1
|
Cong R, Lu C, Li X, Xu Z, Wang Y, Sun S. Tumor organoids in cancer medicine: from model systems to natural compound screening. PHARMACEUTICAL BIOLOGY 2025; 63:89-109. [PMID: 39893515 PMCID: PMC11789228 DOI: 10.1080/13880209.2025.2458149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/04/2024] [Accepted: 01/17/2025] [Indexed: 02/04/2025]
Abstract
CONTEXT The advent of tissue engineering and biomedical techniques has significantly advanced the development of three-dimensional (3D) cell culture systems, particularly tumor organoids. These self-assembled 3D cell clusters closely replicate the histopathological, genetic, and phenotypic characteristics of primary tissues, making them invaluable tools in cancer research and drug screening. OBJECTIVE This review addresses the challenges in developing in vitro models that accurately reflect tumor heterogeneity and explores the application of tumor organoids in cancer research, with a specific focus on the screening of natural products for antitumor therapies. METHODS This review synthesizes information from major databases, including Chemical Abstracts, Medicinal and Aromatic Plants Abstracts, ScienceDirect, Google Scholar, Scopus, PubMed and Springer Link. Publications were selected without date restrictions, using terms such as 'organoid', 'natural product', 'pharmacological', 'extract', 'nanomaterial' and 'traditional uses'. Articles related to agriculture, ecology, synthetic work or published in languages other than English were excluded. RESULTS AND CONCLUSIONS The review identifies key challenges related to the efficiency and variability of organoid generation and discusses ongoing efforts to enhance their predictive capabilities in drug screening and personalized medicine. Recent studies utilizing patient-derived organoid models for natural compound screening are highlighted, demonstrating the potential of these models in developing new classes of anticancer agents. The integration of natural products with patient-derived organoid models presents a promising approach for discovering novel anticancer compounds and elucidating their mechanisms of action.
Collapse
Affiliation(s)
- Rong Cong
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Can Lu
- Department of Pathology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xinying Li
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Zhijie Xu
- Department of Pathology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yaqin Wang
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Shusen Sun
- College of Pharmacy and Health Sciences, Western New England University, Springfield, MA, USA
| |
Collapse
|
2
|
Vitacolonna M, Bruch R, Schneider R, Jabs J, Hafner M, Reischl M, Rudolf R. A spheroid whole mount drug testing pipeline with machine-learning based image analysis identifies cell-type specific differences in drug efficacy on a single-cell level. BMC Cancer 2024; 24:1542. [PMID: 39696122 DOI: 10.1186/s12885-024-13329-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 12/11/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND The growth and drug response of tumors are influenced by their stromal composition, both in vivo and 3D-cell culture models. Cell-type inherent features as well as mutual relationships between the different cell types in a tumor might affect drug susceptibility of the tumor as a whole and/or of its cell populations. However, a lack of single-cell procedures with sufficient detail has hampered the automated observation of cell-type-specific effects in three-dimensional stroma-tumor cell co-cultures. METHODS Here, we developed a high-content pipeline ranging from the setup of novel tumor-fibroblast spheroid co-cultures over optical tissue clearing, whole mount staining, and 3D confocal microscopy to optimized 3D-image segmentation and a 3D-deep-learning model to automate the analysis of a range of cell-type-specific processes, such as cell proliferation, apoptosis, necrosis, drug susceptibility, nuclear morphology, and cell density. RESULTS This demonstrated that co-cultures of KP-4 tumor cells with CCD-1137Sk fibroblasts exhibited a growth advantage compared to tumor cell mono-cultures, resulting in higher cell counts following cytostatic treatments with paclitaxel and doxorubicin. However, cell-type-specific single-cell analysis revealed that this apparent benefit of co-cultures was due to a higher resilience of fibroblasts against the drugs and did not indicate a higher drug resistance of the KP-4 cancer cells during co-culture. Conversely, cancer cells were partially even more susceptible in the presence of fibroblasts than in mono-cultures. CONCLUSION In summary, this underlines that a novel cell-type-specific single-cell analysis method can reveal critical insights regarding the mechanism of action of drug substances in three-dimensional cell culture models.
Collapse
Affiliation(s)
- Mario Vitacolonna
- CeMOS, Mannheim University of Applied Sciences, 68163, Mannheim, Germany.
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, 68163, Mannheim, Germany.
| | - Roman Bruch
- Institute for Automation and Applied Informatics, Karlsruhe Institute of Technology, 76344, Eggen-stein-Leopoldshafen, Germany
| | | | - Julia Jabs
- Merck Healthcare KGaA, 64293, Darmstadt, Germany
| | - Mathias Hafner
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, 68163, Mannheim, Germany
- Institute of Medical Technology, Medical Faculty Mannheim of Heidelberg University, Mannheim University of Applied Sciences, 68167, Mannheim, Germany
| | - Markus Reischl
- Institute for Automation and Applied Informatics, Karlsruhe Institute of Technology, 76344, Eggen-stein-Leopoldshafen, Germany
| | - Rüdiger Rudolf
- CeMOS, Mannheim University of Applied Sciences, 68163, Mannheim, Germany
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, 68163, Mannheim, Germany
| |
Collapse
|
3
|
Shannon AE, Boos CE, Searle BC, Hummon AB. Gas-Phase Fractionation Data-Independent Acquisition Analysis of 3D Cocultured Spheroid Tumor Model Reveals Altered Translational Processes and Signaling Using Proteomics. J Proteome Res 2024; 23:3188-3199. [PMID: 38412258 PMCID: PMC11296903 DOI: 10.1021/acs.jproteome.3c00786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Colorectal cancer (CRC) contains considerable heterogeneity; therefore, models of the disease must also reflect the multifarious components. Compared to traditional 2D models, 3D cellular models, such as tumor spheroids, have the utility to determine the drug efficacy of potential therapeutics. Monoculture spheroids are well-known to recapitulate gene expression, cell signaling, and pathophysiological gradients of avascularized tumors. However, they fail to mimic the stromal cell influence present in CRC, which is known to perturb drug efficacy and is associated with metastatic, late-stage colorectal cancer. This study seeks to develop a cocultured spheroid model using carcinoma and noncancerous fibroblast cells. We characterized the proteomic profile of cocultured spheroids in comparison to monocultured spheroids using data-independent acquisition with gas-phase fractionation. Specifically, we determined that proteomic differences related to translation and mTOR signaling are significantly increased in cocultured spheroids compared to monocultured spheroids. Proteins related to fibroblast function, such as exocytosis of coated vesicles and secretion of growth factors, were significantly differentially expressed in the cocultured spheroids. Finally, we compared the proteomic profiles of both the monocultured and cocultured spheroids against a publicly available data set derived from solid CRC tumors. We found that the proteome of the cocultured spheroids more closely resembles that of the patient samples, indicating their potential as tumor mimics.
Collapse
Affiliation(s)
- Ariana E Shannon
- Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210, United States
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
- Pelotonia Institute for Immuno-Oncology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Claire E Boos
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Brian C Searle
- Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210, United States
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio 43210, United States
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
- Pelotonia Institute for Immuno-Oncology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Amanda B Hummon
- Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210, United States
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
- Pelotonia Institute for Immuno-Oncology, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
4
|
Germain A, Kim YT. Co-Culture Device for in vitro High Throughput Analysis of Cancer-Associated Fibroblast and Cancer Cell Interactions. Oncology 2023; 102:515-524. [PMID: 38008083 PMCID: PMC11126540 DOI: 10.1159/000533773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/17/2023] [Indexed: 11/28/2023]
Abstract
INTRODUCTION Cancers in general, and specifically lung cancer, continue to have low patient survival rates when the patient is at an advanced stage when diagnosed. It appears that the local environment, especially fibroblasts and their signaling molecules, tends to induce metastasis, increase cancer cell resistance to treatment, and aid in tumor growth rates. Since 3-D models quickly become too complex and/or expensive and therefore rarely leave the lab they are developed in, it is interesting to develop a 2-D model that more closely mimics clustered tumor formation and bulk interaction with a surrounding fibroblast environment. METHODS In the present study, we utilize an off-the-shelf stereolithography 3-D printer, standard use well plates, magnets, and metallic tubes to create a customizable 2-D co-culture system capable of being analyzed quantitatively with staining and qualitatively with standard fluorescent/brightfield microscopy to determine cancer-fibroblast interactions while also being able to test chemotherapeutic drugs in a high-throughput manner with standard 96-well plates. RESULTS Comparisons from monoculture and co-culture growth rates show that the presence of fibroblasts allows for significantly increased growth rates for H460 cancer. Additionally, the viability of cancer cells can be quantified with simple cell staining methods, and morphology and cell-cell interactions can be observed and studied. DISCUSSION The high throughput model demonstrates that boundary condition changes can be observed between cancer cells and fibroblasts based upon the different chemotherapeutics that have been administered.
Collapse
Affiliation(s)
- Adam Germain
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas, USA,
| | - Young-Tae Kim
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas, USA
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
5
|
Vera-Siguenza E, Escribano-Gonzalez C, Serrano-Gonzalo I, Eskla KL, Spill F, Tennant D. Mathematical reconstruction of the metabolic network in an in-vitro multiple myeloma model. PLoS Comput Biol 2023; 19:e1011374. [PMID: 37713666 PMCID: PMC10503963 DOI: 10.1371/journal.pcbi.1011374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 07/19/2023] [Indexed: 09/17/2023] Open
Abstract
It is increasingly apparent that cancer cells, in addition to remodelling their metabolism to survive and proliferate, adapt and manipulate the metabolism of other cells. This property may be a telling sign that pre-clinical tumour metabolism studies exclusively utilising in-vitro mono-culture models could prove to be limited for uncovering novel metabolic targets able to translate into clinical therapies. Although this is increasingly recognised, and work towards addressing the issue is becoming routinary much remains poorly understood. For instance, knowledge regarding the biochemical mechanisms through which cancer cells manipulate non-cancerous cell metabolism, and the subsequent impact on their survival and proliferation remains limited. Additionally, the variations in these processes across different cancer types and progression stages, and their implications for therapy, also remain largely unexplored. This study employs an interdisciplinary approach that leverages the predictive power of mathematical modelling to enrich experimental findings. We develop a functional multicellular in-silico model that facilitates the qualitative and quantitative analysis of the metabolic network spawned by an in-vitro co-culture model of bone marrow mesenchymal stem- and myeloma cell lines. To procure this model, we devised a bespoke human genome constraint-based reconstruction workflow that combines aspects from the legacy mCADRE & Metabotools algorithms, the novel redHuman algorithm, along with 13C-metabolic flux analysis. Our workflow transforms the latest human metabolic network matrix (Recon3D) into two cell-specific models coupled with a metabolic network spanning a shared growth medium. When cross-validating our in-silico model against the in-vitro model, we found that the in-silico model successfully reproduces vital metabolic behaviours of its in-vitro counterpart; results include cell growth predictions, respiration rates, as well as support for observations which suggest cross-shuttling of redox-active metabolites between cells.
Collapse
Affiliation(s)
- Elias Vera-Siguenza
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Watson School of Mathematics, University of Birmingham, Birmingham, United Kingdom
| | - Cristina Escribano-Gonzalez
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Irene Serrano-Gonzalo
- Instituto de Investigación Sanitaria Aragón, Fundación Española para el Estudio y Terapéutica de la enfermedad de Gaucher y otras Lisosomales, Zaragoza, España
| | - Kattri-Liis Eskla
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Fabian Spill
- Watson School of Mathematics, University of Birmingham, Birmingham, United Kingdom
| | - Daniel Tennant
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
6
|
Cotner M, Meng S, Jost T, Gardner A, De Santiago C, Brock A. Integration of quantitative methods and mathematical approaches for the modeling of cancer cell proliferation dynamics. Am J Physiol Cell Physiol 2023; 324:C247-C262. [PMID: 36503241 PMCID: PMC9886359 DOI: 10.1152/ajpcell.00185.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 11/21/2022] [Accepted: 11/21/2022] [Indexed: 12/15/2022]
Abstract
Physiological processes rely on the control of cell proliferation, and the dysregulation of these processes underlies various pathological conditions, including cancer. Mathematical modeling can provide new insights into the complex regulation of cell proliferation dynamics. In this review, we first examine quantitative experimental approaches for measuring cell proliferation dynamics in vitro and compare the various types of data that can be obtained in these settings. We then explore the toolbox of common mathematical modeling frameworks that can describe cell behavior, dynamics, and interactions of proliferation. We discuss how these wet-laboratory studies may be integrated with different mathematical modeling approaches to aid the interpretation of the results and to enable the prediction of cell behaviors, specifically in the context of cancer.
Collapse
Affiliation(s)
- Michael Cotner
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas
| | - Sarah Meng
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas
| | - Tyler Jost
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas
| | - Andrea Gardner
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas
| | - Carolina De Santiago
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas
| | - Amy Brock
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas
| |
Collapse
|
7
|
Brumskill S, Barrera LN, Calcraft P, Phillips C, Costello E. Inclusion of cancer-associated fibroblasts in drug screening assays to evaluate pancreatic cancer resistance to therapeutic drugs. J Physiol Biochem 2023; 79:223-234. [PMID: 34865180 PMCID: PMC9905179 DOI: 10.1007/s13105-021-00857-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 10/28/2021] [Indexed: 12/18/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterised by a pro-inflammatory stroma and multi-faceted microenvironment that promotes and maintains tumorigenesis. However, the models used to test new and emerging therapies for PDAC have not increased in complexity to keep pace with our understanding of the human disease. Promising therapies that pass pre-clinical testing often fail in pancreatic cancer clinical trials. The objective of this study was to investigate whether changes in the drug-dosing regimen or the addition of cancer-associated fibroblasts (CAFs) to current existing models can impact the efficacy of chemotherapy drugs used in the clinic. Here, we reveal that gemcitabine and paclitaxel markedly reduce the viability of pancreatic cell lines, but not CAFs, when cultured in 2D. Following the use of an in vitro drug pulsing experiment, PDAC cell lines showed sensitivity to gemcitabine and paclitaxel. However, CAFs were less sensitive to pulsing with gemcitabine compared to their response to paclitaxel. We also identify that a 3D co-culture model of MIA PaCa-2 or PANC-1 with CAFs showed an increased chemoresistance to gemcitabine when compared to standard 2D mono-cultures a difference to paclitaxel which showed no measurable difference between the 2D and 3D models, suggesting a complex interaction between the drug in study and the cell type used. Changes to standard 2D mono-culture-based assays and implementation of 3D co-culture assays lend complexity to established models and could provide tools for identifying therapies that will match clinically the success observed with in vitro models, thereby aiding in the discovery of novel therapies.
Collapse
Affiliation(s)
- Sarah Brumskill
- Institute of Translational Medicine, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, 2nd Floor Sherrington Building, Ashton Street, Liverpool, L69 3GE, UK
- Redx Oncology, Alderley Park, Macclesfield, Cheshire, UK
| | - Lawrence N Barrera
- Institute of Translational Medicine, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, 2nd Floor Sherrington Building, Ashton Street, Liverpool, L69 3GE, UK
| | - Peter Calcraft
- Redx Oncology, Alderley Park, Macclesfield, Cheshire, UK
| | | | - Eithne Costello
- Institute of Translational Medicine, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, 2nd Floor Sherrington Building, Ashton Street, Liverpool, L69 3GE, UK.
| |
Collapse
|
8
|
Kang J, Lee JY, Lee S, Kim D, Lim J, Jun HR, Jeon S, Kim YA, Park HS, Kim KP, Chun SM, Lee HJ, Yoo C. Establishing Patient-Derived Cancer Cell Cultures and Xenografts in Biliary Tract Cancer. Cancer Res Treat 2023; 55:219-230. [PMID: 35410113 PMCID: PMC9873337 DOI: 10.4143/crt.2021.1166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 04/01/2022] [Indexed: 02/04/2023] Open
Abstract
PURPOSE Biliary tract cancers (BTCs) are rare and show a dismal prognosis with limited treatment options. To improve our understanding of these heterogeneous tumors and develop effective therapeutic agents, suitable preclinical models reflecting diverse tumor characteristics are needed. We established and characterized new patient-derived cancer cell cultures and patient-derived xenograft (PDX) models using malignant ascites from five patients with BTC. MATERIALS AND METHODS Five patient-derived cancer cell cultures and three PDX models derived from malignant ascites of five patients with BTC, AMCBTC-01, -02, -03, -04, and -05, were established. To characterize the models histogenetically and confirm whether characteristics of the primary tumor were maintained, targeted sequencing and histopathological comparison between primary tissue and xenograft tumors were performed. RESULTS From malignant ascites of five BTC patients, five patient-derived cancer cell cultures (100% success rate), and three PDXs (60% success rate) were established. The morphological characteristics of three primary xenograft tumors were compared with those of matched primary tumors, and they displayed a similar morphology. The mutated genes in samples (models, primary tumor tissue, or both) from more than one patient were TP53 (n=2), KRAS (n=2), and STK11 (n=2). Overall, the pattern of commonly mutated genes in BTC cell cultures was different from that in commercially available BTC cell lines. CONCLUSION We successfully established the patient-derived cancer cell cultures and xenograft models derived from malignant ascites in BTC patients. These models accompanied by different genetic characteristics from commercially available models will help better understand BTC biology.
Collapse
Affiliation(s)
- Jihoon Kang
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul,
Korea,Center for Research and Development, Oncocross Ltd., Seoul,
Korea
| | - Ji-Young Lee
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, University of Ulsan College of Medicine, Seoul,
Korea,Center for Cancer Genome Discovery, Asan Institute for Life Science, Asan Medical Center, Seoul,
Korea
| | - Sunmin Lee
- University of Ulsan Digestive Diseases Research Center, Seoul,
Korea
| | - Danbee Kim
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul,
Korea
| | - Jinyeong Lim
- Center for Cancer Genome Discovery, Asan Institute for Life Science, Asan Medical Center, Seoul,
Korea
| | - Ha Ra Jun
- Center for Cancer Genome Discovery, Asan Institute for Life Science, Asan Medical Center, Seoul,
Korea
| | - Seyeon Jeon
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, University of Ulsan College of Medicine, Seoul,
Korea
| | - Young-Ae Kim
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul,
Korea
| | - Hye Seon Park
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul,
Korea
| | - Kyu-pyo Kim
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul,
Korea
| | - Sung-Min Chun
- Center for Cancer Genome Discovery, Asan Institute for Life Science, Asan Medical Center, Seoul,
Korea,Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul,
Korea
| | - Hee Jin Lee
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul,
Korea
| | - Changhoon Yoo
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul,
Korea
| |
Collapse
|
9
|
Gassl V, Aberle MR, Boonen B, Vaes RDW, Olde Damink SWM, Rensen SS. Chemosensitivity of 3D Pancreatic Cancer Organoids Is Not Affected by Transformation to 2D Culture or Switch to Physiological Culture Medium. Cancers (Basel) 2022; 14:cancers14225617. [PMID: 36428711 PMCID: PMC9688175 DOI: 10.3390/cancers14225617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/06/2022] [Accepted: 11/11/2022] [Indexed: 11/17/2022] Open
Abstract
Organoids are increasingly used to investigate patient-specific drug responsiveness, but organoid culture is complex and expensive, and carried out in rich, non-physiological media. We investigated reproducibility of drug-responsiveness of primary cell cultures in 2D versus 3D and in conventional versus physiological cell culture medium. 3D pancreatic ductal adenocarcinoma organoid cultures PANCO09b and PANCO11b were converted to primary cell cultures growing in 2D. Transformed 2D cultures were grown in physiological Plasmax medium or Advanced-DMEM/F12. Sensitivity towards gemcitabine, paclitaxel, SN-38, 5-fluorouacil, and oxaliplatin was investigated by cell viability assays. Growth rates of corresponding 2D and 3D cultures were comparable. PANCO09b had a shorter doubling time in physiological media. Chemosensitivity of PANCO09b and PANCO11b grown in 2D or 3D was similar, except for SN-38, to which PANCO11b cultured in 3D was more sensitive (2D: 8.2 ×10-3 ± 2.3 ×10-3 vs. 3D: 1.1 ×10-3 ± 0.6 ×10-3, p = 0.027). PANCO09b and PANCO11b showed no major differences in chemosensitivity when cultured in physiological compared to conventional media, although PANCO11b was more sensitive to SN-38 in physiological media (9.8 × 10-3 ± 0.7 × 10-3 vs. 5.2 × 10-3 ± 1.8 × 10-3, p = 0.015). Collectively, these data indicate that the chemosensitivity of organoids is not affected by culture medium composition or culture dimensions. This implies that organoid-based drug screens can be simplified to become more cost-effective.
Collapse
Affiliation(s)
- Vincent Gassl
- Department of Surgery, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands
- NUTRIM-School of Nutrition and Translational Research in Metabolism, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Merel R. Aberle
- Department of Surgery, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands
- NUTRIM-School of Nutrition and Translational Research in Metabolism, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Bas Boonen
- Department of Surgery, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands
- NUTRIM-School of Nutrition and Translational Research in Metabolism, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Rianne D. W. Vaes
- Department of Surgery, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands
- NUTRIM-School of Nutrition and Translational Research in Metabolism, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Steven W. M. Olde Damink
- Department of Surgery, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands
- NUTRIM-School of Nutrition and Translational Research in Metabolism, Maastricht University, 6229 ER Maastricht, The Netherlands
- Department of Visceral and Transplantation Surgery, RWTH Aachen University, 52074 Aachen, Germany
| | - Sander S. Rensen
- Department of Surgery, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands
- NUTRIM-School of Nutrition and Translational Research in Metabolism, Maastricht University, 6229 ER Maastricht, The Netherlands
- Correspondence:
| |
Collapse
|
10
|
Peng Z, Hao M, Tong H, Yang H, Huang B, Zhang Z, Luo KQ. The interactions between integrin α 5β 1 of liver cancer cells and fibronectin of fibroblasts promote tumor growth and angiogenesis. Int J Biol Sci 2022; 18:5019-5037. [PMID: 35982891 PMCID: PMC9379399 DOI: 10.7150/ijbs.72367] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/10/2022] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) progression is closely related to pathological fibrosis, which involves heterotypic intercellular interactions (HIIs) between liver cancer cells and fibroblasts. Here, we studied them in a direct coculture model, and identified fibronectin from fibroblasts and integrin-α5β1 from liver cancer cells as the primary responsible molecules utilizing CRISPR/Cas9 gene-editing technology. Coculture led to the formation of 3D multilayer microstructures, and obvious fibronectin remodeling was caused by upregulated integrin-α5β1, which greatly promoted cell growth in 3D microstructures. Integrin-α5 was more sensitive and specific than integrin-β1 in this process. Subsequent mechanistic exploration revealed the activation of integrin-Src-FAK, AKT and ERK signaling pathways. Importantly, the growth-promoting effect of HIIs was verified in a xenograft tumor model, in which more blood vessels were observed in bigger tumors derived from the coculture group than that derived from monocultured groups. Hence, we conducted triculture by introducing human umbilical vein endothelial cells, which aligned to and differentiated along multilayer microstructures in an integrin-α5β1 dependent manner. Furthermore, fibronectin, integrin-α5, and integrin-β1 were upregulated in 52 HCC tumors, and fibronectin was related to microvascular invasion. Our findings identify fibronectin, integrin-α5, and integrin-β1 as tumor microenvironment-related targets and provide a basis for combination targeted therapeutic strategies for future HCC treatment.
Collapse
Affiliation(s)
- Zheng Peng
- Faculty of Health Sciences, University of Macau, Taipa, Macao SAR, China
| | - Meng Hao
- Faculty of Health Sciences, University of Macau, Taipa, Macao SAR, China
| | - Haibo Tong
- Faculty of Health Sciences, University of Macau, Taipa, Macao SAR, China
| | - Hongmei Yang
- Faculty of Health Sciences, University of Macau, Taipa, Macao SAR, China
| | - Bin Huang
- Faculty of Health Sciences, University of Macau, Taipa, Macao SAR, China
| | - Zhigang Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Kathy Qian Luo
- Faculty of Health Sciences, University of Macau, Taipa, Macao SAR, China.,Ministry of Education-Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macao SAR, China
| |
Collapse
|
11
|
Ong LJY, Chia S, Wong SQR, Zhang X, Chua H, Loo JM, Chua WY, Chua C, Tan E, Hentze H, Tan IB, DasGupta R, Toh YC. A comparative study of tumour-on-chip models with patient-derived xenografts for predicting chemotherapy efficacy in colorectal cancer patients. Front Bioeng Biotechnol 2022; 10:952726. [PMID: 36147524 PMCID: PMC9488115 DOI: 10.3389/fbioe.2022.952726] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/19/2022] [Indexed: 11/24/2022] Open
Abstract
Inter-patient and intra-tumour heterogeneity (ITH) have prompted the need for a more personalised approach to cancer therapy. Although patient-derived xenograft (PDX) models can generate drug response specific to patients, they are not sustainable in terms of cost and time and have limited scalability. Tumour Organ-on-Chip (OoC) models are in vitro alternatives that can recapitulate some aspects of the 3D tumour microenvironment and can be scaled up for drug screening. While many tumour OoC systems have been developed to date, there have been limited validation studies to ascertain whether drug responses obtained from tumour OoCs are comparable to those predicted from patient-derived xenograft (PDX) models. In this study, we established a multiplexed tumour OoC device, that consists of an 8 × 4 array (32-plex) of culture chamber coupled to a concentration gradient generator. The device enabled perfusion culture of primary PDX-derived tumour spheroids to obtain dose-dependent response of 5 distinct standard-of-care (SOC) chemotherapeutic drugs for 3 colorectal cancer (CRC) patients. The in vitro efficacies of the chemotherapeutic drugs were rank-ordered for individual patients and compared to the in vivo efficacy obtained from matched PDX models. We show that quantitative correlation analysis between the drug efficacies predicted via the microfluidic perfusion culture is predictive of response in animal PDX models. This is a first study showing a comparative framework to quantitatively correlate the drug response predictions made by a microfluidic tumour organ-on-chip (OoC) model with that of PDX animal models.
Collapse
Affiliation(s)
- Louis Jun Ye Ong
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology (QUT), Brisbane, QL, Australia
- Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QL, Australia
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
- Institute for Health Innovation and Technology, National University of Singapore, Singapore, Singapore
| | - Shumei Chia
- Laboratory of Precision Oncology and Cancer Evolution, Genome Institute of Singapore, A*STAR, Singapore, Singapore
| | - Stephen Qi Rong Wong
- Laboratory of Precision Oncology and Cancer Evolution, Genome Institute of Singapore, A*STAR, Singapore, Singapore
- Biological Resource Centre, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Samuel Oschin Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Xiaoqian Zhang
- Laboratory of Precision Oncology and Cancer Evolution, Genome Institute of Singapore, A*STAR, Singapore, Singapore
| | - Huiwen Chua
- Laboratory of Precision Oncology and Cancer Evolution, Genome Institute of Singapore, A*STAR, Singapore, Singapore
| | - Jia Min Loo
- Laboratory of Precision Oncology and Cancer Evolution, Genome Institute of Singapore, A*STAR, Singapore, Singapore
| | - Wei Yong Chua
- Laboratory of Precision Oncology and Cancer Evolution, Genome Institute of Singapore, A*STAR, Singapore, Singapore
| | - Clarinda Chua
- National Cancer Centre Singapore, Singapore, Singapore
| | - Emile Tan
- Singapore General Hospital, Singapore, Singapore
| | - Hannes Hentze
- Experimental, Drug Development Centre, A*STAR, Singapore, Singapore
| | - Iain Beehuat Tan
- Laboratory of Precision Oncology and Cancer Evolution, Genome Institute of Singapore, A*STAR, Singapore, Singapore
- National Cancer Centre Singapore, Singapore, Singapore
- Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Ramanuj DasGupta
- Laboratory of Precision Oncology and Cancer Evolution, Genome Institute of Singapore, A*STAR, Singapore, Singapore
- *Correspondence: Ramanuj DasGupta, ; Yi-Chin Toh,
| | - Yi-Chin Toh
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology (QUT), Brisbane, QL, Australia
- Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QL, Australia
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
- Institute for Health Innovation and Technology, National University of Singapore, Singapore, Singapore
- *Correspondence: Ramanuj DasGupta, ; Yi-Chin Toh,
| |
Collapse
|
12
|
Chavarria V, Ortiz-Islas E, Salazar A, Pérez-de la Cruz V, Espinosa-Bonilla A, Figueroa R, Ortíz-Plata A, Sotelo J, Sánchez-García FJ, Pineda B. Lactate-Loaded Nanoparticles Induce Glioma Cytotoxicity and Increase the Survival of Rats Bearing Malignant Glioma Brain Tumor. Pharmaceutics 2022; 14:pharmaceutics14020327. [PMID: 35214059 PMCID: PMC8880216 DOI: 10.3390/pharmaceutics14020327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 11/25/2022] Open
Abstract
A glioblastoma is an aggressive form of a malignant glial-derived tumor with a poor prognosis despite multimodal therapy approaches. Lactate has a preponderant role in the tumor microenvironment, playing an immunoregulatory role as well as being a carbon source for tumor growth. Lactate homeostasis depends on the proper functioning of intracellular lactate regulation systems, such as transporters and enzymes involved in its synthesis and degradation, with evidence that an intracellular lactate overload generates metabolic stress on tumor cells and tumor cell death. We propose that the delivery of a lactate overload carried in nanoparticles, allowing the intracellular release of lactate, would compromise the survival of tumor cells. We synthesized and characterized silica and titania nanoparticles loaded with lactate to evaluate the cellular uptake, metabolic activity, pH modification, and cytotoxicity on C6 cells under normoxia and chemical hypoxia, and, finally, determined the survival of an orthotopic malignant glioma model after in situ administration. A dose-dependent reduction in metabolic activity of treated cells under normoxia was found, but not under hypoxia, independent of glucose concentration. Lactated-loaded silica nanoparticles were highly cytotoxic (58.1% of dead cells) and generated significant supernatant acidification. In vivo, lactate-loaded silica nanoparticles significantly increased the median survival time of malignant glioma-bearing rats (p = 0.005) when administered in situ. These findings indicate that lactate-loaded silica nanoparticles are cytotoxic on glioma cells in vitro and in vivo.
Collapse
Affiliation(s)
- Víctor Chavarria
- Neuroimmunology and Neuro-Oncology Unit, Instituto Nacional de Neurología y Neurocirugía (INNN), Mexico City 14269, Mexico; (V.C.); (A.S.); (R.F.); (J.S.)
- Laboratorio de Inmunorregulación, Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Emma Ortiz-Islas
- Nanotechnology Laboratory, Instituto Nacional de Neurología y Neurocirugía (INNN), Mexico City 14269, Mexico;
| | - Alelí Salazar
- Neuroimmunology and Neuro-Oncology Unit, Instituto Nacional de Neurología y Neurocirugía (INNN), Mexico City 14269, Mexico; (V.C.); (A.S.); (R.F.); (J.S.)
| | - Verónica Pérez-de la Cruz
- Neurobiochemistry and Behaviour Laboratory, Instituto Nacional de Neurología y Neurocirugía (INNN), Mexico City 14269, Mexico;
| | - Alejandra Espinosa-Bonilla
- Central de Instrumentación, Posgrado en Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico;
| | - Rubén Figueroa
- Neuroimmunology and Neuro-Oncology Unit, Instituto Nacional de Neurología y Neurocirugía (INNN), Mexico City 14269, Mexico; (V.C.); (A.S.); (R.F.); (J.S.)
- Laboratorio de Inmunorregulación, Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Alma Ortíz-Plata
- Experimental Neuropathology Laboratory, Instituto Nacional de Neurología y Neurocirugía (INNN), Mexico City 14269, Mexico;
| | - Julio Sotelo
- Neuroimmunology and Neuro-Oncology Unit, Instituto Nacional de Neurología y Neurocirugía (INNN), Mexico City 14269, Mexico; (V.C.); (A.S.); (R.F.); (J.S.)
| | - Francisco Javier Sánchez-García
- Laboratorio de Inmunorregulación, Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
- Correspondence: (F.J.S.-G.); (B.P.); Tel.: +52-1-(55)-57296300 (ext. 62370) (F.J.S.-G.); +52-1-(55)-56063822 (ext. 2001) (B.P.)
| | - Benjamín Pineda
- Neuroimmunology and Neuro-Oncology Unit, Instituto Nacional de Neurología y Neurocirugía (INNN), Mexico City 14269, Mexico; (V.C.); (A.S.); (R.F.); (J.S.)
- Correspondence: (F.J.S.-G.); (B.P.); Tel.: +52-1-(55)-57296300 (ext. 62370) (F.J.S.-G.); +52-1-(55)-56063822 (ext. 2001) (B.P.)
| |
Collapse
|
13
|
Azwar S, Seow HF, Abdullah M, Faisal Jabar M, Mohtarrudin N. Recent Updates on Mechanisms of Resistance to 5-Fluorouracil and Reversal Strategies in Colon Cancer Treatment. BIOLOGY 2021; 10:854. [PMID: 34571731 PMCID: PMC8466833 DOI: 10.3390/biology10090854] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/04/2020] [Accepted: 08/11/2020] [Indexed: 02/06/2023]
Abstract
5-Fluorouracil (5-FU) plus leucovorin (LV) remain as the mainstay standard adjuvant chemotherapy treatment for early stage colon cancer, and the preferred first-line option for metastatic colon cancer patients in combination with oxaliplatin in FOLFOX, or irinotecan in FOLFIRI regimens. Despite treatment success to a certain extent, the incidence of chemotherapy failure attributed to chemotherapy resistance is still reported in many patients. This resistance, which can be defined by tumor tolerance against chemotherapy, either intrinsic or acquired, is primarily driven by the dysregulation of various components in distinct pathways. In recent years, it has been established that the incidence of 5-FU resistance, akin to multidrug resistance, can be attributed to the alterations in drug transport, evasion of apoptosis, changes in the cell cycle and DNA-damage repair machinery, regulation of autophagy, epithelial-to-mesenchymal transition, cancer stem cell involvement, tumor microenvironment interactions, miRNA dysregulations, epigenetic alterations, as well as redox imbalances. Certain resistance mechanisms that are 5-FU-specific have also been ascertained to include the upregulation of thymidylate synthase, dihydropyrimidine dehydrogenase, methylenetetrahydrofolate reductase, and the downregulation of thymidine phosphorylase. Indeed, the successful modulation of these mechanisms have been the game plan of numerous studies that had employed small molecule inhibitors, plant-based small molecules, and non-coding RNA regulators to effectively reverse 5-FU resistance in colon cancer cells. It is hoped that these studies would provide fundamental knowledge to further our understanding prior developing novel drugs in the near future that would synergistically work with 5-FU to potentiate its antitumor effects and improve the patient's overall survival.
Collapse
Affiliation(s)
- Shamin Azwar
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (S.A.); (H.F.S.); (M.A.)
| | - Heng Fong Seow
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (S.A.); (H.F.S.); (M.A.)
| | - Maha Abdullah
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (S.A.); (H.F.S.); (M.A.)
| | - Mohd Faisal Jabar
- Department of Surgery, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Norhafizah Mohtarrudin
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (S.A.); (H.F.S.); (M.A.)
| |
Collapse
|
14
|
Le-Kim TH, Koo BI, Jo SD, Liang NW, Yang MY, Cho I, Chang JB, Wang TW, Nam YS. Artificial Taste Buds: Bioorthogonally Ligated Gustatory-Neuronal Multicellular Hybrids Enabling Intercellular Taste Signal Transmission. ACS Biomater Sci Eng 2021; 7:3783-3792. [PMID: 34324295 DOI: 10.1021/acsbiomaterials.1c00247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Heterogeneous tissue models require the assembly and co-culture of multiple types of cells. Our recent work demonstrated taste signal transmission from gustatory cells to neurons by grafting single-stranded DNA into the cell membrane to construct multicellular assemblies. However, the weak DNA linkage and low grafting density allowed the formation of large gustatory cell self-aggregates that cannot communicate with neurons efficiently. This article presents the construction of artificial taste buds exhibiting active intercellular taste signal transmission through the hybridization of gustatory-neuronal multicellular interfaces using bioorthogonal click chemistry. Hybrid cell clusters were formed by the self-assembly of neonatal gustatory cells displaying tetrazine with a precultured embryonic hippocampal neuronal network displaying trans-cyclooctene. A bitter taste signal transduction was provoked in gustatory cells using denatonium benzoate and transmitted to neurons as monitored by intracellular calcium ion sensing. In the multicellular hybrids, the average number of signal transmissions was five to six peaks per cell, and the signal transmission lasted for ∼5 min with a signal-to-signal gap time of 10-40 s. The frequent and extended intercellular signal transmission suggests that the cell surface modification by the bioorthogonal click chemistry is a promising approach to fabricating functional multicellular hybrid clusters potentially useful for cell-based biosensors, toxicity assays, and tissue regeneration.
Collapse
Affiliation(s)
- Trang Huyen Le-Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Bon Il Koo
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Sung Duk Jo
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Nai-Wen Liang
- Department of Materials Science and Engineering, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu, Taiwan 30013, Republic of China
| | - Moon Young Yang
- KAIST Institute for NanoCentury, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - In Cho
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jae Byum Chang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Tzu-Wei Wang
- Department of Materials Science and Engineering, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu, Taiwan 30013, Republic of China
| | - Yoon Sung Nam
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.,KAIST Institute for NanoCentury, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
15
|
Self-Assembling Polypeptide Hydrogels as a Platform to Recapitulate the Tumor Microenvironment. Cancers (Basel) 2021; 13:cancers13133286. [PMID: 34209094 PMCID: PMC8267709 DOI: 10.3390/cancers13133286] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 06/22/2021] [Accepted: 06/25/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary The tumor microenvironment is characterized by increased tissue stiffness, low (acidic) pH, and elevated temperature, all of which contribute to the development of cancer. Improving our in vitro models of cancer, therefore, requires the development of cell culture platforms that can mimic these microenvironmental properties. Here, we study a new biomaterial composed of short amino acid chains that self-assemble into a fibrous hydrogel network. This material enables simultaneous and independent tuning of substrate rigidity, extracellular pH, and temperature, allowing us to mimic both healthy tissues and the tumor microenvironment. We used this platform to study the effect of these conditions on pancreatic cancer cells and found that high substrate rigidity and low pH promote proliferation and survival of cancer cells and activate important signaling pathways associated with cancer progression. Abstract The tumor microenvironment plays a critical role in modulating cancer cell migration, metabolism, and malignancy, thus, highlighting the need to develop in vitro culture systems that can recapitulate its abnormal properties. While a variety of stiffness-tunable biomaterials, reviewed here, have been developed to mimic the rigidity of the tumor extracellular matrix, culture systems that can recapitulate the broader extracellular context of the tumor microenvironment (including pH and temperature) remain comparably unexplored, partially due to the difficulty in independently tuning these parameters. Here, we investigate a self-assembled polypeptide network hydrogel as a cell culture platform and demonstrate that the culture parameters, including the substrate stiffness, extracellular pH and temperature, can be independently controlled. We then use this biomaterial as a cell culture substrate to assess the effect of stiffness, pH and temperature on Suit2 cells, a pancreatic cancer cell line, and demonstrate that these microenvironmental factors can regulate two critical transcription factors in cancer: yes-associated protein 1 (YAP) and hypoxia inducible factor (HIF-1A).
Collapse
|
16
|
Abstract
In this review, Shen and Kang provide an overview of the tumor-intrinsic and microenvironment- and treatment-induced stresses that tumor cells encounter in the metastatic cascade and the molecular pathways they develop to relieve these stresses. Metastasis is the ultimate “survival of the fittest” test for cancer cells, as only a small fraction of disseminated tumor cells can overcome the numerous hurdles they encounter during the transition from the site of origin to a distinctly different distant organ in the face of immune and therapeutic attacks and various other stresses. During cancer progression, tumor cells develop a variety of mechanisms to cope with the stresses they encounter, and acquire the ability to form metastases. Restraining these stress-releasing pathways could serve as potentially effective strategies to prevent or reduce metastasis and improve the survival of cancer patients. Here, we provide an overview of the tumor-intrinsic, microenvironment- and treatment-induced stresses that tumor cells encounter in the metastatic cascade and the molecular pathways they develop to relieve these stresses. We also summarize the preclinical and clinical studies that evaluate the potential therapeutic benefit of targeting these stress-relieving pathways.
Collapse
Affiliation(s)
- Minhong Shen
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | - Yibin Kang
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
17
|
3D Multicellular Stem-Like Human Breast Tumor Spheroids Enhance Tumorigenicity of Orthotopic Xenografts in Athymic Nude Rat Model. Cancers (Basel) 2021; 13:cancers13112784. [PMID: 34205080 PMCID: PMC8199968 DOI: 10.3390/cancers13112784] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 05/21/2021] [Accepted: 05/28/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Breast cancer presents a unique clinical problem because of the variety of cellular subtypes present, including cancer stem cells (CSCs). Breast CSCs can induce the formation of new blood vessels at the site of tumor growth and a develop metastatic phenotype by enhancing a stromal cell response, similar to that of the primary breast cancer. The aim of this study was to investigate breast cancer cells cultured in stromal stem cell factor-supplemented media to generate 3D spheroids that exhibit increased stem-like properties. These 3D stem-like spheroids reproducibly and efficiently established orthotopic breast cancer xenografts in the athymic nude rat. This approach enables a means to develop orthotopic tumors with a stem-like phenotype in a larger athymic rat rodent model of human breast cancer. Abstract Therapeutic targeting of stem cells needs to be strategically developed to control tumor growth and prevent metastatic burden successfully. Breast cancer presents a unique clinical problem because of the variety of cellular subtypes present, including cancer stem cells (CSCs). The development of 3D stem-like properties of human breast tumor spheroids in stem cell factor conditioned media was investigated in orthotopic xenografts for enhanced tumorgenicity in the athymic nude rat model. MCF-7, ZR-75-1, and MDA-MB-231 breast cancer cell lines were cultured in serum-free, stem cell factor-supplemented medium under non-adherent conditions and passaged to generate 3rd generation spheroids. The spheroids were co-cultured with fetal lung fibroblast (FLF) cells before orthotopic heterotransplantation into the mammary fat pads of athymic nude rats. Excised xenografts were assessed histologically by H&E staining and immunohistochemistry for breast cancer marker (ERB1), proliferation marker (Ki67), mitotic marker (pHH3), hypoxia marker (HIF-2α), CSC markers (CD47, CD44, CD24, and CD133), and vascularization markers (CD31, CD34). Breast cancer cells cultured in stem cell factor supplemented medium generated 3D spheroids exhibited increased stem-like characteristics. The 3D stem-like spheroids co-cultured with FLF as supporting stroma reproducibly and efficiently established orthotopic breast cancer xenografts in the athymic nude rat.
Collapse
|
18
|
Shannon AE, Boos CE, Hummon AB. Co-culturing multicellular tumor models: Modeling the tumor microenvironment and analysis techniques. Proteomics 2021; 21:e2000103. [PMID: 33569922 PMCID: PMC8262778 DOI: 10.1002/pmic.202000103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 12/19/2020] [Accepted: 01/13/2021] [Indexed: 02/06/2023]
Abstract
Advances in two-dimensional (2D) and three-dimensional (3D) cell culture over the last 10 years have led to the development of a plethora of methods for cultivating tumor models. More recently, cellular co-cultures have become a suitable testbed. The first portion of this review focuses on co-culturing methods that have been developed in recent years utilizing the multicellular tumor spheroid model. The latter portion describes techniques that are used to analyze the proteomes of mono- or co-cultured tumor models, with a focus on mass spectrometry (MS)-based analyses. Protein profiles are important indicators of the tumor heterogeneity. Therefore, there is a specific focus within this review on analysis by MS and MS imaging methods evaluating the proteomic profiles of 2D and 3D co-cultures. While these models are incredibly important for biological research, so far, they have not been widely explored on the proteomic level. With this review, we aim to introduce these systems to an analytical audience, with the goal of highlighting MS as an underutilized tool for proteomic analysis of tumor models.
Collapse
Affiliation(s)
- Ariana E. Shannon
- Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio, USA
| | - Claire E. Boos
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA
| | - Amanda B. Hummon
- Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio, USA
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA
- The Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
19
|
Shao X, Zhang F, Gao X, Xu F. Siomycin A induces reactive oxygen species-mediated cytotoxicity in ovarian cancer cells. Oncol Lett 2021; 21:431. [PMID: 33868469 PMCID: PMC8045165 DOI: 10.3892/ol.2021.12692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 01/14/2021] [Indexed: 11/18/2022] Open
Abstract
Ovarian cancer is one of the leading causes of cancer-related death among women worldwide and accounts for 4% of all cancer cases in female patients. To date, ovarian cancer has the poorest prognosis among all types of gynecological cancer; thus, it is necessary to identify prospective therapeutic options. Previous studies have demonstrated the involvement of reactive oxygen species (ROS) in the cytotoxicity of various anticancer drugs against several types of carcinoma, including ovarian cancer. The present study aimed to investigate the anticancer effects of Siomycin A, a thiopeptide antibiotic, on the ovarian cancer cell lines PA1 and OVCAR3. To determine the viability of these cells following exposure to Siomycin A, the MTT assay was used, and apoptosis was determined by ELISA. In addition, mitochondrial membrane potential was determined by JC1 staining, and cellular ROS levels were assessed by dichlorodihydrofluorescein diacetate staining in the presence and absence of antioxidant NAC. The subsequent levels of antioxidant enzymes and glutathione were also determined following Siomycin A treatment in the two cell lines. A combination study with Siomycin A and cisplatin indicated enhanced efficiency of the drugs on ovarian cancer cell viability. The results of the present study also demonstrated that Siomycin A induced ROS production, inhibited the major antioxidant enzymes, including catalase, superoxide dismutase, glutathione peroxidase, glutathione reductase and intracellular GSH in PA1 and OVCAR3 cells, and inhibited the cell viability with an IC50 of ~5.0 and 2.5 µM after 72 h respectively compared with the untreated controls. Additionally, the Siomycin A-induced ROS production further targeted apoptotic cell death by impairing the mitochondrial membrane potential and modulating the levels of pro- and antiapoptotic proteins compared with those in the corresponding control groups. The administration of the antioxidant N-acetylcysteine significantly abrogated the cytotoxic effects of Siomycin A. In conclusion, the results of the present study demonstrated the role of ROS in Siomycin A-mediated cytotoxicity in ovarian cancer cells.
Collapse
Affiliation(s)
- Xiulan Shao
- Department of Obstetrics and Gynecology, The Hospital of Tinglin, Shanghai 201505, P.R. China
| | - Fengying Zhang
- Department of Obstetrics and Gynecology, The Hospital of Tinglin, Shanghai 201505, P.R. China
| | - Xiang Gao
- Department of Obstetrics and Gynecology, The Hospital of Tinglin, Shanghai 201505, P.R. China
| | - Fengying Xu
- Department of Obstetrics and Gynecology, The Hospital of Tinglin, Shanghai 201505, P.R. China
| |
Collapse
|
20
|
The Newly Synthetized Chalcone L1 Is Involved in the Cell Growth Inhibition, Induction of Apoptosis and Suppression of Epithelial-to-Mesenchymal Transition of HeLa Cells. Molecules 2021; 26:molecules26051356. [PMID: 33802621 PMCID: PMC7961543 DOI: 10.3390/molecules26051356] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/24/2021] [Accepted: 02/28/2021] [Indexed: 12/24/2022] Open
Abstract
Over the past decades, natural products have emerged as promising agents with multiple biological activities. Many studies suggest the antioxidant, antiangiogenic, antiproliferative and anticancer effects of chalcones and their derivatives. Based on these findings, we decided to evaluate the effects of the newly synthetized chalcone L1 in a human cervical carcinoma cell (HeLa) model. Presented results were obtained by western blot and flow cytometric analyses, live cell imaging and antimigratory potential of L1 in HeLa cells was demonstrated by scratch assay. In the present study, we proved the role of L1 as an effective agent with antiproliferative activity supported by G2/M cell cycle arrest and apoptosis. Moreover, we proved that L1 is involved in modulating Transforming Growth Factor-β1 (TGF-β) signal transduction through Smad proteins and it also modulates other signalling pathways including Akt, JNK, p38 MAPK, and Erk1/2. The involvement of L1 in epithelial-to-mesenchymal transition was demonstrated by the regulation of N-cadherin, E-cadherin, and MMP-9 levels. Here, we also evaluated the effect of conditioned medium from BJ-5ta human foreskin fibroblasts in HeLa cell cultures with subsequent L1 treatment. Taken together, these data suggest the potential role of newly synthesized chalcone L1 as an anticancer-tumour microenvironment modulating agent.
Collapse
|
21
|
García-Galindo G, Castro J, Matés J, Bravo M, Ribó M, Vilanova M, Benito A. The Selectivity for Tumor Cells of Nuclear-Directed Cytotoxic RNases Is Mediated by the Nuclear/Cytoplasmic Distribution of p27 KIP1. Molecules 2021; 26:molecules26051319. [PMID: 33801209 PMCID: PMC7957890 DOI: 10.3390/molecules26051319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 12/03/2022] Open
Abstract
Although single targeted anti-cancer drugs are envisaged as safer treatments because they do not affect normal cells, cancer is a very complex disease to be eradicated with a single targeted drug. Alternatively, multi-targeted drugs may be more effective and the tumor cells may be less prone to develop drug resistance although these drugs may be less specific for cancer cells. We have previously developed a new strategy to endow human pancreatic ribonuclease with antitumor action by introducing in its sequence a non-classical nuclear localization signal. These engineered proteins cleave multiple species of nuclear RNA promoting apoptosis of tumor cells. Interestingly, these enzymes, on ovarian cancer cells, affect the expression of multiple genes implicated in metabolic and signaling pathways that are critic for the development of cancer. Since most of these targeted pathways are not highly relevant for non-proliferating cells, we envisioned the possibility that nuclear directed-ribonucleases were specific for tumor cells. Here, we show that these enzymes are much more cytotoxic for tumor cells in vitro. Although the mechanism of selectivity of NLSPE5 is not fully understood, herein we show that p27KIP1 displays an important role on the higher resistance of non-tumor cells to these ribonucleases.
Collapse
Affiliation(s)
- Glòria García-Galindo
- Laboratori d’Enginyeria de Proteïnes, Departament de Biologia, Facultat de Ciències, Universitat de Girona, Campus de Montilivi, Maria Aurèlia Capmany 40, 17003 Girona, Spain; (G.G.-G.); (J.C.); (J.M.); (M.B.); (M.R.)
| | - Jessica Castro
- Laboratori d’Enginyeria de Proteïnes, Departament de Biologia, Facultat de Ciències, Universitat de Girona, Campus de Montilivi, Maria Aurèlia Capmany 40, 17003 Girona, Spain; (G.G.-G.); (J.C.); (J.M.); (M.B.); (M.R.)
- Institut d’Investigació Biomèdica de Girona Josep Trueta (IdIBGi), 17003 Girona, Spain
| | - Jesús Matés
- Laboratori d’Enginyeria de Proteïnes, Departament de Biologia, Facultat de Ciències, Universitat de Girona, Campus de Montilivi, Maria Aurèlia Capmany 40, 17003 Girona, Spain; (G.G.-G.); (J.C.); (J.M.); (M.B.); (M.R.)
- Institut d’Investigació Biomèdica de Girona Josep Trueta (IdIBGi), 17003 Girona, Spain
| | - Marlon Bravo
- Laboratori d’Enginyeria de Proteïnes, Departament de Biologia, Facultat de Ciències, Universitat de Girona, Campus de Montilivi, Maria Aurèlia Capmany 40, 17003 Girona, Spain; (G.G.-G.); (J.C.); (J.M.); (M.B.); (M.R.)
- Institut d’Investigació Biomèdica de Girona Josep Trueta (IdIBGi), 17003 Girona, Spain
| | - Marc Ribó
- Laboratori d’Enginyeria de Proteïnes, Departament de Biologia, Facultat de Ciències, Universitat de Girona, Campus de Montilivi, Maria Aurèlia Capmany 40, 17003 Girona, Spain; (G.G.-G.); (J.C.); (J.M.); (M.B.); (M.R.)
- Institut d’Investigació Biomèdica de Girona Josep Trueta (IdIBGi), 17003 Girona, Spain
| | - Maria Vilanova
- Laboratori d’Enginyeria de Proteïnes, Departament de Biologia, Facultat de Ciències, Universitat de Girona, Campus de Montilivi, Maria Aurèlia Capmany 40, 17003 Girona, Spain; (G.G.-G.); (J.C.); (J.M.); (M.B.); (M.R.)
- Institut d’Investigació Biomèdica de Girona Josep Trueta (IdIBGi), 17003 Girona, Spain
- Correspondence: (M.V.); (A.B.); Tel.: +34-972418173 (M.V.); +34-630415072 (A.B.)
| | - Antoni Benito
- Laboratori d’Enginyeria de Proteïnes, Departament de Biologia, Facultat de Ciències, Universitat de Girona, Campus de Montilivi, Maria Aurèlia Capmany 40, 17003 Girona, Spain; (G.G.-G.); (J.C.); (J.M.); (M.B.); (M.R.)
- Institut d’Investigació Biomèdica de Girona Josep Trueta (IdIBGi), 17003 Girona, Spain
- Correspondence: (M.V.); (A.B.); Tel.: +34-972418173 (M.V.); +34-630415072 (A.B.)
| |
Collapse
|
22
|
Mohd Ali N, Yeap SK, Ho WY, Boo L, Ky H, Satharasinghe DA, Tan SW, Cheong SK, Huang HD, Lan KC, Chiew MY, Ong HK. Adipose MSCs Suppress MCF7 and MDA-MB-231 Breast Cancer Metastasis and EMT Pathways Leading to Dormancy via Exosomal-miRNAs Following Co-Culture Interaction. Pharmaceuticals (Basel) 2020; 14:ph14010008. [PMID: 33374139 PMCID: PMC7824212 DOI: 10.3390/ph14010008] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/27/2020] [Accepted: 11/30/2020] [Indexed: 02/07/2023] Open
Abstract
Globally, breast cancer is the most frequently diagnosed cancer in women, and it remains a substantial clinical challenge due to cancer relapse. The presence of a subpopulation of dormant breast cancer cells that survived chemotherapy and metastasized to distant organs may contribute to relapse. Tumor microenvironment (TME) plays a significant role as a niche in inducing cancer cells into dormancy as well as involves in the reversible epithelial-to-mesenchymal transition (EMT) into aggressive phenotype responsible for cancer-related mortality in patients. Mesenchymal stem cells (MSCs) are known to migrate to TME and interact with cancer cells via secretion of exosome- containing biomolecules, microRNA. Understanding of interaction between MSCs and cancer cells via exosomal miRNAs is important in determining the therapeutic role of MSC in treating breast cancer cells and relapse. In this study, exosomes were harvested from a medium of indirect co-culture of MCF7-luminal and MDA-MB-231-basal breast cancer cells (BCCs) subtypes with adipose MSCs. The interaction resulted in different exosomal miRNAs profiles that modulate essential signaling pathways and cell cycle arrest into dormancy via inhibition of metastasis and epithelial-to-mesenchymal transition (EMT). Overall, breast cancer cells displayed a change towards a more dormant-epithelial phenotype associated with lower rates of metastasis and higher chemoresistance. The study highlights the crucial roles of adipose MSCs in inducing dormancy and identifying miRNAs-dormancy related markers that could be used to identify the metastatic pattern, predict relapses in cancer patients and to be potential candidate targets for new targeted therapy.
Collapse
Affiliation(s)
- Norlaily Mohd Ali
- Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Cheras 43000, Malaysia; (N.M.A.); (L.B.); (S.K.C.)
| | - Swee Keong Yeap
- Marine Biotechnology, China-ASEAN College of Marine Sciences, Xiamen University Malaysia Campus, Jalan Sunsuria, Bandar Sunsuria, Sepang, Selangor 43900, Malaysia;
| | - Wan Yong Ho
- Faculty of Medicine and Health Sciences, University of Nottingham (Malaysia Campus), Semenyih 43500, Malaysia;
| | - Lily Boo
- Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Cheras 43000, Malaysia; (N.M.A.); (L.B.); (S.K.C.)
| | - Huynh Ky
- Department of Agriculture Genetics and Breeding, College of Agriculture and Applied Biology, Cantho University, Can Tho 900100, Vietnam;
| | - Dilan Amila Satharasinghe
- Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine and Animal Science, University of Peradeniya, Peradeniya 20400, Sri Lanka;
| | - Sheau Wei Tan
- Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Soon Keng Cheong
- Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Cheras 43000, Malaysia; (N.M.A.); (L.B.); (S.K.C.)
- Cryocord Sdn Bhd, Persiaran Cyberpoint Selatan, Cyberjaya 63000, Malaysia
| | - Hsien Da Huang
- School of Life and Health Sciences, Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen 518172, China;
| | - Kuan Chun Lan
- Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, Hsinchu 30010, Taiwan;
| | - Men Yee Chiew
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu 30010, Taiwan;
| | - Han Kiat Ong
- Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Cheras 43000, Malaysia; (N.M.A.); (L.B.); (S.K.C.)
- Correspondence:
| |
Collapse
|
23
|
Ramuta TŽ, Jerman UD, Tratnjek L, Janev A, Magatti M, Vertua E, Bonassi Signoroni P, Silini AR, Parolini O, Kreft ME. The Cells and Extracellular Matrix of Human Amniotic Membrane Hinder the Growth and Invasive Potential of Bladder Urothelial Cancer Cells. Front Bioeng Biotechnol 2020; 8:554530. [PMID: 33240862 PMCID: PMC7680964 DOI: 10.3389/fbioe.2020.554530] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 10/19/2020] [Indexed: 12/30/2022] Open
Abstract
Bladder cancer is one of the most common cancers among men in industrialized countries and on the global level incidence and mortality rates are increasing. In spite of progress in surgical treatment and chemotherapy, the prognosis remains poor for patients with muscle-invasive bladder cancer. Therefore, there is a great need for the development of novel therapeutic approaches. The human amniotic membrane (hAM) is a multi-layered membrane that comprises the innermost part of the placenta. It has unique properties that make it suitable for clinical use, such as the ability to promote wound healing and decrease scarring, low immunogenicity, and immunomodulatory, antimicrobial and anticancer properties. This study aimed to investigate the effect of (i) hAM-derived cells and (ii) hAM scaffolds on the growth dynamics, proliferation rate, and invasive potential of muscle-invasive bladder cancer T24 cells. Our results show that 24 and 48 h of co-culturing T24 cells with hAM-derived cells (at 1:1 and 1:4 ratios) diminished the proliferation rate of T24 cells. Furthermore, when seeded on hAM scaffolds, namely (1) epithelium of hAM (e-hAM), (2) basal lamina of hAM (denuded; d-hAM), and (3) stroma of hAM (s-hAM), the growth dynamic of T24 cells was altered and proliferation was reduced, even more so by the e-hAM scaffolds. Importantly, despite their muscle-invasive potential, the T24 cells did not disrupt the basal lamina of hAM scaffolds. Furthermore, we observed a decrease in the expression of epithelial-mesenchymal transition (EMT) markers N-cadherin, Snail and Slug in T24 cells grown on hAM scaffolds and individual T24 cells even expressed epithelial markers E-cadherin and occludin. Our study brings new knowledge on basic mechanisms of hAM affecting bladder carcinogenesis and the results serve as a good foundation for further research into the potential of hAM-derived cells and the hAM extracellular matrix to serve as a novel bladder cancer treatment.
Collapse
Affiliation(s)
- Taja Železnik Ramuta
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Urška Dragin Jerman
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Larisa Tratnjek
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Aleksandar Janev
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Marta Magatti
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy
| | - Elsa Vertua
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy
| | | | - Antonietta Rosa Silini
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy
| | - Ornella Parolini
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy.,Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, Rome, Italy
| | - Mateja Erdani Kreft
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
24
|
Druzhkova I, Shirmanova M, Ignatova N, Dudenkova V, Lukina M, Zagaynova E, Safina D, Kostrov S, Didych D, Kuzmich A, Sharonov G, Rakitina O, Alekseenko I, Sverdlov E. Expression of EMT-Related Genes in Hybrid E/M Colorectal Cancer Cells Determines Fibroblast Activation and Collagen Remodeling. Int J Mol Sci 2020; 21:8119. [PMID: 33143259 PMCID: PMC7662237 DOI: 10.3390/ijms21218119] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/22/2020] [Accepted: 10/27/2020] [Indexed: 12/13/2022] Open
Abstract
Collagen, the main non-cellular component of the extracellular matrix (ECM), is profoundly reorganized during tumorigenesis and has a strong impact on tumor behavior. The main source of collagen in tumors is cancer-associated fibroblasts. Cancer cells can also participate in the synthesis of ECM; however, the contribution of both types of cells to collagen rearrangements during the tumor progression is far from being clear. Here, we investigated the processes of collagen biosynthesis and remodeling in parallel with the transcriptome changes during cancer cells and fibroblasts interactions. Combining immunofluorescence, RNA sequencing, and second harmonic generation microscopy, we have explored the relationships between the ratio of epithelial (E) and mesenchymal (M) components of hybrid E/M cancer cells, their ability to activate fibroblasts, and the contributions of both cell types to collagen remodeling. To this end, we studied (i) co-cultures of colorectal cancer cells and normal fibroblasts in a collagen matrix, (ii) patient-derived cancer-associated fibroblasts, and (iii) mouse xenograft models. We found that the activation of normal fibroblasts that form dense collagen networks consisting of large, highly oriented fibers depends on the difference in E/M ratio in the cancer cells. The more-epithelial cells activate the fibroblasts more strongly, which correlates with a dense and highly ordered collagen structure in tumors in vivo. The more-mesenchymal cells activate the fibroblasts to a lesser degree; on the other hand, this cell line has a higher innate collagen remodeling capacity. Normal fibroblasts activated by cancer cells contribute to the organization of the extracellular matrix in a way that is favorable for migratory potency. At the same time, in co-culture with epithelial cancer cells, the contribution of fibroblasts to the reorganization of ECM is more pronounced. Therefore, one can expect that targeting the ability of epithelial cancer cells to activate normal fibroblasts may provide a new anticancer therapeutic strategy.
Collapse
Affiliation(s)
- Irina Druzhkova
- Research Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 603005 Nizhny Novgorod, Russia; (I.D.); (M.S.); (N.I.); (V.D.); (M.L.); (E.Z.); (G.S.)
| | - Marina Shirmanova
- Research Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 603005 Nizhny Novgorod, Russia; (I.D.); (M.S.); (N.I.); (V.D.); (M.L.); (E.Z.); (G.S.)
| | - Nadezhda Ignatova
- Research Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 603005 Nizhny Novgorod, Russia; (I.D.); (M.S.); (N.I.); (V.D.); (M.L.); (E.Z.); (G.S.)
| | - Varvara Dudenkova
- Research Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 603005 Nizhny Novgorod, Russia; (I.D.); (M.S.); (N.I.); (V.D.); (M.L.); (E.Z.); (G.S.)
| | - Maria Lukina
- Research Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 603005 Nizhny Novgorod, Russia; (I.D.); (M.S.); (N.I.); (V.D.); (M.L.); (E.Z.); (G.S.)
| | - Elena Zagaynova
- Research Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 603005 Nizhny Novgorod, Russia; (I.D.); (M.S.); (N.I.); (V.D.); (M.L.); (E.Z.); (G.S.)
- Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia
| | - Dina Safina
- Department of Molecular-Genetic Basis of Biotechnology and Protein Engineering, Institute of Molecular Genetics of National Research Centre «Kurchatov Institute», 123182 Moscow, Russia; (D.S.); (S.K.); (I.A.); (E.S.)
| | - Sergey Kostrov
- Department of Molecular-Genetic Basis of Biotechnology and Protein Engineering, Institute of Molecular Genetics of National Research Centre «Kurchatov Institute», 123182 Moscow, Russia; (D.S.); (S.K.); (I.A.); (E.S.)
| | - Dmitry Didych
- Department of Genomics and Postgenomic Technologies, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of The Russian Academy of Sciences, 117997 Moscow, Russia; (D.D.); (O.R.)
| | - Alexey Kuzmich
- Department of Molecular-Genetic Basis of Biotechnology and Protein Engineering, Institute of Molecular Genetics of National Research Centre «Kurchatov Institute», 123182 Moscow, Russia; (D.S.); (S.K.); (I.A.); (E.S.)
- Department of Genomics and Postgenomic Technologies, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of The Russian Academy of Sciences, 117997 Moscow, Russia; (D.D.); (O.R.)
| | - George Sharonov
- Research Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 603005 Nizhny Novgorod, Russia; (I.D.); (M.S.); (N.I.); (V.D.); (M.L.); (E.Z.); (G.S.)
- Department of Genomics and Postgenomic Technologies, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of The Russian Academy of Sciences, 117997 Moscow, Russia; (D.D.); (O.R.)
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Olga Rakitina
- Department of Genomics and Postgenomic Technologies, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of The Russian Academy of Sciences, 117997 Moscow, Russia; (D.D.); (O.R.)
| | - Irina Alekseenko
- Department of Molecular-Genetic Basis of Biotechnology and Protein Engineering, Institute of Molecular Genetics of National Research Centre «Kurchatov Institute», 123182 Moscow, Russia; (D.S.); (S.K.); (I.A.); (E.S.)
- Department of Genomics and Postgenomic Technologies, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of The Russian Academy of Sciences, 117997 Moscow, Russia; (D.D.); (O.R.)
- Laboratory of Epigenetics, FSBI «National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov» Ministry of Healthcare of the Russian Federation, 117198 Moscow, Russia
| | - Eugene Sverdlov
- Department of Molecular-Genetic Basis of Biotechnology and Protein Engineering, Institute of Molecular Genetics of National Research Centre «Kurchatov Institute», 123182 Moscow, Russia; (D.S.); (S.K.); (I.A.); (E.S.)
- National Research Center «Kurchatov Institute», 123182 Moscow, Russia
| |
Collapse
|
25
|
Ruoß M, Kieber V, Rebholz S, Linnemann C, Rinderknecht H, Häussling V, Häcker M, Olde Damink LHH, Ehnert S, Nussler AK. Cell-Type-Specific Quantification of a Scaffold-Based 3D Liver Co-Culture. Methods Protoc 2019; 3:E1. [PMID: 31878071 PMCID: PMC7189675 DOI: 10.3390/mps3010001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 12/18/2019] [Accepted: 12/18/2019] [Indexed: 12/25/2022] Open
Abstract
In order to increase the metabolic activity of human hepatocytes and liver cancer cell lines, many approaches have been reported in recent years. The metabolic activity could be increased mainly by cultivating the cells in 3D systems or co-cultures (with other cell lines). However, if the system becomes more complex, it gets more difficult to quantify the number of cells (e.g., on a 3D matrix). Until now, it has been impossible to quantify different cell types individually in 3D co-culture systems. Therefore, we developed a PCR-based method that allows the quantification of HepG2 cells and 3T3-J2 cells separately in a 3D scaffold culture. Moreover, our results show that this method allows better comparability between 2D and 3D cultures in comparison to the often-used approaches based on metabolic activity measurements, such as the conversion of resazurin.
Collapse
Affiliation(s)
- Marc Ruoß
- Department of Traumatology, Siegfried Weller Institute, BG-Klinik Tübingen, Eberhard Karls University, 72076 Tübingen, Germany; (V.K.); (S.R.); (C.L.); (H.R.); (V.H.); (M.H.); (S.E.); (A.K.N.)
| | - Vanessa Kieber
- Department of Traumatology, Siegfried Weller Institute, BG-Klinik Tübingen, Eberhard Karls University, 72076 Tübingen, Germany; (V.K.); (S.R.); (C.L.); (H.R.); (V.H.); (M.H.); (S.E.); (A.K.N.)
| | - Silas Rebholz
- Department of Traumatology, Siegfried Weller Institute, BG-Klinik Tübingen, Eberhard Karls University, 72076 Tübingen, Germany; (V.K.); (S.R.); (C.L.); (H.R.); (V.H.); (M.H.); (S.E.); (A.K.N.)
| | - Caren Linnemann
- Department of Traumatology, Siegfried Weller Institute, BG-Klinik Tübingen, Eberhard Karls University, 72076 Tübingen, Germany; (V.K.); (S.R.); (C.L.); (H.R.); (V.H.); (M.H.); (S.E.); (A.K.N.)
| | - Helen Rinderknecht
- Department of Traumatology, Siegfried Weller Institute, BG-Klinik Tübingen, Eberhard Karls University, 72076 Tübingen, Germany; (V.K.); (S.R.); (C.L.); (H.R.); (V.H.); (M.H.); (S.E.); (A.K.N.)
| | - Victor Häussling
- Department of Traumatology, Siegfried Weller Institute, BG-Klinik Tübingen, Eberhard Karls University, 72076 Tübingen, Germany; (V.K.); (S.R.); (C.L.); (H.R.); (V.H.); (M.H.); (S.E.); (A.K.N.)
| | - Marina Häcker
- Department of Traumatology, Siegfried Weller Institute, BG-Klinik Tübingen, Eberhard Karls University, 72076 Tübingen, Germany; (V.K.); (S.R.); (C.L.); (H.R.); (V.H.); (M.H.); (S.E.); (A.K.N.)
| | | | - Sabrina Ehnert
- Department of Traumatology, Siegfried Weller Institute, BG-Klinik Tübingen, Eberhard Karls University, 72076 Tübingen, Germany; (V.K.); (S.R.); (C.L.); (H.R.); (V.H.); (M.H.); (S.E.); (A.K.N.)
| | - Andreas K. Nussler
- Department of Traumatology, Siegfried Weller Institute, BG-Klinik Tübingen, Eberhard Karls University, 72076 Tübingen, Germany; (V.K.); (S.R.); (C.L.); (H.R.); (V.H.); (M.H.); (S.E.); (A.K.N.)
| |
Collapse
|
26
|
Yu S, Choi HH, Kim IW, Kim TJ. Conditioned medium from asbestos-exposed fibroblasts affects proliferation and invasion of lung cancer cell lines. PLoS One 2019; 14:e0222160. [PMID: 31491033 PMCID: PMC6730856 DOI: 10.1371/journal.pone.0222160] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 08/22/2019] [Indexed: 12/28/2022] Open
Abstract
The importance of the role of fibroblasts in cancer microenvironment is well-recognized. However, the relationship between fibroblasts and asbestos-induced lung cancer remains underexplored. To investigate the effect of the asbestos-related microenvironment on lung cancer progression, lung cancer cells (NCI-H358, Calu-3, and A549) were cultured in media derived from IMR-90 lung fibroblasts exposed to 50 mg/L asbestos (chrysotile, amosite, and crocidolite) for 24 h. The kinetics and migration of lung cancer cells in the presence of asbestos-exposed lung fibroblast media were monitored using a real-time cell analysis system. Proliferation and migration of A549 cells increased in the presence of media derived from asbestos-exposed lung fibroblasts than in the presence of media derived from normal lung fibroblasts. We observed no increase in proliferation and migration in lung cancer cells cultured in asbestos-exposed lung cancer cell medium. In contrast, increased proliferation and migration in lung cancer cells exposed to media from asbestos-exposed lung fibroblasts was observed for all types of asbestos. Media derived from lung fibroblasts exposed to other stressors, such as hydrogen peroxide and UV radiation didn't show as similar effect as asbestos exposure. An enzyme-linked immunosorbent assay (ELISA)-based cytokine array identified interleukin (IL)-6 and IL-8, which show pleiotropic regulatory effects on lung cancer cells, to be specifically produced in higher amounts by the three types of asbestos-exposed lung fibroblasts than normal lung fibroblasts. Thus, the present study demonstrated that interaction of lung fibroblasts with asbestos may support the growth and metastasis of lung cancer cells and that chrysotile exposure can lead to lung cancer similar to that caused by amphibole asbestos (amosite and crocidolite).
Collapse
Affiliation(s)
- Seunghye Yu
- Department of Hospital Pathology, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Chemical Engineering, Soongsil University, Seoul, Korea
| | - Hee-Hyun Choi
- Department of Hospital Pathology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Il Won Kim
- Department of Chemical Engineering, Soongsil University, Seoul, Korea
| | - Tae-Jung Kim
- Department of Hospital Pathology, College of Medicine, The Catholic University of Korea, Seoul, Korea
- * E-mail:
| |
Collapse
|
27
|
Kim D, Koh B, Kim KR, Kim KY, Jung WH, Kim HY, Kim S, Dal Rhee S. Anticancer effect of XAV939 is observed by inhibiting lactose dehydrogenase A in a 3-dimensional culture of colorectal cancer cells. Oncol Lett 2019; 18:4858-4864. [PMID: 31611996 PMCID: PMC6781734 DOI: 10.3892/ol.2019.10813] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 08/05/2019] [Indexed: 02/06/2023] Open
Abstract
XAV939, a tankyrase inhibitor, exerts an anticancer effect in 3-dimensional (3D) cultured SW480 cells, however this is not exhibited in 2-dimensional (2D) cultured SW480 cells. In the current study, XAV939 induced a 3.7-fold increase in cellular apoptosis in 3D culture but not in the 2D culture. However, no significant changes were indicated in cell cycle distribution in the 2D or 3D culture. Based on the observation that protein expression, which was associated with the glycolytic pathway, was increased in the 3D culture, the effect of XAV939 on the patterns of glycolytic protein expression was assessed. XAV939 was revealed to decrease lactose dehydrogenase A (LDHA) expression in 3D cultured SW480 cells, but only exerted a small effect in the 2D culture. The coadministration of XAV939 with the LDHA inhibitor FX11 decreased proliferation in 3D cultured SW480 cells compared with the single administration of FX11, while there was no additive effect in the 2D culture. The lactate assay also indicated that XAV939 decreased lactate secretion in the 3D cell culture but not in the 2D culture. These results suggest that XAV939 exerts an anticancer effect through inhibition of LDHA in the 3D culture.
Collapse
Affiliation(s)
- Dahee Kim
- Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology, Yuseong-gu, Daejeon 34114, Republic of Korea.,Graduate School of New Drug Discovery and Development, Chungnam National University, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Byumseok Koh
- Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Kwang Rok Kim
- Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Ki Young Kim
- Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Won Hoon Jung
- Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Hi Youn Kim
- Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Sungsub Kim
- Graduate School of New Drug Discovery and Development, Chungnam National University, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Sang Dal Rhee
- Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology, Yuseong-gu, Daejeon 34114, Republic of Korea.,Graduate School of New Drug Discovery and Development, Chungnam National University, Yuseong-gu, Daejeon 34134, Republic of Korea
| |
Collapse
|
28
|
Melgar-Sánchez LM, García-Ruiz I, Pardo-Marqués V, Agulló-Ortuño MT, Martínez-Galán I. Influence of mineral waters on in vitro proliferation, antioxidant response and cytokine production in a human lung fibroblasts cell line. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2019; 63:1171-1180. [PMID: 31227887 DOI: 10.1007/s00484-019-01730-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/05/2019] [Accepted: 05/06/2019] [Indexed: 06/09/2023]
Abstract
Spa mineral waters are used for the treatment of chronic diseases' symptoms. Anti-inflammatory, analgesic, anti-ageing and tissue repair effects have been attributed to them. This work seeks to improve knowledge about the effect of spa mineral waters on human cells. For this, human lung fibroblasts were treated with mineral waters from Ledesma, Paracuellos and Archena spas, three Spanish health resorts with different water chemical composition. A significant increase of cell proliferation together with an enhanced antioxidant capacity (reactive oxygen and nitrogen species, glutathione levels and superoxide dismutase activity) in mineral water-treated fibroblasts compared to control fibroblasts was observed. Moreover, cytokine profiling revealed an increase in the release of MIF, IL-6, CL-1, CCL-5 and ICAM-1, which are described as mediators in proliferation, wound healing and cell migration processes. In conclusion, our results could be in line with the effects attributed to spa mineral waters in wound healing strategies and oxidative damage protection.
Collapse
Affiliation(s)
- Laura María Melgar-Sánchez
- Department of Medical Sciences, Faculty of Medicine, Universidad de Castilla-La Mancha, Calle Almansa 14, 02006, Albacete, Spain
| | - Inmaculada García-Ruiz
- Laboratory of Clinical and Translational Oncology, Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), Av. de Córdoba s/n, 28041, Madrid, Spain
| | - Virginia Pardo-Marqués
- Laboratory of Clinical and Translational Oncology, Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), Av. de Córdoba s/n, 28041, Madrid, Spain
| | - María Teresa Agulló-Ortuño
- Laboratory of Clinical and Translational Oncology, Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), Av. de Córdoba s/n, 28041, Madrid, Spain
- Department of Nursing, Physiotherapy and Occupational Therapy, School of Nursing and Physiotherapy, Universidad de Castilla-La Mancha, Av. Carlos III s/n,, 45071, Toledo, Spain
| | - Inés Martínez-Galán
- Department of Nursing, Physiotherapy and Occupational Therapy, School of Nursing and Physiotherapy, Universidad de Castilla-La Mancha, Av. Carlos III s/n,, 45071, Toledo, Spain.
| |
Collapse
|