzhou, Fujian 350001, P.R. China
| | - Jing Tao
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Lidian Chen
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| |
Collapse
|
39
|
Tao J, Liu W, Shang G, Zheng Y, Huang J, Lin R, Chen L. MiR-207/352 regulate lysosomal-associated membrane proteins and enzymes following ischemic stroke. Neuroscience 2015; 305:1-14. [PMID: 26232047 DOI: 10.1016/j.neuroscience.2015.07.064] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Revised: 07/21/2015] [Accepted: 07/24/2015] [Indexed: 11/16/2022]
Abstract
The role of microRNAs (miRNAs) in lysosome-mediated neuronal death and survival following ischemic stroke remains unknown. Herein, using miRNA and mRNA gene expression profiling microarrays, we identified the differentially expressed 24 miRNAs and 494 genes in the cortical peri-infarct area, respectively. Integrating the miRNA targets and mRNA expression profiles, we found 47 genes of miRNA targets, including lysosomal-associated membrane protein 2 (LAMP2), Hexb, Bcl2, etc. MiR-207 and miR-352 were mainly downregulated after ischemic stroke, followed by a slight return to baseline during post-middle cerebral artery occlusion (MCAO) 1d to 7d. Furthermore, the luciferase reporter assay demonstrated that LAMP2 and Hexb were the direct targets of miR-207 and miR-352, respectively. After lateral ventricle injection with miR-207 agonist mimics, the neurological deficit scores and infarct volumes were attenuated, and the structure of mitochondria ridges was improved. In addition, miR-207 mimics could reduce the number of cellular lysosome and autophagosome, whereas increase the number of autophagic vacuoles, indicating miR-207 might affect the latter part of lysosomal-autophagy pathway and mitochondria-induced apoptosis. These results suggested that miR-207 and miR-352 were involved in lysosomal pathway for mediating ischemic injury and spontaneous recovery. MiR-207 mimics as potential target drugs could protect against autophagic cell death after ischemic stroke.
Collapse
Affiliation(s)
- J Tao
- College of Rehabilitation Medicine & TCM Rehabilitation Research Center Of SATCM, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, PR China
| | - W Liu
- College of Rehabilitation Medicine & TCM Rehabilitation Research Center Of SATCM, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, PR China
| | - G Shang
- Fujian Rehabilitation Tech Co-innovation Center (2011 Project), Fujian University of Traditional Chinese Medicine, Fuzhou 350122, PR China
| | - Y Zheng
- Fujian Rehabilitation Tech Co-innovation Center (2011 Project), Fujian University of Traditional Chinese Medicine, Fuzhou 350122, PR China
| | - J Huang
- Fujian Rehabilitation Engineering Research Center & Fujian Key Lab of Motor Function Rehabilitation, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, PR China
| | - R Lin
- Fujian Rehabilitation Tech Co-innovation Center (2011 Project), Fujian University of Traditional Chinese Medicine, Fuzhou 350122, PR China
| | - L Chen
- College of Rehabilitation Medicine & TCM Rehabilitation Research Center Of SATCM, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, PR China.
| |
Collapse
|
40
|
Ran QQ, Chen HL, Liu YL, Yu HX, Shi F, Wang MS. Electroacupuncture preconditioning attenuates ischemic brain injury by activation of the adenosine monophosphate-activated protein kinase signaling pathway. Neural Regen Res 2015; 10:1069-75. [PMID: 26330828 PMCID: PMC4541236 DOI: 10.4103/1673-5374.160095] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2015] [Indexed: 01/16/2023] Open
Abstract
Electroacupuncture has therapeutic effects on ischemic brain injury, but its mechanism is still poorly understood. In this study, mice were stimulated by electroacupuncture at the Baihui (GV20) acupoint for 30 minutes at 1 mA and 2/15 Hz for 5 consecutive days. A cerebral ischemia model was established by ligating the bilateral common carotid artery for 15 minutes. At 72 hours after injury, neuronal injury in the mouse hippocampus had lessened, and the number of terminal deoxynucleotide transferase-mediated dUTP nick-end labeling-positive cells reduced after electroacupuncture treatment. Moreover, expression of adenosine monophosphate-activated protein kinase α (AMPKα) and phosphorylated AMPKα was up-regulated. Intraperitoneal injection of the AMPK antagonist, compound C, suppressed this phenomenon. Our findings suggest that electroacupuncture preconditioning alleviates ischemic brain injury via AMPK activation.
Collapse
Affiliation(s)
- Qiang-Qiang Ran
- Department of Anesthesiology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, Shandong Province, China
| | - Huai-Long Chen
- Department of Anesthesiology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, Shandong Province, China
| | - Yan-Li Liu
- Department of Anesthesiology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, Shandong Province, China
| | - Hai-Xia Yu
- Department of Anesthesiology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, Shandong Province, China
| | - Fei Shi
- Department of Anesthesiology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, Shandong Province, China
| | - Ming-Shan Wang
- Department of Anesthesiology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, Shandong Province, China
| |
Collapse
|