1
|
Dalal N, Dhandapani H, Ingle A, Sharma D, Tayalia P. Functionalized Poly(ethylene Glycol) Diacrylate Scaffolds for In Situ Immunomodulation of Dendritic Cells Targeting Melanoma Tumor. ACS Biomater Sci Eng 2025; 11:2396-2407. [PMID: 40048381 DOI: 10.1021/acsbiomaterials.4c02036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
Various immunotherapeutic strategies are being developed to fight cancer, which is one of the leading causes of mortality. Dendritic cells (DCs), being professional antigen-presenting cells, after efficient manipulation with tumor-associated antigens, can lead to effective T-cell recruitment and activation at the tumor site, resulting in cytotoxic T-cell-mediated cancer cell killing. To circumvent the inefficiencies of ex vivo DC modification and patient infusion, an alternative strategy involving in situ DC activation has been explored here. Here, the vaccine components are tumor lysates, as antigens, and polyinosinic:polycytidylic acid (poly(I:C)), a toll-like receptor-3 (TLR3) agonist, as an adjuvant. Our in vitro studies demonstrate that complexing poly(I:C) with a carrier molecule, chitosan, enhances its stability and accessibility to TLR3 in the DC endosomal membrane. Material-based localized delivery of immunomodulatory factors is known to improve their stability and reduce their off-target side effects. Here, PEGDA-PLL-based macroporous scaffolds allow easy recruitment of host cells, thereby enabling effective interaction between the vaccine components loaded on them and the infiltrating immune cells. The vaccine components present in the scaffold facilitate efficient DC activation and migration, leading to subsequent T-cell activation and antitumor response, as shown by our in vivo studies.
Collapse
Affiliation(s)
- Neha Dalal
- Department of Bioscience and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Hemavathi Dhandapani
- Department of Bioscience and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Arvind Ingle
- Tata Memorial Centre Advanced Centre for Treatment, Research and Education in Cancer, Navi Mumbai 410210, India
| | - Deepak Sharma
- Radiation Biology and Health Science Division, Bhabha Atomic Research Center, Mumbai 400085, India
| | - Prakriti Tayalia
- Department of Bioscience and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| |
Collapse
|
2
|
Tiwari A, Alcover K, Carpenter E, Thomas K, Krum J, Nissen A, Van Decar S, Smolinsky T, Valdera F, Vreeland T, Lacher M, Del Priore G, Williams W, Stojadinovic A, Peoples G, Clifton G. Utility of cell-based vaccines as cancer therapy: Systematic review and meta-analysis. Hum Vaccin Immunother 2024; 20:2323256. [PMID: 38544385 PMCID: PMC10984131 DOI: 10.1080/21645515.2024.2323256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 02/22/2024] [Indexed: 04/04/2024] Open
Abstract
Cell-based therapeutic cancer vaccines use autologous patient-derived tumor cells, allogeneic cancer cell lines or autologous antigen presenting cells to mimic the natural immune process and stimulate an adaptive immune response against tumor antigens. The primary objective of this study is to perform a systematic literature review with an embedded meta-analysis of all published Phase 2 and 3 clinical trials of cell-based cancer vaccines in human subjects. The secondary objective of this study is to review trials demonstrating biological activity of cell-based cancer vaccines that could uncover additional hypotheses, which could be used in the design of future studies. We performed the systematic review and meta-analysis according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The final review included 36 studies - 16 single-arm studies, and 20 controlled trials. Our systematic review of the existing literature revealed largely negative trials and our meta-analysis did not show evidence of clinical benefit from cell-based cancer-vaccines. However, as we looked beyond the stringent inclusion criteria of our systematic review, we identified significant examples of biological activity of cell-based cancer vaccines that are worth highlighting. In conclusion, the existing literature on cell-based cancer vaccines is highly variable in terms of cancer type, vaccine therapies and the clinical setting with no overall statistically significant clinical benefit, but there are individual successes that represent the promise of this approach. As cell-based vaccine technology continues to evolve, future studies can perhaps fulfill the potential that this exciting field of anti-cancer therapy holds.
Collapse
Affiliation(s)
- Ankur Tiwari
- Department of Surgery, University of Texas Health Science Center, San Antonio, TX, USA
| | - Karl Alcover
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | | | - Katryna Thomas
- Department of Surgery, Brooke Army Medical Center, San Antonio, TX, USA
| | - Julia Krum
- Department of Surgery, Brooke Army Medical Center, San Antonio, TX, USA
| | - Alexander Nissen
- Department of Surgery, Brooke Army Medical Center, San Antonio, TX, USA
| | - Spencer Van Decar
- Department of Surgery, Brooke Army Medical Center, San Antonio, TX, USA
| | - Todd Smolinsky
- Department of Surgery, Brooke Army Medical Center, San Antonio, TX, USA
| | - Franklin Valdera
- Department of Surgery, Brooke Army Medical Center, San Antonio, TX, USA
| | - Timothy Vreeland
- Department of Surgery, Brooke Army Medical Center, San Antonio, TX, USA
| | | | | | | | | | | | - Guy Clifton
- Department of Surgery, Brooke Army Medical Center, San Antonio, TX, USA
| |
Collapse
|
3
|
Bliss CM, Hulin-Curtis SL, Williams M, Marušková M, Davies JA, Statkute E, Baker AT, Stack L, Kerstetter L, Kerr-Jones LE, Milward KF, Russell G, George SJ, Badder LM, Stanton RJ, Coughlan L, Humphreys IR, Parker AL. A pseudotyped adenovirus serotype 5 vector with serotype 49 fiber knob is an effective vector for vaccine and gene therapy applications. Mol Ther Methods Clin Dev 2024; 32:101308. [PMID: 39206304 PMCID: PMC11357811 DOI: 10.1016/j.omtm.2024.101308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024]
Abstract
Adenoviruses (Ads) have demonstrated significant success as replication-deficient (RD) viral vectored vaccines, as well as broad potential across gene therapy and cancer therapy. Ad vectors transduce human cells via direct interactions between the viral fiber knob and cell surface receptors, with secondary cellular integrin interactions. Ad receptor usage is diverse across the extensive phylogeny. Commonly studied human Ad serotype 5 (Ad5), and chimpanzee Ad-derived vector "ChAdOx1" in licensed ChAdOx1 nCoV-19 vaccine, both form primary interactions with the coxsackie and adenovirus receptor (CAR), which is expressed on human epithelial cells and erythrocytes. CAR usage is suboptimal for targeted gene delivery to cells with low/negative CAR expression, including human dendritic cells (DCs) and vascular smooth muscle cells (VSMCs). We evaluated the performance of an RD Ad5 vector pseudotyped with the fiber knob of human Ad serotype 49, termed Ad5/49K vector. Ad5/49K demonstrated superior transduction of murine and human DCs over Ad5, which translated into significantly increased T cell immunogenicity when evaluated in a mouse cancer vaccine model using 5T4 tumor-associated antigen. Additionally, Ad5/49K exhibited enhanced transduction of primary human VSMCs. These data highlight the potential of Ad5/49K vector for both vascular gene therapy applications and as a potent vaccine vector.
Collapse
Affiliation(s)
- Carly M. Bliss
- Division of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
- Systems Immunity University Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Sarah L. Hulin-Curtis
- Division of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Marta Williams
- Division of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Mahulena Marušková
- Division of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - James A. Davies
- Division of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Evelina Statkute
- Division of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Alexander T. Baker
- Division of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Louise Stack
- Division of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Lucas Kerstetter
- University of Maryland School of Medicine, Department of Microbiology and Immunology, Baltimore, MD 21201, USA
| | - Lauren E. Kerr-Jones
- Division of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Kate F. Milward
- Division of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Gabrielle Russell
- University of Maryland School of Medicine, Department of Microbiology and Immunology, Baltimore, MD 21201, USA
| | - Sarah J. George
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol BS2 8HW, UK
| | - Luned M. Badder
- Division of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Richard J. Stanton
- Systems Immunity University Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
- Division of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Lynda Coughlan
- University of Maryland School of Medicine, Department of Microbiology and Immunology, Baltimore, MD 21201, USA
- University of Maryland School of Medicine, Center for Vaccine Development and Global Health, Baltimore, MD 21201, USA
| | - Ian R. Humphreys
- Systems Immunity University Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
- Division of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Alan L. Parker
- Division of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
- Systems Immunity University Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| |
Collapse
|
4
|
Liu D, Liu L, Li X, Wang S, Wu G, Che X. Advancements and Challenges in Peptide-Based Cancer Vaccination: A Multidisciplinary Perspective. Vaccines (Basel) 2024; 12:950. [PMID: 39204073 PMCID: PMC11359700 DOI: 10.3390/vaccines12080950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/09/2024] [Accepted: 08/21/2024] [Indexed: 09/03/2024] Open
Abstract
With the continuous advancements in tumor immunotherapy, researchers are actively exploring new treatment methods. Peptide therapeutic cancer vaccines have garnered significant attention for their potential in improving patient outcomes. Despite its potential, only a single peptide-based cancer vaccine has been approved by the U.S. Food and Drug Administration (FDA). A comprehensive understanding of the underlying mechanisms and current development status is crucial for advancing these vaccines. This review provides an in-depth analysis of the production principles and therapeutic mechanisms of peptide-based cancer vaccines, highlights the commonly used peptide-based cancer vaccines, and examines the synergistic effects of combining these vaccines with immunotherapy, targeted therapy, radiotherapy, and chemotherapy. While some studies have yielded suboptimal results, the potential of combination therapies remains substantial. Additionally, we addressed the management and adverse events associated with peptide-based cancer vaccines, noting their relatively higher safety profile compared to traditional radiotherapy and chemotherapy. Lastly, we also discussed the roles of adjuvants and targeted delivery systems in enhancing vaccine efficacy. In conclusion, this review comprehensively outlines the current landscape of peptide-based cancer vaccination and underscores its potential as a pivotal immunotherapy approach.
Collapse
Affiliation(s)
- Dequan Liu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; (D.L.); (L.L.); (S.W.)
| | - Lei Liu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; (D.L.); (L.L.); (S.W.)
| | - Xinghan Li
- Department of Stomatology, General Hospital of Northern Theater Command, Shenyang 110016, China;
| | - Shijin Wang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; (D.L.); (L.L.); (S.W.)
| | - Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; (D.L.); (L.L.); (S.W.)
| | - Xiangyu Che
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; (D.L.); (L.L.); (S.W.)
| |
Collapse
|
5
|
Badillo O, Helfridsson L, Niemi J, Hellström M. Exploring dendritic cell subtypes in cancer immunotherapy: unraveling the role of mature regulatory dendritic cells. Ups J Med Sci 2024; 129:10627. [PMID: 38716077 PMCID: PMC11075441 DOI: 10.48101/ujms.v129.10627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/18/2024] [Accepted: 04/05/2024] [Indexed: 05/24/2024] Open
Abstract
Dendritic cells (DCs) possess a specialized function in presenting antigens and play pivotal roles in both innate and adaptive immune responses. Their ability to cross-present antigens from tumor cells to naïve T cells is instrumental in generating specific T-cell-mediated antitumor responses, crucial for controlling tumor growth and preventing tumor cell dissemination. However, within a tumor immune microenvironment (TIME), the functions of DCs can be significantly compromised. This review focuses on the profile, function, and activation of DCs, leveraging recent studies that reveal insights into their phenotype acquisition, transcriptional state, and functional programs through single-cell RNA sequence (scRNA-seq) analysis. Additionally, the therapeutic potential of DC-mediated tumor antigen sensing in priming antitumor immunity is discussed.
Collapse
Affiliation(s)
- Oscar Badillo
- Department of Immunology, Genetics and Pathology, The Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Liam Helfridsson
- Department of Immunology, Genetics and Pathology, The Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Jenni Niemi
- Department of Immunology, Genetics and Pathology, The Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Mats Hellström
- Department of Immunology, Genetics and Pathology, The Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
6
|
Cerqueira OLD, Antunes F, Assis NG, Cardoso EC, Clavijo-Salomón MA, Domingues AC, Tessarollo NG, Strauss BE. Perspectives for Combining Viral Oncolysis With Additional Immunotherapies for the Treatment of Melanoma. Front Mol Biosci 2022; 9:777775. [PMID: 35495634 PMCID: PMC9048901 DOI: 10.3389/fmolb.2022.777775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 03/22/2022] [Indexed: 12/19/2022] Open
Abstract
Melanoma is the deadliest type of skin cancer with steadily increasing incidence worldwide during the last few decades. In addition to its tumor associated antigens (TAAs), melanoma has a high mutation rate compared to other tumors, which promotes the appearance of tumor specific antigens (TSAs) as well as increased lymphocytic infiltration, inviting the use of therapeutic tools that evoke new or restore pre-existing immune responses. Innovative therapeutic proposals, such as immune checkpoint inhibitors (ICIs), have emerged as effective options for melanoma. However, a significant portion of these patients relapse and become refractory to treatment. Likewise, strategies using viral vectors, replicative or not, have garnered confidence and approval by different regulatory agencies around the world. It is possible that further success of immune therapies against melanoma will come from synergistic combinations of different approaches. In this review we outline molecular features inherent to melanoma and how this supports the use of viral oncolysis and immunotherapies when used as monotherapies or in combination.
Collapse
Affiliation(s)
- Otto Luiz Dutra Cerqueira
- Centro de Investigação Translacional em Oncologia (CTO)/LIM, Instituto do Câncer do Estado de São Paulo (ICESP), Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Fernanda Antunes
- Centro de Investigação Translacional em Oncologia (CTO)/LIM, Instituto do Câncer do Estado de São Paulo (ICESP), Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Nadine G Assis
- Centro de Investigação Translacional em Oncologia (CTO)/LIM, Instituto do Câncer do Estado de São Paulo (ICESP), Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Elaine C Cardoso
- Department of Pediatrics, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Maria A Clavijo-Salomón
- Centro de Investigação Translacional em Oncologia (CTO)/LIM, Instituto do Câncer do Estado de São Paulo (ICESP), Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Ana C Domingues
- Centro de Investigação Translacional em Oncologia (CTO)/LIM, Instituto do Câncer do Estado de São Paulo (ICESP), Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Nayara G Tessarollo
- Centro de Investigação Translacional em Oncologia (CTO)/LIM, Instituto do Câncer do Estado de São Paulo (ICESP), Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Bryan E Strauss
- Centro de Investigação Translacional em Oncologia (CTO)/LIM, Instituto do Câncer do Estado de São Paulo (ICESP), Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
- *Correspondence: Bryan E Strauss,
| |
Collapse
|
7
|
Singh M, Agarwal S, Agarwal V, Mall S, Pancham P, Mani S. Current theranostic approaches for metastatic cancers through hypoxia-induced exosomal packaged cargo. Life Sci 2021; 286:120017. [PMID: 34619169 DOI: 10.1016/j.lfs.2021.120017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/20/2021] [Accepted: 09/29/2021] [Indexed: 12/23/2022]
Abstract
Tumour cells exhibit numerous defence mechanisms against various therapeutic strategies and help in developing drug resistance. These defence strategies help cancer cells prevent their elimination from an organism and prosper at a specific location. In recent times it's been observed that there is a significant contribution of secreted extracellular vesicles (EVs) from such tumorigenic sites in the development and prognosis of cancer. Amongst the various types of EVs, exosomes behave like biological carriers, play a crucial role in transporting the content between different cells, and had such an underrated defence mode by getting induced due to the hypoxia secreted highly specialised double-membrane structures. These small structure vesicles play a critical part in regulating local microenvironment and intracellular communications, cited by many research studies. Exosomes are a potential carrier of several cargo biomolecules like proteins, lipids, miRNAs, mRNAs etc., facilitating better communication within the microenvironment of cancer cells, enhancing the metastatic rate along with cancer progression. Several studies have extensively researched elucidating exosomes mediated radiation-induced bystander effects: multidrug resistance, epithelial-mesenchymal transition, and help cancer cells escape from the immune system apart from playing a critical role in angiogenesis too. Due to its natural tendency to carry different biomolecules, it can also be used to haul chemical drugs and efficiently deliver the drug molecules to the targeted site of cancer. The current review aims to explore the vivid role of hypoxia-induced exosomes in tumour progression along with its application and challenges in cancer therapeutics.
Collapse
Affiliation(s)
- Manisha Singh
- Centre for Emerging Diseases (CFED), Department of Biotechnology, Jaypee Institute of Information Technology (JIIT) Noida, U. P., India.
| | - Shriya Agarwal
- Department of Molecular Sciences, Macquarie University, Sydney, Australia.
| | - Vinayak Agarwal
- Centre for Emerging Diseases (CFED), Department of Biotechnology, Jaypee Institute of Information Technology (JIIT) Noida, U. P., India
| | - Shweta Mall
- Department of Animal Genetics and Breeding, Southern Regional Station of Indian Council of Agriculture Research-Research Institute, Bangalore 560030, India
| | - Pranav Pancham
- Centre for Emerging Diseases (CFED), Department of Biotechnology, Jaypee Institute of Information Technology (JIIT) Noida, U. P., India
| | - Shalini Mani
- Centre for Emerging Diseases (CFED), Department of Biotechnology, Jaypee Institute of Information Technology (JIIT) Noida, U. P., India
| |
Collapse
|
8
|
Nash A, Aghlara-Fotovat S, Hernandez A, Scull C, Veiseh O. Clinical translation of immunomodulatory therapeutics. Adv Drug Deliv Rev 2021; 176:113896. [PMID: 34324885 PMCID: PMC8567306 DOI: 10.1016/j.addr.2021.113896] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 02/07/2023]
Abstract
Immunomodulatory therapeutics represent a unique class of drug products that have tremendous potential to rebalance malfunctioning immune systems and are quickly becoming one of the fastest-growing areas in the pharmaceutical industry. For these drugs to become mainstream medicines, they must provide greater therapeutic benefit than the currently used treatments without causing severe toxicities. Immunomodulators, cell-based therapies, antibodies, and viral therapies have all achieved varying amounts of success in the treatment of cancers and/or autoimmune diseases. However, many challenges related to precision dosing, off-target effects, and manufacturing hurdles will need to be addressed before we see widespread adoption of these therapies in the clinic. This review provides a perspective on the progress of immunostimulatory and immunosuppressive therapies to date and discusses the opportunities and challenges for clinical translation of the next generation of immunomodulatory therapeutics.
Collapse
Affiliation(s)
- Amanda Nash
- Rice University, Department of Bioengineering, Houston TX, United States
| | | | - Andrea Hernandez
- Rice University, Department of Bioengineering, Houston TX, United States
| | | | - Omid Veiseh
- Rice University, Department of Bioengineering, Houston TX, United States.
| |
Collapse
|
9
|
Detection of Immunotherapeutic Response in a Transgenic Mouse Model of Pancreatic Ductal Adenocarcinoma Using Multiparametric MRI Radiomics: A Preliminary Investigation. Acad Radiol 2021; 28:e147-e154. [PMID: 32499156 DOI: 10.1016/j.acra.2020.04.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/14/2020] [Accepted: 04/16/2020] [Indexed: 12/24/2022]
Abstract
RATIONALE AND OBJECTIVES To develop classification and regression models interpreting tumor characteristics obtained from structural (T1w and T2w) magnetic resonance imaging (MRI) data for early detection of dendritic cell (DC) vaccine treatment effects and prediction of long-term outcomes for LSL-KrasG12D; LSL-Trp53R172H; Pdx-1-Cre (KPC) transgenic mice model of pancreatic ductal adenocarcinoma. MATERIALS AND METHODS Eight mice were treated with DC vaccine for 3 weeks while eight KPC mice were used as untreated control subjects. The reproducibility of the computed 264 features was evaluated using the intraclass correlation coefficient. Key variables were determined using a three-step feature selection approach. Support vector machines classifiers were generated to differentiate treatment-related changes on tumor tissue following first- and third weeks of the DC vaccine therapy. The multivariable regression models were generated to predict overall survival (OS) and histological tumor markers of KPC mice using quantitative features. RESULTS The quantitative features computed from T1w MRI data have better reproducibility than T2w MRI features. The KPC mice in treatment and control groups were differentiated with a longitudinally increasing accuracy (first- and third weeks: 87.5% and 93.75%). The linear regression model generated with five features of T1w MRI data predicted OS with a root-mean-squared error (RMSE) <6 days. The proposed multivariate regression models predicted histological tumor markers with relative error <2.5% for fibrosis percentage (RMSE: 0.414), CK19+ area (RMSE: 0.027), and Ki67+ cells (RMSE: 0.190). CONCLUSION Our results demonstrated that proposed models generated with quantitative MRI features can be used to detect early treatment-related changes in tumor tissue and predict OS of KPC mice following DC vaccination.
Collapse
|
10
|
Jakobsen MK, Traynor S, Stæhr M, Duijf PG, Nielsen AY, Terp MG, Pedersen CB, Guldberg P, Ditzel HJ, Gjerstorff MF. The Cancer/Testis Antigen Gene VCX2 Is Rarely Expressed in Malignancies but Can Be Epigenetically Activated Using DNA Methyltransferase and Histone Deacetylase Inhibitors. Front Oncol 2021; 10:584024. [PMID: 33634013 PMCID: PMC7900521 DOI: 10.3389/fonc.2020.584024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 12/14/2020] [Indexed: 01/25/2023] Open
Abstract
Identification of novel tumor-specific targets is important for the future development of immunotherapeutic strategies using genetically engineered T cells or vaccines. In this study, we characterized the expression of VCX2, a member of the VCX/Y cancer/testis antigen family, in a large panel of normal tissues and tumors from multiple cancer types using immunohistochemical staining and RNA expression data. In normal tissues, VCX2 was detected in the germ cells of the testis at all stages of maturation but not in any somatic tissues. Among malignancies, VCX2 was only found in tumors of a small subset of melanoma patients and thus rarely expressed compared to other cancer/testis antigens such as GAGE and MAGE-A. The expression of VCX2 correlated with that of other VCX/Y genes. Importantly, we found that expression of VCX2 was inversely correlated with promoter methylation and could be activated by treatment with a DNA methyltransferase inhibitor in multiple breast cancer and melanoma cell lines and a breast cancer patient-derived xenograft. The effect could be further potentiated by combining the DNA methyltransferase inhibitor with a histone deacetylase inhibitor. Our results show that the expression of VCX2 can be epigenetically induced in cancer cells and therefore could be an attractive target for immunotherapy of cancer.
Collapse
Affiliation(s)
- Mie K Jakobsen
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Sofie Traynor
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Mette Stæhr
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Pascal G Duijf
- Institute of Health and Biomedical Innovation, Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia.,University of Queensland Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Aaraby Y Nielsen
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Mikkel G Terp
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Christina B Pedersen
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Per Guldberg
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark.,Molecular Diagnostics Group, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Henrik J Ditzel
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark.,Department of Oncology, Odense University Hospital, Odense, Denmark.,Academy of Geriatric Cancer Research (AgeCare), Odense University Hospital, Odense, Denmark
| | - Morten F Gjerstorff
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark.,Department of Oncology, Odense University Hospital, Odense, Denmark.,Academy of Geriatric Cancer Research (AgeCare), Odense University Hospital, Odense, Denmark
| |
Collapse
|
11
|
Das B, Senapati S. Immunological and functional aspects of MAGEA3 cancer/testis antigen. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2020; 125:121-147. [PMID: 33931137 DOI: 10.1016/bs.apcsb.2020.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Identification of ectopic gene activation in cancer cells serves as a basis for both gene signature-guided tumor targeting and unearthing of oncogenic mechanisms to expand the understanding of tumor biology/oncogenic process. Proteins expressed only in germ cells of testis and/or placenta (immunoprivileged organs) and in malignancies are called cancer testis antigens; they are antigenic because of the lack of antigen presentation by those specific cell types (germ cells), which limits the exposure of the proteins to the immune cells. Since the Cancer Testis Antigens (CTAs) are immunogenic and expressed in a wide variety of cancer types, CT antigens have become interesting target for immunotherapy against cancer. Among CT antigens MAGEA family is reported to have 12 members (MAGEA1 to MAGEA12). The current review highlights the studies on MAGEA3 which is a CT antigen and reported in almost all types of cancer. MAGEA3 is well tried for cancer immunotherapy. Recent advances on its functional and immunological aspect warranted much deliberation on effective therapeutic approach, thus making it a more interesting target for cancer therapy.
Collapse
Affiliation(s)
- Biswajit Das
- Tumor Microenvironment and Animal Models Lab, Department of Cancer Biology, Institute of Life Sciences, Bhubaneswar, Odisha, India; Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Shantibhusan Senapati
- Tumor Microenvironment and Animal Models Lab, Department of Cancer Biology, Institute of Life Sciences, Bhubaneswar, Odisha, India.
| |
Collapse
|
12
|
Weng Y, Li C, Yang T, Hu B, Zhang M, Guo S, Xiao H, Liang XJ, Huang Y. The challenge and prospect of mRNA therapeutics landscape. Biotechnol Adv 2020; 40:107534. [PMID: 32088327 DOI: 10.1016/j.biotechadv.2020.107534] [Citation(s) in RCA: 247] [Impact Index Per Article: 49.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 02/05/2020] [Accepted: 02/15/2020] [Indexed: 12/13/2022]
Abstract
Messenger RNA (mRNA)-based therapeutics hold the potential to cause a major revolution in the pharmaceutical industry because they can be used for precise and individualized therapy, and enable patients to produce therapeutic proteins in their own bodies without struggling with the comprehensive manufacturing issues associated with recombinant proteins. Compared with the current therapeutics, the production of mRNA is much cost-effective, faster and more flexible because it can be easily produced by in vitro transcription, and the process is independent of mRNA sequence. Moreover, mRNA vaccines allow people to develop personalized medications based on sequencing results and/or personalized conditions rapidly. Along with the great potential from bench to bedside, technical obstacles facing mRNA pharmaceuticals are also obvious. The stability, immunogenicity, translation efficiency, and delivery are all pivotal issues need to be addressed. In the recently published research results, these issues are gradually being overcome by state-of-the-art development technologies. In this review, we describe the structural properties and modification technologies of mRNA, summarize the latest advances in developing mRNA delivery systems, review the preclinical and clinical applications, and put forward our views on the prospect and challenges of developing mRNA into a new class of drug.
Collapse
Affiliation(s)
- Yuhua Weng
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Key Laboratory of Molecular Medicine and Biotherapy, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, PR China
| | - Chunhui Li
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Key Laboratory of Molecular Medicine and Biotherapy, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, PR China
| | - Tongren Yang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Key Laboratory of Molecular Medicine and Biotherapy, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, PR China
| | - Bo Hu
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Key Laboratory of Molecular Medicine and Biotherapy, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, PR China
| | - Mengjie Zhang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Key Laboratory of Molecular Medicine and Biotherapy, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, PR China
| | - Shuai Guo
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Key Laboratory of Molecular Medicine and Biotherapy, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, PR China
| | - Haihua Xiao
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Xing-Jie Liang
- Chinese Academy of Sciences (CAS), Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, PR China
| | - Yuanyu Huang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Key Laboratory of Molecular Medicine and Biotherapy, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, PR China.
| |
Collapse
|
13
|
Models for Monocytic Cells in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020. [PMID: 32036607 DOI: 10.1007/978-3-030-35723-8_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Monocytes (Mos) are immune cells that critically regulate cancer, enabling tumor growth and modulating metastasis. Mos can give rise to tumor-associated macrophages (TAMs) and Mo-derived dendritic cells (moDCs), all of which shape the tumor microenvironment (TME). Thus, understanding their roles in the TME is key for improved immunotherapy. Concurrently, various biological and mechanical factors including changes in local cytokines, extracellular matrix production, and metabolic changes in the TME affect the roles of monocytic cells. As such, relevant TME models are critical to achieve meaningful insight on the precise functions, mechanisms, and effects of monocytic cells. Notably, murine models have yielded significant insight into human Mo biology. However, many of these results have yet to be confirmed in humans, reinforcing the need for improved in vitro human TME models for the development of cancer interventions. Thus, this chapter (1) summarizes current insight on the tumor biology of Mos, TAMs, and moDCs, (2) highlights key therapeutic applications relevant to these cells, and (3) discusses various TME models to study their TME-related activity. We conclude with a perspective on the future research trajectory of this topic.
Collapse
|
14
|
Fucikova J, Palova-Jelinkova L, Bartunkova J, Spisek R. Induction of Tolerance and Immunity by Dendritic Cells: Mechanisms and Clinical Applications. Front Immunol 2019; 10:2393. [PMID: 31736936 PMCID: PMC6830192 DOI: 10.3389/fimmu.2019.02393] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 09/24/2019] [Indexed: 12/20/2022] Open
Abstract
Dendritic cells (DCs) are key regulators of immune responses that operate at the interface between innate and adaptive immunity, and defects in DC functions contribute to the pathogenesis of a variety of disorders. For instance, cancer evolves in the context of limited DC activity, and some autoimmune diseases are initiated by DC-dependent antigen presentation. Thus, correcting aberrant DC functions stands out as a promising therapeutic paradigm for a variety of diseases, as demonstrated by an abundant preclinical and clinical literature accumulating over the past two decades. However, the therapeutic potential of DC-targeting approaches remains to be fully exploited in the clinic. Here, we discuss the unique features of DCs that underlie the high therapeutic potential of DC-targeting strategies and critically analyze the obstacles that have prevented the full realization of this promising paradigm.
Collapse
Affiliation(s)
- Jitka Fucikova
- Sotio, Prague, Czechia
- Department of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czechia
| | - Lenka Palova-Jelinkova
- Sotio, Prague, Czechia
- Department of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czechia
| | - Jirina Bartunkova
- Sotio, Prague, Czechia
- Department of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czechia
| | - Radek Spisek
- Sotio, Prague, Czechia
- Department of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czechia
| |
Collapse
|
15
|
Wei X, Chen F, Xin K, Wang Q, Yu L, Liu B, Liu Q. Cancer-Testis Antigen Peptide Vaccine for Cancer Immunotherapy: Progress and Prospects. Transl Oncol 2019; 12:733-738. [PMID: 30877975 PMCID: PMC6423365 DOI: 10.1016/j.tranon.2019.02.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 02/19/2019] [Accepted: 02/19/2019] [Indexed: 12/31/2022] Open
Abstract
Cancer vaccines, including peptide-based vaccines, have been considered a key tool of effective and protective cancer immunotherapy because of their capacity to provide long-term clinical benefit for tumors. Among a large number of explorations of peptide antigen-based vaccines, cancer-testis antigens (CTAs), which are activated in cancers but silenced in normal tissues (except testis tissue), are considered as ideal targets. Currently, personalized treatment for cancer has become a trend due to its superior clinical efficacy. Thus, we envisage rational selection of CTA peptides to design "personalized" CTA peptide vaccines. This review summarizes the advances in CTA peptide vaccine research and discusses the feasibility of establishing "personalized" CTA peptide vaccines.
Collapse
Affiliation(s)
- Xiao Wei
- The Comprehensive Cancer Center of Drum Tower Hospital, Nanjing Medical University
| | - Fangjun Chen
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University
| | - Kai Xin
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University
| | - Qin Wang
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University
| | - Lixia Yu
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University
| | - Baorui Liu
- The Comprehensive Cancer Center of Drum Tower Hospital, Nanjing Medical University; The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University
| | - Qin Liu
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University.
| |
Collapse
|
16
|
A Characterization of Dendritic Cells and Their Role in Immunotherapy in Glioblastoma: From Preclinical Studies to Clinical Trials. Cancers (Basel) 2019; 11:cancers11040537. [PMID: 30991681 PMCID: PMC6521200 DOI: 10.3390/cancers11040537] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/08/2019] [Accepted: 04/12/2019] [Indexed: 12/25/2022] Open
Abstract
Glioblastoma (GBM) is the most common and fatal primary central nervous system malignancy in adults with a median survival of less than 15 months. Surgery, radiation, and chemotherapy are the standard of care and provide modest benefits in survival, but tumor recurrence is inevitable. The poor prognosis of GBM has made the development of novel therapies targeting GBM of paramount importance. Immunotherapy via dendritic cells (DCs) has garnered attention and research as a potential strategy to boost anti-tumor immunity in recent years. As the “professional” antigen processing and presenting cells, DCs play a key role in the initiation of anti-tumor immune responses. Pre-clinical studies in GBM have shown long-term tumor survival and immunological memory in murine models with stimulation of DC activity with various antigens and costimulatory molecules. Phase I and II clinical trials of DC vaccines in GBM have demonstrated some efficacy in improving the median overall survival with minimal to no toxicity with promising initial results from the first Phase III trial. However, there remains no standardization of vaccines in terms of which antigens are used to pulse DCs ex vivo, sites of DC injection, and optimal adjuvant therapies. Future work with DC vaccines aims to elucidate the efficacy of DC-based therapy alone or in combination with other immunotherapy adjuvants in additional Phase III trials.
Collapse
|
17
|
Mastelic-Gavillet B, Balint K, Boudousquie C, Gannon PO, Kandalaft LE. Personalized Dendritic Cell Vaccines-Recent Breakthroughs and Encouraging Clinical Results. Front Immunol 2019; 10:766. [PMID: 31031762 PMCID: PMC6470191 DOI: 10.3389/fimmu.2019.00766] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 03/22/2019] [Indexed: 12/11/2022] Open
Abstract
With the advent of combined immunotherapies, personalized dendritic cell (DC)-based vaccination could integrate the current standard of care for the treatment of a large variety of tumors. Due to their proficiency at antigen presentation, DC are key coordinators of the innate and adaptive immune system, and have critical roles in the induction of antitumor immunity. However, despite proven immunogenicity and favorable safety profiles, DC-based immunotherapies have not succeeded at inducing significant objective clinical responses. Emerging data suggest that the combination of DC-based vaccination with other cancer therapies may fully unleash the potential of DC-based cancer vaccines and improve patient survival. In this review, we discuss the recent efforts to develop innovative personalized DC-based vaccines and their use in combined therapies, with a particular focus on ovarian cancer and the promising results of mutanome-based personalized immunotherapies.
Collapse
Affiliation(s)
- Beatris Mastelic-Gavillet
- Department of Oncology, Center for Experimental Therapeutics, Ludwig Center for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Klara Balint
- Department of Oncology, Center for Experimental Therapeutics, Ludwig Center for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Caroline Boudousquie
- Department of Oncology, Center for Experimental Therapeutics, Ludwig Center for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Philippe O Gannon
- Department of Oncology, Center for Experimental Therapeutics, Ludwig Center for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Lana E Kandalaft
- Department of Oncology, Center for Experimental Therapeutics, Ludwig Center for Cancer Research, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
18
|
Sharbi-Yunger A, Grees M, Cafri G, Bassan D, Eichmüller SB, Tzehoval E, Utikal J, Umansky V, Eisenbach L. A universal anti-cancer vaccine: Chimeric invariant chain potentiates the inhibition of melanoma progression and the improvement of survival. Int J Cancer 2018; 144:909-921. [PMID: 30106470 DOI: 10.1002/ijc.31795] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 07/21/2018] [Accepted: 07/23/2018] [Indexed: 11/10/2022]
Abstract
For many years, clinicians and scientists attempt to develop methods to stimulate the immune system to target malignant cells. Recent data suggest that effective cancer vaccination requires combination immunotherapies to overcome tumor immune evasion. Through presentation of both MHC-I and II molecules, DCs-based vaccine platforms are effective in generating detectable CD4 and CD8 T cell responses against tumor-associated antigens. Several platforms include DC transfection with mRNA of the desired tumor antigen. These DCs are then delivered to the host and elicit an immune response against the antigen of interest. We have recently established an mRNA genetic platform which induced specific CD8+ cytotoxic T cell response by DC vaccination against melanoma. In our study, an MHC-II mRNA DCs vaccine platform was developed to activate CD4+ T cells and to enhance the anti-tumor response. The invariant chain (Ii) was modified and the semi-peptide CLIP was replaced with an MHC-II binding peptide sequences of melanoma antigens. These chimeric MHC-II constructs are presented by DCs and induce proliferation of tumor specific CD4+ T cells. When administered in combination with the MHC-I platform into tumor bearing mice, these constructs were able to inhibit tumor growth, and improve mouse survival. Deciphering the immunological mechanism of action, we observed an efficient CTLs killing in addition to higher levels of Th1 and Th2 subsets in the groups immunized with a combination of the MHC-I and MHC-II constructs. These universal constructs can be applied in multiple combinations and offer an attractive opportunity to improve cancer treatment.
Collapse
Affiliation(s)
- Adi Sharbi-Yunger
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Mareike Grees
- Clinical Cooperation Unit Dermato-Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | - Gal Cafri
- Surgery Branch, National Cancer Institute, Bethesda, MD, USA
| | - David Bassan
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Stefan B Eichmüller
- GMP and T Cell Therapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Esther Tzehoval
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Jochen Utikal
- Clinical Cooperation Unit Dermato-Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | - Viktor Umansky
- Clinical Cooperation Unit Dermato-Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | - Lea Eisenbach
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
19
|
Terán-Navarro H, Calderon-Gonzalez R, Salcines-Cuevas D, García I, Marradi M, Freire J, Salmon E, Portillo-Gonzalez M, Frande-Cabanes E, García-Castaño A, Martinez-Callejo V, Gomez-Roman J, Tobes R, Rivera F, Yañez-Diaz S, Álvarez-Domínguez C. Pre-clinical development of Listeria-based nanovaccines as immunotherapies for solid tumours: insights from melanoma. Oncoimmunology 2018; 8:e1541534. [PMID: 30713801 PMCID: PMC6343812 DOI: 10.1080/2162402x.2018.1541534] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 10/15/2018] [Accepted: 10/24/2018] [Indexed: 01/28/2023] Open
Abstract
Gold glyconanoparticles loaded with the listeriolysin O peptide 91-99 (GNP-LLO91-99), a bacterial peptide with anti-metastatic properties, are vaccine delivery platforms facilitating immune cell targeting and increasing antigen loading. Here, we present proof of concept analyses for the consideration of GNP-LLO91-99 nanovaccines as a novel immunotherapy for cutaneous melanoma. Studies using mouse models of subcutaneous melanoma indicated that GNP-LLO91-99 nanovaccines recruite and modulate dendritic cell (DC) function within the tumour, alter tumour immunotolerance inducing melanoma-specific cytotoxic T cells, cause complete remission and improve survival. GNP-LLO91-99 nanovaccines showed superior tumour regression and survival benefits, when combined with anti-PD-1 or anti-CTLA-4 checkpoint inhibitors, resulting in an improvement in the efficacy of these immunotherapies. Studies on monocyte-derived DCs from patients with stage IA, IB or IIIB melanoma confirmed the ability of GNP-LLO91-99 nanovaccines to complement the action of checkpoint inhibitors, by not only reducing the expression of cell-death markers on DCs, but also potentiating DC antigen-presentation. We propose that GNP-LLO91-99 nanovaccines function as immune stimulators and immune effectors and serve as safe cancer therapies, alone or in combination with other immunotherapies.
Collapse
Affiliation(s)
- Hector Terán-Navarro
- Group of Listeria based Nanovaccines and cellular vaccines and their applications in biomedicine, Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, Cantabria, Spain
| | - Ricardo Calderon-Gonzalez
- Group of Listeria based Nanovaccines and cellular vaccines and their applications in biomedicine, Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, Cantabria, Spain
| | - David Salcines-Cuevas
- Group of Listeria based Nanovaccines and cellular vaccines and their applications in biomedicine, Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, Cantabria, Spain
| | - Isabel García
- Bionanoplasmonics Laboratory, CIC biomaGUNE and Biomedical Research Networking Center in Bioengineering, Nanomaterials and Nanomedicine (CIBER-BBN), Donostia-San Sebastián, Gipuzkoa, Spain
| | - Marco Marradi
- Bionanoplasmonics Laboratory, CIC biomaGUNE and Biomedical Research Networking Center in Bioengineering, Nanomaterials and Nanomedicine (CIBER-BBN), Donostia-San Sebastián, Gipuzkoa, Spain
| | - Javier Freire
- Servicio de Anatomía Patológica, Hospital Universitario Marqués de Valdecilla, Santander, Cantabria, Spain
| | - Erwan Salmon
- Group of Listeria based Nanovaccines and cellular vaccines and their applications in biomedicine, Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, Cantabria, Spain
| | - Mar Portillo-Gonzalez
- Group of Listeria based Nanovaccines and cellular vaccines and their applications in biomedicine, Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, Cantabria, Spain
| | - Elisabet Frande-Cabanes
- Group of Listeria based Nanovaccines and cellular vaccines and their applications in biomedicine, Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, Cantabria, Spain
| | - Almudena García-Castaño
- Servicio de Oncología Médica, Hospital Universitario Marqués de Valdecilla, Santander, Cantabria, Spain
| | - Virginia Martinez-Callejo
- Servicio de Farmacia Hospitalaria, Hospital Universitario Marqués de Valdecilla, Santander, Cantabria, Spain
| | - Javier Gomez-Roman
- Servicio de Anatomía Patológica, Hospital Universitario Marqués de Valdecilla, Santander, Cantabria, Spain
| | - Raquel Tobes
- Oh no Sequences! Research Group, Era7 Bioinformatics, Granada, Andalucia, Spain
| | - Fernando Rivera
- Servicio de Oncología Médica, Hospital Universitario Marqués de Valdecilla, Santander, Cantabria, Spain
| | - Sonsoles Yañez-Diaz
- Group of Listeria based Nanovaccines and cellular vaccines and their applications in biomedicine, Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, Cantabria, Spain
- Servicio de Dermatología, Hospital Universitario Marqués de Valdecilla, Santander, Cantabria, Spain
| | - Carmen Álvarez-Domínguez
- Group of Listeria based Nanovaccines and cellular vaccines and their applications in biomedicine, Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, Cantabria, Spain
| |
Collapse
|
20
|
Wang B, Sun C, Wang S, Shang N, Shangguan J, Figini M, Pan L, Zhou K, Ma Q, Procissi D, Velichko Y, Yaghmai V, Li G, Zhang Z. Mouse dendritic cell migration in abdominal lymph nodes by intraperitoneal administration. Am J Transl Res 2018; 10:2859-2867. [PMID: 30323872 PMCID: PMC6176238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 12/29/2017] [Indexed: 06/08/2023]
Abstract
Dendritic cell (DC) based immunotherapy is a promising approach for cancer treatment and has been approved in clinical settings for decades. Clinical trials have demonstrated relatively poor therapeutic efficacy. The efficacy of DC immunotherapy is strongly influenced by their ability to migrate to the draining lymph nodes (LNs). Therefore, it is critical to deliver DCs and monitor the in vivo biodistributions of DCs after administration. The purpose of this study is to determine whether a novel injection route of DCs improves DC migration to LNs, tissues, organs and lymphatics. In the present study, a modified method was investigated to acquire DCs from mouse bone marrow. Cultured antibody labeled DCs were analyzed by flow cytometry. India ink was used to visualize mouse abdominal LNs and PKH26 was utilized to label DCs for intraperitoneal (IP) injection, results were evaluated by histology. Our results showed that large amounts of DCs with a relatively high purity were acquired. IP injection of india ink marked the abdominal LNs and PKH26 labeled DCs showed IP was an effective administration route to increase the absorption of viable DCs, and different time points after IP inject showed no significant difference of the migrated DCs. The findings indicated that large amounts of high purity DCs can be acquired through our method and IP injection accelerates DCs migration to abdominal LNs, which can be directly translated to clinical settings, especially for abdominal cancers. This study makes a foundation for future researches of DC-based immunotherapy as a treatment modality against cancer.
Collapse
Affiliation(s)
- Bin Wang
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive SurgeryGuangzhou, China
- Department of Radiology, Feinberg School of Medicine, Northwestern UniversityChicago, IL, USA
| | - Chong Sun
- Department of Radiology, Feinberg School of Medicine, Northwestern UniversityChicago, IL, USA
- Department of Orthopedics, Qilu Hospital, Shandong UniversityJinan, Shandong, China
| | - Sijia Wang
- Department of Dermatology, Feinberg School of Medicine, Northwestern UniversityChicago, IL, USA
- Department of Dermatology, Nanfang Hospital, Southern Medical UniversityGuangzhou, Guangdong, China
| | - Na Shang
- Department of Radiology, Feinberg School of Medicine, Northwestern UniversityChicago, IL, USA
| | - Junjie Shangguan
- Department of Radiology, Feinberg School of Medicine, Northwestern UniversityChicago, IL, USA
| | - Matteo Figini
- Department of Radiology, Feinberg School of Medicine, Northwestern UniversityChicago, IL, USA
| | - Liang Pan
- Department of Radiology, Feinberg School of Medicine, Northwestern UniversityChicago, IL, USA
- Department of Radiology, The Third Affiliated Hospital of Soochow UniversityChangzhou, Jiangsu, China
| | - Kang Zhou
- Department of Radiology, Feinberg School of Medicine, Northwestern UniversityChicago, IL, USA
| | - Quanhong Ma
- Department of Radiology, Feinberg School of Medicine, Northwestern UniversityChicago, IL, USA
| | - Daniele Procissi
- Department of Radiology, Feinberg School of Medicine, Northwestern UniversityChicago, IL, USA
| | - Yury Velichko
- Department of Radiology, Feinberg School of Medicine, Northwestern UniversityChicago, IL, USA
- Robert H. Lurie Comprehensive Cancer CenterChicago, IL, USA
| | - Vahid Yaghmai
- Department of Radiology, Feinberg School of Medicine, Northwestern UniversityChicago, IL, USA
- Robert H. Lurie Comprehensive Cancer CenterChicago, IL, USA
| | - Guoxin Li
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive SurgeryGuangzhou, China
| | - Zhuoli Zhang
- Department of Radiology, Feinberg School of Medicine, Northwestern UniversityChicago, IL, USA
- Robert H. Lurie Comprehensive Cancer CenterChicago, IL, USA
| |
Collapse
|
21
|
Ridolfi L, de Rosa F, Fiammenghi L, Petrini M, Granato AM, Ancarani V, Pancisi E, Soldati V, Cassan S, Bulgarelli J, Riccobon A, Gentili G, Nanni O, Framarini M, Tauceri F, Guidoboni M. Complementary vaccination protocol with dendritic cells pulsed with autologous tumour lysate in patients with resected stage III or IV melanoma: protocol for a phase II randomised trial (ACDC Adjuvant Trial). BMJ Open 2018; 8:e021701. [PMID: 30082356 PMCID: PMC6078243 DOI: 10.1136/bmjopen-2018-021701] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION Surgery is one of the treatments of choice for patients with a single metastasis from melanoma but is rarely curative. Such patients could potentially benefit from consolidation immunotherapy. Vaccination with dendritic cells (DCs) loaded with tumour antigens elicits a tumour-specific immune response. In our experience, patients who developed delayed type hypersensitivity (DTH) after DC vaccination showed a median overall survival (OS) of 22.9 monthsvs4.8 months for DTH-negative cases. A phase II randomised trial showed an advantage OS of a DC vaccine over a tumour cell-based vaccine (2-year OS 72% vs31%, respectively). Given that there is no standard therapy after surgical resection of single metastases, we planned a study to compare vaccination with DCs pulsed with autologous tumour lysate versus follow-up. METHODS AND ANALYSIS This is a randomised phase II trial in patients with resected stage III/IV melanoma. Assuming a median relapse-free survival (RFS) of 7.0 months for the standard group and 11.7 months for the experimental arm (HR 0.60), with a two-sided tailed alpha of 0.10, 60 patients per arm must be recruited. An interim futility analysis will be performed at 18 months. The DC vaccine, produced in accordance with Good Manufacturing Practice guidelines, consists of autologous DCs loaded with autologous tumour lysate and injected intradermally near lymph nodes. Vaccine doses will be administered every 4 weeks for six vaccinations and will be followed by 3 million unit /day of interleukin-2 for 5 days. Tumour restaging, blood sampling for immunological biomarkers and DTH testing will be performed every 12 weeks. ETHICS AND DISSEMINATION The protocol, informed consent and accompanying material given to patients were submitted by the investigator to the Ethics Committee for review. The local Ethics Committee and the Italian Medicines Agency approved the protocol (EudraCT code no.2014-005123-27). Results will be published in a peer-reviewed international scientific journal. TRIAL REGISTRATION NUMBER 2014-005123-27.
Collapse
Affiliation(s)
- Laura Ridolfi
- Immunotherapy Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Francesco de Rosa
- Immunotherapy Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Laura Fiammenghi
- Immunotherapy Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Massimiliano Petrini
- Immunotherapy Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Anna Maria Granato
- Immunotherapy Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Valentina Ancarani
- Immunotherapy Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Elena Pancisi
- Immunotherapy Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Valentina Soldati
- Immunotherapy Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Serena Cassan
- Immunotherapy Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Jenny Bulgarelli
- Immunotherapy Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Angela Riccobon
- Immunotherapy Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Giorgia Gentili
- Unit of Biostatistics and Clinical Trials, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori I(RST) IRCCS, Meldola, Italy
| | - Oriana Nanni
- Unit of Biostatistics and Clinical Trials, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori I(RST) IRCCS, Meldola, Italy
| | - Massimo Framarini
- Advanced Oncological Surgery, Morgagni-Pierantoni Hospital, Forlì, Italy
| | - Francesca Tauceri
- Advanced Oncological Surgery, Morgagni-Pierantoni Hospital, Forlì, Italy
| | - Massimo Guidoboni
- Immunotherapy Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| |
Collapse
|
22
|
Charoenphol P, Oswalt K, Bishop CJ. Therapeutics incorporating blood constituents. Acta Biomater 2018; 73:64-80. [PMID: 29626699 DOI: 10.1016/j.actbio.2018.03.046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 02/01/2018] [Accepted: 03/28/2018] [Indexed: 12/17/2022]
Abstract
Blood deficiency and dysfunctionality can result in adverse events, which can primarily be treated by transfusion of blood or the re-introduction of properly functioning sub-components. Blood constituents can be engineered on the sub-cellular (i.e., DNA recombinant technology) and cellular level (i.e., cellular hitchhiking for drug delivery) for supplementing and enhancing therapeutic efficacy, in addition to rectifying dysfunctioning mechanisms (i.e., clotting). Herein, we report the progress of blood-based therapeutics, with an emphasis on recent applications of blood transfusion, blood cell-based therapies and biomimetic carriers. Clinically translated technologies and commercial products of blood-based therapeutics are subsequently highlighted and perspectives on challenges and future prospects are discussed. STATEMENT OF SIGNIFICANCE Blood-based therapeutics is a burgeoning field and has advanced considerably in recent years. Blood and its constituents, with and without modification (i.e., combinatorial), have been utilized in a broad spectrum of pre-clinical and clinically-translated treatments. This review article summarizes the most up-to-date progress of blood-based therapeutics in the following contexts: synthetic blood substitutes, acellular/non-recombinant therapies, cell-based therapies, and therapeutic sub-components. The article subsequently discusses clinically-translated technologies and future prospects thereof.
Collapse
|
23
|
Faramarzi S, Ghafouri-Fard S. Melanoma: a prototype of cancer-testis antigen-expressing malignancies. Immunotherapy 2018; 9:1103-1113. [PMID: 29032737 DOI: 10.2217/imt-2017-0091] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Melanoma is the first malignancy in which expression and immunogenicity of cancer-testis antigens (CTAs) have been documented. Several CTAs have been shown to be expressed in melanoma samples especially those with metastatic potential. Many of them have been shown to exert oncogenic effects through modulation of essential pathways involved in melanoma. The crucial role of CTAs in the pathogenesis of melanoma, the high prevalence of expression of CTA panels in melanoma and the presence of spontaneous as well as inducible immune responses against CTAs in melanoma patients potentiate CTAs as immunotherapeutic targets. Numerous clinical trials are now ongoing to evaluate CTA-based immunotherapeutic effects in melanoma patient's survival. NY-ESO-1 and MAGE antigens have the most promising results up to now.
Collapse
Affiliation(s)
- Sepideh Faramarzi
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
24
|
Peptide-pulsed dendritic cell vaccine in combination with carboplatin and paclitaxel chemotherapy for stage IV melanoma. Melanoma Res 2018; 27:326-334. [PMID: 28263240 DOI: 10.1097/cmr.0000000000000342] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In this study, we aimed to evaluate the feasibility and efficacy of peptide-pulsed dendritic cell (DC) vaccine in combination with carboplatin and paclitaxel chemotherapy (DCCP) for patients with stage IV melanoma previously treated with dacarbazine-containing regimen. Six HLA-A24 and 3 HLA-A02 patients were treated with carboplatin (area under the curve 5) and paclitaxel (175 mg/m) on day 1 and DCs (2×10 cells) pulsed with Wilms tumor gene 1 (WT1), gp100, tyrosinase, and either MAGE-A3 (for HLA-A24) or MAGE-A2 (for HLA-A02) peptides on days 8 and 22 in 28-day cycle for up to three cycles. DCCP was well tolerated, and median progression-free survival and median overall survival were 2.3 and 12.0 months, respectively. In four of nine patients, a WT1-specific immune response (WT1-IR) was detected using the interferon-γ enzyme-linked ImmunoSpot assay and WT1/HLA tetramer assay. DCCP was more likely to elicit a WT1-IR in patients who received DCs pulsed with the HLA-A24-restricted peptide (75%) compared with patients who received DCs pulsed with the HLA-A02-restricted peptide (0%, P=0.058). Furthermore, three (75%) of four patients with a WT1-IR survived longer than 12 months, whereas only one (20%) of five patients without a WT1-IR who received the BRAF inhibitor after DCCP survived longer than 12 months. These results suggest that DCCP may be beneficial for HLA-A24 melanoma patients with a WT1-IR.
Collapse
|
25
|
Iura K, Kohashi K, Yasutake N, Ishii T, Maekawa A, Bekki H, Otsuka H, Yamada Y, Yamamoto H, Ohishi Y, Matsumoto Y, Iwamoto Y, Oda Y. Cancer-testis antigens are predominantly expressed in uterine leiomyosarcoma compared with non-uterine leiomyosarcoma. Oncol Lett 2018; 15:441-446. [PMID: 29399140 DOI: 10.3892/ol.2017.7274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 07/27/2017] [Indexed: 01/05/2023] Open
Abstract
Leiomyosarcomas account for ~24% of all adult sarcomas, and develop predominantly either in the uterus [uterine leiomyosarcoma (ULMS)] or in deep soft tissue or the retroperitoneum [non-uterine leiomyosarcoma (NULMS)]. Leiomyosarcomas are relatively chemoresistant tumors, and the prognosis of patients with leiomyosarcomas is poor. Cancer-testis (CT) antigens are considered promising immunotherapeutic targets because of their restricted expression in normal tissue, except in the testis. Little is known about the expression of CT antigens in leiomyosarcomas. In the present study, the protein expression of the CT antigens MAGE family member A (MAGEA)1, MAGEA3, MAGEA4, G antigen 7 (GAGE7) and cancer/testis antigen 1 (NY-ESO-1) in ULMS and NULMS were investigated using immunohistochemistry (IHC), and their expression profiles compared. In ULMS and NULMS, positive expression was observed in 11/32 (31%) and 1/31 (3%; MAGEA1), 15/32 (47%) and 5/31 (16%; MAGEA3), 11/32 (34%) and 3/31 (10%; MAGEA4), 23/32 (72%) and 11/31 (35%; GAGE7) and 3/32 (9%) and 0/31 (0%; NY-ESO-1), respectively. The ULMSs demonstrated significantly higher positive expression of MAGEA1 (P=0.0034), MAGEA3 (P=0.0141), MAGEA4 (P=0.0319) and GAGE7 (P=0.0054) compared with the NULMSs. The ULMSs also had significantly higher IHC scores for MAGEA1 (P=0.0023), MAGEA3 (P=0.0474), MAGEA4 (P=0.011), GAGE7 (P=0.0319) and NY-ESO-1 (P=0.0437). The results of the present study support the potential utility of MAGEA1, MAGEA3, MAGEA4 and GAGE7 in ULMS and GAGE7 in NULMS as immunotherapeutic targets.
Collapse
Affiliation(s)
- Kunio Iura
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Fukuoka 812-8581, Japan.,Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Fukuoka 812-8581, Japan
| | - Kenichi Kohashi
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Fukuoka 812-8581, Japan
| | - Nobuko Yasutake
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Fukuoka 812-8581, Japan
| | - Takeaki Ishii
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Fukuoka 812-8581, Japan.,Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Fukuoka 812-8581, Japan
| | - Akira Maekawa
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Fukuoka 812-8581, Japan.,Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Fukuoka 812-8581, Japan
| | - Hirofumi Bekki
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Fukuoka 812-8581, Japan.,Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Fukuoka 812-8581, Japan
| | - Hiroshi Otsuka
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Fukuoka 812-8581, Japan.,Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Fukuoka 812-8581, Japan
| | - Yuichi Yamada
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Fukuoka 812-8581, Japan
| | - Hidetaka Yamamoto
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Fukuoka 812-8581, Japan
| | - Yoshihiro Ohishi
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Fukuoka 812-8581, Japan
| | - Yoshihiro Matsumoto
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Fukuoka 812-8581, Japan
| | - Yukihide Iwamoto
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Fukuoka 812-8581, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Fukuoka 812-8581, Japan
| |
Collapse
|
26
|
Ge C, Li R, Song H, Geng T, Yang J, Tan Q, Song L, Wang Y, Xue Y, Li Z, Dong S, Zhang Z, Zhang N, Guo J, Hua L, Chen S, Song X. Phase I clinical trial of a novel autologous modified-DC vaccine in patients with resected NSCLC. BMC Cancer 2017; 17:884. [PMID: 29268708 PMCID: PMC5740508 DOI: 10.1186/s12885-017-3859-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 11/29/2017] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The primary aim of this study was to evaluate the safety of a novel dendritic cell (DC) vaccine pulsed with survivin and MUC1, silenced with suppressor of cytokine signaling 1 (SOCS1), and immune stimulated with flagellin for patients with stage I to IIIA non-small cell lung cancer (NSCLC) in a phase I open-label, uncontrolled, and dose-escalation trial. Moreover, we evaluate the potential efficacy of this modified DC vaccine as secondary aim. METHODS The patients were treated with the vaccine at 1 × 106, 1 × 107and the maximum dose 8 × 107 at day 7, 14, and 21 after characterization of the vaccine phenotype by flow cytometry. The safety of the vaccine was assessed by adverse events, and the efficacy by the levels of several specific tumor markers and the patient quality of life. RESULTS The vaccine was well tolerated without dose-limiting toxicity even at higher doses. The most common adverse event reported was just grade 1 flu-like symptoms without unanticipated or serious adverse event. A significant decrease in CD3 + CD4 + CD25 + Foxp3+ T regulatory (Treg) cell number and increase in TNF-α and IL-6 were observed in two patients. Two patients showed 15% and 64% decrease in carcino-embryonic antigen and CYFRA21, respectively. The vaccination with the maximum dose significantly improved the patients'quality of life when administered at the highest dose. More importantly, in the long-term follow-up until February 17, 2017, 1 patient had no recurrence, 1 patients had a progressive disease (PD), and 1 patient was died in the low dose group. In the middle dose group, all 3 patients had no recurrence. In the high dose group, 1 patient was died, 1 patient had a PD, and the other 7 patients had no recurrence. CONCLUSIONS We provide preliminary data on the safety and efficacy profile of a novel vaccine against non-small cell lung cancer, which was reasonably well tolerated, induced modest antitumor activity without dose-limiting toxicity, and improved patients' quality of life. Further more, the vaccine maybe a very efficacious treatment for patients with resected NSCLC to prevent recurrence. Our findings on the safety and efficacy of the vaccine in this phase I trial warrant future phase II/III clinical trial.
Collapse
Affiliation(s)
- Chunlei Ge
- Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan 650118 China
| | - Ruilei Li
- Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan 650118 China
| | - Haifeng Song
- Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan 650118 China
| | - Tao Geng
- Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan 650118 China
| | - Jinyan Yang
- Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan 650118 China
| | - Qinghua Tan
- Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan 650118 China
| | - Linfeng Song
- Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan 650118 China
| | - Ying Wang
- Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan 650118 China
| | - Yuanbo Xue
- Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan 650118 China
| | - Zhen Li
- Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan 650118 China
| | - Suwei Dong
- Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan 650118 China
| | - Zhiwei Zhang
- Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan 650118 China
| | - Na Zhang
- Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan 650118 China
| | - Jiyin Guo
- Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan 650118 China
| | - Lin Hua
- Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan 650118 China
| | - Siyi Chen
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX USA
- Department of Immunology, Baylor College of Medicine, Houston, TX USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX USA
| | - Xin Song
- Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan 650118 China
| |
Collapse
|
27
|
Oyarce C, Cruz-Gomez S, Galvez-Cancino F, Vargas P, Moreau HD, Diaz-Valdivia N, Diaz J, Salazar-Onfray FA, Pacheco R, Lennon-Dumenil AM, Quest AFG, Lladser A. Caveolin-1 Expression Increases upon Maturation in Dendritic Cells and Promotes Their Migration to Lymph Nodes Thereby Favoring the Induction of CD8 + T Cell Responses. Front Immunol 2017; 8:1794. [PMID: 29326695 PMCID: PMC5733362 DOI: 10.3389/fimmu.2017.01794] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 11/30/2017] [Indexed: 12/14/2022] Open
Abstract
Dendritic cell (DC) trafficking from peripheral tissues to lymph nodes (LNs) is a key step required to initiate T cell responses against pathogens as well as tumors. In this context, cellular membrane protrusions and the actin cytoskeleton are essential to guide DC migration towards chemotactic signals. Caveolin-1 (CAV1) is a scaffolding protein that modulates signaling pathways leading to remodeling of the actin cytoskeleton and enhanced migration of cancer cells. However, whether CAV1 is relevant for DC function and specifically for DC migration to LNs is unknown. Here, we show that CAV1 expression is upregulated in DCs upon LPS- and TNF-α-induced maturation. CAV1 deficiency did not affect differentiation, maturation, or the ability of DCs to activate CD8+ T cells in vitro. However, CAV1-deficient (CAV1-/-) DCs displayed reduced in vivo trafficking to draining LNs in control and inflammatory conditions. In vitro, CAV1-/- DCs showed reduced directional migration in CCL21 gradients in transwell assays without affecting migration velocity in confined microchannels or three-dimensional collagen matrices. In addition, CAV1-/- DCs displayed reduced activation of the small GTPase Rac1, a regulator of actin cytoskeletal remodeling, and lower numbers of F-actin-forming protrusions. Furthermore, mice adoptively transferred with peptide-pulsed CAV1-/- DCs showed reduced CD8+ T cell responses and antitumor protection. Our results suggest that CAV1 promotes the activation of Rac1 and the formation of membrane protrusions that favor DC chemotactic trafficking toward LNs where they can initiate cytotoxic T cell responses.
Collapse
Affiliation(s)
- Cesar Oyarce
- Laboratory of Gene Immunotherapy, Fundación Ciencia & Vida, Santiago, Chile.,Laboratory of Cellular Communication, Advanced Center for Chronic Diseases (ACCDiS) and Center for Molecular Studies of the Cell (CEMC), Program in Cell and Molecular Biology, Faculty of Medicine, Biomedical Sciences Institute (ICBM), University of Chile, Santiago, Chile
| | - Sebastián Cruz-Gomez
- Laboratory of Gene Immunotherapy, Fundación Ciencia & Vida, Santiago, Chile.,Laboratory of Cellular Communication, Advanced Center for Chronic Diseases (ACCDiS) and Center for Molecular Studies of the Cell (CEMC), Program in Cell and Molecular Biology, Faculty of Medicine, Biomedical Sciences Institute (ICBM), University of Chile, Santiago, Chile
| | | | - Pablo Vargas
- Institut National de la Santé et de la Recherche Médicale Unité 144, Institut Curie/CNRS, Paris, France
| | - Hélène D Moreau
- Institut National de la Santé et de la Recherche Médicale Unité 932, Institut Curie/CNRS, Paris, France
| | - Natalia Diaz-Valdivia
- Laboratory of Cellular Communication, Advanced Center for Chronic Diseases (ACCDiS) and Center for Molecular Studies of the Cell (CEMC), Program in Cell and Molecular Biology, Faculty of Medicine, Biomedical Sciences Institute (ICBM), University of Chile, Santiago, Chile
| | - Jorge Diaz
- Laboratory of Cellular Communication, Advanced Center for Chronic Diseases (ACCDiS) and Center for Molecular Studies of the Cell (CEMC), Program in Cell and Molecular Biology, Faculty of Medicine, Biomedical Sciences Institute (ICBM), University of Chile, Santiago, Chile
| | - Flavio Andres Salazar-Onfray
- Program in Immunology, Faculty of Medicine, Biomedical Sciences Institute (ICBM), University of Chile, Santiago, Chile
| | - Rodrigo Pacheco
- Laboratory of Neuroimmunology, Fundación Ciencia & Vida, Santiago, Chile.,Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile
| | - Ana Maria Lennon-Dumenil
- Institut National de la Santé et de la Recherche Médicale Unité 932, Institut Curie/CNRS, Paris, France
| | - Andrew F G Quest
- Laboratory of Cellular Communication, Advanced Center for Chronic Diseases (ACCDiS) and Center for Molecular Studies of the Cell (CEMC), Program in Cell and Molecular Biology, Faculty of Medicine, Biomedical Sciences Institute (ICBM), University of Chile, Santiago, Chile
| | - Alvaro Lladser
- Laboratory of Gene Immunotherapy, Fundación Ciencia & Vida, Santiago, Chile
| |
Collapse
|
28
|
Calderon-Gonzalez R, Bronchalo-Vicente L, Freire J, Frande-Cabanes E, Alaez-Alvarez L, Gomez-Roman J, Yañez-Diaz S, Alvarez-Dominguez C. Exceptional antineoplastic activity of a dendritic-cell-targeted vaccine loaded with a Listeria peptide proposed against metastatic melanoma. Oncotarget 2017; 7:16855-65. [PMID: 26942874 PMCID: PMC4941355 DOI: 10.18632/oncotarget.7806] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 02/09/2016] [Indexed: 01/24/2023] Open
Abstract
Vaccination with dendritic cells (DCs) is proposed to induce lasting responses against melanoma but its survival benefit in patients needs to be demonstrated. We propose a DC-targeted vaccine loaded with a Listeria peptide with exceptional anti-tumour activity to prevent metastasis of melanoma. Mice vaccinated with vaccines based on DCs loaded with listeriolysin O peptide (91–99) (LLO91–99) showed clear reduction of metastatic B16OVA melanoma size and adhesion, prevention of lung metastasis, enhanced survival, and reversion of immune tolerance. Robust innate and specific immune responses explained the efficiency of DC-LLO91–99 vaccines against B16OVA melanoma. The noTable features of this vaccine related to melanoma reduction were: expansion of immune-dominant LLO91–99-specific CD8 T cells that helped to expand melanoma-specific CD8+ T cells; high numbers of tumour-infiltrating lymphocytes with a cytotoxic phenotype; and a decrease in CD4+CD25high regulatory T cells. This vaccine might be a useful alternative treatment for advanced melanoma, alone or in combination with other therapies.
Collapse
Affiliation(s)
- Ricardo Calderon-Gonzalez
- Group of Genomics, Proteomics and Vaccines, Marqués de Valdecilla Research Institute (IDIVAL), Santander, Spain
| | - Lucia Bronchalo-Vicente
- Group of Genomics, Proteomics and Vaccines, Marqués de Valdecilla Research Institute (IDIVAL), Santander, Spain.,Dermatology Department, Marqués de Valdecilla University Hospital (HUMV), Santander, Spain
| | - Javier Freire
- Pathological Anatomy Department, Marqués de Valdecilla University Hospital (HUMV), Santander, Spain
| | - Elisabet Frande-Cabanes
- Group of Genomics, Proteomics and Vaccines, Marqués de Valdecilla Research Institute (IDIVAL), Santander, Spain
| | - Lidia Alaez-Alvarez
- Group of Genomics, Proteomics and Vaccines, Marqués de Valdecilla Research Institute (IDIVAL), Santander, Spain
| | - Javier Gomez-Roman
- Pathological Anatomy Department, Marqués de Valdecilla University Hospital (HUMV), Santander, Spain
| | - Sonsóles Yañez-Diaz
- Dermatology Department, Marqués de Valdecilla University Hospital (HUMV), Santander, Spain
| | - Carmen Alvarez-Dominguez
- Group of Genomics, Proteomics and Vaccines, Marqués de Valdecilla Research Institute (IDIVAL), Santander, Spain
| |
Collapse
|
29
|
Development of effective tumor immunotherapy using a novel dendritic cell-targeting Toll-like receptor ligand. PLoS One 2017; 12:e0188738. [PMID: 29190690 PMCID: PMC5708771 DOI: 10.1371/journal.pone.0188738] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 11/13/2017] [Indexed: 12/16/2022] Open
Abstract
Although dendritic cell (DC)-based immunotherapy shows little toxicity, improvements should be necessary to obtain satisfactory clinical outcome. Using interferon-gamma injection along with DCs, we previously obtained significant clinical responses against small or early stage malignant tumors in dogs. However, improvement was necessary to be effective to largely developed or metastatic tumors. To obtain effective methods applicable to those tumors, we herein used a DC-targeting Toll-like receptor ligand, h11c, and examined the therapeutic effects in murine subcutaneous and visceral tumor models and also in the clinical treatment of canine cancers. In murine experiments, most and significant inhibition of tumor growth and extended survival was observed in the group treated with the combination of h11c-activated DCs in combination with interferon-gamma and a cyclooxygenase2 inhibitor. Both monocytic and granulocytic myeloid-derived suppressor cells were significantly reduced by the combined treatment. Following the successful results in mice, the combined treatment was examined against canine cancers, which spontaneously generated like as those in human. The combined treatment elicited significant clinical responses against a nonepithelial malignant tumor and a malignant fibrous histiocytoma. The treatment was also successful against a bone-metastasis of squamous cell carcinoma. In the successful cases, the marked increase of tumor-responding T cells and decrease of myeloid-derived suppressor cells and regulatory T cells was observed in their peripheral blood. Although the combined treatment permitted the growth of lung cancer of renal carcinoma-metastasis, the marked elevated and long-term maintaining of the tumor-responding T cells was observed in the patient dog. Overall, the combined treatment gave rise to emphatic amelioration in DC-based cancer therapy.
Collapse
|
30
|
Alvarez-Dominguez C, Calderón-Gonzalez R, Terán-Navarro H, Salcines-Cuevas D, Garcia-Castaño A, Freire J, Gomez-Roman J, Rivera F. Dendritic cell therapy in melanoma. ANNALS OF TRANSLATIONAL MEDICINE 2017; 5:386. [PMID: 29114544 DOI: 10.21037/atm.2017.06.13] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Dendritic cell (DC) vaccines are cancer vaccines used currently as melanoma therapies. They act as adjuvants initiating the immune responses, but not only as they can also have effector activities redirecting cytotoxic CD8+ T cells against melanoma. Ex vivo preparation of monocyte derived DCs has been implemented to produce large numbers of DCs for clinical therapy, highlighting the necessity of activate DC s to produce Th1 cytokines, especially TNF-a and IL-12 with potent anti-tumour actions. Several clinical trials both in the European Union and USA are open currently using DC vaccines, alone or in combination with other immunotherapies. The type of antigen is also an active area of investigation involving tumour antigens and bacterial epitopes, both providing good responses. Bacterial epitopes presented the advantage versus tumour antigens that they can prepare the vaccination site as they induce innate and specific immune responses as they are potent recall antigens that expand cytotoxic responses.
Collapse
Affiliation(s)
| | | | - Hector Terán-Navarro
- Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander 39011, Cantabria, Spain
| | - David Salcines-Cuevas
- Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander 39011, Cantabria, Spain
| | - Almudena Garcia-Castaño
- Servicio de Oncología Médica, Hospital Universitario Marqués de Valdecilla, Santander 39008, Cantabria, Spain
| | - Javier Freire
- Servicio de Anatomía Patológica, Hospital Universitario Marqués de Valdecilla, Santander 39008, Cantabria, Spain
| | - Javier Gomez-Roman
- Servicio de Anatomía Patológica, Hospital Universitario Marqués de Valdecilla, Santander 39008, Cantabria, Spain
| | - Fernando Rivera
- Servicio de Oncología Médica, Hospital Universitario Marqués de Valdecilla, Santander 39008, Cantabria, Spain
| |
Collapse
|
31
|
Calderon-Gonzalez R, Terán-Navarro H, García I, Marradi M, Salcines-Cuevas D, Yañez-Diaz S, Solis-Angulo A, Frande-Cabanes E, Fariñas MC, Garcia-Castaño A, Gomez-Roman J, Penades S, Rivera F, Freire J, Álvarez-Domínguez C. Gold glyconanoparticles coupled to listeriolysin O 91-99 peptide serve as adjuvant therapy against melanoma. NANOSCALE 2017; 9:10721-10732. [PMID: 28714508 DOI: 10.1039/c7nr02494k] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Dendritic cell-based (DC-based) vaccines are promising immunotherapies for cancer. However, several factors, such as the lack of efficient targeted delivery and the sources and types of DCs, have limited the efficacy of DCs and their clinical potential. We propose an alternative nanotechnology-based vaccine platform with antibacterial prophylactic abilities that uses gold glyconanoparticles coupled to listeriolysin O 91-99 peptide (GNP-LLO91-99), which acts as a novel adjuvant for cancer therapy. GNP-LLO91-99, when used to vaccinate mice, exhibited dual antitumour activities, namely, the inhibition of tumour migration and growth and adjuvant activity for recruiting and activating DCs, including those from melanoma patients. GNP-LLO91-99 nanoparticles caused tumour apoptosis and induced antigen- and melanoma-specific cytotoxic Th1 responses (P ≤ 0.5). We propose this adjuvant nanotherapy for preventing the progression of the first stages of melanoma.
Collapse
Affiliation(s)
- R Calderon-Gonzalez
- Grupo de Nanovacunas y vacunas celulares basadas en Listeria y sus aplicaciones en biomedicina, Instituto de Investigación Marqués de Valdecilla (IDIVAL), Avda. Cardenal Herrera Oria s/n, 39011 Santander, Cantabria, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Luo C, Shen J. Research progress in advanced melanoma. Cancer Lett 2017; 397:120-126. [DOI: 10.1016/j.canlet.2017.03.037] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 03/27/2017] [Accepted: 03/28/2017] [Indexed: 12/12/2022]
|
33
|
Zebularine Treatment Induces MAGE-A11 Expression and Improves CTL Cytotoxicity Using a Novel Identified HLA-A2-restricted MAGE-A11 Peptide. J Immunother 2017; 40:211-220. [DOI: 10.1097/cji.0000000000000170] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
34
|
Markov OV, Mironova NL, Vlassov VV, Zenkova MA. Antitumor Vaccines Based on Dendritic Cells: From Experiments using Animal Tumor Models to Clinical Trials. Acta Naturae 2017; 9:27-38. [PMID: 29104773 PMCID: PMC5662271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Indexed: 11/07/2022] Open
Abstract
The routine methods used to treat oncological diseases have a number of drawbacks, including non-specific action and severe side effects for patients. Furthermore, tumor diseases are associated with a suppression of the immune system that often leads to the inefficiency of standard treatment methods. The development of novel immunotherapeutic approaches having specific antitumor action and that activate the immune system is of crucial importance. Vaccines based on dendritic cells (DCs) loaded with tumor antigens ex vivo that can activate antitumor cytotoxic T-cell responses stand out among different antitumor immunotherapeutic approaches. This review is focused on analyzing different methods of DC-based vaccine preparation and current research in antitumor DC-based vaccines using animal tumor models and in clinical trials.
Collapse
Affiliation(s)
- O. V. Markov
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentieva Ave. 8, Novosibirsk, 630090 , Russia
| | - N. L. Mironova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentieva Ave. 8, Novosibirsk, 630090 , Russia
| | - V. V. Vlassov
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentieva Ave. 8, Novosibirsk, 630090 , Russia
| | - M. A. Zenkova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentieva Ave. 8, Novosibirsk, 630090 , Russia
| |
Collapse
|
35
|
Liang X, Shangguan W, Zhang M, Mei S, Wang L, Yang R. miR-128 enhances dendritic cell-mediated anti-tumor immunity via targeting of p38. Mol Med Rep 2017; 16:1307-1313. [PMID: 29067466 PMCID: PMC5561786 DOI: 10.3892/mmr.2017.6717] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Accepted: 04/04/2017] [Indexed: 12/20/2022] Open
Abstract
MiRNA (miR)-128, which is a well‑recognized inhibitor of tumor growth, is involved in the anti-tumor function of dendritic cells (DCs). However, the association between miR‑128 and the DC‑mediated anti‑tumor immunity remains to be elucidated. Murine B16 melanoma cells and C57BL/6 male mice were used to obtain marrow‑derived DCs. DCs were treated with B16 cell suspension. miR‑128 mimic, miR‑128 inhibitor, p38 inhibitor or negative control oligonucleotides were transfected into DCs. After transfection, mRNA and protein expression of p38 in DCs was detected via reverse transcription‑quantitative polymerase chain reaction and western blotting. The present study demonstrated that the miR‑128 abundance in DCs was significantly attenuated by B16 (a melanoma cell line) stimulation and the protein expression level of p38 was increased. Additionally, miR‑128 inhibited the protein expression of p38 in DCs in a dose‑dependent manner, however no significant effect on the p38 mRNA level was observed. Furthermore, miR‑128 mimic or p38 inhibitor decreased the mRNA expression and secretion of interleukin (IL)‑6 and IL‑10 cytokines and increased the level of IL‑12 in DCs, whereas an miR‑128 inhibitor exhibited the opposite effects. These findings suggested that miR‑128 regulated the immune response of DCs via p38‑downstream cytokines. Furthermore, the tumor growth rate, size and weight were markedly decreased and the survival time prolonged, following injection of DCs harboring miR‑128 mimic or p38 inhibitor in C57BL/6 mice bearing B16 melanoma. The results therefore suggest that miR‑128 enhances the anti‑tumor immunity response of DCs via targeting of the p38 mitogen activated protein kinase signaling pathway.
Collapse
Affiliation(s)
- Xue Liang
- Department of Cardiology, Tianjin Key Laboratory of Ionic‑Molecular Function of Cardiovascular Disease, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Wenfeng Shangguan
- Department of Cardiology, Tianjin Key Laboratory of Ionic‑Molecular Function of Cardiovascular Disease, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Miaomiao Zhang
- State Key Laboratory of Medicinal Chemical Biology, School of Medicine, Nankai University, Tianjin 300071, P.R. China
| | - Shiyue Mei
- State Key Laboratory of Medicinal Chemical Biology, School of Medicine, Nankai University, Tianjin 300071, P.R. China
| | - Liyang Wang
- Faculty of Medicine, University of Southampton, Southampton, Hampshire SO17 1BJ, UK
| | - Rongcun Yang
- State Key Laboratory of Medicinal Chemical Biology, School of Medicine, Nankai University, Tianjin 300071, P.R. China
| |
Collapse
|
36
|
Gross S, Erdmann M, Haendle I, Voland S, Berger T, Schultz E, Strasser E, Dankerl P, Janka R, Schliep S, Heinzerling L, Sotlar K, Coulie P, Schuler G, Schuler-Thurner B. Twelve-year survival and immune correlates in dendritic cell-vaccinated melanoma patients. JCI Insight 2017; 2:91438. [PMID: 28422751 DOI: 10.1172/jci.insight.91438] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 03/02/2017] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Reports on long-term (≥10 years) effects of cancer vaccines are missing. Therefore, in 2002, we initiated a phase I/II trial in cutaneous melanoma patients to further explore the immunogenicity of our DC vaccine and to establish its long-term toxicity and clinical benefit after a planned 10-year followup. METHODS Monocyte-derived DCs matured by TNFα, IL-1β, IL-6, and PGE2 and then loaded with 4 HLA class I and 6 class II-restricted tumor peptides were injected intradermally in high doses over 2 years. We performed serial immunomonitoring in all 53 evaluable patients. RESULTS Vaccine-specific immune responses including high-affinity, IFNγ-producing CD4+ and lytic polyfunctional CD8+ T cells were de novo induced or boosted in most patients. Exposure of mature DCs to trimeric soluble CD40 ligand, unexpectedly, did not further enhance such immune responses, while keyhole limpet hemocyanin (KLH) pulsing to provide unspecific CD4+ help promoted CD8+ T cell responses - notably, their longevity. An unexpected 19% of nonresectable metastatic melanoma patients are still alive after 11 years, a survival rate similar to that observed in ipilimumab-treated patients and achieved without any major (>grade 2) toxicity. Survival correlated significantly with the development of intense vaccine injection site reactions, and with blood eosinophilia after the first series of vaccinations, suggesting that prolonged survival was a consequence of DC vaccination. CONCLUSIONS Long-term survival in advanced melanoma patients undergoing DC vaccination is similar to ipilimumab-treated patients and occurs upon induction of tumor-specific T cells, blood eosinophilia, and strong vaccine injection site reactions occurring after the initial vaccinations. TRIAL REGISTRATION ClinicalTrials.gov NCT00053391. FUNDING European Community, Sixth Framework Programme (Cancerimmunotherapy LSHC-CT-2006-518234; DC-THERA LSHB-CT-2004-512074), and German Research Foundation (CRC 643, C1, Z2).
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Peter Dankerl
- Department of Radiology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Rolf Janka
- Department of Radiology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg (FAU), Erlangen, Germany
| | | | | | - Karl Sotlar
- Institute of Pathology, Ludwig-Maximilians-University, Munich, Germany
| | - Pierre Coulie
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | | | | |
Collapse
|
37
|
Srinivasan VM, Ferguson SD, Lee S, Weathers SP, Kerrigan BCP, Heimberger AB. Tumor Vaccines for Malignant Gliomas. Neurotherapeutics 2017; 14:345-357. [PMID: 28389997 PMCID: PMC5398993 DOI: 10.1007/s13311-017-0522-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Despite continued research efforts, glioblastoma multiforme (GBM) remains the deadliest brain tumor. Immunotherapy offers a novel way to treat this disease, the genetic signature of which is not completely elucidated. Additionally, these tumors are known to induce immunosuppression in the surrounding tumor microenvironment via an array of mechanisms, making effective treatment all the more difficult. The immunotherapeutic strategy of using tumor vaccines offers a way to harness the activity of the host immune system to potentially control tumor progression. GBM vaccines can react to a variety of tumor-specific antigens, which can be harvested from the patient's unique pathological condition using selected immunotherapy techniques. This article reviews the rationale behind and development of GBM vaccines, the relevant clinical trials, and the challenges involved in this treatment strategy.
Collapse
Affiliation(s)
| | - Sherise D Ferguson
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Sungho Lee
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Shiao-Pei Weathers
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Amy B Heimberger
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
38
|
Iura K, Maekawa A, Kohashi K, Ishii T, Bekki H, Otsuka H, Yamada Y, Yamamoto H, Harimaya K, Iwamoto Y, Oda Y. Cancer-testis antigen expression in synovial sarcoma: NY-ESO-1, PRAME, MAGEA4, and MAGEA1. Hum Pathol 2016; 61:130-139. [PMID: 27993576 DOI: 10.1016/j.humpath.2016.12.006] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 11/30/2016] [Accepted: 12/02/2016] [Indexed: 01/14/2023]
Abstract
Synovial sarcoma (SS) is regarded as a relatively chemosensitive sarcoma, but the prognosis of advanced SSs remains poor. Here we identified highly expressed cancer-testis antigens that could be promising immunotherapy targets for SS, using a previously conducted cDNA microarray, and we assessed the clinicopathological or prognostic relationships of these antigens in SS. We compared the gene expression profiles of 11 SSs with those of 3 normal adipose tissues. Among the up-regulated cancer-testis antigens, we analyzed PRAME, MAGEA1, and MAGEA4 and another cancer-testis antigen (NY-ESO-1) together, by immunohistochemistry and real-time polymerase chain reaction in 108 SSs. Immunohistochemically, NY-ESO-1, PRAME, MAGEA4, and MAGEA1 were positive in 66 (61%), 93 (86%), 89 (82%), and 16 (15%) of 108 SSs, respectively, and 104 (96%) of 108 SSs showed the immunohistochemical expression of at least 1 of NY-ESO-1, PRAME, and MAGEA4. Moreover, the high expression of at least 1 of these 3 antigens was observed in 83% of the SSs. High expression of NY-ESO-1 and MAGEA4 was significantly correlated with the presence of necrosis and advanced clinical stage. The immunohistochemical expression of these cancer-testis antigens was not correlated with prognosis, but the coexpression of NY-ESO-1, PRAME, and MAGEA4 was significantly associated with adverse prognosis. The real-time polymerase chain reaction results were closely related to the immunohistochemical results: NY-ESO-1 (P = .0019), PRAME (P = .039), MAGEA4 (P = .0149), and MAGEA1 (P = .0766). These data support the potential utility of NY-ESO-1, PRAME, and MAGEA4 as immunotherapy targets and ancillary prognostic parameters, suggesting the possible benefit of the combined use of these cancer-testis antigens as an SS immunotherapy target.
Collapse
Affiliation(s)
- Kunio Iura
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Akira Maekawa
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Kenichi Kohashi
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Takeaki Ishii
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Hirofumi Bekki
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Hiroshi Otsuka
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Yuichi Yamada
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Hidetaka Yamamoto
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Katsumi Harimaya
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Yukihide Iwamoto
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan.
| |
Collapse
|
39
|
Dillman RO, Nistor GI, Cornforth AN. Dendritic cell vaccines for melanoma: past, present and future. Melanoma Manag 2016; 3:273-289. [PMID: 30190899 PMCID: PMC6094661 DOI: 10.2217/mmt-2016-0014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Accepted: 07/19/2016] [Indexed: 02/06/2023] Open
Abstract
Administering dendritic cells (DC) loaded with tumor-associated antigens (TAA) ex vivo is a promising strategy for therapeutic vaccines in advanced melanoma. To date the induction of immune responses to specific TAA has been more impressive than clinical benefit because of TAA limitations, suboptimal DC and possibly immune-checkpoint inhibition. Various products, antigen-loading techniques, treatment schedules, routes of administration and adjunctive agents continue to be explored. Biologic heterogeneity suggests autologous tumor as the optimal TAA source to induce immune responses to the entire repertoire of unique patient-specific neoantigens. Many questions remain regarding the optimal preparation of DC and strategies for antigen loading. Effective DC vaccines should result in additive or synergistic effects when combined with checkpoint inhibitors.
Collapse
Affiliation(s)
- Robert O Dillman
- AiVita Biomedical, Inc., 18301 Von Karman Avenue, Suite 130, Clinical, Research, and Manufacturing Departments, Irvine, CA 92612, USA
| | - Gabriel I Nistor
- AiVita Biomedical, Inc., 18301 Von Karman Avenue, Suite 130, Clinical, Research, and Manufacturing Departments, Irvine, CA 92612, USA
| | - Andrew N Cornforth
- AiVita Biomedical, Inc., 18301 Von Karman Avenue, Suite 130, Clinical, Research, and Manufacturing Departments, Irvine, CA 92612, USA
| |
Collapse
|
40
|
Schmidt AE, Refaai MA, Blumberg N. Past, present and forecast of transfusion medicine: What has changed and what is expected to change? Presse Med 2016; 45:e253-72. [PMID: 27474234 DOI: 10.1016/j.lpm.2016.06.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Blood transfusion is the second most used medical procedures in health care systems worldwide. Over the last few decades, significant changes have been evolved in transfusion medicine practices. These changes were mainly needed to increase safety, efficacy, and availability of blood products as well as reduce recipients' unnecessary exposure to allogeneic blood. Blood products collection, processing, and storage as well as transfusion practices throughout all patient populations were the main stream of these changes. Health care systems across the world have adopted some or most of these changes to reduce transfusion risks, to improve overall patients' outcome, and to reduce health care costs. In this article, we are going to present and discuss some of these recent modifications and their impact on patients' safety.
Collapse
Affiliation(s)
- Amy E Schmidt
- University of Rochester medical center, department of pathology and laboratory medicine, 14642 Rochester, NY, USA
| | - Majed A Refaai
- University of Rochester medical center, department of pathology and laboratory medicine, 14642 Rochester, NY, USA
| | - Neil Blumberg
- University of Rochester medical center, department of pathology and laboratory medicine, 14642 Rochester, NY, USA.
| |
Collapse
|
41
|
Gao Y, Gao W, Chen X, Cha N, Wang X, Jia X, Wang B, Ren M, Ren J. Enhancing the treatment effect on melanoma by heat shock protein 70-peptide complexes purified from human melanoma cell lines. Oncol Rep 2016; 36:1243-50. [PMID: 27431432 PMCID: PMC4968617 DOI: 10.3892/or.2016.4947] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Accepted: 07/04/2016] [Indexed: 01/05/2023] Open
Abstract
Dendritic cell (DC) vaccines are currently one of the most effective approaches to treat melanoma. The immunogenicity of antigens loaded into DCs determines the treatment effects. Patients treated with autologous antigen-loaded DC vaccines achieve the best therapeutic effects. In China, most melanoma patients cannot access their autologous antigens because of formalin treatment of tumor tissue after surgery. In the present study, we purified heat shock protein 70 (HSP70)-peptide complexes (PCs) from human melanoma cell lines A375, A875, M21, M14, WM‑35, and SK‑HEL‑1. We named the purified product as M‑HSP70‑PCs, and determined its immunological activities. Autologous HSP70‑PCs purified from primary tumor cells of melanoma patients (nine cases) were used as controls. These two kinds of tumor antigenic complexes loaded into DCs were used to stimulate an antitumor response against tumor cells in the corresponding patients. Mature DCs pulsed with M‑HSP70‑PCs stimulated autologous T cells to secrete the same levels of type I cytokines compared with the autologous HSP70‑PCs. Moreover, DCs pulsed with M‑HSP70‑PCs induced CD8+ T cells with an equal ability to kill melanoma cells from patients compared with autologous HSP70‑PCs. Next, we used these PC‑pulsed autologous DCs and induced autologous specific CD8+ T cells to treat one patient with melanoma of the nasal skin and lung metastasis. The treatment achieved a good effect after six cycles. These findings provide a new direction for DC-based immunotherapy for melanoma patients who cannot access autologous antigens.
Collapse
Affiliation(s)
- Yanwei Gao
- Cancer Center, Beijing Key Lab of Therapeutic Cancer Vaccines, Affiliated Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, P.R. China
| | - Weishi Gao
- Department of Oncology, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia 010017, P.R. China
| | - Xia Chen
- Inner Mongolia Red Cross Blood Center, Hohhot, Inner Mongolia 010010, P.R. China
| | - Nier Cha
- Cancer Center, Beijing Key Lab of Therapeutic Cancer Vaccines, Affiliated Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, P.R. China
| | - Xiaoli Wang
- Cancer Center, Beijing Key Lab of Therapeutic Cancer Vaccines, Affiliated Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, P.R. China
| | - Xiangdong Jia
- Department of Oncology, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia 010017, P.R. China
| | - Bingping Wang
- Department of Oncology, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia 010017, P.R. China
| | - Meng Ren
- Department of Oncology, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia 010017, P.R. China
| | - Jun Ren
- Cancer Center, Beijing Key Lab of Therapeutic Cancer Vaccines, Affiliated Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, P.R. China
| |
Collapse
|
42
|
Borch TH, Engell-Noerregaard L, Zeeberg Iversen T, Ellebaek E, Met Ö, Hansen M, Andersen MH, Thor Straten P, Svane IM. mRNA-transfected dendritic cell vaccine in combination with metronomic cyclophosphamide as treatment for patients with advanced malignant melanoma. Oncoimmunology 2016; 5:e1207842. [PMID: 27757300 DOI: 10.1080/2162402x.2016.1207842] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 06/13/2016] [Accepted: 06/25/2016] [Indexed: 01/02/2023] Open
Abstract
INTRODUCTION Vaccination with dendritic cells (DCs) has generally not fulfilled its promise in cancer immunotherapy due to ineffective translation of immune responses into clinical responses. A proposed reason for this is intrinsic immune regulatory mechanisms, such as regulatory T cells (Tregs). A metronomic regimen of cyclophosphamide (mCy) has been shown to selectively deplete Tregs. To test this in a clinical setting, we conducted a phase I trial to evaluate the feasibility and safety of vaccination with DCs transfected with mRNA in combination with mCy in patients with metastatic malignant melanoma (MM). In addition, clinical and immunological effect of the treatment was evaluated. EXPERIMENTAL DESIGN Twenty-two patients were enrolled and treated with six cycles of cyclophosphamide 50 mg orally bi-daily for a week every second week (day 1-7). During the six cycles patients received at least 5 × 106 autologous DCs administered by intradermal (i.d.) injection in the week without chemotherapy. Patients were evaluated 12 and 27 weeks and every 3rd mo thereafter with CT scans according to RECIST 1.0. Blood samples for immune monitoring were collected at baseline, at the time of 4th and 6th vaccines. Immune monitoring consisted of IFNγ ELISpot assay, proliferation assay, and flow cytometry for enumeration of immune cell subsets. RESULTS Toxicity was manageable. Eighteen patients were evaluable after six cycles. Of these, nine patients had progressive disease as best response and nine patients achieved stable disease. In three patients minor tumor regression was observed. By IFNγ ELISpot and proliferation assay immune responses were seen in 6/17 and 4/17 patients, respectively; however, no correlation with clinical response was found. The percentage of Tregs was unchanged during treatment. CONCLUSION Treatment with autologous DCs transfected with mRNA in combination with mCy was feasible and safe. Importantly, mCy did not alter the percentage of Tregs in our patient cohort. There was an indication of clinical benefit; however, more knowledge is needed in order for DCs to be exploited as a therapeutic option.
Collapse
Affiliation(s)
- Troels Holz Borch
- Center for Cancer Immune Therapy (CCIT), Department of Hematology, Copenhagen University Hospital, Herlev, Denmark; Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Lotte Engell-Noerregaard
- Center for Cancer Immune Therapy (CCIT), Department of Hematology, Copenhagen University Hospital, Herlev, Denmark; Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Trine Zeeberg Iversen
- Center for Cancer Immune Therapy (CCIT), Department of Hematology, Copenhagen University Hospital, Herlev, Denmark; Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Eva Ellebaek
- Center for Cancer Immune Therapy (CCIT), Department of Hematology, Copenhagen University Hospital, Herlev, Denmark; Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Özcan Met
- Center for Cancer Immune Therapy (CCIT), Department of Hematology, Copenhagen University Hospital, Herlev, Denmark; Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Morten Hansen
- Center for Cancer Immune Therapy (CCIT), Department of Hematology, Copenhagen University Hospital , Herlev, Denmark
| | - Mads Hald Andersen
- Center for Cancer Immune Therapy (CCIT), Department of Hematology, Copenhagen University Hospital , Herlev, Denmark
| | - Per Thor Straten
- Center for Cancer Immune Therapy (CCIT), Department of Hematology, Copenhagen University Hospital , Herlev, Denmark
| | - Inge Marie Svane
- Center for Cancer Immune Therapy (CCIT), Department of Hematology, Copenhagen University Hospital, Herlev, Denmark; Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| |
Collapse
|
43
|
Bassani-Sternberg M, Coukos G. Mass spectrometry-based antigen discovery for cancer immunotherapy. Curr Opin Immunol 2016; 41:9-17. [PMID: 27155075 DOI: 10.1016/j.coi.2016.04.005] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 04/19/2016] [Indexed: 12/14/2022]
Abstract
The antigenic landscape of tumors is distinct from healthy cells and has been the rationale behind a variety of vaccination trials. Typically the target tumor-associated antigens have been of self origin and have rarely induced effective anti-tumor responses. Recent data show that activation of the immune system by immune checkpoint blocking therapies leads to tumor rejection and that recognition of mutated antigens, known as 'neo-antigens' plays a key role. Discovery of neo-antigens relies mainly on prediction-based interrogation of the 'mutanome' using genomic information as input, followed by T-cell screening. Recent breakthroughs in mass spectrometry (MS) based immunopeptidomics have allowed the discovery of very large pools of naturally presented peptides, among them neo-epitopes. This review highlights the current progress related to neo-antigens discovery with emphasis on prediction algorithms and MS as well as the synergy of the two methodologies and how they can be exploited to develop effective personalized immunotherapy.
Collapse
Affiliation(s)
- Michal Bassani-Sternberg
- Ludwig Institute for Cancer Research, University of Lausanne Branch & Department of Oncology, CHUV, Lausanne, Switzerland.
| | - George Coukos
- Ludwig Institute for Cancer Research, University of Lausanne Branch & Department of Oncology, CHUV, Lausanne, Switzerland
| |
Collapse
|
44
|
Chen K, Wang JM, Yuan R, Yi X, Li L, Gong W, Yang T, Li L, Su S. Tissue-resident dendritic cells and diseases involving dendritic cell malfunction. Int Immunopharmacol 2016; 34:1-15. [PMID: 26906720 PMCID: PMC4818737 DOI: 10.1016/j.intimp.2016.02.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 02/05/2016] [Indexed: 01/10/2023]
Abstract
Dendritic cells (DCs) control immune responses and are central to the development of immune memory and tolerance. DCs initiate and orchestrate immune responses in a manner that depends on signals they receive from microbes and cellular environment. Although DCs consist mainly of bone marrow-derived and resident populations, a third tissue-derived population resides the spleen and lymph nodes (LNs), different subsets of tissue-derived DCs have been identified in the blood, spleen, lymph nodes, skin, lung, liver, gut and kidney to maintain the tolerance and control immune responses. Tissue-resident DCs express different receptors for microbe-associated molecular patterns (MAMPs) and damage-associated molecular patterns (DAMPs), which were activated to promote the production of pro- or anti-inflammatory cytokines. Malfunction of DCs contributes to diseases such as autoimmunity, allergy, and cancer. It is therefore important to update the knowledge about resident DC subsets and diseases associated with DC malfunction.
Collapse
Affiliation(s)
- Keqiang Chen
- Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China; Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA; Laboratory of Inflammation Biology, Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0910, USA.
| | - Ji Ming Wang
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA.
| | - Ruoxi Yuan
- Laboratory of Inflammation Biology, Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0910, USA
| | - Xiang Yi
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Liangzhu Li
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Wanghua Gong
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA; Basic Research Program, Leidos Biomedical Research, Inc., Frederick, MD 21702, USA
| | - Tianshu Yang
- Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Liwu Li
- Laboratory of Inflammation Biology, Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0910, USA
| | - Shaobo Su
- Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| |
Collapse
|
45
|
Direct Delivery of Antigens to Dendritic Cells via Antibodies Specific for Endocytic Receptors as a Promising Strategy for Future Therapies. Vaccines (Basel) 2016; 4:vaccines4020008. [PMID: 27043640 PMCID: PMC4931625 DOI: 10.3390/vaccines4020008] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 03/15/2016] [Accepted: 03/18/2016] [Indexed: 12/12/2022] Open
Abstract
Dendritic cells (DCs) are the most potent professional antigen presenting cells and are therefore indispensable for the control of immunity. The technique of antibody mediated antigen targeting to DC subsets has been the basis of intense research for more than a decade. Many murine studies have utilized this approach of antigen delivery to various kinds of endocytic receptors of DCs both in vitro and in vivo. Today, it is widely accepted that different DC subsets are important for the induction of select immune responses. Nevertheless, many questions still remain to be answered, such as the actual influence of the targeted receptor on the initiation of the immune response to the delivered antigen. Further efforts to better understand the induction of antigen-specific immune responses will support the transfer of this knowledge into novel treatment strategies for human diseases. In this review, we will discuss the state-of-the-art aspects of the basic principles of antibody mediated antigen targeting approaches. A table will also provide a broad overview of the latest studies using antigen targeting including addressed DC subset, targeted receptors, outcome, and applied coupling techniques.
Collapse
|
46
|
Javed A, Sato S, Sato T. Autologous melanoma cell vaccine using monocyte-derived dendritic cells (NBS20/eltrapuldencel-T). Future Oncol 2016; 12:751-62. [PMID: 26837440 DOI: 10.2217/fon.16.13] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Targeted therapy and immunotherapy have revolutionized the treatment of advanced melanoma. Despite recent advances, lack of long-term efficacy from targeted therapy and serious immune-related toxicity are major concerns. There is unmet need for 'durable' and 'safe' treatment options for advanced melanoma. Cancer vaccine therapy in melanoma has been investigated for many years with modest clinical efficacy. More recently, dendritic cell-based vaccine products have become available for clinical use and have been the focus of investigation. CLBS20 (NBS20/eltrapuldencel-T) is a novel dendritic cell-based vaccine product that has shown promising results in early phase trials in advanced melanoma. This cancer vaccine approach could play an important role in providing a sustainable survival benefit, targeting cancer cells themselves and avoiding off-target immune-related toxicity.
Collapse
Affiliation(s)
- Asad Javed
- Department of Medical Oncology, Thomas Jefferson University, 925 Chestnut street, Philadelphia, PA 19107, USA
| | - Shingo Sato
- Department of Medical Oncology, Thomas Jefferson University, 925 Chestnut street, Philadelphia, PA 19107, USA
| | - Takami Sato
- Department of Medical Oncology, Thomas Jefferson University, 925 Chestnut street, Philadelphia, PA 19107, USA
| |
Collapse
|
47
|
Fairchild PJ, Leishman A, Sachamitr P, Telfer C, Hackett S, Davies TJ. Dendritic cells and pluripotency: unlikely allies in the pursuit of immunotherapy. Regen Med 2016; 10:275-86. [PMID: 25933237 DOI: 10.2217/rme.15.6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
As the fulcrum on which the balance between the opposing forces of tolerance and immunity has been shown to pivot, dendritic cells (DC) hold significant promise for immune intervention in a variety of disease states. Here we discuss how the directed differentiation of human pluripotent stem cells may address many of the current obstacles to the use of monocyte-derived DC in immunotherapy, providing a novel source of previously inaccessible DC subsets and opportunities for their scale-up, quality control and genetic modification. Indeed, given that it is the immunological legacy DC leave behind that is of therapeutic value, rather than their persistence per se, we propose that immunotherapy should serve as an early target for the clinical application of pluripotent stem cells.
Collapse
Affiliation(s)
- Paul J Fairchild
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | | | | | | | | | | |
Collapse
|
48
|
Ascierto PA, Atkins M, Bifulco C, Botti G, Cochran A, Davies M, Demaria S, Dummer R, Ferrone S, Formenti S, Gajewski TF, Garbe C, Khleif S, Kiessling R, Lo R, Lorigan P, Arthur GM, Masucci G, Melero I, Mihm M, Palmieri G, Parmiani G, Puzanov I, Romero P, Schilling B, Seliger B, Stroncek D, Taube J, Tomei S, Zarour HM, Testori A, Wang E, Galon J, Ciliberto G, Mozzillo N, Marincola FM, Thurin M. Future perspectives in melanoma research: meeting report from the "Melanoma Bridge": Napoli, December 3rd-6th 2014. J Transl Med 2015; 13:374. [PMID: 26619946 PMCID: PMC4665874 DOI: 10.1186/s12967-015-0736-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Accepted: 11/19/2015] [Indexed: 12/27/2022] Open
Abstract
The fourth "Melanoma Bridge Meeting" took place in Naples, December 3-6th, 2014. The four topics discussed at this meeting were: Molecular and Immunological Advances, Combination Therapies, News in Immunotherapy, and Tumor Microenvironment and Biomarkers. Until recently systemic therapy for metastatic melanoma patients was ineffective, but recent advances in tumor biology and immunology have led to the development of new targeted and immunotherapeutic agents that prolong progression-free survival (PFS) and overall survival (OS). New therapies, such as mitogen-activated protein kinase (MAPK) pathway inhibitors as well as other signaling pathway inhibitors, are being tested in patients with metastatic melanoma either as monotherapy or in combination, and all have yielded promising results. These include inhibitors of receptor tyrosine kinases (BRAF, MEK, and VEGFR), the phosphatidylinositol 3 kinase (PI3K) pathway [PI3K, AKT, mammalian target of rapamycin (mTOR)], activators of apoptotic pathway, and the cell cycle inhibitors (CDK4/6). Various locoregional interventions including radiotherapy and surgery are still valid approaches in treatment of advanced melanoma that can be integrated with novel therapies. Intrinsic, adaptive and acquired resistance occur with targeted therapy such as BRAF inhibitors, where most responses are short-lived. Given that the reactivation of the MAPK pathway through several distinct mechanisms is responsible for the majority of acquired resistance, it is logical to combine BRAF inhibitors with inhibitors of targets downstream in the MAPK pathway. For example, combination of BRAF/MEK inhibitors (e.g., dabrafenib/trametinib) have been demonstrated to improve survival compared to monotherapy. Application of novel technologies such sequencing have proven useful as a tool for identification of MAPK pathway-alternative resistance mechanism and designing other combinatorial therapies such as those between BRAF and AKT inhibitors. Improved survival rates have also been observed with immune-targeted therapy for patients with metastatic melanoma. Immune-modulating antibodies came to the forefront with anti-CTLA-4, programmed cell death-1 (PD-1) and PD-1 ligand 1 (PD-L1) pathway blocking antibodies that result in durable responses in a subset of melanoma patients. Agents targeting other immune inhibitory (e.g., Tim-3) or immune stimulating (e.g., CD137) receptors and other approaches such as adoptive cell transfer demonstrate clinical benefit in patients with melanoma as well. These agents are being studied in combination with targeted therapies in attempt to produce longer-term responses than those more typically seen with targeted therapy. Other combinations with cytotoxic chemotherapy and inhibitors of angiogenesis are changing the evolving landscape of therapeutic options and are being evaluated to prevent or delay resistance and to further improve survival rates for this patient population. This meeting's specific focus was on advances in combination of targeted therapy and immunotherapy. Both combination targeted therapy approaches and different immunotherapies were discussed. Similarly to the previous meetings, the importance of biomarkers for clinical application as markers for diagnosis, prognosis and prediction of treatment response was an integral part of the meeting. The overall emphasis on biomarkers supports novel concepts toward integrating biomarkers into contemporary clinical management of patients with melanoma across the entire spectrum of disease stage. Translation of the knowledge gained from the biology of tumor microenvironment across different tumors represents a bridge to impact on prognosis and response to therapy in melanoma.
Collapse
Affiliation(s)
- Paolo A Ascierto
- Istituto Nazionale Tumori, Fondazione "G. Pascale", Naples, Italy.
| | - Michael Atkins
- Georgetown-Lombardi Comprehensive Cancer Center, Washington, DC, USA.
| | - Carlo Bifulco
- Translational Molecular Pathology, Earle A. Chiles Research Institute, Providence Cancer Center, Portland, OR, USA.
| | - Gerardo Botti
- Istituto Nazionale Tumori, Fondazione "G. Pascale", Naples, Italy.
| | - Alistair Cochran
- Departments of Pathology and Laboratory Medicine and Surgery, David Geffen School of Medicine at University of California Los Angeles (UCLA), John Wayne Cancer Institute, Santa Monica, CA, USA.
| | - Michael Davies
- Department of Melanoma Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Sandra Demaria
- Departments of Radiation Oncology and Pathology, Weill Cornell Medical College, New York, NY, USA.
| | - Reinhard Dummer
- Skin Cancer Unit, Department of Dermatology, University Hospital Zürich, 8091, Zurich, Switzerland.
| | - Soldano Ferrone
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Silvia Formenti
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.
| | - Thomas F Gajewski
- Departments of Medicine and of Pathology, Immunology and Cancer Program, The University of Chicago Medicine, Chicago, IL, USA.
| | - Claus Garbe
- Department of Dermatology, Center for Dermato Oncology, University of Tübingen, Tübingen, Germany.
| | - Samir Khleif
- Georgia Regents University Cancer Center, Georgia Regents University, Augusta, GA, USA.
| | - Rolf Kiessling
- Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden.
| | - Roger Lo
- Departments of Medicine and Molecular and Medical Pharmacology, David Geffen School of Medicine and Jonsson Comprehensive Cancer Center at the University of California Los Angeles (UCLA), Los Angeles, CA, USA.
| | - Paul Lorigan
- University of Manchester/Christie NHS Foundation Trust, Manchester, UK.
| | - Grant Mc Arthur
- Peter MacCallum Cancer Centre and University of Melbourne, Victoria, Australia.
| | - Giuseppe Masucci
- Department of Oncology-Pathology, The Karolinska Hospital, Stockholm, Sweden.
| | - Ignacio Melero
- Centro de Investigación Médica Aplicada, and Clinica Universidad de Navarra, Pamplona, Navarra, Spain.
| | - Martin Mihm
- Department of Dermatology, Harvard Medical School, Boston, MA, USA.
| | - Giuseppe Palmieri
- Unit of Cancer Genetics, Institute of Biomolecular Chemistry, National Research Council, Sassari, Italy.
| | - Giorgio Parmiani
- Division of Molecular Oncology, Unit of Bio-Immunotherapy of Solid Tumors, San Raffaele Institute, Milan, Italy.
| | - Igor Puzanov
- Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Pedro Romero
- Ludwig Cancer Research Center, University of Lausanne, Lausanne, Switzerland.
| | - Bastian Schilling
- Department of Dermatology, University Hospital, West German Cancer Center, University Duisburg-Essen, Essen, Germany. .,German Cancer Consortium (DKTK), Essen, Germany.
| | - Barbara Seliger
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle, Germany.
| | - David Stroncek
- Cell Processing Section, Department of Transfusion Medicine, Clinical Center, NIH, Bethesda, MD, USA.
| | - Janis Taube
- Department of Dermatology, Johns Hopkins University SOM, Baltimore, MD, USA.
| | - Sara Tomei
- Division of Translational Medicine, Sidra Medical and Research Center, Doha, Qatar.
| | - Hassane M Zarour
- Departments of Medicine, Immunology and Dermatology, University of Pittsburgh, Pittsburgh, PA, USA.
| | | | - Ena Wang
- Division of Translational Medicine, Sidra Medical and Research Centre, Doha, Qatar.
| | - Jérôme Galon
- INSERM, UMRS1138, Laboratory of Integrative Cancer Immunology, Université Paris Descartes, Sorbonne Paris Cité, Centre de Recherche des Cordeliers, Paris, France.
| | | | - Nicola Mozzillo
- Istituto Nazionale Tumori, Fondazione "G. Pascale", Naples, Italy.
| | | | - Magdalena Thurin
- Cancer Diagnosis Program, National Cancer Institute, NIH, Bethesda, MD, USA.
| |
Collapse
|
49
|
MAGE-A expression, immune microenvironment, and prognosis in upper urinary tract carcinoma. Hum Pathol 2015; 50:62-9. [PMID: 26997439 DOI: 10.1016/j.humpath.2015.11.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 11/13/2015] [Accepted: 11/19/2015] [Indexed: 02/06/2023]
Abstract
The melanoma-associated antigen A (MAGE-A) family comprises cancer-testis antigens that represent promising prognostic biomarkers and immunotherapy targets in several cancer types. The aim of this study was to investigate the significance of MAGE-A expression in upper urinary tract urothelial carcinoma in relation to clinicopathological features, lymphocytic infiltration, and clinical outcome. We immunohistochemically examined the expression of MAGE-A in 171 patients with upper urinary tract urothelial carcinoma. High (≥ 50% positive) and low MAGE-A expression levels were observed in 33 (19%) and 49 (29%) cases, respectively. MAGE-A was negative in 89 cases (52%). MAGE-A expression was positively correlated with high histologic grade; concomitant carcinoma in situ; higher Ki-67 proliferation index; and infiltration of CD3-, CD8-, and CD45RO-positive T lymphocytes, but not with CD20-positive B lymphocytes. High MAGE-A expression was significantly associated with shorter metastasis-free survival after nephroureterectomy (log-rank P = .019; multivariate hazard ratio, 1.98; 95% confidence interval, 1.00-3.92). MAGE-A expression in metastatic lymph nodes was highly correlated with its expression in primary lesions. MAGE-A expression was retained in chemotherapy-resistant metachronous metastatic lesions of urothelial carcinoma. MAGE-A may be a promising prognostic biomarker and potential immunotherapeutic target for patients with upper urinary tract urothelial carcinoma.
Collapse
|
50
|
Zappasodi R, Merghoub T. Alphavirus-based vaccines in melanoma: rationale and potential improvements in immunotherapeutic combinations. Immunotherapy 2015; 7:981-97. [DOI: 10.2217/imt.15.64] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Immune checkpoint blockade has formally demonstrated the clinical benefit of immunotherapy against melanoma. New immunotherapeutic modalities are currently explored to improve the management of relapsing/refractory patients. Potent antitumor vaccines would have the advantage to promote long-lasting tumor control while limiting autoimmunity. Alphavirus vectors and nonreplicating particles offer versatile platforms to deliver antigen expression and immunize against cancer. They have shown promising preclinical results and initial proof of clinical activity in melanoma. The growing number of clinically available immunomodulatory agents provides a tremendous opportunity to exploit and revisit anticancer vaccines in the setting of powerful immunotherapeutic combinations. Accelerating the evaluation of alphavirus-based vaccines in patients with immune sensitive, but still very deadly malignancies, such as melanoma, is thus extremely important.
Collapse
Affiliation(s)
- Roberta Zappasodi
- Ludwig Collaborative & Swim Across America Laboratory, New York, NY, USA
| | - Taha Merghoub
- Ludwig Collaborative & Swim Across America Laboratory, New York, NY, USA
- Melanoma & Immunotherapeutics Service MSKCC, New York, NY, USA
| |
Collapse
|