1
|
Pan M, Qin G, Liu J, Yang M, Li X, Wu Z, Mai K, Zhang W. Establishment and Characterization of Hepatocyte Line from Turbot (Scophthalmus maximus L.) and Its Application in the Study of Glucose Metabolism. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2025; 27:77. [PMID: 40272575 DOI: 10.1007/s10126-025-10448-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 03/19/2025] [Indexed: 04/25/2025]
Abstract
The present study was to establish a hepatocyte line and investigate its role in glucose metabolism. A continuous cell line, THL (turbot hepatocyte line), was established from the liver tissue of turbot (Scophthalmus maximus L.). It has been successfully passaged more than 60 generations. The THL cells showed an epithelial-like morphology and the normal chromosome number was 44. Different methods were used to identify the hepatocytes. Periodic acid-Schiff (PAS) staining for THL cells was positive, and two key functional proteins of hepatocytes, cytokeratin- 18 (CK- 18) and albumin (ALB), were detected in THL cells. The results of CCK- 8 indicated that a medium containing 15 mM glucose showed optimal cell viability of THL. Conversely, elevating glucose concentrations beyond 50 mM markedly impaired THL cell viability. Western blot and qRT-PCR were employed to assess the gene and protein expression in cells treated with varying concentrations of glucose. The results of cells incubated with 0 mM, 15 mM, and 50 mM glucose concentrations showed that compared with the 0 mM glucose group, 15 mM glucose could increase the gene expression of glucokinase (gk) and decrease the gene expression of cytosolic phosphoenolpyruvate carboxykinase (cpepck), mitochondrial phosphoenolpyruvate (mpepck), glucose- 6-phosphatase 1 (g6pase1), forkhead box o1 (foxo1), and glucose-regulated protein 78 (grp78). Compared to 15 mM glucose treatment, the expression of gk in the 50 mM group was significantly decreased, but the expression of cpepck, mpepck, g6pase1, foxo1, and grp78 was significantly increased. Moreover, the protein expression of FoxO1 and GRP78 in 50 mM treatment group was significantly increased compared to that in the15 mM group. In the present study, it was found that excessive glucose level can activate the pathways of FoxO1-mediated gluconeogenesis and GRP78-mediated endoplasmic reticulum stress and reduce the glycolytic pathway, thus disrupting the glucose homeostasis in hepatocytes.
Collapse
Affiliation(s)
- Mingzhu Pan
- The Key Laboratory of Mariculture (Ministry of Education), Fisheries College, Ocean University of China, Qingdao, 266003, China
- Jiangsu Key Laboratory for Exploration and Utilization of Marine Wetland Biological Resources, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Gaochan Qin
- The Key Laboratory of Mariculture (Ministry of Education), Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Jiahuan Liu
- The Key Laboratory of Mariculture (Ministry of Education), Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Mengxi Yang
- The Key Laboratory of Mariculture (Ministry of Education), Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Xinxin Li
- The Key Laboratory of Mariculture (Ministry of Education), Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Zhenhua Wu
- The Key Laboratory of Mariculture (Ministry of Education), Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Kangsen Mai
- The Key Laboratory of Mariculture (Ministry of Education), Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Wenbing Zhang
- The Key Laboratory of Mariculture (Ministry of Education), Fisheries College, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
2
|
Sahin AB, Karakurt S, Sezlev Bilecen D. Development of a mucoadhesive drug delivery system and its interaction with gastric cells. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2025; 16:371-384. [PMID: 40099114 PMCID: PMC11912645 DOI: 10.3762/bjnano.16.28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 02/13/2025] [Indexed: 03/19/2025]
Abstract
Drugs that are designed for local treatment of gastric diseases require increased gastric residence time for prolonged action and increased efficacy. In this study, we report a mucoadhesive drug delivery system that was developed to fulfill these requirements. Alginate nanoparticles were synthesized by water-in-oil emulsification followed by external gelation and then coated with the mucoadhesive polymer Eudragit RS100. The formulated nanoparticles had a mean size of 219 nm and positive charge. A peptide, as a model drug, was loaded onto the nanoparticles with an encapsulation efficiency of 58%. The release of the model drug from the delivery system was pH-independent and lasted for 7 days. The periodic acid-Schiff stain assay indicated 69% mucin interaction for the nanoparticles, which were also capable of diffusion through artificial mucus. The nanoparticles were not toxic to gastric epithelial cells and can be internalized by the cells within 4 h. The adsorption of nanoparticles onto mucus-secreting gastric cells was found to be correlated with cell number. The delivery system developed in this study is intended to be loaded with active therapeutic agents and has the potential to be used as an alternative drug delivery strategy for the treatment of gastric related diseases.
Collapse
Affiliation(s)
- Ahmet Baki Sahin
- Department of Molecular Biology and Genetics, Konya Food and Agriculture University, 42080, Konya, Türkiye
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, 34596, İstanbul, Türkiye
| | - Serdar Karakurt
- Department of Biochemistry, Faculty of Science, Selçuk University, 42130, Konya, Türkiye
| | - Deniz Sezlev Bilecen
- Department of Molecular Biology and Genetics, Konya Food and Agriculture University, 42080, Konya, Türkiye
| |
Collapse
|
3
|
Kattaru S, Echambadi Loganathan S, Kodavala S, Chodimella CS, Potukuchi VGKS. Platelet-Derived Growth Factor Promotes Glomerular Mesangial Cells Differentiation of Human Bone Marrow Hematopoietic Stem Cells - An In Vitro Study. J Cell Biochem 2025; 126:e70012. [PMID: 40065657 DOI: 10.1002/jcb.70012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 01/24/2025] [Accepted: 02/20/2025] [Indexed: 05/13/2025]
Abstract
Glomerular filtration function and homeostasis are largely due to the cross-talk between podocytes, endothelial cells, and mesangial cells (MCs). Any disturbance in this association causes glomerular diseases (GD). Cell-based therapies are the best option in the treatment of GD. It is contemplated that hematopoietic stem cells (HSCs) are best suited to regenerate these cells; earlier, we have shown the differentiation of HSCs into podocytes. In this study, MCs formation was initiated with retinoic acid (RA), BMP-7, and Activin A, resulting in comma-shaped intermediate mesoderm (IM) cells prominently expressing Osr1. Followed by inducing with EGF, FGF, and BMP-7, which resulted in elongated metanephric mesenchyme (MM) cells conspicuously expressing Pax2, Wt1, Foxd1, and Eya1. Finally, MM cells were induced with platelet-derived growth factor to form polygonal-shaped MCs expressing α-smooth muscle actin, desmin, CD44, and PDGFRβ. The growing MCs showed positivity to periodic acid Schiff's, and ANAE staining with a prominent expression of the Itga8 elucidating phagocytic property of MCs. These MCs showed conspicuous expression of CD133, notch-2, and telomerase, determining the quiescence nature with a 31.2% proliferation rate revealed through Ki-67 staining. The functionality of MCs was assessed by growing MCs in 5.5 and 25 mM glucose concentrations, and noticeable expression of angiotensinogen, angiotensin-I and II, angiotensin-converting enzyme, collagen-4, fibronectin, and TGFβ1 was observed in 25 mM concentration, while lowered expression of these genes was observed in 5.5 mM concentration explaining the role of MCs in regulating the filtration pressure. All these findings demonstrate that HSCs can rejuvenate the insulted glomerulus.
Collapse
Affiliation(s)
- Surekha Kattaru
- Stem Cell Laboratory, Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati, Andhra Pradesh, India
| | | | - Sireesha Kodavala
- Stem Cell Laboratory, Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati, Andhra Pradesh, India
| | - Chandra Sekhar Chodimella
- Department of Hematology, Sri Venkateswara Institute of Medical Sciences, Tirupati, Andhra Pradesh, India
| | | |
Collapse
|
4
|
Lin K, Wei L, Wang R, Li L, Song S, Wang F, He M, Pu W, Wang J, Wazir J, Cao W, Yang X, Treuter E, Fan R, Wang Y, Huang Z, Wang H. Disrupted methionine cycle triggers muscle atrophy in cancer cachexia through epigenetic regulation of REDD1. Cell Metab 2025; 37:460-476.e8. [PMID: 39729999 DOI: 10.1016/j.cmet.2024.10.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 09/19/2024] [Accepted: 10/19/2024] [Indexed: 12/29/2024]
Abstract
The essential amino acid methionine plays a pivotal role in one-carbon metabolism, facilitating the production of S-adenosylmethionine (SAM), a critical supplier for DNA methylation and thereby a modulator of gene expression. Here, we report that the methionine cycle is disrupted in skeletal muscle during cancer cachexia, leading to endoplasmic reticulum stress and DNA hypomethylation-induced expression of the DNA damage inducible transcript 4 (Ddit4) gene, encoding the regulated in development and DNA damage response 1 (REDD1) protein. Targeting DNA methylation by depletion or pharmacological inhibition of DNA methyltransferase 3A (DNMT3A) exacerbates cachexia, while restoring DNMT3A expression or REDD1 knockout alleviates cancer cachexia-induced skeletal muscle atrophy in mice. Methionine supplementation restores DNA methylation of the Ddit4 promoter in a DNMT3A-dependent manner, thereby inhibiting activating transcription factor 4 (ATF4)-mediated Ddit4 transcription. Thus, with the identification of the methionine/SAM-DNMT3A/DNA hypomethylation-Ddit4/REDD1 axis, our study provides molecular insights into an epigenetic mechanism underlying cancer cachexia, and it suggests nutrient supplementation as a promising therapeutic strategy to prevent or reverse cachectic muscle atrophy.
Collapse
Affiliation(s)
- Kai Lin
- State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China; Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China
| | - Lulu Wei
- State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China; Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China; Department of Pathology, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an 223399, China
| | - Ranran Wang
- State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China; Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China
| | - Li Li
- State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China; Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China
| | - Shiyu Song
- State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China; Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China; Nanjing Lupine (YuShanDou) Biomedical Research Institute Co. Ltd, Nanjing 210046, China
| | - Fei Wang
- State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China; Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China
| | - Meiwei He
- State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China; Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China
| | - Wenyuan Pu
- State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China; Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China
| | - Jinglin Wang
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing 210093, Jiangsu, China
| | - Junaid Wazir
- State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China; Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China
| | - Wangsen Cao
- State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China; Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China
| | - Xiaozhong Yang
- Department of Gastroenterology, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an 223399, China
| | - Eckardt Treuter
- Department of Medicine Huddinge, Biosciences and Nutrition Unit, Karolinska Institutet, 14183 Huddinge, Sweden
| | - Rongrong Fan
- Department of Medicine Huddinge, Biosciences and Nutrition Unit, Karolinska Institutet, 14183 Huddinge, Sweden
| | - Yongxiang Wang
- Department of Orthopedics, Northern Jiangsu People's Hospital, Clinical Teaching Hospital of Medical School, Nanjing University, 98 West Nantong Road, Yangzhou 225001, China.
| | - Zhiqiang Huang
- State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China; Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China.
| | - Hongwei Wang
- State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China; Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
5
|
Chen H, Nguyen LT, Feng M, Wang B, Xu B, Yarak RA, Chan YL, Viswanathan S, Komala MG, Pollock CA, Oliver BG, Saad S. Cross-Generational Impact of Maternal Exposure to Low Level of PM2.5 on Kidney Health. Am J Nephrol 2024; 56:222-235. [PMID: 39571566 DOI: 10.1159/000542135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 10/14/2024] [Indexed: 12/19/2024]
Abstract
INTRODUCTION Inhaled fine and ultrafine particulate matter may affect organs other than the lung, including the kidney. Recent studies have consistently shown the possibility of air pollution in highly polluted countries to be nephrotoxic. However, in countries like Australia, where air quality generally adheres to or remains below the WHO standards, the subtle yet consequential impacts of chronic exposure to seemingly safe levels of traffic PM2.5, are a subject of increasing significance. However, how such exposures in the peri-pregnancy period affect kidney health in mothers and the offspring is unclear, which formed the aims of this study. METHODS Female Balb/c mice were exposed to PM2.5 (5 μg/day) delivered nasally for 6 weeks prior to mating, during gestation and lactation (PM group). In a subgroup, PM2.5 was switched to saline from mating until offspring were weaned to model mothers moving to areas with clean air. Kidneys were analysed in dams and adult offspring at 13 weeks of age. RESULTS PM2.5 induced oxidative stress without histological changes in the dam's kidney. However, male PM offspring displayed in utero underdevelopment, characterised by reduced body weight and kidney-to-body weight at birth compared to control offspring, and lower glomerular numbers, with a marked increase in albuminuria, glomerulosclerosis, inflammation, oxidative stress, and mitochondrial injury. Female PM offspring had delayed postnatal development, lower glomerular numbers, increased glomerulosclerosis, and oxidative stress injury markers. Removal of PM2.5 from conception significantly reduced DNA oxidation and kidney damage in the offspring. CONCLUSION There is no safe level of ambient PM2.5 for kidney health when exposed in utero. Maternal PM2.5 exposure equally impacts the kidney health of male and female offspring. Removal of PM2.5 from conception was overall protective to the offspring.
Collapse
Affiliation(s)
- Hui Chen
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Long The Nguyen
- Kolling Institute of Medical Research, Royal North Shore Hospital, The University of Sydney, Sydney, New South Wales, Australia
| | - Min Feng
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales, Australia
- Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, The University of Sydney, Glebe, New South Wales, Australia
| | - Baoming Wang
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Bai Xu
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales, Australia
- Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, The University of Sydney, Glebe, New South Wales, Australia
| | - Rochelle A Yarak
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Yik Lung Chan
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Seethalakshmi Viswanathan
- Clinical Pathology and Medical Research, Westmead Hospital, University of Sydney, Sydney, New South Wales, Australia
| | | | - Carol A Pollock
- Kolling Institute of Medical Research, Royal North Shore Hospital, The University of Sydney, Sydney, New South Wales, Australia
| | - Brian G Oliver
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales, Australia
- Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, The University of Sydney, Glebe, New South Wales, Australia
| | - Sonia Saad
- Kolling Institute of Medical Research, Royal North Shore Hospital, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
6
|
Sosnowska M, Wierzbicki M, Nasiłowska B, Bakalova TN, Piotrowska K, Strojny-Cieślak B, Sawosz E, Kutwin M. Fullerenol C 60(OH) 40 Nanoparticles and Ectoine Protect Human Nasal Epithelial Cells Against the Cytokine Storm After Addition of the Full-Length Spike Protein from SARS-CoV-2. Int J Nanomedicine 2024; 19:12221-12255. [PMID: 39600409 PMCID: PMC11588572 DOI: 10.2147/ijn.s482652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/10/2024] [Indexed: 11/29/2024] Open
Abstract
INTRODUCTION AND OBJECTIVE Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) enters the nasal cavity, penetrates the nasal epithelial cells through the interaction of its spike protein with the host cell receptor angiotensin-converting enzyme 2 (ACE2) and then triggers a cytokine storm. We aimed to assess the biocompatibility of fullerenol nanoparticles C60(OH)40 and ectoine, and to document their effect on the protection of primary human nasal epithelial cells (HNEpCs) against the effects of interaction with the fragment of virus - spike protein. This preliminary research is the first step towards the construction of a intranasal medical device with a protective, mechanical function against SARS-CoV-2 similar to that of personal protective equipment (eg masks). METHODS We used HNEpCs and the full-length spike protein from SARS-CoV-2 to mimic the first stage of virus infection. We assessed cell viability with the XTT assay and a spectrophotometer. May-Grünwald Giemsa and periodic acid-Schiff staining served to evaluate HNEpC morphology. We assessed reactive oxygen species (ROS) production by using 2',7'-dichlorofluorescin diacetate and commercial kit. Finally, we employed reverse transcription polymerase chain reaction, Western blotting and confocal microscopy to determine the expression of angiotensin-converting enzyme 2 (ACE2) and inflammatory cytokines. RESULTS There was normal morphology and unchanged viability of HNEpCs after incubation with 10 mg/L C60(OH)40, 0.2% ectoine or their composite for 24 h. The spike protein exerted cytotoxicity via ROS production. Preincubation with the composite protected HNEpCs against the interaction between the spike protein and the host membrane and prevented the production of key cytokines characteristic of severe coronavirus disease 2019, including interleukin 6 and 8, monocyte chemotactic protein 1 and 2, tissue inhibitor of metalloproteinases 2 and macrophage colony-stimulating factor. CONCLUSION In the future, the combination of fullerenol and ectoine may be used to prevent viral infections as an intranasal medical device for people with reduced immunity and damaged mucous membrane.
Collapse
Affiliation(s)
- Malwina Sosnowska
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Mateusz Wierzbicki
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Barbara Nasiłowska
- Biomedical Engineering Center, Institute of Optoelectronics, Military University of Technology, Warsaw, Poland
| | - Totka Nikolaeva Bakalova
- Department of Material Science, Faculty of Mechanical Engineering, Technical University of Liberec, Liberec, Czech Republic
| | - Klara Piotrowska
- Department of Animal Nutrition, Institute of Animal Sciences, Warsaw University of Life Sciences, Warsaw, Poland
| | - Barbara Strojny-Cieślak
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Ewa Sawosz
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Marta Kutwin
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
| |
Collapse
|
7
|
de Moraes S, de Moura FBC, de Carvalho JC, de Lima HC, de Anchieta de Castro E Horta Júnior J, Nishida SM, Ferreira JCP, Lacerda ZA, de Toledo Rodovalho MV, Fonseca-Alves CE. Histochemical Characterisation of the Turquoise-Fronted Parrot (Amazona aestiva) Digestive Tract. Anat Histol Embryol 2024; 53:e70003. [PMID: 39508389 DOI: 10.1111/ahe.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/06/2024] [Accepted: 10/21/2024] [Indexed: 11/15/2024]
Abstract
Amazona aestiva, a member of the Psittacidae family, belongs to the genus Amazona. These animals are endowed with adaptations in their digestive systems that allow a natural diet composed of seeds and fruits, with anatomical characteristics that facilitate the acquisition and use of nutrients from these food groups. Although it is an important species, no previous information is available regarding the histology and histochemistry of its digestive tract. This study aimed to describe the morphological and histochemical characteristics of the digestive tract of this species. Fragments of the tongue, oesophagus, crop, proventriculus, ventriculus, small intestine, large intestine, liver and pancreas were collected from seven specimens without any clinical alterations in the digestive tract. A. aestiva's digestive tract observed the presence of an extremely developed tongue, a proventriculus with more delicate walls and a ventricle with less-developed musculature. Here, we present a detailed morphological and histochemical description of the Turquoise-fronted Parrot's digestive tract.
Collapse
Affiliation(s)
- Sabrina de Moraes
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, Sao Paulo State University-UNESP, Botucatu, São Paulo, Brazil
| | - Fernanda Barthelson Carvalho de Moura
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, Sao Paulo State University-UNESP, Botucatu, São Paulo, Brazil
| | - Jaqueline Candido de Carvalho
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, Sao Paulo State University-UNESP, Botucatu, São Paulo, Brazil
| | - Heloísa Coppini de Lima
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, Sao Paulo State University-UNESP, Botucatu, São Paulo, Brazil
| | | | - Silvia Mitiko Nishida
- Institute of Biosciences, Sao Paulo State University-UNESP, Botucatu, São Paulo, Brazil
| | - João Carlos Pinheiro Ferreira
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, Sao Paulo State University-UNESP, Botucatu, São Paulo, Brazil
| | - Zara Alves Lacerda
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, Sao Paulo State University-UNESP, Botucatu, São Paulo, Brazil
| | | | - Carlos Eduardo Fonseca-Alves
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, Sao Paulo State University-UNESP, Botucatu, São Paulo, Brazil
- Institute of Health Sciences, Paulista University-UNIP, Bauru, São Paulo, Brazil
- Institute of Veterinary Oncology-IOVET, São Paulo, São Paulo, Brazil
| |
Collapse
|
8
|
Hashemitabar SH, Hosseinian SA. The comparative effects of probiotics on growth, antioxidant indices and intestinal histomorphology of broilers under heat stress condition. Sci Rep 2024; 14:23471. [PMID: 39379397 PMCID: PMC11461668 DOI: 10.1038/s41598-024-66301-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 07/01/2024] [Indexed: 10/10/2024] Open
Abstract
Heat stress adversely affects both the productivity and well-being of chickens. Probiotics offer beneficial impacts on the health and growth performance of broilers. The current study investigates the influence of administering of Bacillus (including B. subtilis, B. licheniformis, B. coagulans, and B. indicus) and Lactobacillus (consisting of L. acidophilus, L. plantarum, L. buchneri, and L. rhamnosus) probiotics via drinking water, either singular or combined, on various aspects including growth performance, oxidative stress markers, carcass characteristics, fecal microbial composition, intestinal structure, and intestinal pH in broilers exposed to chronic heat stress. A total of 150 one-day-old broiler chicks were divided into 5 groups: (1) NC, negative control; (2) HS, birds exposed to chronic heat stress; (3) HSpBacil, exposed to chronic heat stress and received Bacillus probiotic; (4) HSpLAB, subjected to chronic heat stress and provided with Lactobacillus probiotic; (5) HSpMix, subjected to chronic heat stress and administered a combined probiotic from Bacillus and Lactobacillus. The HS group exhibited significantly reduced levels of growth performance, carcass traits, and notably affected oxidative stress indices, as well as intestinal pH and histomorphology in the birds. Additionally, the administered probiotics led to increased weight of lymphoid organs, enhanced body weight gain, and improved intestinal histomorphology. Furthermore, the probiotics decreased malondialdehyde and increased total antioxidant capacity in broilers. In conclusion, Bacillus and Lactobacillus probiotics, as single or multi-species, particularly Lactobacillus and combined probiotic, demonstrated potential in alleviating the adverse effects of heat stress in broiler chickens. They could serve as beneficial feed additives and growth enhancers.
Collapse
Affiliation(s)
- Seyed Hamidreza Hashemitabar
- Avian Diseases Research Center, Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, 71345, Iran
| | - Seyedeh Alemeh Hosseinian
- Avian Diseases Research Center, Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, 71345, Iran.
| |
Collapse
|
9
|
Sankina P, Lal R, Khare P, von Hörsten S, Fester L, Aggarwal V, Zimmermann K, Bishnoi M. Topical menthol, a pharmacological cold mimic, induces cold sensitivity, adaptive thermogenesis and brown adipose tissue activation in mice. Diabetes Obes Metab 2024; 26:4329-4345. [PMID: 39044311 DOI: 10.1111/dom.15781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/25/2024]
Abstract
AIM Brown adipose tissue (BAT) thermogenesis has profound energy-expanding potential, which makes it an attractive target tissue to combat ever-increasing obesity and its other associated metabolic complications. Although it is fairly accepted that cold is a potent inducer of BAT activation and function, there are limited studies on the mechanisms of pharmacological cold-mimicking agents, such as the TRPM8 agonist, menthol, on BAT thermogenesis and activation. METHODS Herein, we sought to determine the effect of topical application of menthol (10% w/v [4 g/kg] cream formulation/day for 15 days) on temperature sensitivity behaviour (thermal gradient assay, nesting behaviour), adaptive thermogenesis (infrared thermography, core body temperature), BAT sympathetic innervation (tyrosine hydroxylase immunohistochemistry) and activation (18F-FDG PET-CT analysis, Uncoupling Protein 1 immunohistochemistry and BAT gene expression), whole-body energy expenditure (indirect calorimetry) and other metabolic variables in male C57BL/6N mice. RESULTS We show that male C57BL/6N mice: (a) develop a warm-seeking and cold-avoiding thermal preference phenotype; (b) display increased locomotor activity and adaptive thermogenesis; (c) show augmented sympathetic innervation in BAT and its activation; (d) exhibit enhanced gluconeogenic capacity (increased glucose excursion in response to pyruvate) and insulin sensitivity; and (e) show enhanced whole-body energy expenditure and induced lipid-utilizing phenotype after topical menthol application. CONCLUSIONS Taken together, our findings highlight that pharmacological cold mimicking using topical menthol application presents a potential therapeutic strategy to counter weight gain and related complications.
Collapse
Affiliation(s)
- Polina Sankina
- Department of Anesthesiology, University Hospital Erlangen, Friedrich-Alexander-Universität, Erlangen, Germany
| | - Roshan Lal
- TR(i)P for Health Laboratory, Centre for Excellence in Functional Foods, Department of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), Nagar, India
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Pragyanshu Khare
- Department of Anesthesiology, University Hospital Erlangen, Friedrich-Alexander-Universität, Erlangen, Germany
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Pilani, India
| | - Stephan von Hörsten
- Department of Experimental Therapy, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Lars Fester
- Department of Anatomy and Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | | | - Katharina Zimmermann
- Department of Anesthesiology, University Hospital Erlangen, Friedrich-Alexander-Universität, Erlangen, Germany
| | - Mahendra Bishnoi
- Department of Anesthesiology, University Hospital Erlangen, Friedrich-Alexander-Universität, Erlangen, Germany
- TR(i)P for Health Laboratory, Centre for Excellence in Functional Foods, Department of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), Nagar, India
| |
Collapse
|
10
|
Abdel-Latif GA, Al-Kashef AS, Nooman MU, Khattab AENA, Gebril SM, Elmongy NF, Abbas SS. The mechanistic interplay between Nrf-2, NF-κB/MAPK, caspase-dependent apoptosis, and autophagy in the hepatoprotective effects of Sophorolipids produced by microbial conversion of banana peels using Saccharomyces cerevisiae against doxorubicin-induced hepatotoxicity in rats. Food Chem Toxicol 2023; 182:114119. [PMID: 37944788 DOI: 10.1016/j.fct.2023.114119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/07/2023] [Accepted: 10/21/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND Doxorubicin (DOX) is a well-known chemotherapeutic agent which causes serious adverse effects due to multiple organ damage, including cardiotoxicity, nephrotoxicity, neurotoxicity, and hepatotoxicity. The mechanism of DOX-induced organ toxicity might be attributed to oxidative stress (OS) and, consequently, activation of inflammatory signaling pathways, apoptosis, and blockage of autophagy. Sophorolipids (SLs) as a glycolipid type of biosurfactants, are natural products that have unique properties and a wide range of applications attributed to their antioxidant and anti-inflammatory properties. AIMS Production of low-cost SLs from Saccharomyces cerevisiae grown on banana peels and investigating their possible protective effects against DOX-induced hepatotoxicity. MAIN METHODS The yeast was locally isolated and molecularly identified, then the yielded SLs were characterized by FTIR, 1H NMR and LC-MS/MS spectra. Posteriorly, thirty-two male Wistar rats were randomly divided into four groups; control (oral saline), SLs (200 mg/kg, p.o), DOX (10 mg/kg; i.p.), and SL + DOX (200 mg/kg p.o.,10 mg/kg; i.p., respectively). Liver function tests (LFTs), oxidative stress, inflammatory, apoptosis as well as autophagy markers were investigated. KEY FINDINGS SLs were produced with a yield of 49.04% and treatment with SLs improved LFTs, enhanced Nrf2 and suppressed NF-κB, IL-6, IL-1β, p38, caspase 3 and Bax/Bcl2 ratio in addition to promotion of autophagy when compared to DOX group. SIGNIFICANCE Our results revealed a novel promising protective effect of SLs against DOX-induced hepatotoxicity in rats.
Collapse
Affiliation(s)
- Ghada A Abdel-Latif
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Misr International University (MIU), Cairo, Egypt; Translational and Clinical Research Unit, Faculty of Pharmacy, Misr International University (MIU), Cairo, Egypt.
| | - Amr S Al-Kashef
- Biochemistry Department, Biotechnology Research Institute, National Research Centre (NRC), Cairo, Egypt.
| | - Mohamed U Nooman
- Biochemistry Department, Biotechnology Research Institute, National Research Centre (NRC), Cairo, Egypt.
| | - Abd El-Nasser A Khattab
- Genetics & Cytology Department, Biotechnology Research Institute, National Research Centre (NRC), Cairo, Egypt.
| | - Sahar M Gebril
- Histology and Cell Biology Department, Faculty of Medicine, Sohag University, Sohag, Egypt.
| | - Noura F Elmongy
- Physiology Department, Faculty of Medicine, Al-Azhar University, Damietta, Egypt.
| | - Samah S Abbas
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Misr International University (MIU), Cairo, Egypt; Translational and Clinical Research Unit, Faculty of Pharmacy, Misr International University (MIU), Cairo, Egypt.
| |
Collapse
|
11
|
Ji X, Liu X, Li X, Du X, Fan L. MircoRNA-322-5p promotes lipopolysaccharide-induced acute kidney injury mouse models and mouse primary proximal renal tubular epithelial cell injury by regulating T-box transcription factor 21/mitogen-activated protein kinase/extracellular signal-related kinase axis. Nefrologia 2023; 43 Suppl 2:8-20. [PMID: 37179213 DOI: 10.1016/j.nefroe.2023.05.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/25/2023] [Indexed: 05/15/2023] Open
Abstract
INTRODUCTION AND OBJECTIVES Acute kidney injury (AKI) is a common devastating complication characterized by an abrupt loss of renal function. It is of great significance to explore promising biomarkers for AKI treatment. MATERIALS AND METHODS Here, we established LPS (lipopolysaccharide)-induced AKI mice models and LPS-induced AKI mouse renal tubular epithelial cell model. The severity of AKI was determined by the levels of BUN (blood urea nitrogen) and SCr (serum creatinine), the observation of pathological section as well as the renal tubular injury score. The apoptosis was determined by the measurement of Caspase-3 and Caspase-9 activities, and cell apoptosis assays. qRT-PCR (quantitative real-time PCR) and western blot revealed that miR-322-5p (microRNA-322-5p) was up-regulated in LPS -induced AKI models while Tbx21 (T-box transcription factor 21) was down-regulated in LPS-induced AKI models. Dual-luciferase reporter and RNA pulldown assays detected the interaction of Tbx21 with miR-322-5p. RESULTS We found that miR-322-5p was overtly over-expressed in the in vitro LPS-induced AKI model and promoted the apoptosis of AKI mouse renal tubular epithelial cells via inhibiting Tbx21, which suppressed the mitochondrial fission and cell apoptosis through MAPK/ERK (mitogen-activated protein kinase/extracellular signal-related kinase) pathway. CONCLUSIONS We demonstrated that miR-322-5p promotes LPS-induced mouse AKI by regulating Tbx21/MAPK/ERK axis, which might provide new sights for AKI research.
Collapse
Affiliation(s)
- Xiaobing Ji
- Department of Nephrology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu, China
| | - Xiaodong Liu
- Department of Nephrology, The Second People's Hospital of Lianyungang,Affiliated to Kangda College of Nanjing Medical University, Lianyungang 222023, Jiangsu, China
| | - Xiangxiang Li
- Department of Nephrology, Nanjing Yuhua Hospital, Yuhua Branch of Nanjing First Hospital, Nanjing 210039, Jiangsu, China
| | - Xin Du
- Department of Nephrology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu, China
| | - Li Fan
- Department of Nephrology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu, China.
| |
Collapse
|
12
|
Al-Zahrani MH, Balgoon MJ, El-Sawi NM, Alshubaily FA, Jambi EJ, Khojah SM, Baljoon RS, Alkhattabi NA, Baz LA, Alharbi AA, Ahmed AM, Abo elkhair AM, Ismael M, Gebril SM. A biochemical, theoretical and immunohistochemical study comparing the therapeutic efficacy of curcumin and taurine on T-2 toxin induced hepatotoxicity in rats. Front Mol Biosci 2023; 10:1172403. [PMID: 37214337 PMCID: PMC10192634 DOI: 10.3389/fmolb.2023.1172403] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/10/2023] [Indexed: 05/24/2023] Open
Abstract
Introduction: Foodborne trichothecene T-2 Toxin, is a highly toxic metabolite produced by Fusarium species contaminating animal and human food, causing multiple organ failure and health hazards. T-2 toxins induce hepatotoxicity via oxidative stress causing hepatocytes cytotoxicity and genotoxicity. In this study, curcumin and taurine were investigated and compared as antioxidants against T-2-provoked hepatotoxicity. Methods: Wistar rats were administrated T-2 toxin sublethal oral dose (0.1 mg/kg) for 2 months, followed by curcumin (80 mg/kg) and taurine (50 mg/kg) for 3 weeks. Biochemical assessment of liver enzymes, lipid profiles, thiobarbituric acid reactive substances (TBARs), AFU, TNF-α, total glutathione, molecular docking, histological and immunohistochemical markers for anti-transforming growth factor-β1 (TGFβ1), double-strand DNA damage (H2AX), regeneration (KI67) and apoptosis (Active caspase3) were done. Results and Discussion: Compared to T-2 toxin, curcumin and taurine treatment significantly ameliorated hepatoxicity as; hemoglobin, hematocrit and glutathione, hepatic glycogen, and KI-67 immune-reactive hepatocytes were significantly increased. Although, liver enzymes, inflammation, fibrosis, TGFβ1 immunoexpressing and H2AX and active caspase 3 positive hepatocytes were significantly decreased. Noteworthy, curcumin's therapeutic effect was superior to taurine by histomorphometry parameters. Furthermore, molecular docking of the structural influence of curcumin and taurine on the DNA sequence showed curcumin's higher binding affinity than taurine. Conclusion: Both curcumin and taurine ameliorated T-2 induced hepatotoxicity as strong antioxidative agents with more effectiveness for curcumin.
Collapse
Affiliation(s)
- Maryam H. Al-Zahrani
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Maha J. Balgoon
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nagwa M. El-Sawi
- Department of Chemistry, Faculty of Science, Sohag University, Sohag, Egypt
| | - Fawzia A. Alshubaily
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ebtihaj J. Jambi
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sohair M. Khojah
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Nuha A. Alkhattabi
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Lina A. Baz
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Asmaa A. Alharbi
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Amira M. Ahmed
- Department of Chemistry, Faculty of Science, Sohag University, Sohag, Egypt
| | - Ayat M. Abo elkhair
- Biochemistry Department, Faculty of Pharmacy, Beni Suef University, Beni Suef, Egypt
| | - Mohamed Ismael
- Department of Chemistry, Faculty of Science, Sohag University, Sohag, Egypt
| | - Sahar M. Gebril
- Histology and Cell biology Department, Faculty of Medicine, Sohag University, Sohag, Egypt
| |
Collapse
|
13
|
Yalcin B, Yay AH, Tan FC, Özdamar S, Yildiz OG. Investigation of the anti-oxidative and anti-inflammatory effects of melatonin on experimental liver damage by radiation. Pathol Res Pract 2023; 246:154477. [PMID: 37148837 DOI: 10.1016/j.prp.2023.154477] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 03/19/2023] [Accepted: 04/20/2023] [Indexed: 05/08/2023]
Abstract
Radiotherapy is one of the inevitable treatment approaches for several types of cancer. We aimed to show the protective and therapeutic effects of daily use of melatonin on liver tissues subjected to a single dose of 10 Gy (gamma-ray) total body radiation. Rats were divided into 6 groups, of which 10 were in each: control, sham, melatonin, radiation, radiation+melatonin, and melatonin+radiation. The rats received 10 Gy of external radiation throughout their entire bodies. The rats were given 10 mg/kg/day of melatonin intraperitoneally before or after radiation treatment, depending on the group. Histological methods, immunohistochemical analysis (Caspase-3, Sirtuin-1, α-SMA, NFΚB-p65), biochemical analysis by ELİSA (SOD, CAT, GSH-PX, MDA, TNF-α, TGF-β, PDGF, PGC-1α) and the Comet assay as a marker of DNA damage were applied to the liver tissues. Histopathological examinations showed structural changes in the liver tissue of the radiation group. Radiation treatment increased the immunoreactivity of Caspase-3, Sirtuin-1 and α-SMA, but these effects were relatively attenuated in the melatonin-treated groups. The melatonin+radiation group had statistically significant results close to those of the control group, in terms of Caspase-3, NFΚB-p65 and Sirtuin-1 immunoreactivity. In melatonin treated groups, hepatic biochemical markers, MDA, SOD, TNF-α, TGF-β levels, and DNA damage parameters were decreased. Administration of melatonin before and after radiation has beneficial effects, but using it before radiation may be more efficient. Accordingly, daily melatonin usage could mitigate ionizing radiation induced damage.
Collapse
Affiliation(s)
- Betul Yalcin
- Adıyaman University, Faculty of Medicine, Department of Histology and Embryology, Adıyaman, Turkey.
| | - Arzu Hanım Yay
- Erciyes University, Faculty of Medicine, Department of Histology and Embryology, Kayseri, Turkey; Erciyes University, Genome and Stem Cell Center (GENKOK), Kayseri, Turkey
| | - Fazile Cantürk Tan
- Erciyes University, Faculty of Medicine, Department of Biophysics, Kayseri, Turkey
| | - Saim Özdamar
- Pamukkale University, Faculty of Medicine, Department of Histology and Embryology, Kayseri, Turkey
| | - Oğuz Galip Yildiz
- Erciyes University, Faculty of Medicine, Department of Radiation Oncology, Kayseri, Turkey
| |
Collapse
|
14
|
Abd-Allah ER, Fouad NY, Ghareeb AEWE, Eldebss TMA. Chloroacetonitrile reduces rat prenatal bone length and induces oxidative stress, apoptosis, and DNA damage in rat fetal liver. Birth Defects Res 2023; 115:614-632. [PMID: 36751045 DOI: 10.1002/bdr2.2155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 01/15/2023] [Accepted: 01/24/2023] [Indexed: 02/09/2023]
Abstract
One of the disinfection byproducts of chlorinating drinking water is chloroacetonitrile (CAN). Thirty-six female rats were used and distributed equally into four groups. The low dose treated group received CAN at a dose of 5.5 mg/kg body weight/day (1/40 LD50 ) orally from the 6th to 12th day of gestation. The high dose treated group received 11 mg/kg body weight/day (1/20 LD50 ) of CAN orally for the same period, the vehicle control group received 1 mL of corn oil, and the water control group received 1 mL of distilled water orally for the same period. High dose exposure to CAN significantly reduced gravid uterine weight, fetal body weights, and length, and caused obvious skeletal deformities, weak mineralization. Fetal tibial growth plates displayed histopathologic changes. Induced oxidative stress and redox imbalance in fetal liver tissues was evidenced by significantly decreased in catalase and superoxide dismutase activity, and elevated malondialdehyde levels. Histopathological, glycogen content changes, and DNA damage were observed in the fetal liver of high dose treated group. Additionally, administration of high dose of CAN induced apoptosis, evidenced by increased caspase-3 concentration in fetal liver. Thus, extensive exposure to CAN induces poor pregnancy outcomes. CAN levels in water should be monitored regularly.
Collapse
Affiliation(s)
- Entsar R Abd-Allah
- Department of Zoology, Faculty of Science, Al-Azhar University, Nasr City, Egypt
| | - Nourhan Y Fouad
- Department of Biotechnology, Faculty of Science, Cairo University, Giza, Egypt
| | | | - Taha M A Eldebss
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
15
|
Rasai D, Hosseinian SA, Asasi K, Shekarforosh SS, Tafti K. The beneficial effects of spraying of probiotic Bacillus and Lactobacillus bacteria on broiler chickens experimentally infected with avian influenza virus H9N2. Poult Sci 2023; 102:102669. [PMID: 37146538 DOI: 10.1016/j.psj.2023.102669] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/18/2023] [Accepted: 03/20/2023] [Indexed: 04/07/2023] Open
Abstract
This study investigated the clinical, antiviral, and immunological effects of spraying Bacillus spp. and Lactobacillus spp. as a single or mixture probiotic compound on experimentally infected broiler chickens with AIV H9N2. Two hundred and forty 1-day-old broilers were randomly assigned to 6 groups as follows: Ctrl- (no challenge AIV; no spray probiotic), Ctrl+ (AIV challenged; no spray probiotic), AI+B (AIV challenged; daily spraying of probiotic Bacillus spp.), AI+L group (AIV challenged; daily spraying of probiotic Lactobacillus spp.), AIV+BL (AIV challenged; daily spraying of probiotic Bacillus spp. and Lactobacillus spp.), and G-DW (daily spraying of normal saline; no AIV challenged). The birds were reared for 35 d. On the 22nd day of age, broiler chickens were challenged by AIV H9N2. The probiotics were sprayed at 9×109 CFU/m2 daily for 35 d. Growth performance, clinical signs, virus shedding, macroscopic and microscopic lesions were evaluated at various days in all groups. Spraying with probiotics improved the body weight gain and food conversion ratio in the AI+B, AI+L, and AI+BL groups compared to the Ctrl+. The severity of clinical signs, gross lesions, pathological lesions and viral shedding in the probiotic treatment groups was lower than in the Ctrl+ group. The findings of this study suggest the daily spraying of Lactobacillus and Bacillus probiotics alone or in combination during the rearing period reduce clinical and nonclinical aspects of H9N2 virus infection; so, it can be effective as a preventive protocol for controlling the severity of AIV H9N2 infection in broilers.
Collapse
|
16
|
Sex-Dependent Responses to Maternal Exposure to PM2.5 in the Offspring. Antioxidants (Basel) 2022; 11:antiox11112255. [PMID: 36421441 PMCID: PMC9686974 DOI: 10.3390/antiox11112255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/07/2022] [Accepted: 11/07/2022] [Indexed: 11/17/2022] Open
Abstract
Objective: Particulate matter (PM) with a diameter of 2.5 μm or less (PM2.5) can cross the blood-placental barrier causing adverse foetal outcomes. However, the impact of maternal exposure to low-levels of PM2.5 on liver health and the metabolic profile is unclear. This study aimed to investigate hepatic responses to long-term gestational low-dose PM2.5 exposure, and whether the removal of PM after conception can prevent such effects. Method: Female Balb/c mice (8 weeks) were exposed to PM2.5 (5 μg/day) for 6 weeks prior to mating, during gestation and lactation to model living in a polluted environment (PM group). In a sub-group, PM2.5 exposure was stopped post-conception to model mothers moving to areas with clean air (pre-gestation, Pre) group. Livers were studied in 13-week old offspring. Results: Female offspring in both PM and Pre groups had increased liver triglyceride and glycogen levels, glucose intolerance, but reduced serum insulin and insulin resistance. Male offspring from only the Pre group had increased liver and serum triglycerides, increased liver glycogen, glucose intolerance and higher fasting glucose level. Markers of oxidative stress and inflammation were increased in females from PM and Pre groups. There was also a significant sex difference in the hepatic response to PM2.5 with differential changes in several metabolic markers identified by proteomic analysis. Conclusions: Maternal PM exposure exerted sex-dependent effects on liver health with more severe impacts on females. The removal of PM2.5 during gestation provided limited protection in the offspring’s metabolism regardless of sex.
Collapse
|
17
|
Parvanak M, Mostafavi-Pour Z, Soleimani M, Atashi A, Arefian E, Esmaeili E. Mir-122 upregulation and let-7f downregulation combination: The effects on hepatic differentiation of hiPSCs on the PCL-Gel-HA nanofibrous scaffold. J Cell Mol Med 2022; 26:5235-5245. [PMID: 36098216 PMCID: PMC9575133 DOI: 10.1111/jcmm.17552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 06/24/2022] [Accepted: 07/19/2022] [Indexed: 11/29/2022] Open
Abstract
Cell therapy and tissue engineering as promising candidates for the liver transplantation dilemma are of special interest. Induced pluripotent stem cells (iPSCs) are one of the best sources in this field, but their differentiation methods to hepatocytes have remained challenging. We transduced human iPSCs (hiPSCs) with miR-122 and off-let-7f (hiPSCsmiR-122 + off-let-7f ) to evaluate how they can differentiate hiPSCs to hepatocyte-like cells (HLCs) without any extrinsic growth factor. Additionally, we studied the effect of Poly ɛ-caprolactone-gelatin-hyaluronic acid (PCL-Gel-HA) nanofibrous scaffold as an extracellular matrix (ECM) simulator on differentiation improvement. Definitive endoderm markers (FOXA2 and SOX17), as well as hepatic markers (AFP, Albumin, CK18, HNF4α) expression, were significantly higher in hiPSCsmiR-122 + off-let-7f derived HLCs (hiPSCs-HLCs) compared to the control group (miR-scramble transduced hiPSCs: hiPSCsscramble ). hiPSCs-HLCs indicated hepatocyte morphological characteristics and positive immunostaining for AFP, Albumin and HNF4α. Albumin and urea secretion were significantly higher in hiPSCs-HLCs than hiPSCsscramble . Comparing these markers in the PCL-Gel-HA group with the tissue culture plate (TCP) group revealed that PCL-Gel-HA could improve differentiation towards HLCs significantly. Regarding our results, these microRNAs can be used to differentiate hiPSCs to the functional hepatocytes for disease modelling, drug screening and cell-based therapy in future studies.
Collapse
Affiliation(s)
- Maliheh Parvanak
- Biochemistry Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zohreh Mostafavi-Pour
- Biochemistry Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.,Autophagy Research Center, Shiraz University of Medicel Sciences, Shiraz, Iran
| | - Masoud Soleimani
- Hematology and Cell Therapy Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.,Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Atashi
- Stem cell and Tissue Engineering Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Ehsan Arefian
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | | |
Collapse
|
18
|
Altındağ F, Boğokşayan S, Bayram S. Eumelanin protects the liver against diethylnitrosamine-induced liver injury. Toxicology 2022; 480:153311. [PMID: 36113623 DOI: 10.1016/j.tox.2022.153311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/26/2022]
Abstract
This study aims to evaluate in vivo protective effects of eumelanin (EU) on diethylnitrosamine (DEN)-induced liver injury. Wistar albino male rats were divided into 6 groups (n = 6), Control, DMSO, DEN, DEN + EU10, DEN + EU15, and DEN + EU20. Animals in the DEN group were injected i.p a single dose of 200 mg/kg DEN, DEN + EU10 group was given 10 mg/kg EU, DEN + EU15 group was given 15 mg/kg, DEN + EU20 group was given 20 mg/kg EU for a week. The results showed that there was no significant difference in vessel volume density between the groups. Inflammatory cell infiltration, hydropic degeneration, and necrotic cells were observed in the DEN group, and these histopathological changes were significantly reduced in all treatment groups. Although there was a low intensity of PAS-positive staining in the DEN groups, moderate staining was observed in the treatment groups. While Caspase-3, PCNA, TNF-α, and IL-6 expressions increased in the DEN group, their expressions decreased in the EU-treated groups. DEN increased AST, ALT, and MDA levels and decreased CAT levels. In particular, the EU10 dose significantly improved these parameters. The present study revealed that eumelanin has protective effects against DEN-induced liver injury.
Collapse
Affiliation(s)
- Fikret Altındağ
- Department of Histology and Embryology, Van Yüzüncü Yıl University Faculty of Medicine, Van, Turkey.
| | - Seda Boğokşayan
- Department of Histology and Embryology, Van Yüzüncü Yıl University Faculty of Medicine, Van, Turkey
| | - Sinan Bayram
- Department of Medical Services and Techniques, Vocational School of Health Services, Bayburt University, Bayburt, Turkey
| |
Collapse
|
19
|
Bai F, Duan J, Yang D, Lai X, Zhu X, He X, Hu A. Integrative network analysis of circular RNAs reveals regulatory mechanisms for hepatic specification of human iPSC-derived endoderm. Stem Cell Res Ther 2022; 13:468. [PMID: 36076262 PMCID: PMC9461288 DOI: 10.1186/s13287-022-03160-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/28/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Human-induced pluripotent stem cell (hiPSC)-derived functional hepatic endoderm (HE) is supposed to be an alternative option for replacement therapy for end-stage liver disease. However, the high heterogeneity of HE cell populations is still challenging. Hepatic specification of definitive endoderm (DE) is an essential stage for HE induction in vitro. Recent studies have suggested that circular RNAs (circRNAs) determine the fate of stem cells by acting as competing endogenous RNAs (ceRNAs). To date, the relationships between endogenous circRNAs and hepatic specification remain elusive. METHODS The identities of DE and HE derived from hiPSCs were determined by qPCR, cell immunofluorescence, and ELISA. Differentially expressed circRNAs (DEcircRNAs) were analysed using the Arraystar Human circRNA Array. qPCR was performed to validate the candidate DEcircRNAs. Intersecting differentially expressed genes (DEGs) of the GSE128060 and GSE66282 data sets and the DEcircRNA-predicted mRNAs were imported into Cytoscape for ceRNA networks. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were involved in the enrichment analysis. Hepatic markers and Wnt/β-catenin were detected in hsa_circ_004658-overexpressing cells by western blotting. Dual-luciferase reporter assays were used to evaluate the direct binding among hsa_circ_004658, miRNA-1200 and CDX2. DE cells were transfected with miR-1200 mimics, adenovirus containing CDX2, and Wnt/β-catenin was detected by western blotting. RESULTS hiPSC-derived DE and HE were obtained at 4 and 9 days after differentiation, as determined by hepatic markers. During hepatic specification, 626 upregulated and 208 downregulated DEcircRNAs were identified. Nine candidate DEcircRNAs were validated by qPCR. In the ceRNA networks, 111 circRNA-miRNA-mRNA pairs were involved, including 90 pairs associated with hsa_circ_004658. In addition, 53 DEGs were identified among the intersecting mRNAs of the GSE128060 and GSE66282 data sets and the hsa_circ_004658-targeted mRNAs. KEGG and GO analyses showed that the DEGs associated with hsa_circ_004658 were mainly enriched in the WNT signalling pathway. Furthermore, hsa_circ_004658 was preliminarily verified to promote hepatic specification, as determined by hepatic markers (AFP, ALB, HNF4A, and CK19) (p < 0.05). This promotive effect may be related to the inhibition of the Wnt/β-catenin signalling pathway (detected by β-catenin, p-β-catenin, and TCF4) when hsa_circ_004658 was overexpressed (p < 0.05). Dual-luciferase reporter assays showed that there were binding sites for miR-1200 in the hsa_circ_004658 sequence, and confirmed the candidate DEG (CDX2) as a miR-1200 target. The level of miR-1200 decreased and the level of CDX2 protein expression increased when hsa_circ_004658 was overexpressed (p < 0.05). In addition, the results showed that CDX2 may suppress the Wnt/β-catenin signalling during hepatic specification (p < 0.05). CONCLUSIONS This study analysed the profiles of circRNAs during hepatic specification. We identified the hsa_circ_004658/miR-1200/CDX2 axis and preliminarily verified its effect on the Wnt/β-catenin signalling pathway during hepatic specification. These results provide novel insight into the molecular mechanisms involved in hepatic specification and could improve liver development in the future.
Collapse
Affiliation(s)
- Fang Bai
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, Guangdong, China.,Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jinliang Duan
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, Guangdong, China
| | - Daopeng Yang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, Guangdong, China
| | - Xingqiang Lai
- Department of Cardiology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Xiaofeng Zhu
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, Guangdong, China
| | - Xiaoshun He
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, Guangdong, China
| | - Anbin Hu
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, Guangdong, China. .,Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
20
|
Alternate Special Stains for the Detection of Mycotic Organisms in Oral Cyto-Smears-A Histomorphometric Study. Microorganisms 2022; 10:microorganisms10061226. [PMID: 35744745 PMCID: PMC9229114 DOI: 10.3390/microorganisms10061226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/13/2022] [Accepted: 05/27/2022] [Indexed: 01/09/2023] Open
Abstract
In the wake of the COVID-19 pandemic, fungal infections of the maxillofacial region have become prevalent, making their accurate diagnosis vital. Histopathological staining remains a simple, cost-effective technique for differentiation and diagnosis of the causative fungal organisms. The present study aims to evaluate the staining efficacy of Periodic Acid-Schiff (PAS), Alcian Blue, Safranin-O and Gomori's Methenamine Silver (GMS) on fungal smears. This research work also attempts to study the morphometric characteristics of Candida albicans, Aspergillus flavus, Rhizopus oryzae. Candida albicans, Aspergillus flavus and Rhizopus oryzae, 10 smears each, were stained using PAS, Alcian Blue, Safranin-O and GMS. The morphological characteristics and staining efficacy were examined, and semi-quantitative scoring was performed. Candida albicans, Aspergillus flavus and Rhizopus oryzae were stained for the first time with Safranin-O. The morphometric traits were then analyzed using an image analysis software. Safranin-O provided the most reliable staining efficacy amongst the stains and optimum morphological definition for all three organisms. Safranin-O was found to be superior to PAS and GMS, ensuring detection of even the most minute mycotic colonies. The hyphae of Aspergillus flavus to be the largest, and the spores and fruiting body of Rhizopus oryzae were found to be the largest amongst the three organisms compared. Early and accurate diagnosis of fungal infections can significantly reduce morbidity in orofacial fungal infections.
Collapse
|
21
|
Zhang YY, Li SQ, Song Y, Wang P, Song XG, Zhu WF, Wang DM. Silencing the ADAM9 Gene through CRISPR/Cas9 Protects Mice from Alcohol-Induced Acute Liver Injury. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5110161. [PMID: 35707386 PMCID: PMC9192226 DOI: 10.1155/2022/5110161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 04/30/2022] [Accepted: 05/11/2022] [Indexed: 11/17/2022]
Abstract
Alcoholic liver injury is a major global public health concern at present. The ADAM9 gene plays a crucial role in the occurrence and development of various liver diseases, but its role in acute alcoholic liver injury remains ambiguous. In this study, a chimeric single-guide RNA targeting the genomic regions of mouse ADAM9 was designed using the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) technology. Next, the role of ADAM9 in acute alcoholic liver injury in vitro in cultured mouse cells and in vivo in a hydrodynamic injection-based alcoholic liver injury mouse model was documented. The findings of this study suggest that ADAM9 induces by regulating cell proliferation, apoptosis, and stress metabolism in mice. Thus, inhibiting the expression of ADAM9 gene using CRISPR/Cas9 can attenuate alcohol-induced acute liver injury in mice.
Collapse
Affiliation(s)
- Yong-Yong Zhang
- The Molecular Medicine Key Laboratory of Liver Injury and Repair, School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang 471003, China
- Orthopedic Institute of Henan Province, Luoyang, 471003 Henan, China
- Henan Center for Engineering and Technology Research on Prevention and Treatment of Liver Diseases, Luoyang 471003, China
| | - San-Qiang Li
- The Molecular Medicine Key Laboratory of Liver Injury and Repair, School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang 471003, China
- Henan Center for Engineering and Technology Research on Prevention and Treatment of Liver Diseases, Luoyang 471003, China
| | - Ying Song
- The Molecular Medicine Key Laboratory of Liver Injury and Repair, School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang 471003, China
- Henan Center for Engineering and Technology Research on Prevention and Treatment of Liver Diseases, Luoyang 471003, China
| | - Ping Wang
- The Molecular Medicine Key Laboratory of Liver Injury and Repair, School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang 471003, China
- Henan Center for Engineering and Technology Research on Prevention and Treatment of Liver Diseases, Luoyang 471003, China
| | - Xiao-Gai Song
- The Molecular Medicine Key Laboratory of Liver Injury and Repair, School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang 471003, China
- Henan Center for Engineering and Technology Research on Prevention and Treatment of Liver Diseases, Luoyang 471003, China
| | - Wen-Feng Zhu
- The Molecular Medicine Key Laboratory of Liver Injury and Repair, School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang 471003, China
- Henan Center for Engineering and Technology Research on Prevention and Treatment of Liver Diseases, Luoyang 471003, China
| | - Dong-Mei Wang
- The Molecular Medicine Key Laboratory of Liver Injury and Repair, School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang 471003, China
- Henan Center for Engineering and Technology Research on Prevention and Treatment of Liver Diseases, Luoyang 471003, China
| |
Collapse
|
22
|
Zhang M, Tu W, Zhang Q, Wu X, Zou X, Jiang S. Osteocalcin reduces fat accumulation and inflammatory reaction by inhibiting ROS-JNK signal pathway in chicken embryonic hepatocytes. Poult Sci 2022; 101:102026. [PMID: 36174267 PMCID: PMC9519800 DOI: 10.1016/j.psj.2022.102026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/16/2022] [Accepted: 06/18/2022] [Indexed: 11/24/2022] Open
Abstract
Osteocalcin (OCN) has a function in preventing fatty liver hemorrhagic syndrome (FLHS) in poultry. The aim of this study was to investigate the effects of OCN on fat emulsion stimulated chicken embryonic hepatocytes and related signaling pathways. The primary chicken embryonic hepatocytes were isolated from the incubated 15-day (E15) pathogen free eggs and cultured with dulbecco's modified eagle medium (DMEM). After the hepatocyte density reached 80%, the cells were divided into 5 groups: control group (CONT), fat emulsion group (FE, 10% FE, v/v), FE with ucOCN at 1 ng/mL (FE-LOCN), 3 ng/mL (FE-MOCN), and 9 ng/mL (FE-HOCN). In addition, 2 mM N-Acetyl-L-cysteine (NAC) a reactive oxygen species (ROS) scavenger, and 5 μM SP600125, a Jun N-terminal kinase (JNK) inhibitor, were added separately in to the DMEM with 10% FE to test effects of FE on the function of ROS-JNK signal pathway. The number of hepatocytes, cell ultra-microstructure, viability, and apoptosis were detected after 48 h treatment, and the protein expressions and enzyme concentrations were detected after 72 h treatment. The results showed that, compared to the control group, FE increased the triglyceride (TG) concentration and lipid droplets (LDs) in chicken embryonic hepatocytes (P < 0.05), and induced hepatocytic edema with obviously mitochondrial swelling, membrane damage, and cristae rupture. FE also decreased ATP concentration, increased ROS concentrations and mitochondrial DNA (mtDNA) copy number, promoted inflammatory interleukin-1 (IL-1), IL-6, tumor necrosis factor-alpha (TNF-α) concentrations and hepatocytic apoptosis rate, and raised phospho-c-Jun N-terminal kinase (p-JNK) protein expressions. Compared to the FE group, ucOCN significantly increased hepatocyte viability, reduced hepatocytic TG concentrations and LDs numbers, and alleviated hepatocytic edema and mitochondrial swelling. Furthermore, ucOCN significantly decreased ROS concentrations, increased ATP concentrations, reduced IL-1, IL-6, TNF-α concentrations and hepatocytic apoptosis rate, and inhibited p-JNK protein expressions (P < 0.05). NAC had the similar functions of ucOCN reduced the ROS concentration and inhibited the TNF-α protein expression and p-JNK/JNK ration. Similarly, SP600125 reduced p-JNK/JNK protein expression, IL-1, IL-6, TNF-α, and TG concentrations without effects on ROS concentration and hepatocytic apoptosis. These results suggest that ucOCN alleviates FE-induced mitochondrial damage, cellular edema, and apoptosis of hepatocytes. These results reveal that the functions of ucOCN in reducing fat accumulation and inflammatory reaction in chicken embryonic hepatocytes are mostly via inhibiting the ROS-JNK signal pathway.
Collapse
|
23
|
Agraval H, Sharma JR, Dholia N, Yadav UCS. Air-Liquid Interface Culture Model to Study Lung Cancer-Associated Cellular and Molecular Changes. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2413:133-144. [PMID: 35044661 DOI: 10.1007/978-1-0716-1896-7_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Airway epithelial cells arrayed in the inner lining of the airways of the lung are believed to be the major source for the development of malignancy of the lung. The advent of in vitro cell culture model made it easy to understand the molecular mechanism of carcinogenesis at a cellular level, where the airway epithelial cells are cultured on a 2D surface submerged in the culture media. However, this method of culturing airway epithelial cells does not reflect their true nature, and thus results obtained have their limitations. Further, they exhibit dissimilar morphology, transcriptome, and secretome when compared to the cells in vivo. Thus, the experimental data obtained from 2D culture models are inconclusive and, in most cases, could not be validated further in in vivo settings. These limitations can be addressed by culturing the airway epithelial cells on air-liquid interface (ALI), where they develop ciliated morphology similar to that of the lung. Experiments performed with this 3D model provide reliable data that are more realistic, and, in many cases, could replace the requirement of further in vivo validation. Here, we provide the detailed protocol of a 3D culture system called ALI culture for growing human-derived primary small airway epithelial cells to study the cellular and molecular changes associated with lung cancer.
Collapse
Affiliation(s)
- Hina Agraval
- School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat, India
| | - Jiten R Sharma
- School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat, India
| | - Neeraj Dholia
- Faculty of Agriculture and Veterinary Science, Jayoti Vidyapeeth Women's University, Jaipur, Rajasthan, India
| | - Umesh C S Yadav
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
24
|
Gao CC, Li GW, Wang TT, Gao L, Wang FF, Shang HW, Yang ZJ, Guo YX, Wang BY, Xu JD. Rhubarb extract relieves constipation by stimulating mucus production in the colon and altering the intestinal flora. Biomed Pharmacother 2021; 138:111479. [PMID: 33774313 DOI: 10.1016/j.biopha.2021.111479] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 03/05/2021] [Accepted: 03/06/2021] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Constipation, mainly characterized by the difficulty in defecation, is a clinical symptom caused by a variety of factors. It can be manifested as normal or slow colonic transport abnormalities, which can occur alone or concurrently with defecation disorders. As there is not uniform definition and assessment standard, no clear plan could be used for the treatment of constipation. Although rhubarb, a traditional Chinese medicine, plays a therapeutic role in diseases involving constipation symptoms, the detailed mechanism of it in treating constipation remains unclear. METHODS A model of constipation-induced by diphenoxylate was prepared. Immunofluorescent staining was used to detect the expression of mucin 2 (MUC2), calnexin and chymase in colon. Western blotting was used to detect changes of tryptase and calnexin in the colon. And real-time polymerase chain reaction (PCR) was utilized to detect the changes of immunoglobulin-binding protein (Bip), X-box binding protein 1 (Xbp1) and C/EBP homologous protein (CHOP) of colonic goblet cells in mRNA levels. ELISA and biochemical kits were utilized to detect the changes of MUC2, Trefoil factor 3 (TFF3), acetylcholine, histamine and C-C motif chemokine ligand 5 (CCL5) in the colon. And the changes of colonic mucosa and intestinal flora of constipation model mice caused by rhubarb extract (RE) were analyzed to identify the mechanism of RE on the treatment of constipation. RESULTS RE promotes the secretion of colonic mucus by recruiting mast cells and enhancing the content of histamine and Ach in the mice colon. In the process, RE causes up-regulation of Bip and CHOP mRNA expression and down-regulation of Xbp1 and Xbp1s mRNA expression that induces ER stress of colonic epithelium associated with changes in the intestinal flora diversity and short-chain fatty acids content. CONCLUSION RE could relieve constipation by promoting the secretion of colonic mucus via mast cells activation and improving the intestinal microenvironment.
Collapse
Affiliation(s)
- Chen-Chen Gao
- Department of Physiology and Pathophysiology, Basic Medical College, Capital Medical University, Beijing 100069, China
| | - Guang-Wen Li
- Department of Physiology and Pathophysiology, Basic Medical College, Capital Medical University, Beijing 100069, China
| | - Tian-Tian Wang
- Department of Physiology and Pathophysiology, Basic Medical College, Capital Medical University, Beijing 100069, China
| | - Lei Gao
- Department of Bioinformatics, College of Bioengineering, Capital Medical University, Beijing 100069, China
| | - Fei-Fei Wang
- Department of Clinical Medicine, Basic Medical College, Capital Medical University, Beijing 100069, China
| | - Hong-Wei Shang
- Experimental Center for Morphological Research Platform, Capital Medical University, Beijing 100069, China
| | - Ze-Jun Yang
- Department of Clinical Medicine, Basic Medical College, Capital Medical University, Beijing 100069, China
| | - Yue-Xin Guo
- Department of Oral Medicine, Basic Medical College, Capital Medical University, Beijing 100069, China
| | - Bo-Ya Wang
- Undergraduate Student of 2018 Eight Program of Clinical Medicine, Peking University Health Science Center, Beijing 100081, China
| | - Jing-Dong Xu
- Department of Physiology and Pathophysiology, Basic Medical College, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
25
|
Tao L, Fang SY, Zhao L, He TC, He Y, Bi Y. Indocyanine Green Uptake and Periodic Acid-Schiff Staining Method for Function Detection of Liver Cells are Affected by Different Cell Confluence. Cytotechnology 2021; 73:159-167. [PMID: 33927473 DOI: 10.1007/s10616-021-00453-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 01/17/2021] [Indexed: 12/21/2022] Open
Abstract
Hepatic stem cell transplantation has been demonstrated as an effective alternative therapy for the end-stage liver failure patients. Therefore, the functional detection of hepatic stem cell is essentially required. The present study confirmed that adenovirus BMP9 (Ad-BMP9) could increase the ALB-Gluc activity of HP14-19 hepatic progenitor cells, the expression of specific hepatic markers ALB, TAT, UGT1A were up-regulated while the hepatic stem cell markers DLK, AFP were down-regulated, and the number of positive Periodic acid-Schiff (PAS) stained cells were significantly higher than those in control group. However, the indocyanine green (ICG) uptake failed to be detectable in induced hepatocytes, which was inconsistent. By using another cell line LC14d, we found out that positive ICG uptake cells were located in the area of low cell density, while positive PAS stained cells were mainly concentrated in the area where cells were overlapped, indicating that different cell confluence might affect the outcomes of ICG uptake and PAS staining. A manual wound healing of Ad-BMP9 induced HP14-19 cells was made, the crawling cells were stained positive for ICG but not for PAS. Therefore, our finding may provide evidence for better application of PAS staining and ICG uptake assay in functional detection of mature hepatocytes. Supplementary Information The online version contains supplementary material available at 10.1007/s10616-021-00453-8.
Collapse
Affiliation(s)
- Li Tao
- Department of Pediatric Research Institute of Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Shu-Yu Fang
- Department of Pediatric Research Institute of Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Li Zhao
- Department of Pediatric Research Institute of Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Tong-Chuan He
- Molecular Oncology Laboratory, The University of Chicago Medical Center, Chicago, IL 60637 USA
| | - Yun He
- Department of Pediatric Research Institute of Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China.,Stem Cell Biology and Therapy Laboratory, The Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Yang Bi
- Department of Pediatric Research Institute of Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China.,Department of Pediatric Surgery, The Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| |
Collapse
|
26
|
Rajalekshmi R, Kaladevi Shaji A, Joseph R, Bhatt A. Scaffold for liver tissue engineering: Exploring the potential of fibrin incorporated alginate dialdehyde-gelatin hydrogel. Int J Biol Macromol 2020; 166:999-1008. [PMID: 33166555 DOI: 10.1016/j.ijbiomac.2020.10.256] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/29/2020] [Accepted: 10/30/2020] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Development of a tissue-engineered construct for hepatic regeneration remains a challenging task due to the lack of an optimum environment that support the growth of hepatocytes. Hydrogel systems possess many similarities with tissues and have the potential to provide the microenvironment essential for the cells to grow, proliferate, and remain functionally active. METHODS In this work, fibrin (FIB) incorporated injectable alginate dialdehyde (ADA) - gelatin (G) hydrogel was explored as a matrix for liver tissue engineering. ADA was prepared by periodate oxidation of sodium alginate. An injectable formulation of ADA-G-FIB hydrogel was prepared and characterized by FTIR spectroscopy, Scanning Electron Microscopy, and Micro-Computed Tomography. HepG2 cells were cultured on the hydrogel system; cellular growth and functions were analyzed using various functional markers. RESULTS FTIR spectra of ADA-G-FIB depicted the formation of Schiff's base at 1608.53 cm-1 with a gelation time of 3 min. ADA-G-FIB depicted a 3D surface topography with a pore size in the range of 100-200 μm. The non-cytotoxic nature of the scaffold was demonstrated using L929 cells and more than 80 % cell viability was observed. Functional analysis of cultured HepG2 cells demonstrated ICG uptake, albumin synthesis, CYP-P450 expression, and ammonia clearance. CONCLUSION ADA-G-FIB hydrogel can be used as an effective 3D scaffold system for liver tissue engineering.
Collapse
Affiliation(s)
- Resmi Rajalekshmi
- Division of Polymeric Medical Devices, Department of Medical Device Engineering, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala 695012, India
| | - Anusree Kaladevi Shaji
- Division of Thrombosis Research, Department of Applied Biology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala 695012, India
| | - Roy Joseph
- Division of Polymeric Medical Devices, Department of Medical Device Engineering, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala 695012, India
| | - Anugya Bhatt
- Division of Thrombosis Research, Department of Applied Biology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala 695012, India.
| |
Collapse
|
27
|
da Silva Brum I, Frigo L, Lana Devita R, da Silva Pires JL, Hugo Vieira de Oliveira V, Rosa Nascimento AL, de Carvalho JJ. Histomorphometric, Immunohistochemical, Ultrastructural Characterization of a Nano-Hydroxyapatite/Beta-Tricalcium Phosphate Composite and a Bone Xenograft in Sub-Critical Size Bone Defect in Rat Calvaria. MATERIALS 2020; 13:ma13204598. [PMID: 33076561 PMCID: PMC7602735 DOI: 10.3390/ma13204598] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 12/17/2022]
Abstract
Nowadays, we can observe a worldwide trend towards the development of synthetic biomaterials. Several studies have been conducted to better understand the cellular mechanisms involved in the processes of inflammation and bone healing related to living tissues. The aim of this study was to evaluate tissue behaviors of two different types of biomaterials: synthetic nano-hydroxyapatite/beta-tricalcium phosphate composite and bone xenograft in sub-critical bone defects in rat calvaria. Twenty-four rats underwent experimental surgery in which two 3 mm defects in each cavity were tested. Rats were divided into two groups: Group 1 used xenogen hydroxyapatite (Bio Oss™); Group 2 used synthetic nano-hydroxyapatite/beta-tricalcium phosphate (Blue Bone™). Sixty days after surgery, calvaria bone defects were filled with biomaterial, animals were euthanized, and tissues were stained with Masson’s trichrome and periodic acid–Schiff (PAS) techniques, immune-labeled with anti-TNF-α and anti-MMP-9, and electron microscopy analyses were also performed. Histomorphometric analysis indicated a greater presence of protein matrix in Group 2, in addition to higher levels of TNF-α and MMP-9. Ultrastructural analysis showed that biomaterial fibroblasts were associated with the tissue regeneration stage. Paired statistical data indicated that Blue Bone™ can improve bone formation/remodeling when compared to biomaterials of xenogenous origin.
Collapse
Affiliation(s)
- Igor da Silva Brum
- Implantology Department, State University of Rio de Janeiro, Rio de Janeiro 20550-900, Brazil;
- Correspondence: ; Tel.: +55-21-988-244-976
| | - Lucio Frigo
- Periodontology Department, Universidade Guarulhos, Guarulhos 07023-070, São Paulo, Brazil;
| | - Renan Lana Devita
- Orthodontics Department, State University Barcelona, 08193 Barcelona, Spain;
| | | | - Victor Hugo Vieira de Oliveira
- Biology Department, State University of Rio de Janeiro, Rio de Janeiro 20550-900, Brazil; (V.H.V.d.O.); (A.L.R.N.); (J.J.d.C.)
| | - Ana Lucia Rosa Nascimento
- Biology Department, State University of Rio de Janeiro, Rio de Janeiro 20550-900, Brazil; (V.H.V.d.O.); (A.L.R.N.); (J.J.d.C.)
| | - Jorge José de Carvalho
- Biology Department, State University of Rio de Janeiro, Rio de Janeiro 20550-900, Brazil; (V.H.V.d.O.); (A.L.R.N.); (J.J.d.C.)
| |
Collapse
|
28
|
The biodistribution of melanomacrophages and reactivity of PEG or amine-functionalized iron oxide nanoclusters in the liver and spleen of Egyptian toad after intraperitoneal or oral injections: Histochemical study. Acta Histochem 2020; 122:151629. [PMID: 33066829 DOI: 10.1016/j.acthis.2020.151629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 09/01/2020] [Accepted: 09/15/2020] [Indexed: 12/13/2022]
Abstract
Recently, toad flesh is the main source of protein for many peoples. Of note, disease treatment of amphibian animals is a big challenge facing toad farms development. Iron oxide nanoclusters (IONCs) are approved by the Food and Drug Administration (FDA) as new materials for drug delivery systems development. The biodistribution and fate of IONCs in the lower vertebrate tissues such as toads is novel and should be studied in details. In this study, the biodistribution and toxicities of polyethylene glycol-functionalized IONCs (PEG-IONCs) and amine-functionalized IONCs (NH2-IONCs) in the liver and spleen of Egyptian toad were studied after intraperitoneal or oral injections. The localization and levels of IONCs in liver and spleen depends on the root of injection and the surface functionalization. The presence of IONCs in the liver and spleen produced sever to mild histological and histochemical abnormalities, but in a different ratio. The change of melanomacrophages (MMs) numbers depends on the root of injection or the function group on the surface of IONCs and this explains the abnormalities of MMs produced by IONCs treatment. Further, the function group on the surface may control the biodistribution of MMs and abnormalities produced by IONCs in the liver and spleen. Understanding the biodistribution and histological abnormalities of IONCs in the lower vertebrate tissues (amphibians in this study) might introduce important information to develop new drugs which can be used for amphibian diseases treatment or diagnosis. Further, the histopathological and MMs abnormalities produced by IONCs may consider as biomarkers for amphibians diseases diagnosis.
Collapse
|
29
|
Hu C, He Y, Fang S, Tian N, Gong M, Xu X, Zhao L, Wang Y, He T, Zhang Y, Bi Y. Urine-derived stem cells accelerate the recovery of injured mouse hepatic tissue. Am J Transl Res 2020; 12:5131-5150. [PMID: 33042410 PMCID: PMC7540109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 06/16/2020] [Indexed: 06/11/2023]
Abstract
Urine-derived stem cells (USCs) are autologous stem cells that exhibit self-renewal ability and multi-lineage differentiation potential. These characteristics make USCs an ideal cell source for hepatocellular transplantation. Here, we investigated the biological characteristics of USCs and their potential use for the treatment of chronic liver injury. We characterized the cell-surface marker profile of USCs by flow cytometry and determined the osteogenic, adipogenic, and hepatic differentiation capacities of USCs using histology. We established a chronic liver-injury model by intraperitoneally injecting carbon tetrachloride into nude mice. USCs were then transplanted via tail vein injection. To determine liver function and histopathology following chronic liver injury, we calculated the liver index, measured serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels, and performed histological staining. USCs were small, adherent cells expressing mesenchymal but not hematopoietic stem-cell markers. Some induced USCs underwent osteogenic and adipogenic differentiation. When co-cultured with hepatic progenitor cells, about 10% of USCs underwent hepatic differentiation. The ALT and AST levels of the USC-transplanted group were lower than that of the chronic liver-injury model group, and there were no significant differences between the two USC-transplanted groups. However, hepatocyte degeneration and liver fibrosis substantially improved in the hypoxia-pretreated USC-transplanted group compared with the normoxia USC-transplanted group. Taken together, USCs display desirable proliferation and differentiation characteristics, and USC transplantation partially improves abnormal liver function and pathology associated with chronic liver injury. Furthermore, hypoxia pretreatment promotes cell proliferation, migration, and colony formation by inducing autophagy, leading to USC-elicited liver tissue recovery following injury in vivo.
Collapse
Affiliation(s)
- Chaoqun Hu
- Stem Cell Biology and Therapy Laboratory, Children’s Hospital of Chongqing Medical UniversityChongqing, P. R. China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children’s Hospital of Chongqing Medical UniversityChongqing, P. R. China
- National Clinical Research Center for Child Health and Disorders, Children’s Hospital of Chongqing Medical UniversityChongqing, P. R. China
- Chongqing Key Laboratory of PediatricsChongqing, P. R. China
- China International Science and Technology Cooperation Base of Child Development and Critical DisordersChongqing, P. R. China
| | - Yun He
- Stem Cell Biology and Therapy Laboratory, Children’s Hospital of Chongqing Medical UniversityChongqing, P. R. China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children’s Hospital of Chongqing Medical UniversityChongqing, P. R. China
- National Clinical Research Center for Child Health and Disorders, Children’s Hospital of Chongqing Medical UniversityChongqing, P. R. China
- Chongqing Key Laboratory of PediatricsChongqing, P. R. China
- China International Science and Technology Cooperation Base of Child Development and Critical DisordersChongqing, P. R. China
| | - Shuyu Fang
- Stem Cell Biology and Therapy Laboratory, Children’s Hospital of Chongqing Medical UniversityChongqing, P. R. China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children’s Hospital of Chongqing Medical UniversityChongqing, P. R. China
- National Clinical Research Center for Child Health and Disorders, Children’s Hospital of Chongqing Medical UniversityChongqing, P. R. China
- Chongqing Key Laboratory of PediatricsChongqing, P. R. China
- China International Science and Technology Cooperation Base of Child Development and Critical DisordersChongqing, P. R. China
| | - Na Tian
- Stem Cell Biology and Therapy Laboratory, Children’s Hospital of Chongqing Medical UniversityChongqing, P. R. China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children’s Hospital of Chongqing Medical UniversityChongqing, P. R. China
- National Clinical Research Center for Child Health and Disorders, Children’s Hospital of Chongqing Medical UniversityChongqing, P. R. China
| | - Mengjia Gong
- Stem Cell Biology and Therapy Laboratory, Children’s Hospital of Chongqing Medical UniversityChongqing, P. R. China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children’s Hospital of Chongqing Medical UniversityChongqing, P. R. China
- National Clinical Research Center for Child Health and Disorders, Children’s Hospital of Chongqing Medical UniversityChongqing, P. R. China
| | - Xiaohui Xu
- Stem Cell Biology and Therapy Laboratory, Children’s Hospital of Chongqing Medical UniversityChongqing, P. R. China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children’s Hospital of Chongqing Medical UniversityChongqing, P. R. China
- National Clinical Research Center for Child Health and Disorders, Children’s Hospital of Chongqing Medical UniversityChongqing, P. R. China
| | - Li Zhao
- Stem Cell Biology and Therapy Laboratory, Children’s Hospital of Chongqing Medical UniversityChongqing, P. R. China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children’s Hospital of Chongqing Medical UniversityChongqing, P. R. China
- National Clinical Research Center for Child Health and Disorders, Children’s Hospital of Chongqing Medical UniversityChongqing, P. R. China
| | - Yi Wang
- Stem Cell Biology and Therapy Laboratory, Children’s Hospital of Chongqing Medical UniversityChongqing, P. R. China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children’s Hospital of Chongqing Medical UniversityChongqing, P. R. China
- National Clinical Research Center for Child Health and Disorders, Children’s Hospital of Chongqing Medical UniversityChongqing, P. R. China
| | - Tongchuan He
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical CenterChicago, Illinois, USA
| | - Yuanyuan Zhang
- Stem Cell Biology and Therapy Laboratory, Children’s Hospital of Chongqing Medical UniversityChongqing, P. R. China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children’s Hospital of Chongqing Medical UniversityChongqing, P. R. China
- National Clinical Research Center for Child Health and Disorders, Children’s Hospital of Chongqing Medical UniversityChongqing, P. R. China
- Wake Forest Institute for Regenerative Medicine, Wake Forest UniversityWinston-Salem, USA
| | - Yang Bi
- Stem Cell Biology and Therapy Laboratory, Children’s Hospital of Chongqing Medical UniversityChongqing, P. R. China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children’s Hospital of Chongqing Medical UniversityChongqing, P. R. China
- National Clinical Research Center for Child Health and Disorders, Children’s Hospital of Chongqing Medical UniversityChongqing, P. R. China
- Chongqing Key Laboratory of PediatricsChongqing, P. R. China
- China International Science and Technology Cooperation Base of Child Development and Critical DisordersChongqing, P. R. China
| |
Collapse
|
30
|
Yasen A, Li W, Maimaitinijiati Y, Aini A, Ran B, Wang H, Tuxun T, Shao Y, Aji T, Wen H. Direct effects of transforming growth factor-β1 signaling on the differentiation fate of fetal hepatic progenitor cells. Regen Med 2020; 15:1719-1733. [PMID: 32772793 DOI: 10.2217/rme-2020-0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To investigate direct roles of TGF-β1 signaling in the differentiation process of fetal hepatic progenitor cells (HPCs). Materials & methods: Exogenous TGF-β1 and SB431542 were added into fetal HPCs. Then, SB431542 was intraperitoneally injected into pregnant mice for 8 days. Results: Fetal HPCs treated with TGF-β1 differentiated into cholangiocytes. However, hepatocyte marker was highly expressed after inhibiting TGF-β1 signaling. In vivo, hematopoietic cells were gradually replaced with liver cells and TGF-β1 expression was evidently decreased as fetal liver developed. Inhibition of TGF-β1 signaling caused increase of ALB+ cells, but CK19 expression was more obvious in control mice livers. Conclusion: TGF-β1 signaling may play decisive roles in fetal HPCs differentiation into functional hepatocytes or cholangiocytes.
Collapse
Affiliation(s)
- Aimaiti Yasen
- Xinjiang Medical University, Xinjiang Uyghur Autonomous Region, Urumqi 830011, PR China.,Department of Hepatobiliary & Hydatid Disease, Digestive & Vascular Surgery Center, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uyghur Autonomous Region, Urumqi 830054, PR China
| | - Wending Li
- Xinjiang Medical University, Xinjiang Uyghur Autonomous Region, Urumqi 830011, PR China
| | | | - Abudusalamu Aini
- Xinjiang Medical University, Xinjiang Uyghur Autonomous Region, Urumqi 830011, PR China
| | - Bo Ran
- Department of Hepatobiliary & Hydatid Disease, Digestive & Vascular Surgery Center, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uyghur Autonomous Region, Urumqi 830054, PR China
| | - Hui Wang
- Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uyghur Autonomous Region, Urumqi 830054, PR China
| | - Tuerhongjiang Tuxun
- Department of Liver & Laparoscopic Surgery, Digestive & Vascular Surgery Center, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uyghur Autonomous Region, Urumqi 830054, PR China
| | - Yingmei Shao
- Department of Hepatobiliary & Hydatid Disease, Digestive & Vascular Surgery Center, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uyghur Autonomous Region, Urumqi 830054, PR China
| | - Tuerganaili Aji
- Department of Hepatobiliary & Hydatid Disease, Digestive & Vascular Surgery Center, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uyghur Autonomous Region, Urumqi 830054, PR China
| | - Hao Wen
- Department of Hepatobiliary & Hydatid Disease, Digestive & Vascular Surgery Center, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uyghur Autonomous Region, Urumqi 830054, PR China.,State Key Laboratory of Pathogenesis, Prevention & Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Xinjiang Uyghur Autonomous Region, 393 Xin Yi Road, Urumqi 830011, PR China
| |
Collapse
|
31
|
Cengiz O, Baran M, Balcioglu E, Suna PA, Bilgici P, Goktepe O, Onder GO, Goc R, Yay A. Use of selenium to ameliorate doxorubicin induced hepatotoxicity by targeting pro-inflammatory cytokines. Biotech Histochem 2020; 96:67-75. [PMID: 32400214 DOI: 10.1080/10520295.2020.1760353] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Doxorubicin (DOX) is a widely used drug for the treatment of cancer,but its clinical use is limited by its liver toxicity. Administering DOX with an antioxidant has become a strategy for preventing the side effects of DOX. Although selenium (Se) is an important trace mineral, data concerning the effect of Se on DOX induced liver tissue are lacking. We investigated the mechanism of DOX hepatotoxicity and the protective effect of different doses of Se on Dox induced liver damage. Female Wistar albino rats were divided into eight equal groups. Se was injected intraperitoneally (i.p.) to rats at doses of 0.5, 1, and 2 mg 0.5 h after injection i.p. of 5 mg/kg DOX on days 1, 7, 14, 21 and 28. Liver histopathology was assessed to determine the dose at which Se may best inhibit Dox induced liver toxicity. Also, tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) expression levels and proliferating cell nuclear antigen (PCNA) activity were determined using immunohistochemistry. We found that DOX caused liver damage and increased TNF-α, IL-1β and PCNA levels. Se prevented structural damage to liver tissues. Our findings reinforce the protective effects of Se in rat liver.
Collapse
Affiliation(s)
- Ozge Cengiz
- Faculty of Medicine, Department of Histology and Embryology, Erciyes University , Kayseri, Turkey
| | - Munevver Baran
- Department of Pharmaceutical Basic Science, Faculty of Pharmacy, Erciyes University , Kayseri, Turkey
| | - Esra Balcioglu
- Faculty of Medicine, Department of Histology and Embryology, Erciyes University , Kayseri, Turkey.,Genome and Stem Cell Center (GENKOK), Erciyes University , Kayseri, Turkey
| | - Pinar Alisan Suna
- Faculty of Medicine, Department of Histology and Embryology, Erciyes University , Kayseri, Turkey
| | - Pınar Bilgici
- Faculty of Medicine, Department of Histology and Embryology, Erciyes University , Kayseri, Turkey
| | - Ozge Goktepe
- Faculty of Medicine, Department of Histology and Embryology, Erciyes University , Kayseri, Turkey
| | - Gozde Ozge Onder
- Faculty of Medicine, Department of Histology and Embryology, Erciyes University , Kayseri, Turkey
| | - Rumeysa Goc
- Faculty of Medicine, Department of Histology and Embryology, Erciyes University , Kayseri, Turkey
| | - Arzu Yay
- Faculty of Medicine, Department of Histology and Embryology, Erciyes University , Kayseri, Turkey.,Genome and Stem Cell Center (GENKOK), Erciyes University , Kayseri, Turkey
| |
Collapse
|
32
|
Eissa M, Elarabany N, Hyder A. In vitro efficacy of liver microenvironment in bone marrow mesenchymal stem cell differentiation. In Vitro Cell Dev Biol Anim 2020; 56:341-348. [PMID: 32270392 DOI: 10.1007/s11626-020-00436-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 02/08/2020] [Indexed: 12/31/2022]
Abstract
Bone marrow-derived mesenchymal stem cells (BM-MSCs) represent an interesting alternative to liver or hepatocyte transplantation to treat liver injuries. Many studies have reported that MSCs can treat several diseases, including liver damage, just by injection into the bloodstream, without evidence of differentiation. The improvements were attributed to the organotrophic factors, low immunogenicity, immunomodulatory, and anti-inflammatory effects of MSCs, rather than their differentiation. The aim of the present study was to answer the question of whether the presence of BM-MSCs in the hepatic microenvironment will lead to their differentiation to functional hepatocyte-like cells. The hepatic microenvironment was mimicked in vitro by culture for 21 d with liver extract. The resulted cells expressed marker genes of the hepatic lineage including AFP, CK18, and Hnf4a. Functionally, they were able to detoxify ammonia into urea, to store glycogen as observed by PAS staining, and to synthesize glucose from pyruvate/lactate mixture. Phenotypically, the expression of MSC surface markers CD90 and CD105 decreased by differentiation. This evidenced differentiation into hepatocyte-like cells was accompanied by a downregulation of the stem cell marker genes sox2 and Nanog and the cell cycle regulatory genes ANAPC2, CDC2, Cyclin A1, and ABL1. The present results suggest a clear differentiation of BM-MSCs into functional hepatocyte-like cells by the extracted liver microenvironment. This differentiation is confirmed by a decrease in the stemness and mitotic activities. Tracking transplanted BM-MSCs and proving their in vivo differentiation remains to be elucidated.
Collapse
Affiliation(s)
- Manar Eissa
- Faculty of Science, Damietta University, New Damietta, 34517, Egypt
| | - Naglaa Elarabany
- Faculty of Science, Damietta University, New Damietta, 34517, Egypt
| | - Ayman Hyder
- Faculty of Science, Damietta University, New Damietta, 34517, Egypt.
| |
Collapse
|
33
|
Cui J, Gong M, Fang S, Hu C, Wang Y, Zhang J, Tang N, He Y. All-trans retinoic acid reverses malignant biological behavior of hepatocarcinoma cells by regulating miR-200 family members. Genes Dis 2020; 8:509-520. [PMID: 34179313 PMCID: PMC8209308 DOI: 10.1016/j.gendis.2019.12.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/10/2019] [Accepted: 12/31/2019] [Indexed: 02/07/2023] Open
Abstract
As a potential chemo-therapeutic agent, all-trans retinoic acid (ATRA) can significantly reverse epithelial-mesenchymal transition (EMT) of hepal-6 hepatocarcinoma cell line in vitro, but the mechanism is unclear. The expression profile of microRNA-200 (miR-200) families is different in hepatocellular carcinoma. In this study, we found that ATRA treatment could up-regulate the expression of miR-200a-3p, 200c-3p, and 141-3p, which were involved in ATRA regulated proliferation and apoptosis of hepal-6 cell, but not colony formation. Meanwhile, miR-200a-3p, 200c-3p, and 141-3p could recovery ATRA inhibited migration and invasion abilities of hepal-6 cells at various levels. miR-200a-3p and 200c-3p prevented ATRA from inducing the differentiation and hepatic functions of hepal-6 cells. Antagomir specific for miR-200a-3p and 200c-3p down-regulated the expression of CK18, but only miR-200a-3p antagomir played prominent role in regulating the expression of these mesenchymal markers, N-Cadherin, Snail and Twist. The transcriptional activities of 8 transcription factors were up-regulated and 35 transcription factors were down-regulated by ATRA. Compared with ATRA group, inhibition of miR-200a-3p, 200c-3p, and 141-3p significantly strengthened the expression of Fra1/Jun (AP1), Ets1/PEA3, Brn3, and Zeb1/AREB6 at varying degrees. Therefore, this result suggested that ATRA may suppress EMT through down-regulating miR-200a-3p, 200c-3p and 141-3p related transcription factors. miR-200 and their downstream genes might be the potentially specific targets for the treatment of hepatocarcinoma.
Collapse
Affiliation(s)
- Jiejie Cui
- Department of Pediatric Surgery, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, 401122, PR China.,Puyang People's Hospital, Puyang, Henan Province, 457000, PR China
| | - Mengjia Gong
- Department of Pediatric Surgery, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, 401122, PR China
| | - Shuyu Fang
- Department of Pediatric Surgery, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, 401122, PR China
| | - Chaoqun Hu
- Department of Pediatric Surgery, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, 401122, PR China
| | - Yi Wang
- Department of Pediatric Surgery, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, 401122, PR China
| | - Jingfang Zhang
- Puyang People's Hospital, Puyang, Henan Province, 457000, PR China
| | - Ni Tang
- Department of Pediatric Surgery, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, 401122, PR China
| | - Yun He
- Department of Pediatric Surgery, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, 401122, PR China
| |
Collapse
|
34
|
Establishment and characterization of immortalized porcine neonatal hepatocytes without the use of viral components. In Vitro Cell Dev Biol Anim 2019; 56:75-84. [PMID: 31845076 DOI: 10.1007/s11626-019-00407-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 08/29/2019] [Indexed: 10/25/2022]
Abstract
Porcine hepatocytes are a promising option for xenotransplantation in light of the critical shortage of orthotopic donor livers. Because primary hepatocytes have limited ability to proliferate in vitro, several immortalized hepatocyte lines have been established. However, these cells have typically been generated using a virus-dependent transfection methodology and express viral oncogenes that introduce potential risks in clinical applications. In our study, we established immortalized porcine neonatal hepatocytes by introduction of a plasmid-based hTERT gene expression system by electroporation, without the use of viral components. We detected stable expression of hTERT by RT-PCR and Western blot. The immortalized hepatocytes exhibit a high growth rate, but retain the normal morphology of freshly isolated primary hepatocytes. To date, these immortalized hepatocytes have been expanded for over 80 passages. In addition, no significant differences were detected in glycogen synthesis, secretion of serum albumin, or lipid accumulation between the primary hepatocytes and our immortalized hepatocytes. The cells also exhibit serum-dependent growth and have no capacity for anchorage-independent growth in vitro, demonstrating that they have not been transformed in vitro. Our immortalized porcine hepatocytes will be useful for elucidating the pathogenesis of liver disease and developing efficient treatments. Furthermore, these immortalized hepatocytes may provide a safer source of cells for application in xenotransplantation, compared with immortalized cells generated using viral components.
Collapse
|
35
|
Lucchetti BFC, Boaretto N, Lopes FNC, Malvezi AD, Lovo-Martins MI, Tatakihara VLH, Fattori V, Pereira RS, Verri WA, de Almeida Araujo EJ, Pinge-Filho P, Martins-Pinge MC. Metabolic syndrome agravates cardiovascular, oxidative and inflammatory dysfunction during the acute phase of Trypanosoma cruzi infection in mice. Sci Rep 2019; 9:18885. [PMID: 31827186 PMCID: PMC6906468 DOI: 10.1038/s41598-019-55363-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 11/26/2019] [Indexed: 12/20/2022] Open
Abstract
We evaluated the influence of metabolic syndrome (MS) on acute Trypanosoma cruzi infection. Obese Swiss mice, 70 days of age, were subjected to intraperitoneal infection with 5 × 102 trypomastigotes of the Y strain. Cardiovascular, oxidative, inflammatory, and metabolic parameters were evaluated in infected and non-infected mice. We observed higher parasitaemia in the infected obese group (IOG) than in the infected control group (ICG) 13 and 15 days post-infection. All IOG animals died by 19 days post-infection (dpi), whereas 87.5% of the ICG survived to 30 days. Increased plasma nitrite levels in adipose tissue and the aorta were observed in the IOG. Higher INF-γ and MCP-1 concentrations and lower IL-10 concentrations were observed in the IOG compared to those in the ICG. Decreased insulin sensitivity was observed in obese animals, which was accentuated after infection. Higher parasitic loads were found in adipose and hepatic tissue, and increases in oxidative stress in cardiac, hepatic, and adipose tissues were characteristics of the IOG group. Thus, MS exacerbates experimental Chagas disease, resulting in greater damage and decreased survival in infected animals, and might be a warning sign that MS can influence other pathologies.
Collapse
Affiliation(s)
- Bruno Fernando Cruz Lucchetti
- Department of Physiological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, PR, Brazil
- Department of Physiotherapy, University Center of Araguaia Valley, Barra do Garças, MT, Brazil
| | - Natalia Boaretto
- Department of Physiological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, PR, Brazil
| | - Fernanda Novi Cortegoso Lopes
- Department of Physiological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, PR, Brazil
| | - Aparecida Donizette Malvezi
- Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, PR, Brazil
| | - Maria Isabel Lovo-Martins
- Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, PR, Brazil
| | - Vera Lúcia Hideko Tatakihara
- Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, PR, Brazil
| | - Victor Fattori
- Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, PR, Brazil
| | - Rito Santo Pereira
- Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, PR, Brazil
| | - Waldiceu Aparecido Verri
- Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, PR, Brazil
| | | | - Phileno Pinge-Filho
- Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, PR, Brazil
| | - Marli Cardoso Martins-Pinge
- Department of Physiological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, PR, Brazil.
| |
Collapse
|
36
|
Meth JL, Schoenfeld AR. Higher percentage of horse serum in culture media blocks attachment of PC12 cells. Biotechniques 2019; 67:256-258. [PMID: 31621377 PMCID: PMC7031818 DOI: 10.2144/btn-2019-0073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 09/13/2019] [Indexed: 01/03/2023] Open
Affiliation(s)
- Jennifer L Meth
- Department of Biology, Adelphi University, Garden City, NY 11530-0701, USA
| | - Alan R Schoenfeld
- Department of Biology, Adelphi University, Garden City, NY 11530-0701, USA
| |
Collapse
|
37
|
Getzin T, Gueler F, Hartleben B, Gutberlet M, Thorenz A, Chen R, Meier M, Bräsen JH, Derlin T, Hartung D, Lang HAS, Haller H, Wacker F, Rong S, Hueper K. Gd-EOB-DTPA-enhanced MRI for quantitative assessment of liver organ damage after partial hepatic ischaemia reperfusion injury: correlation with histology and serum biomarkers of liver cell injury. Eur Radiol 2018; 28:4455-4464. [PMID: 29713782 DOI: 10.1007/s00330-018-5380-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 01/22/2018] [Accepted: 02/08/2018] [Indexed: 12/18/2022]
Abstract
OBJECTIVE To evaluate Gd-EOB-DTPA-enhanced MRI for quantitative assessment of liver organ damage after hepatic ischaemia reperfusion injury (IRI) in mice. METHODS Partial hepatic IRI was induced in C57Bl/6 mice (n = 31) for 35, 45, 60 and 90 min. Gd-EOB-DTPA-enhanced MRI was performed 1 day after surgery using a 3D-FLASH sequence. A subgroup of n = 9 animals with 60 min IRI underwent follow-up with MRI and histology 7 days after IRI. The total liver volume was determined by manual segmentation of the entire liver. The volume of functional, contrast-enhanced liver parenchyma was quantified by a region growing algorithm (visual threshold) and an automated segmentation (Otsu's method). The percentages of functional, contrast-enhanced and damaged non-enhanced parenchyma were calculated according to these volumes. MRI data was correlated with serum liver enzyme concentrations and histologically quantified organ damage using periodic acid-Schiff (PAS) staining. RESULTS The percentage of functional (contrasted) liver parenchyma decreased significantly with increasing ischaemia times (control, 94.4 ± 3.3%; 35 min IRI, 89.3 ± 4.1%; 45 min IRI, 87.9 ± 3.3%; 60 min IRI, 68 ± 10.5%, p < 0.001 vs. control; 90 min IRI, 55.9 ± 11.5%, p < 0.001 vs. control). The percentage of non-contrasted liver parenchyma correlated with histologically quantified liver organ damage (r = 0.637, p < 0.01) and serum liver enzyme elevations (AST r = 0.577, p < 0.01; ALT r = 0.536, p < 0.05). Follow-up MRI visualized recovery of functional liver parenchyma (71.5 ± 8.7% vs. 84 ± 2.1%, p < 0.05), consistent with less histological organ damage on day 7. CONCLUSION We demonstrated the feasibility of Gd-EOB-DTPA-enhanced MRI for non-invasive quantification of damaged liver parenchyma following IRI in mice. This novel methodology may refine the characterization of liver disease and could have application in future studies targeting liver organ damage. KEY POINTS • Prolonged ischaemia times in partial liver IRI increase liver organ damage. • Gd-EOB-DTPA-enhanced MRI at hepatobiliary phase identifies damaged liver volume after hepatic IRI. • Damaged liver parenchyma quantified with MRI correlates with histological liver damage. • Hepatobiliary phase Gd-EOB-DTPA-enhanced MRI enables non-invasive assessment of recovery from liver injury.
Collapse
Affiliation(s)
- Tobias Getzin
- Diagnostic and Interventional Radiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Faikah Gueler
- Nephrology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Björn Hartleben
- Pathology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Marcel Gutberlet
- Diagnostic and Interventional Radiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Anja Thorenz
- Nephrology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Rongjun Chen
- Nephrology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Martin Meier
- Institue for Laboratory Animal Science, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Jan Hinrich Bräsen
- Pathology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Thorsten Derlin
- Nuclear Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Dagmar Hartung
- Diagnostic and Interventional Radiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Hannah A S Lang
- Diagnostic and Interventional Radiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Hermann Haller
- Nephrology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Frank Wacker
- Diagnostic and Interventional Radiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Song Rong
- Nephrology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.,The Transplantation Center of the Affiliated Hospital, Zunyi Medical College, Zunyi, China
| | - Katja Hueper
- Diagnostic and Interventional Radiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| |
Collapse
|