1
|
Guan X, Wu Q, Sun B. MicroRNA-regulated flounder CLDN4 functions in anti-bacterial immunity. FISH & SHELLFISH IMMUNOLOGY 2025; 161:110270. [PMID: 40074190 DOI: 10.1016/j.fsi.2025.110270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 02/18/2025] [Accepted: 03/08/2025] [Indexed: 03/14/2025]
Abstract
CLDN4 belongs to a multi-transmembrane protein family of claudins, which mainly functions in cell-cell adhesion and migration. MicroRNAs (miRNAs) are important post-transcriptional regulating factors that participate in broad biological process including immunity. Through high-throughput RNA sequencing strategy, a flounder miRNA, miR-29-x, was identified to be responsible to both bacteria and virus. In this study, we explored the regulatory mechanism and function of miR-29-x and its target gene of flounder CLDN4 (named PoCLDN4). We proved that miR-29-x could interact with the 3'UTR of PoCLDN4 and negatively regulate its expression. PoCLDN4 located on cell membrane, while the depletion of extracellular loop E2 abolished the membrane localization of this protein. E3 could bind different bacteria, and mutation of the amino acids of 13E and 18E enhanced this capacity, while mutation of 10L abolish this capacity. Further study revealed the bacteria killing effect of E3 and verified 10L as a key factor. These results identified the interaction between miR-29-x and PoCLDN4, and unraveled the function as well as the molecular basis of flounder CLDN4 in anti-bacterial immunity.
Collapse
Affiliation(s)
- Xiaolu Guan
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, China.
| | - Qian Wu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Boguang Sun
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, China.
| |
Collapse
|
2
|
Thiagarajan L, Sanchez-Alvarez R, Kambara C, Rajasekar P, Wang Y, Halloy F, Hall J, Stark HJ, Martin I, Boukamp P, Kurinna S. miRNA-29 regulates epidermal and mesenchymal functions in skin repair. FEBS Lett 2025. [PMID: 40285401 DOI: 10.1002/1873-3468.70051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 03/06/2025] [Accepted: 03/15/2025] [Indexed: 04/29/2025]
Abstract
MicroRNAs (miRNAs) control organogenesis in mammals by inhibiting translation of mRNA. Skin is an excellent model to study the role of miRNAs in epidermis and the mesenchyme. Previous research demonstrated miRNA-29 family functions in skin; however, the mRNA targets and the downstream mechanisms of miRNA-29-mediated regulation are missing. We used the miRNA crosslinking and immunoprecipitation method to find direct targets of miRNA-29 in keratinocytes and fibroblasts from human skin. miRNA-29 inhibition using modified antisense oligonucleotides in 2D and 3D cultures of keratinocytes and fibroblasts enhanced cell-to-matrix adhesion through autocrine and paracrine mechanisms of miRNA-29-dependent tissue growth. We reveal a full transcriptome of human keratinocytes with enhanced adhesion to the matrix, which supports regeneration of the epidermis and is regulated by miRNA-29. Impact statement The functions of small, therapeutically targetable microRNA molecules identified in our study can provide a new approach to improve wound healing by restoring and enhancing the inner molecular mechanisms of a cell and its surrounding matrix. We also provide a plethora of new mRNA targets for follow-up studies of cell adhesion and extracellular matrix formation in humans.
Collapse
Affiliation(s)
- Lalitha Thiagarajan
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, University of Manchester, UK
| | - Rosa Sanchez-Alvarez
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, University of Manchester, UK
| | - Chiho Kambara
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, University of Manchester, UK
| | | | - Yuluang Wang
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Switzerland
| | - François Halloy
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Switzerland
| | - Jonathan Hall
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Switzerland
| | | | - Iris Martin
- German Cancer Research Center, Heidelberg, Germany
| | | | - Svitlana Kurinna
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, University of Manchester, UK
| |
Collapse
|
3
|
Sanjulián L, Fernández-Rico S, González-Rodríguez N, Cepeda A, Miranda JM, Fente C, Lamas A, Regal P. The Role of Dairy in Human Nutrition: Myths and Realities. Nutrients 2025; 17:646. [PMID: 40004974 PMCID: PMC11858442 DOI: 10.3390/nu17040646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 02/07/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025] Open
Abstract
Milk is a highly complex food that contains all the nutrients necessary for the development of mammalian offspring. For millennia, humans have included milk and milk products as major components of their diet. However, the effect of the consumption of dairy products on health has been a concern in recent years in terms of myths and realities. This review briefly describes the composition of bovine milk, the positive and negative effects that have been related to dairy products, and those aspects where the scientific evidence is still inconclusive. In addition to being nutritional, dairy products are a source of bioactive peptides, prebiotics and probiotics, fatty acids such as CLA, and fat globule membranes or have a protective effect against certain diseases. Negative effects include milk protein allergy or lactose intolerance. The effects of dairy products on certain cancers, such as prostate cancer, and their role in type II diabetes mellitus or weight gain are still inconclusive. Although the role of dairy products in cardiovascular risk is still inconclusive, recent meta-analyses have shown that dairy products may have a protective effect.
Collapse
Affiliation(s)
| | | | | | | | - José Manuel Miranda
- Food Hygiene, Inspection and Control Laboratory (Lhica), Department of Analytical Chemistry, Nutrition and Bromatology, School of Veterinary Science, Campus Terra, University of Santiago de Compostela, 27002 Lugo, Spain; (L.S.); (S.F.-R.); (N.G.-R.); (A.C.); (C.F.); (A.L.); (P.R.)
| | | | | | | |
Collapse
|
4
|
Kesheh MM, Bayat M, Kobravi S, Lotfalizadeh MH, Heydari A, Memar MY, Baghi HB, Kermanshahi AZ, Ravaei F, Taghavi SP, Zarepour F, Nahand JS, Hashemian SMR, Mirzaei H. MicroRNAs and human viral diseases: A focus on the role of microRNA-29. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167500. [PMID: 39260679 DOI: 10.1016/j.bbadis.2024.167500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 06/01/2024] [Accepted: 08/01/2024] [Indexed: 09/13/2024]
Abstract
The viral replication can impress through cellular miRNAs. Indeed, either the antiviral responses or the viral infection changes through cellular miRNAs resulting in affecting many regulatory signaling pathways. One of the microRNA families that is effective in human cancers, diseases, and viral infections is the miR-29 family. Members of miR-29 family are effective in different viral infections as their roles have appeared in regulation of immunity pathways either in innate immunity including interferon and inflammatory pathways or in adaptive immunity including activation of T-cells and antibodies production. Although miR-29a affects viral replication by suppressing antiviral responses, it can inhibit the expression of viral mRNAs via binding to their 3'UTR. In the present work, we discuss the evidence related to miR-29a and viral infection through host immunity regulation. We also review roles of other miR-29 family members by focusing on their role as biomarkers for diagnosing and targets for viral diseases management.
Collapse
Affiliation(s)
- Mina Mobini Kesheh
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mobina Bayat
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepehr Kobravi
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Tehran Azad University, Tehran, Iran
| | | | - Azhdar Heydari
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran; Department of Physiology, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Yousef Memar
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Bannazadeh Baghi
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Atefeh Zamani Kermanshahi
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Ravaei
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Pouya Taghavi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Zarepour
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Javid Sadri Nahand
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Seyed Mohammad Reza Hashemian
- Chronic Respiratory Diseases Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
5
|
Sikder S, Bhattacharya A, Agrawal A, Sethi G, Kundu TK. Micro-RNAs in breast cancer progression and metastasis: A chromatin and metabolic perspective. Heliyon 2024; 10:e38193. [PMID: 39386816 PMCID: PMC11462366 DOI: 10.1016/j.heliyon.2024.e38193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 09/06/2024] [Accepted: 09/19/2024] [Indexed: 10/12/2024] Open
Abstract
Breast cancer is a highly complex disease with multiple subtypes. While many of the breast cancer cases are sporadic some can be familial or hereditary. Genomic integrity is closely monitored by several mechanisms, such as DNA damage machinery and mitotic checkpoints. Any defect in the key genes involved in the regulation of these mechanisms often results in genomic instability, predisposing the cells to malignancy. This results in altered expression of many coding and noncoding genes. The noncoding RNAs especially the long noncoding RNA (lncRNAs) and microRNA (miRNAs) act as key regulators of cancer gene networks. Some miRNAs repress the expression of the heterochromatin-associated proteins, inducing the formation of open chromatin, and promoting the expression of genes required for oncogenesis. Additionally, specific miRNAs may also favour cancer progression and metastasis by regulating the expression of genes that support the metabolic microenvironment essential for cancer cell growth and proliferation. Understanding how these noncoding RNAs contribute to breast cancer development opens potential avenues for therapeutic intervention, targeting their dysregulated activity.
Collapse
Affiliation(s)
- Sweta Sikder
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, 560064, India
| | - Aditya Bhattacharya
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, 560064, India
| | - Aayushi Agrawal
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, UP, India
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, 117600, Singapore
| | - Tapas K. Kundu
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, 560064, India
| |
Collapse
|
6
|
Swahari V, Nakamura A, Hollville E, Hung YH, Kanke M, Kurtz CL, Caravia XM, Roiz-Valle D, He S, Krishnamurthy J, Kapoor S, Prasad V, Flowers C, Beck M, Baran-Gale J, Sharpless N, López-Otín C, Sethupathy P, Deshmukh M. miR-29 is an important driver of aging-related phenotypes. Commun Biol 2024; 7:1055. [PMID: 39191864 PMCID: PMC11349983 DOI: 10.1038/s42003-024-06735-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 08/14/2024] [Indexed: 08/29/2024] Open
Abstract
Aging is a consequence of complex molecular changes, but whether a single microRNA (miRNA) can drive aging remains unclear. A miRNA known to be upregulated during both normal and premature aging is miR-29. We find miR-29 to also be among the top miRNAs predicted to drive aging-related gene expression changes. We show that partial loss of miR-29 extends the lifespan of Zmpste24-/- mice, an established model of progeria, indicating that miR-29 is functionally important in this accelerated aging model. To examine whether miR-29 alone is sufficient to promote aging-related phenotypes, we generated mice in which miR-29 can be conditionally overexpressed (miR-29TG). miR-29 overexpression is sufficient to drive many aging-related phenotypes and led to early lethality. Transcriptomic analysis of both young miR-29TG and old WT mice reveals shared downregulation of genes associated with extracellular matrix organization and fatty acid metabolism, and shared upregulation of genes in pathways linked to inflammation. These results highlight the functional importance of miR-29 in controlling a gene expression program that drives aging-related phenotypes.
Collapse
Affiliation(s)
- Vijay Swahari
- Neuroscience Center; University of North Carolina, Chapel Hill, NC, USA
| | - Ayumi Nakamura
- Neuroscience Center; University of North Carolina, Chapel Hill, NC, USA
- Neurobiology Curriculum; University of North Carolina, Chapel Hill, NC, USA
| | - Emilie Hollville
- Neuroscience Center; University of North Carolina, Chapel Hill, NC, USA
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Yu-Han Hung
- Department of Biomedical Sciences; College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Matt Kanke
- Department of Biomedical Sciences; College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - C Lisa Kurtz
- Department of Genetics; University of North Carolina, Chapel Hill, NC, USA
| | - Xurde M Caravia
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, Oviedo, Spain
| | - David Roiz-Valle
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, Oviedo, Spain
| | - Shenghui He
- Department of Genetics; University of North Carolina, Chapel Hill, NC, USA
- The Lineberger Comprehensive Cancer Center; University of North Carolina, Chapel Hill, NC, USA
| | - Janakiraman Krishnamurthy
- Department of Genetics; University of North Carolina, Chapel Hill, NC, USA
- The Lineberger Comprehensive Cancer Center; University of North Carolina, Chapel Hill, NC, USA
| | - Sahil Kapoor
- Neuroscience Center; University of North Carolina, Chapel Hill, NC, USA
| | - Varun Prasad
- Neuroscience Center; University of North Carolina, Chapel Hill, NC, USA
| | - Cornelius Flowers
- Neuroscience Center; University of North Carolina, Chapel Hill, NC, USA
| | - Matt Beck
- Neuroscience Center; University of North Carolina, Chapel Hill, NC, USA
| | - Jeanette Baran-Gale
- Department of Genetics; University of North Carolina, Chapel Hill, NC, USA
- Bioinformatics and Computational Biology Curriculum; University of North Carolina, Chapel Hill, NC, USA
| | - Norman Sharpless
- Department of Genetics; University of North Carolina, Chapel Hill, NC, USA
- The Lineberger Comprehensive Cancer Center; University of North Carolina, Chapel Hill, NC, USA
| | - Carlos López-Otín
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, Oviedo, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Praveen Sethupathy
- Department of Biomedical Sciences; College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.
| | - Mohanish Deshmukh
- Neuroscience Center; University of North Carolina, Chapel Hill, NC, USA.
- Neurobiology Curriculum; University of North Carolina, Chapel Hill, NC, USA.
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
7
|
Dostál Z, Buchtíková J, Mandrla J, Modrianský M. On the mechanism of miR-29b enhancement of etoposide toxicity in vitro. Sci Rep 2024; 14:19880. [PMID: 39191993 DOI: 10.1038/s41598-024-70856-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 08/21/2024] [Indexed: 08/29/2024] Open
Abstract
MicroRNA hsa-miR-29 was connected to a number of malignancies. Its target genes are many, among them Mcl-1 that is expressed in three possible isoforms, one of which is anti-apoptotic and another one pro-apoptotic. Ratio of these two isoforms appears to affect cell response to external stimuli. We have demonstrated that miR-29b enhanced etoposide toxicity in HeLa cell line by modulating this ratio of Mcl-1 isoforms. However, it is not known whether the described miR-29 effect is common to various cancer types or even have the opposite effect. This represents a significant problem for possible future applications. In this report, we demonstrate that miR-29b affects toxicity of 60 μM etoposide in cell lines derived from selected malignancies. The mechanism, however, differs among the cell lines tested. Hep G2 cells demonstrated similar effect of miR-29b on etoposide toxicity as was described in HeLa cells, i.e. modulation of Mcl-1 expression. Target protein down-regulated by miR-29b resulting in enhanced etoposide toxicity in Caco-2 cells was, however, Bcl-2 protein. Moreover, H9c2, Hek-293 and ARPE-19 cell lines selected as a representatives of non-malignant cells, showed no effect of miR-29b on etoposide toxicity. Our data suggest that miR-29b could be a common enhancer of etoposide toxicity in malignant cells due to its modulation of Bcl family proteins.
Collapse
Affiliation(s)
- Zdeněk Dostál
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Olomouc, Czech Republic
| | - Jana Buchtíková
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Olomouc, Czech Republic
| | - Jan Mandrla
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Olomouc, Czech Republic
| | - Martin Modrianský
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Olomouc, Czech Republic.
| |
Collapse
|
8
|
Kang D, Kim T, Choi GE, Park A, Yoon J, Yu J, Suh N. miR-29a-3p orchestrates key signaling pathways for enhanced migration of human mesenchymal stem cells. Cell Commun Signal 2024; 22:365. [PMID: 39020373 PMCID: PMC11256664 DOI: 10.1186/s12964-024-01737-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/04/2024] [Indexed: 07/19/2024] Open
Abstract
BACKGROUND The homing of human mesenchymal stem cells (hMSCs) is crucial for their therapeutic efficacy and is characterized by the orchestrated regulation of multiple signaling modules. However, the principal upstream regulators that synchronize these signaling pathways and their mechanisms during cellular migration remain largely unexplored. METHODS miR-29a-3p was exogenously expressed in either wild-type or DiGeorge syndrome critical region 8 (DGCR8) knockdown hMSCs. Multiple pathway components were analyzed using Western blotting, immunohistochemistry, and real-time quantitative PCR. hMSC migration was assessed both in vitro and in vivo through wound healing, Transwell, contraction, and in vivo migration assays. Extensive bioinformatic analyses using gene set enrichment analysis and Ingenuity pathway analysis identified enriched pathways, upstream regulators, and downstream targets. RESULTS The global depletion of microRNAs (miRNAs) due to DGCR8 gene silencing, a critical component of miRNA biogenesis, significantly impaired hMSC migration. The bioinformatics analysis identified miR-29a-3p as a pivotal upstream regulator. Its overexpression in DGCR8-knockdown hMSCs markedly improved their migration capabilities. Our data demonstrate that miR-29a-3p enhances cell migration by directly inhibiting two key phosphatases: protein tyrosine phosphatase receptor type kappa (PTPRK) and phosphatase and tensin homolog (PTEN). The ectopic expression of miR-29a-3p stabilized the polarization of the Golgi apparatus and actin cytoskeleton during wound healing. It also altered actomyosin contractility and cellular traction forces by changing the distribution and phosphorylation of myosin light chain 2. Additionally, it regulated focal adhesions by modulating the levels of PTPRK and paxillin. In immunocompromised mice, the migration of hMSCs overexpressing miR-29a-3p toward a chemoattractant significantly increased. CONCLUSIONS Our findings identify miR-29a-3p as a key upstream regulator that governs hMSC migration. Specifically, it was found to modulate principal signaling pathways, including polarization, actin cytoskeleton, contractility, and adhesion, both in vitro and in vivo, thereby reinforcing migration regulatory circuits.
Collapse
Affiliation(s)
- Dayeon Kang
- Department of Medical Sciences, General Graduate School, Soon Chun Hyang University, Asan, 31538, Republic of Korea
- Department of Pharmaceutical Engineering, College of Medical Sciences, Soon Chun Hyang University, Asan, 31538, Republic of Korea
| | - Taehwan Kim
- Department of Medical Sciences, General Graduate School, Soon Chun Hyang University, Asan, 31538, Republic of Korea
| | - Ga-Eun Choi
- Department of Medical Sciences, General Graduate School, Soon Chun Hyang University, Asan, 31538, Republic of Korea
| | - Arum Park
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Republic of Korea
| | - Jin Yoon
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Republic of Korea
| | - Jinho Yu
- Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Nayoung Suh
- Department of Medical Sciences, General Graduate School, Soon Chun Hyang University, Asan, 31538, Republic of Korea.
- Department of Pharmaceutical Engineering, College of Medical Sciences, Soon Chun Hyang University, Asan, 31538, Republic of Korea.
| |
Collapse
|
9
|
Yadollahi Farsani M, Amini Farsani Z, Teimuri S, Kolahdouzan M, Eshraghi Samani R, Teimori H. Deregulation of miR-1245b-5p and miR-92a-3p and their potential target gene, GATA3, in epithelial-mesenchymal transition pathway in breast cancer. Cancer Rep (Hoboken) 2024; 7:e1955. [PMID: 38173189 PMCID: PMC10849934 DOI: 10.1002/cnr2.1955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are small molecules that have prominent roles in tumor development and metastasis and can be used for diagnostic and therapeutic purposes. This study evaluated the expression of miR-92a-3p and miR-1245b-5p and their potential target gene, GATA3 in patients with breast cancer (BC). MATERIALS AND METHODS In the search for BC-related microRNAs, miR-124b-5p and miR-92a-3p were selected using Medline through PubMed, miR2disease, miRcancer and miRTarBase. Moreover, target gene GATA3 and their possible interaction in the regulating epithelial-mesenchymal transition (EMT) and invasion was evaluated using in silico tools including miRTarBase, TargetScan, STRING-db, and Cytoscape. The expression level of miR-92a-3p, miR1245b-5p, and GATA3 were assessed on extracted RNAs of tumor and nontumor tissues from 36 patients with BC using qPCR. Additionally, clinical-pathologic characteristics, such as tumor grade, tumor stage, lymph node were taken into consideration and the diagnostic power of these miRNAs and GATA3 was evaluated using the ROC curve analysis. RESULTS In silico evaluation of miR-92a-3p and miR-1245b-5p supports their potential association with EMT and invasion signaling pathways in BC pathogenesis. Comparing tumor tissues to nontumor tissues, we found a significant downregulation of miR-1245b-5p and miR-92a-3p and upregulation of GATA3. Patients with BC who had decreased miR-92a-3p expression also had higher rates of advanced stage/grade and ER expression, whereas decreased miR-1245b-5p expression was only linked to ER expression and was not associated with lymph node metastasis. The AUC of miR-1245b-5p, miR-92a-3p, and GATA3 using ROC curve was determined 0.6449 (p = .0239), 0.5980 (p = .1526), and 0.7415 (p < .0001), respectively, which showed a significant diagnostic accuracy of miR-1245b-5p and GATA3 between the BC patients and healthy individuals. CONCLUSION MiR-1245b-5p, miR-92a-3p, and GATA3 gene contribute to BC pathogenesis and they may be having potential regulatory roles in signaling pathways involved in invasion and EMT pathways in BC pathogenesis, as a result of these findings. More research is needed to determine the regulatory mechanisms that they control.
Collapse
Affiliation(s)
- Mahtab Yadollahi Farsani
- Department of Medical Biotechnology, School of Advanced TechnologiesShahrekord University of Medical SciencesShahrekordIran
| | - Zeinab Amini Farsani
- Cellular and Molecular Research Center, Basic Health Sciences InstituteShahrekord University of Medical SciencesShahrekordIran
| | | | - Mohsen Kolahdouzan
- Department of Surgery, School of MedicineIsfahan University of Medical SciencesIsfahanIran
| | - Reza Eshraghi Samani
- Department of Surgery, School of MedicineIsfahan University of Medical SciencesIsfahanIran
| | - Hossein Teimori
- Cellular and Molecular Research Center, Basic Health Sciences InstituteShahrekord University of Medical SciencesShahrekordIran
| |
Collapse
|
10
|
Mollanoori H, Ghelmani Y, Hassani B, Dehghani M. Integrated whole transcriptome profiling revealed a convoluted circular RNA-based competing endogenous RNAs regulatory network in colorectal cancer. Sci Rep 2024; 14:91. [PMID: 38167453 PMCID: PMC10761719 DOI: 10.1038/s41598-023-50230-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 12/17/2023] [Indexed: 01/05/2024] Open
Abstract
Recently, it has been identified that circRNAs can act as miRNA sponge to regulate gene expression in various types of cancers, associating them with cancer initiation and progression. The present study aims to identify colorectal cancer-related circRNAs and the underpinning mechanisms of circRNA/miRNA/mRNA networks in the development and progress of Colorectal Cancer. Differentially expressed circRNAs, miRNAs, and mRNAs were identified in GEO microarray datasets using the Limma package of R. The analysis of differentially expressed circRNAs resulted in 23 upregulated and 31 downregulated circRNAs. CeRNAs networks were constructed by intersecting the results of predicted and experimentally validated databases, circbank and miRWalk, and by performing DEMs and DEGs analysis using Cytoscape. Next, functional enrichment analysis was performed for DEGs included in ceRNA networks. Followed by survival analysis, expression profile assessment using TCGA and GEO data, and ROC curve analysis we identified a ceRNA sub-networks that revealed the potential regulatory effect of hsa_circ_0001955 and hsa_circ_0071681 on survival-related genes, namely KLF4, MYC, CCNA2, RACGAP1, and CD44. Overall, we constructed a convoluted regulatory network and outlined its likely mechanisms of action in CRC, which may contribute to the development of more effective approaches for early diagnosis, prognosis, and treatment of CRC.
Collapse
Affiliation(s)
- Hasan Mollanoori
- Medical Genetics Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Yaser Ghelmani
- Clinical Research Development Center, Shahid Sadoughi Hospital, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Bita Hassani
- Sarem Gynecology, Obstertrics and Infertility Research Center, Sarem Women's Hospital, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Mohammadreza Dehghani
- Medical Genetics Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
11
|
Babadag S, Çelebi-Saltik B. A cellular regulator of the niche: telocyte. Tissue Barriers 2023; 11:2131955. [PMID: 36218299 PMCID: PMC10606812 DOI: 10.1080/21688370.2022.2131955] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/24/2022] [Accepted: 09/28/2022] [Indexed: 10/17/2022] Open
Abstract
Interstitial cells are present in the environment of stem cells in order to increase stem cell proliferation and differentiation and they are important to increase the efficiency of their transplantation. Telocytes (TCs) play an important role both in the preservation of tissue organ integrity and in the pathophysiology of many diseases, especially cancer. They make homo- or heterocellular contacts to form the structure of 3D network through their telopodes and deliver signaling molecules via a juxtacrine and/or paracrine association by budding shed vesicles into the vascular, nervous and endocrine systems. During this interaction, along with organelles, mRNA, microRNA, long non-coding RNA, and genomic DNA are transferred. This review article not only specifies the properties of TCs and their roles in the tissue organ microenvironment but also gives information about the factors that play a role in the transport of epigenetic information by TCs.
Collapse
Affiliation(s)
- Sena Babadag
- Department of Stem Cell Sciences, Hacettepe University Graduate School of Health Sciences, Sihhiye, Turkey
- Center for Stem Cell Research and Development, Hacettepe University, Sihhiye, Turkey
| | - Betül Çelebi-Saltik
- Department of Stem Cell Sciences, Hacettepe University Graduate School of Health Sciences, Sihhiye, Turkey
- Center for Stem Cell Research and Development, Hacettepe University, Sihhiye, Turkey
| |
Collapse
|
12
|
Mokhlesi A, Sharifi Z, Berimipour A, Taleahmad S, Talkhabi M. Identification of hub genes and microRNAs with prognostic values in esophageal cancer by integrated analysis. Noncoding RNA Res 2023; 8:459-470. [PMID: 37416747 PMCID: PMC10319852 DOI: 10.1016/j.ncrna.2023.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 05/07/2023] [Accepted: 05/31/2023] [Indexed: 07/08/2023] Open
Abstract
Esophageal cancer (EC) is the eighth most common cancer in the world, and the sixth most common cause of cancer-related mortality. The aim of the present study was to identify cell and molecular mechanisms involved in EC, and to provide the potential targets for diagnosis and treatment. Here, a microarray dataset (GSE20347) was screened to find differentially expressed genes (DEGs). Different bioinformatic methods were used to analyze the identified DEGs. The up-regulated DEGs were significantly involved in different biological processes and pathways including extracellular matrix organization and ECM-receptor interaction. FN1, CDK1, AURKA, TOP2A, FOXM1, BIRC5, CDC6, UBE2C, TTK, and TPX2 were identified as the most important genes among the up-regulated DEGs. Our analysis showed that has-miR-29a-3p, has-miR-29b-3p, has-miR-29c-3p, and has-miR-767-5p had the largest number of common targets among the up-regulated DEGs. These findings strengthen the understanding of EC development and progression, as well as representing potential markers for EC diagnosis and treatment.
Collapse
Affiliation(s)
- Amir Mokhlesi
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Zahra Sharifi
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Ahmad Berimipour
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Sara Taleahmad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mahmood Talkhabi
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
13
|
Razi S, Mozdarani H, Behzadi Andouhjerdi R. Evaluation of the Potential Diagnostic Role of the Lnc-MIAT, miR-29a-3p, and FOXO3a ceRNA Networks as Noninvasive Circulatory Bioindicator in Ductal Carcinoma Breast Cancer. Breast Cancer (Auckl) 2023; 17:11782234231184378. [PMID: 37434996 PMCID: PMC10331106 DOI: 10.1177/11782234231184378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 06/06/2023] [Indexed: 07/13/2023] Open
Abstract
Background Over the last few decades, tremendous progress has been achieved in the early detection and treatment of breast cancer (BC). However, the prognosis remains unsatisfactory, and the underlying processes of carcinogenesis are still unclear. The purpose of this research was to find out the relationship between myocardial infarction-associated transcript (MIAT), FOXO3a, and miRNA29a-3p and evaluated the expression levels in patients compare with control and their potential as a noninvasive bioindicator in whole blood in BC. Methods Whole blood and BC tissue are taken from patients before radiotherapy and chemotherapy. Total RNA was extracted from BC tissue and whole blood to synthesize complementary DNA (cDNA). The expression of MIAT, FOXO3a, and miRNA29a-3p was analyzed by the quantitative reverse transcription-polymerase chain reaction (RT-qPCR) method and the sensitivity and specificity of them were determined by the receiver operating characteristic (ROC) curve. Bioinformatics analysis was used to understand the connections between MIAT, FOXO3a, and miRNA29a-3p in human BC to develop a ceRNA (competitive endogenous RNA) network. Results We identified that in ductal carcinoma BC tissue and whole blood, MIAT and FOXO3a were more highly expressed, whereas miRNA29a-3p was lower compared with those in nontumor samples. There was a positive correlation between the expression levels of MIAT, FOXO3a, and miRNA29a-3p in BC tissues and whole blood. Our results also proposed miRNA29a-3p as a common target between MIAT and FOXO3a, and we showed them as a ceRNA network. Conclusions This is the first study that indicates MIAT, FOXO3a, and miRNA29a-3p as a ceRNA network, and their expression was analyzed in both BC tissue and whole blood. As a preliminary assessment, our findings indicate that combined levels of MIAT, FOXO3a, and miR29a-3p may be considered as potential diagnostic bioindicator for BC.
Collapse
Affiliation(s)
- Shokufeh Razi
- Department of Genetics, Faculty of
Basic Sciences, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Hossein Mozdarani
- Department of Medical Genetics, Faculty
of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | |
Collapse
|
14
|
Asfa S, Toy HI, Arshinchi Bonab R, Chrousos GP, Pavlopoulou A, Geronikolou SA. Soft Tissue Ewing Sarcoma Cell Drug Resistance Revisited: A Systems Biology Approach. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6288. [PMID: 37444135 PMCID: PMC10341845 DOI: 10.3390/ijerph20136288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/08/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023]
Abstract
Ewing sarcoma is a rare type of cancer that develops in the bones and soft tissues. Drug therapy represents an extensively used modality for the treatment of sarcomas. However, cancer cells tend to develop resistance to antineoplastic agents, thereby posing a major barrier in treatment effectiveness. Thus, there is a need to uncover the molecular mechanisms underlying chemoresistance in sarcomas and, hence, to enhance the anticancer treatment outcome. In this study, a differential gene expression analysis was conducted on high-throughput transcriptomic data of chemoresistant versus chemoresponsive Ewing sarcoma cells. By applying functional enrichment analysis and protein-protein interactions on the differentially expressed genes and their corresponding products, we uncovered genes with a hub role in drug resistance. Granted that non-coding RNA epigenetic regulators play a pivotal role in chemotherapy by targeting genes associated with drug response, we investigated the non-coding RNA molecules that potentially regulate the expression of the detected chemoresistance genes. Of particular importance, some chemoresistance-relevant genes were associated with the autonomic nervous system, suggesting the involvement of the latter in the drug response. The findings of this study could be taken into consideration in the clinical setting for the accurate assessment of drug response in sarcoma patients and the application of tailored therapeutic strategies.
Collapse
Affiliation(s)
- Seyedehsadaf Asfa
- Izmir Biomedicine and Genome Center (IBG), 35340 Izmir, Turkey; (S.A.); (H.I.T.); (R.A.B.)
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, 35340 Izmir, Turkey
| | - Halil Ibrahim Toy
- Izmir Biomedicine and Genome Center (IBG), 35340 Izmir, Turkey; (S.A.); (H.I.T.); (R.A.B.)
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, 35340 Izmir, Turkey
| | - Reza Arshinchi Bonab
- Izmir Biomedicine and Genome Center (IBG), 35340 Izmir, Turkey; (S.A.); (H.I.T.); (R.A.B.)
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, 35340 Izmir, Turkey
| | - George P. Chrousos
- Clinical, Translational and Experimental Surgery Research Centre, Biomedical Research Foundation Academy of Athens, Soranou Ephessiou 4, 11527 Athens, Greece;
- University Research Institute of Maternal and Child Health and Precision Medicine and UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens, Aghia Sophia Children’s Hospital, Levadeias 8, 11527 Athens, Greece
| | - Athanasia Pavlopoulou
- Izmir Biomedicine and Genome Center (IBG), 35340 Izmir, Turkey; (S.A.); (H.I.T.); (R.A.B.)
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, 35340 Izmir, Turkey
| | - Styliani A. Geronikolou
- Clinical, Translational and Experimental Surgery Research Centre, Biomedical Research Foundation Academy of Athens, Soranou Ephessiou 4, 11527 Athens, Greece;
- University Research Institute of Maternal and Child Health and Precision Medicine and UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens, Aghia Sophia Children’s Hospital, Levadeias 8, 11527 Athens, Greece
| |
Collapse
|
15
|
Kimura Y, Ohzawa H, Miyato H, Kaneko Y, Kuchimaru T, Takahashi R, Yamaguchi H, Kurashina K, Saito S, Hosoya Y, Lefor AK, Sata N, Kitayama J. Intraperitoneal transfer of microRNA-29b-containing small extracellular vesicles can suppress peritoneal metastases of gastric cancer. Cancer Sci 2023; 114:2939-2950. [PMID: 36939028 PMCID: PMC10323101 DOI: 10.1111/cas.15793] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/13/2023] [Accepted: 03/16/2023] [Indexed: 03/21/2023] Open
Abstract
Small extracellular vesicles (sEV) contain various microRNAs (miRNAs) and play crucial roles in the tumor metastatic process. Although miR-29b levels in peritoneal exosomes were markedly reduced in patients with peritoneal metastases (PM), their role has not been fully clarified. In this study, we asked whether the replacement of miR-29b can affect the development of PM in a murine model. UE6E7T-12, human bone marrow-derived mesenchymal stem cells (BMSCs), were transfected with miR-29b-integrating recombinant lentiviral vector and sEV were isolated from culture supernatants using ultracentrifugation. The sEV contained markedly increased amounts of miR-29b compared with negative controls. Treatment with transforming growth factor-β1 decreased the expression of E-cadherin and calretinin with increased expression of vimentin and fibronectin on human omental tissue-derived mesothelial cells (HPMCs). However, the effects were totally abrogated by adding miR-29b-rich sEV. The sEV inhibited proliferation and migration of HPMCs by 15% (p < 0.005, n = 6) and 70% (p < 0.005, n = 6), respectively, and inhibited adhesion of NUGC-4 and MKN45 to HPMCs by 90% (p < 0.0001, n = 5) and 77% (p < 0.0001, n = 5), respectively. MicroRNA-29b-rich murine sEV were similarly obtained using mouse BMSCs and examined for in vivo effects with a syngeneic murine model using YTN16P, a highly metastatic clone of gastric cancer cell. Intraperitoneal (IP) transfer of the sEV every 3 days markedly reduced the number of PM from YTN16P in the mesentery (p < 0.05, n = 6) and the omentum (p < 0.05, n = 6). Bone marrow mesenchymal stem cell-derived sEV are a useful carrier for IP administration of miR-29b, which can suppress the development of PM of gastric cancer.
Collapse
Affiliation(s)
- Yuki Kimura
- Department of SurgeryJichi Medical University HospitalShimotsukeJapan
| | - Hideyuki Ohzawa
- Department of Clinical OncologyJichi Medical University HospitalShimotsukeJapan
| | - Hideyo Miyato
- Department of SurgeryJichi Medical University HospitalShimotsukeJapan
| | - Yuki Kaneko
- Department of SurgeryJichi Medical University HospitalShimotsukeJapan
| | | | - Rei Takahashi
- Department of SurgeryJichi Medical University HospitalShimotsukeJapan
| | - Hironori Yamaguchi
- Department of Clinical OncologyJichi Medical University HospitalShimotsukeJapan
| | - Kentaro Kurashina
- Department of SurgeryJichi Medical University HospitalShimotsukeJapan
| | - Shin Saito
- Department of SurgeryJichi Medical University HospitalShimotsukeJapan
| | - Yoshinori Hosoya
- Department of SurgeryJichi Medical University HospitalShimotsukeJapan
| | | | - Naohiro Sata
- Department of SurgeryJichi Medical University HospitalShimotsukeJapan
| | - Joji Kitayama
- Department of SurgeryJichi Medical University HospitalShimotsukeJapan
- Center for Clinical ResearchJichi Medical University HospitalShimotsukeJapan
| |
Collapse
|
16
|
Hoorzad P, Mousavinasab F, Tofigh P, Kalahroud EM, Aghaei-Zarch SM, Salehi A, Fattahi M, Le BN. Understanding the lncRNA/miRNA-NFκB regulatory network in Diabetes Mellitus: From function to clinical translation. Diabetes Res Clin Pract 2023:110804. [PMID: 37369279 DOI: 10.1016/j.diabres.2023.110804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/24/2023] [Accepted: 06/22/2023] [Indexed: 06/29/2023]
Abstract
Diabetes mellitus (DM) and its significant ramifications make out one of the primary reasons behind morbidity worldwide. Noncoding RNAs (ncRNAs), such as microRNAs and long noncoding RNAs, are involved in regulating manifold biological processes, including diabetes initiation and progression. One of the established pathways attributed to DM development is NF-κB signaling. Neurons, β cells, adipocytes, and hepatocytes are among the metabolic tissues where NF-κB is known to produce a range of inflammatory chemokines and cytokines. The direct or indirect role of ncRNAs such as lncRNAs and miRNAs on the NF-κB signaling pathway and DM development has been supported by many studies. As a result, effective diabetes treatment and preventive methods will benefit from a comprehensive examination of the interplay between NF-κB and ncRNAs. Herein, we provide a concise overview of the role of NF-κB-mediated signaling pathways in diabetes mellitus and its consequences. The reciprocal regulation of ncRNAs and the NF-κB signaling pathway in diabetes is then discussed, shedding light on the pathogenesis of the illness and its possible therapeutic interventions.
Collapse
Affiliation(s)
- Parisa Hoorzad
- Department of Molecular and cellular biology, Faculty of basic sciences and Advanced technologies in Biology, University of Science and Culture, ACECR, Tehran, Iran
| | | | - Pouya Tofigh
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran
| | | | - Seyed Mohsen Aghaei-Zarch
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Salehi
- Department of Cellular and Molecular Biology, Faculity of New Science and technology, Tehran Medical Branch, Islamic Azad University, Tehran, Iran.
| | - Mehdi Fattahi
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam; School of engineering & Technology, Duy Tan University, Da Nang, Vietnam.
| | - Binh Nguyen Le
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam; School of engineering & Technology, Duy Tan University, Da Nang, Vietnam
| |
Collapse
|
17
|
Hakiminia F, Jannat Alipoor F, Keshavarz M, Asadi MH. LncRNA PNKY Is Upregulated in Breast Cancer and Promotes Cell Proliferation and EMT in Breast Cancer Cells. Noncoding RNA 2023; 9:ncrna9020025. [PMID: 37104007 PMCID: PMC10143469 DOI: 10.3390/ncrna9020025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/16/2023] [Accepted: 03/23/2023] [Indexed: 04/28/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are known to be important regulators in different cellular processes and are implicated in various human diseases. Recently, lncRNA PNKY has been found to be involved in pluripotency and differentiation of embryonic and postnatal neural stem cells (NSCs); however, its expression and function in cancer cells is still unclear. In the present study, we observed the expression of PNKY in various cancer tissues, including brain, breast, colorectal, and prostate cancers. In particular, we demonstrated that lncRNA PNKY was significantly upregulated in breast tumors, especially high-grade tumors. Knock down experiments indicated that the suppression of PNKY in breast cancer cells could restrict their proliferation by promoting apoptosis, senescence, and cell cycle disruption. Moreover, the results demonstrated that PNKY may play a crucial role in the cell migration of breast cancer cells. We further found that PNKY may trigger EMT in breast cancer cells by upregulating miR-150 and restricting the expression of Zeb1 and Snail. This study is the first to provide new evidence on the expression and biological function of PNKY in cancer cells and its potential contribution to tumor growth and metastasis.
Collapse
Affiliation(s)
- Forough Hakiminia
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman 7631885356, Iran
| | - Firooz Jannat Alipoor
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman 7631885356, Iran
| | - Mostafa Keshavarz
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman 7631885356, Iran
| | - Malek Hossein Asadi
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman 7631885356, Iran
| |
Collapse
|
18
|
Murugan D, Rangasamy L. A perspective to weaponize microRNAs against lung cancer. Noncoding RNA Res 2023; 8:18-32. [PMID: 36262424 PMCID: PMC9556932 DOI: 10.1016/j.ncrna.2022.09.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/25/2022] [Accepted: 09/26/2022] [Indexed: 12/02/2022] Open
Abstract
microRNAs are regulatory RNAs that silence specific mRNA by binding to it, inducing translational repression. Over the recent decades since the discovery of RNA interference, the field of microRNA therapeutics has expanded tremendously. The role of miRNAs in disease development has attracted researchers to investigate their potential in therapeutics. In lung cancer, multiple miRNAs are deregulated, and their involvement is observed in cell proliferation, immunomodulation, angiogenesis, and epithelial-mesenchymal transition. Thus, synthetic oligonucleotides are developed to downregulate the overexpressed miRNA or to upregulate the repressed miRNA. However, their clinical efficiency is limited due to the requirement for an effective delivery strategy. Advances in the current understanding of nanotechnology, biomaterial science, and disease molecular pathology have increased the chances of overcoming the limitations of miRNA-based therapy. This review enlists downregulated and upregulated miRNAs in lung cancer. This review also highlights the major contributions to miRNA-based therapeutics for lung cancer and strategies to overcome endosomal barriers. It also attempts to understand the nuances between current advancements in delivery methods, advantages, disadvantages, and practical issues for the large-scale development of miRNA-based therapeutics.
Collapse
Affiliation(s)
- Dhanashree Murugan
- Drug Discovery Unit (DDU), Centre for Biomaterials, Cellular, and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India
- School of Biosciences & Technology (SBST), Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India
| | - Loganathan Rangasamy
- Drug Discovery Unit (DDU), Centre for Biomaterials, Cellular, and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India
| |
Collapse
|
19
|
Sibuh BZ, Quazi S, Panday H, Parashar R, Jha NK, Mathur R, Jha SK, Taneja P, Jha AK. The Emerging Role of Epigenetics in Metabolism and Endocrinology. BIOLOGY 2023; 12:256. [PMID: 36829533 PMCID: PMC9953656 DOI: 10.3390/biology12020256] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 02/10/2023]
Abstract
Each cell in a multicellular organism has its own phenotype despite sharing the same genome. Epigenetics is a somatic, heritable pattern of gene expression or cellular phenotype mediated by structural changes in chromatin that occur without altering the DNA sequence. Epigenetic modification is an important factor in determining the level and timing of gene expression in response to endogenous and exogenous stimuli. There is also growing evidence concerning the interaction between epigenetics and metabolism. Accordingly, several enzymes that consume vital metabolites as substrates or cofactors are used during the catalysis of epigenetic modification. Therefore, altered metabolism might lead to diseases and pathogenesis, including endocrine disorders and cancer. In addition, it has been demonstrated that epigenetic modification influences the endocrine system and immune response-related pathways. In this regard, epigenetic modification may impact the levels of hormones that are important in regulating growth, development, reproduction, energy balance, and metabolism. Altering the function of the endocrine system has negative health consequences. Furthermore, endocrine disruptors (EDC) have a significant impact on the endocrine system, causing the abnormal functioning of hormones and their receptors, resulting in various diseases and disorders. Overall, this review focuses on the impact of epigenetics on the endocrine system and its interaction with metabolism.
Collapse
Affiliation(s)
- Belay Zeleke Sibuh
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Knowledge Park III, Greater Noida 201310, India
| | - Sameer Quazi
- GenLab Biosolutions Private Limited, Bangalore 560043, India
- Department of Biomedical Sciences, School of Life Sciences, Anglia Ruskin University, Cambridge CB1 1PT, UK
- Clinical Bioinformatics, School of Health Sciences, The University of Manchester, Manchester M13 9P, UK
- SCAMT Institute, ITMO University, St. Petersburg 197101, Russia
| | - Hrithika Panday
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Knowledge Park III, Greater Noida 201310, India
| | - Ritika Parashar
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Knowledge Park III, Greater Noida 201310, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Knowledge Park III, Greater Noida 201310, India
- School of Bioengineering & Biosciences, Lovely Professional University, Phagwara 144411, India
| | - Runjhun Mathur
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Knowledge Park III, Greater Noida 201310, India
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Knowledge Park III, Greater Noida 201310, India
- Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun 248007, India
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali 140413, India
| | - Pankaj Taneja
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Knowledge Park III, Greater Noida 201310, India
| | - Abhimanyu Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Knowledge Park III, Greater Noida 201310, India
| |
Collapse
|
20
|
Baptista B, Oliveira ASR, Mendonça P, Serra AC, Coelho JFJ, Sousa F. pH-responsive nanoparticles based on POEOMA-b-PDPA block copolymers for RNA encapsulation, protection and cell delivery. BIOMATERIALS ADVANCES 2023; 145:213267. [PMID: 36599197 DOI: 10.1016/j.bioadv.2022.213267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 12/13/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
The use of gene-based products, such as DNA or RNA, is increasingly being explored for various innovative therapies. However, the success of these strategies is highly dependent on the effective delivery of these biomolecules to target cells. Therefore, the development of pH-responsive nanoparticles comprises the creation of intelligent delivery systems with high therapeutic efficiency. In this work, the pH-responsiveness of the poly(2-(diisopropylamino)ethyl methacrylate)) (PDPA) block was investigated for the encapsulation and delivery of small RNAs (sRNA) to cancer cells. The pH responsiveness was dependent on the protonation profile of the tertiary amines of PDPA, which directly affected the electrostatic interactions established with RNA. Thus, block copolymers based on poly(oligo(ethylene oxide) methyl ether methacrylate) (POEOMA) and PDPA, POEOMA-b-PDPA, were synthesized by supplemental activator and reducing agent atom transfer radical polymerization (SARA ATRP). The structure of the block copolymers was characterized by size exclusion chromatography and 1H NMR spectroscopy. The copolymers allowed effective complexation of model sRNAs and a pre-miRNA with efficiencies of about 89 % and 91 %, respectively. The characterization by dynamic light scattering revealed that these systems had sizes between 76 and 1375 nm. It was also found that the morphology of the polyplexes depended on the pH, since the preparation at a pH lower than the pKa of the copolymers resulted in spherical but polydisperse particles, while higher pH values resulted in nanoparticles with more homogeneous size, but altered morphology. Moreover, due to pH-responsiveness, it was achieved the release of RNA at pH higher than the pKa of the copolymers, while maintaining its integrity. The polyplexes also showed a high potential to protect RNA from RNases. The transfection of a lung cancer model (A549) and fibroblast cell lines showed that these polyplexes did not cause cell toxicity. In addition, the polyplexes enabled the effective transfection of the A549 cell line with pre-miRNA-29b and miRNA-29b, resulting in a decrease of expression levels of the target DNMT3B gene by approximately 51 % and 47 %, respectively. Overall, the POEOMA-b-PDPA copolymers proved to be a promising strategy for developing responsive delivery systems, that can play a critical role in some diseases, such as cancer, where pH varies between the intra and extracellular environments.
Collapse
Affiliation(s)
- Bruno Baptista
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Andreia S R Oliveira
- University of Coimbra, Centre for Mechanical Engineering, Materials and Processes, Department of Chemical Engineering, Rua Sílvio Lima-Polo II, 3030-790 Coimbra, Portugal
| | - Patrícia Mendonça
- University of Coimbra, Centre for Mechanical Engineering, Materials and Processes, Department of Chemical Engineering, Rua Sílvio Lima-Polo II, 3030-790 Coimbra, Portugal
| | - Arménio C Serra
- University of Coimbra, Centre for Mechanical Engineering, Materials and Processes, Department of Chemical Engineering, Rua Sílvio Lima-Polo II, 3030-790 Coimbra, Portugal
| | - Jorge F J Coelho
- University of Coimbra, Centre for Mechanical Engineering, Materials and Processes, Department of Chemical Engineering, Rua Sílvio Lima-Polo II, 3030-790 Coimbra, Portugal
| | - Fani Sousa
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal.
| |
Collapse
|
21
|
Zeng H, Safratowich BD, Cheng WH, Bukowski MR. Identification of oncogenic signatures in the inflammatory colon of C57BL/6 mice fed a high-fat diet. J Nutr Biochem 2023; 111:109188. [PMID: 36272693 DOI: 10.1016/j.jnutbio.2022.109188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 06/21/2022] [Accepted: 09/15/2022] [Indexed: 11/07/2022]
Abstract
Adoption of an obesogenic diet such as a high-fat diet (HFD) results in obesity, bacterial dysbiosis, chronic inflammation, and cancer. Gut bacteria and their metabolites are recognized by interleukin-1 (IL-1R)/toll-like receptors (TLRs) which are essential to maintain intestinal homeostasis. Moreover, host extracellular microRNAs (miRNAs) can alter bacterial growth in the colon. Characterization of the underlying mechanisms may lead to identifying fecal oncogenic signatures reflecting colonic health. We hypothesize that an HFD accelerates the inflammatory process and modulates IL-1R/TLR pathways, gut microbiome, and disease-related miRNA in the colon. In this study, 4-week-old C57BL/6 mice were fed a modified AIN93G diet (AIN, 16% energy fat) or an HFD (45% energy fat) for 15 weeks. In addition to increased body weight and body fat composition, the concentrations of plasma interleukin 6 (IL-6), inflammatory cell infiltration, β-catenin, and cell proliferation marker (Ki67) in the colon were elevated > 68% in the HFD group compared to the AIN group. Using a PCR array analysis, we identified 14 out of 84 genes with a ≥ 24% decrease in mRNA content related to IL-1R and TLR pathways in colonic epithelial cells in mice fed an HFD compared to the AIN. Furthermore, the content of Alistipes bacteria, the Firmicutes/Bacteroidetes ratio, microRNA-29a, and deoxycholic and lithocholic acids (secondary bile acids with oncogenic potential) were 55% greater in the feces of the HFD group compared to the AIN group. Collectively, this composite, a multimodal profile may represent a unique HFD-induced fecal signature for colonic inflammation and cancer in C57BL/6 mice.
Collapse
Affiliation(s)
- Huawei Zeng
- United States Department of Agriculture, Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, North Dakota, USA.
| | - Bryan D Safratowich
- United States Department of Agriculture, Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, North Dakota, USA
| | - Wen-Hsing Cheng
- Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, USA
| | - Michael R Bukowski
- United States Department of Agriculture, Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, North Dakota, USA
| |
Collapse
|
22
|
Kiran S, Patra A, Verma P, Purkait S, Chhabra G, Guttula PK, Ghosh A. Restoration of Altered Oncogenic and Tumor Suppressor microRNA Expression in Breast Cancer and Colorectal Cancer Cell using Epicatechin. Curr Mol Pharmacol 2023; 16:915-926. [PMID: 36809960 DOI: 10.2174/1874467216666230210091839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 02/17/2023]
Abstract
BACKGROUND MicroRNAs (miRNA) are small non-coding RNAs that regulate the function of mRNA post-transcriptionally in a tissue-specific manner. miRNA expressions are heavily dysregulated in human cancer cells through various mechanisms, including epigenetic changes, karyotype abnormalities, and miRNA biogenesis defects. miRNAs may act as either oncogenes or tumor suppressors under different conditions. Epicatechin is a natural compound found in green tea which possesses antioxidant and antitumor properties. OBJECTIVE The objective of this study is to investigate the effect of epicatechin treatment on the expression level of several oncogenic and tumor suppressor miRNAs in breast and colorectal cancer cell lines (MCF7 and HT-29) and identify its mechanism of action. METHODS The MCF-7 and HT29 cells were treated with epicatechin for 24 hours and untreated cells were considered control cultures. miRNA was isolated and qRT-PCR was used to measure the expression profile changes of different oncogenic and tumor suppressor miRNAs. Furthermore, the mRNA expression profile was also screened at different concentrations of epicatechin. RESULTS Our results showed several-fold changes in miRNAs expression level, which is cell line specific. Also, epicatechin at different concentrations induces biphasic changes in mRNA expression levels in both cell lines. CONCLUSION Our findings first time demonstrated that epicatechin can reverse the expression of these miRNAs and may trigger the cytostatic effect at a lower concentration.
Collapse
Affiliation(s)
- Sheetal Kiran
- Department of Physiology, All India Institute of Medical Sciences, Bhubaneswar, Odisha 751019, India
| | - Abhilipsa Patra
- Department of Physiology, All India Institute of Medical Sciences, Bhubaneswar, Odisha 751019, India
| | - Poonam Verma
- Department of Physiology, All India Institute of Medical Sciences, Bhubaneswar, Odisha 751019, India
| | - Suvendu Purkait
- Department of Pathology, All India Institute of Medical Sciences, Bhubaneswar, Odisha 751019, India
| | - Gaurav Chhabra
- Department of Pathology, All India Institute of Medical Sciences, Bhubaneswar, Odisha 751019, India
| | - Praveen Kumar Guttula
- Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Amit Ghosh
- Department of Physiology, All India Institute of Medical Sciences, Bhubaneswar, Odisha 751019, India
| |
Collapse
|
23
|
Arshinchi Bonab R, Asfa S, Kontou P, Karakülah G, Pavlopoulou A. Identification of neoplasm-specific signatures of miRNA interactions by employing a systems biology approach. PeerJ 2022; 10:e14149. [PMID: 36213495 PMCID: PMC9536303 DOI: 10.7717/peerj.14149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 09/07/2022] [Indexed: 01/21/2023] Open
Abstract
MicroRNAs represent major regulatory components of the disease epigenome and they constitute powerful biomarkers for the accurate diagnosis and prognosis of various diseases, including cancers. The advent of high-throughput technologies facilitated the generation of a vast amount of miRNA-cancer association data. Computational approaches have been utilized widely to effectively analyze and interpret these data towards the identification of miRNA signatures for diverse types of cancers. Herein, a novel computational workflow was applied to discover core sets of miRNA interactions for the major groups of neoplastic diseases by employing network-based methods. To this end, miRNA-cancer association data from four comprehensive publicly available resources were utilized for constructing miRNA-centered networks for each major group of neoplasms. The corresponding miRNA-miRNA interactions were inferred based on shared functionally related target genes. The topological attributes of the generated networks were investigated in order to detect clusters of highly interconnected miRNAs that form core modules in each network. Those modules that exhibited the highest degree of mutual exclusivity were selected from each graph. In this way, neoplasm-specific miRNA modules were identified that could represent potential signatures for the corresponding diseases.
Collapse
Affiliation(s)
- Reza Arshinchi Bonab
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Izmir, Turkey,Izmir Biomedicine and Genome Center, Izmir, Turkey
| | - Seyedehsadaf Asfa
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Izmir, Turkey,Izmir Biomedicine and Genome Center, Izmir, Turkey
| | - Panagiota Kontou
- Department of Mathematics, University of Thessaly, Lamia, Greece
| | - Gökhan Karakülah
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Izmir, Turkey,Izmir Biomedicine and Genome Center, Izmir, Turkey
| | - Athanasia Pavlopoulou
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Izmir, Turkey,Izmir Biomedicine and Genome Center, Izmir, Turkey
| |
Collapse
|
24
|
Mir-29b in Breast Cancer: A Promising Target for Therapeutic Approaches. Diagnostics (Basel) 2022; 12:diagnostics12092139. [PMID: 36140539 PMCID: PMC9497770 DOI: 10.3390/diagnostics12092139] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 11/22/2022] Open
Abstract
The miR-29 family comprises miR-29a, miR-29b, and miR-29c, and these molecules play crucial and partially overlapped functions in solid tumors, in which the different isoforms are variously de-regulated and mainly correlated with tumor suppression. miR-29b is the most expressed family member in cancer, in which it is involved in regulating gene expression at both transcriptional and post-transcriptional levels. This review focuses on the role of miR-29b in breast cancer, in which it plays a controversial role as tumor suppressor or onco-miRNA. Here we have highlighted the dual effect of miR-29b on breast tumor features, which depend on the prevailing function of this miRNA, on the mature miR-29b evaluated, and on the breast tumor characteristics. Remarkably, the analyzed miR-29b form emerged as a crucial element in the results obtained by various research groups, as the most abundant miR-29b-3p and the less expressed miR-29b1-5p seem to play distinct roles in breast tumors with different phenotypes. Of particular interest are the data showing that miR-29b1-5p counteracts cell proliferation and migration and reduces stemness in breast tumor cells with a triple negative phenotype. Even if further studies are required to define exactly the role of each miR-29b, our review highlights its possible implication in phenotype-specific management of breast tumors.
Collapse
|
25
|
Jo W, Kim M, Oh J, Kim CS, Park C, Yoon S, Lee C, Kim S, Nam D, Park J. MicroRNA-29 Ameliorates Fibro-Inflammation and Insulin Resistance in HIF1α-Deficient Obese Adipose Tissue by Inhibiting Endotrophin Generation. Diabetes 2022; 71:1746-1762. [PMID: 35167651 DOI: 10.2337/db21-0801] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 02/09/2022] [Indexed: 11/13/2022]
Abstract
Dysregulation of extracellular matrix proteins in obese adipose tissue (AT) induces systemic insulin resistance. The metabolic roles of type VI collagen and its cleavage peptide endotrophin in obese AT are well established. However, the mechanisms regulating endotrophin generation remain elusive. Herein, we identified that several endotrophin-containing peptides (pre-endotrophins) were generated from the COL6A3 chain in a stepwise manner for the efficient production of mature endotrophin, partly through the action of hypoxia-induced matrix metalloproteinases (MMPs), including MMP2, MMP9, and MMP16. Hypoxia is an upstream regulator of COL6A3 expression and the proteolytic processing that regulates endotrophin generation. Hypoxia-inducible factor 1α (HIF1α) and the hypoxia-associated suppression of microRNA-29 (miR-29) cooperatively control the levels of COL6A3 and MMPs, which are responsible for endotrophin generation in hypoxic ATs. Adipocyte-specific Hif1α knock-out (APN-HIF1αKO) mice fed a chronic high-fat diet exhibited the significant amelioration of both local fibro-inflammation in AT and systemic insulin resistance compared with their control littermates, partly through the inhibition of endotrophin generation. Strikingly, adenovirus-mediated miR-29 overexpression in the ATs of APN-HIF1αKO mice in obesity significantly decreased endotrophin levels, suggesting that miR-29, combined with HIF1α inhibition in AT, could be a promising therapeutic strategy for treating obesity and related metabolic diseases.
Collapse
|
26
|
Thomaidou AC, Batsaki P, Adamaki M, Goulielmaki M, Baxevanis CN, Zoumpourlis V, Fortis SP. Promising Biomarkers in Head and Neck Cancer: The Most Clinically Important miRNAs. Int J Mol Sci 2022; 23:ijms23158257. [PMID: 35897831 PMCID: PMC9367895 DOI: 10.3390/ijms23158257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 02/01/2023] Open
Abstract
Head and neck cancers (HNCs) comprise a heterogeneous group of tumors that extend from the oral cavity to the upper gastrointestinal tract. The principal etiologic factors for oral tumors include tobacco smoking and alcohol consumption, while human papillomavirus (HPV) infections have been accused of a high incidence of pharyngeal tumors. Accordingly, HPV detection has been extensively used to categorize carcinomas of the head and neck. The diverse nature of HNC highlights the necessity for novel, sensitive, and precise biomarkers for the prompt diagnosis of the disease, its successful monitoring, and the timely prognosis of patient clinical outcomes. In this context, the identification of certain microRNAs (miRNAs) and/or the detection of alterations in their expression patterns, in a variety of somatic fluids and tissues, could serve as valuable biomarkers for precision oncology. In the present review, we summarize some of the most frequently studied miRNAs (including miR-21, -375, -99, -34a, -200, -31, -125a/b, -196a/b, -9, -181a, -155, -146a, -23a, -16, -29, and let-7), their role as biomarkers, and their implication in HNC pathogenesis. Moreover, we designate the potential of given miRNAs and miRNA signatures as novel diagnostic and prognostic tools for successful patient stratification. Finally, we discuss the currently ongoing clinical trials that aim to identify the diagnostic, prognostic, or therapeutic utility of miRNAs in HNC.
Collapse
Affiliation(s)
- Arsinoe C. Thomaidou
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 11635 Athens, Greece; (A.C.T.); (M.A.)
| | - Panagiota Batsaki
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 11522 Athens, Greece; (P.B.); (M.G.); (C.N.B.)
| | - Maria Adamaki
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 11635 Athens, Greece; (A.C.T.); (M.A.)
| | - Maria Goulielmaki
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 11522 Athens, Greece; (P.B.); (M.G.); (C.N.B.)
| | - Constantin N. Baxevanis
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 11522 Athens, Greece; (P.B.); (M.G.); (C.N.B.)
| | - Vassilis Zoumpourlis
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 11635 Athens, Greece; (A.C.T.); (M.A.)
- Correspondence: (V.Z.); (S.P.F.); Tel.: +30-210-727-3730 (V.Z.); +30-210-640-9462 (S.P.F.)
| | - Sotirios P. Fortis
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 11522 Athens, Greece; (P.B.); (M.G.); (C.N.B.)
- Correspondence: (V.Z.); (S.P.F.); Tel.: +30-210-727-3730 (V.Z.); +30-210-640-9462 (S.P.F.)
| |
Collapse
|
27
|
Zhao J, Ma X, Xu H. miR‑29b‑3p inhibits 22Rv1 prostate cancer cell proliferation through the YWHAE/BCL‑2 regulatory axis. Oncol Lett 2022; 24:289. [PMID: 35928803 PMCID: PMC9344263 DOI: 10.3892/ol.2022.13409] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 06/06/2022] [Indexed: 11/06/2022] Open
Abstract
Prostate cancer (PCa) is one of the most common malignant tumours in the world and seriously affects health of men. Studies have shown that microRNA (miR)-29b-3p and tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein epsilon (YWHAE) play important roles in influencing the proliferation and apoptosis of PCa cells. However, the molecular mechanism of miR-29b-3p and YWHAE in the proliferation and apoptosis of PCa cells remains unclear. In the present study, bioinformatics as well as in vivo and in vitro experiments were used to predict and verify the targeting relationship between YWHAE and mir-29B-3p and investigate the potential roles of YWHAE and mir-29b-3p in the proliferation and apoptosis of 22RV1 cells. Using bioinformatics and a double luciferase system assay, it was confirmed that miR-29b-3p can target YWHAE 3′untranslated region and affect the expression of YWHAE, suggesting that miR-29b-3p may be a potential miRNA of YWHAE. Reverse transcription-quantitative PCR, Cell Counting Kit-8, Transwell and cell scratch assays showed that miR-29b-3p significantly inhibited the proliferation, invasion and migration of 22Rv1 cells (P<0.01). Rescue experiments demonstrated that YWHAE gene introduction reversed the inhibitory effect of miR-29b-3p on 22Rv1 cells. Western blotting revealed that the upregulation of miR-29b-3p inhibited YWHAE expression, resulting in a very significant decrease in the ratio of p-BAD/BAD and full-length caspase 3/cleaved caspase 3 (P<0.01) and an extremely significant increase in the ratio of BAX/BCL-2 (P<0.01). A tumourigenesis test in nude mice in vivo confirmed that the upregulation of miR-29b-3p inhibited tumour growth by targeting YWHAE. The present experiments confirmed that miR-29b-3p plays a tumour suppressor role in 22Rv1 PCa cells, and the YWHAE/BCL-2 regulatory axis plays a vital role in miR-29b-3p regulating the proliferation and apoptosis of 22Rv1 cells. These results may provide a theoretical basis for the diagnosis and targeted treatment of PCa.
Collapse
Affiliation(s)
- Jiafu Zhao
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, Guizhou 550025, P.R. China
| | - Xiaoyan Ma
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, Guizhou 550025, P.R. China
| | - Houqiang Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, Guizhou 550025, P.R. China
| |
Collapse
|
28
|
Pirlog R, Chiroi P, Rusu I, Jurj AM, Budisan L, Pop-Bica C, Braicu C, Crisan D, Sabourin JC, Berindan-Neagoe I. Cellular and Molecular Profiling of Tumor Microenvironment and Early-Stage Lung Cancer. Int J Mol Sci 2022; 23:5346. [PMID: 35628157 PMCID: PMC9140615 DOI: 10.3390/ijms23105346] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 12/12/2022] Open
Abstract
Lung cancers are broadly divided into two categories: non-small-cell lung carcinoma (NSCLC), which accounts for 80-85% of all cancer cases, and small-cell lung carcinoma (SCLC), which covers the remaining 10-15%. Recent advances in cancer biology and genomics research have allowed an in-depth characterization of lung cancers that have revealed new therapy targets (EGFR, ALK, ROS, and KRAS mutations) and have the potential of revealing even more biomarkers for diagnostic, prognostic, and targeted therapies. A new source of biomarkers is represented by non-coding RNAs, especially microRNAs (miRNAs). MiRNAs are short non-coding RNA sequences that have essential regulatory roles in multiple cancers. Therefore, we aim to investigate the tumor microenvironment (TME) and miRNA tumor profile in a subset of 51 early-stage lung cancer samples (T1 and T2) to better understand early tumor and TME organization and molecular dysregulation. We analyzed the immunohistochemistry expression of CD4 and CD8 as markers of the main TME immune populations, E-cadherin to evaluate early-stage epithelial-to-mesenchymal transition (EMT), and p53, the main altered tumor suppressor gene in lung cancer. Starting from these 4 markers, we identified and validated 4 miRNAs that target TP53 and regulate EMT that can be further investigated as potential early-stage lung cancer biomarkers.
Collapse
Affiliation(s)
- Radu Pirlog
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (R.P.); (P.C.); (A.M.J.); (L.B.); (C.P.-B.); (C.B.)
| | - Paul Chiroi
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (R.P.); (P.C.); (A.M.J.); (L.B.); (C.P.-B.); (C.B.)
| | - Ioana Rusu
- Department of Pathology, Regional Institute of Gastroenterology and Hepatology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400186 Cluj-Napoca, Romania;
| | - Ancuta Maria Jurj
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (R.P.); (P.C.); (A.M.J.); (L.B.); (C.P.-B.); (C.B.)
| | - Liviuta Budisan
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (R.P.); (P.C.); (A.M.J.); (L.B.); (C.P.-B.); (C.B.)
| | - Cecilia Pop-Bica
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (R.P.); (P.C.); (A.M.J.); (L.B.); (C.P.-B.); (C.B.)
| | - Cornelia Braicu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (R.P.); (P.C.); (A.M.J.); (L.B.); (C.P.-B.); (C.B.)
| | - Doinita Crisan
- Department of Morphological Sciences, “Iuliu Hațieganu” University of Medicine and Pharmacy, 6 Pasteur Street, 400349 Cluj-Napoca, Romania
| | - Jean-Christophe Sabourin
- Pathology Department and INSERM U1245, Rouen University Hospital, Normandy University, 76000 Rouen, France;
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (R.P.); (P.C.); (A.M.J.); (L.B.); (C.P.-B.); (C.B.)
| |
Collapse
|
29
|
Joint Effects of Cigarette Smoking and Green Tea Consumption with miR-29b and DNMT3B mRNA Expression in the Development of Lung Cancer. Genes (Basel) 2022; 13:genes13050836. [PMID: 35627221 PMCID: PMC9141651 DOI: 10.3390/genes13050836] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 04/30/2022] [Accepted: 05/05/2022] [Indexed: 12/23/2022] Open
Abstract
In tumor development, increased expression of DNA methyltransferase (DNMT) has been observed. In particular, cigarette smoke and tea polyphenols may influence DNMT3B mRNA expression by regulating microRNA (miR)-29b expression. Herein, we designed a case−control study to evaluate the joint effects of smoking and green tea consumption, with miR-29b and DNMT3B mRNA expression, in lung cancer development. A total of 132 lung cancer patients and 132 healthy controls were recruited to measure miR-29b and DNMT3B mRNA expression in whole blood. Results revealed that lung cancer patients had lower miR-29b expression (57.2 vs. 81.6; p = 0.02) and higher DNMT3B mRNA expression (37.2 vs. 25.8; p < 0.001) than healthy controls. Compared to non-smokers with both higher miR-29b and lower DNMT3B mRNA expression, smokers with both low miR-29b and higher DNMT3B mRNA expression had an elevated risk of lung cancer development (OR 5.12, 95% CI 2.64−9.91). Interactions of smoking with miR-29b or DNMT3B mRNA expression in lung cancer were significant. Interaction of green tea consumption with miR-29b expression and DNMT3B mRNA expression in lung cancer was also significant. Our study suggests that smokers and green tea nondrinkers with lower miR-29b expression and higher DNMT3B mRNA expression are more susceptible to lung cancer development.
Collapse
|
30
|
Recent Advancements in Antifibrotic Therapies for Regression of Liver Fibrosis. Cells 2022; 11:cells11091500. [PMID: 35563807 PMCID: PMC9104939 DOI: 10.3390/cells11091500] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/21/2022] [Accepted: 04/26/2022] [Indexed: 11/18/2022] Open
Abstract
Cirrhosis is a severe form of liver fibrosis that results in the irreversible replacement of liver tissue with scar tissue in the liver. Environmental toxicity, infections, metabolic causes, or other genetic factors including autoimmune hepatitis can lead to chronic liver injury and can result in inflammation and fibrosis. This activates myofibroblasts to secrete ECM proteins, resulting in the formation of fibrous scars on the liver. Fibrosis regression is possible through the removal of pathophysiological causes as well as the elimination of activated myofibroblasts, resulting in the reabsorption of the scar tissue. To date, a wide range of antifibrotic therapies has been tried and tested, with varying degrees of success. These therapies include the use of growth factors, cytokines, miRNAs, monoclonal antibodies, stem-cell-based approaches, and other approaches that target the ECM. The positive results of preclinical and clinical studies raise the prospect of a viable alternative to liver transplantation in the near future. The present review provides a synopsis of recent antifibrotic treatment modalities for the treatment of liver cirrhosis, as well as a brief summary of clinical trials that have been conducted to date.
Collapse
|
31
|
Petroušková P, Hudáková N, Maloveská M, Humeník F, Cizkova D. Non-Exosomal and Exosome-Derived miRNAs as Promising Biomarkers in Canine Mammary Cancer. Life (Basel) 2022; 12:life12040524. [PMID: 35455015 PMCID: PMC9032658 DOI: 10.3390/life12040524] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 02/06/2023] Open
Abstract
Canine mammary cancer (CMC), similar to human breast cancer (HBC) in many aspects, is the most common neoplasm associated with significant mortality in female dogs. Due to the limited therapy options, biomarkers are highly desirable for early clinical diagnosis or cancer progression monitoring. Since the discovery of microRNAs (miRNAs or miRs) as post-transcriptional gene regulators, they have become attractive biomarkers in oncological research. Except for intracellular miRNAs and cell-free miRNAs, exosome-derived miRNAs (exomiRs) have drawn much attention in recent years as biomarkers for cancer detection. Analysis of exosomes represents a non-invasive, pain-free, time- and money-saving alternative to conventional tissue biopsy. The purpose of this review is to provide a summary of miRNAs that come from non-exosomal sources (canine mammary tumor, mammary tumor cell lines or canine blood serum) and from exosomes as promising biomarkers of CMC based on the current literature. As is discussed, some of the miRNAs postulated as diagnostic or prognostic biomarkers in CMC were also altered in HBC (such as miR-21, miR-29b, miR-141, miR-429, miR-200c, miR-497, miR-210, miR-96, miR-18a, miR19b, miR-20b, miR-93, miR-101, miR-105a, miR-130a, miR-200c, miR-340, miR-486), which may be considered as potential disease-specific biomarkers in both CMC and HBC.
Collapse
Affiliation(s)
- Patrícia Petroušková
- Centre of Experimental and Clinical Regenerative Medicine, The University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovakia; (P.P.); (N.H.); (M.M.); (F.H.)
| | - Nikola Hudáková
- Centre of Experimental and Clinical Regenerative Medicine, The University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovakia; (P.P.); (N.H.); (M.M.); (F.H.)
| | - Marcela Maloveská
- Centre of Experimental and Clinical Regenerative Medicine, The University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovakia; (P.P.); (N.H.); (M.M.); (F.H.)
| | - Filip Humeník
- Centre of Experimental and Clinical Regenerative Medicine, The University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovakia; (P.P.); (N.H.); (M.M.); (F.H.)
| | - Dasa Cizkova
- Centre of Experimental and Clinical Regenerative Medicine, The University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovakia; (P.P.); (N.H.); (M.M.); (F.H.)
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dúbravská Cesta 9, 845 10 Bratislava, Slovakia
- Correspondence: ; Tel.: +421-918-752-157
| |
Collapse
|
32
|
Yu L, Zheng Y, Gao L. MiRNA-disease association prediction based on meta-paths. Brief Bioinform 2022; 23:6501422. [PMID: 35018405 DOI: 10.1093/bib/bbab571] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/02/2021] [Accepted: 12/11/2021] [Indexed: 01/09/2023] Open
Abstract
Since miRNAs can participate in the posttranscriptional regulation of gene expression, they may provide ideas for the development of new drugs or become new biomarkers for drug targets or disease diagnosis. In this work, we propose an miRNA-disease association prediction method based on meta-paths (MDPBMP). First, an miRNA-disease-gene heterogeneous information network was constructed, and seven symmetrical meta-paths were defined according to different semantics. After constructing the initial feature vector for the node, the vector information carried by all nodes on the meta-path instance is extracted and aggregated to update the feature vector of the starting node. Then, the vector information obtained by the nodes on different meta-paths is aggregated. Finally, miRNA and disease embedding feature vectors are used to calculate their associated scores. Compared with the other methods, MDPBMP obtained the highest AUC value of 0.9214. Among the top 50 predicted miRNAs for lung neoplasms, esophageal neoplasms, colon neoplasms and breast neoplasms, 49, 48, 49 and 50 have been verified. Furthermore, for breast neoplasms, we deleted all the known associations between breast neoplasms and miRNAs from the training set. These results also show that for new diseases without known related miRNA information, our model can predict their potential miRNAs. Code and data are available at https://github.com/LiangYu-Xidian/MDPBMP.
Collapse
Affiliation(s)
- Liang Yu
- School of Computer Science and Technology, Xidian University, Xi'an 710071, P.R. China
| | - Yujia Zheng
- School of Computer Science and Technology, Xidian University, Xi'an 710071, P.R. China
| | - Lin Gao
- School of Computer Science and Technology, Xidian University, Xi'an 710071, P.R. China
| |
Collapse
|
33
|
Kimura Y, Ohzawa H, Miyato H, Kaneko Y, Saito A, Takahashi K, Tojo M, Yamaguchi H, Kurashina K, Saito S, Hosoya Y, Lefor AK, Sata N, Kitayama J. MiR-29b may suppresses peritoneal metastases through inhibition of the mesothelial-mesenchymal transition (MMT) of human peritoneal mesothelial cells. Sci Rep 2022; 12:205. [PMID: 34997082 PMCID: PMC8742040 DOI: 10.1038/s41598-021-04065-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/30/2021] [Indexed: 11/09/2022] Open
Abstract
Peritoneal dissemination is a major metastatic pathway for gastrointestinal and ovarian malignancies. The miR-29b family is downregulated in peritoneal fluids in patients with peritoneal metastases (PM). We examined the effect of miR-29b on mesothelial cells (MC) which play critical a role in the development of PM through mesothelial-mesenchymal transition (MMT). Human peritoneal mesothelial cells (HPMCs) were isolated from surgically resected omental tissue and MMT induced by stimulation with 10 ng/ml TGF-β1. MiR-29b mimics and negative control miR were transfected by lipofection using RNAiMAX and the effects on the MMT evaluated in vitro. HPMC produced substantial amounts of miR-29b which was markedly inhibited by TGF-β1. TGF-β1 stimulation of HPMC induced morphological changes with decreased expression of E-cadherin and calretinin, and increased expression of vimentin and fibronectin. TGF-β1 also enhanced proliferation and migration of HPMC as well as adhesion of tumor cells in a fibronectin dependent manner. However, all events were strongly abrogated by simultaneous transfection of miR-29b. MiR-29b inhibits TGF-β1 induced MMT and replacement of miR-29b in the peritoneal cavity might be effective to prevent development of PM partly through the effects on MC.
Collapse
Affiliation(s)
- Yuki Kimura
- Department of Surgery, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Hideyuki Ohzawa
- Department of Clinical Oncology, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Hideyo Miyato
- Department of Surgery, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Yuki Kaneko
- Department of Surgery, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Akira Saito
- Department of Surgery, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Kazuya Takahashi
- Department of Surgery, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Mineyuki Tojo
- Department of Surgery, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Hironori Yamaguchi
- Department of Clinical Oncology, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Kentaro Kurashina
- Department of Surgery, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Shin Saito
- Department of Surgery, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Yoshinori Hosoya
- Department of Surgery, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Alan Kawarai Lefor
- Department of Surgery, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Naohiro Sata
- Department of Surgery, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Joji Kitayama
- Department of Surgery, Jichi Medical University, Shimotsuke, Tochigi, Japan.
- Center for Clinical Research, Jichi Medical University Hospital, Shimotsuke, Tochigi, Japan.
| |
Collapse
|
34
|
Eisa NH, Sudharsan PT, Herrero SM, Herberg SA, Volkman BF, Aguilar-Pérez A, Kondrikov D, Elmansi AM, Reitman C, Shi X, Fulzele S, McGee-Lawrence ME, Isales CM, Hamrick MW, Johnson MH, Chen J, Hill WD. Age-associated changes in microRNAs affect the differentiation potential of human mesenchymal stem cells: Novel role of miR-29b-1-5p expression. Bone 2021; 153:116154. [PMID: 34403754 PMCID: PMC8935397 DOI: 10.1016/j.bone.2021.116154] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 06/01/2021] [Accepted: 08/11/2021] [Indexed: 11/18/2022]
Abstract
Age-associated osteoporosis is widely accepted as involving the disruption of osteogenic stem cell populations and their functioning. Maintenance of the local bone marrow (BM) microenvironment is critical for regulating proliferation and differentiation of the multipotent BM mesenchymal stromal/stem cell (BMSC) population with age. The potential role of microRNAs (miRNAs) in modulating BMSCs and the BM microenvironment has recently gained attention. However, miRNAs expressed in rapidly isolated BMSCs that are naïve to the non-physiologic standard tissue culture conditions and reflect a more accurate in vivo profile have not yet been reported. Here we directly isolated CD271 positive (+) BMSCs within hours from human surgical BM aspirates without culturing and performed microarray analysis to identify the age-associated changes in BMSC miRNA expression. One hundred and two miRNAs showed differential expression with aging. Target prediction and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses revealed that the up-regulated miRNAs targeting genes in bone development pathways were considerably enriched. Among the differentially up-regulated miRNAs the novel passenger strand miR-29b-1-5p was abundantly expressed as a mature functional miRNA with aging. This suggests a critical arm-switching mechanism regulates the expression of the miR-29b-1-5p/3p pair shifting the normally degraded arm, miR-29b-1-5p, to be the dominantly expressed miRNA of the pair in aging. The normal guide strand miR-29b-1-3p is known to act as a pro-osteogenic miRNA. On the other hand, overexpression of the passenger strand miR-29b-1-5p in culture-expanded CD271+ BMSCs significantly down-regulated the expression of stromal cell-derived factor 1 (CXCL12)/ C-X-C chemokine receptor type 4 (SDF-1(CXCL12)/CXCR4) axis and other osteogenic genes including bone morphogenetic protein-2 (BMP-2) and runt-related transcription factor 2 (RUNX2). In contrast, blocking of miR-29b-1-5p function using an antagomir inhibitor up-regulated expression of BMP-2 and RUNX2 genes. Functional assays confirmed that miR-29b-1-5p negatively regulates BMSC osteogenesis in vitro. These novel findings provide evidence of a pathogenic anti-osteogenic role for miR-29b-1-5p and other miRNAs in age-related defects in osteogenesis and bone regeneration.
Collapse
Affiliation(s)
- Nada H Eisa
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29403, United States of America; Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29403, United States of America; Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Periyasamy T Sudharsan
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, United States of America; Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America
| | - Sergio Mas Herrero
- Universitat de Barcelona, Unitat Farmacologia, Dpt. Fonaments Clínics, 08036 Barcelona, Spain
| | - Samuel A Herberg
- Departments of Ophthalmology and Visual Sciences, and Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY 13210, United States of America
| | - Brian F Volkman
- Biochemistry Department, Medical College of Wisconsin, Milwaukee, WI 53226, United States of America
| | - Alexandra Aguilar-Pérez
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America; Department of Anatomy and Cell Biology, Indiana University School of Medicine in Indianapolis, IN, United States of America; Department of Cellular and Molecular Biology, School of Medicine, Universidad Central del Caribe, Bayamon 00956, Puerto Rico
| | - Dmitry Kondrikov
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29403, United States of America; Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29403, United States of America
| | - Ahmed M Elmansi
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29403, United States of America; Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29403, United States of America
| | - Charles Reitman
- Department of Orthopaedics and Physical Medicine, Medical University of South Carolina, Charleston, SC 29403, United States of America
| | - Xingming Shi
- Department of Orthopaedics and Physical Medicine, Medical University of South Carolina, Charleston, SC 29403, United States of America; Department of Orthopaedic Surgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America; Center for Healthy Aging, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America
| | - Sadanand Fulzele
- Department of Orthopaedic Surgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America; Center for Healthy Aging, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America
| | - Meghan E McGee-Lawrence
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America; Department of Orthopaedic Surgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America; Center for Healthy Aging, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America
| | - Carlos M Isales
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America; Department of Orthopaedic Surgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America; Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America; Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; Division of Endocrinology, Diabetes and Metabolism, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America
| | - Mark W Hamrick
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America; Department of Orthopaedic Surgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America; Center for Healthy Aging, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America; Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America
| | - Maribeth H Johnson
- Department of Population Health Sciences, Division of Biostatistics and Data Science Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America
| | - Jie Chen
- Department of Population Health Sciences, Division of Biostatistics and Data Science Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America
| | - William D Hill
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29403, United States of America; Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29403, United States of America; Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America; Center for Healthy Aging, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America.
| |
Collapse
|
35
|
Zhang Y, Long J, Ren J, Huang X, Zhong P, Wang B. Potential Molecular Biomarkers of Vestibular Schwannoma Growth: Progress and Prospects. Front Oncol 2021; 11:731441. [PMID: 34646772 PMCID: PMC8503266 DOI: 10.3389/fonc.2021.731441] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 09/06/2021] [Indexed: 12/25/2022] Open
Abstract
Vestibular schwannomas (VSs, also known as acoustic neuromas) are relatively rare benign brain tumors stem from the Schwann cells of the eighth cranial nerve. Tumor growth is the paramount factor for neurosurgeons to decide whether to choose aggressive treatment approach or careful follow-up with regular magnetic resonance imaging (MRI), as surgery and radiation can introduce significant trauma and affect neurological function, while tumor enlargement during long-term follow-up will compress the adjacent nerves and tissues, causing progressive hearing loss, tinnitus and vertigo. Recently, with the deepening research of VS biology, some proteins that regulate merlin conformation changes, inflammatory cytokines, miRNAs, tissue proteins and cerebrospinal fluid (CSF) components have been proposed to be closely related to tumor volume increase. In this review, we discuss advances in the study of biomarkers that associated with VS growth, providing a reference for exploring the growth course of VS and determining the optimal treatment strategy for each patient.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| | - Jianfei Long
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| | - Junwei Ren
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiang Huang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Ping Zhong
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Bin Wang
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
36
|
Simion V, Loussouarn C, Laurent Y, Roncali L, Gosset D, Reverchon F, Rousseau A, Martin F, Midoux P, Pichon C, Garcion E, Baril P. LentiRILES, a miRNA-ON sensor system for monitoring the functionality of miRNA in cancer biology and therapy. RNA Biol 2021; 18:198-214. [PMID: 34570661 DOI: 10.1080/15476286.2021.1978202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
A major unresolved challenge in miRNA biology is the capacity to monitor the spatiotemporal activity of miRNAs expressed in animal disease models. We recently reported that the miRNA-ON monitoring system called RILES (RNAi-inducible expression Luciferase system) implanted in lentivirus expression system (LentiRILES) offers unique opportunity to decipher the kinetics of miRNA activity in vitro, in relation with their intracellular trafficking in glioblastoma cells. In this study, we describe in detail the method for the production of LentiRILES stable cell lines and employed it in several applications in the field of miRNA biology and therapy. We show that LentiRILES is a robust, highly specific and sensitive miRNA sensor system that can be used in vitro as a single-cell miRNA monitoring method, cell-based screening platform for miRNA therapeutics and as a tool to analyse the structure-function relationship of the miRNA duplex. Furthermore, we report the kinetics of miRNA activity upon the intracranial delivery of miRNA mimics in an orthotopic animal model of glioblastoma. This information is exploited to evaluate the tumour suppressive function of miRNA-200c as locoregional therapeutic modality to treat glioblastoma. Our data provide evidence that LentiRILES is a robust system, well suited to resolve the activity of endogenous and exogenously expressed miRNAs from basic research to gene and cell therapy.
Collapse
Affiliation(s)
- Viorel Simion
- Centre De Biophysique Moléculaire, CNRS UPR4301, Université d'Orléans, Orléans, France
| | - Claire Loussouarn
- Université d'Angers, Université de Nantes, Inserm, CRCINA, Angers, France
| | - Yoan Laurent
- Centre De Biophysique Moléculaire, CNRS UPR4301, Université d'Orléans, Orléans, France
| | - Loris Roncali
- Université d'Angers, Université de Nantes, Inserm, CRCINA, Angers, France
| | - David Gosset
- Centre De Biophysique Moléculaire, CNRS UPR4301, Université d'Orléans, Orléans, France
| | - Flora Reverchon
- Centre De Biophysique Moléculaire, CNRS UPR4301, Université d'Orléans, Orléans, France
| | - Audrey Rousseau
- Université d'Angers, Université de Nantes, Inserm, CRCINA, Angers, France
| | - Francisco Martin
- GENYO, Pfizer/University of Granada/Andalusian Regional Government, Granada, Spain
| | - Patrick Midoux
- Centre De Biophysique Moléculaire, CNRS UPR4301, Université d'Orléans, Orléans, France
| | - Chantal Pichon
- Centre De Biophysique Moléculaire, CNRS UPR4301, Université d'Orléans, Orléans, France
| | - Emmanuel Garcion
- Université d'Angers, Université de Nantes, Inserm, CRCINA, Angers, France
| | - Patrick Baril
- Centre De Biophysique Moléculaire, CNRS UPR4301, Université d'Orléans, Orléans, France
| |
Collapse
|
37
|
Characterization of microRNA expression in B cells derived from Japanese black cattle naturally infected with bovine leukemia virus by deep sequencing. PLoS One 2021; 16:e0256588. [PMID: 34506539 PMCID: PMC8432782 DOI: 10.1371/journal.pone.0256588] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 08/10/2021] [Indexed: 12/21/2022] Open
Abstract
Bovine leukemia virus (BLV) is the causative agent of enzootic bovine leukosis (EBL), a malignant B cell lymphoma. However, the mechanisms of BLV-associated lymphomagenesis remain poorly understood. Here, after deep sequencing, we performed comparative analyses of B cell microRNAs (miRNAs) in cattle infected with BLV and those without BLV. In BLV-infected cattle, BLV-derived miRNAs (blv-miRNAs) accounted for 38% of all miRNAs in B cells. Four of these blv-miRNAs (blv-miR-B1-5p, blv-miR-B2-5p, blv-miR-B4-3p, and blv-miR-B5-5p) had highly significant positive correlations with BLV proviral load (PVL). The read counts of 90 host-derived miRNAs (bta-miRNAs) were significantly down-regulated in BLV-infected cattle compared to those in uninfected cattle. Only bta-miR-375 had a positive correlation with PVL in BLV-infected cattle and was highly expressed in the B cell lymphoma tissue of EBL cattle. There were a few bta-miRNAs that correlated with BLV tax/rex gene expression; however, BLV AS1 expression had a significant negative correlation with many of the down-regulated bta-miRNAs that are important for tumor development and/or tumor suppression. These results suggest that BLV promotes lymphomagenesis via AS1 and blv-miRNAs, rather than tax/rex, by down-regulating the expression of bta-miRNAs that have a tumor-suppressing function, and this downregulation is linked to increased PVL.
Collapse
|
38
|
Yu N, Wu MJ, Liu JX, Zheng CH, Xu Y. Correntropy-Based Hypergraph Regularized NMF for Clustering and Feature Selection on Multi-Cancer Integrated Data. IEEE TRANSACTIONS ON CYBERNETICS 2021; 51:3952-3963. [PMID: 32603306 DOI: 10.1109/tcyb.2020.3000799] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Non-negative matrix factorization (NMF) has become one of the most powerful methods for clustering and feature selection. However, the performance of the traditional NMF method severely degrades when the data contain noises and outliers or the manifold structure of the data is not taken into account. In this article, a novel method called correntropy-based hypergraph regularized NMF (CHNMF) is proposed to solve the above problem. Specifically, we use the correntropy instead of the Euclidean norm in the loss term of CHNMF, which will improve the robustness of the algorithm. And the hypergraph regularization term is also applied to the objective function, which can explore the high-order geometric information in more sample points. Then, the half-quadratic (HQ) optimization technique is adopted to solve the complex optimization problem of CHNMF. Finally, extensive experimental results on multi-cancer integrated data indicate that the proposed CHNMF method is superior to other state-of-the-art methods for clustering and feature selection.
Collapse
|
39
|
Muluhngwi P, Klinge CM. Identification and Roles of miR-29b-1-3p and miR29a-3p-Regulated and Non-Regulated lncRNAs in Endocrine-Sensitive and Resistant Breast Cancer Cells. Cancers (Basel) 2021; 13:3530. [PMID: 34298743 PMCID: PMC8307416 DOI: 10.3390/cancers13143530] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/30/2021] [Accepted: 07/07/2021] [Indexed: 01/05/2023] Open
Abstract
Despite improvements in the treatment of endocrine-resistant metastatic disease using combination therapies in patients with estrogen receptor α (ERα) primary tumors, the mechanisms underlying endocrine resistance remain to be elucidated. Non-coding RNAs (ncRNAs), including microRNAs (miRNA) and long non-coding RNAs (lncRNA), are targets and regulators of cell signaling pathways and their exosomal transport may contribute to metastasis. Previous studies have shown that a low expression of miR-29a-3p and miR-29b-3p is associated with lower overall breast cancer survival before 150 mos. Transient, modest overexpression of miR-29b1-3p or miR-29a-3p inhibited MCF-7 tamoxifen-sensitive and LCC9 tamoxifen-resistant cell proliferation. Here, we identify miR-29b-1/a-regulated and non-regulated differentially expressed lncRNAs in MCF-7 and LCC9 cells using next-generation RNA seq. More lncRNAs were miR-29b-1/a-regulated in LCC9 cells than in MCF-7 cells, including DANCR, GAS5, DSCAM-AS1, SNHG5, and CRND. We examined the roles of miR-29-regulated and differentially expressed lncRNAs in endocrine-resistant breast cancer, including putative and proven targets and expression patterns in survival analysis using the KM Plotter and TCGA databases. This study provides new insights into lncRNAs in endocrine-resistant breast cancer.
Collapse
Affiliation(s)
- Penn Muluhngwi
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| | - Carolyn M. Klinge
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40292, USA
| |
Collapse
|
40
|
Kumari R, Roy U, Desai S, Nilavar NM, Van Nieuwenhuijze A, Paranjape A, Radha G, Bawa P, Srivastava M, Nambiar M, Balaji KN, Liston A, Choudhary B, Raghavan SC. MicroRNA miR-29c regulates RAG1 expression and modulates V(D)J recombination during B cell development. Cell Rep 2021; 36:109390. [PMID: 34260911 DOI: 10.1016/j.celrep.2021.109390] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 03/07/2021] [Accepted: 06/22/2021] [Indexed: 12/13/2022] Open
Abstract
Recombination activating genes (RAGs), consisting of RAG1 and RAG2, are stringently regulated lymphoid-specific genes, which initiate V(D)J recombination in developing lymphocytes. We report the regulation of RAG1 through a microRNA (miRNA), miR-29c, in a B cell stage-specific manner in mice and humans. Various lines of experimentation, including CRISPR-Cas9 genome editing, demonstrate the target specificity and direct interaction of miR-29c to RAG1. Modulation of miR-29c levels leads to change in V(D)J recombination efficiency in pre-B cells. The miR-29c expression is inversely proportional to RAG1 in a B cell developmental stage-specific manner, and miR-29c null mice exhibit a reduction in mature B cells. A negative correlation of miR-29c and RAG1 levels is also observed in leukemia patients, suggesting the potential use of miR-29c as a biomarker and a therapeutic target. Thus, our results reveal the role of miRNA in the regulation of RAG1 and its relevance in cancer.
Collapse
Affiliation(s)
- Rupa Kumari
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Urbi Roy
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Sagar Desai
- Institute of Bioinformatics and Applied Biotechnology, Bangalore 560100, India; Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Namrata M Nilavar
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | | | - Amita Paranjape
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Gudapureddy Radha
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Pushpinder Bawa
- Institute of Bioinformatics and Applied Biotechnology, Bangalore 560100, India
| | - Mrinal Srivastava
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research (TIFR), Hyderabad 500046, India
| | - Mridula Nambiar
- Department of Biology, Indian Institute of Science Education and Research, Pune, India
| | | | - Adrian Liston
- Immunology Programme, Babraham Institute, Cambridge, United Kingdom
| | - Bibha Choudhary
- Institute of Bioinformatics and Applied Biotechnology, Bangalore 560100, India.
| | - Sathees C Raghavan
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
41
|
Gocher AM, Workman CJ, Vignali DAA. Interferon-γ: teammate or opponent in the tumour microenvironment? Nat Rev Immunol 2021; 22:158-172. [PMID: 34155388 DOI: 10.1038/s41577-021-00566-3] [Citation(s) in RCA: 321] [Impact Index Per Article: 80.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2021] [Indexed: 02/06/2023]
Abstract
Cancer immunotherapy offers substantive benefit to patients with various tumour types, in some cases leading to complete tumour clearance. However, many patients do not respond to immunotherapy, galvanizing the field to define the mechanisms of pre-existing and acquired resistance. Interferon-γ (IFNγ) is a cytokine that has both protumour and antitumour activities, suggesting that it may serve as a nexus for responsiveness to immunotherapy. Many cancer immunotherapies and chemotherapies induce IFNγ production by various cell types, including activated T cells and natural killer cells. Patients resistant to these therapies commonly have molecular aberrations in the IFNγ signalling pathway or express resistance molecules driven by IFNγ. Given that all nucleated cells can respond to IFNγ, the functional consequences of IFNγ production need to be carefully dissected on a cell-by-cell basis. Here, we review the cells that produce IFNγ and the different effects of IFNγ in the tumour microenvironment, highlighting the pleiotropic nature of this multifunctional and abundant cytokine.
Collapse
Affiliation(s)
- Angela M Gocher
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Creg J Workman
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Dario A A Vignali
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA. .,Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA. .,Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
| |
Collapse
|
42
|
Lambrou GI, Zaravinos A, Braoudaki M. Co-Deregulated miRNA Signatures in Childhood Central Nervous System Tumors: In Search for Common Tumor miRNA-Related Mechanics. Cancers (Basel) 2021; 13:3028. [PMID: 34204289 PMCID: PMC8235499 DOI: 10.3390/cancers13123028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/09/2021] [Accepted: 06/14/2021] [Indexed: 02/06/2023] Open
Abstract
UNLABELLED Despite extensive experimentation on pediatric tumors of the central nervous system (CNS), related to both prognosis, diagnosis and treatment, the understanding of pathogenesis and etiology of the disease remains scarce. MicroRNAs are known to be involved in CNS tumor oncogenesis. We hypothesized that CNS tumors possess commonly deregulated miRNAs across different CNS tumor types. AIM The current study aims to reveal the co-deregulated miRNAs across different types of pediatric CNS tumors. MATERIALS A total of 439 CNS tumor samples were collected from both in-house microarray experiments as well as data available in public databases. Diagnoses included medulloblastoma, astrocytoma, ependydoma, cortical dysplasia, glioblastoma, ATRT, germinoma, teratoma, yoc sac tumors, ocular tumors and retinoblastoma. RESULTS We found miRNAs that were globally up- or down-regulated in the majority of the CNS tumor samples. MiR-376B and miR-372 were co-upregulated, whereas miR-149, miR-214, miR-574, miR-595 and miR-765 among others, were co-downregulated across all CNS tumors. Receiver-operator curve analysis showed that miR-149, miR-214, miR-574, miR-595 and miR765 could distinguish between CNS tumors and normal brain tissue. CONCLUSIONS Our approach could prove significant in the search for global miRNA targets for tumor diagnosis and therapy. To the best of our knowledge, there are no previous reports concerning the present approach.
Collapse
Affiliation(s)
- George I. Lambrou
- Choremeio Research Laboratory, First Department of Pediatrics, National and Kapodistrian University of Athens, Thivon & Levadeias 8, Goudi, 11527 Athens, Greece;
| | - Apostolos Zaravinos
- Department of Life Sciences, European University Cyprus, Diogenis Str., 6, Nicosia 2404, Cyprus
- Cancer Genetics, Genomics and Systems Biology Group, Basic and Translational Cancer Research Center (BTCRC), Nicosia 1516, Cyprus
| | - Maria Braoudaki
- Department of Clinical, Pharmaceutical and Biological Science, School of Life and Medical Sciences, University of Hertfordshire, College Lane, Hatfield AL10 9AB, Hertfordshire, UK
| |
Collapse
|
43
|
Rozier P, Maumus M, Maria ATJ, Toupet K, Lai-Kee-Him J, Jorgensen C, Guilpain P, Noël D. Mesenchymal stromal cells-derived extracellular vesicles alleviate systemic sclerosis via miR-29a-3p. J Autoimmun 2021; 121:102660. [PMID: 34020253 DOI: 10.1016/j.jaut.2021.102660] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/07/2021] [Accepted: 05/09/2021] [Indexed: 12/16/2022]
Abstract
Systemic sclerosis (SSc) is a potentially lethal disease with no curative treatment. Mesenchymal stromal cells (MSCs) have proved efficacy in SSc but no data is available on MSC-derived extracellular vesicles (EVs) in this multi-organ fibrosis disease. Small size (ssEVs) and large size EVs (lsEVs) were isolated from murine MSCs or human adipose tissue-derived MSCs (ASCs). Control antagomiR (Ct) or antagomiR-29a-3p (A29a) were transfected in MSCs and ASCs before EV production. EVs were injected in the HOCl-induced SSc model at day 21 and euthanasized at day 42. We found that both ssEVs and lsEVs were effective to slow-down the course of the disease. All disease parameters improved in skin and lungs. Interestingly, down-regulating miR-29a-3p in MSCs totally abolished therapeutic efficacy. Besides, we demonstrated a similar efficacy of human ASC-EVs and importantly, EVs from A29a-transfected ASCs failed to improve skin fibrosis. We identified Dnmt3a, Pdgfrbb, Bcl2, Bcl-xl as target genes of miR-29a-3p whose regulation was associated with skin fibrosis improvement. Our study highlights the therapeutic role of miR-29a-3p in SSc and the importance of regulating methylation and apoptosis.
Collapse
Affiliation(s)
- Pauline Rozier
- IRMB, University of Montpellier, INSERM, Montpellier, France
| | - Marie Maumus
- IRMB, University of Montpellier, INSERM, Montpellier, France
| | - Alexandre Thibault Jacques Maria
- IRMB, University of Montpellier, INSERM, Montpellier, France; Department of Internal Medicine, Multi-organic Diseases, CHU, Montpellier, France
| | - Karine Toupet
- IRMB, University of Montpellier, INSERM, Montpellier, France
| | - Joséphine Lai-Kee-Him
- Centre de Biochimie Structurale (CBS), University of Montpellier, INSERM, CNRS, Montpellier, France
| | - Christian Jorgensen
- IRMB, University of Montpellier, INSERM, Montpellier, France; Clinical Immunology and Osteoarticular Disease Therapeutic Unit, Department of Rheumatology, CHU, Montpellier, France
| | - Philippe Guilpain
- IRMB, University of Montpellier, INSERM, Montpellier, France; Department of Internal Medicine, Multi-organic Diseases, CHU, Montpellier, France
| | - Danièle Noël
- IRMB, University of Montpellier, INSERM, Montpellier, France; Clinical Immunology and Osteoarticular Disease Therapeutic Unit, Department of Rheumatology, CHU, Montpellier, France.
| |
Collapse
|
44
|
Zhuo J, Zheng Y, Hu W, Yin G. Sufentanil Inhibits Proliferation, Migration, and Invasion of Hepatocellular Carcinoma Cells by Upregulating miRNA-204. J BIOMATER TISS ENG 2021. [DOI: 10.1166/jbt.2021.2561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Sufentanil is a powerful analgesic that acts on μ-receptors, but there are few studies on sufentanil in cancer. The biological function and underlying mechanisms of sufentanil on the hepatocellular carcinoma (HCC) cells were explored in the present study. HCC cells were first treated
with different concentrations of sufentanil and the most optimum concentration of sufentanil was determined. The expression of miR-204 in HCC cells was changed by transfected with miR-204 inhibitor and the transfection efficiency was assessed by qRT-PCR. CCK-8, wound-healing and Transwell
assays were performed to evaluate the proliferation, migration and invasion of HCC cells, respectively. The level of AKT and PI3K phosphorylation (p-AKT and p-PI3K) were assessed by western blot analysis. Our results demonstrated that sufentanil effectively inhibited cell proliferation,migration
and invasion in both Huh7 and Hep3B cells, and significantly decreased the expression of p-AKT and p-PI3K. In addition, miR-204 was upregulated in Huh7 and Hep3B cells treated with sufentanil, and low expression of miR-204 attenuated the damage of sufentanil on the viability of Huh7 and Hep3B
cells. Taken together, sufentanil suppressed the proliferation, migration and invasion of HCC cells via inhibiting AKT/PI3K signaling pathway by targeting miR-204.
Collapse
Affiliation(s)
- Jiuwu Zhuo
- Department of Intensive Care Unit, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210003, China
| | - Yishan Zheng
- Department of Intensive Care Unit, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210003, China
| | - Wanying Hu
- Operating Room, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210003, China
| | - Guoping Yin
- Department of Anesthesiology, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210003, China
| |
Collapse
|
45
|
Dostal Z, Sebera M, Srovnal J, Staffova K, Modriansky M. Dual Effect of Taxifolin on ZEB2 Cancer Signaling in HepG2 Cells. Molecules 2021; 26:1476. [PMID: 33803107 PMCID: PMC7963166 DOI: 10.3390/molecules26051476] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 12/16/2022] Open
Abstract
Polyphenols, secondary metabolites of plants, exhibit different anti-cancer and cytoprotective properties such as anti-radical, anti-angiogenic, anti-inflammation, or cardioprotective. Some of these activities could be linked to modulation of miRNAs expression. MiRNAs play an important role in posttranscriptional regulation of their target genes that could be important within cell signalling or preservation of cell homeostasis, e.g., cell survival/apoptosis. We evaluated the influence of a non-toxic concentration of taxifolin and quercetin on the expression of majority human miRNAs via Affymetrix GeneChip™ miRNA 3.0 Array. For the evaluation we used two cell models corresponding to liver tissue, Hep G2 and primary human hepatocytes. The array analysis identified four miRNAs, miR-153, miR-204, miR-211, and miR-377-3p, with reduced expression after taxifolin treatment. All of these miRNAs are linked to modulation of ZEB2 expression in various models. Indeed, ZEB2 protein displayed upregulation after taxifolin treatment in a dose dependent manner. However, the modulation did not lead to epithelial mesenchymal transition. Our data show that taxifolin inhibits Akt phosphorylation, thereby diminishing ZEB2 signalling that could trigger carcinogenesis. We conclude that biological activity of taxifolin may have ambiguous or even contradictory outcomes because of non-specific effect on the cell.
Collapse
Affiliation(s)
- Zdenek Dostal
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, 77515 Olomouc, Czech Republic;
| | - Martin Sebera
- Faculty of Sport Studies, Masaryk University, 60177 Brno, Czech Republic;
| | - Josef Srovnal
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, 77515 Olomouc, Czech Republic; (J.S.); (K.S.)
| | - Katerina Staffova
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, 77515 Olomouc, Czech Republic; (J.S.); (K.S.)
| | - Martin Modriansky
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, 77515 Olomouc, Czech Republic;
| |
Collapse
|
46
|
Stempor PA, Avni D, Leibowitz R, Sidi Y, Stępień M, Dzieciątkowski T, Dobosz P. Comprehensive Analysis of Correlations in the Expression of miRNA Genes and Immune Checkpoint Genes in Bladder Cancer Cells. Int J Mol Sci 2021; 22:2553. [PMID: 33806327 PMCID: PMC7961343 DOI: 10.3390/ijms22052553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/21/2021] [Accepted: 02/23/2021] [Indexed: 12/13/2022] Open
Abstract
Personalised medicine is the future and hope for many patients, including those with cancers. Early detection, as well as rapid, well-selected treatment, are key factors leading to a good prognosis. MicroRNA mediated gene regulation is a promising area of development for new diagnostic and therapeutic methods, crucial for better prospects for patients. Bladder cancer is a frequent neoplasm, with high lethality and lacking modern, advanced therapeutic modalities, such as immunotherapy. MicroRNAs are involved in bladder cancer pathogenesis, proliferation, control and response to treatment, which we summarise in this perspective in response to lack of recent review publications in this field. We further performed a correlation-based analysis of microRNA and gene expression data in bladder cancer (BLCA) TCGA dataset. We identified 27 microRNAs hits with opposite expression profiles to genes involved in immune response in bladder cancer, and 24 microRNAs hits with similar expression profiles. We discuss previous studies linking the functions of these microRNAs to bladder cancer and assess if they are good candidates for personalised medicine therapeutics and diagnostics. The discussed functions include regulation of gene expression, interplay with transcription factors, response to treatment, apoptosis, cell proliferation and angiogenesis, initiation and development of cancer, genome instability and tumour-associated inflammatory reaction.
Collapse
Affiliation(s)
- Przemysław A. Stempor
- SmartImmune Ltd, Accelerate Cambridge, University of Cambridge Judge Business School, Cambridge CB4 1EE, UK;
| | - Dror Avni
- Laboratory of Molecular Cell Biology, Center for Cancer Research and Department of Medicine C, Sheba Medical Center, Tel Hashome 52621, Israel;
| | - Raya Leibowitz
- Oncology Institute, Shamir Medical Center, Be’er Yaakov, Tel Hashome 52621, Israel;
- Faculty of Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv-Yafo 6997801, Israel;
| | - Yechezkel Sidi
- Faculty of Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv-Yafo 6997801, Israel;
| | - Maria Stępień
- Faculty of Medicine, Medical University of Lublin, 20-059 Lublin, Poland;
| | | | - Paula Dobosz
- Department of Hematology, Transplantationand Internal Medicine, Medical University of Warsaw, 02-097 Warsaw, Poland
| |
Collapse
|
47
|
CEA, CA 15-3, and miRNA expression as potential biomarkers in canine mammary tumors. Chromosome Res 2021; 29:175-188. [PMID: 33638118 DOI: 10.1007/s10577-021-09652-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 01/26/2021] [Accepted: 02/02/2021] [Indexed: 10/22/2022]
Abstract
The most often detected tumor in intact bitches is mammary tumors and represents a significant clinical problem throughout the world. Mammary neoplasms in canine have heterogeneous morphology, so the choice of the most appropriate biomarker is the biggest challenge in CMT detection. We performed a retrospective analysis and evaluated the canine cancer antigens and miRNA expression profiles as potential biomarkers. Sixty dogs based on histological examination divided into three groups, viz., dogs with a benign mammary tumor, malignant mammary tumor, and control/healthy. The CA 15-3 was found more sensitive than CEA but detection of both will increase sensitivity. miR-21 expression differed significantly in all three groups. miR-29b expression differed significantly between the control and benign group and control and malignant group. The miR-21 overexpression and miR-29b downregulation with CMT are associated with clinical stage and can be used as non-invasive diagnostic and prognostic biomarkers. Hence, evaluation of CA 15-3 along with CEA would be a non-invasive technique for detecting canine mammary tumors. Evaluation of deregulated circulating miR-21 could be a valuable prognostic marker for early detection of mammary tumors in canines while miR-29b can add sensitivity in the detection of the canine mammary tumors if evaluated with miR-21.
Collapse
|
48
|
Abstract
Despite the decline in death rate from breast cancer and recent advances in targeted therapies and combinations for the treatment of metastatic disease, metastatic breast cancer remains the second leading cause of cancer-associated death in U.S. women. The invasion-metastasis cascade involves a number of steps and multitudes of proteins and signaling molecules. The pathways include invasion, intravasation, circulation, extravasation, infiltration into a distant site to form a metastatic niche, and micrometastasis formation in a new environment. Each of these processes is regulated by changes in gene expression. Noncoding RNAs including microRNAs (miRNAs) are involved in breast cancer tumorigenesis, progression, and metastasis by post-transcriptional regulation of target gene expression. miRNAs can stimulate oncogenesis (oncomiRs), inhibit tumor growth (tumor suppressors or miRsupps), and regulate gene targets in metastasis (metastamiRs). The goal of this review is to summarize some of the key miRNAs that regulate genes and pathways involved in metastatic breast cancer with an emphasis on estrogen receptor α (ERα+) breast cancer. We reviewed the identity, regulation, human breast tumor expression, and reported prognostic significance of miRNAs that have been documented to directly target key genes in pathways, including epithelial-to-mesenchymal transition (EMT) contributing to the metastatic cascade. We critically evaluated the evidence for metastamiRs and their targets and miRNA regulation of metastasis suppressor genes in breast cancer progression and metastasis. It is clear that our understanding of miRNA regulation of targets in metastasis is incomplete.
Collapse
Affiliation(s)
- Belinda J Petri
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, 40292, USA
| | - Carolyn M Klinge
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, 40292, USA.
| |
Collapse
|
49
|
Bozkurt SB, Ozturk B, Kocak N, Unlu A. Differences of time-dependent microRNA expressions in breast cancer cells. Noncoding RNA Res 2021; 6:15-22. [PMID: 33385103 PMCID: PMC7770513 DOI: 10.1016/j.ncrna.2020.12.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 12/13/2020] [Accepted: 12/14/2020] [Indexed: 11/25/2022] Open
Abstract
MicroRNA (miRNA) expression is a dynamic process in the cell, and the proper time period for post-transcriptional regulation might be critical due to the gene-on/-off expression times of the cell. Here, we investigated the effect of different time-points on proliferation, invasion and miRNA expression profiles of human breast cancer cell lines MCF-7 (non-metastatic, epithelium-like breast cancer cell line with oestrogen receptor (ER) positive (+) and human breast cancer cell lines MDA-MB-435 (metastatic, invasive, ER negative (-). For this purpose, MCF-7 and MDA-MB-435 cells were seeded different number in E-plate 16 for proliferation experiment using an electrical impedance-based real-time cell analyzer system (RTCA) for 168 h. Similarly, invasion potential of MCF-7 and MDA-MB-435 were determined by RTCA for 90 h. Total RNAs including miRNAs were isolated at 2, 4, 6, 12, 24, 48 h from the MCF-7 and MDA-MB-435 cells. Afterward, the quantitative 84 miRNA expressions of MCF-7 and MDA-MB-435 were analyzed by Fluidigm Microfluidic 96.96 Dynamic Array. The results of these study demonstrated that both proliferation potential and invasion capacity of MDA-MB-435 is higher than MCF-7 as time-dependent manner. Furthermore, we detected that up/down expressions of 32 miRNAs at all time points in MDA-MB-435 compared to MCF-7 (at least ten-fold increased). Because of the high number of miRNAs, we more closely evaluated the expression of six of them (miR-100-5p, miR-29a-3p, miR-130a-3p, miR-10a-5p, miR-10b-5p, miR-203a), and determined that their levels were dramatically changed by at least 50-fold at different time points of the experiment (p < 0.01). The expression levels of five of these miRNAs (miR-100-5p, miR-10a-5p, miR-10b-5p, miR-130a-3p, and miR-29a-3p) started to increase from the fourth hour and continued to increase until the 48th hour in MDA-MB-435 cells compared to MCF-7 cells (p < 0.01). Simultaneously, the expression of one of these miRNAs (miR-203a) decreased from the sixth hour to the 48th hour in MDA-MB-435 as compared to MCF-7. We determined pathways associated with target genes using mirPath - DIANA TOOLS. Small RNAs including miRNA are essential regulatory molecules for gene expressions. In the literature, gene expressions have been published as burst and pulse in the form of discontinuous transcription. The data of the research suggested that time-dependent changes of miRNA expressions can be affected target gene transcriptional fluctuations in breast cancer cell and can be base for the further studies.
Collapse
Affiliation(s)
- Serife Buket Bozkurt
- University of Selcuk, Faculty of Medicine, Department of Medical Biochemistry, Konya, Turkey.,Hacettepe University, Research Center of Dental Faculty, Ankara, Turkey
| | - Bahadir Ozturk
- University of Selcuk, Faculty of Medicine, Department of Medical Biochemistry, Konya, Turkey
| | - Nadir Kocak
- University of Selcuk, Faculty of Medicine, Department of Genetic, Konya, Turkey
| | - Ali Unlu
- University of Selcuk, Faculty of Medicine, Department of Medical Biochemistry, Konya, Turkey
| |
Collapse
|
50
|
Guo Y, Wu Y, Shi J, Zhuang H, Ci L, Huang Q, Wan Z, Yang H, Zhang M, Tan Y, Sun R, Xu L, Wang Z, Shen R, Fei J. miR-29a/b1 Regulates the Luteinizing Hormone Secretion and Affects Mouse Ovulation. Front Endocrinol (Lausanne) 2021; 12:636220. [PMID: 34135859 PMCID: PMC8202074 DOI: 10.3389/fendo.2021.636220] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 05/10/2021] [Indexed: 12/22/2022] Open
Abstract
miR-29a/b1 was reportedly involved in the regulation of the reproductive function in female mice, but the underlying molecular mechanisms are not clear. In this study, female mice lacking miR-29a/b1 showed a delay in vaginal opening, irregular estrous cycles, ovulation disorder and subfertility. The level of luteinizing hormone (LH) was significantly lower in plasma but higher in pituitary of mutant mice. However, egg development was normal in mutant mice and the ovulation disorder could be rescued by the superovulation treatment. These results suggested that the LH secretion was impaired in mutant mice. Further studies showed that deficiency of miR-29a/b1 in mice resulted in an abnormal expression of a number of proteins involved in vesicular transport and exocytosis in the pituitary, indicating the mutant mice had insufficient LH secretion. However, the detailed mechanism needs more research.
Collapse
Affiliation(s)
- Yang Guo
- School of Life Science and Technology, Tongji University, Shanghai, China
- Shanghai Lab, Animal Research Center, Shanghai, China
| | - Youbing Wu
- Shanghai Model Organisms, Shanghai, China
| | - Jiahao Shi
- School of Life Science and Technology, Tongji University, Shanghai, China
| | - Hua Zhuang
- Shanghai Model Organisms, Shanghai, China
| | - Lei Ci
- School of Life Science and Technology, Tongji University, Shanghai, China
- Shanghai Model Organisms, Shanghai, China
| | - Qin Huang
- Shanghai Model Organisms, Shanghai, China
| | - Zhipeng Wan
- School of Life Science and Technology, Tongji University, Shanghai, China
- Shanghai Model Organisms, Shanghai, China
| | - Hua Yang
- School of Life Science and Technology, Tongji University, Shanghai, China
| | - Mengjie Zhang
- School of Life Science and Technology, Tongji University, Shanghai, China
| | - Yutong Tan
- School of Life Science and Technology, Tongji University, Shanghai, China
| | - Ruilin Sun
- Shanghai Model Organisms, Shanghai, China
| | - Leon Xu
- School of Life Science and Technology, Tongji University, Shanghai, China
| | - Zhugang Wang
- Department of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Ruling Shen
- School of Life Science and Technology, Tongji University, Shanghai, China
- Shanghai Lab, Animal Research Center, Shanghai, China
- *Correspondence: Jian Fei, ; Ruling Shen,
| | - Jian Fei
- School of Life Science and Technology, Tongji University, Shanghai, China
- Shanghai Model Organisms, Shanghai, China
- *Correspondence: Jian Fei, ; Ruling Shen,
| |
Collapse
|