1
|
Gu Y, Bi X, Liu X, Qian Q, Wen Y, Hua S, Fu Q, Zheng Y, Sun S. Roles of ABCA1 in Chronic Obstructive Pulmonary Disease. COPD 2025; 22:2493701. [PMID: 40302380 DOI: 10.1080/15412555.2025.2493701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 04/03/2025] [Accepted: 04/10/2025] [Indexed: 05/02/2025]
Abstract
Chronic obstructive pulmonary disease (COPD) is one of the common chronic respiratory diseases, which causes a heavy burden to patients and society. Increasing studies suggest that ABCA1 plays an important role in COPD. ABCA1 belongs to a large class of ATP-binding (ABC) transporters. It is not only involved in the reverse transport of cholesterol, but also in the regulation of apoptosis, pyroptosis, cellular inflammation and cellular immunity. Meanwhile, ABCA1 is involved in several signaling pathways, such as SREBP pathway, LXR pathway, MAPK pathway, p62/mTOR pathway, CTRP1 pathway and so on. In addition, the ABCA1 participates in the disorder of lipid metabolism in COPD by regulating the formation of RCT and HDL, regulates the inflammation of COPD by removing excess cholesterol in macrophages, and promotes the differentiation of COPD phenotype into emphysema type. Accordingly, the ABCA1 may be a therapeutic target for COPD.
Collapse
Affiliation(s)
- Ying Gu
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Xiaoqing Bi
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Xiaofei Liu
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Qingqing Qian
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Yiqiong Wen
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Shu Hua
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Qiaoli Fu
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Yuanyuan Zheng
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Shibo Sun
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
| |
Collapse
|
2
|
Li J, Guo J, Yuen M, Yuen H, Peng Q. The comparative effects of ω-7 fatty acid-rich sea buckthorn oil and ω-3 fatty acid-rich DHA algal oil on improving high-fat diet-induced hyperlipidemia. Food Funct 2025; 16:1241-1253. [PMID: 39760431 DOI: 10.1039/d4fo04961f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
This study explores the therapeutic potential of ω-3 algal oil (rich in DHA) and ω-7 sea buckthorn oil (rich in palmitoleic acid) in addressing hyperlipidemia and associated metabolic disorders. These oils regulate lipid metabolism through the PPARγ-LXRα-ABCA1/ABCG1 signaling pathway, reducing cholesterol accumulation, oxidative stress, and inflammation. In high-fat diet-induced hyperlipidemic mice, supplementation with these oils significantly improved lipid profiles, alleviated hepatic steatosis, and promoted cardiovascular health. The combination of ω-3 and ω-7 fatty acids showed synergistic effects, offering greater efficacy compared to individual treatments. These findings suggest that algal and sea buckthorn oils could serve as dietary supplements or therapeutic interventions for managing hyperlipidemia, non-alcoholic fatty liver disease (NAFLD), and cardiovascular diseases. This study highlights the potential of these oils as novel, natural solutions for metabolic health improvement.
Collapse
Affiliation(s)
- Jing Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China.
| | - Jiahan Guo
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China.
| | | | | | - Qiang Peng
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
3
|
Liu Y, Fan Y, Liu J, Liu X, Li X, Hu J. Application and mechanism of Chinese herb medicine in the treatment of non-alcoholic fatty liver disease. Front Pharmacol 2024; 15:1499602. [PMID: 39605910 PMCID: PMC11598537 DOI: 10.3389/fphar.2024.1499602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a chronic liver condition closely associated with metabolic syndrome, with its incidence rate continuously rising globally. Recent studies have shown that the development of NAFLD is associated with insulin resistance, lipid metabolism disorder, oxidative stress and endoplasmic reticulum stress. Therapeutic strategies for NAFLD include lifestyle modifications, pharmacological treatments, and emerging biological therapies; however, there is currently no specific drug to treat NAFLD. However Chinese herb medicine (CHM) has shown potential in the treatment of NAFLD due to its unique therapeutic concepts and methods for centuries in China. This review aims to summarize the pathogenesis of NAFLD and some CHMs that have been shown to have therapeutic effects on NAFLD, thus enriching the scientific connotation of TCM theories and facilitating the exploration of TCM in the treatment of NAFLD.
Collapse
Affiliation(s)
- Yuqiao Liu
- College of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yue Fan
- College of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jibin Liu
- College of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiyang Liu
- College of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiuyan Li
- College of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jingqing Hu
- College of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Xin-Huangpu Joint Innovation Institute of Chinese Medicine, Guangzhou, China
| |
Collapse
|
4
|
Fang Y, Wu H, Liang X, Li T, Jia R, Dong Y, Zheng Y, Wang Q, Li L. Efficacy and safety assessment of traditional Chinese patent medicine for dyslipidemia: a systematic review of randomized clinical trials with meta-analysis and trial sequential analysis. Cardiovasc Diagn Ther 2024; 14:419-446. [PMID: 38975001 PMCID: PMC11223937 DOI: 10.21037/cdt-24-146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/21/2024] [Indexed: 07/09/2024]
Abstract
Background The overall prevalence of dyslipidemia continues to increase, which poses a significant risk for coronary artery disease. Some patients with dyslipidemia do not respond to or benefit from conventional lipid-lowering therapy, which warrants the need for alternative and complementary therapies. Chinese patent medicine (CPM) has shown great potential in the treatment of dyslipidemia, but its clinical value needs to be further explored. This study aims to systematically evaluate the efficacy and safety of CPM in treating dyslipidemia. Methods This study was registered in INPLASY as INPLASY202330090. The randomized controlled trials included in this study were published in January 2013 to March 2023 and retrieved from the Web of Science, PubMed, Embase, Cochrane Library, SinoMed, China National Knowledge Internet, WanFang, and VIP. The bias risk in the study was independently evaluated by two reviewers using the Cochrane Randomized Trial Bias Risk Tool (RoB 2) Review Manager 5.4 software was used for the overall effect analysis and subgroup analysis of four blood lipids, and the trial sequential analysis (TSA) was conducted to check the results. Results A total of 69 studies were included, involving 6,993 participants. The methodological quality was in the middle level. Meta-analysis showed that CPM markedly improved the levels of total cholesterol (TC) [mean difference (MD) =-0.54 mmol/L; 95% confidence interval (CI): -0.71 to -0.37; P<0.001], triglyceride (TG) (MD =-0.43 mmol/L; 95% CI: -0.53 to -0.33; P<0.001), low-density lipoprotein cholesterol (LDL-C) (MD =-0.40 mmol/L; 95% CI: -0.50 to -0.30; P<0.001) and increased levels of high-density lipoprotein cholesterol (HDL-C) (MD =0.23 mmol/L; 95% CI: 0.18 to 0.27; P<0.001), in patients with dyslipidemia. Though CPM did not differ significantly from statins when used alone, it could improve lipid profile better in all cases when used in combination with statins and with drugs used for comorbidities or co-morbidities. Subgroup analysis found that the efficacy of pill formulations was superior to other formulations, and CPM showed better lipid-lowering response in the context of comorbidity. The TSA confirmed the robustness of the analysis of the LDL-C level. No significant difference was observed in the incidence of adverse events between the treatment group and the control group [risk ratio (RR) =0.89; 95% CI: 0.69-1.16; P=0.40]. Conclusions CPM can yield superior therapeutic effects in ameliorating dyslipidemia without exacerbating adverse effects as an alternative and complementary therapy. In addition, the therapeutic effect can be improved by emphasizing pill formulation and strengthening the standardization of syndromes.
Collapse
Affiliation(s)
- Yini Fang
- Basic Medical College, Zhejiang Chinese Medical University, Hangzhou, China
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Haoran Wu
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xue Liang
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Tianxing Li
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ruiting Jia
- Basic Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yang Dong
- National Administration of Traditional Chinese Medicine Monitoring and Statistics Research Center, Beijing, China
| | - Yanfei Zheng
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Qi Wang
- Basic Medical College, Zhejiang Chinese Medical University, Hangzhou, China
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Lingru Li
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
5
|
Wang W, Li H, Shi Y, Zhou J, Khan GJ, Zhu J, Liu F, Duan H, Li L, Zhai K. Targeted intervention of natural medicinal active ingredients and traditional Chinese medicine on epigenetic modification: Possible strategies for prevention and treatment of atherosclerosis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 122:155139. [PMID: 37863003 DOI: 10.1016/j.phymed.2023.155139] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/26/2023] [Accepted: 10/05/2023] [Indexed: 10/22/2023]
Abstract
BACKGROUND Atherosclerosis is a deadly consequence of cardiovascular disease and has very high mortality rate worldwide. The epigenetic modifications can regulate the pervasiveness and progression of atherosclerosis through its involvement in regulation of inflammation, oxidative stress, lipid metabolism and several other factors. Specific non-coding RNAs, DNA methylation, and histone modifications are key regulatory factors of atherosclerosis. Natural products from traditional Chinese medicine have shown promising therapeutic potential against atherosclerosis by means of regulating the expression of specific genes, stabilizing arterial plaques and protecting vascular endothelial cells. OBJECTIVE Our study is focusing to explore the pathophysiology and probability of traditional Chinese medicine and natural medicinal active ingredients to treat atherosclerosis. METHODS Comprehensive literature review was conducted using PubMed, Web of Science, Google Scholar and China National Knowledge Infrastructure with a core focus on natural medicinal active ingredients and traditional Chinese medicine prying in epigenetic modification related to atherosclerosis. RESULTS Accumulated evidence demonstrated that natural medicinal active ingredients and traditional Chinese medicine have been widely studied as substances that can regulate epigenetic modification. They can participate in the occurrence and development of atherosclerosis through inflammation, oxidative stress, lipid metabolism, cell proliferation and migration, macrophage polarization and autophagy respectively. CONCLUSION The function of natural medicinal active ingredients and traditional Chinese medicine in regulating epigenetic modification may provide a new potential strategy for the prevention and treatment of atherosclerosis. However, more extensive research is essential to determine the potential of these natural medicinal active ingredients to treat atherosclerosis because of least clinical data.
Collapse
Affiliation(s)
- Wei Wang
- School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui 234000, China; College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Han Li
- School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui 234000, China; College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Ying Shi
- School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui 234000, China; College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Jing Zhou
- School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui 234000, China; College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Ghulam Jilany Khan
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, University of Central Punjab, Lahore 54000, Pakistan
| | - Juan Zhu
- School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui 234000, China; Faculty of Pharmacy, Bengbu Medical College, Bengbu, Anhui 233030, China
| | - Fawang Liu
- School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui 234000, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, Anhui 230012, China
| | - Hong Duan
- School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui 234000, China; College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China.
| | - Lili Li
- General Clinical Research Center, Anhui Wanbei Coal-Electricity Group General Hospital, Suzhou 234000, China.
| | - Kefeng Zhai
- School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui 234000, China; College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China; Faculty of Pharmacy, Bengbu Medical College, Bengbu, Anhui 233030, China.
| |
Collapse
|
6
|
Zhu J, Bao J, Tao Y. A Nondestructive Methodology for Determining Chemical Composition of Salvia miltiorrhiza via Hyperspectral Imaging Analysis and Squeeze-and-Excitation Residual Networks. SENSORS (BASEL, SWITZERLAND) 2023; 23:9345. [PMID: 38067717 PMCID: PMC10708663 DOI: 10.3390/s23239345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023]
Abstract
The quality assurance of bulk medicinal materials, crucial for botanical drug production, necessitates advanced analytical methods. Conventional techniques, including high-performance liquid chromatography, require extensive pre-processing and rely on extensive solvent use, presenting both environmental and safety concerns. Accordingly, a non-destructive, expedited approach for assessing both the chemical and physical attributes of these materials is imperative for streamlined manufacturing. We introduce an innovative method, designated as Squeeze-and-Excitation Residual Network Combined Hyperspectral Image Analysis (SE-ReHIA), for the swift and non-invasive assessment of the chemical makeup of bulk medicinal substances. In a demonstrative application, hyperspectral imaging in the 389-1020 nm range was employed in 187 batches of Salvia miltiorrhiza. Notable constituents such as salvianolic acid B, dihydrotanshinone I, cryptotanshinone, tanshinone IIA, and moisture were quantified. The SE-ReHIA model, incorporating convolutional layers, maxpooling layers, squeeze-and-excitation residual blocks, and fully connected layers, exhibited Rc2 values of 0.981, 0.980, 0.975, 0.972, and 0.970 for the aforementioned compounds and moisture. Furthermore, Rp2 values were ascertained to be 0.975, 0.943, 0.962, 0.957, and 0.930, respectively, signifying the model's commendable predictive competence. This study marks the inaugural application of SE-ReHIA for Salvia miltiorrhiza's chemical profiling, offering a method that is rapid, eco-friendly, and non-invasive. Such advancements can fortify consistency across botanical drug batches, underpinning product reliability. The broader applicability of the SE-ReHIA technique in the quality assurance of bulk medicinal entities is anticipated with optimism.
Collapse
Affiliation(s)
| | | | - Yi Tao
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310032, China; (J.Z.); (J.B.)
| |
Collapse
|
7
|
Delgadillo-Puga C, Torre-Villalvazo I, Noriega LG, Rodríguez-López LA, Alemán G, Torre-Anaya EA, Cariño-Cervantes YY, Palacios-Gonzalez B, Furuzawa-Carballeda J, Tovar AR, Cisneros-Zevallos L. Pecans and Its Polyphenols Prevent Obesity, Hepatic Steatosis and Diabetes by Reducing Dysbiosis, Inflammation, and Increasing Energy Expenditure in Mice Fed a High-Fat Diet. Nutrients 2023; 15:nu15112591. [PMID: 37299553 DOI: 10.3390/nu15112591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/30/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Pecans (Carya illinoinensis) are considered a functional food due to the high content of polyunsaturated fatty acids, dietary fiber and polyphenols. To determine the effect of whole pecans (WP) or a pecan polyphenol (PP) extract on the development of metabolic abnormalities in mice fed a high-fat (HF) diet, we fed C57BL/6 mice with a Control diet (7% fat), HF diet (23% fat), HF containing 30% WP or an HF diet supplemented with 3.6 or 6 mg/g of PP for 18 weeks. Supplementation of an HF diet with WP or PP reduced fat mass, serum cholesterol, insulin and HOMA-IR by 44, 40, 74 and 91%, respectively, compared to the HF diet. They also enhanced glucose tolerance by 37%, prevented pancreatic islet hypertrophy, and increased oxygen consumption by 27% compared to the HF diet. These beneficial effects were associated with increased thermogenic activity in brown adipose tissue, mitochondrial activity and AMPK activation in skeletal muscle, reduced hypertrophy and macrophage infiltration of subcutaneous and visceral adipocytes, reduced hepatic lipid content and enhanced metabolic signaling. Moreover, the microbial diversity of mice fed WP or PP was higher than those fed HF, and associated with lower circulating lipopolysaccharides (~83-95%). Additionally, a 4-week intervention study with the HF 6PP diet reduced the metabolic abnormalities of obese mice. The present study demonstrates that WP or a PP extract prevented obesity, liver steatosis and diabetes by reducing dysbiosis, inflammation, and increasing mitochondrial content and energy expenditure. Pecan polyphenols were mainly condensed tannin and ellagic acid derivatives including ellagitannins as determined by LC-MS. Herein we also propose a model for the progression of the HF diet-mediated metabolic disorder based on early and late events, and the possible molecular targets of WP and PP extract in preventive and intervention strategies. The body surface area normalization equation gave a conversion equivalent to a daily human intake dose of 2101-3502 mg phenolics that can be obtained from 110-183 g pecan kernels/day (22-38 whole pecans) or 21.6-36 g defatted pecan flour/day for an average person of 60 kg. This work lays the groundwork for future clinical studies.
Collapse
Affiliation(s)
- Claudia Delgadillo-Puga
- Departamento de Nutrición Animal Dr. Fernando Pérez-Gil Romo, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Mexico City 14080, Mexico
| | - Ivan Torre-Villalvazo
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Mexico City 14080, Mexico
| | - Lilia G Noriega
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Mexico City 14080, Mexico
| | - Leonardo A Rodríguez-López
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Mexico City 14080, Mexico
| | - Gabriela Alemán
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Mexico City 14080, Mexico
| | - Erik A Torre-Anaya
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Mexico City 14080, Mexico
| | - Yonatan Y Cariño-Cervantes
- Departamento de Nutrición Animal Dr. Fernando Pérez-Gil Romo, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Mexico City 14080, Mexico
| | - Berenice Palacios-Gonzalez
- Unidad de Vinculación Científica Facultad de Medicina, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 16080, Mexico
| | - Janette Furuzawa-Carballeda
- Departamento de Cirugía Experimental, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Mexico City 14080, Mexico
| | - Armando R Tovar
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Mexico City 14080, Mexico
| | - Luis Cisneros-Zevallos
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843-2133, USA
| |
Collapse
|
8
|
Liu J, Shi Y, Peng D, Wang L, Yu N, Wang G, Chen W. Salvia miltiorrhiza Bge. (Danshen) in the Treating Non-alcoholic Fatty Liver Disease Based on the Regulator of Metabolic Targets. Front Cardiovasc Med 2022; 9:842980. [PMID: 35528835 PMCID: PMC9072665 DOI: 10.3389/fcvm.2022.842980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 03/28/2022] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is rapidly prevalent due to its strong association with increased metabolic syndrome such as cardio- and cerebrovascular disorders and diabetes. Few drugs can meet the growing disease burden of NAFLD. Salvia miltiorrhiza Bge. (Danshen) have been used for over 2,000 years in clinical trials to treat NAFLD and metabolic syndrome disease without clarified defined mechanisms. Metabolic targets restored metabolic homeostasis in patients with NAFLD and improved steatosis by reducing the delivery of metabolic substrates to liver as a promising way. Here we systematic review evidence showing that Danshen against NAFLD through diverse and crossing mechanisms based on metabolic targets. A synopsis of the phytochemistry and pharmacokinetic of Danshen and the mechanisms of metabolic targets regulating the progression of NAFLD is initially provided, followed by the pharmacological activity of Danshen in the management NAFLD. And then, the possible mechanisms of Danshen in the management of NAFLD based on metabolic targets are elucidated. Specifically, the metabolic targets c-Jun N-terminal kinases (JNK), sterol regulatory element-binding protein-1c (SREBP-1c), nuclear translocation carbohydrate response element–binding protein (ChREBP) related with lipid metabolism pathway, and peroxisome proliferator-activated receptors (PPARs), cytochrome P450 (CYP) and the others associated with pleiotropic metabolism will be discussed. Finally, providing a critical assessment of the preclinic and clinic model and the molecular mechanism in NAFLD.
Collapse
Affiliation(s)
- Jie Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Traditional Chinese Medicine Decoction Pieces of New Manufacturing Technology, Hefei, China
| | - Yun Shi
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, China
| | - Daiyin Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, China
| | - Lei Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
- Anhui Province Key Laboratory of Traditional Chinese Medicine Decoction Pieces of New Manufacturing Technology, Hefei, China
- *Correspondence: Lei Wang,
| | - Nianjun Yu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, China
| | - Guokai Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, China
| | - Weidong Chen
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Traditional Chinese Medicine Decoction Pieces of New Manufacturing Technology, Hefei, China
- Weidong Chen,
| |
Collapse
|
9
|
Zhou H, Zhao Y, Peng W, Han W, Wang Z, Ren X, Wang D, Pan G, Lin Q, Wang X. Effect of Sodium Tanshinone IIA Sulfonate Injection on Blood Lipid in Patients With Coronary Heart Disease: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. Front Cardiovasc Med 2021; 8:770746. [PMID: 34901229 PMCID: PMC8652084 DOI: 10.3389/fcvm.2021.770746] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 11/03/2021] [Indexed: 11/28/2022] Open
Abstract
Background: Lipid-lowering therapy is very important in secondary prevention of coronary heart disease (CHD). In many clinical trials, it has been found that Sodium Tanshinone IIA Sulfonate Injection (STS) have a lipid-lowering effect while reducing major cardiovascular events in patients with CHD. However, up to now, there is no system review on the effectiveness and safety of STS affecting blood lipids. Purpose: The aim of this review is to systematically assess the effects of STS on blood lipid levels in patients with CHD. Methods: Until Mar 2021, five databases (PubMed, EMBASE, Cochrane Library, China National Knowledge Infrastructure, and Wanfang Database) were searched for randomized controlled trials (RCTs) about STS treating patients with CHD. Risk bias was assessed for included studies according to Cochrane handbook. The primary outcome was total cholesterol (TC). The secondary outcomes were triglycerides (TG), low-density lipoprotein cholesterol (LDL-c), high-density lipoprotein cholesterol (HDL-c), and adverse events (AEs). Results: A total of 27 trials including 2,445 CHD patients met the eligibility criteria. Most trials had high risks in random sequence generation, allocation concealment, blinding of patients and personal, blinding of outcome assessment. Meta-analysis showed that STS significantly reduced plasma TC levels [MD = −1.34 mmol/l 95% CI (−1.59, −1.09), p < 0.00001, I2 = 98%], TG levels [MD = −0.49 mmol/l 95% CI (−0.62, −0.35), p < 0.00001, I2 = 97%], LDL-c levels [MD = −0.68 mmol/l (−0.80, −0.57), p < 0.00001, I2 = 96%], increased HDL-c levels [MD = 0.26 mmol/l (0.15, 0.37), p < 0.00001, I2 = 97%], without increasing the incidence of AEs [RR = 1.27 95% CI (0.72, 2.27), p = 0.94, I2 = 0%] in patients with CHD. Conclusion: STS can safely and effectively reduce plasma TC, TG and LDL-c levels in patients with CHD, and improve plasma HDL-c levels. However, these findings require careful recommendation due to the low overall quality of RCTs at present. More multi-center, randomized, double-blind, placebo-controlled trials which are designed follow the CONSORT 2010 guideline are needed.
Collapse
Affiliation(s)
- Hufang Zhou
- Cardiovascular Diseases Center, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Ying Zhao
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Wenhua Peng
- Cardiovascular Diseases Center, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Wenbo Han
- Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| | - Zichen Wang
- Cardiovascular Diseases Center, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoxia Ren
- Cardiovascular Diseases Center, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Dayang Wang
- Cardiovascular Diseases Center, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Guozhong Pan
- Cardiovascular Diseases Center, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Qian Lin
- Changping District Hospital of Integrated Traditional Chinese and Western Medicine, Beijing, China
| | - Xian Wang
- Cardiovascular Diseases Center, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
10
|
Zhong C, Lin Z, Ke L, Shi P, Li S, Huang L, Lin X, Yao H. Recent Research Progress (2015-2021) and Perspectives on the Pharmacological Effects and Mechanisms of Tanshinone IIA. Front Pharmacol 2021; 12:778847. [PMID: 34819867 PMCID: PMC8606659 DOI: 10.3389/fphar.2021.778847] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 10/26/2021] [Indexed: 12/15/2022] Open
Abstract
Tanshinone IIA (Tan IIA) is an important characteristic component and active ingredient in Salvia miltiorrhiza, and its various aspects of research are constantly being updated to explore its potential application. In this paper, we review the recent progress on pharmacological activities and the therapeutic mechanisms of Tan IIA according to literature during the years 2015-2021. Tan IIA shows multiple pharmacological effects, including anticarcinogenic, cardiovascular, nervous, respiratory, urinary, digestive, and motor systems activities. Tan IIA modulates multi-targets referring to Nrf2, AMPK, GSK-3β, EGFR, CD36, HO-1, NOX4, Beclin-1, TLR4, TNF-α, STAT3, Caspase-3, and bcl-2 proteins and multi-pathways including NF-κB, SIRT1/PGC1α, MAPK, SREBP-2/Pcsk9, Wnt, PI3K/Akt/mTOR pathways, TGF-β/Smad and Hippo/YAP pathways, etc., which directly or indirectly influence disease course. Further, with the reported targets, the potential effects and possible mechanisms of Tan IIA against diseases were predicted by bioinformatic analysis. This paper provides new insights into the therapeutic effects and mechanisms of Tan IIA against diseases.
Collapse
Affiliation(s)
- Chenhui Zhong
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Zuan Lin
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Liyuan Ke
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Peiying Shi
- Department of Traditional Chinese Medicine Resource and Bee Products, College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shaoguang Li
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Liying Huang
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Xinhua Lin
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Fujian Medical University, Fuzhou, China
| | - Hong Yao
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fujian Medical University, Fuzhou, China
| |
Collapse
|
11
|
Jin P, Gao D, Cong G, Yan R, Jia S. Role of PCSK9 in Homocysteine-Accelerated Lipid Accumulation in Macrophages and Atherosclerosis in ApoE -/- Mice. Front Cardiovasc Med 2021; 8:746989. [PMID: 34660746 PMCID: PMC8517151 DOI: 10.3389/fcvm.2021.746989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 09/03/2021] [Indexed: 11/30/2022] Open
Abstract
Background: Homocysteine (Hcy) has been established as an independent risk factor for atherosclerosis, and the involvement of hyperhomocysteinemia (HHcy) in atherosclerotic lesions is complex. Proprotein convertase subtilisin kexin 9 (PCSK9) has vital importance in lipid metabolism, and its inhibitors have intense lipid-lowering and anti-atherosclerotic effects. However, the underlying effect of PCSK9 on HHcy-accelerated dyslipidemia of macrophages is still uncertain. The purpose of this study was to investigate the potential role of PCSK9 in Hcy-induced lipid accumulation and atherosclerotic lesions. Methods:In vitro, gene and protein expressions were assessed by real-time quantitative PCR and western blot in THP-1 macrophages with Hcy incubation. Lipid accumulation and cholesterol efflux were evaluated with Hcy treatment. SBC-115076 was used to examine the role of PCSK9 in ATP-binding cassette transporter A1 and G1 (ABCA1 and ABCG1)-dependent cholesterol efflux. In vivo, lesion area, lipid deposition and collagen contents were determined in aortas of ApoE−/− mice under a methionine diet. SBC-115076 was subcutaneously injected to explore the potential effects of PCSK9 inhibition on alleviating the severity of HHcy-related atherosclerotic lesions. Results: In THP-1 macrophages, Hcy dose- and time-dependently promoted PCSK9 gene and protein levels without regulating the translation of Low-density lipoprotein receptor (LDLR). SBC-115076 used to inhibit PCSK9 largely alleviated lipid accumulation and reversed the cholesterol efflux to apolipoprotein-I(apoA-I) and high-density lipoprotein (HDL) mediated by ABCA1 and ABCG1. In ApoE−/− mice, methionine diet induced HHcy caused larger lesion area and more lipid accumulation in aortic roots. SBC-115076 reduced atherosclerotic severity by reducing the lesion area and lipid accumulation and increasing expressions of ABCA1 and ABCG1 in macrophages from atherosclerotic plaque. In addition, SBC-115076 decreased plasma Hcy level and lipid profiles significantly. Conclusion: PCSK9 promoted lipid accumulation via inhibiting cholesterol efflux mediated by ABCA1 and ABCG1 from macrophages and accelerated atherosclerotic lesions under HHcy treatment. Inhibiting PCSK9 may have anti-atherogenic properties in HHcy-accelerated atherosclerosis.
Collapse
Affiliation(s)
- Ping Jin
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Dengfeng Gao
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Guangzhi Cong
- Heart Center and Cardiovascular Institute, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Ru Yan
- Heart Center and Cardiovascular Institute, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Shaobin Jia
- Heart Center and Cardiovascular Institute, General Hospital of Ningxia Medical University, Yinchuan, China
| |
Collapse
|
12
|
Zheng Y, Ding Q, Wei Y, Gou X, Tian J, Li M, Tong X. Effect of traditional Chinese medicine on gut microbiota in adults with type 2 diabetes: A systematic review and meta-analysis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 88:153455. [PMID: 33478831 DOI: 10.1016/j.phymed.2020.153455] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/30/2020] [Accepted: 12/24/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Despite advances in research on type 2 diabetes mellitus (T2DM) with the development of science and technology, the pathogenesis and treatment response of T2DM remain unclear. Recent studies have revealed a significant role of the microbiomein the development of T2DM, and studies have found that the gut microbiota may explain the therapeutic effect of traditional Chinese medicine (TCM), a primary branch of alternative and complementary medicine, in the treatment of T2DM. The aim of this study was to systematically review all randomized controlled trials (RCTs) on TCM for gut microbiota to assess the effectiveness and safety of TCM in T2DM patients. METHODS All RCTs investigating the effects of TCM interventions on modulating gut microbiota and improving glucose metabolism in the treatment of T2DM adults were included. Meta-analyses were conducted when sufficient data were available, other results were reported narratively. The study protocol was pre-specified, documented, and published in PROSPERO (registration no. CRD42020188043). RESULTS Five studies met the eligibility criteria ofthe systematic review. All five studies reported the effects of TCM interventions on the gut microbiota modulation and blood glucose control. There were statistically significant improvements in HbA1c (mean difference [MD]: -0.69%; [95% CI -0.24, -0.14]; p = 0.01, I2 = 86%), fasting blood glucose (MD: -0.87 mmol/l; [95% CI -1.26, -0.49]; p < 0.00001, I2 = 75%) and 2-h postprandial blood glucose(MD: -0.83mmol/l; [95% CI: -1.01, -0.65]; p < 0.00001, I2 = 0%). In addition, there were also statistically significant improvements in homeostasis model assessment of insulin resistance (HOMA-IR) (standardized mean difference [SMD]: -0.99, [95% CI -1.25 to -0.73]; p < 0.00001, I2 = 0%) and homeostasis model assessment of β-cell function (HOMA-β) (SMD: 0.54, [95% CI 0.21 to 0.87]; p = 0.001, I2 = 0%).There was a significant change in the relative abundance of bacteria in the genera Bacteroides (standardized mean difference [SMD] 0.87%; [95% CI 0.58, 1.16], however, the change in Enterococcus abundance was not statistically significant (SMD: -1.71%; [95% CI: -3.64, 0.23]; p = 0.08) when comparing TCM supplementaltreatment with comparator groups. Other changes in the gut microbiota, including changes in the relative abundances of some probiotics and opportunistic pathogens at various taxon levels, and changes in diversity matrices (α and β), were significant by narrative analysis. However, insufficient evidences were found to support that TCM intervention had an effect on inflammation. CONCLUSION TCM had the effect of modulating gut microbiota and improving glucose metabolisms in T2DM patients. Although the results of the included studies are encouraging, further well-conducted studies on TCM interventions targeting the gut microbiota are needed.
Collapse
Affiliation(s)
- Yujiao Zheng
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Qiyou Ding
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Yu Wei
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaowen Gou
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiaxing Tian
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Min Li
- Molecular Biology Laboratory, Guanganmen Hospital, Chinese Academy of Traditional Chinese Medicine, Beijing, China.
| | - Xiaolin Tong
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
13
|
Fan Q, Xu F, Liang B, Zou X. The Anti-Obesity Effect of Traditional Chinese Medicine on Lipid Metabolism. Front Pharmacol 2021; 12:696603. [PMID: 34234682 PMCID: PMC8255923 DOI: 10.3389/fphar.2021.696603] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 06/01/2021] [Indexed: 01/01/2023] Open
Abstract
With the improvement of living conditions and the popularity of unhealthy eating and living habits, obesity is becoming a global epidemic. Obesity is now recognized as a disease that not only increases the risk of metabolic diseases such as type 2 diabetes (T2D), non-alcoholic fatty liver disease (NAFLD), cardiovascular disease (CVD), and cancer but also negatively affects longevity and the quality of life. The traditional Chinese medicines (TCMs) are highly enriched in bioactive compounds and have been used for the treatment of obesity and obesity-related metabolic diseases over a long period of time. In this review, we selected the most commonly used anti-obesity or anti-hyperlipidemia TCMs and, where known, their major bioactive compounds. We then summarized their multi-target molecular mechanisms, specifically focusing on lipid metabolism, including the modulation of lipid absorption, reduction of lipid synthesis, and increase of lipid decomposition and lipid transportation, as well as the regulation of appetite. This review produces a current and comprehensive understanding of integrative and systematic mechanisms for the use of TCMs for anti-obesity. We also advocate taking advantage of TCMs as another therapy for interventions on obesity-related diseases, as well as stressing the fact that more is needed to be done, scientifically, to determine the active compounds and modes of action of the TCMs.
Collapse
Affiliation(s)
- Qijing Fan
- College of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine, Kunming, China
| | - Furong Xu
- College of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine, Kunming, China
| | - Bin Liang
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Xiaoju Zou
- College of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine, Kunming, China
| |
Collapse
|
14
|
Chen T, Zhu Z, Du Q, Wang Z, Wu W, Xue Y, Wang Y, Wu Y, Zeng Q, Jiang C, Shen C, Liu L, Zhu H, Liu Q. A Skin Lipidomics Study Reveals the Therapeutic Effects of Tanshinones in a Rat Model of Acne. Front Pharmacol 2021; 12:675659. [PMID: 34177586 PMCID: PMC8223585 DOI: 10.3389/fphar.2021.675659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/10/2021] [Indexed: 11/13/2022] Open
Abstract
Tanshinone (TAN), a class of bioactive components in traditional Chinese medicinal plant Salvia miltiorrhiza, has antibacterial and anti-inflammatory effects, can enhance blood circulation, remove blood stasis, and promote wound healing. For these reasons it has been developed as a drug to treat acne. The purpose of this study was to evaluate the therapeutic effects of TAN in rats with oleic acid-induced acne and to explore its possible mechanisms of action through the identification of potential lipid biomarkers. In this study, a rat model of acne was established by applying 0.5 ml of 80% oleic acid to rats' back skin. The potential metabolites and targets involved in the anti-acne effects of TAN were predicted using lipidomics. The results indicate that TAN has therapeutic efficacy for acne, as supported by the results of the histological analyses and biochemical index assays for interleukin (IL)-8, IL-6, IL-β and tumor necrosis factor alpha. The orthogonal projection of latent structure discriminant analysis score was used to analyze the lipidomic profiles between control and acne rats. Ninety-six potential biomarkers were identified in the skin samples of the acne rats. These biomarkers were mainly related to glycerophospholipid and sphingolipid metabolism, and the regulation of their dysfunction is thought to be a possible therapeutic mechanism of action of TAN on acne.
Collapse
Affiliation(s)
- Tingting Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Zhaoming Zhu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Qunqun Du
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Zhuxian Wang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Wenfeng Wu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yaqi Xue
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yuan Wang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yufan Wu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Quanfu Zeng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Cuiping Jiang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Chunyan Shen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Li Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Hongxia Zhu
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Qiang Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
15
|
Tanshinone IIA Downregulates Lipogenic Gene Expression and Attenuates Lipid Accumulation through the Modulation of LXRα/SREBP1 Pathway in HepG2 Cells. Biomedicines 2021; 9:biomedicines9030326. [PMID: 33806955 PMCID: PMC8004631 DOI: 10.3390/biomedicines9030326] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/21/2021] [Accepted: 03/21/2021] [Indexed: 12/12/2022] Open
Abstract
Abnormal and excessive accumulation of lipid droplets within hepatic cells is the main feature of steatosis and nonalcoholic fatty liver disease (NAFLD) or metabolic-associated fatty liver disease (MAFLD). Dysregulation of lipogenesis contributes to hepatic steatosis and plays an essential role in the pathological progress of MAFLD. Tanshinone IIA is a bioactive phytochemical isolated from Salvia miltiorrhiza Bunge and exhibits anti-inflammatory, antiatherosclerotic and antihyperlipidemic effects. In this study, we aimed to investigate the lipid-lowering effects of tanshinone IIA on the regulation of lipogenesis, lipid accumulation, and the underlying mechanisms in hepatic cells. We demonstrated that tanshinone IIA can significantly inhibit the gene expression involved in de novo lipogenesis including FASN, ACC1, and SCD1, in HepG2 and Huh 7 cells. Tanshinone IIA could increase phosphorylation of ACC1 protein in HepG2 cells. We further demonstrated that tanshinone IIA also could suppress the fatty-acid-induced lipogenesis and TG accumulation in HepG2 cells. Furthermore, tanshinone IIA markedly downregulated the mRNA and protein expression of SREBP1, an essential transcription factor regulating lipogenesis in hepatic cells. Moreover, we found that tanshinone IIA attenuated liver X receptor α (LXRα)-mediated lipogenic gene expression and lipid droplet accumulation, but did not change the levels of LXRα mRNA or protein in HepG2 cells. The molecular docking data predicted tanshinone IIA binding to the ligand-binding domain of LXRα, which may result in the attenuation of LXRα-induced transcriptional activation. Our findings support the supposition that tanshinone IIA possesses a lipid-modulating effect that suppresses lipogenesis and attenuates lipid accumulation by modulating the LXRα/SREBP1 pathway in hepatic cells. Tanshinone IIA can be potentially used as a supplement or drug for the prevention or treatment of MAFLD.
Collapse
|
16
|
Guo Y, Sun J, Zhang R, Yang P, Zhang S, Wu Z. Salvia miltiorrhiza improves type 2 diabetes: A protocol for systematic review and meta-analysis. Medicine (Baltimore) 2021; 100:e23843. [PMID: 33578512 PMCID: PMC7886461 DOI: 10.1097/md.0000000000023843] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 11/23/2020] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Diabetes refers to any group of metabolic diseases characterized by high blood sugar and generally thought to be caused by insufficient production of insulin, impaired response to insulin. Globally, patients with type 2 diabetes account for more than 85% of the total diabetic patients, and due to factors, such as obesity, aging, environment and lifestyle, the incidence of diabetes is rising. Salvia miltiorrhiza (SM) is a medicine used to treat diabetes in China. In recent years, it has been reported that SM has the effect of improving type 2 diabetes. However, there is no systematic review of its efficacy and safety yet. Therefore, we propose a systematic review to evaluate the efficacy and safety of SM for T2D. METHODS Six databases will be searched: China National Knowledge Infrastructure (CNKI), China Biological Medicine (CBM), China Scientific Journals Database (CSJD), Wanfang database, PubMed, and EMBASE. The information is searched from January 2010 to July 2020. Languages are limited to English and Chinese. The primary outcomes include 2 hour plasma glucose, fasting plasma glucose, hemoglobin A1c, homeostasis model assessment of insulin resistance, and fasting plasma insulin. The secondary outcomes include clinical efficacy and adverse events. RESULTS This systematic review will evaluate the efficacy and safety of Salvia miltiorrhiza in the treatment of type 2 diabetes. CONCLUSION This systematic review provides evidence as to whether Salvia miltiorrhiza is effective and safe for type 2 diabetes. ETHICS Ethical approval is not necessary as this protocol is only for systematic review and does not involve in privacy data or an animal experiment. SYSTEMATIC REVIEW REGISTRATION INPLASY2020110046.
Collapse
Affiliation(s)
- Ying Guo
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine
| | - Jianfeng Sun
- Hospital of Chengdu University of Traditional Chinese Medicine
| | - Renyan Zhang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine
| | - Peng Yang
- Rehabitation Department of Chengdu Fifth People's hospital, Chengdu, Sichuan, PR China
| | - Sanyin Zhang
- Innovative Institute of Chinese Medicine and Pharmacy of Chengdu University of Traditional Chinese Medicine
| | - Zhipeng Wu
- Hospital of Chengdu University of Traditional Chinese Medicine
| |
Collapse
|
17
|
Li X, Hu X, Pan T, Dong L, Ding L, Wang Z, Song R, Wang X, Wang N, Zhang Y, Wang J, Yang B. Kanglexin, a new anthraquinone compound, attenuates lipid accumulation by activating the AMPK/SREBP-2/PCSK9/LDLR signalling pathway. Biomed Pharmacother 2021; 133:110802. [PMID: 33202286 DOI: 10.1016/j.biopha.2020.110802] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 09/16/2020] [Accepted: 09/25/2020] [Indexed: 12/18/2022] Open
Abstract
Hyperlipidaemia is one of the major risk factors for atherosclerosis, coronary heart disease, stroke and diabetes. In the present study, we synthesized a new anthraquinone compound, 1,8-dihydroxy-3-succinic acid monoethyl ester-6-methylanthraquinone, and named it Kanglexin (KLX). The aim of this study was to evaluate whether KLX has a lipid-lowering effect and to explore the potential molecular mechanism. In this study, Sprague-Dawley rats were fed a high fat diet (HFD) for 5 weeks to establish a hyperlipidaemia model; then, the rats were orally administered KLX (20, 40, and 80 mg kg-1·d-1) or atorvastatin calcium (AT, 10 mg kg-1·d-1) once a day for 2 weeks. KLX had prominent effects on reducing blood lipids, hepatic lipid accumulation, body weight and the ratio of liver weight/body weight. Furthermore, KLXdramatically reduced the total cholesterol (TC) and triglyceride (TG) levels and lipid accumulation in a HepG2 cell model of dyslipidaemia induced by 1 mmol/L oleic acid (OA). KLX may decrease lipid levels by phosphorylating adenosine monophosphate-activated protein kinase (AMPK) and the downstream sterol regulatory element binding protein 2 (SREBP-2)/proprotein convertase subtilisin/kexin type 9 (PCSK9)/low-density lipoprotein receptor (LDLR) signalling pathway in the HFD rats and OA-treated HepG2 cells. The effects of KLX on the AMPK/SREBP-2/PCSK9/LDLR signalling pathway were abolished when AMPK was inhibited by compound C (a specific AMPK inhibitor) in HepG2 cells. In summary, KLX has an efficient lipid-lowering effect mediated by activation of the AMPK/SREBP-2/PCSK9/LDLR signalling pathway. Our findings may provide new insight into and evidence for the discovery of a new lipid-lowering drug for the prevention and treatment of hyperlipidaemia, fatty liver, and cardiovascular disease in the clinic.
Collapse
Affiliation(s)
- Xin Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine - Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China.
| | - Xueling Hu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine - Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China.
| | - Tengfei Pan
- Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, Heilongjiang 150081, China.
| | - Lei Dong
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine - Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China.
| | - Lili Ding
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine - Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China.
| | - Zhenzhong Wang
- Jiangsu Kanion Pharmaceutical CO. LTD, Jiangsu, Lianyungang 222001, China; State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu, Lianyungang 222001, China.
| | - Rui Song
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine - Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China.
| | - Xiuzhu Wang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine - Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China.
| | - Ning Wang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine - Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China; Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, Heilongjiang 150081, China.
| | - Yan Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine - Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China.
| | - Jinhui Wang
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, China.
| | - Baofeng Yang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine - Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China; Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, Heilongjiang 150081, China.
| |
Collapse
|
18
|
Qi Y, Lu H, Zhao Y, Wang Z, Ji Y, Jin N, Ma Z. Screening and Analysis of Hypolipidemic Components from Shuangdan Capsule Based on Pancreatic Lipase. Curr Bioinform 2020. [DOI: 10.2174/1574893615666200106113910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Some natural pancreatic lipase inhibitors with fewer side effects are proposed.
As a traditional Chinese medicine, Shuangdan Capsule (SDC) has been used for the treatment
of higher lipid in blood, which is mainly composed by Radix Salviae and Peony skin.
Objective:
This work is aimed to investigate the molecular mechanism of the constituents from this
SDC against metabolic disorders, the molecular flexibility and intermolecular interactional characteristics
of these components in the active sites.
Methods:
The small molecules were obtained from the Traditional Chinese Medicine Database
TCM database, the systems-level pharmacological database for Traditional Chinese Medicine
TCMSP server was used to calculate the ADME-related properties. Autodock Vina was used to
perform virtual screening of the selected molecules and to return energy values in several ligand
conformations. The network parameters were calculated using the network analyzer plug-in in Cytoscape.
Results:
The most active six molecules are all enclosed by amino acids ASP79, TYR114,
GLU175, PRO180, PHE215, GLY216 and LUE264, among which, hydrophobic interaction, hydrogen
bond and repulsive forces play extremely important roles. It is worth noting that most of
the local minima of molecular electrostatic potentials on van der Waals (vdW) surface are increased
while the maxima negative ones are decreased simultaneously, implying that the electrostatic
potential tends to be stable. From the topological analysis of the Protein-Protein Interaction
(PPI) network, PNLIP related genes are also proved to be pivotal targets for hyperlipidemia, such
as LPL, AGK, MGLL, LIPE, LIPF and PNPLA2. Further GO analysis indicated that lipophilic
terpenoid compounds may reduce the blood lipid by taking part in the lipid catabolic process, the
extracellular space and the cellular components of the extracellular region part and the triacylglycerol
lipase activity.
Conclusion:
This study provides some useful information for the development and application of
natural hypolipidemic medcines. Further pharmacologically active studies are still needed both in
vivo and in vitro.
Collapse
Affiliation(s)
- Y.J. Qi
- China-Malaysia National Joint Laboratory, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - H.N. Lu
- Department of Life Sciences and Biological Engineering, Northwest Minzu University, Lanzhou, China
| | - Y.M. Zhao
- Department of Chemical Engineering, Northwest Minzu University, Lanzhou, China
| | - Z. Wang
- Department of Pharmaceutical Sciences, Zunyi Medical University, Zhuhai, China
| | - Y.J. Ji
- China-Malaysia National Joint Laboratory, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - N.Z. Jin
- Gansu Province Computing Center, Lanzhou, China
| | - Z.R. Ma
- China-Malaysia National Joint Laboratory, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| |
Collapse
|
19
|
Wu D, Huo M, Chen X, Zhang Y, Qiao Y. Mechanism of tanshinones and phenolic acids from Danshen in the treatment of coronary heart disease based on co-expression network. BMC Complement Med Ther 2020; 20:28. [PMID: 32020855 PMCID: PMC7076864 DOI: 10.1186/s12906-019-2712-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 10/10/2019] [Indexed: 02/07/2023] Open
Abstract
Background The tanshinones and phenolic acids in Salvia miltiorrhiza (also named Danshen) have been confirmed for the treatment of coronary heart disease (CHD), but the action mechanisms remain elusive. Methods In the current study, the co-expression protein interaction network (Ce-PIN) was used to illustrate the differences between the tanshinones and phenolic acids of Danshen in the treatment of CHD. By integrating the gene expression profile data and protein-protein interactions (PPIs) data, the Ce-PINs of tanshinones and phenolic acids were constructed. Then, the Ce-PINs were analyzed by gene ontology enrichment analyzed based on the optimal algorithm. Results It turned out that Danshen is able to treat CHD by regulating the blood circulation, immune response and lipid metabolism. However, phenolic acids may regulate the blood circulation by Extracellular calcium-sensing receptor (CaSR), Endothelin-1 receptor (EDNRA), Endothelin-1 receptor (EDNRB), Kininogen-1 (KNG1), tanshinones may regulate the blood circulation by Guanylate cyclase soluble subunit alpha-1 (GUCY1A3) and Guanylate cyclase soluble subunit beta-1 (GUCY1B3). In addition, both the phenolic acids and tanshinones may regulate the immune response or inflammation by T-cell surface glycoprotein CD4 (CD4), Receptor-type tyrosine-protein phosphatase C (PTPRC). Conclusion Through the same targets of the same biological process and different targets of the same biological process, the tanshinones and phenolic acids synergistically treat coronary heart disease.
Collapse
Affiliation(s)
- Dongxue Wu
- Beijing University of Chinese Medicine, State Administration of Traditional Chinese Medicine, Research Center of TCM-Information Engineering, Beijing, 100102, China
| | - Mengqi Huo
- Beijing University of Chinese Medicine, State Administration of Traditional Chinese Medicine, Research Center of TCM-Information Engineering, Beijing, 100102, China
| | - Xi Chen
- Beijing University of Chinese Medicine, State Administration of Traditional Chinese Medicine, Research Center of TCM-Information Engineering, Beijing, 100102, China
| | - Yanling Zhang
- Beijing University of Chinese Medicine, State Administration of Traditional Chinese Medicine, Research Center of TCM-Information Engineering, Beijing, 100102, China.
| | - Yanjiang Qiao
- Beijing University of Chinese Medicine, State Administration of Traditional Chinese Medicine, Research Center of TCM-Information Engineering, Beijing, 100102, China.
| |
Collapse
|
20
|
Wang J, Hu R, Yin C, Xiao Y. Tanshinone IIA reduces palmitate‐induced apoptosis via inhibition of endoplasmic reticulum stress in HepG2 liver cells. Fundam Clin Pharmacol 2019; 34:249-262. [PMID: 31520549 DOI: 10.1111/fcp.12510] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 08/15/2019] [Accepted: 09/10/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Junjian Wang
- Department of Pediatrics The Second Affiliated Hospital of Xi'an Jiaotong University No. 157 Xiwu Road Xi'an 710004 China
- Outpatient Internal Medicine Department Xi'an Children's Hospital No. 69 Xijuyuan Xiang Xi'an 710003 China
| | - Rui Hu
- Department of Pediatrics The Traffic Hospital of Shaanxi Province No. 276 Daxue South Road Xi'an 710068 China
| | - Chunyan Yin
- Department of Pediatrics The Second Affiliated Hospital of Xi'an Jiaotong University No. 157 Xiwu Road Xi'an 710004 China
| | - Yanfeng Xiao
- Department of Pediatrics The Second Affiliated Hospital of Xi'an Jiaotong University No. 157 Xiwu Road Xi'an 710004 China
| |
Collapse
|
21
|
Yang C, Lei X, Li J. Tanshinone IIA reduces oxidized low-density lipoprotein-induced inflammatory responses by downregulating microRNA-33 in THP-1 macrophages. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2019; 12:3791-3798. [PMID: 31933767 PMCID: PMC6949767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 08/29/2019] [Indexed: 06/10/2023]
Abstract
Atherosclerosis is a leading cause of cardiovascular diseases. Oxidized low-density lipoprotein (ox-LDL) is commonly used to construct atherosclerosis cell models. Macrophages-secreted pro-inflammatory factors play vital roles in the development of atherosclerosis. Tanshinone IIA (Tan) is an effective therapeutic agent for atherosclerotic cardiovascular diseases. However, the molecular mechanisms by which Tan protects against atherogenesis have not been thoroughly elucidated. In the present study, we aimed to search for microRNA targets of Tan in ox-LDL-stimulated macrophages. Interleukin-1β (IL-1β), IL-6 and tumor necrosis factor-α (TNF-α) levels were determined by matching ELISA commercial kits. RT-qPCR assay was conducted to measure microRNA-33 (miR-33) expression. We found that ox-LDL induced the secretion of pro-inflammatory cytokines (IL-1β, IL-6, TNF-α) and the expression of microRNA-33 (miR-33) in THP-1 macrophages. Tan inhibited pro-inflammatory cytokine secretion and miR-33 expression in ox-LDL-stimulated THP-1 macrophages. Also, the depletion of miR-33 suppressed pro-inflammatory cytokine secretion in ox-LDL-stimulated THP-1 macrophages. Moreover, miR-33 upregulation abrogated the inhibitory effect of Tan on pro-inflammatory cytokine secretion in ox-LDL-stimulated THP-1 macrophages. In conclusion, Tan inhibited ox-LDL-induced pro-inflammatory cytokine secretion by downregulating miR-33 in THP-1 macrophages, hinting that Tan might exert its atheroprotective effects by targeting miR-33 and reducing pro-inflammatory responses.
Collapse
Affiliation(s)
- Chengnian Yang
- Department of Cardiovascular Medicine, The Affiliated Hospital of Southwest Medical UniversityNo.25 Taiping Street, Luzhou 646000, Sichuan, China
- Department of Cardiovascular Medicine, The Southeast Hospital of ChongqingNo.98 Tongjiang Avenue, New District of Tea Garden, Nanan District, Chongqing 401336, China
| | - Xue Lei
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Chongqing Medical UniversityNo.1, Youyi Road, Yuanjiagang, Yuzhong District, Chongqing 400042, China
| | - Jiafu Li
- Department of Cardiovascular Medicine, The Affiliated Hospital of Southwest Medical UniversityNo.25 Taiping Street, Luzhou 646000, Sichuan, China
| |
Collapse
|
22
|
Ge MX, Shao RG, He HW. Advances in understanding the regulatory mechanism of cholesterol 7α-hydroxylase. Biochem Pharmacol 2019; 164:152-164. [DOI: 10.1016/j.bcp.2019.04.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 04/08/2019] [Indexed: 02/07/2023]
|
23
|
Shi MJ, Dong BS, Yang WN, Su SB, Zhang H. Preventive and therapeutic role of Tanshinone ⅡA in hepatology. Biomed Pharmacother 2019; 112:108676. [DOI: 10.1016/j.biopha.2019.108676] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/06/2019] [Accepted: 02/06/2019] [Indexed: 12/13/2022] Open
|
24
|
Zhang XW, Yang L, An L, Li P, Chen J. Discovery of cancer cell proliferation inhibitors from Salviae miltiorrhizae radix et rhizoma by a trace peak enrichment approach. J Sep Sci 2018; 42:534-546. [PMID: 30414239 DOI: 10.1002/jssc.201800895] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/15/2018] [Accepted: 11/03/2018] [Indexed: 12/20/2022]
Abstract
Salviae miltiorrhizae radix et rhizoma is a traditional herbal medicine with anti-cancer activities. In this work, a trace peak enrichment approach combined with a cell proliferation assay was applied for screening cancer cell proliferation inhibitors from the extract of S. miltiorrhiza. A set of 123 peak fractions were prepared, and by comprehensive screening, 21 tanshinones were screened out as cancer cell proliferation inhibitors and their structures were tentatively identified by liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry analysis. The inhibitory activities of nine available screened tanshinones were validated, with their IC50 values ranging from 0.63 to 28.40 μM, indicating their activities strongly inhibit the proliferation of cancer cells. This study presents tanshinones that are potential cancer cell proliferation inhibitors and may explain the anti-cancer activity of S. miltiorrhiza.
Collapse
Affiliation(s)
- Xiao-Wei Zhang
- State Key Laboratory of Natural Medicines, Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P. R. China.,Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P. R. China
| | - Lin Yang
- State Key Laboratory of Natural Medicines, Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P. R. China.,Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P. R. China
| | - Lin An
- State Key Laboratory of Natural Medicines, Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P. R. China.,Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P. R. China
| | - Ping Li
- State Key Laboratory of Natural Medicines, Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P. R. China.,Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P. R. China
| | - Jun Chen
- State Key Laboratory of Natural Medicines, Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P. R. China.,Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P. R. China
| |
Collapse
|
25
|
Small molecules as inhibitors of PCSK9: Current status and future challenges. Eur J Med Chem 2018; 162:212-233. [PMID: 30448414 DOI: 10.1016/j.ejmech.2018.11.011] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/13/2018] [Accepted: 11/05/2018] [Indexed: 12/11/2022]
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) plays an important role in regulating lipoprotein metabolism by binding to low-density lipoprotein receptors (LDLRs), leading to their degradation. LDL cholesterol (LDL-C) lowering drugs that operate through the inhibition of PCSK9 are being pursued for the management of hypercholesterolemia and reducing its associated atherosclerotic cardiovascular disease (CVD) risk. Two PCSK9-blocking monoclonal antibodies (mAbs), alirocumab and evolocumab, were approved in 2015. However, the high costs of PCSK9 antibody drugs impede their prior authorization practices and reduce their long-term adherence. Given the potential of small-molecule drugs, the development of small-molecule PCSK9 inhibitors has attracted considerable attention. This article provides an overview of the recent development of small-molecule PCSK9 inhibitors disclosed in the literature and patent applications, and different approaches that have been pursued to modulate the functional activity of PCSK9 using small molecules are described. Challenges and potential strategies in developing small-molecule PCSK9 inhibitors are also discussed.
Collapse
|
26
|
The Signaling Pathways Involved in the Antiatherosclerotic Effects Produced by Chinese Herbal Medicines. BIOMED RESEARCH INTERNATIONAL 2018; 2018:5392375. [PMID: 30009170 PMCID: PMC6020658 DOI: 10.1155/2018/5392375] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 05/15/2018] [Accepted: 05/21/2018] [Indexed: 12/19/2022]
Abstract
Cardiovascular diseases (CVDs) are considered to be the predominant cause of death in the world. Chinese herb medicines (CHMs) have been widely used for the treatment of CVDs in Asian countries for thousands of years. One reason of high efficacy of CHMs in treating CVDs is attributed to their inhibition in atherosclerosis (AS) development, a critical contributor to CVDs occurrence. Cumulative studies have demonstrated that CHMs alleviate atherogenesis via mediating pathophysiologic events involved in AS. However, there is deficiency in the summaries regarding antiatherogenic signal pathways regulated by CHMs. In this review, we focus on the signal cascades by which herb medicines and relevant extractives, derivatives, and patents improve proatherogenic processes including endothelium dysfunction, lipid accumulation, and inflammation. We mainly elaborate the CHMs-mediated signaling pathways in endothelial cells, macrophages, and vascular smooth muscle cells of each pathogenic event. Moreover, we briefly describe the other AS-related factors such as thrombosis, autophagy, immune response, and noncoding RNAs and effects of CHMs on them in the way of cascade regulation, which is helpful to further illustrate the molecular mechanisms of AS initiation and progression and discover newly effective agents for AS management.
Collapse
|
27
|
Lin XL, Xiao LL, Tang ZH, Jiang ZS, Liu MH. Role of PCSK9 in lipid metabolism and atherosclerosis. Biomed Pharmacother 2018; 104:36-44. [PMID: 29758414 DOI: 10.1016/j.biopha.2018.05.024] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 05/01/2018] [Accepted: 05/07/2018] [Indexed: 12/11/2022] Open
Abstract
Elevated plasma low-density lipoprotein cholesterol (LDL-C) is an important risk factor for cardiovascular diseases. Statins are the most widely used therapy for patients with hyperlipidemia. However, a significant residual cardiovascular risk remains in some patients even after maximally tolerated statin therapy. Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a new pharmacologically therapeutic target for decreasing LDL-C. PCSK9 reduces LDL intake from circulation by enhancing LDLR degradation and preventing LDLR recirculation to the cell surface. Moreover, PCSK9 inhibitors have been approved for patients with either familial hypercholesterolemia or atherosclerotic cardiovascular disease, who require additional reduction of LDL-C. In addition, PCSK9 inhibition combined with statins has been used as a new approach to help reduce LDL-C levels in patients with either statin intolerance or unattainable LDL goal. This review will discuss the emerging anti-PCSK9 therapies in the regulation of cholesterol metabolism and atherosclerosis.
Collapse
Affiliation(s)
- Xiao-Long Lin
- Department of Pathology, Hui Zhou Third People's Hospital, Guangzhou Medical University, Huizhou City, Guangdong Province, 516002, China
| | - Le-Le Xiao
- Huzhou University, Huzhou City, Zhejiang Province, 313000, China
| | - Zhi-Han Tang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, University of South China, Hengyang, Hunan, 421001, China
| | - Zhi-Sheng Jiang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, University of South China, Hengyang, Hunan, 421001, China
| | - Mi-Hua Liu
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, University of South China, Hengyang, Hunan, 421001, China; Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
28
|
Lee MM, Kim HG, Lee SB, Lee JS, Kim WY, Choi SH, Lee SK, Byun CK, Hyun PM, Son CG. CGplus, a standardized herbal composition ameliorates non-alcoholic steatohepatitis in a tunicamycin-induced mouse model. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 41:24-32. [PMID: 29519316 DOI: 10.1016/j.phymed.2018.01.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 01/04/2018] [Accepted: 01/23/2018] [Indexed: 08/29/2023]
Abstract
BACKGROUND The prevalence of Non-alcoholic fatty liver disease (NAFLD) including non-alcoholic steatohepatitis (NASH) has increased by 15-39% worldwide, but no pharmaceutical therapeutics exists. HYPOTHESIS/PURPOSE This study investigated anti-hepatosteatotic effect of CGplus (a standardized herbal composition of Artemisia iwayomogi, Amomum xanthioides, and Salvia miltiorrhiza) and its underlying mechanisms in a tunicamycin-induced NASH model. METHODS C57/BL6J male mice were orally administrated CGplus (50, 100, or 200 mg/kg), dimethyl dimethoxy biphenyl dicarboxylate (DDB, 50 mg/kg) or distilled water daily for 5 days. 18 h after a single injection of tunicamycin (ip, 2 mg/kg), the parameters for hepatic steatosis and inflammation were measured. RESULTS Pretreatment with CGplus significantly attenuated the accumulation of triglycerides and total cholesterol as well as lipid peroxidation, evidenced by quantitative and histopathological analyses in liver tissues. The elevations of serum aspartate transaminase, alanine transaminase and lactate dehydrogenase were significantly ameliorated by CGplus. Also, it normalized the altered activities of pro- (TNF-α, IL-1β and IL-6), anti-inflammatory (IL-10) cytokines and lipid metabolism-related molecules in protein and gene expression analyses. CONCLUSION Our data present experimental evidence for the potential of CGplus as an herbal therapeutic against NAFLD and NASH. Its underlying mechanisms may involve the modulations of pro- and anti-inflammatory cytokines, but further study is required especially for the actions of CGplus on lipid metabolisms.
Collapse
Affiliation(s)
- Myong-Min Lee
- Liver and Immunology Research Center, Oriental Medical College, Daejeon University, 176-9 Daeheung-ro, Jung-gu, Daejeon 34929, Republic of Korea
| | - Hyeong-Geug Kim
- Liver and Immunology Research Center, Oriental Medical College, Daejeon University, 176-9 Daeheung-ro, Jung-gu, Daejeon 34929, Republic of Korea
| | - Sung-Bae Lee
- Liver and Immunology Research Center, Oriental Medical College, Daejeon University, 176-9 Daeheung-ro, Jung-gu, Daejeon 34929, Republic of Korea
| | - Jin-Seok Lee
- Liver and Immunology Research Center, Oriental Medical College, Daejeon University, 176-9 Daeheung-ro, Jung-gu, Daejeon 34929, Republic of Korea
| | - Won-Yong Kim
- Liver and Immunology Research Center, Oriental Medical College, Daejeon University, 176-9 Daeheung-ro, Jung-gu, Daejeon 34929, Republic of Korea
| | - Seung-Hoon Choi
- Department of Medicine Consilience, Dankook University, 152, Jukjeon-ro, Suji-gu, Yongin-si, Gyeonggi-do 16890, Republic of Korea
| | - Sam-Keun Lee
- Department of Applied Chemistry, Daejeon University, 62 Daehak-ro, Dong-gu, Daejeon 34520, Republic of Korea
| | - Chang-Kyu Byun
- Department of Applied Chemistry, Daejeon University, 62 Daehak-ro, Dong-gu, Daejeon 34520, Republic of Korea
| | - Pung-Mi Hyun
- Chungnam National University Hospital Clinical Trials Center, 282 Munwha-ro, Jung-gu, Daejeon 35015, Republic of Korea
| | - Chang-Gue Son
- Liver and Immunology Research Center, Oriental Medical College, Daejeon University, 176-9 Daeheung-ro, Jung-gu, Daejeon 34929, Republic of Korea.
| |
Collapse
|
29
|
Momtazi AA, Banach M, Pirro M, Katsiki N, Sahebkar A. Regulation of PCSK9 by nutraceuticals. Pharmacol Res 2017; 120:157-169. [PMID: 28363723 DOI: 10.1016/j.phrs.2017.03.023] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Accepted: 03/27/2017] [Indexed: 12/19/2022]
Abstract
PCSK9 (proprotein convertase subtilisin kexin type 9) is a liver secretory enzyme that regulates plasma low-density lipoprotein (LDL) cholesterol (LDL-C) levels through modulation of LDL receptor (LDLR) density on the surface of hepatocytes. Inhibition of PCSK9 using monoclonal antibodies can efficiently lower plasma LDL-C, non-high-density lipoprotein cholesterol and lipoprotein (a). PCSK9 inhibition is also an effective adjunct to statin therapy; however, the cost-effectiveness of currently available PCSK9 inhibitors is under question. Nutraceuticals offer a safe and cost-effective option for PCSK9 inhibition. Several nutraceuticals have been reported to modulate PCSK9 levels and exert LDL-lowering activity. Mechanistically, those nutraceuticals that inhibit PCSK9 through a SREBP (sterol-responsive element binding protein)-independent pathway can be more effective in lowering plasma LDL-C levels compared with those inhibiting PCSK9 through the SREBP pathway. The present review aims to collect available data on the nutraceuticals with PCSK9-inhibitory effect and the underlying mechanisms.
Collapse
Affiliation(s)
- Amir Abbas Momtazi
- Nanotechnology Research Center, Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maciej Banach
- Department of Hypertension, WAM University Hospital in Lodz, Medical University of Lodz, Zeromskiego 113, Lodz, Poland; Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland
| | - Matteo Pirro
- Unit of Internal Medicine, Angiology and Arteriosclerosis Diseases, Department of Medicine, University of Perugia, Perugia, Italy
| | - Niki Katsiki
- Second Propedeutic Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, Hippocration Hospital, Thessaloniki, Greece
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran; Metabolic Research Centre, Royal Perth Hospital, School of Medicine and Pharmacology, University of Western Australia, Perth, Australia.
| |
Collapse
|
30
|
Li BH, He FP, Yang X, Chen YW, Fan JG. Steatosis induced CCL5 contributes to early-stage liver fibrosis in nonalcoholic fatty liver disease progress. Transl Res 2017; 180:103-117.e4. [PMID: 27639593 DOI: 10.1016/j.trsl.2016.08.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 08/23/2016] [Accepted: 08/23/2016] [Indexed: 12/23/2022]
Abstract
The rapidly increasing prevalence of nonalcoholic fatty liver disease (NAFLD) has become one of the major public health threats in China and worldwide. However, during the development of NAFLD, the key mechanism underlying the progression of related fibrosis remains unclear, which greatly impedes the development of optimal NAFLD therapy. In the current study, we were endeavored to characterize a proinflammatory cytokine, CCL5, as a major contributor for fibrosis in NAFLD. The results showed that CCL5 was highly expressed in fatty liver and NASH patients. In NAFLD rats induced by 8-week-HFD, CCL5 and its receptor, CCR5, were significantly up-regulated and liver fibrosis exclusively occurred in this group. In addition, we showed that hepatocytes are the major source contributing to this CCL5 elevation. Interestingly, a CCL5 inhibitor Met-CCL5, significantly decreased liver fibrosis but not hepatic steatosis. Using a cell model of hepatic steatosis, we found that the conditioned medium of lipid-overloaded hepatocytes (Fa2N-4 cells) which produced excessive CCL5 stimulated the profibrotic activities of hepatic stellate cells (LX-2) as manifested by increased migration rate, proliferation and collagen production of LX-2 cells. CCL5 knockdown in Fa2N-4 cells, Met-CCL5 or CCR5 antibody treatment on LX-2 cells all significantly inhibited the conditioned medium of FFA-treated Fa2N-4 cells to exert stimulatory effects on LX-2 cells. Consistently, the conditioned medium of Fa2N-4 cells with CCL5 over-expression significantly enhanced migration rate, cell proliferation and collagen production of LX-2 cells. All these results support that CCL5 produced by steatotic hepatocytes plays an essential role in fibrotic signaling machinery of NAFLD. In addition, we were able to identify C/EBP-β as the up-stream regulator of CCL5 gene transcription in hepatocytes treated with free fatty acid (FFA). Our data strongly supported that CCL5 plays a pivotal regulatory role in hepatic fibrosis during NAFLD, which constitutes a novel and exciting observation that may call for potential future development of specific CCL5-targeted NAFLD therapy.
Collapse
Affiliation(s)
- Bing-Hang Li
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Fang-Ping He
- Department of Hepatology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Xin Yang
- University of Alabama, Department of Biology, Tuscaloosa, Ala
| | - Yuan-Wen Chen
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Jian-Gao Fan
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| |
Collapse
|