1
|
Suh HN, Ji JY, Heo JS. Metformin-Enhanced Secretome from Periodontal Ligament Stem Cells Promotes Functional Recovery in an Inflamed Periodontal Model: In Vitro Study. J Funct Biomater 2025; 16:177. [PMID: 40422841 DOI: 10.3390/jfb16050177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 04/28/2025] [Accepted: 05/10/2025] [Indexed: 05/28/2025] Open
Abstract
OBJECTIVE Secretory factors, termed the secretome, in the conditioned medium (CM) from dental mesenchymal stem cells (MSCs) have shown anti-inflammatory, anti-apoptotic, and tissue regenerative potential. This cell-free product could be further developed by preconditioning cells with various biochemical agents, which lead to a change in secretome and CM profiles. Among the favorable candidates for CM production, metformin as an anti-diabetic medication is currently considered a potential agent for dental hard tissue and periodontal regeneration. Here, we aimed to assess the composition of CM from periodontal ligament stem cells (PDLSCs) grown in metformin-preconditioned media (Met-CM) compared to normal PDLSC-CM and assess the ability of Met-CM to recover the function of inflamed PDLSCs. METHODS Met-CM and normal CM were collected from PDLSCs grown with or without 50 µM metformin, respectively, under healthy culture conditions. Mass spectrometry and liquid chromatography-tandem mass spectrometry (LC-MS/MS) were performed to comparatively evaluate the proteomic profiles in PDLSC-CM versus Met-CM. We then treated the PDLSC cultures with lipopolysaccharide (LPS) from Porphyromonas gingivalis to induce inflammation and evaluated the osteogenic/cementogenic differentiation in the presence of Met-CM or normal PDLSC-CM by assessing alkaline phosphatase activity, intracellular calcium levels, and mRNA expression of osteogenic and cementogenic factors, including RUNX2, OCN, OSX, and CEMP-1. Subsequently, we performed RNA sequencing to identify transcriptomic changes in the treated cells. RESULTS We identified 202 differentially expressed proteins, 175 of which were significant, in Met-CM versus normal PDLSC-CM. Among the analyzed groups, the top three protein classes were protein-binding activity modulator, cytoskeletal protein, and extracellular matrix (ECM) protein. Treatment of PDLSCs with LPS significantly attenuated ALP activity, [Ca2+]i, and the mRNA expression levels of RUNX2, OCN, OSX, and CEMP-1, whereas treatment with Met-CM alone markedly enhanced PDLSC differentiation activity compared with the control. Moreover, osteogenic/cementogenic differentiation of the LPS-treated PDLSCs was recovered through incubation in Met-CM. Transcriptomic analysis identified 511 and 3591 differentially expressed genes in the control versus Met-CM and LPS versus LPS + Met-CM groups, respectively. The enrichment of biological processes includes positive regulation of DNA-templated transcription and skeletal system morphogenesis in the control versus Met-CM comparison, as well as positive regulation of transcription from the RNA polymerase II promoter and negative regulation of the apoptotic process in the LPS versus LPS + Met-CM comparison. Molecular function analysis demonstrated the enrichment of protein-binding terms among the DEGs from each comparison. CONCLUSIONS Metformin preconditioning enhanced the recovery effect of PDLSC-CM on LPS-induced inflamed PDLSCs. These findings suggest that metformin preconditioning could represent a practical formula for PDLSC-secretome, which may contribute to the development of future cell-free periodontal regenerative strategies.
Collapse
Affiliation(s)
- Han Na Suh
- Korea Institute of Toxicology, 30 Baekhak1-gil, Jeongeup 56212, Jeollabuk-do, Republic of Korea
| | - Ju Young Ji
- Department of Maxillofacial Biomedical Engineering, College of Dentistry, Kyung Hee University, 26 Kyunghee-daero, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Jung Sun Heo
- Department of Maxillofacial Biomedical Engineering, College of Dentistry, Kyung Hee University, 26 Kyunghee-daero, Dongdaemun-gu, Seoul 02447, Republic of Korea
| |
Collapse
|
2
|
Tian G, Yin H, Zheng J, Yu R, Ding Z, Yan Z, Tang Y, Wu J, Ning C, Yuan X, Liao C, Sui X, Zhao Z, Liu S, Guo W, Guo Q. Promotion of osteochondral repair through immune microenvironment regulation and activation of endogenous chondrogenesis via the release of apoptotic vesicles from donor MSCs. Bioact Mater 2024; 41:455-470. [PMID: 39188379 PMCID: PMC11347043 DOI: 10.1016/j.bioactmat.2024.07.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/28/2024] [Accepted: 07/30/2024] [Indexed: 08/28/2024] Open
Abstract
Utilizing transplanted human umbilical cord mesenchymal stem cells (HUMSCs) for cartilage defects yielded advanced tissue regeneration, but the underlying mechanism remain elucidated. Early after HUMSCs delivery to the defects, we observed substantial apoptosis. The released apoptotic vesicles (apoVs) of HUMSCs promoted cartilage regeneration by alleviating the chondro-immune microenvironment. ApoVs triggered M2 polarization in macrophages while simultaneously facilitating the chondrogenic differentiation of endogenous MSCs. Mechanistically, in macrophages, miR-100-5p delivered by apoVs activated the MAPK/ERK signaling pathway to promote M2 polarization. In MSCs, let-7i-5p delivered by apoVs promoted chondrogenic differentiation by targeting the eEF2K/p38 MAPK axis. Consequently, a cell-free cartilage regeneration strategy using apoVs combined with a decellularized cartilage extracellular matrix (DCM) scaffold effectively promoted the regeneration of osteochondral defects. Overall, new mechanisms of cartilage regeneration by transplanted MSCs were unconcealed in this study. Moreover, we provided a novel experimental basis for cell-free tissue engineering-based cartilage regeneration utilizing apoVs.
Collapse
Affiliation(s)
- Guangzhao Tian
- School of Medicine, Nankai University, Tianjin, 300071, China
- Institute of Orthopedies, Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, 51 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Han Yin
- Institute of Orthopedies, Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, 51 Fucheng Road, Haidian District, Beijing, 100142, China
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jinxuan Zheng
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Rongcheng Yu
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Zhengang Ding
- Institute of Orthopedies, Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, 51 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Zineng Yan
- Institute of Orthopedies, Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, 51 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Yiqi Tang
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Jiang Wu
- Institute of Orthopedies, Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, 51 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Chao Ning
- Institute of Orthopedies, Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, 51 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Xun Yuan
- Institute of Orthopedies, Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, 51 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Chenxi Liao
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Xiang Sui
- Institute of Orthopedies, Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, 51 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Zhe Zhao
- Institute of Orthopedies, Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, 51 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Shuyun Liu
- Institute of Orthopedies, Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, 51 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Weimin Guo
- Department of Orthopaedic Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, First Affiliated Hospital Sun Yat-Sen University, Guangzhou, 510080, China
| | - Quanyi Guo
- School of Medicine, Nankai University, Tianjin, 300071, China
- Institute of Orthopedies, Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, 51 Fucheng Road, Haidian District, Beijing, 100142, China
| |
Collapse
|
3
|
Zhou L, Zhao S, Xing X. Effects of different signaling pathways on odontogenic differentiation of dental pulp stem cells: a review. Front Physiol 2023; 14:1272764. [PMID: 37929208 PMCID: PMC10622672 DOI: 10.3389/fphys.2023.1272764] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/02/2023] [Indexed: 11/07/2023] Open
Abstract
Dental pulp stem cells (DPSCs) are a type of mesenchymal stem cells that can differentiate into odontoblast-like cells and protect the pulp. The differentiation of DPSCs can be influenced by biomaterials or growth factors that activate different signaling pathways in vitro or in vivo. In this review, we summarized six major pathways involved in the odontogenic differentiation of DPSCs, Wnt signaling pathways, Smad signaling pathways, MAPK signaling pathways, NF-kB signaling pathways, PI3K/AKT/mTOR signaling pathways, and Notch signaling pathways. Various factors can influence the odontogenic differentiation of DPSCs through one or more signaling pathways. By understanding the interactions between these signaling pathways, we can expand our knowledge of the mechanisms underlying the regeneration of the pulp-dentin complex.
Collapse
Affiliation(s)
| | | | - Xianghui Xing
- Department of Pediatric Dentistry, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
4
|
Svandova E, Vesela B, Kratochvilova A, Holomkova K, Oralova V, Dadakova K, Burger T, Sharpe P, Lesot H, Matalova E. Markers of dental pulp stem cells in in vivo developmental context. Ann Anat 2023; 250:152149. [PMID: 37574172 DOI: 10.1016/j.aanat.2023.152149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/10/2023] [Accepted: 07/24/2023] [Indexed: 08/15/2023]
Abstract
Teeth and their associated tissues contain several populations of mesenchymal stem cells, one of which is represented by dental pulp stem cells (DPSCs). These cells have mainly been characterised in vitro and numerous positive and negati ve markers for these cells have been suggested. To investigate the presence and localization of these molecules during development, forming dental pulp was examined using the mouse first mandibular molar as a model. The stages corresponding to postnatal (P) days 0, 7, 14, and 21 were investigated. The expression was monitored using customised PCR Arrays. Additionally, in situ localization of the key trio of markers (Cd73, Cd90, Cd105 coded by genes Nt5e, Thy1, Eng) was performed at prenatal and postnatal stages using immunohistochemistry. The expression panel of 24 genes assigned as in vitro markers of DPSCs or mesenchymal stem cells (MSCs) revealed their developmental dynamics during formation of dental pulp mesenchyme. Among the positive markers, Vcam1, Fgf2, Nes were identified as increasing and Cd44, Cd59b, Mcam, Alcam as decreasing between perinatal vs. postnatal stages towards adulthood. Within the panel of negative DPSC markers, Cd14, Itgb2, Ptprc displayed increased and Cd24a decreased levels at later stages of pulp formation. Within the key trio of markers, Nt5e did not show any significant expression difference within the investigated period. Thy1 displayed a strong decrease between P0 and P7 while Eng increased between these stages. In situ localization of Cd73, Cd90 and Cd105 showed them overlap in differentiated odontoblasts and in the sub-odontoblastic layer that is speculated to host odontoblast progenitors. The highly prevalent expression of particularly Cd73 and Cd90 opens the question of potential multiple functions of these molecules. The results from this study add to the in vitro based knowledge by showing dynamics in the expression of DPSC/MSC markers during dental pulp formation in an in vivo context and thus with respect to the natural environment important for commitment of stem cells.
Collapse
Affiliation(s)
- Eva Svandova
- Institute of Animal Physiology and Genetics, Brno, Czech Republic; Masaryk University, Brno, Czech Republic
| | - Barbora Vesela
- Institute of Animal Physiology and Genetics, Brno, Czech Republic; Veterinary University, Brno, Czech Republic
| | | | | | - Veronika Oralova
- Institute of Animal Physiology and Genetics, Brno, Czech Republic
| | | | - Tom Burger
- Veterinary University, Brno, Czech Republic
| | - Paul Sharpe
- Institute of Animal Physiology and Genetics, Brno, Czech Republic; King's College London, London, United Kingdom.
| | - Herve Lesot
- Institute of Animal Physiology and Genetics, Brno, Czech Republic
| | - Eva Matalova
- Institute of Animal Physiology and Genetics, Brno, Czech Republic; Veterinary University, Brno, Czech Republic
| |
Collapse
|
5
|
Soheilifar MH, Nobari S, Hakimi M, Adel B, Masoudi-Khoram N, Reyhani E, Neghab HK. Current concepts of microRNA-mediated regulatory mechanisms in human pulp tissue-derived stem cells: a snapshot in the regenerative dentistry. Cell Tissue Res 2023:10.1007/s00441-023-03792-4. [PMID: 37247032 DOI: 10.1007/s00441-023-03792-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 05/12/2023] [Indexed: 05/30/2023]
Abstract
One of the most studied class of non-coding RNAs is microRNAs (miRNAs) which regulate more than 60% of human genes. A network of miRNA gene interactions participates in stem cell self-renewal, proliferation, migration, apoptosis, immunomodulation, and differentiation. Human pulp tissue-derived stem cells (PSCs) are an attractive source of dental mesenchymal stem cells (MSCs) which comprise human dental pulp stem cells (hDPSCs) obtained from the dental pulp of permanent teeth and stem cells isolated from exfoliated deciduous teeth (SHEDs) that would be a therapeutic opportunity in stomatognathic system reconstruction and repair of other damaged tissues. The regenerative capacity of hDPSCs and SHEDs is mediated by osteogenic, odontogenic, myogenic, neurogenic, angiogenic differentiation, and immunomodulatory function. Multi-lineage differentiation of PSCs can be induced or inhibited by the interaction of miRNAs with their target genes. Manipulating the expression of functional miRNAs in PSCs by mimicking miRNAs or inhibiting miRNAs emerged as a therapeutic tool in the clinical translation. However, the effectiveness and safety of miRNA-based therapeutics, besides higher stability, biocompatibility, less off-target effects, and immunologic reactions, have received particular attention. This review aimed to comprehensively overview the molecular mechanisms underlying miRNA-modified PSCs as a futuristic therapeutic option in regenerative dentistry.
Collapse
Affiliation(s)
| | - Sima Nobari
- Research Center for Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Maryam Hakimi
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Bashir Adel
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran
| | - Nastaran Masoudi-Khoram
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Elahe Reyhani
- Faculty of Dentistry, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Hoda Keshmiri Neghab
- Department of Photo Healing and Regeneration, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
| |
Collapse
|
6
|
Ahmad Hairi H, Jayusman PA, Shuid AN. Revisiting Resveratrol as an Osteoprotective Agent: Molecular Evidence from In Vivo and In Vitro Studies. Biomedicines 2023; 11:1453. [PMID: 37239124 PMCID: PMC10216404 DOI: 10.3390/biomedicines11051453] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/12/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Resveratrol (RSV) (3,5,4'-trihydroxystilbene) is a stilbene found in abundance in berry fruits, peanuts, and some medicinal plants. It has a diverse range of pharmacological activities, underlining the significance of illness prevention and health promotion. The purpose of this review was to delve deeper into RSV's bone-protective properties as well as its molecular mechanisms. Several in vivo studies have found the bone-protective effects of RSV in postmenopausal, senile, and disuse osteoporosis rat models. RSV has been shown to inhibit NF-κB and RANKL-mediated osteoclastogenesis, oxidative stress, and inflammation while increasing osteogenesis and boosting differentiation of mesenchymal stem cells to osteoblasts. Wnt/β-catenin, MAPKs/JNK/ERK, PI3K/AKT, FoxOs, microRNAs, and BMP2 are among the possible kinases and proteins involved in the underlying mechanisms. RSV has also been shown to be the most potent SIRT1 activator to cause stimulatory effects on osteoblasts and inhibitory effects on osteoclasts. RSV may, thus, represent a novel therapeutic strategy for increasing bone growth and reducing bone loss in the elderly and postmenopausal population.
Collapse
Affiliation(s)
- Haryati Ahmad Hairi
- Department of Biochemistry, Faculty of Medicine, Manipal University College Malaysia, Jalan Batu Hampar, Bukit Baru, Melaka 75150, Malaysia;
| | - Putri Ayu Jayusman
- Department of Craniofacial Diagnostics and Biosciences, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia;
| | - Ahmad Nazrun Shuid
- Department of Pharmacology, Faculty of Medicine, Universiti Teknologi Mara (UITM), Jalan Hospital, Sungai Buloh 47000, Malaysia
| |
Collapse
|
7
|
Kalmari A, Hosseinzadeh Colagar A, Heydari M, Arash V. Missense polymorphisms potentially involved in mandibular prognathism. J Oral Biol Craniofac Res 2023; 13:453-460. [PMID: 37228872 PMCID: PMC10203774 DOI: 10.1016/j.jobcr.2023.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 03/18/2023] [Accepted: 05/10/2023] [Indexed: 05/27/2023] Open
Abstract
Objective The current study aimed to identify and analyze missense single nucleotide polymorphisms (SNPs) that can potentially cause mandibular prognathism. Methods After reviewing the articles, 56 genes associated with mandibular prognathism were identified and their missense SNPs were retrieved from the NCBI website. Several web-based tools including CADD, PolyPhen-2, PROVEAN, SNAP2, PANTHER, FATHMM, and PON-P2 were used to filter out harmful SNPs. Additionally, ConSurf determined the level of evolutionary conservation at positions where SNPs occur. I-Mutant2 and MUpro predicted the effect of SNPs on protein stability. Furthermore, to investigate the structural and functional changes of proteins, HOPE and LOMETS tools were utilized. Results Based on predictions in at least four web-based tools, the results indicated that PLXNA2-rs4844658, DUSP6-rs2279574, and FBN3-rs33967815 are harmful. These SNPs are located at positions with variable or average conservation and have the potential to reduce the stability of their respective proteins. Moreover, they may impair protein activity by causing structural and functional changes. Conclusions In this study, we identified PLXNA2-rs4844658, DUSP6-rs2279574, and FBN3-rs33967815 as potential risk factors for mandibular prognathism using several web-based tools. According to the possible roles of PLXNA2, DUSP6, and FBN3 proteins in ossification pathways, we recommend that these SNPs be investigated further in experimental research. Through such studies, we hope to gain a better understanding of the molecular mechanisms involved in mandible formation.
Collapse
Affiliation(s)
- Amin Kalmari
- Department of Molecular and Cell Biology, Faculty of Science, University of Mazandaran, Babolsar, PC:47416-95447, Mazandaran, Iran
| | - Abasalt Hosseinzadeh Colagar
- Department of Molecular and Cell Biology, Faculty of Science, University of Mazandaran, Babolsar, PC:47416-95447, Mazandaran, Iran
| | - Mohammadkazem Heydari
- Department of Molecular and Cell Biology, Faculty of Science, University of Mazandaran, Babolsar, PC:47416-95447, Mazandaran, Iran
| | - Valiollah Arash
- Department of Orthodontics, School of dentistry, Babol University of Medical Sciences, Babol, PC: 47176-47745, Mazandaran, Iran
| |
Collapse
|
8
|
Valizadeh N, Salehi R, Aghazadeh M, Alipour M, Sadeghzadeh H, Mahkam M. Enhanced osteogenic differentiation and mineralization of human dental pulp stem cells using Prunus amygdalus amara (bitter almond) incorporated nanofibrous scaffold. J Mech Behav Biomed Mater 2023; 142:105790. [PMID: 37104899 DOI: 10.1016/j.jmbbm.2023.105790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/14/2023] [Accepted: 03/19/2023] [Indexed: 04/29/2023]
Abstract
Polyphenol extracts derived from plants are expected to have enhanced osteoblast proliferation and differentiation ability, which has gained much attention in tissue engineering applications. Herein, for the first time, we investigate the effects of Prunus amygdalus amara (bitter almond) (BA) extract loaded on poly (ε-caprolactone) (PCL)/gelatin (Gt) nanofibrous scaffolds on the osteoblast differentiation of human dental pulp stem cells (DPSCs). In this regard, BA (0, 5, 10, and 15% wt)-loaded PCL/Gt nanofibrous scaffolds were prepared by electrospinning with fiber diameters in the range of around 237-276 nm. Morphology, composition, porosity, hydrophilicity, and mechanical properties of the scaffolds were examined by FESEM, ATR-FTIR spectroscopy, BET, contact angle, and tensile tests, respectively. It was found that the addition of BA improved the tensile strength (up to 6.1 times), Young's modulus (up to 3 times), and strain at break (up to 3.2 times) compared to the neat PCL/Gt nanofibers. Evaluations of cell attachment, spreading, and proliferation were done by FESEM observation and MTT assay. Cytocompatibility studies support the biocompatible nature of BA loaded PCL/Gt scaffolds and free BA by demonstrating cell viability of more than 100% in all groups. The results of alkaline phosphatase activity and Alizarin Red assay revealed that osteogenic activity levels of BA loaded PCL/Gt scaffolds and free BA were significantly increased compared to the control group (p < 0.05, p < 0.01, p < 0.001). QRT-PCR results demonstrated that BA loaded PCL/Gt scaffolds and free BA led to a significant increase in osteoblast differentiation of DPSCs through the upregulation of osteogenic related genes compared to the control group (p < 0.05). Based on results, incorporation of BA extract in PCL/Gt scaffolds exhibited synergistic effects on the adhesion, proliferation, and osteogenesis differentiation of hDPSCs and was therefore assumed to be a favorable scaffold for bone tissue engineering applications.
Collapse
Affiliation(s)
- Nasrin Valizadeh
- Chemistry Department, Science Faculty, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Roya Salehi
- Drug Applied Research Center and Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Marziyeh Aghazadeh
- Stem Cell Research Center and Department of Oral Medicine, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdieh Alipour
- Dental and Periodontal Research Center, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Sadeghzadeh
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehrdad Mahkam
- Chemistry Department, Science Faculty, Azarbaijan Shahid Madani University, Tabriz, Iran.
| |
Collapse
|
9
|
Tan AQ, Zheng YF. The Roles of SNHG Family in Osteoblast Differentiation. Genes (Basel) 2022; 13:2268. [PMID: 36553535 PMCID: PMC9777675 DOI: 10.3390/genes13122268] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/17/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
Small nucleolar RNA host genes (SNHGs), members of long-chain noncoding RNAs (lncRNAs), have received increasing attention regarding their roles in multiple bone diseases. Studies have revealed that SNHGs display unique expression profile during osteoblast differentiation and that they could act as promising biomarkers of certain bone diseases, such as osteoporosis. Osteogenesis of mesenchymal stem cells (MSCs) is an important part of bone repair and reconstruction. Moreover, studies confirmed that the SNHG family participate in the regulation of osteogenic differentiation of MSCs in part by regulating important pathways of osteogenesis, such as Wnt/β-catenin signaling. Based on these observations, clarifying the SNHG family's roles in osteogenesis (especially in MSCs) and their related mechanisms would provide novel ideas for possible applications of lncRNAs in the diagnosis and treatment of bone diseases. After searching, screening, browsing and intensive reading, we uncovered more than 30 papers related to the SNHG family and osteoblast differentiation that were published in recent years. Here, our review aims to summarize these findings in order to provide a theoretical basis for further research.
Collapse
Affiliation(s)
| | - Yun-Fei Zheng
- Department of Orthodontics, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, No. 22, Zhongguancun South Avenue, Haidian District, Beijing 100081, China
| |
Collapse
|
10
|
Ahmadi A, Mazloomnejad R, Kasravi M, Gholamine B, Bahrami S, Sarzaeem MM, Niknejad H. Recent advances on small molecules in osteogenic differentiation of stem cells and the underlying signaling pathways. Stem Cell Res Ther 2022; 13:518. [PMID: 36371202 PMCID: PMC9652959 DOI: 10.1186/s13287-022-03204-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/09/2022] [Indexed: 11/15/2022] Open
Abstract
Bone-related diseases are major contributors to morbidity and mortality in elderly people and the current treatments result in insufficient healing and several complications. One of the promising areas of research for healing bone fractures and skeletal defects is regenerative medicine using stem cells. Differentiating stem cells using agents that shift cell development towards the preferred lineage requires activation of certain intracellular signaling pathways, many of which are known to induce osteogenesis during embryological stages. Imitating embryological bone formation through activation of these signaling pathways has been the focus of many osteogenic studies. Activation of osteogenic signaling can be done by using small molecules. Several of these agents, e.g., statins, metformin, adenosine, and dexamethasone have other clinical uses but have also shown osteogenic capacities. On the other hand, some other molecules such as T63 and tetrahydroquinolines are not as well recognized in the clinic. Osteogenic small molecules exert their effects through the activation of signaling pathways known to be related to osteogenesis. These pathways include more well-known pathways including BMP/Smad, Wnt, and Hedgehog as well as ancillary pathways including estrogen signaling and neuropeptide signaling. In this paper, we review the recent data on small molecule-mediated osteogenic differentiation, possible adjunctive agents with these molecules, and the signaling pathways through which each small molecule exerts its effects.
Collapse
Affiliation(s)
- Armin Ahmadi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, P.O. Box: 1985711151, Tehran, Iran
| | - Radman Mazloomnejad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, P.O. Box: 1985711151, Tehran, Iran
| | - Mohammadreza Kasravi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, P.O. Box: 1985711151, Tehran, Iran
| | - Babak Gholamine
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, P.O. Box: 1985711151, Tehran, Iran
| | - Soheyl Bahrami
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in AUVA Research Center, Vienna, Austria
| | - Mohammad Mahdi Sarzaeem
- Department of Orthopedic Surgery, Imam Hossein Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hassan Niknejad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, P.O. Box: 1985711151, Tehran, Iran.
| |
Collapse
|
11
|
Oct4 facilitates chondrogenic differentiation of mesenchymal stem cells by mediating CIP2A expression. Cell Tissue Res 2022; 389:11-21. [PMID: 35435493 DOI: 10.1007/s00441-022-03619-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/25/2022] [Indexed: 12/15/2022]
Abstract
Bone development and cartilage formation require strict modulation of gene expression for mesenchymal stem cells (MSCs) to progress through their differentiation stages. Octamer-binding transcription factor 4 (Oct4) expression is generally restricted to developing embryonic pluripotent cells, but its role in chondrogenic differentiation (CD) of MSCs remains unclear. We therefore investigated the role of Oct4 in CD using a microarray, quantitative real-time polymerase chain reaction, and western blotting. The expression of Oct4 was elevated when the CD of cultured MSCs was induced. Silencing Oct4 damaged MSC growth and proliferation and decreased CD, indicated by decreased cartilage matrix formation and the expression of Col2a1, Col10a1, Acan, and Sox9. We found a positive correlation between the expression of CIP2A, a natural inhibitor of protein phosphatase 2A (PP2A) and that of Oct4. Cellular inhibitor of PP2A (CIP2A) expression gradually increased after CD. Overexpression of CIP2A in MSCs with Oct4 depletion promoted cartilage matrix deposition as well as Col2a1, Col10a1, Acan, and Sox9 expression. The chondrogenic induction triggered c-Myc, Akt, ERK, and MEK phosphorylation and upregulated c-Myc and mTOR expression, which was downregulated upon Oct4 knockdown and restored by CIP2A overexpression. These findings indicated that Oct4 functions as an essential chondrogenesis regulator, partly via the CIP2A/PP2A pathway.
Collapse
|
12
|
Scrapie-Responsive Gene 1 Promotes Chondrogenic Differentiation of Umbilical Cord Mesenchymal Stem Cells via Wnt5a. Stem Cells Int 2022; 2022:9124277. [PMID: 35126528 PMCID: PMC8813292 DOI: 10.1155/2022/9124277] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 11/25/2021] [Accepted: 12/29/2021] [Indexed: 11/17/2022] Open
Abstract
Objective Repair of cartilage defects, a common condition resulting from many factors, is still a great challenge. Based on their chondrogenic differentiation ability, mesenchymal stem cell- (MSC-) based cartilage regeneration is a promising approach for cartilage defect repair. However, MSC differentiation into chondroblasts or related cell lineages is elaborately controlled by stem cell differentiation stage factors and affected by an array of bioactive elements, which may impede the efficient production of target cells. Thus, identifying a single transcription factor to promote chondrogenic differentiation is critical. Herein, we explored the mechanism by which scrapie-responsive gene 1 (SCRG1), a candidate gene for cartilage regeneration promotion, regulates chondrogenic differentiation of MSCs. Methods Expression of SCRG1 was detected in umbilical cord-derived MSCs (UCMSCs) by quantitative reverse transcription polymerase chain reaction (qRT-PCR) and immunohistochemical analysis during chondrogenic differentiation. The function of SCRG1 in chondrogenic potential was evaluated after gene knockdown or overexpression by lentiviral vectors. Finally, a rabbit cartilage defect model was established to evaluate the effect of SCRG1 on cartilage repair in vivo. Results Expression of SCRG1 was upregulated during in vitro chondrogenic differentiation of UCMSCs. SCRG1 knockdown inhibited chondrogenic differentiation of UCMSCs, while SCRG1 overexpression promoted chondrogenic differentiation of UCMSCs in vitro. In addition, UCMSC overexpressing SCRG1 promoted cartilage repair in vivo. Mechanistically, SCRG1 promoted chondrogenic differentiation via upregulation of Wnt5a expression and subsequent inhibition of β-catenin. Conclusion Our results showed that SCRG1 promotes chondrogenic differentiation of UCMSCs by inhibiting canonical Wnt/β-catenin signaling through Wnt5a. Our findings provide a future target for chondrogenic differentiation and cartilage regeneration.
Collapse
|
13
|
Mu R, Chen B, Bi B, Yu H, Liu J, Li J, He M, Rong L, Liu B, Liu K, Zhu L, Shi X, Shuai Y, Jin L. LIM Mineralization Protein-1 Enhances the Committed Differentiation of Dental Pulp Stem Cells through the ERK1/2 and p38 MAPK Pathways and BMP Signaling. Int J Med Sci 2022; 19:1307-1319. [PMID: 35928717 PMCID: PMC9346378 DOI: 10.7150/ijms.70411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 06/24/2022] [Indexed: 11/23/2022] Open
Abstract
Tissue regeneration is the preferred treatment for dentin and bone tissue defects. Dental pulp stem cells (DPSCs) have been extensively studied for their use in tissue regeneration, including the regeneration of dentin and bone tissue. LIM mineralization protein-1 (LMP-1) is an intracellular non-secretory protein that plays a positive regulatory role in the mineralization process. In this study, an LMP-1-induced DPSCs model was used to explore the effect of LMP-1 on the proliferation and odonto/osteogenic differentiation of DPSCs, as well as the underlying mechanisms. As indicated by the cell counting kit-8 assay, the results showed that LMP-1 did not affect the proliferation of DPSCs. Overexpression of LMP-1 significantly promoted the committed differentiation of DPSCs and vice versa, as shown by alkaline phosphatase activity assay, alizarin red staining, western blot assay, quantitative real-time polymerase chain reaction assay, and in vivo mineralized tissue formation assay. Furthermore, inhibiting the activation of the extracellular signal-regulated kinase 1/2 (ERK1/2), p38 mitogen-activated protein kinase (MAPK), and c-Jun N-terminal kinase (JNK) pathways using specific pathway inhibitors showed that the ERK1/2 and p38 MAPK pathways attenuated the differentiation of DPSCs. Besides, the expression of BMP signaling pathway components were also determined, which suggested that LMP-1 could activate BMP-2/Smad1/5 signaling pathway. Our results not only indicated the underlying mechanism of LMP-1 treated DPSCs but also provided valuable insight into therapeutic strategies in regenerative medicine.
Collapse
Affiliation(s)
- Rui Mu
- Department of Stomatology, Jinling Hospital, Medical School of Nanjing University, School of Stomatology of Southern Medical University, Clinical Medical School of Nanjing Medical University, Nanjing 210002, China.,Stomatology Center, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Guangdong province, Shenzhen 518036, China
| | - Bo Chen
- Department of Stomatology, Jinling Hospital, Medical School of Nanjing University, School of Stomatology of Southern Medical University, Clinical Medical School of Nanjing Medical University, Nanjing 210002, China
| | - Bo Bi
- Department of Stomatology, Jinling Hospital, Medical School of Nanjing University, School of Stomatology of Southern Medical University, Clinical Medical School of Nanjing Medical University, Nanjing 210002, China
| | - Hongchuan Yu
- Department of Stomatology, Jinling Hospital, Medical School of Nanjing University, School of Stomatology of Southern Medical University, Clinical Medical School of Nanjing Medical University, Nanjing 210002, China
| | - Juan Liu
- Department of Stomatology, Jinling Hospital, Medical School of Nanjing University, School of Stomatology of Southern Medical University, Clinical Medical School of Nanjing Medical University, Nanjing 210002, China
| | - Junxia Li
- Department of Stomatology, Jinling Hospital, Medical School of Nanjing University, School of Stomatology of Southern Medical University, Clinical Medical School of Nanjing Medical University, Nanjing 210002, China
| | - Maodian He
- Department of Stomatology, Jinling Hospital, Medical School of Nanjing University, School of Stomatology of Southern Medical University, Clinical Medical School of Nanjing Medical University, Nanjing 210002, China
| | - Liang Rong
- Department of Stomatology, Jinling Hospital, Medical School of Nanjing University, School of Stomatology of Southern Medical University, Clinical Medical School of Nanjing Medical University, Nanjing 210002, China
| | - Bingyao Liu
- Department of Stomatology, Jinling Hospital, Medical School of Nanjing University, School of Stomatology of Southern Medical University, Clinical Medical School of Nanjing Medical University, Nanjing 210002, China
| | - Ke Liu
- Department of Stomatology, Jinling Hospital, Medical School of Nanjing University, School of Stomatology of Southern Medical University, Clinical Medical School of Nanjing Medical University, Nanjing 210002, China
| | - Lei Zhu
- Department of Stomatology, Jinling Hospital, Medical School of Nanjing University, School of Stomatology of Southern Medical University, Clinical Medical School of Nanjing Medical University, Nanjing 210002, China
| | - Xiaolei Shi
- Department of Stomatology, Jinling Hospital, Medical School of Nanjing University, School of Stomatology of Southern Medical University, Clinical Medical School of Nanjing Medical University, Nanjing 210002, China
| | - Yi Shuai
- Department of Stomatology, Jinling Hospital, Medical School of Nanjing University, School of Stomatology of Southern Medical University, Clinical Medical School of Nanjing Medical University, Nanjing 210002, China
| | - Lei Jin
- Department of Stomatology, Jinling Hospital, Medical School of Nanjing University, School of Stomatology of Southern Medical University, Clinical Medical School of Nanjing Medical University, Nanjing 210002, China
| |
Collapse
|
14
|
Chen S, Liu D, Zhou Z, Qin S. Role of long non-coding RNA H19 in the development of osteoporosis. Mol Med 2021; 27:122. [PMID: 34583640 PMCID: PMC8480040 DOI: 10.1186/s10020-021-00386-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 09/22/2021] [Indexed: 12/28/2022] Open
Abstract
Background Osteoporosis is a widespread and serious metabolic bone disease. At present, revealing the molecular mechanisms of osteoporosis and developing effective prevention and treatment methods are of great significance to health worldwide. LncRNA is a non-coding RNA peptide chain with more than 200 nucleotides. Researchers have identified many lncRNAs implicated in the development of diseases and lncRNA H19 is an example. Results A large amount of evidence supports the fact that long non-coding RNA (lncRNA) genes, such as H19, have multiple, far-reaching effects on various biological functions. It has been found that lncRNA H19 has a role in the regulation of different types of cells in the body including the osteoblasts, osteocytes, and osteoclasts found in bones. Therefore, it can be postulated that lncRNA H19 affects the incidence and development of osteoporosis. Conclusion The prospect of targeting lncRNA H19 in the treatment of osteoporosis is promising because of the effects that lncRNA H19 has on the process of osteogenic differentiation. In this review, we summarize the molecular pathways and mechanisms of lncRNA H19 in the pathogenesis of osteoporosis and summarize the research progress of targeting H19 as a treatment option. Research is emerging that explores more effective treatment possibilities for bone metabolism diseases using molecular targets.
Collapse
Affiliation(s)
- Senxiang Chen
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China
| | - Da Liu
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China.
| | - Zimo Zhou
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China
| | - Sen Qin
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China
| |
Collapse
|
15
|
Li B, Ouchi T, Cao Y, Zhao Z, Men Y. Dental-Derived Mesenchymal Stem Cells: State of the Art. Front Cell Dev Biol 2021; 9:654559. [PMID: 34239870 PMCID: PMC8258348 DOI: 10.3389/fcell.2021.654559] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 04/29/2021] [Indexed: 12/11/2022] Open
Abstract
Mesenchymal stem cells (MSCs) could be identified in mammalian teeth. Currently, dental-derived MSCs (DMSCs) has become a collective term for all the MSCs isolated from dental pulp, periodontal ligament, dental follicle, apical papilla, and even gingiva. These DMSCs possess similar multipotent potential as bone marrow-derived MSCs, including differentiation into cells that have the characteristics of odontoblasts, cementoblasts, osteoblasts, chondrocytes, myocytes, epithelial cells, neural cells, hepatocytes, and adipocytes. Besides, DMSCs also have powerful immunomodulatory functions, which enable them to orchestrate the surrounding immune microenvironment. These properties enable DMSCs to have a promising approach in injury repair, tissue regeneration, and treatment of various diseases. This review outlines the most recent advances in DMSCs' functions and applications and enlightens how these advances are paving the path for DMSC-based therapies.
Collapse
Affiliation(s)
- Bo Li
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Orthodontics, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Takehito Ouchi
- Department of Dentistry and Oral Surgery, School of Medicine, Keio University, Tokyo, Japan
- Department of Physiology, Tokyo Dental College, Tokyo, Japan
| | - Yubin Cao
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Head and Neck Oncology, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Orthodontics, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Yi Men
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Head and Neck Oncology, West China School of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
16
|
Ran R, Yang H, Cao Y, Yan W, Jin L, Zheng Y. Depletion of EREG enhances the osteo/dentinogenic differentiation ability of dental pulp stem cells via the p38 MAPK and Erk pathways in an inflammatory microenvironment. BMC Oral Health 2021; 21:314. [PMID: 34154572 PMCID: PMC8215766 DOI: 10.1186/s12903-021-01675-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 06/09/2021] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Epiregulin (EREG) is an important component of EGF and was demonstrated to promote the osteo/dentinogenic differentiation of stem cells from dental apical papilla (SCAPs). Whether EREG can stimulate the osteo/dentinogenic differentiation of dental pulp stem cells (DPSCs) in inflammatory environment is not clear. The purpose of the present study is to investigate the role of EREG on the osteo/dentinogenic differentiation ability of DPSCs in inflammatory environment. METHODS DPSCs were isolated from human third molars. Short hairpin RNAs (shRNAs) were used to knock down EREG expression in DPSCs. Recombinant human EREG (rhEREG) protein was used in the rescue experiment. TNF-α was employed to mimic the inflammatory environment in vitro. Alkaline phosphatase (ALP) staining, Alizarin red staining, quantitative calcium analysis, and real-time RT-PCR were performed to detect osteo/dentinogenic differentiation markers and related signalling pathways under normal and inflammatory conditions. RESULTS EREG depletion promoted the ALP activity and mineralization ability of DPSCs. The expression of BSP, DMP-1, and DSPP was also enhanced. Moreover, 50 ng/mL rhEREG treatment decreased the osteo/dentinogenic differentiation potential of DPSCs, while treatment with 10 ng/mL TNF-α for 4 h increased the expression of EREG in DPSCs. Conversely, EREG knockdown rescued the impaired osteo/dentinogenic differentiation ability caused by TNF-α treatment. Further mechanistic studies showed that EREG depletion activated the p38 MAPK and Erk signalling pathways in DPSCs under normal and inflammatory conditions. CONCLUSIONS Our results demonstrated that EREG could inhibit the osteo/dentinogenic differentiation potential of DPSCs via the p38 MAPK and Erk signalling pathways. Under inflammatory environment, EREG depletion enhanced osteo/dentinogenic differentiation potential of DPSCs by improving the expression of p-p38 MAPK and p-Erk.
Collapse
Affiliation(s)
- Ran Ran
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China.,Department of Endodontics, Capital Medical University School of Stomatology, Beijing, China
| | - Haoqing Yang
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
| | - Yangyang Cao
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
| | - Wanhao Yan
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
| | - Luyuan Jin
- Department of General Dentistry and Integrated Emergency Dental Care, Capital Medical University School of Stomatology, Beijing, China.
| | - Ying Zheng
- Department of Endodontics, Capital Medical University School of Stomatology, Beijing, China.
| |
Collapse
|
17
|
Zhou Y, Liu S, Wang W, Sun Q, Lv M, Yang S, Tong S, Guo S. The miR-204-5p/FOXC1/GDF7 axis regulates the osteogenic differentiation of human adipose-derived stem cells via the AKT and p38 signalling pathways. Stem Cell Res Ther 2021; 12:64. [PMID: 33461605 PMCID: PMC7814734 DOI: 10.1186/s13287-020-02117-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 12/22/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Human adipose-derived stem cells (hADSCs) are stem cells with the potential to differentiate in multiple directions. miR-204-5p is expressed at low levels during the osteogenic differentiation of hADSCs, and its specific regulatory mechanism remains unclear. Here, we aimed to explore the function and possible molecular mechanism of miR-204-5p in the osteogenic differentiation of hADSCs. METHODS The expression patterns of miR-204-5p, Runx2, alkaline phosphatase (ALP), osteocalcin (OCN), forkhead box C1 (FOXC1) and growth differentiation factor 7 (GDF7) in hADSCs during osteogenesis were detected by qRT-PCR. Then, ALP and alizarin red staining (ARS) were used to detect osteoblast activities and mineral deposition. Western blotting was conducted to confirm the protein levels. The regulatory relationship among miR-204-5p, FOXC1 and GDF7 was verified by dual-luciferase activity and chromatin immunoprecipitation (ChIP) assays. RESULTS miR-204-5p expression was downregulated in hADSC osteogenesis, and overexpression of miR-204-5p suppressed osteogenic differentiation. Furthermore, the levels of FOXC1 and GDF7 were decreased in the miR-204-5p mimics group, which indicates that miR-204-5p overexpression suppresses the expression of FOXC1 and GDF7 by binding to their 3'-untranslated regions (UTRs). Overexpression of FOXC1 or GDF7 improved the inhibition of osteogenic differentiation of hADSCs induced by the miR-204-5p mimics. Moreover, FOXC1 was found to bind to the promoter of miR-204-5p and GDF7, promote the deacetylation of miR-204-5p and reduce the expression of miR-204-5p, thus promoting the expression of GDF7 during osteogenic differentiation. GDF7 induced hADSC osteogenesis differentiation by activating the AKT and P38 signalling pathways. CONCLUSIONS Our results demonstrated that the miR-204-5p/FOXC1/GDF7 axis regulates the osteogenic differentiation of hADSCs via the AKT and p38 signalling pathways. This study further revealed the regulatory mechanism of hADSC differentiation from the perspective of miRNA regulation.
Collapse
Affiliation(s)
- You Zhou
- Department of Plastic Surgery, The First Hospital of China Medical University, NO 155 Nanjing street Heping Strict, Shenyang, 110001, Liaoning Province, China
| | - Siyu Liu
- Department of Plastic Surgery, The First Hospital of China Medical University, NO 155 Nanjing street Heping Strict, Shenyang, 110001, Liaoning Province, China
| | - Wei Wang
- Institute of Respiratory Disease, The First Hospital of China Medical University, NO 155 Nanjing street Heping Strict, Shenyang, 110001, Liaoning Province, China
| | - Qiang Sun
- Department of Plastic Surgery, The First Hospital of China Medical University, NO 155 Nanjing street Heping Strict, Shenyang, 110001, Liaoning Province, China
| | - Mengzhu Lv
- Department of Plastic Surgery, The First Hospital of China Medical University, NO 155 Nanjing street Heping Strict, Shenyang, 110001, Liaoning Province, China
| | - Shude Yang
- Department of Plastic Surgery, The First Hospital of China Medical University, NO 155 Nanjing street Heping Strict, Shenyang, 110001, Liaoning Province, China
| | - Shuang Tong
- Department of Plastic Surgery, The First Hospital of China Medical University, NO 155 Nanjing street Heping Strict, Shenyang, 110001, Liaoning Province, China
| | - Shu Guo
- Department of Plastic Surgery, The First Hospital of China Medical University, NO 155 Nanjing street Heping Strict, Shenyang, 110001, Liaoning Province, China.
| |
Collapse
|
18
|
Zhu J, Wang Y, Cao Z, Du M, Hao Y, Pan J, He H. Irisin promotes cementoblast differentiation via p38 MAPK pathway. Oral Dis 2020; 26:974-982. [DOI: 10.1111/odi.13307] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 01/25/2020] [Accepted: 02/13/2020] [Indexed: 01/08/2023]
Affiliation(s)
- Jiaqi Zhu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of Education School and Hospital of Stomatology Wuhan University Wuhan China
| | - Yunlong Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of Education School and Hospital of Stomatology Wuhan University Wuhan China
| | - Zhengguo Cao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of Education School and Hospital of Stomatology Wuhan University Wuhan China
| | - Mingyuan Du
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of Education School and Hospital of Stomatology Wuhan University Wuhan China
| | - Yunru Hao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of Education School and Hospital of Stomatology Wuhan University Wuhan China
| | - Jiawen Pan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of Education School and Hospital of Stomatology Wuhan University Wuhan China
| | - Hong He
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of Education School and Hospital of Stomatology Wuhan University Wuhan China
| |
Collapse
|
19
|
Ma N, Teng X, Zheng Q, Chen P. The regulatory mechanism of p38/MAPK in the chondrogenic differentiation from bone marrow mesenchymal stem cells. J Orthop Surg Res 2019; 14:434. [PMID: 31831024 PMCID: PMC6909593 DOI: 10.1186/s13018-019-1505-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 11/28/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Osteoarthritis (OA) is a degenerative joint disease characterized by articular cartilage degradation and joint inflammation, in which growth factors are significantly involved. The extracellular signal-regulated p38 MAPK pathways play important roles in the regulation of osteogenic and chondrogenic differentiation in bone marrow mesenchymal stem cells (BMSCs). However, the exact mechanism remains unclear. METHODS In this study, the chondrogenic differentiation of human BMSCs was initiated in micromass culture in the presence of TGF-β1 for 14 days. Quantitative RT-PCR and Western blot were performed to detect the transfection effect of shRNA-p38 interfering plasmid in BMSCs. The protein expressions of p/t-p38, SOX9, collagen II, Aggrecan, p/t-Smad1, and p/t-Smad4, as well as the kinase activities of p38/ERK/JNK pathway, were investigated using Western blot analysis. Additionally, the level of chondroitin sulfate and glycosaminoglycans (GAG) expression were measured by Alcian blue staining and GAG assay kit via qualitative and quantitative methods, respectively. RESULTS The results demonstrated that p38 pathway was activated in the chondrogenic differentiation of BMSCs induced by TGF-β1. Cartilage-specific genes and chondrogenic regulators, such as SOX9, collagen II, Aggrecan, and GAG, were upregulated by TGF-β1, which could be reversed by predisposed with shRNA-p38 interfering plasmid and p38-MAPK inhibitors (SB203580). Moreover, the activation of p38/ERK/JNK pathways in the presence of TGF-β1 was suppressed by shRNA-p38 and SB203580 treatment. CONCLUSION Collectively, the activation of p38/ERK/JNK/Smad pathways plays a facilitated role in the chondrogenic differentiation induced by TGF-β1. After suppressing the p38 pathway, the chondrogenesis can be inhibited, which can be used to guide the treatment of osteoarthritis.
Collapse
Affiliation(s)
- Ning Ma
- Department of Orthopedics, Zhejiang Taizhou Central Hospital (Affiliated Hospital of Taizhou University), No. 999 Donghai Avenue, Jiaojiang District, Taizhou, 318000, Zhejiang, China
| | - Xiao Teng
- Department of Orthopedics, Zhejiang Taizhou Central Hospital (Affiliated Hospital of Taizhou University), No. 999 Donghai Avenue, Jiaojiang District, Taizhou, 318000, Zhejiang, China
| | - Qi Zheng
- Department of Orthopedics, Zhejiang Taizhou Central Hospital (Affiliated Hospital of Taizhou University), No. 999 Donghai Avenue, Jiaojiang District, Taizhou, 318000, Zhejiang, China
| | - Peng Chen
- Department of Orthopedics, Yan Cheng Third People's Hospital (Affiliated Yancheng Hospital of Southeast University Medical College), No.2 Xindu West Road, Yancheng, 224001, Jiangsu, China.
| |
Collapse
|
20
|
Jiang Y, Wu W, Jiao G, Chen Y, Liu H. LncRNA SNHG1 modulates p38 MAPK pathway through Nedd4 and thus inhibits osteogenic differentiation of bone marrow mesenchymal stem cells. Life Sci 2019; 228:208-214. [DOI: 10.1016/j.lfs.2019.05.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/18/2019] [Accepted: 05/01/2019] [Indexed: 01/05/2023]
|
21
|
Zhang T, Li B, Feng Q, Xu Z, Huang C, Wu H, Chen Z, Hu L, Gao L, Liu P, Yang G, Zhang H, Lu K, Li T, Tao Y, Wu X, Shi J, Zhu W. DCZ0801, a novel compound, induces cell apoptosis and cell cycle arrest via MAPK pathway in multiple myeloma. Acta Biochim Biophys Sin (Shanghai) 2019; 51:517-523. [PMID: 30947332 DOI: 10.1093/abbs/gmz033] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Indexed: 01/16/2023] Open
Abstract
Multiple myeloma (MM) is a refractory malignant hematological malignancy, and many therapeutic strategies have been developed to cure patients with MM. DCZ0801 is a compound that consists of oxophenamide and pterostilbene. The role of these compounds in hematological cancers such as MM has yet to be studied. In this study, we explored the potential mechanism of DCZ0801 action, its anti-tumor activity both in vitro and in vivo on MM. This study was carried out via cell cycle proliferation assay, apoptotic analysis, western blot analysis, and examination of xenotransplantation model of tumors. The in vitro studies revealed that DCZ0801 could inhibit cell proliferation and induce apoptosis by regulating both caspase-dependent and mitogen-activated protein kinase signaling pathways, inducing S-phase arrest of the cell cycle related to downregulation of CDK2, cyclin-A2, and CDC25A protein expression. The in vivo studies showed that DCZ0801 could significantly reduce the size of the tumors in nude mice. Our results demonstrated that DCZ0801 may emerge as the new therapeutic option for the patient with MM.
Collapse
Affiliation(s)
- Ting Zhang
- Department of Hematology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Bo Li
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Qilin Feng
- Department of Hematology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Zhijian Xu
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Cheng Huang
- Department of Hematology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Huiqun Wu
- Department of Hematology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Zhangbo Chen
- Department of Hematology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Liangning Hu
- Department of Hematology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Lu Gao
- Department of Hematology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Peng Liu
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Guang Yang
- Department of Hematology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Hui Zhang
- Department of Hematology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Kang Lu
- Department of Hematology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Tingye Li
- Department of Hematology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Yi Tao
- Department of Hematology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Xiaosong Wu
- Department of Hematology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Jumei Shi
- Department of Hematology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Weiliang Zhu
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| |
Collapse
|
22
|
Short-Term Protocols to Obtain Insulin-Producing Cells from Rat Adipose Tissue: Signaling Pathways and In Vivo Effect. Int J Mol Sci 2019; 20:ijms20102458. [PMID: 31109026 PMCID: PMC6566438 DOI: 10.3390/ijms20102458] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 05/09/2019] [Accepted: 05/13/2019] [Indexed: 02/06/2023] Open
Abstract
Studies using mesenchymal stromal cells (MSCs) as a source of insulin-secreting cells (IPCs) are a promising path in the pursuit for diabetes therapy. Here, we investigate three short-term differentiation protocols in order to generate IPCs from autologous adipose-derived stromal cells (ADSCs) with an expressive insulin-secreting profile in vitro and in vivo, as well as the signaling pathways involved in the chosen differentiation protocols. We extracted and cultured ADSCs and differentiated them into IPCs, using three different protocols with different inductors. Afterwards, the secretory profile was analyzed and IPCs differentiated in exendin-4/activin A medium, which presented the best secretory profile, was implanted in the kidney subcapsular region of diabetic rats. All protocols induced the differentiation, but media supplemented with exendin-4/activin A or resveratrol induced the expression and secretion of insulin more efficiently, and only the exendin-4/activin-A-supplemented medium generated an insulin secretion profile more like β-cells, in response to glucose. The PI3K/Akt pathway seems to play a negative role in IPC differentiation; however, the differentiation of ADSCs with exendin-4/activin A positively modulated the p38/MAPK pathway. Resveratrol medium activated the Jak/STAT3 pathway and generated IPCs apparently less sensitive to insulin and insulin-like receptors. Finally, the implant of IPCs with the best secretory behavior caused a decrease in hyperglycemia after one-week implantation in diabetic rats. Our data provide further information regarding the generation of IPCs from ADSCs and strengthen evidence to support the use of MSCs in regenerative medicine, specially the use of exendin-4/activin A to produce rapid and effectively IPCs with significant in vivo effects.
Collapse
|
23
|
Li J, Kang F, Gong X, Bai Y, Dai J, Zhao C, Dou C, Cao Z, Liang M, Dong R, Jiang H, Yang X, Dong S. Ceria nanoparticles enhance endochondral ossification-based critical-sized bone defect regeneration by promoting the hypertrophic differentiation of BMSCs via DHX15 activation. FASEB J 2019; 33:6378-6389. [PMID: 30776318 DOI: 10.1096/fj.201802187r] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Central ischemic necrosis is one of the biggest obstacles in the clinical application of traditional tissue-engineered bone (TEB) in critical-sized bone defect regeneration. Because of its ability to promote vascular invasion, endochondral ossification-based TEB has been applied for bone defect regeneration. However, inadequate chondrocyte hypertrophy can hinder vascular invasion and matrix mineralization during endochondral ossification. In light of recent studies suggesting that ceria nanoparticles (CNPs) improve the blood vessel distribution within TEB, we modified TEB scaffold surfaces with CNPs and investigated the effect and mechanism of CNPs on endochondral ossification-based bone regeneration. The CNPs used in this study were synthesized by the microemulsion method and modified with alendronate-anchored polyethylene glycol 600. We showed that CNPs accelerated new bone formation and enhanced endochondral ossification-based bone regeneration in both a subcutaneous ectopic osteogenesis model and a mouse model of critical-sized bone defects. Mechanistically, CNPs significantly promoted endochondral ossification-based bone regeneration by ensuring sufficient hypertrophic differentiation via the activation of the RNA helicase, DEAH (Asp-Glu-Ala-His) box helicase 15, and its downstream target, p38 MAPK. These results suggested that CNPs could be applied as a biomaterial to improve the efficacy of endochondral ossification-based bone regeneration in critical-sized bone defects.-Li, J., Kang, F., Gong, X., Bai, Y., Dai, J., Zhao, C., Dou, C., Cao, Z., Liang, M., Dong, R., Jiang, H., Yang, X., Dong, S. Ceria nanoparticles enhance endochondral ossification-based critical-sized bone defect regeneration by promoting the hypertrophic differentiation of BMSCs via DHX15 activation.
Collapse
Affiliation(s)
- Jianmei Li
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing, China
| | - Fei Kang
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing, China
| | - Xiaoshan Gong
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing, China
| | - Yun Bai
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing, China
| | - Jingjin Dai
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing, China
| | - Chunrong Zhao
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing, China
| | - Ce Dou
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing, China
| | - Zhen Cao
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing, China
| | - Mengmeng Liang
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing, China
| | - Rui Dong
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing, China
| | - Hong Jiang
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing, China
| | - Xiaochao Yang
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing, China
| | - Shiwu Dong
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing, China.,State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing, China
| |
Collapse
|
24
|
Gangolli RA, Devlin SM, Gerstenhaber JA, Lelkes PI, Yang M. A Bilayered Poly (Lactic-Co-Glycolic Acid) Scaffold Provides Differential Cues for the Differentiation of Dental Pulp Stem Cells. Tissue Eng Part A 2018; 25:224-233. [PMID: 29984629 DOI: 10.1089/ten.tea.2018.0041] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
IMPACT STATEMENT In this article we used an FDA-approved biodegradable biomaterial, poly (lactic-co-glycolic acid) (PLGA 75:25) to generate a bilayered scaffold with the capacity to induce differential, layer-specific dentinogenic differentiation of dental pulp stem cells (DPSCs) in vitro. We surmise that such a scaffold can be used in conjunction with current regenerative endodontic procedures to help regenerating a physiologic dentin-pulp complex in vivo. We hypothesize that our scaffold in conjunction with DPSCs will advance current regenerative endodontics by restoring dentin and initiating the innervation and revascularization of the pulp.
Collapse
Affiliation(s)
- Riddhi A Gangolli
- 1 Department of Bioengineering, College of Engineering, Temple University, Philadelphia, Pennsylvania
| | - Sean M Devlin
- 1 Department of Bioengineering, College of Engineering, Temple University, Philadelphia, Pennsylvania
| | - Jonathan A Gerstenhaber
- 1 Department of Bioengineering, College of Engineering, Temple University, Philadelphia, Pennsylvania
| | - Peter I Lelkes
- 1 Department of Bioengineering, College of Engineering, Temple University, Philadelphia, Pennsylvania.,2 Department of Endodontology, Kornberg School of Dentistry, Temple University, Philadelphia, Pennsylvania
| | - Maobin Yang
- 1 Department of Bioengineering, College of Engineering, Temple University, Philadelphia, Pennsylvania.,2 Department of Endodontology, Kornberg School of Dentistry, Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
25
|
Secreted products of oral bacteria and biofilms impede mineralization of apical papilla stem cells in TLR-, species-, and culture-dependent fashion. Sci Rep 2018; 8:12529. [PMID: 30131595 PMCID: PMC6104064 DOI: 10.1038/s41598-018-30658-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 07/31/2018] [Indexed: 01/09/2023] Open
Abstract
Regenerative endodontics exploits the mineralization potential of stem cells from the apical papilla (SCAPs) in order to promote root maturation of permanent immature teeth. SCAPs may encounter post-disinfection residual bacteria either in planktonic or in biofilm growth mode. Bacterial components bind to Toll-like receptors (TLRs) and trigger pro-inflammatory responses. We hypothesized that biofilm-triggered TLR activation affects the mineralization potential of human SCAPs. SCAPs were challenged with conditioned media derived from standardized dual-species biofilms and planktonic bacterial cultures and their inflammatory status and mineralization capacity were studied. Bacterial products from both growth modes (planktonic vs. biofilm) compromised cell viability, proliferation and mineralization capacity of SCAPs, but in a species- and growth mode-dependent fashion. While TLR4 expression remained unaffected, TLR2 expression was upregulated coinciding with a pro-inflammatory activation of SCAPs. Moreover, TLR and its downstream TGF-β-associated kinase (TAK1) appeared to be blocking mineralization, as inhibition of these factors restored it. In conclusion, bacterial products promoted the pro-inflammatory status and inhibited mineralization of human SCAPs in a TLR-, species-, and culture-dependent fashion. TLR2 emerged as the pivotal mediator of these responses and further research is warranted towards the judicious manipulation of SCAPs in order to modify the untoward events of TLR-priming and signaling.
Collapse
|