1
|
Schoelinck J, Pissaloux D, Mouthon M, Vergara R, de la Fouchardière A. [Clinical, histological and genetic correlations in melanocytic tumours with chromosomal rearrangements]. Ann Pathol 2025; 45:3-14. [PMID: 38320889 DOI: 10.1016/j.annpat.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/13/2024] [Accepted: 01/16/2024] [Indexed: 02/08/2024]
Abstract
In some tumoral subtypes chromosomal translocations lead to an oncogenic chimeric protein acting as a tumorigenesis driver event. The main fusion model combines the promoter swapping of an inactivated tumor suppressor gene and a functional kinase that evades its regulatory system. The range of described fusions keeps growing in the 2023 WHO classification of melanocytic tumours. It is not limited to the group of Spitz tumours as previously but now extends to blue tumours and dermal tumours with a melanocytic phenotype. Molecular pathology helps detect these anomalies using clinical and morphological features. This analysis is essential as this strongly conditions the adapted local treatment of such tumours who are often overtreated.
Collapse
Affiliation(s)
- Jeremy Schoelinck
- Service de biopathologie, centre Léon-Bérard, 28, promenade Léa-et-Napoléon-Bullukian, Lyon, France.
| | - Daniel Pissaloux
- Service de biopathologie, centre Léon-Bérard, 28, promenade Léa-et-Napoléon-Bullukian, Lyon, France
| | - Maxime Mouthon
- Service de biopathologie, centre Léon-Bérard, 28, promenade Léa-et-Napoléon-Bullukian, Lyon, France
| | - Rémi Vergara
- Service de biopathologie, centre Léon-Bérard, 28, promenade Léa-et-Napoléon-Bullukian, Lyon, France
| | - Arnaud de la Fouchardière
- Service de biopathologie, centre Léon-Bérard, 28, promenade Léa-et-Napoléon-Bullukian, Lyon, France; Équipe labellisée Ligue contre le cancer, Inserm 1052, CNRS 5286, centre Léon-Bérard, Cancer Research Center of Lyon, université de Lyon, université Claude-Bernard Lyon 1, Lyon, France
| |
Collapse
|
2
|
Lee U, Arsala D, Xia S, Li C, Ali M, Svetec N, Langer CB, Sobreira DR, Eres I, Sosa D, Chen J, Zhang L, Reilly P, Guzzetta A, Emerson J, Andolfatto P, Zhou Q, Zhao L, Long M. The three-dimensional genome drives the evolution of asymmetric gene duplicates via enhancer capture-divergence. SCIENCE ADVANCES 2024; 10:eadn6625. [PMID: 39693425 PMCID: PMC11654672 DOI: 10.1126/sciadv.adn6625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 11/11/2024] [Indexed: 12/20/2024]
Abstract
Previous evolutionary models of duplicate gene evolution have overlooked the pivotal role of genome architecture. Here, we show that proximity-based regulatory recruitment by distally duplicated genes is an efficient mechanism for modulating tissue-specific production of preexisting proteins. By leveraging genomic asymmetries, we performed a coexpression analysis on Drosophila melanogaster tissue data to show the generality of enhancer capture-divergence (ECD) as a significant evolutionary driver of asymmetric, distally duplicated genes. We use the recently evolved gene HP6/Umbrea as an example of the ECD process. By assaying genome-wide chromosomal conformations in multiple Drosophila species, we show that HP6/Umbrea was inserted near a preexisting, long-distance three-dimensional genomic interaction. We then use this data to identify a newly found enhancer (FLEE1), buried within the coding region of the highly conserved, essential gene MFS18, that likely neofunctionalized HP6/Umbrea. Last, we demonstrate ancestral transcriptional coregulation of HP6/Umbrea's future insertion site, illustrating how enhancer capture provides a highly evolvable, one-step solution to Ohno's dilemma.
Collapse
Affiliation(s)
- UnJin Lee
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
- Laboratory of Evolutionary Genetics and Genomics, Rockefeller University, New York, NY, USA
| | - Deanna Arsala
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
| | - Shengqian Xia
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
| | - Cong Li
- Laboratory of Evolutionary Genetics and Genomics, Rockefeller University, New York, NY, USA
| | - Mujahid Ali
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna, Austria
| | - Nicolas Svetec
- Laboratory of Evolutionary Genetics and Genomics, Rockefeller University, New York, NY, USA
| | - Christopher B. Langer
- Laboratory of Evolutionary Genetics and Genomics, Rockefeller University, New York, NY, USA
| | | | - Ittai Eres
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Dylan Sosa
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
| | - Jianhai Chen
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
| | - Li Zhang
- Chinese Institute for Brain Research, Beijing, China
| | - Patrick Reilly
- Department of Anthropology, Yale University, New Haven, CT, USA
| | | | - J.J. Emerson
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA, USA
| | - Peter Andolfatto
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Qi Zhou
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna, Austria
- MOE Laboratory of Biosystems Homeostasis and Protection Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Li Zhao
- Laboratory of Evolutionary Genetics and Genomics, Rockefeller University, New York, NY, USA
| | - Manyuan Long
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
| |
Collapse
|
3
|
Karami Fath M, Nazari A, Parsania N, Behboodi P, Ketabi SS, Razmjouei P, Farzam F, Shafagh SG, Nabi Afjadi M. Centromeres in cancer: Unraveling the link between chromosomal instability and tumorigenesis. Med Oncol 2024; 41:254. [PMID: 39352464 DOI: 10.1007/s12032-024-02524-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 09/23/2024] [Indexed: 11/14/2024]
Abstract
Centromeres are critical structures involved in chromosome segregation, maintaining genomic stability, and facilitating the accurate transmission of genetic information. They are key in coordinating the assembly and help keep the correct structure, location, and function of the kinetochore, a proteinaceous structure vital for ensuring proper chromosome segregation during cell division. Abnormalities in centromere structure can lead to aneuploidy or chromosomal instability, which have been implicated in various diseases, including cancer. Accordingly, abnormalities in centromeres, such as structural rearrangements and dysregulation of centromere-associated proteins, disrupt gene function, leading to uncontrolled cell growth and tumor progression. For instance, altered expression of CENP-A, CENP-E, and others such as BUB1, BUBR1, MAD1, and INCENP, have been shown to ascribe to centromere over-amplification, chromosome missegregation, aneuploidy, and chromosomal instability; this, in turn, can culminate in tumor progression. These centromere abnormalities also promoted tumor heterogeneity by generating genetically diverse cell populations within tumors. Advanced techniques like fluorescence in situ hybridization (FISH) and chromosomal microarray analysis are crucial for detecting centromere abnormalities, enabling accurate cancer classification and tailored treatment strategies. Researchers are exploring strategies to disrupt centromere-associated proteins for targeted cancer therapies. Thus, this review explores centromere abnormalities in cancer, their molecular mechanisms, diagnostic implications, and therapeutic targeting. It aims to advance our understanding of centromeres' role in cancer and develop advanced diagnostic tools and targeted therapies for improved cancer management and treatment.
Collapse
Affiliation(s)
- Mohsen Karami Fath
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Ahmad Nazari
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Noushin Parsania
- Department of Brain and Cognitive Sciences, Cell Science Research Center, ROYAN Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Paria Behboodi
- Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Pegah Razmjouei
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Farnoosh Farzam
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Mohsen Nabi Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
4
|
Coulter EM, Bewicke-Copley F, Mossner M, Graham TA, Fitzgibbon J, Okosun J. Defining an Optimized Workflow for Enriching and Analyzing Residual Tumor Populations Using Intracellular Markers. J Mol Diagn 2024; 26:245-256. [PMID: 38280422 DOI: 10.1016/j.jmoldx.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 12/12/2023] [Accepted: 01/11/2024] [Indexed: 01/29/2024] Open
Abstract
Tumor relapse is well recognized to arise from treatment-resistant residual populations. Strategies enriching such populations for in-depth downstream analyses focus on tumor-specific surface markers; however, enrichment using intracellular biomarkers remains challenging. Using B-cell lymphoma as an exemplar, we demonstrate feasibility to enrich B-cell lymphoma 2 (BCL2)high populations, a surrogate marker for t(14;18)+ lymphomas, for use in downstream applications. Different fixation protocols were assessed for impact on antibody expression and RNA integrity; glyoxal fixation demonstrated superior results regarding minimal effects on surface and intracellular expression, and RNA quality, compared with alternative fixatives evaluated. Furthermore, t(14;18)+ B cells were effectively detected using intracellular BCL2 overexpression to facilitate tumor cell enrichment. Tumor cell populations were enriched using the cellenONE F1.4 single-cell sorting platform, which detected and dispensed BCL2high-expressing cells directly into library preparation reagents for transcriptome analyses. Sorted glyoxal-fixed cells generated good quality sequencing libraries, with high concordance between live and fixed single-cell transcriptomic profiles, discriminating cell populations predominantly on B-cell biology. Overall, we successfully developed a proof-of-concept workflow employing a robust cell preparation protocol for intracellular markers combined with cell enrichment using the cellenONE platform, providing an alternative to droplet-based technologies when cellular input is low or requires prior enrichment to detect rare populations. This workflow has wider prognostic and therapeutic potential to study residual cells in a pan-cancer setting.
Collapse
Affiliation(s)
- Eve M Coulter
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom.
| | - Findlay Bewicke-Copley
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Maximilian Mossner
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, United Kingdom; Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Trevor A Graham
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, United Kingdom; Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Jude Fitzgibbon
- Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom; AstraZeneca, Waltham, Massachusetts
| | - Jessica Okosun
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom.
| |
Collapse
|
5
|
Yao L, Kan X, Xia Y, Wang L, Zhao X, Lu Y. Chromosome balanced translocation in newborn fetus founded during prenatal diagnosis: Three cases reports. Medicine (Baltimore) 2024; 103:e37345. [PMID: 38457559 PMCID: PMC10919530 DOI: 10.1097/md.0000000000037345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/02/2024] [Indexed: 03/10/2024] Open
Abstract
RATIONALE Because of the normal phenotype, carriers of specific chromosomal translocations are often diagnosed only after their development of associated malignancies, recurrent miscarriages, and reproductive difficulties. In this paper, we report primary balanced fetal chromosomal translocations by performing the necessary invasive prenatal diagnosis in couples with previous malformations coupled with prenatal testing suggesting a high risk for trisomy 21. PATIENT CONCERNS Case 1 and Case 2 couples had malformed children, and Case 3 couples had a high risk of trisomy 21 on noninvasive preconception serological testing. DIAGNOSIS AND INTERVENTION A balanced chromosomal translocation diagnosis was confirmed by karyotyping of fetal cells obtained by amniocentesis. OUTCOMES All 3 couples decided to continue their pregnancies after learning about the consequences of the chromosomal abnormalities. Approximately a year after the children were born, the staff of the Prenatal Diagnostic Center followed up with a phone call and found that the children physical development and intelligence were normal. LESSON This case report reports healthy chromosomal balanced translocation newborns born to couples with poor maternal history and couples with abnormalities suggested by preconception testing, and followed up with the newborns to provide some experience in prenatal diagnosis and genetic counseling for chromosomal balanced translocations.
Collapse
Affiliation(s)
- Lan Yao
- The Second Hospital of Jilin University, Changchun City, Jilin Province, China
| | - Xun Kan
- The Second Hospital of Jilin University, Changchun City, Jilin Province, China
| | - Yuxin Xia
- The Second Hospital of Jilin University, Changchun City, Jilin Province, China
| | - Luyao Wang
- The Second Hospital of Jilin University, Changchun City, Jilin Province, China
| | - Xueyu Zhao
- The Second Hospital of Jilin University, Changchun City, Jilin Province, China
| | - Yingli Lu
- The Second Hospital of Jilin University, Changchun City, Jilin Province, China
| |
Collapse
|
6
|
Le MK, Oishi N, Mochizuki K, Kondo T. Immunohistochemical detection of cancer genetic abnormalities. Pathol Res Pract 2024; 255:155109. [PMID: 38340581 DOI: 10.1016/j.prp.2024.155109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/07/2024] [Indexed: 02/12/2024]
Abstract
New applications of immunohistochemistry (IHC) expand rapidly due to the development of molecular analyses and an increased understanding of molecular biology. IHC becomes much more important as a screening or even a confirmatory test for molecular changes in cancer. The past decades have witnessed the release of many immunohistochemical markers of the new generation. The novel markers have extensively high specificity and sensitivity for the detection of genetic abnormalities. In addition to diagnostic utility, IHC has been validated to be a practical tool in terms of treatments, especially molecular targeted therapy. In this review, we first describe the common alterations of protein IHC staining in human cancer: overexpression, underexpression, or loss of expression and altered staining pattern. Next, we examine the relationship between staining patterns and genetic aberrations regarding both conventional and novel IHC markers. We also mention current mutant-specific and fusion-specific antibodies and their concordance with molecular techniques. We then describe the basic molecular mechanisms from genetic events to corresponding protein expression patterns (membranous, cytoplasmic, or nuclear patterns). Finally, we shortly discuss the applications of immunohistochemistry in molecular targeted therapy. IHC markers can serve as a complementary or companion diagnostic test to provide valuable information for targeted therapy. Moreover, immunohistochemistry is also crucial as a companion diagnostic test in immunotherapy. The increased number of IHC novel antibodies is broadening its application in anti-cancer therapies.
Collapse
Affiliation(s)
- Minh-Khang Le
- Department of Pathology, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Naoki Oishi
- Department of Pathology, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Kunio Mochizuki
- Department of Pathology, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Tetsuo Kondo
- Department of Pathology, University of Yamanashi, Yamanashi 409-3898, Japan.
| |
Collapse
|
7
|
Zhang X, Bolck HA, Rupp NJ, Moch H. Genomic alterations and diagnosis of renal cancer. Virchows Arch 2024; 484:323-337. [PMID: 37999735 PMCID: PMC10948545 DOI: 10.1007/s00428-023-03700-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/24/2023] [Accepted: 11/04/2023] [Indexed: 11/25/2023]
Abstract
The application of molecular profiling has made substantial impact on the classification of urogenital tumors. Therefore, the 2022 World Health Organization incorporated the concept of molecularly defined renal tumor entities into its classification, including succinate dehydrogenase-deficient renal cell carcinoma (RCC), FH-deficient RCC, TFE3-rearranged RCC, TFEB-altered RCC, ALK-rearranged RCC, ELOC-mutated RCC, and renal medullary RCC, which are characterized by SMARCB1-deficiency. This review aims to provide an overview of the most important molecular alterations in renal cancer, with a specific focus on the diagnostic value of characteristic genomic aberrations, their chromosomal localization, and associations with renal tumor subtypes. It may not yet be the time to completely shift to a molecular RCC classification, but undoubtedly, the application of molecular profiling will enhance the accuracy of renal cancer diagnosis, and ultimately guide personalized treatment strategies for patients.
Collapse
Affiliation(s)
- Xingming Zhang
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Schmelzbergstr. 12, 8091, Zurich, Switzerland
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Hella A Bolck
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Schmelzbergstr. 12, 8091, Zurich, Switzerland
| | - Niels J Rupp
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Schmelzbergstr. 12, 8091, Zurich, Switzerland
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Holger Moch
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Schmelzbergstr. 12, 8091, Zurich, Switzerland.
- Faculty of Medicine, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
8
|
El-Tanani M, Nsairat H, Matalka II, Lee YF, Rizzo M, Aljabali AA, Mishra V, Mishra Y, Hromić-Jahjefendić A, Tambuwala MM. The impact of the BCR-ABL oncogene in the pathology and treatment of chronic myeloid leukemia. Pathol Res Pract 2024; 254:155161. [PMID: 38280275 DOI: 10.1016/j.prp.2024.155161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 01/29/2024]
Abstract
Chronic Myeloid Leukemia (CML) is characterized by chromosomal aberrations involving the fusion of the BCR and ABL genes on chromosome 22, resulting from a reciprocal translocation between chromosomes 9 and 22. This fusion gives rise to the oncogenic BCR-ABL, an aberrant tyrosine kinase identified as Abl protein. The Abl protein intricately regulates the cell cycle by phosphorylating protein tyrosine residues through diverse signaling pathways. In CML, the BCR-ABL fusion protein disrupts the first exon of Abl, leading to sustained activation of tyrosine kinase and resistance to deactivation mechanisms. Pharmacological interventions, such as imatinib, effectively target BCR-ABL's tyrosine kinase activity by binding near the active site, disrupting ATP binding, and inhibiting downstream protein phosphorylation. Nevertheless, the emergence of resistance, often attributed to cap structure mutations, poses a challenge to imatinib efficacy. Current research endeavours are directed towards overcoming resistance and investigating innovative therapeutic strategies. This article offers a comprehensive analysis of the structural attributes of BCR-ABL, emphasizing its pivotal role as a biomarker and therapeutic target in CML. It underscores the imperative for ongoing research to refine treatment modalities and enhance overall outcomes in managing CML.
Collapse
MESH Headings
- Humans
- Imatinib Mesylate/therapeutic use
- Imatinib Mesylate/pharmacology
- Genes, abl
- Pyrimidines/therapeutic use
- Piperazines/therapeutic use
- Benzamides/pharmacology
- Benzamides/therapeutic use
- Drug Resistance, Neoplasm/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/metabolism
- Fusion Proteins, bcr-abl/pharmacology
- Protein Kinase Inhibitors/therapeutic use
- Protein Kinase Inhibitors/pharmacology
Collapse
Affiliation(s)
- Mohamed El-Tanani
- College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates; Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan.
| | - Hamdi Nsairat
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Ismail I Matalka
- Ras Al Khaimah Medical and Health Sciences University, United Arab Emirates; Department of Pathology and Microbiology, Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Yin Fai Lee
- Neuroscience, Psychology & Behaviour, College of Life Sciences, University of Leicester, Leicester LE1 9HN, UK; School of Life Sciences, Faculty of Science and Engineering, Anglia Ruskin University, Cambridge CB1 1PT, UK
| | - Manfredi Rizzo
- Department of Health Promotion, Mother and Childcare, Internal Medicine and Medical Specialties, School of Medicine, University of Palermo, Palermo, Italy
| | - Alaa A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Yarmouk University, Irbid 21163, Jordan
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Yachana Mishra
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Altijana Hromić-Jahjefendić
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Hrasnicka cesta 15, Sarajevo 71000, Bosnia and Herzegovina
| | - Murtaza M Tambuwala
- College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates; Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln LN6 7TS, UK.
| |
Collapse
|
9
|
Bakaric A, Cironi L, Praz V, Sanalkumar R, Broye LC, Favre-Bulle K, Letovanec I, Digklia A, Renella R, Stamenkovic I, Ott CJ, Nakamura T, Antonescu CR, Rivera MN, Riggi N. CIC-DUX4 Chromatin Profiling Reveals New Epigenetic Dependencies and Actionable Therapeutic Targets in CIC-Rearranged Sarcomas. Cancers (Basel) 2024; 16:457. [PMID: 38275898 PMCID: PMC10814785 DOI: 10.3390/cancers16020457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
CIC-DUX4-rearranged sarcoma (CDS) is a rare and aggressive soft tissue tumor that occurs most frequently in young adults. The key oncogenic driver of this disease is the expression of the CIC-DUX4 fusion protein as a result of chromosomal rearrangements. CIC-DUX4 displays chromatin binding properties, and is therefore believed to function as an aberrant transcription factor. However, the chromatin remodeling events induced by CIC-DUX4 are not well understood, limiting our ability to identify new mechanism-based therapeutic strategies for these patients. Here, we generated a genome-wide profile of CIC-DUX4 DNA occupancy and associated chromatin states in human CDS cell models and primary tumors. Combining chromatin profiling, proximity ligation assays, as well as genetic and pharmacological perturbations, we show that CIC-DUX4 operates as a potent transcriptional activator at its binding sites. This property is in contrast with the repressive function of the wild-type CIC protein, and is mainly mediated through the direct interaction of CIC-DUX4 with the acetyltransferase p300. In keeping with this, we show p300 to be essential for CDS tumor cell proliferation; additionally, we find its pharmacological inhibition to significantly impact tumor growth in vitro and in vivo. Taken together, our study elucidates the mechanisms underpinning CIC-DUX4-mediated transcriptional regulation.
Collapse
Affiliation(s)
- Arnaud Bakaric
- Clinical Pathology Service, Department of Diagnostics, Geneva University Hospital, 1205 Geneva, Switzerland
| | - Luisa Cironi
- Pediatric Hematology-Oncology Research Laboratory, Woman-Mother-Child Department, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | - Viviane Praz
- Platform Genomics Technologies, Center for Integrative Genomics, Faculty of Biology and Medicine, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | - Rajendran Sanalkumar
- Experimental Pathology Service, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland (I.S.)
- Department of Cell and Tissue Genomics, Genentech. Inc., South San Francisco, CA 94103, USA
| | - Liliane C. Broye
- Experimental Pathology Service, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland (I.S.)
| | - Kerria Favre-Bulle
- Experimental Pathology Service, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland (I.S.)
| | - Igor Letovanec
- Department of Histopathology, Central Institute, Valais Hospital, 1951 Sion, Switzerland
| | - Antonia Digklia
- Department of Oncology, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | - Raffaele Renella
- Pediatric Hematology-Oncology Research Laboratory, Woman-Mother-Child Department, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | - Ivan Stamenkovic
- Experimental Pathology Service, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland (I.S.)
| | - Christopher J. Ott
- Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA; (C.J.O.)
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Takuro Nakamura
- Institute of Medical Science, Tokyo Medical University, Tokyo 160-0023, Japan
| | - Cristina R. Antonescu
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| | - Miguel N. Rivera
- Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA; (C.J.O.)
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Nicolò Riggi
- Experimental Pathology Service, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland (I.S.)
- Department of Cell and Tissue Genomics, Genentech. Inc., South San Francisco, CA 94103, USA
| |
Collapse
|
10
|
Boroumand-Noughabi S, Pashaee A, Montazer M, Rahmati A, Ayatollahi H, Sadeghian MH, Keramati MR. Investigating the Expression Pattern of the SETMAR Gene Transcript Variants in Childhood Acute Leukemia: Revisiting an Old Gene. J Pediatr Hematol Oncol 2023; 45:e603-e608. [PMID: 36706314 DOI: 10.1097/mph.0000000000002624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 11/20/2022] [Indexed: 01/29/2023]
Abstract
BACKGROUND The chimeric enzyme SETMAR (or Metnase) has been associated with several DNA processes, including DNA damage repair through the non-homologous joining pathway and suppression of chromosomal translocation in mouse fibroblasts. SETMAR overexpression has been reported in certain cancers suggesting that it might contribute to the establishment or progression of these cancers. In leukemia, the SETMAR gene transcript variants have not been widely studied. Therefore, this study aimed to quantify 3 predominant SETMAR variants in 2 types of childhood acute leukemia, acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL). METHODS In this study, using reverse transcription-quantitative polymerase chain reaction (RT-qPCR), the relative expression of 3 SETMAR transcript variants (Var 1, Var 2, and Var A) were evaluated in the bone marrow samples collected from 30 newly diagnosed patients with AML, 65 newly diagnosed patients with ALL, and 15 healthy individuals. RESULTS The expression of SETMAR variants 1 and A were significantly higher in AML patients compared with controls ( P =0.02, and P =0.009, respectively). Variant A expression was significantly higher in ALL compared with controls ( P =0.003). When comparing the expression in translocation-positive and negative subgroups, the expression of variant 1 was significantly higher in translocation-positive ALL patients ( P =0.03). The variants' distribution patterns differed concerning translocation status ( P =0.041), as variants 1 and A were dominant in the translocation-positive ALL group, and variant 2 was more prevalent in translocation-negative ones. CONCLUSIONS According to the results, SETMAR showed increased expression in pediatric acute leukemia's bone marrow samples, indicating a role for this molecule in leukemia pathogenesis. As this is the first report of SETMAR expression in pediatric leukemias, further studies are needed to investigate the causality of this association.
Collapse
Affiliation(s)
- Samaneh Boroumand-Noughabi
- Department of Hematology and Blood Banking
- Cancer Molecular Pathology Research Center, Mashhad University of Medical Sciences, Mashhad
| | | | | | - Atefe Rahmati
- Department of Hematology and Blood Banking
- Department of Basic Medical Sciences, Faculty of Medicine, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Hossein Ayatollahi
- Department of Hematology and Blood Banking
- Cancer Molecular Pathology Research Center, Mashhad University of Medical Sciences, Mashhad
| | - Mohammad Hadi Sadeghian
- Department of Hematology and Blood Banking
- Cancer Molecular Pathology Research Center, Mashhad University of Medical Sciences, Mashhad
| | - Mohammad Reza Keramati
- Department of Hematology and Blood Banking
- Cancer Molecular Pathology Research Center, Mashhad University of Medical Sciences, Mashhad
| |
Collapse
|
11
|
Hill HJ, Bonser D, Golic KG. Dicentric chromosome breakage in Drosophila melanogaster is influenced by pericentric heterochromatin and occurs in nonconserved hotspots. Genetics 2023; 224:iyad052. [PMID: 37010100 PMCID: PMC10213500 DOI: 10.1093/genetics/iyad052] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 10/18/2022] [Accepted: 03/13/2023] [Indexed: 04/04/2023] Open
Abstract
Chromosome breakage plays an important role in the evolution of karyotypes and can produce deleterious effects within a single individual, such as aneuploidy or cancer. Forces that influence how and where chromosomes break are not fully understood. In humans, breakage tends to occur in conserved hotspots called common fragile sites (CFS), especially during replication stress. By following the fate of dicentric chromosomes in Drosophila melanogaster, we find that breakage under tension also tends to occur in specific hotspots. Our experimental approach was to induce sister chromatid exchange in a ring chromosome to generate a dicentric chromosome with a double chromatid bridge. In the following cell division, the dicentric bridges may break. We analyzed the breakage patterns of 3 different ring-X chromosomes. These chromosomes differ by the amount and quality of heterochromatin they carry as well as their genealogical history. For all 3 chromosomes, breakage occurs preferentially in several hotspots. Surprisingly, we found that the hotspot locations are not conserved between the 3 chromosomes: each displays a unique array of breakage hotspots. The lack of hotspot conservation, along with a lack of response to aphidicolin, suggests that these breakage sites are not entirely analogous to CFS and may reveal new mechanisms of chromosome fragility. Additionally, the frequency of dicentric breakage and the durability of each chromosome's spindle attachment vary significantly between the 3 chromosomes and are correlated with the origin of the centromere and the amount of pericentric heterochromatin. We suggest that different centromere strengths could account for this.
Collapse
Affiliation(s)
- Hunter J Hill
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Danielle Bonser
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Kent G Golic
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
12
|
Gale RP, Hoffman FO. "The History of the Linear No-Threshold Model" video series. HEALTH PHYSICS 2023; 124:58-60. [PMID: 36480586 DOI: 10.1097/hp.0000000000001622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
|
13
|
Gale RP, Hoffman FO. The War in Ukraine: How Should Physicians and Health Physicists Communicate Radiation-related Cancer Risks to the Public? HEALTH PHYSICS 2023; 124:53-57. [PMID: 36480585 DOI: 10.1097/hp.0000000000001617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Affiliation(s)
- Robert Peter Gale
- Haematology Research Centre, Department of Immunology and Inflammation, Imperial College of Science, Technology and Medicine, London, UK W12 ONN
| | | |
Collapse
|
14
|
Sorokin M, Rabushko E, Rozenberg JM, Mohammad T, Seryakov A, Sekacheva M, Buzdin A. Clinically relevant fusion oncogenes: detection and practical implications. Ther Adv Med Oncol 2022; 14:17588359221144108. [PMID: 36601633 PMCID: PMC9806411 DOI: 10.1177/17588359221144108] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 11/22/2022] [Indexed: 12/28/2022] Open
Abstract
Mechanistically, chimeric genes result from DNA rearrangements and include parts of preexisting normal genes combined at the genomic junction site. Some rearranged genes encode pathological proteins with altered molecular functions. Those which can aberrantly promote carcinogenesis are called fusion oncogenes. Their formation is not a rare event in human cancers, and many of them were documented in numerous study reports and in specific databases. They may have various molecular peculiarities like increased stability of an oncogenic part, self-activation of tyrosine kinase receptor moiety, and altered transcriptional regulation activities. Currently, tens of low molecular mass inhibitors are approved in cancers as the drugs targeting receptor tyrosine kinase (RTK) oncogenic fusion proteins, that is, including ALK, ABL, EGFR, FGFR1-3, NTRK1-3, MET, RET, ROS1 moieties. Therein, the presence of the respective RTK fusion in the cancer genome is the diagnostic biomarker for drug prescription. However, identification of such fusion oncogenes is challenging as the breakpoint may arise in multiple sites within the gene, and the exact fusion partner is generally unknown. There is no gold standard method for RTK fusion detection, and many alternative experimental techniques are employed nowadays to solve this issue. Among them, RNA-seq-based methods offer an advantage of unbiased high-throughput analysis of only transcribed RTK fusion genes, and of simultaneous finding both fusion partners in a single RNA-seq read. Here we focus on current knowledge of biology and clinical aspects of RTK fusion genes, related databases, and laboratory detection methods.
Collapse
Affiliation(s)
| | - Elizaveta Rabushko
- Moscow Institute of Physics and Technology,
Dolgoprudny, Moscow Region, Russia,I.M. Sechenov First Moscow State Medical
University, Moscow, Russia
| | | | - Tharaa Mohammad
- Moscow Institute of Physics and Technology,
Dolgoprudny, Moscow Region, Russia
| | | | - Marina Sekacheva
- I.M. Sechenov First Moscow State Medical
University, Moscow, Russia
| | - Anton Buzdin
- Moscow Institute of Physics and Technology,
Dolgoprudny, Moscow Region, Russia,I.M. Sechenov First Moscow State Medical
University, Moscow, Russia,Shemyakin-Ovchinnikov Institute of Bioorganic
Chemistry, Moscow, Russia,PathoBiology Group, European Organization for
Research and Treatment of Cancer (EORTC), Brussels, Belgium
| |
Collapse
|
15
|
PANAGOPOULOS IOANNIS, HEIM SVERRE. Neoplasia-associated Chromosome Translocations Resulting in Gene Truncation. Cancer Genomics Proteomics 2022; 19:647-672. [PMID: 36316036 PMCID: PMC9620447 DOI: 10.21873/cgp.20349] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 11/27/2022] Open
Abstract
Chromosomal translocations in cancer as well as benign neoplasias typically lead to the formation of fusion genes. Such genes may encode chimeric proteins when two protein-coding regions fuse in-frame, or they may result in deregulation of genes via promoter swapping or translocation of the gene into the vicinity of a highly active regulatory element. A less studied consequence of chromosomal translocations is the fusion of two breakpoint genes resulting in an out-of-frame chimera. The breaks then occur in one or both protein-coding regions forming a stop codon in the chimeric transcript shortly after the fusion point. Though the latter genetic events and mechanisms at first awoke little research interest, careful investigations have established them as neither rare nor inconsequential. In the present work, we review and discuss the truncation of genes in neoplastic cells resulting from chromosomal rearrangements, especially from seemingly balanced translocations.
Collapse
Affiliation(s)
- IOANNIS PANAGOPOULOS
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - SVERRE HEIM
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
16
|
Wagner VP, Bingle CD, Bingle L. MYB-NFIB fusion transcript in Adenoid Cystic Carcinoma: current state of knowledge and future directions. Crit Rev Oncol Hematol 2022; 176:103745. [PMID: 35738530 DOI: 10.1016/j.critrevonc.2022.103745] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/11/2022] [Accepted: 06/13/2022] [Indexed: 12/11/2022] Open
Abstract
Adenoid cystic carcinoma (ACC) is the most common type of salivary gland cancer that can also arise in other primary sites. Regardless of the site, most ACC cases carry a recurrent chromosomal translocation - t(6;9)(q22-23;p23-24) - involving the MYB oncogene and the NFIB transcription factor. Generally, a long sequence of MYB is fused to the terminal exons of NFIB, yet the break can occur in different exons for both genes, resulting in multiple chimeric variants. The fusion status can be determined by a number of methods, each of them with particular advantages. In vitro and in vivo studies have been conducted to understand the biological consequences of MYB-NFIB translocation, and such findings could contribute to improving the current inefficient therapeutic options for disseminated ACC. This review provides a discussion on relevant evidence in the context of ACC MYB-NFIB translocations to determine the current state of knowledge and discuss future directions.
Collapse
Affiliation(s)
- Vivian P Wagner
- Academic Unit of Oral and Maxillofacial Medicine and Pathology, Department of Clinical Dentistry, University of Sheffield, Sheffield, UK.
| | - Colin D Bingle
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Lynne Bingle
- Academic Unit of Oral and Maxillofacial Medicine and Pathology, Department of Clinical Dentistry, University of Sheffield, Sheffield, UK
| |
Collapse
|
17
|
Mukherjee SB, Mukherjee S, Frenkel-Morgenstern M. Fusion proteins mediate alternation of protein interaction networks in cancers. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2022; 131:165-176. [PMID: 35871889 DOI: 10.1016/bs.apcsb.2022.05.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Fusions of two different genes could lead to the production of chimeric RNAs, which could be translated into novel fusion (or chimeric) proteins. Fusion proteins often act as oncoproteins and drive cancer development, particularly in leukemia and lymphomas. Fusion proteins modify the existing protein-protein interaction (PPI) networks, which could eliminate some PPIs by removing protein domains in such fusions. This alternation of protein interaction networks could impact the signaling pathways and switch on the cancer-promoting activity that could drive the generation of cancer phenotypes and/or loss of controlled apoptosis. Thus, knowledge of the fusion proteins and their protein interaction networks could facilitate a deeper molecular understanding of cancer development, which could help to design new approaches for cancer therapies. Here, we discuss the structural features of fusion proteins and how they impact the PPI networks in cancers. Further, we discuss how to analyze the fusion protein-mediated alternation of PPI networks in cancers.
Collapse
Affiliation(s)
- Sunanda Biswas Mukherjee
- Cancer Genomics and BioComputing of Complex Diseases Lab, Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Sumit Mukherjee
- Cancer Genomics and BioComputing of Complex Diseases Lab, Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Milana Frenkel-Morgenstern
- Cancer Genomics and BioComputing of Complex Diseases Lab, Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel.
| |
Collapse
|
18
|
Humtsoe JO, Kim HS, Jones L, Cevallos J, Boileau P, Kuo F, Morris LGT, Ha P. Development and Characterization of MYB-NFIB Fusion Expression in Adenoid Cystic Carcinoma. Cancers (Basel) 2022; 14:2263. [PMID: 35565392 PMCID: PMC9103462 DOI: 10.3390/cancers14092263] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/21/2022] [Accepted: 04/24/2022] [Indexed: 02/01/2023] Open
Abstract
Adenoid cystic carcinoma (ACC) is the second most common cancer type arising from the salivary gland. The frequent occurrence of chromosome t(6;9) translocation leading to the fusion of MYB and NFIB transcription factor genes is considered a genetic hallmark of ACC. This inter-chromosomal rearrangement may encode multiple variants of functional MYB-NFIB fusion in ACC. However, the lack of an ACC model that harbors the t(6;9) translocation has limited studies on defining the potential function and implication of chimeric MYB-NFIB protein in ACC. This report aims to establish a MYB-NFIB fusion protein expressing system in ACC cells for in vitro and in vivo studies. RNA-seq data from MYB-NFIB translocation positive ACC patients' tumors and MYB-NFIB fusion transcript in ACC patient-derived xenografts (ACCX) was analyzed to identify MYB breakpoints and their frequency of occurrence. Based on the MYB breakpoint identified, variants of MYB-NFIB fusion expression system were developed in a MYB-NFIB deficient ACC cell lines. Analysis confirmed MYB-NFIB fusion protein expression in ACC cells and ACCXs. Furthermore, recombinant MYB-NFIB fusion displayed sustained protein stability and impacted transcriptional activities of interferon-associated genes set as compared to a wild type MYB. In vivo tumor formation analysis indicated the capacity of MYB-NFIB fusion cells to grow as implanted tumors, although there were no fusion-mediated growth advantages. This expression system may be useful not only in studies to determine the functional aspects of MYB-NFIB fusion but also in evaluating effective drug response in vitro and in vivo settings.
Collapse
Affiliation(s)
- Joseph O. Humtsoe
- Department of Otolaryngology, Head and Neck Surgery, University of California-San Francisco, Helen Diller Family Comprehensive Cancer Center, San Francisco, CA 94080, USA; (J.O.H.); (H.-S.K.); (L.J.)
| | - Hyun-Su Kim
- Department of Otolaryngology, Head and Neck Surgery, University of California-San Francisco, Helen Diller Family Comprehensive Cancer Center, San Francisco, CA 94080, USA; (J.O.H.); (H.-S.K.); (L.J.)
| | - Leilani Jones
- Department of Otolaryngology, Head and Neck Surgery, University of California-San Francisco, Helen Diller Family Comprehensive Cancer Center, San Francisco, CA 94080, USA; (J.O.H.); (H.-S.K.); (L.J.)
| | - James Cevallos
- School of Medicine, University of California-San Francisco, San Francisco, CA 94080, USA;
| | - Philippe Boileau
- Graduate Group in Biostatistics, Center for Computational Biology, University of California-Berkeley, Berkeley, CA 94720, USA;
| | - Fengshen Kuo
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA; (F.K.); (L.G.T.M.)
| | - Luc G. T. Morris
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA; (F.K.); (L.G.T.M.)
| | - Patrick Ha
- Department of Otolaryngology, Head and Neck Surgery, University of California-San Francisco, Helen Diller Family Comprehensive Cancer Center, San Francisco, CA 94080, USA; (J.O.H.); (H.-S.K.); (L.J.)
| |
Collapse
|
19
|
Enhancer RNA AL928768.3 from the IGH Locus Regulates MYC Expression and Controls the Proliferation and Chemoresistance of Burkitt Lymphoma Cells with IGH/MYC Translocation. Int J Mol Sci 2022; 23:ijms23094624. [PMID: 35563017 PMCID: PMC9103539 DOI: 10.3390/ijms23094624] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/16/2022] [Accepted: 04/18/2022] [Indexed: 12/10/2022] Open
Abstract
Chromosomal rearrangements leading to the relocation of proto-oncogenes into transcription-active regions are found in various types of tumors. In particular, the transfer of proto-oncogenes to the locus of heavy chains of immunoglobulins (IGH) is frequently observed in B-lymphomas. The increased expression of the MYC proto-oncogene due to IGH/MYC translocation is detected in approximately 85% of Burkitt lymphoma cases. The regulatory mechanisms affecting the oncogenes upon translocation include non-coding enhancer RNAs (eRNAs). We conducted a search for the eRNAs that may affect MYC transcription in the case of IGH/MYC translocation in Burkitt lymphoma, looking for potentially oncogenic eRNAs located at the IGH locus and predominantly expressed in B cells. Overexpression and knockdown of our primary candidate eRNA AL928768.3 led to the corresponding changes in the expression of MYC proto-oncogene in Burkitt lymphoma cells. Furthermore, we demonstrated that AL928768.3 knockdown decreased lymphoma cell proliferation and resistance to chemotherapy. Significant effects were observed only in cell lines bearing IGH/MYC abnormality but not in B-cell lines without this translocation nor primary B-cells. Our results indicate that AL928768.3 plays an important role in the development of Burkitt’s lymphoma and suggest it and similar, yet undiscovered eRNAs as potential tissue-specific targets for cancer treatment.
Collapse
|
20
|
Fritz AJ, El Dika M, Toor RH, Rodriguez PD, Foley SJ, Ullah R, Nie D, Banerjee B, Lohese D, Glass KC, Frietze S, Ghule PN, Heath JL, Imbalzano AN, van Wijnen A, Gordon J, Lian JB, Stein JL, Stein GS, Stein GS. Epigenetic-Mediated Regulation of Gene Expression for Biological Control and Cancer: Cell and Tissue Structure, Function, and Phenotype. Results Probl Cell Differ 2022; 70:339-373. [PMID: 36348114 PMCID: PMC9753575 DOI: 10.1007/978-3-031-06573-6_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Epigenetic gene regulatory mechanisms play a central role in the biological control of cell and tissue structure, function, and phenotype. Identification of epigenetic dysregulation in cancer provides mechanistic into tumor initiation and progression and may prove valuable for a variety of clinical applications. We present an overview of epigenetically driven mechanisms that are obligatory for physiological regulation and parameters of epigenetic control that are modified in tumor cells. The interrelationship between nuclear structure and function is not mutually exclusive but synergistic. We explore concepts influencing the maintenance of chromatin structures, including phase separation, recognition signals, factors that mediate enhancer-promoter looping, and insulation and how these are altered during the cell cycle and in cancer. Understanding how these processes are altered in cancer provides a potential for advancing capabilities for the diagnosis and identification of novel therapeutic targets.
Collapse
Affiliation(s)
- Andrew J. Fritz
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Mohammed El Dika
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Rabail H. Toor
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | | | - Stephen J. Foley
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Rahim Ullah
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Daijing Nie
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Bodhisattwa Banerjee
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Dorcas Lohese
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Karen C. Glass
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Pharmacology, Burlington, VT 05405
| | - Seth Frietze
- University of Vermont, College of Nursing and Health Sciences, Burlington, VT 05405
| | - Prachi N. Ghule
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Jessica L. Heath
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405,University of Vermont, Larner College of Medicine, Department of Pediatrics, Burlington, VT 05405
| | - Anthony N. Imbalzano
- UMass Chan Medical School, Department of Biochemistry and Molecular Biotechnology, Worcester, MA 01605
| | - Andre van Wijnen
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Jonathan Gordon
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Jane B. Lian
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Janet L. Stein
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Gary S. Stein
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | | |
Collapse
|
21
|
Malik S, Prasad S, Kishore S, Kumar A, Upadhyay V. A perspective review on impact and molecular mechanism of environmental carcinogens on human health. Biotechnol Genet Eng Rev 2021; 37:178-207. [PMID: 34672914 DOI: 10.1080/02648725.2021.1991715] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Cancer is one of the leading causes of death all around the world. It is a group of diseases characterized by abnormal and uncontrollable division of cells leading to severe health conditions and fatality if remains undiagnosed till later stages. Cancer can be caused due to mutation or sudden alterations by effect of certain external agents. Agents that can cause sudden alterations in the genetic content of an individual are known as mutagens. Mutations can lead to permanent changes in the genetic constituency of an individual and possibly lead to cancer. Mutagenic agents that possess the capacity to induce cancer in humans are called carcinogens. Carcinogens may be naturally present in the environment or generated by anthropogenic activities. However, with the progress in molecular techniques, genetic and/or epigenetic mechanisms of carcinogenesis of a wide range of carcinogens have been elucidated. Present review aims to discuss different types of environmental carcinogens and their respective mechanisms responsible for inducing cancer in humans.
Collapse
Affiliation(s)
- Sumira Malik
- Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi, India
| | - Shilpa Prasad
- Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi, India
| | - Shristi Kishore
- Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi, India
| | - Abhishek Kumar
- Institute of Bioinformatics (Iob), Whitefield, Bangalore, India.,Manipal Academy of Higher Education (Mahe), Manipal, India
| | - Vineet Upadhyay
- Institute of Bioinformatics (Iob), Whitefield, Bangalore, India
| |
Collapse
|
22
|
Connerty P, Moles E, de Bock CE, Jayatilleke N, Smith JL, Meshinchi S, Mayoh C, Kavallaris M, Lock RB. Development of siRNA-Loaded Lipid Nanoparticles Targeting Long Non-Coding RNA LINC01257 as a Novel and Safe Therapeutic Approach for t(8;21) Pediatric Acute Myeloid Leukemia. Pharmaceutics 2021; 13:pharmaceutics13101681. [PMID: 34683974 PMCID: PMC8539450 DOI: 10.3390/pharmaceutics13101681] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 12/13/2022] Open
Abstract
Standard of care therapies for children with acute myeloid leukemia (AML) cause potent off-target toxicity to healthy cells, highlighting the need to develop new therapeutic approaches that are safe and specific for leukemia cells. Long non-coding RNAs (lncRNAs) are an emerging and highly attractive therapeutic target in the treatment of cancer due to their oncogenic functions and selective expression in cancer cells. However, lncRNAs have historically been considered ‘undruggable’ targets because they do not encode for a protein product. Here, we describe the development of a new siRNA-loaded lipid nanoparticle for the therapeutic silencing of the novel oncogenic lncRNA LINC01257. Transcriptomic analysis of children with AML identified LINC01257 as specifically expressed in t(8;21) AML and absent in healthy patients. Using NxGen microfluidic technology, we efficiently and reproducibly packaged anti-LINC01257 siRNA (LNP-si-LINC01257) into lipid nanoparticles based on the FDA-approved Patisiran (Onpattro®) formulation. LNP-si-LINC01257 size and ζ-potential were determined by dynamic light scattering using a Malvern Zetasizer Ultra. LNP-si-LINC01257 internalization and siRNA delivery were verified by fluorescence microscopy and flow cytometry analysis. lncRNA knockdown was determined by RT-qPCR and cell viability was characterized by flow cytometry-based apoptosis assay. LNP-siRNA production yielded a mean LNP size of ~65 nm with PDI ≤ 0.22 along with a >85% siRNA encapsulation rate. LNP-siRNAs were efficiently taken up by Kasumi-1 cells (>95% of cells) and LNP-si-LINC01257 treatment was able to successfully ablate LINC01257 expression which was accompanied by a significant 55% reduction in total cell count following 48 h of treatment. In contrast, healthy peripheral blood mononuclear cells (PBMCs), which do not express LINC01257, were unaffected by LNP-si-LINC01257 treatment despite comparable levels of LNP-siRNA uptake. This is the first report demonstrating the use of LNP-assisted RNA interference modalities for the silencing of cancer-driving lncRNAs as a therapeutically viable and non-toxic approach in the management of AML.
Collapse
Affiliation(s)
- Patrick Connerty
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW 2052, Australia; (P.C.); (E.M.); (C.E.d.B.); (N.J.); (C.M.); (M.K.)
- School of Women’s and Children’s Health, UNSW Sydney, Sydney, NSW 2052, Australia
- University of New South Wales Centre for Childhood Cancer Research, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Ernest Moles
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW 2052, Australia; (P.C.); (E.M.); (C.E.d.B.); (N.J.); (C.M.); (M.K.)
- School of Women’s and Children’s Health, UNSW Sydney, Sydney, NSW 2052, Australia
- University of New South Wales Centre for Childhood Cancer Research, UNSW Sydney, Sydney, NSW 2052, Australia
- Australian Centre for Nanomedicine, ARC Centre of Excellence in Bio-Nano Science and Technology, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Charles E. de Bock
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW 2052, Australia; (P.C.); (E.M.); (C.E.d.B.); (N.J.); (C.M.); (M.K.)
- School of Women’s and Children’s Health, UNSW Sydney, Sydney, NSW 2052, Australia
- University of New South Wales Centre for Childhood Cancer Research, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Nisitha Jayatilleke
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW 2052, Australia; (P.C.); (E.M.); (C.E.d.B.); (N.J.); (C.M.); (M.K.)
| | - Jenny L. Smith
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; (J.L.S.); (S.M.)
- Division of Pediatric Hematology/Oncology, University of Washington, Seattle, WA 98109, USA
| | - Soheil Meshinchi
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; (J.L.S.); (S.M.)
- Division of Pediatric Hematology/Oncology, University of Washington, Seattle, WA 98109, USA
| | - Chelsea Mayoh
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW 2052, Australia; (P.C.); (E.M.); (C.E.d.B.); (N.J.); (C.M.); (M.K.)
- School of Women’s and Children’s Health, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Maria Kavallaris
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW 2052, Australia; (P.C.); (E.M.); (C.E.d.B.); (N.J.); (C.M.); (M.K.)
- School of Women’s and Children’s Health, UNSW Sydney, Sydney, NSW 2052, Australia
- University of New South Wales Centre for Childhood Cancer Research, UNSW Sydney, Sydney, NSW 2052, Australia
- Australian Centre for Nanomedicine, ARC Centre of Excellence in Bio-Nano Science and Technology, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Richard B. Lock
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW 2052, Australia; (P.C.); (E.M.); (C.E.d.B.); (N.J.); (C.M.); (M.K.)
- School of Women’s and Children’s Health, UNSW Sydney, Sydney, NSW 2052, Australia
- University of New South Wales Centre for Childhood Cancer Research, UNSW Sydney, Sydney, NSW 2052, Australia
- Correspondence: ; Tel.: +61-(02)-7209-6765
| |
Collapse
|
23
|
Mukherjee S, Heng HH, Frenkel-Morgenstern M. Emerging Role of Chimeric RNAs in Cell Plasticity and Adaptive Evolution of Cancer Cells. Cancers (Basel) 2021; 13:4328. [PMID: 34503137 PMCID: PMC8431553 DOI: 10.3390/cancers13174328] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/22/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022] Open
Abstract
Gene fusions can give rise to somatic alterations in cancers. Fusion genes have the potential to create chimeric RNAs, which can generate the phenotypic diversity of cancer cells, and could be associated with novel molecular functions related to cancer cell survival and proliferation. The expression of chimeric RNAs in cancer cells might impact diverse cancer-related functions, including loss of apoptosis and cancer cell plasticity, and promote oncogenesis. Due to their recurrence in cancers and functional association with oncogenic processes, chimeric RNAs are considered biomarkers for cancer diagnosis. Several recent studies demonstrated that chimeric RNAs could lead to the generation of new functionality for the resistance of cancer cells against drug therapy. Therefore, targeting chimeric RNAs in drug resistance cancer could be useful for developing precision medicine. So, understanding the functional impact of chimeric RNAs in cancer cells from an evolutionary perspective will be helpful to elucidate cancer evolution, which could provide a new insight to design more effective therapies for cancer patients in a personalized manner.
Collapse
Affiliation(s)
- Sumit Mukherjee
- Cancer Genomics and BioComputing of Complex Diseases Lab, Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel;
| | - Henry H. Heng
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA;
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Milana Frenkel-Morgenstern
- Cancer Genomics and BioComputing of Complex Diseases Lab, Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel;
| |
Collapse
|
24
|
Meehan J, Gray M, Martínez-Pérez C, Kay C, McLaren D, Turnbull AK. Tissue- and Liquid-Based Biomarkers in Prostate Cancer Precision Medicine. J Pers Med 2021; 11:jpm11070664. [PMID: 34357131 PMCID: PMC8306523 DOI: 10.3390/jpm11070664] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/06/2021] [Accepted: 07/13/2021] [Indexed: 12/24/2022] Open
Abstract
Worldwide, prostate cancer (PC) is the second-most-frequently diagnosed male cancer and the fifth-most-common cause of all cancer-related deaths. Suspicion of PC in a patient is largely based upon clinical signs and the use of prostate-specific antigen (PSA) levels. Although PSA levels have been criticised for a lack of specificity, leading to PC over-diagnosis, it is still the most commonly used biomarker in PC management. Unfortunately, PC is extremely heterogeneous, and it can be difficult to stratify patients whose tumours are unlikely to progress from those that are aggressive and require treatment intensification. Although PC-specific biomarker research has previously focused on disease diagnosis, there is an unmet clinical need for novel prognostic, predictive and treatment response biomarkers that can be used to provide a precision medicine approach to PC management. In particular, the identification of biomarkers at the time of screening/diagnosis that can provide an indication of disease aggressiveness is perhaps the greatest current unmet clinical need in PC management. Largely through advances in genomic and proteomic techniques, exciting pre-clinical and clinical research is continuing to identify potential tissue, blood and urine-based PC-specific biomarkers that may in the future supplement or replace current standard practices. In this review, we describe how PC-specific biomarker research is progressing, including the evolution of PSA-based tests and those novel assays that have gained clinical approval. We also describe alternative diagnostic biomarkers to PSA, in addition to biomarkers that can predict PC aggressiveness and biomarkers that can predict response to certain therapies. We believe that novel biomarker research has the potential to make significant improvements to the clinical management of this disease in the near future.
Collapse
Affiliation(s)
- James Meehan
- Translational Oncology Research Group, Institute of Genetics and Cancer, Western General Hospital, University of Edinburgh, Edinburgh EH4 2XU, UK; (C.M.-P.); (C.K.); (A.K.T.)
- Correspondence:
| | - Mark Gray
- The Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Midlothian EH25 9RG, UK;
| | - Carlos Martínez-Pérez
- Translational Oncology Research Group, Institute of Genetics and Cancer, Western General Hospital, University of Edinburgh, Edinburgh EH4 2XU, UK; (C.M.-P.); (C.K.); (A.K.T.)
- Breast Cancer Now Edinburgh Research Team, Institute of Genetics and Cancer, Western General Hospital, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Charlene Kay
- Translational Oncology Research Group, Institute of Genetics and Cancer, Western General Hospital, University of Edinburgh, Edinburgh EH4 2XU, UK; (C.M.-P.); (C.K.); (A.K.T.)
- Breast Cancer Now Edinburgh Research Team, Institute of Genetics and Cancer, Western General Hospital, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Duncan McLaren
- Edinburgh Cancer Centre, Western General Hospital, NHS Lothian, Edinburgh EH4 2XU, UK;
| | - Arran K. Turnbull
- Translational Oncology Research Group, Institute of Genetics and Cancer, Western General Hospital, University of Edinburgh, Edinburgh EH4 2XU, UK; (C.M.-P.); (C.K.); (A.K.T.)
- Breast Cancer Now Edinburgh Research Team, Institute of Genetics and Cancer, Western General Hospital, University of Edinburgh, Edinburgh EH4 2XU, UK
| |
Collapse
|
25
|
Panagopoulos I, Heim S. Interstitial Deletions Generating Fusion Genes. Cancer Genomics Proteomics 2021; 18:167-196. [PMID: 33893073 DOI: 10.21873/cgp.20251] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 12/16/2022] Open
Abstract
A fusion gene is the physical juxtaposition of two different genes resulting in a structure consisting of the head of one gene and the tail of the other. Gene fusion is often a primary neoplasia-inducing event in leukemias, lymphomas, solid malignancies as well as benign tumors. Knowledge about fusion genes is crucial not only for our understanding of tumorigenesis, but also for the diagnosis, prognostication, and treatment of cancer. Balanced chromosomal rearrangements, in particular translocations and inversions, are the most frequent genetic events leading to the generation of fusion genes. In the present review, we summarize the existing knowledge on chromosome deletions as a mechanism for fusion gene formation. Such deletions are mostly submicroscopic and, hence, not detected by cytogenetic analyses but by array comparative genome hybridization (aCGH) and/or high throughput sequencing (HTS). They are found across the genome in a variety of neoplasias. As tumors are increasingly analyzed using aCGH and HTS, it is likely that more interstitial deletions giving rise to fusion genes will be found, significantly impacting our understanding and treatment of cancer.
Collapse
Affiliation(s)
- Ioannis Panagopoulos
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway;
| | - Sverre Heim
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
26
|
Wang X, Johnson V, Johnson L, Cook JR. RNA-Based next generation sequencing complements but does not replace fluorescence in situ hybridization studies for the classification of aggressive B-Cell lymphomas. Cancer Genet 2020; 252-253:43-47. [PMID: 33360122 DOI: 10.1016/j.cancergen.2020.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/22/2020] [Accepted: 12/04/2020] [Indexed: 01/18/2023]
Abstract
Aggressive B-cell lymphomas are currently classified based in part upon the presence or absence of translocations involving BCL2, BCL6, and MYC. Most clinical laboratories employ fluorescence in situ hybridization (FISH) analysis for the detection of these rearrangements. The potential role of RNA-based sequencing approaches in the evaluation of malignant lymphoma is currently unclear. In this study, we performed RNA sequencing (RNAseq) in 37 cases of aggressive B-cell lymphomas using a commercially available next generation sequencing assay and compared results to previously performed FISH studies. RNAseq detected 1/7 MYC (14%), 3/8 BCL2 (38%) and 4/8 BCL6 (50%) translocations identified by FISH. RNAseq also detected 1 MYC/IGH fusion in a case not initially tested by FISH due to low MYC protein expression and 2 BCL6 translocations that were not detected by FISH. RNAseq identified the partner gene in each detected rearrangement, including a novel EIF4G1-BCL6 rearrangement. In summary, RNAseq complements FISH for the detection of rearrangements of BCL2, BCL6 and MYC in the evaluation and classification of aggressive B-cell lymphomas by detecting rearrangements that may be cryptic by FISH methods and by identifying the rearrangement partner genes. Detection of these clinically important translocations may be optimized by combined use of FISH and RNAseq.
Collapse
Affiliation(s)
- Xiaoqiong Wang
- Department of Laboratory Medicine, Robert J Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, United States
| | | | | | - James R Cook
- Department of Laboratory Medicine, Robert J Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, United States.
| |
Collapse
|
27
|
Tiruneh T, Enawgaw B, Shiferaw E. Genetic Pathway in the Pathogenesis of Therapy-Related Myeloid Neoplasms: A Literature Review. Oncol Ther 2020; 8:45-57. [PMID: 32700075 PMCID: PMC7360004 DOI: 10.1007/s40487-020-00111-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Indexed: 12/20/2022] Open
Abstract
Therapy-related myeloid neoplasms are a life-threatening and often fatal complication, associated with poor prognosis outcomes and with high-risk unfavorable cytogenetic abnormalities including complex karyotype. They occur after the treatment of primary malignancies using chemotherapy and/or radiation therapy. Such therapy is not specific to cancer cells, and also damages the deoxyribonucleic acid (DNA) of normal cells, resulting in unbalanced and balanced translocations. There are eight genetic pathways, whose details are summarized in this review, depending on the cytogenetic abnormalities induced. This abnormality is the major contributor to the development of therapy-related myeloid neoplasms. The etiology of these neoplasms depends on the complex interaction between the nature and dose of the cytotoxic agent, the environment, and the presence of subsequent inherited mutations. This review aims to elaborate upon recent knowledge regarding the etiology, pathogenesis, and genetic pathways of therapy-related myeloid neoplasms. A deeper understanding of their etiology would aid physicians in more careful monitoring of patients during or after cytotoxic therapy for hematological malignancy. Ultimately, this knowledge could influence initial treatment strategies, with the aim of reducing both the incidence and serious complications of neoplasms. Therefore, early detection of DNA lesions is vital. The authors recommend that primary malignancy be treated with targeted therapy.
Collapse
Affiliation(s)
- Tegenaw Tiruneh
- Department Hematology and Immunohematology, College of Medicine and Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia. .,School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia.
| | - Bamlaku Enawgaw
- School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Elias Shiferaw
- School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
28
|
Absalan M, Ghahremani MH, Jabbarpour Z, Karimi R, Shafei S, Heidari R, Akbariqomi M, Tavoosidana G. Application of Chromosome Conformation Capture Method for Detection MYC/TRD Chromosomal Translocation in Leukemia Cell Line. Int J Hematol Oncol Stem Cell Res 2020; 14:200-212. [PMID: 33024527 PMCID: PMC7521395 DOI: 10.18502/ijhoscr.v14i3.3729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 11/27/2019] [Indexed: 11/24/2022] Open
Abstract
Background: Chromosomal breakpoints are the most common cause of hereditary diseases and cancers. Today, many standard clinical methods such as cytogenetic and PCR based techniques are used which have limitation regarding detection resolution. Chromosome conformation capture is a method for detecting gene proximity and chromosomal rearrangements. Materials and Methods: In this study, SKW3 cell line was used for detecting t(8;14)(q24;q11) using a 3C-based technique. SKW3 cell line was used for 3C library preparation. For Inverse PCR, two regions were selected in upstream and downstream of the viewpoint locus on chromosome 8-MYC gene based on EcoRI restriction sites. The captured sequence with intra-chromosomal interaction between chr8-c-MYC and chr14-TRD was selected for the translocation PCR primer design. Results: The DNA fragment captured in 3C PCR showed a specific TRD sequence translocated downstream of the MYC gene. Translocation PCR demonstrated the existence of (8; 14) (q24; q11) MYC /TRD in both library and genomic DNA. Conclusion: This result demonstrated 3C- based method could be used as a useful low-cost easy operating technique in chromosomal rearrangements detection. In this study, the integration of whole genome library monitoring and PCR method was used as a high- through put method in chromosomal breakpoints detection.
Collapse
Affiliation(s)
- Moloud Absalan
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Ghahremani
- Department of Pharmacology and Toxicology, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Jabbarpour
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Roya Karimi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shilan Shafei
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Heidari
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mostafa Akbariqomi
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Tavoosidana
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
29
|
Deutsch JL, Heath JL. MLLT10 in benign and malignant hematopoiesis. Exp Hematol 2020; 87:1-12. [PMID: 32569758 DOI: 10.1016/j.exphem.2020.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/16/2020] [Accepted: 06/18/2020] [Indexed: 01/01/2023]
Abstract
Non-random chromosomal translocations involving the putative transcription factor Mixed Lineage Leukemia Translocated to 10 (MLLT10, also known as AF10) are commonly observed in both acute myeloid and lymphoid leukemias and are indicative of a poor prognosis. Despite the well-described actions of oncogenic MLLT10 fusion proteins, the role of wild-type MLLT10 in hematopoiesis is not well characterized. The protein structure and several interacting partners have been described and provide indications as to the potential functions of MLLT10. This review examines these aspects of MLLT10, contextualizing its function in benign and malignant hematopoiesis.
Collapse
Affiliation(s)
- Jamie L Deutsch
- Department of Pediatrics, University of Vermont, Burlington, VT
| | - Jessica L Heath
- Department of Pediatrics, University of Vermont, Burlington, VT; Department of Biochemistry, University of Vermont, Burlington, VT 05405; University of Vermont Cancer Center, Burlington, VT.
| |
Collapse
|
30
|
|
31
|
Bicoid-Dependent Activation of the Target Gene hunchback Requires a Two-Motif Sequence Code in a Specific Basal Promoter. Mol Cell 2019; 75:1178-1187.e4. [PMID: 31402096 DOI: 10.1016/j.molcel.2019.06.038] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 05/14/2019] [Accepted: 06/25/2019] [Indexed: 01/08/2023]
Abstract
In complex genetic loci, individual enhancers interact most often with specific basal promoters. Here we investigate the activation of the Bicoid target gene hunchback (hb), which contains two basal promoters (P1 and P2). Early in embryogenesis, P1 is silent, while P2 is strongly activated. In vivo deletion of P2 does not cause activation of P1, suggesting that P2 contains intrinsic sequence motifs required for activation. We show that a two-motif code (a Zelda binding site plus TATA) is required and sufficient for P2 activation. Zelda sites are present in the promoters of many embryonically expressed genes, but the combination of Zelda plus TATA does not seem to be a general code for early activation or Bicoid-specific activation per se. Because Zelda sites are also found in Bicoid-dependent enhancers, we propose that simultaneous binding to both enhancers and promoters independently synchronizes chromatin accessibility and facilitates correct enhancer-promoter interactions.
Collapse
|
32
|
Saini S, Maker AV, Burman KD, Prabhakar BS. Molecular aberrations and signaling cascades implicated in the pathogenesis of anaplastic thyroid cancer. Biochim Biophys Acta Rev Cancer 2018; 1872:188262. [PMID: 30605717 DOI: 10.1016/j.bbcan.2018.12.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 12/05/2018] [Accepted: 12/06/2018] [Indexed: 01/16/2023]
Abstract
Anaplastic Thyroid Cancer (ATC) accounts for >40% thyroid cancer-related deaths and has a dismal prognosis. In the past decade, significant efforts have been made towards understanding the pathogenesis of this disease and developing novel therapeutics. Unfortunately, effective treatment is still lacking and a more thorough understanding of ATC pathogenesis may provide new opportunities to improve ATC therapeutics. This review provides insights into ATC clinical presentation and pathology, and the putative role of genetic aberrations and alterations in molecular signaling pathways in ATC pathogenesis. We reviewed prevalent mutations, chromosomal abnormalities and fusions, epigenetic alterations and dysregulations in ATC, and highlighted several signaling cascades which appeared to be integral to ATC pathogenesis. Moreover, these features offer insights into de-differentiated, aggressive and drug-resistant phenotype of ATC, and thus may help in exploring potential new molecular targets for developing novel therapeutics.
Collapse
Affiliation(s)
- Shikha Saini
- Department of Microbiology and Immunology, University of Illinois-College of Medicine, Chicago, IL, United States
| | - Ajay V Maker
- Department of Surgery, Division of Surgical Oncology, University of Illinois-College of Medicine, Chicago, IL, United States
| | - Kenneth D Burman
- Medstar Washington Hospital Medical Center, Washington, DC, United States
| | - Bellur S Prabhakar
- Department of Microbiology and Immunology, University of Illinois-College of Medicine, Chicago, IL, United States; Jesse Brown VA Medical Center, Chicago, IL, United States.
| |
Collapse
|
33
|
Rebolledo-Jaramillo B, Ziegler A. Teneurins: An Integrative Molecular, Functional, and Biomedical Overview of Their Role in Cancer. Front Neurosci 2018; 12:937. [PMID: 30618566 PMCID: PMC6297388 DOI: 10.3389/fnins.2018.00937] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 11/28/2018] [Indexed: 12/16/2022] Open
Abstract
Teneurins are large transmembrane proteins originally identified in Drosophila. Their essential role in development of the central nervous system is conserved throughout species, and evidence supports their involvement in organogenesis of additional tissues. Homophilic and heterophilic interactions between Teneurin paralogues mediate cellular adhesion in crucial processes such as neuronal pathfinding and synaptic organization. At the molecular level, Teneurins are proteolytically processed into distinct subdomains that have been implicated in extracellular and intracellular signaling, and in transcriptional regulation. Phylogenetic studies have shown a high degree of intra- and interspecies conservation of Teneurin genes. Accordingly, the occurrence of genetic variants has been associated with functional and phenotypic alterations in experimental systems, and with some inherited or sporadic conditions. Recently, tumor-related variations in Teneurin gene expression have been associated with patient survival in different cancers. Although these findings were incidental and molecular mechanisms were not addressed, they suggested a potential utility of Teneurin transcript levels as biomarkers for disease prognosis. Mutations and chromosomal alterations affecting Teneurin genes have been found occasionally in tumors, but literature remains scarce. The analysis of open-access molecular and clinical datasets derived from large oncologic cohorts provides an invaluable resource for the identification of additional somatic mutations. However, Teneurin variants have not been classified in terms of pathogenic risk and their phenotypic impact remains unknown. On this basis, is it plausible to hypothesize that Teneurins play a role in carcinogenesis? Does current evidence support a tumor suppressive or rather oncogenic function for these proteins? Here, we comprehensively discuss available literature with integration of molecular evidence retrieved from open-access databases. We show that Teneurins undergo somatic changes comparable to those of well-established cancer genes, and discuss their involvement in cancer-related signaling pathways. Current data strongly suggest a functional contribution of Teneurins to human carcinogenesis.
Collapse
Affiliation(s)
| | - Annemarie Ziegler
- Center for Genetics and Genomics, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile
| |
Collapse
|
34
|
Yi K, Ju YS. Patterns and mechanisms of structural variations in human cancer. Exp Mol Med 2018; 50:1-11. [PMID: 30089796 PMCID: PMC6082854 DOI: 10.1038/s12276-018-0112-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 12/29/2017] [Indexed: 12/16/2022] Open
Abstract
Next-generation sequencing technology has enabled the comprehensive detection of genomic alterations in human somatic cells, including point mutations, chromosomal rearrangements, and structural variations (SVs). Using sophisticated bioinformatics algorithms, unbiased catalogs of SVs are emerging from thousands of human cancer genomes for the first time. Via careful examination of SV breakpoints at single-nucleotide resolution as well as local DNA copy number changes, diverse patterns of genomic rearrangements are being revealed. These "SV signatures" provide deep insight into the mutational processes that have shaped genome changes in human somatic cells. This review summarizes the characteristics of recently identified complex SVs, including chromothripsis, chromoplexy, microhomology-mediated breakage-induced replication (MMBIR), and others, to provide a holistic snapshot of the current knowledge on genomic rearrangements in somatic cells.
Collapse
Affiliation(s)
- Kijong Yi
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Korea
| | - Young Seok Ju
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Korea.
| |
Collapse
|
35
|
Lin CY, Shukla A, Grady JP, Fink JL, Dray E, Duijf PHG. Translocation Breakpoints Preferentially Occur in Euchromatin and Acrocentric Chromosomes. Cancers (Basel) 2018; 10:cancers10010013. [PMID: 29316705 PMCID: PMC5789363 DOI: 10.3390/cancers10010013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 12/11/2017] [Accepted: 01/05/2018] [Indexed: 12/12/2022] Open
Abstract
Chromosomal translocations drive the development of many hematological and some solid cancers. Several factors have been identified to explain the non-random occurrence of translocation breakpoints in the genome. These include chromatin density, gene density and CCCTC-binding factor (CTCF)/cohesin binding site density. However, such factors are at least partially interdependent. Using 13,844 and 1563 karyotypes from human blood and solid cancers, respectively, our multiple regression analysis only identified chromatin density as the primary statistically significant predictor. Specifically, translocation breakpoints preferentially occur in open chromatin. Also, blood and solid tumors show markedly distinct translocation signatures. Strikingly, translocation breakpoints occur significantly more frequently in acrocentric chromosomes than in non-acrocentric chromosomes. Thus, translocations are probably often generated around nucleoli in the inner nucleoplasm, away from the nuclear envelope. Importantly, our findings remain true both in multivariate analyses and after removal of highly recurrent translocations. Finally, we applied pairwise probabilistic co-occurrence modeling. In addition to well-known highly prevalent translocations, such as those resulting in BCR-ABL1 (BCR-ABL) and RUNX1-RUNX1T1 (AML1-ETO) fusion genes, we identified significantly underrepresented translocations with putative fusion genes, which are probably subject to strong negative selection during tumor evolution. Taken together, our findings provide novel insights into the generation and selection of translocations during cancer development.
Collapse
Affiliation(s)
- Cheng-Yu Lin
- University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, 37 Kent Street, Brisbane, QLD 4102, Australia.
| | - Ankit Shukla
- University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, 37 Kent Street, Brisbane, QLD 4102, Australia.
| | - John P Grady
- University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, 37 Kent Street, Brisbane, QLD 4102, Australia.
| | - J Lynn Fink
- University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, 37 Kent Street, Brisbane, QLD 4102, Australia.
| | - Eloise Dray
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Translational Research Institute, 37 Kent Street, Brisbane, QLD 4102, Australia.
- Mater Research Institute-The University of Queensland, Translational Research Institute, 37 Kent Street, Brisbane, QLD 4102, Australia.
| | - Pascal H G Duijf
- University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, 37 Kent Street, Brisbane, QLD 4102, Australia.
| |
Collapse
|
36
|
Graham RP, Craig JR, Jin L, Oliveira AM, Bergquist JR, Truty MJ, Mounajjed T, Greipp PT, Torbenson MS. Environmental exposures as a risk factor for fibrolamellar carcinoma. Mod Pathol 2017; 30:892-896. [PMID: 28256571 DOI: 10.1038/modpathol.2017.7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 12/23/2016] [Accepted: 12/26/2016] [Indexed: 02/07/2023]
Abstract
Fibrolamellar carcinoma was first described in 1956. Subsequent large studies failed to identify cases before 1939 (the start of the World War II). This finding, combined with the presence of aryl hydrocarbon receptors on the tumor cells, have suggested that fibrolamellar carcinomas may be caused by environmental exposures that are new since World War II. To investigate this possibility, the surgical pathology files before 1939 were reviewed for hepatocellular carcinomas resected in young individuals. Two cases of fibrolamellar carcinoma were identified, from 1915 to 1924. The diagnosis of fibrolamellar carcinoma was confirmed at the histologic, ultrastructural and proteomic levels. These two fibrolamellar carcinoma cases clarify a key aspect of fibrolamellar carcinoma biology, reducing the likelihood that these tumors result exclusively from post World War II environmental exposures.
Collapse
Affiliation(s)
- Rondell P Graham
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | | | - Long Jin
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Andre M Oliveira
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | | | - Mark J Truty
- Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | - Taofic Mounajjed
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Patricia T Greipp
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Michael S Torbenson
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
37
|
Read CY. Primer in Genetics and Genomics, Article 3-Explaining Human Diversity: The Role of DNA. Biol Res Nurs 2017; 19:350-356. [PMID: 28413933 DOI: 10.1177/1099800417698798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Genetic variation lays the foundation for diversity and enables humans to adapt to changing environments. The order of the nucleotides adenine, guanine, cytosine, and thymine on the deoxyribonucleic acid (DNA) molecules of the nuclear chromosomes and mitochondrial DNA (mtDNA) plays an important role in normal cell division, tissue development, and reproduction but is susceptible to alteration from a large number of random, inherited, or environmental events. Variations can range from a change in a single nucleotide to duplication of entire chromosomes. Single nucleotide polymorphisms are the major source of human heterogeneity. Other variations that can alter phenotypes and adversely impact growth, development, and health include copy number variations, aneuploidies, and structural alterations such as deletions, translocations, inversions, duplications, insertions, or mutations in mtDNA. In addition, DNA rearrangements in somatic cells underlie the uncontrolled cell growth found in cancer. This article explores the mechanisms by which variations in DNA arise and the impact those changes can have on human health.
Collapse
Affiliation(s)
- Catherine Y Read
- 1 Boston College, William F. Connell School of Nursing, Chestnut Hill, MA, USA
| |
Collapse
|
38
|
Evaluation of Structural Factors Potentially Implicated in Acute Lymphoblastic Leukemia: A report of the MIGICCL. Arch Med Res 2017; 47:515-520. [PMID: 28262192 DOI: 10.1016/j.arcmed.2016.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 11/23/2016] [Indexed: 11/27/2022]
Abstract
BACKGROUND AND AIMS Acute lymphoblastic leukemia (ALL) is the most common cancer in the pediatric population; ∼80% of the cases show some translocation. Translocations that result in ALL are due to chromosome breaks. However, the exact mechanisms that cause these breaks have not been well studied. A detailed search of the breakpoints associated with ALL reported in the NCBI database shows that some are concentrated in limited regions of the chromosome, whereas others are scattered throughout. Therefore, the objective of this study was to identify the structural factors involved in chromosomal breaks in ALL. METHODS We performed several bioinformatic studies on the sequences where chromosomal breakpoints have been reported in search of rearrangements: areas of high similarity, thermodynamic stability, composition and conformation of the DNA. RESULTS Certain factors may influence chromosome breaks and are capable of predicting the propensity towards these types of events. CONCLUSIONS These findings may be useful in the design of molecular techniques able to detect these changes in ALL.
Collapse
|
39
|
Azarnezhad A, Mehdipour P. Cancer Genetics at a Glance: The Comprehensive Insights. CANCER GENETICS AND PSYCHOTHERAPY 2017:79-389. [DOI: 10.1007/978-3-319-64550-6_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
40
|
Uzilov AV, Ding W, Fink MY, Antipin Y, Brohl AS, Davis C, Lau CY, Pandya C, Shah H, Kasai Y, Powell J, Micchelli M, Castellanos R, Zhang Z, Linderman M, Kinoshita Y, Zweig M, Raustad K, Cheung K, Castillo D, Wooten M, Bourzgui I, Newman LC, Deikus G, Mathew B, Zhu J, Glicksberg BS, Moe AS, Liao J, Edelmann L, Dudley JT, Maki RG, Kasarskis A, Holcombe RF, Mahajan M, Hao K, Reva B, Longtine J, Starcevic D, Sebra R, Donovan MJ, Li S, Schadt EE, Chen R. Development and clinical application of an integrative genomic approach to personalized cancer therapy. Genome Med 2016; 8:62. [PMID: 27245685 PMCID: PMC4888213 DOI: 10.1186/s13073-016-0313-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Accepted: 05/04/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Personalized therapy provides the best outcome of cancer care and its implementation in the clinic has been greatly facilitated by recent convergence of enormous progress in basic cancer research, rapid advancement of new tumor profiling technologies, and an expanding compendium of targeted cancer therapeutics. METHODS We developed a personalized cancer therapy (PCT) program in a clinical setting, using an integrative genomics approach to fully characterize the complexity of each tumor. We carried out whole exome sequencing (WES) and single-nucleotide polymorphism (SNP) microarray genotyping on DNA from tumor and patient-matched normal specimens, as well as RNA sequencing (RNA-Seq) on available frozen specimens, to identify somatic (tumor-specific) mutations, copy number alterations (CNAs), gene expression changes, gene fusions, and also germline variants. To provide high sensitivity in known cancer mutation hotspots, Ion AmpliSeq Cancer Hotspot Panel v2 (CHPv2) was also employed. We integrated the resulting data with cancer knowledge bases and developed a specific workflow for each cancer type to improve interpretation of genomic data. RESULTS We returned genomics findings to 46 patients and their physicians describing somatic alterations and predicting drug response, toxicity, and prognosis. Mean 17.3 cancer-relevant somatic mutations per patient were identified, 13.3-fold, 6.9-fold, and 4.7-fold more than could have been detected using CHPv2, Oncomine Cancer Panel (OCP), and FoundationOne, respectively. Our approach delineated the underlying genetic drivers at the pathway level and provided meaningful predictions of therapeutic efficacy and toxicity. Actionable alterations were found in 91 % of patients (mean 4.9 per patient, including somatic mutations, copy number alterations, gene expression alterations, and germline variants), a 7.5-fold, 2.0-fold, and 1.9-fold increase over what could have been uncovered by CHPv2, OCP, and FoundationOne, respectively. The findings altered the course of treatment in four cases. CONCLUSIONS These results show that a comprehensive, integrative genomic approach as outlined above significantly enhanced genomics-based PCT strategies.
Collapse
Affiliation(s)
- Andrew V Uzilov
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Wei Ding
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Marc Y Fink
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Biomedical Sciences, Long Island University Post, Brookville, NY, 11548, USA
| | - Yevgeniy Antipin
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Andrew S Brohl
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Sarcoma Department, Moffitt Cancer Center, Tampa, FL, 33612, USA
| | - Claire Davis
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Chun Yee Lau
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Chetanya Pandya
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Hardik Shah
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Yumi Kasai
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - James Powell
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Mark Micchelli
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Rafael Castellanos
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Zhongyang Zhang
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Michael Linderman
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Yayoi Kinoshita
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Micol Zweig
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Katie Raustad
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Kakit Cheung
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Diane Castillo
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Melissa Wooten
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Imane Bourzgui
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Leah C Newman
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Gintaras Deikus
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Bino Mathew
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Jun Zhu
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Benjamin S Glicksberg
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Aye S Moe
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Jun Liao
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Lisa Edelmann
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Joel T Dudley
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Robert G Maki
- Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Andrew Kasarskis
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Randall F Holcombe
- Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Milind Mahajan
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Ke Hao
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Boris Reva
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Janina Longtine
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Daniela Starcevic
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Robert Sebra
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Michael J Donovan
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Shuyu Li
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Eric E Schadt
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Rong Chen
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
41
|
Tosi S, Mostafa Kamel Y, Owoka T, Federico C, Truong TH, Saccone S. Paediatric acute myeloid leukaemia with the t(7;12)(q36;p13) rearrangement: a review of the biological and clinical management aspects. Biomark Res 2015; 3:21. [PMID: 26605042 PMCID: PMC4657620 DOI: 10.1186/s40364-015-0041-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 06/25/2015] [Indexed: 12/05/2022] Open
Abstract
The presence of chromosomal abnormalities is one of the most important criteria for leukaemia diagnosis and management. Infant leukaemia is a rare disease that affects children in their first year of life. It has been estimated that approximately one third of infants with acute myeloid leukaemia harbour the t(7;12)(q36;p13) rearrangement in their leukaemic blasts. However, the WHO classification of acute myeloid leukaemia does not yet include the t(7;12) as a separate entity among the different genetic subtypes, although the presence of this chromosomal abnormality has been associated with an extremely poor clinical outcome. Currently, there is no consensus treatment for t(7;12) leukaemia patients. However, with the inferior outcome with the standard induction therapy, stem cell transplantation may offer a better chance for disease control. A better insight into the chromosome biology of this entity might shed some light into the pathogenic mechanisms arising from this chromosomal translocation, that at present are not fully understood. Further work is needed to improve our understanding of the molecular and genetic basis of this disorder. This will hopefully open some grounds for possible tailored treatment for this subset of very young patients with inferior disease outcome. This review aims at highlighting the cytogenetic features that characterise the t(7;12) leukaemias for a better detection of the abnormality in the diagnostic setting. We also review treatment and clinical outcome in the cases reported to date.
Collapse
Affiliation(s)
- Sabrina Tosi
- Leukaemia and Chromosome Research Laboratory, Division of Biosciences, Brunel University London, Middlesex, UB8 3PH UK
| | - Yasser Mostafa Kamel
- Leukaemia and Chromosome Research Laboratory, Division of Biosciences, Brunel University London, Middlesex, UB8 3PH UK
| | - Temitayo Owoka
- Leukaemia and Chromosome Research Laboratory, Division of Biosciences, Brunel University London, Middlesex, UB8 3PH UK
| | - Concetta Federico
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Sezione di Biologia Animale, University of Catania, Catania, Italy
| | - Tony H Truong
- Division of Pediatric Oncology, Blood and Marrow Transplant, Alberta Children's Hospital, University of Calgary, Calgary, Canada
| | - Salvatore Saccone
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Sezione di Biologia Animale, University of Catania, Catania, Italy
| |
Collapse
|
42
|
Shinmura K, Kato H, Igarashi H, Inoue Y, Nakamura S, Du C, Kurachi K, Nakamura T, Ogawa H, Tanahashi M, Niwa H, Sugimura H. CD44-SLC1A2 fusion transcripts in primary colorectal cancer. Pathol Oncol Res 2015; 21:759-764. [PMID: 25576211 DOI: 10.1007/s12253-014-9887-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 12/22/2014] [Indexed: 11/26/2022]
Abstract
A CD44-SLC1A2 fusion has recently been discovered in a subset of primary gastric cancers, and an APIP-SLC1A2 fusion has been described in a colon cancer cell line (SNU-C1); however, whether such SLC1A2 fusions occur in primary colorectal cancer (CRC) and whether such fusions are specific for gastrointestinal cancers remain uncertain. In the present study, we examined 90 primary CRCs and 112 primary non-small cell lung cancers (NSCLCs) for CD44-SLC1A2 and APIP-SLC1A2 fusion transcripts using RT-PCR and subsequent sequencing analyses. Although the expression of both types of SLC1A2 fusion transcripts was not detected in any of the NSCLCs, the expression of CD44-SLC1A2, but not the APIP-SLC1A2 fusion transcript, was detected in one (1.1 %) CRC. The CD44-SLC1A2 fusion transcript was expressed in cancerous tissue but not in corresponding non-cancerous tissue, and the fusion occurred between exon 1 of CD44 and exon 2 of SLC1A2; it was expected that a slightly truncated but functional SLC1A2 protein would be produced under the CD44 promoter. A quantitative RT-PCR analysis revealed that SLC1A2 mRNA expression was upregulated in CRC containing SLC1A2 fusion transcripts, while it was downregulated in most other CRCs. The SLC1A2 fusion-positive carcinoma was located on the right-side of colon, was a mucinous adenocarcinoma, was immunohistochemically negative for MSH2 mismatch repair protein, and contained no APC or KRAS mutations. Together, these results suggest that the expression of SLC1A2 fusion transcripts is related to a subset of primary CRCs and may contribute to the elucidation of the characteristics of SLC1A2 fusion-positive CRCs in the future.
Collapse
Affiliation(s)
- Kazuya Shinmura
- Department of Tumor Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi Ward, Hamamatsu, Shizuoka, 431-3192, Japan,
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|