1
|
Liu P, Jin M, Hu P, Sun W, Tang Y, Wu J, Zhang D, Yang L, He H, Xu X. Gut microbiota and bile acids: Metabolic interactions and impacts on diabetic kidney disease. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 7:100315. [PMID: 39726973 PMCID: PMC11670419 DOI: 10.1016/j.crmicr.2024.100315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024] Open
Abstract
The intestinal microbiota comprises approximately 1013-1014 species of bacteria and plays a crucial role in host metabolism by facilitating various chemical reactions. Secondary bile acids (BAs) are key metabolites produced by gut microbiota.Initially synthesized by the liver, BA undergoes structural modifications through the activity of various intestinal microbiota enzymes, including eukaryotic, bacterial, and archaeal enzymes. These modified BA then activate specific receptors that regulate multiple metabolic pathways in the host, such as lipid and glucose metabolism, energy balance, inflammatory response, and cell proliferation and death. Recent attention has been given to intestinal flora disorders in diabetic kidney disease (DKD), where activation of BA receptors has shown promise in alleviating diabetic kidney damage by modulating renal lipid metabolism and mitochondrial production. Imbalances in the intestinal flora can influence the progression of DKD through the regulation of bile acid and its receptor pathways. This review aims to propose a mechanism involving the gut-BA-diabetes and nephropathy axes with the goal of optimizing new strategies for treating DKD.
Collapse
Affiliation(s)
| | | | - Ping Hu
- Division of Nephrology, Minhang Hospital, Fudan University, Shanghai, China
| | - Weiqian Sun
- Division of Nephrology, Minhang Hospital, Fudan University, Shanghai, China
| | - Yuyan Tang
- Division of Nephrology, Minhang Hospital, Fudan University, Shanghai, China
| | - Jiajun Wu
- Division of Nephrology, Minhang Hospital, Fudan University, Shanghai, China
| | - Dongliang Zhang
- Division of Nephrology, Minhang Hospital, Fudan University, Shanghai, China
| | - Licai Yang
- Division of Nephrology, Minhang Hospital, Fudan University, Shanghai, China
| | - Haidong He
- Division of Nephrology, Minhang Hospital, Fudan University, Shanghai, China
| | - Xudong Xu
- Division of Nephrology, Minhang Hospital, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Fang Y, Qin M, Zheng Q, Wang K, Han X, Yang Q, Sang X, Cao G. Role of Bile Acid Receptors in the Development and Function of Diabetic Nephropathy. Kidney Int Rep 2024; 9:3116-3133. [PMID: 39534198 PMCID: PMC11551060 DOI: 10.1016/j.ekir.2024.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/25/2024] [Accepted: 08/04/2024] [Indexed: 11/16/2024] Open
Abstract
Diabetic nephropathy (DN) is a prevalent microvascular complication that occurs often in individuals with diabetes. It significantly raises the mortality rate of affected patients. Therefore, there is an urgent need to identify therapeutic targets for controlling and preventing the occurrence and development of DN. Bile acids (BAs) are now recognized as intricate metabolic integrators and signaling molecules. The activation of BAs has great promise as a therapeutic approach for preventing DN, renal damage caused by obesity, and nephrosclerosis. The nuclear receptors (NRs), farnesoid X receptor (FXR), pregnane X receptor (PXR), vitamin D receptor (VDR); and the G protein-coupled BA receptor, Takeda G-protein-coupled receptor 5 (TGR5) have important functions in controlling lipid, glucose, and energy metabolism, inflammation, as well as drug metabolism and detoxification. Over the past 10 years, there has been advancement in comprehending the biology and processes of BA receptors in the kidney, as well as in the creation of targeted BA receptor agonists. In this review, we discuss the role of BA receptors, FXR, PXR, VDR, and TGR5 in DN and their role in renal physiology, as well as the development and application of agonists that activate BA receptors for the treatment of kidney diseases.
Collapse
Affiliation(s)
- Yuanyuan Fang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Minjing Qin
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qitong Zheng
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Kuilong Wang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xin Han
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qiao Yang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xia'nan Sang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Gang Cao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
3
|
Tang H, Huang Y, Yuan D, Liu J. Atherosclerosis, gut microbiome, and exercise in a meta-omics perspective: a literature review. PeerJ 2024; 12:e17185. [PMID: 38584937 PMCID: PMC10999153 DOI: 10.7717/peerj.17185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/11/2024] [Indexed: 04/09/2024] Open
Abstract
Background Cardiovascular diseases are the leading cause of death worldwide, significantly impacting public health. Atherosclerotic cardiovascular diseases account for the majority of these deaths, with atherosclerosis marking the initial and most critical phase of their pathophysiological progression. There is a complex relationship between atherosclerosis, the gut microbiome's composition and function, and the potential mediating role of exercise. The adaptability of the gut microbiome and the feasibility of exercise interventions present novel opportunities for therapeutic and preventative approaches. Methodology We conducted a comprehensive literature review using professional databases such as PubMed and Web of Science. This review focuses on the application of meta-omics techniques, particularly metagenomics and metabolomics, in studying the effects of exercise interventions on the gut microbiome and atherosclerosis. Results Meta-omics technologies offer unparalleled capabilities to explore the intricate connections between exercise, the microbiome, the metabolome, and cardiometabolic health. This review highlights the advancements in metagenomics and metabolomics, their applications in research, and examines how exercise influences the gut microbiome. We delve into the mechanisms connecting these elements from a metabolic perspective. Metagenomics provides insight into changes in microbial strains post-exercise, while metabolomics sheds light on the shifts in metabolites. Together, these approaches offer a comprehensive understanding of how exercise impacts atherosclerosis through specific mechanisms. Conclusions Exercise significantly influences atherosclerosis, with the gut microbiome serving as a critical intermediary. Meta-omics technology holds substantial promise for investigating the gut microbiome; however, its methodologies require further refinement. Additionally, there is a pressing need for more extensive cohort studies to enhance our comprehension of the connection among these element.
Collapse
Affiliation(s)
- Haotian Tang
- Department of Histology and Embryology, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Yanqing Huang
- Department of Histology and Embryology, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Didi Yuan
- Department of Histology and Embryology, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Junwen Liu
- Department of Histology and Embryology, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| |
Collapse
|
4
|
Zhang P, Fang Z, Zhao M, Yi B, Huang Y, Yang H, Guo N, Zhao C. Ethanol extract of Pueraria lobata improve acute myocardial infarction in rats via regulating gut microbiota and bile acid metabolism. Phytother Res 2023; 37:5932-5946. [PMID: 37697496 DOI: 10.1002/ptr.8005] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/15/2023] [Accepted: 08/20/2023] [Indexed: 09/13/2023]
Abstract
BACKGROUND AND AIM Acute myocardial infarction (AMI) is a multifactorial disease with high mortality rate worldwide. Ethanol extract of Pueraria lobata (EEPL) has been widely used in treating cardiovascular diseases in China. This study aimed to explore the underlying therapeutic mechanism of EEPL in AMI rats. EXPERIMENTAL PROCEDURE We first evaluated the anti-AMI efficacy of EEPL through immunohistochemistry staining and biochemical indexes. Then, UPLC-MS/MS, 16S rDNA, and shotgun metagenomic sequencing were used to analyze the alterations in bile acid metabolism and intestinal flora. Finally, the influence of EEPL on ilem bile acid metabolism, related enzymes expression, and transporter proteins expression in rats were verified by mass spectrometry image and ELISA. KEY RESULTS The results showed that EEPL can reduce cardiac impairment in AMI rats. Besides, EEPL effectively increased bile acid levels and regulated gut microbiota disturbance in AMI rats via increasing CYP7A1 expression and restoring intestinal microbiota diversity, separately. Moreover, it can increase bile acids reabsorption and fecal excretion through inhibiting FXR-FGF15 signaling pathway and increasing OST-α expression, which associated with Lachnoclostridium. CONCLUSIONS AND IMPLICATIONS Our findings demonstrated that EEPL alleviated AMI partially by remediating intestinal dysbiosis and promoting bile acid biosynthesis, which provided new targets for AMI treatment.
Collapse
Affiliation(s)
- Pin Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhengyu Fang
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Min Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Bojiao Yi
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yihe Huang
- School of Public Health, Shenyang Medical College, Shenyang, China
| | - Hongjun Yang
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Na Guo
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chunjie Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
5
|
Wang L, Wang S, Zhang Q, He C, Fu C, Wei Q. The role of the gut microbiota in health and cardiovascular diseases. MOLECULAR BIOMEDICINE 2022; 3:30. [PMID: 36219347 PMCID: PMC9554112 DOI: 10.1186/s43556-022-00091-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/05/2022] [Indexed: 11/17/2022] Open
Abstract
The gut microbiota is critical to human health, such as digesting nutrients, forming the intestinal epithelial barrier, regulating immune function, producing vitamins and hormones, and producing metabolites to interact with the host. Meanwhile, increasing evidence indicates that the gut microbiota has a strong correlation with the occurrence, progression and treatment of cardiovascular diseases (CVDs). In patients with CVDs and corresponding risk factors, the composition and ratio of gut microbiota have significant differences compared with their healthy counterparts. Therefore, gut microbiota dysbiosis, gut microbiota-generated metabolites, and the related signaling pathway may serve as explanations for some of the mechanisms about the occurrence and development of CVDs. Several studies have also demonstrated that many traditional and latest therapeutic treatments of CVDs are associated with the gut microbiota and its generated metabolites and related signaling pathways. Given that information, we summarized the latest advances in the current research regarding the effect of gut microbiota on health, the main cardiovascular risk factors, and CVDs, highlighted the roles and mechanisms of several metabolites, and introduced corresponding promising treatments for CVDs regarding the gut microbiota. Therefore, this review mainly focuses on exploring the role of gut microbiota related metabolites and their therapeutic potential in CVDs, which may eventually provide better solutions in the development of therapeutic treatment as well as the prevention of CVDs.
Collapse
Affiliation(s)
- Lu Wang
- grid.412901.f0000 0004 1770 1022Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People’s Republic of China ,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, People’s Republic of China
| | - Shiqi Wang
- grid.412901.f0000 0004 1770 1022Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People’s Republic of China ,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, People’s Republic of China
| | - Qing Zhang
- grid.412901.f0000 0004 1770 1022Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People’s Republic of China ,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, People’s Republic of China
| | - Chengqi He
- grid.412901.f0000 0004 1770 1022Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People’s Republic of China ,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, People’s Republic of China
| | - Chenying Fu
- grid.412901.f0000 0004 1770 1022National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, People’s Republic of China ,grid.412901.f0000 0004 1770 1022Aging and Geriatric Mechanism Laboratory, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Quan Wei
- grid.412901.f0000 0004 1770 1022Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People’s Republic of China ,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, People’s Republic of China
| |
Collapse
|
6
|
Javaheri A, Diab A, Zhao L, Qian C, Cohen JB, Zamani P, Kumar A, Wang Z, Ebert C, Maranville J, Kvikstad E, Basso M, van Empel V, Richards AM, Doughty R, Rietzschell E, Kammerhoff K, Gogain J, Schafer P, Seiffert DA, Gordon DA, Ramirez-Valle F, Mann DL, Cappola TP, Chirinos JA. Proteomic Analysis of Effects of Spironolactone in Heart Failure With Preserved Ejection Fraction. Circ Heart Fail 2022; 15:e009693. [PMID: 36126144 PMCID: PMC9504263 DOI: 10.1161/circheartfailure.121.009693] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/16/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND The TOPCAT trial (Treatment of Preserved Cardiac Function Heart Failure With an Aldosterone Antagonist Trial) suggested clinical benefits of spironolactone treatment among patients with heart failure with preserved ejection fraction enrolled in the Americas. However, a comprehensive assessment of biologic pathways impacted by spironolactone therapy in heart failure with preserved ejection fraction has not been performed. METHODS We conducted aptamer-based proteomic analysis utilizing 5284 modified aptamers to 4928 unique proteins on plasma samples from TOPCAT participants from the Americas (n=164 subjects with paired samples at baseline and 1 year) to identify proteins and pathways impacted by spironolactone therapy in heart failure with preserved ejection fraction. Mean percentage change from baseline was calculated for each protein. Additionally, we conducted pathway analysis of proteins altered by spironolactone. RESULTS Spironolactone therapy was associated with proteome-wide significant changes in 7 proteins. Among these, CARD18 (caspase recruitment domain-containing protein 18), PKD2 (polycystin 2), and PSG2 (pregnancy-specific glycoprotein 2) were upregulated, whereas HGF (hepatic growth factor), PLTP (phospholipid transfer protein), IGF2R (insulin growth factor 2 receptor), and SWP70 (switch-associated protein 70) were downregulated. CARD18, a caspase-1 inhibitor, was the most upregulated protein by spironolactone (-0.5% with placebo versus +66.5% with spironolactone, P<0.0001). The top canonical pathways that were significantly associated with spironolactone were apelin signaling, stellate cell activation, glycoprotein 6 signaling, atherosclerosis signaling, liver X receptor activation, and farnesoid X receptor activation. Among the top pathways, collagens were a consistent theme that increased in patients receiving placebo but decreased in patients randomized to spironolactone. CONCLUSIONS Proteomic analysis in the TOPCAT trial revealed proteins and pathways altered by spironolactone, including the caspase inhibitor CARD18 and multiple pathways that involved collagens. In addition to effects on fibrosis, our studies suggest potential antiapoptotic effects of spironolactone in heart failure with preserved ejection fraction, a hypothesis that merits further exploration.
Collapse
Affiliation(s)
- Ali Javaheri
- Washington University School of Medicine, St. Louis, MO
| | - Ahmed Diab
- Washington University School of Medicine, St. Louis, MO
| | - Lei Zhao
- Bristol Myers Squibb Company, Lawrenceville, NJ
| | - Chenao Qian
- Perelman School of Medicine. University of Pennsylvania School of Medicine/Hospital of the University of Pennsylvania. Philadelphia, PA
| | - Jordana B. Cohen
- Perelman School of Medicine. University of Pennsylvania School of Medicine/Hospital of the University of Pennsylvania. Philadelphia, PA
| | - Payman Zamani
- Perelman School of Medicine. University of Pennsylvania School of Medicine/Hospital of the University of Pennsylvania. Philadelphia, PA
| | - Anupam Kumar
- Perelman School of Medicine. University of Pennsylvania School of Medicine/Hospital of the University of Pennsylvania. Philadelphia, PA
| | | | | | | | | | | | - Vanessa van Empel
- Department of Cardiology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - A. Mark Richards
- Cardiovascular Research Institute, National University of Singapore, Singapore
- Christchurch Heart Institute, University of Otago, Christchurch, New Zealand
| | - Rob Doughty
- Christchurch Heart Institute, University of Otago, Christchurch, New Zealand
| | - Ernst Rietzschell
- Department of Cardiovascular Diseases, Ghent University Hospital, Ghent, Belgium
| | | | | | | | | | | | | | | | - Thomas P. Cappola
- Perelman School of Medicine. University of Pennsylvania School of Medicine/Hospital of the University of Pennsylvania. Philadelphia, PA
| | - Julio A. Chirinos
- Perelman School of Medicine. University of Pennsylvania School of Medicine/Hospital of the University of Pennsylvania. Philadelphia, PA
| |
Collapse
|
7
|
Gao ZW, Zhang X, Zhuo QY, Chen MX, Yang C, Chen ZJ, Chen Y, Liao YQ, Wang LL. Metabolomics and integrated network pharmacology analysis reveal attenuates cardiac hypertrophic mechanisms of HuoXin pill. JOURNAL OF ETHNOPHARMACOLOGY 2022; 292:115150. [PMID: 35304274 DOI: 10.1016/j.jep.2022.115150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/18/2022] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cardiac hypertrophy (CH) is maladaptive and contributes to the pathogenesis of heart failure. Huoxin pill (HXP), a Chinese herbal prescription, is widely applied in the treatment of cardiovascular disease (CAD). Its mechanism, however, is unclear. AIM OF THE STUDY This study investigated the mechanism of action for Huoxin pill in the treatment of CH, an important stage of CAD. MATERIALS AND METHODS A total of 60 rats were injected with isoprenaline (ISO) to establish a model of CH. Echocardiography and histopathologic evaluation were performed to evaluate the disease severity, whereas ELISAs were conducted to determine the expression of oxidative stress. Network pharmacology and metabolomic analyses were conducted to identify the key compounds, core targets and pathways that mediate the effects of HXP against CH. Western blotting and immunohistochemistry were used to test apoptosis protein levels. RESULTS HXP administration in ISO-treated rats decreased hypertrophy indices, alleviated cardiac pathological damage, and downregulated oxidative stress levels when compared to those of rats subjected to ISO treatment only. Moreover, network pharmacology results suggested that the PI3K-Akt pathway is a main mechanism by which HXP inhibits cardiac hypertrophy, and experimental verification showed that HXP inhibited cardiomyocyte apoptosis via activation of the PI3K-Akt pathway. The results of metabolomic analysis identified 21 differential metabolites between the HXPH group and ISO group, which were considered to be metabolic biomarkers of HXP in the treatment of CH. Among them, 6 differential metabolites were significantly upregulated, and 15 were significantly downregulated. CONCLUSIONS The present study presents an integrated strategy for investigating the mechanisms of HXP in the treatment of CH and sheds new light on the application of HXP as a traditional Chinese medicine.
Collapse
Affiliation(s)
- Zhan-Wang Gao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No. 232, Waihuandong Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006, PR China.
| | - Xin Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No. 232, Waihuandong Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006, PR China.
| | - Qing-Yuan Zhuo
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No. 232, Waihuandong Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006, PR China.
| | - Mei-Xian Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No. 232, Waihuandong Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006, PR China.
| | - Chong Yang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No. 232, Waihuandong Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006, PR China.
| | - Zhao-Jie Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No. 232, Waihuandong Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006, PR China.
| | - Ying Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No. 232, Waihuandong Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006, PR China.
| | - Yi-Qiu Liao
- Baiyunshan Pharmaceutical General Factory, Guangzhou Baiyunshan Pharmaceutical Holdings Co., Ltd., Guangzhou, 510515, PR China; Key Laboratory of Key Technology Research on Chemical Raw Materials and Preparations of Guangdong Province, Guangzhou, 510515, PR China.
| | - Ling-Li Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No. 232, Waihuandong Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006, PR China.
| |
Collapse
|
8
|
Mu F, Tang M, Guan Y, Lin R, Zhao M, Zhao J, Huang S, Zhang H, Wang J, Tang H. Knowledge Mapping of the Links Between the Gut Microbiota and Heart Failure: A Scientometric Investigation (2006–2021). Front Cardiovasc Med 2022; 9:882660. [PMID: 35571213 PMCID: PMC9095927 DOI: 10.3389/fcvm.2022.882660] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/11/2022] [Indexed: 12/12/2022] Open
Abstract
Background There is considerable research value and extensive application perspectives to explore the link between gut microbiota and heart failure. The purpose of this study is to provide an overview of overall characteristics, evolutionary pathways, frontier research hotspots, and future trends in this field. Methods Research datasets were acquired from the Web of Science Core Collection (WoSCC) between January 1, 2006 and December 31, 2021. Three different analysis tools including one online platform, VOS viewer V1.6.17.0, and CiteSpace V5.8.R2 software were used in order to conduct collaboration network analysis, co-cited analysis, co-occurring analysis, and citation burst detection. Results A total of 873 publications in the WoSCC database met the requirement. The overall characteristics analysis showed that a steady growth trend in the number of publications and citations, with the predominant literature type being articles and the most frequent subject category being cardiac cardiovascular systems. The United States was the most prolific country and the center of national collaboration. Cleveland Clinic and Nathalie M. Delzenne provided the leading influence with publications, the cooperation between the institutes and authors were relatively weak. Moreover, gut microbiota, heart failure, risk factor, obesity, and inflammation were the keywords that appeared more frequently in the clustering analysis of reference co-citation and keyword co-occurrence. Burst detection analysis of top keywords showed that trimethylamine N-oxide (TMAO), bile acid, blood pressure, hypertension, and fermentation were the new research foci on the association between gut microbiota and heart failure. Strategies to improve gut microbiota hold promise as a new approach to treat heart failure. Conclusion The comprehensive bibliometric study indicates that the structured information may be helpful in understanding research trends in the link between gut microbiota and heart failure, and locating research hotspots and gaps in this domain, especially further advances in this field will lead to significant breakthroughs in the development of novel therapeutic tools for metabolic modulation of heart failure.
Collapse
Affiliation(s)
- Fei Mu
- Department of Pharmacy, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, The Fourth Military Medical University, Xi’an, China
| | - Meng Tang
- Department of Pharmacy, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Yue Guan
- Department of Pharmacy, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Rui Lin
- Department of Pharmacy, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Meina Zhao
- Department of Pharmacy, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Jiaxin Zhao
- Department of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Shaojie Huang
- Department of Pharmacy, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Haiyue Zhang
- Department of Health Statistics, School of Preventive Medicine, The Fourth Military Medical University, Xi’an, China
| | - Jingwen Wang
- Department of Pharmacy, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
- *Correspondence: Jingwen Wang,
| | - Haifeng Tang
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, The Fourth Military Medical University, Xi’an, China
- Haifeng Tang,
| |
Collapse
|
9
|
Bayat G, Hashemi SA, Karim H, Fallah P, Hedayatyanfard K, Bayat M, Khalili A. Biliary cirrhosis-induced cardiac abnormality in rats: Interaction between Farnesoid-X-activated receptors and the cardiac uncoupling proteins 2 and 3. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2022; 25:126-133. [PMID: 35656450 PMCID: PMC9118280 DOI: 10.22038/ijbms.2022.60888.13485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 01/03/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVES This study aimed to evaluate the relationship between Farnesoid-X-activated receptors (FXR) as nuclear regulators of the antioxidant defense system as well as cardiac mitochondrial carrier proteins of UCP2 and UCP3 in cardiac damage induced by cirrhosis. MATERIALS AND METHODS Twenty-two male Wistar rats (200-250 g) were randomly divided into 3 experimental groups, including a control group (n=6), a sham-operated group (n=8), and a bile duct ligated (BDL) group (n=8). Four weeks after surgical intervention, biochemical assessment (AST, ALT, GGT, LDH, and ALP), histological observation, and molecular evaluation (FXR, UCP2, UCP3, BNP, Caspase3, and GAPDH) using real-time RT-PCR were performed. RESULTS Compared with the sham-operation group, the BDL group showed a significant rise in liver enzymes of AST, ALT, GGT, LDH, and ALP. Defined fibrotic and necrotic bundles and thick reticulin fibers were also found in BDL liver tissue. Besides liver morphological alterations, left ventricles of BDL ones were also associated with defined cardiomyocyte hypertrophy, myofiber vacuolization, and clear pigmentation. Findings showed a significant up-regulation of cardiac Brain Natriuretic Peptide (BNP) along with marked down-regulation in hepatic FXR, cardiac FXR, and cardiac UCP2 and UCP3. However, the expression of caspase 3 in the cardiac tissue was not affected by BDL operation during 4 weeks. CONCLUSION Expression of FXR as an upstream regulator of cellular redox status, besides the non-enzymatic ROS buffering defense system of cardiac UCPs, has a pivotal role in the pathogenesis of cirrhotic-induced cardiac abnormality in rats.
Collapse
Affiliation(s)
- Gholamreza Bayat
- Department of Physiology-Pharmacology-Medical Physic, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
- Cardiovascular Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Seyed Ali Hashemi
- Department of Pathology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Hosein Karim
- Cardiovascular Research Center, Alborz University of Medical Sciences, Karaj, Iran
- Department of Cardiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Parviz Fallah
- Department of Medical Laboratory Sciences, Faculty of Para-Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Keshvad Hedayatyanfard
- Department of Physiology-Pharmacology-Medical Physic, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
- Cardiovascular Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Mahnaz Bayat
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Azadeh Khalili
- Department of Physiology-Pharmacology-Medical Physic, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
- Cardiovascular Research Center, Alborz University of Medical Sciences, Karaj, Iran
| |
Collapse
|
10
|
Kaur H, Premkumar M. Diagnosis and Management of Cirrhotic Cardiomyopathy. J Clin Exp Hepatol 2022; 12:186-199. [PMID: 35068798 PMCID: PMC8766707 DOI: 10.1016/j.jceh.2021.08.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/13/2021] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Cirrhotic cardiomyopathy refers to the structural and functional changes in the heart leading to either impaired systolic, diastolic, electrocardiographic, and neurohormonal changes associated with cirrhosis and portal hypertension. Cirrhotic cardiomyopathy is present in 50% of patients with cirrhosis and is clinically seen as impaired contractility, diastolic dysfunction, hyperdynamic circulation, and electromechanical desynchrony such as QT prolongation. In this review, we will discuss the cardiac physiology principles underlying cirrhotic cardiomyopathy, imaging techniques such as cardiac magnetic resonance imaging and scintigraphy, cardiac biomarkers, and newer echocardiographic techniques such as tissue Doppler imaging and speckle tracking, and emerging treatments to improve outcomes. METHODS We reviewed available literature from MEDLINE for randomized controlled trials, cohort studies, cross-sectional studies, and real-world outcomes using the search terms "cirrhotic cardiomyopathy," "left ventricular diastolic dysfunction," "heart failure in cirrhosis," "liver transplantation," and "coronary artery disease". RESULTS Cirrhotic cardiomyopathy is associated with increased risk of complications such as hepatorenal syndrome, refractory ascites, impaired response to stressors including sepsis, bleeding or transplantation, poor health-related quality of life and increased morbidity and mortality. The evaluation of cirrhotic cardiomyopathy should also guide the feasibility of procedures such as transjugular intrahepatic portosystemic shunt, dose titration protocol of betablockers, and liver transplantation. The use of targeted heart rate reduction is of interest to improve cardiac filling and improve the cardiac output using repurposed heart failure drugs such as ivabradine. Liver transplantation may also reverse the cirrhotic cardiomyopathy; however, careful cardiac evaluation is necessary to rule out coronary artery disease and improve cardiac outcomes in the perioperative period. CONCLUSION More data are needed on the new diagnostic criteria, molecular and biochemical changes, and repurposed drugs in cirrhotic cardiomyopathy. The use of advanced imaging techniques should be incorporated in clinical practice.
Collapse
Key Words
- 2-AG, 2-arachidonylglycerol
- 2D, two-dimensional
- AEA, Anandamide
- ANP, Atrial Natriuretic Peptide
- ASE, the American Society of Echocardiography
- AUC, area under the curve
- BA, bile acid
- BNP, Brain natriuretic peptide
- CAD, coronary artery disease
- CB-1, cannabinoid −1
- CCM, Cirrhotic Cardiomyopathy
- CMR, cardiovascular magnetic resonance imaging
- CO, cardiac output
- CT, computed tomography
- CTP, Child–Turcotte–Pugh
- CVP, central venous pressure
- DT, deceleration Time
- ECG, electrocardiogram
- ECV, extracellular volume
- EF, Ejection fraction
- EMD, electromechanical desynchrony
- ESLD, end-stage liver disease
- FXR, Farnesoid X receptor
- GI, gastrointestinal
- GLS, Global Longitudinal strain
- HCN, Hyperpolarization-activated cyclic nucleotide–gated
- HE, hepatic encephalopathy
- HF, heart failure
- HO, Heme oxygenase
- HPS, hepatopulmonary syndrome
- HR, heart rate
- HRS, hepatorenal syndrome
- HVPG, hepatic venous pressure gradient
- HfmrEF, heart failure with mid-range ejection fraction
- HfrEF, heart failure with reduced ejection fraction
- IVC, Inferior Vena Cava
- IVCD, IVC Diameter
- IVS, intravascular volume status
- L-NAME, NG-nitro-L-arginine methyl ester
- LA, left atrium
- LAVI, LA volume index
- LGE, late gadolinium enhancement
- LT, liver transplant
- LV, left ventricle
- LVDD, left ventricular diastolic dysfunction
- LVEDP, left ventricular end-diastolic pressure
- LVEDV, LV end diastolic volume
- LVEF, left ventricular ejection fraction
- LVESV, LV end systolic volume
- LVOT, left ventricular outflow tract
- MAP, mean arterial pressure
- MELD, Model for End-Stage Liver Disease
- MR, mitral regurgitation
- MRI, Magnetic resonance imaging
- MV, mitral valve
- NAFLD, Nonalcoholic fatty liver disease
- NO, nitric oxide
- NOS, Nitric oxide synthases
- NTProBNP, N-terminal proBNP
- PAP, pulmonary artery pressure
- PCWP, pulmonary capillary wedged pressure
- PHT, portal hypertension
- PWD, Pulsed-wave Doppler
- RV, right ventricle
- RVOT, right ventricular outflow tract
- SA, sinoatrial
- SD, standard deviation
- SV, stroke volume
- SVR, Systemic vascular resistance
- TDI, tissue Doppler imaging
- TIPS, transjugular intrahepatic portosystemic shunt
- TR, Tricuspid valve
- TRPV1, transient receptor potential cation channel subfamily V member 1
- TTE, transthoracic echocardiography
- USG, ultrasonography
- VTI, velocity time integral
- beta blocker
- cirrhotic cardiomyopathy
- hemodynamics in cirrhosis
- left ventricular diastolic dysfunction
Collapse
Affiliation(s)
| | - Madhumita Premkumar
- Address for correspondence: Dr. Madhumita Premkumar, M.D., D.M., Department of Hepatology, Postgraduate Institute of Medical Education and Research, 60012, Chandigarh, India. Tel.: ++91-9540951061 (mobile)
| |
Collapse
|
11
|
Zhang S, Zhou J, Wu W, Zhu Y, Liu X. The Role of Bile Acids in Cardiovascular Diseases: from Mechanisms to Clinical Implications. Aging Dis 2022; 14:261-282. [PMID: 37008052 PMCID: PMC10017164 DOI: 10.14336/ad.2022.0817] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 08/17/2022] [Indexed: 11/18/2022] Open
Abstract
Bile acids (BAs), key regulators in the metabolic network, are not only involved in lipid digestion and absorption but also serve as potential therapeutic targets for metabolic disorders. Studies have shown that cardiac dysfunction is associated with abnormal BA metabolic pathways. As ligands for several nuclear receptors and membrane receptors, BAs systematically regulate the homeostasis of metabolism and participate in cardiovascular diseases (CVDs), such as myocardial infarction, diabetic cardiomyopathy, atherosclerosis, arrhythmia, and heart failure. However, the molecular mechanism by which BAs trigger CVDs remains controversial. Therefore, the regulation of BA signal transduction by modulating the synthesis and composition of BAs is an interesting and novel direction for potential therapies for CVDs. Here, we mainly summarized the metabolism of BAs and their role in cardiomyocytes and noncardiomyocytes in CVDs. Moreover, we comprehensively discussed the clinical prospects of BAs in CVDs and analyzed the clinical diagnostic and application value of BAs. The latest development prospects of BAs in the field of new drug development are also prospected. We aimed to elucidate the underlying mechanism of BAs treatment in CVDs, and the relationship between BAs and CVDs may provide new avenues for the prevention and treatment of these diseases.
Collapse
Affiliation(s)
- Shuwen Zhang
- Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Junteng Zhou
- Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China.
- Health Management Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Wenchao Wu
- Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Ye Zhu
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China.
- Correspondence should be addressed to: Prof. Xiaojing Liu (), and Prof. Ye Zhu (), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiaojing Liu
- Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China.
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China.
- Correspondence should be addressed to: Prof. Xiaojing Liu (), and Prof. Ye Zhu (), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
12
|
Gut Microbiome and Precision Nutrition in Heart Failure: Hype or Hope? Curr Heart Fail Rep 2021; 18:23-32. [DOI: 10.1007/s11897-021-00503-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/21/2021] [Indexed: 02/06/2023]
|
13
|
Wang J, Zhang J, Lin X, Wang Y, Wu X, Yang F, Gao W, Zhang Y, Sun J, Jiang C, Xu M. DCA-TGR5 signaling activation alleviates inflammatory response and improves cardiac function in myocardial infarction. J Mol Cell Cardiol 2021; 151:3-14. [PMID: 33130149 DOI: 10.1016/j.yjmcc.2020.10.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/29/2020] [Accepted: 10/26/2020] [Indexed: 12/27/2022]
Abstract
AIMS The progression of myocardial infarction (MI) involves multiple metabolic disorders. Bile acid metabolites have been increasingly recognized as pleiotropic signaling molecules that regulate multiple cardiovascular functions. G protein-coupled bile acid receptor (TGR5) is one of the receptors sensing bile acids to mediate their biological functions. In this study, we aimed to elucidate the effects of bile acids-TGR5 signaling pathways in myocardial infarction (MI). METHODS AND RESULTS Blood samples of AMI patients or control subjects were collected and plasma was used for bile acid metabolism analysis. We discovered that bile acid levels were altered and deoxycholic acid (DCA) was substantially reduced in the plasma of AMI patients. Mice underwent either the LAD ligation model of MI or sham operation. Both MI and sham mice were gavaged with 10 mg/kg/d DCA or vehicle control since 3-day before the operation. Cardiac function was assessed by ultrasound echocardiography, infarct area was evaluated by TTC staining and Masson trichrome staining. Administration of DCA improved cardiac function and reduced ischemic injury at the 7th-day post-MI. The effects of DCA were dependent on binding to its receptor TGR5. Tgr5-/- mice underwent the same MI model. Cardiac function deteriorated and infarct size was increased at the 7th-day post-MI, which were not savaged by DCA administration. Moreover, DCA inhibited interleukin (IL)-1β expression in the infarcted hearts, and ameliorated IL-1β activation at 1-day post-MI. DCA inhibited NF-κB signaling and further IL-1β expression in cultured neonatal mouse cardiomyocytes under hypoxia as well as cardio-fibroblasts with the treatment of LPS. CONCLUSIONS DCA-TGR5 signaling pathway activation decreases inflammation and ameliorates heart function post-infarction. Strategies that control bile acid metabolism and TGR5 signaling to ameliorate the inflammatory responses may provide beneficial effects in patients with myocardial infarction.
Collapse
Affiliation(s)
- Jiaxing Wang
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptide, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education; Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| | - Jianshu Zhang
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptide, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education; Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| | - Xianjuan Lin
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptide, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education; Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| | - Yupeng Wang
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptide, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education; Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| | - Xiang Wu
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, Shandong 250012, China
| | - Fan Yang
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, Shandong 250012, China
| | - Wei Gao
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptide, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education; Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| | - Yan Zhang
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, School of Basic Medical Sciences, Ministry of Education, Peking University Health Science Center, Beijing 100191, China
| | - Jinpeng Sun
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, Shandong University, School of Medicine, Jinan, Shandong 250012, China; Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, China
| | - Changtao Jiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China; Center of Basic Medical Research, Institute of Medical Innovation and Research, Third Hospital, Peking University, Beijing 100191, China.
| | - Ming Xu
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptide, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education; Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China; State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| |
Collapse
|
14
|
Chen L, Li S, Ai L, Zhou J, Huang J, Xu F, Zeng X, Han J, Yin F, Zhu Y, Xie Y. The Correlation Between Heart Failure and Gut Microbiome Metabolites. INFECTIOUS MICROBES & DISEASES 2020; 2:136-143. [PMID: 38630083 PMCID: PMC7769059 DOI: 10.1097/im9.0000000000000042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/22/2020] [Accepted: 10/26/2020] [Indexed: 12/28/2022]
Abstract
Heart failure (HF) is a global public health problem, with morbidity and mortality increasing year by year. The gut microbiome actively affects the physiological and pathological activities of the human body in a variety of ways. More and more studies have suggested a strong correlation between HF and gut microbiome metabolites. Our review summarizes the specific alteration of these metabolites and their connection to the progression of HF, aiming at considering new approaches toward regulating the gut microbiome and using its metabolic pathways to treat HF, potentially decreasing the morbidity and mortality of HF as well as improving prognosis.
Collapse
Affiliation(s)
- Lina Chen
- Shaoxing City Keqiao District Hospital of Traditional Chinese Medicine, Shaoxing, Zhejiang, China
| | - Senhao Li
- Shaoxing City Keqiao District Hospital of Traditional Chinese Medicine, Shaoxing, Zhejiang, China
| | - Lanmu Ai
- College of Medicine, Shaoxing University, Shaoxing, Zhejiang, China
| | - Jun Zhou
- Shaoxing City Keqiao District Hospital of Traditional Chinese Medicine, Shaoxing, Zhejiang, China
| | - Junlin Huang
- College of Pharmacy, University of Michigan, Ann Arbor, Michigan, USA
| | - Feng Xu
- Shaoxing City Keqiao District Hospital of Traditional Chinese Medicine, Shaoxing, Zhejiang, China
| | - Xiangyuan Zeng
- Shaoxing City Keqiao District Hospital of Traditional Chinese Medicine, Shaoxing, Zhejiang, China
| | - Jia Han
- Shaoxing City Keqiao District Hospital of Traditional Chinese Medicine, Shaoxing, Zhejiang, China
| | - Fangxue Yin
- Shulan International Medical College, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University, Hangzhou, Zhejiang, China
| | - Yixin Zhu
- Shulan International Medical College, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University, Hangzhou, Zhejiang, China
| | - Yifang Xie
- Shaoxing City Keqiao District Hospital of Traditional Chinese Medicine, Shaoxing, Zhejiang, China
| |
Collapse
|
15
|
Borg MJ, Rayner CK, Jones KL, Horowitz M, Xie C, Wu T. Gastrointestinal Mechanisms Underlying the Cardiovascular Effect of Metformin. Pharmaceuticals (Basel) 2020; 13:410. [PMID: 33266396 PMCID: PMC7700183 DOI: 10.3390/ph13110410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/20/2020] [Accepted: 11/20/2020] [Indexed: 02/07/2023] Open
Abstract
Metformin, the most widely prescribed drug therapy for type 2 diabetes, has pleiotropic benefits, in addition to its capacity to lower elevated blood glucose levels, including mitigation of cardiovascular risk. The mechanisms underlying the latter remain unclear. Mechanistic studies have, hitherto, focused on the direct effects of metformin on the heart and vasculature. It is now appreciated that effects in the gastrointestinal tract are important to glucose-lowering by metformin. Gastrointestinal actions of metformin also have major implications for cardiovascular function. This review summarizes the gastrointestinal mechanisms underlying the action of metformin and their potential relevance to cardiovascular benefits.
Collapse
Affiliation(s)
- Malcolm J. Borg
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide 5000, Australia; (M.J.B.); (C.K.R.); (K.L.J.); (M.H.); (C.X.)
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide 5000, Australia
| | - Christopher K. Rayner
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide 5000, Australia; (M.J.B.); (C.K.R.); (K.L.J.); (M.H.); (C.X.)
| | - Karen L. Jones
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide 5000, Australia; (M.J.B.); (C.K.R.); (K.L.J.); (M.H.); (C.X.)
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide 5000, Australia
| | - Michael Horowitz
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide 5000, Australia; (M.J.B.); (C.K.R.); (K.L.J.); (M.H.); (C.X.)
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide 5000, Australia
| | - Cong Xie
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide 5000, Australia; (M.J.B.); (C.K.R.); (K.L.J.); (M.H.); (C.X.)
| | - Tongzhi Wu
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide 5000, Australia; (M.J.B.); (C.K.R.); (K.L.J.); (M.H.); (C.X.)
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide 5000, Australia
- Institute of Diabetes, School of Medicine, Southeast University, Nanjing 210096, China
| |
Collapse
|
16
|
Shan HM, Zang M, Zhang Q, Shi RB, Shi XJ, Mamtilahun M, Liu C, Luo LL, Tian X, Zhang Z, Yang GY, Tang Y, Pu J, Wang Y. Farnesoid X receptor knockout protects brain against ischemic injury through reducing neuronal apoptosis in mice. J Neuroinflammation 2020; 17:164. [PMID: 32450881 PMCID: PMC7249620 DOI: 10.1186/s12974-020-01838-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 05/04/2020] [Indexed: 12/13/2022] Open
Abstract
Background Farnesoid X receptor (FXR) is a nuclear receptor that plays a critical role in controlling cell apoptosis in diverse diseases. Previous studies have shown that knocking out FXR improved cardiac function by reducing cardiomyocyte apoptosis in myocardial ischemic mice. However, the role of FXR after cerebral ischemia remains unknown. In this study, we explored the effects and mechanisms of FXR knockout (KO) on the functional recovery of mice post cerebral ischemia-reperfusion. Methods Adult male C57BL/6 wild type and FXR KO mice were subjected to 90-min transient middle cerebral artery occlusion (tMCAO). The mice were divided into five groups: sham, wild-type tMCAO, FXR KO tMCAO, wild-type tMCAO treated with calcium agonist Bayk8644, and FXR KO tMCAO treated with Bayk8644. FXR expression was examined using immunohistochemistry and Western blot. Brain infarct and brain atrophy volume were examined at 3 and 14 days after stroke respectively. Neurobehavioral tests were conducted up to 14 days after stroke. The protein levels of apoptotic factors (Bcl-2, Bax, and Cleaved caspase-3) and mRNA levels of pro-inflammatory factors (TNF-α, IL-6, IL-1β, IL-17, and IL-18) were examined using Western blot and RT-PCR. TUNEL staining and calcium imaging were obtained using confocal and two-photon microscopy. Results The expression of FXR was upregulated after ischemic stroke, which is located in the nucleus of the neurons. FXR KO was found to reduce infarct volume and promote neurobehavioral recovery following tMCAO compared to the vehicle. The expression of apoptotic and pro-inflammatory factors decreased in FXR KO mice compared to the control. The number of NeuN+/TUNEL+ cells declined in the peri-infarct area of FXR KO mice compared to the vehicle. We further demonstrated that inhibition of FXR reduced calcium overload and addition of ionomycin could reverse this neuroprotective effect in vitro. What is more, in vivo results showed that enhancement of intracellular calcium concentrations could aggravate ischemic injury and reverse the neuroprotective effect of FXR KO in mice. Conclusions FXR KO can promote neurobehavioral recovery and attenuate ischemic brain injury, inflammatory release, and neuronal apoptosis via reducing calcium influx, suggesting its role as a therapeutic target for stroke treatments.
Collapse
Affiliation(s)
- Hui-Min Shan
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, 1954 Hua-Shan Road, Shanghai, 200030, China
| | - Minhua Zang
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 PuJian Road, Shanghai, 200127, China
| | - Qi Zhang
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, 1954 Hua-Shan Road, Shanghai, 200030, China
| | - Ru-Bing Shi
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, 1954 Hua-Shan Road, Shanghai, 200030, China
| | - Xiao-Jing Shi
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, 1954 Hua-Shan Road, Shanghai, 200030, China
| | - Muyassar Mamtilahun
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, 1954 Hua-Shan Road, Shanghai, 200030, China
| | - Chang Liu
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, 1954 Hua-Shan Road, Shanghai, 200030, China
| | - Long-Long Luo
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, 1954 Hua-Shan Road, Shanghai, 200030, China
| | - Xiaoying Tian
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, 1954 Hua-Shan Road, Shanghai, 200030, China
| | - Zhijun Zhang
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, 1954 Hua-Shan Road, Shanghai, 200030, China
| | - Guo-Yuan Yang
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, 1954 Hua-Shan Road, Shanghai, 200030, China
| | - Yaohui Tang
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, 1954 Hua-Shan Road, Shanghai, 200030, China.
| | - Jun Pu
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 PuJian Road, Shanghai, 200127, China.
| | - Yongting Wang
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, 1954 Hua-Shan Road, Shanghai, 200030, China.
| |
Collapse
|
17
|
Abstract
Despite the development of new drugs and therapeutic strategies, mortality and morbidity related to heart failure (HF) remains high. It is also the leading cause of global mortality. Several concepts have been proposed to explore the underlying pathogenesis of HF, but there is still a strong need for more specific and complementary therapeutic options. In recent years, accumulating evidence has demonstrated that changes in the composition of gut microbiota, referred to as dysbiosis, might play a pivotal role in the development of several diseases, including HF. HF-associated decreased cardiac output, resulting in bowell wall oedema and intestine ischaemia, can alter gut structure, peamibility and function. These changes would favour bacterial translocation, exacerbating HF pathogenesis at least partly through activation of systemic inflammation. Although our knowledge of the precise molecular mechanisms by which gut dysbiosis influance HF is still limited, a growing body of evidence has recently demonstrated the impact of a series of gut microbiome-derived metabolites, such as trimetylamine N-oxide, short-chain fatty acids or secondary bile acids, which have been shown to play critical roles in cardiac health and disease. This review will summarize the role of gut microbiota and its metabolites in the pathogenesis of HF. Current and future preventive and therapeutic strategies to prevent HF by an adequate modulation of the microbiome and its derived metabolites are also discussed.
Collapse
Affiliation(s)
- Maxime Branchereau
- Institut des Maladies Métaboliques et Cardiovasculaires, INSERM U1048, Université de Toulouse, UPS, Toulouse, France
| | - Rémy Burcelin
- Institut des Maladies Métaboliques et Cardiovasculaires, INSERM U1048, Université de Toulouse, UPS, Toulouse, France
| | - Christophe Heymes
- Institut des Maladies Métaboliques et Cardiovasculaires, INSERM U1048, Université de Toulouse, UPS, Toulouse, France.
- INSERM U1048 - Institute of Cardiovascular and Metabolic Diseases - I2MC, 1 avenue Jean Poulhès - BP 84225, 31432, Toulouse Cedex 4, France.
| |
Collapse
|
18
|
Xia Y, Zhang F, Zhao S, Li Y, Chen X, Gao E, Xu X, Xiong Z, Zhang X, Zhang J, Zhao H, Wang W, Wang H, Guo Y, Liu Y, Li C, Wang S, Zhang L, Yan W, Tao L. Adiponectin determines farnesoid X receptor agonism-mediated cardioprotection against post-infarction remodelling and dysfunction. Cardiovasc Res 2019; 114:1335-1349. [PMID: 29668847 DOI: 10.1093/cvr/cvy093] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 04/12/2018] [Indexed: 12/16/2022] Open
Abstract
Aims The farnesoid X receptor (FXR) is a member of the metabolic nuclear receptor superfamily that plays a critical regulatory role in cardiovascular physiology/pathology. However, the role of systemic FXR activation in the chronic phase in myocardial infarction (MI)-induced cardiac remodelling and dysfunction remains unclear. In this study, we aimed to elucidate the role of long-term FXR activation on post-MI cardiac remodelling and dysfunction. Methods and results Mice underwent either MI surgery or sham operation. At 1 week after MI, both sham and MI mice were gavaged with 25 mg/kg/d of a synthetic FXR agonist (GW4064) or a vehicle control for 7 weeks, and cardiac performance was assessed by consecutive echocardiography studies. Administration of GW4064 significantly increased left ventricular ejection fraction at 4 weeks and 8 weeks after MI (both P < 0.01). Moreover, GW4064 treatment increased angiogenesis and mitochondrial biogenesis, reduced cardiomyocyte loss and inflammation, and ameliorated cardiac remodelling as evidenced by heart weight, lung weight, atrial natriuretic peptide/brain natriuretic peptide levels, and myocardial fibrosis at 8 weeks post-MI. At the molecular level, GW4064 significantly increased FXR mRNA expression and transcriptional activity in heart tissue. Moreover, over-expression of myocardial FXR failed to exert significant cardioprotection in vivo, indicating that GW4064 improved post-MI heart remodelling and function independent of myocardial FXR expression/activity. Among the four down-stream soluble molecules of FXR, plasma adiponectin was most significantly increased by GW4064. In cultured adipocytes, GW4064 increased mRNA levels and protein expression of adiponectin. Conditioned medium of GW4064-treated adipocytes activated AMPK-PGC-1α signalling and reduced hypoxia-induced cardiomyocyte apoptosis, all of which were attenuated by an adiponectin neutralizing anti-body. More importantly, when knocking-out adiponectin in mice, the cardioprotective effects of GW4064 were attenuated. Conclusions We are the first to show that FXR agonism ameliorated post-MI cardiac dysfunction and remodelling by stimulating adiponectin secretion. Thus, we demonstrated that FXR agonism is a potential therapeutic strategy in post-MI heart failure.
Collapse
Affiliation(s)
- Yunlong Xia
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Road, Xi'an 710032, China
| | - Fuyang Zhang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Road, Xi'an 710032, China
| | - Shihao Zhao
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Road, Xi'an 710032, China.,Department of Cardiology, Hainan Branch of PLA General Hospital, Sanya 572013, China
| | - Yueyang Li
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Road, Xi'an 710032, China
| | - Xiyao Chen
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Erhe Gao
- Center for Translational Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Xinyue Xu
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an 710032, China
| | - Zhenyu Xiong
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Road, Xi'an 710032, China
| | - Xiaomeng Zhang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Road, Xi'an 710032, China
| | - Jinglong Zhang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Road, Xi'an 710032, China
| | - Huishou Zhao
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Road, Xi'an 710032, China
| | - Wei Wang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Road, Xi'an 710032, China
| | - Helin Wang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Road, Xi'an 710032, China
| | - Yanjie Guo
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Road, Xi'an 710032, China
| | - Yi Liu
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Road, Xi'an 710032, China
| | - Congye Li
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Road, Xi'an 710032, China
| | - Shan Wang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Road, Xi'an 710032, China
| | - Ling Zhang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Road, Xi'an 710032, China
| | - Wenjun Yan
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Road, Xi'an 710032, China
| | - Ling Tao
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Road, Xi'an 710032, China
| |
Collapse
|
19
|
Abstract
OBJECTIVE We investigated the underlying mechanism of ivabradine (IVA) in promoting angiogenesis and reducing cardiac hypertrophy in mice with myocardial infarction (MI). METHODS Nineteen mice were randomly assigned into three groups as follows: sham group (10 ml/kg/day phosphate buffer saline (PBS), n=6), model group (MI and 10 ml/kg/day PBS, n=6) and IVA group (MI and 10 mg/kg/day IVA, n=7). All groups received an intragastric gavage for four weeks. Heart and body mass were measured. Cardiac function and heart rate were assessed by echocardiography and electrocardiography, respectively. The collagen deposition, area of cardiomyocytes, and number of capillaries were evaluated using Masson's staining, anti-wheat germ agglutinin (WGA) staining, and platelet endothelial cell adhesion molecule-1 (CD31) staining, respectively. The protein kinase B (Akt)- endothelial nitric oxide synthase (eNOS) signaling and p-38 mitogen-activated protein kinase (MAPK) family in myocardium were determined by western blot. RESULTS IVA treatment greatly improved cardiac dysfunction and suppressed cardiac hypertrophy at 4 weeks after MI (p<0.05). Heart rate and fibrotic area of IVA group declined notably compared to those of the model group (p<0.05). IVA administration substantially reduced cardiomyocyte size and increased capillary formation (p<0.05). Besides, IVA medication can enhance Akt-eNOS signaling and inhibit p38 MAPK phosphorylation in the heart of mice with MI (p<0.05). CONCLUSION IVA can perform two functions, the promotion of angiogenesis and the reduction of cardiac hypertrophy, both of which were closely associated with Akt-eNOS signaling activation and p38 MAPK inhibition.
Collapse
|
20
|
Masaoutis C, Theocharis S. The farnesoid X receptor: a potential target for expanding the therapeutic arsenal against kidney disease. Expert Opin Ther Targets 2018; 23:107-116. [PMID: 30577722 DOI: 10.1080/14728222.2019.1559825] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Farnesoid X receptor (FXR) is a nuclear bile acid (BA) receptor widely distributed among tissues, a major sensor of BA levels, primary suppressor of hepatic BA synthesis and secondary regulator of lipid metabolism and inflammation. Chronic kidney disease is a common, multifactorial condition with metabolic and inflammatory causes and implications. An array of natural and synthetic FXR agonists has been developed, but not yet studied clinically in kidney disease. Areas covered: Following a summary of FXR's physiological functions in the kidney, we discuss its effects in renal disease with emphasis on chronic and acute kidney disease, chemotherapy-induced nephrotoxicity, and renal neoplasia. Most information is derived from animal models; no relevant clinical study has been conducted to date. Expert opinion: Most available preclinical data indicates a promising outlook for clinical research in this direction. We believe FXR agonism to be an auspicious approach to treating renal disease, considering that multifactorial diseases call for ideally wide-reaching therapies.
Collapse
Affiliation(s)
- Christos Masaoutis
- a First Department of Pathology, Medical School , National and Kapodistrian University of Athens , Athens , Greece
| | - Stamatios Theocharis
- a First Department of Pathology, Medical School , National and Kapodistrian University of Athens , Athens , Greece
| |
Collapse
|
21
|
Abstract
PURPOSE OF REVIEW Bile acids act as activating signals of endogenous renal receptors: the nuclear receptor farnesoid X receptor (FXR) and the membrane-bound G protein-coupled bile acid receptor 1 (GPBAR1, also known as TGR5). In recent years, bile acids have emerged as important for renal pathophysiology by activating FXR and TGR5 and transcription factors relevant for lipid, cholesterol and carbohydrate metabolism, as well as genes involved in inflammation and renal fibrosis. RECENT FINDINGS Activation of bile acid receptors has a promising therapeutic potential in prevention of diabetic nephropathy and obesity-induced renal damage, as well as in nephrosclerosis. During the past decade, progress has been made in understanding the biology and mechanisms of bile acid receptors in the kidney and in the development of specific bile acid receptor agonists. SUMMARY In this review, we discuss current knowledge on the roles of FXR and TGR5 in the physiology of the kidney and the latest advances made in development and characterization of bile acid analogues that activate bile acid receptors for treatment of renal disease.
Collapse
|