1
|
HUANG BAOXING, JIA ZICHANG, FU CHENCHEN, CHEN MOXIAN, SU ZEZHUO, CHEN YUNSHENG. Oncogenic and tumor-suppressive roles of Lipocalin 2 (LCN2) in tumor progression. Oncol Res 2025; 33:567-575. [PMID: 40109857 PMCID: PMC11915076 DOI: 10.32604/or.2024.051672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/17/2024] [Indexed: 03/22/2025] Open
Abstract
Lipocalin-2 (LCN2) is a member of the lipocalin superfamily with multiple functions and can participate in the transport of a variety of small lipophilic ligands in vivo. LCN2 is significantly expressed in various tumors and plays an important role in regulating tumor cell proliferation, invasion, and metastasis. The specific actions of LCN2 in tumors may vary depending on the particular type of cancer involved. In this review, we provide an extensive overview of the transcriptional and post-transcriptional regulation of LCN2 in health and disease. Furthermore, we summarize the impact of LCN2 dysregulation in a broad range of tumors. Lastly, we examine the mechanisms of action of LCN2 during tumorigenesis, progression, and metastasis. Understanding the complex relationships between LCN2 and tumor development, progression, and metastasis is vital for advancing our knowledge of cancer biology, developing biomarkers for diagnosis and clinical decision-making, and creating therapeutic strategies to improve the management of patients with cancer.
Collapse
Affiliation(s)
- BAOXING HUANG
- Clinical Laboratory, Shenzhen Children’s Hospital, Shenzhen, 518038, China
| | - ZICHANG JIA
- Clinical Laboratory, Shenzhen Children’s Hospital, Shenzhen, 518038, China
| | - CHENCHEN FU
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Tree Genetics and Biotechnology of Educational Department of China, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Life Sciences, Nanjing Forestry University, Nanjing, 210037, China
| | - MOXIAN CHEN
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Tree Genetics and Biotechnology of Educational Department of China, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Life Sciences, Nanjing Forestry University, Nanjing, 210037, China
| | - ZEZHUO SU
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - YUNSHENG CHEN
- Clinical Laboratory, Shenzhen Children’s Hospital, Shenzhen, 518038, China
| |
Collapse
|
2
|
Huang Z, Li Y, Qian Y, Zhai E, Zhao Z, Zhang T, Liu Y, Ye L, Wei R, Zhao R, Li Z, Liang Z, Cai S, Chen J. Tumor-secreted LCN2 impairs gastric cancer progression via autocrine inhibition of the 24p3R/JNK/c-Jun/SPARC axis. Cell Death Dis 2024; 15:756. [PMID: 39424639 PMCID: PMC11489581 DOI: 10.1038/s41419-024-07153-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024]
Abstract
Gastric cancer (GC) is one of the most lethal malignancies worldwide. Despite extensive efforts to develop novel therapeutic targets, effective drugs for GC remain limited. Recent studies have indicated that Lipocalin (LCN)2 abnormalities significantly impact GC progression; however, its regulatory network remains unclear. Our study investigates the functional role and regulatory mechanism of action of LCN2 in GC progression. We observed a positive correlation between LCN2 expression, lower GC grade, and better prognosis in patients with GC. LCN2 overexpression suppressed GC proliferation and metastasis both in vitro and in vivo. Transcriptome sequencing identified secreted protein acidic and rich in cysteine (SPARC) as a pivotal downstream target of LCN2. Mechanistically, c-Jun acted as a transcription factor inducing SPARC expression, and LCN2 downregulated SPARC by inhibiting the JNK/c-Jun pathway. Moreover, LCN2 bound to its receptor, 24p3R, via autocrine signaling, which directly inhibited JNK phosphorylation and then inhibited the JNK/c-Jun pathway. Finally, analysis of clinical data demonstrated that SPARC expression correlated negatively with lower GC grade and better prognosis, and that LCN2 expression correlated negatively with p-JNK, c-Jun, and SPARC expression in GC. These findings suggest that the LCN2/24p3R/JNK/c-Jun/SPARC axis is crucial in the malignant progression of GC, offering novel prognostic markers and therapeutic targets.
Collapse
Affiliation(s)
- Zhixin Huang
- Division of Gastrointestinal Surgery Center, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
- Gastric Cancer Center, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
- Laboratory of Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Ying Li
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Yan Qian
- Division of Gastrointestinal Surgery Center, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
- Gastric Cancer Center, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Ertao Zhai
- Division of Gastrointestinal Surgery Center, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
- Gastric Cancer Center, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Zeyu Zhao
- Division of Gastrointestinal Surgery Center, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
- Gastric Cancer Center, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
- Laboratory of Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Tianhao Zhang
- Division of Gastrointestinal Surgery Center, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
- Gastric Cancer Center, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
- Laboratory of Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Yinan Liu
- Division of Gastrointestinal Surgery Center, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
- Gastric Cancer Center, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
- Laboratory of Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Linying Ye
- Division of Gastrointestinal Surgery Center, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
- Gastric Cancer Center, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
- Laboratory of Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Ran Wei
- Division of Gastrointestinal Surgery Center, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
- Gastric Cancer Center, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
- Laboratory of Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Risheng Zhao
- Division of Gastrointestinal Surgery Center, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
- Gastric Cancer Center, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Zikang Li
- Division of Gastrointestinal Surgery Center, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
- Gastric Cancer Center, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
- Laboratory of Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Zhi Liang
- Division of Gastrointestinal Surgery Center, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
- Gastric Cancer Center, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
- Laboratory of Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Shirong Cai
- Division of Gastrointestinal Surgery Center, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China.
- Gastric Cancer Center, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China.
| | - Jianhui Chen
- Division of Gastrointestinal Surgery Center, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China.
- Department of General Surgery, Guangxi Hospital Division of The First Affiliated Hospital, Sun Yat-sen University, Nanning, 530000, Guangxi, China.
| |
Collapse
|
3
|
Zhang Z, Wu C, Liu N, Wang Z, Pan Z, Jiang Y, Tian J, Sun M. Modified Banxiaxiexin decoction benefitted chemotherapy in treating gastric cancer by regulating multiple targets and pathways. JOURNAL OF ETHNOPHARMACOLOGY 2024; 331:118277. [PMID: 38697407 DOI: 10.1016/j.jep.2024.118277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/19/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chemotherapy tolerance weakened efficacy of chemotherapy drugs in the treating gastric cancer (GC). Banxiaxiexin decoction (BXXXD) was widely used in digestive diseases for thousands of years in Traditional Chinese medicine (TCM). In order to better treat GC, three other herbs were added to BXXXD to create a new prescription named Modified Banxiaxiexin decoction (MBXXXD). Although MBXXXD potentially treated GC by improving chemotherapy tolerance, the possible mechanisms were still unknown. AIM OF THE STUDY To explore the therapeutic effect of MBXXXD on GC patients and explore the possible anti-cancer mechanism. MATERIALS AND METHODS A randomized controlled trial (n = 146) was conducted to evaluate the clinical efficacy between MBXXXD + chemotherapy (n = 73) and placebo + chemotherapy (n = 73) in GC patients by testing overall survival, progression free survival, clinical symptoms, quality of life score, tumor markers, T cell subpopulation, and adverse reactions. Network pharmacology was conducted to discover the potential mechanism of MBXXXD in treating GC. Metabolic activity assay, cell clone colony formation and mitochondrial apoptosis were detected in human GC cell lines including AGS cell, KNM-45 cell and SGC7901 cell treated by MBXXXD. Multiple pathways including P53, AKT, IκB, P65, P38, ERK, JNK p-AKT, p-P65, p-P38, p-ERK and p-JNK in AGS cell, KNM-45 cell and SGC7901 cell treated by MBXXXD and GC patients treated by MBXXXD + chemotherapy were also detected. RESULTS MBXXXD + chemotherapy promoted overall survival and progression free survival, improved clinical symptoms and quality of life score, increased T4 lymphocyte ratio and T8 lymphocyte ratio as well as T4/T8 lymphocyte ratio, and alleviated adverse reactions in GC patients. Network pharmacology predicted multiple targets and pathways of MBXXXD in treating GC including apoptosis, P53 pathway, AKT pathway, MAPK pathway. MBXXXD inhibited cell viability, decreased cell clone colony formation, and promoted mitochondrial apoptosis by producing reactive oxygen species (ROS), promoting mitochondrial permeability transition pore (MPTP) and the cleavage of pro-caspase-3 and pro-caspase-9, and decreasing mito-tracker red Chloromethyl-X-rosamine (CMXRos) in AGS cell, KNM-45 cell and SGC7901 cell. MBXXXD up-regulated the expression of P53 and IκB, and down-regulated the expression of p-AKT, p-P65, p-P38, p-ERK, p-JNK, AKT, P65, P38, ERK and JNK AGS cell, KNM-45 cell and SGC7901 cell treated by MBXXXD and GC patients treated by MBXXXD + chemotherapy. CONCLUSION MBXXXD benefitted chemotherapy for GC by regulating multiple targets and pathways.
Collapse
Affiliation(s)
- Zhipeng Zhang
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Institute of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine (TCM), Shanghai, 200071, China; Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Chao Wu
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Ningning Liu
- Department of Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Cancer Institute of Integrative Medicine, Shanghai, 201203, China; Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Ziyuan Wang
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Department of Pathology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai, 201203, China; Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Ziyang Pan
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Yulang Jiang
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Jianhui Tian
- Institute of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine (TCM), Shanghai, 200071, China; Clinical Oncology Center, Shanghai Municipal Hospital of TCM, Shanghai University of TCM, Shanghai, 200071, China; Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Mingyu Sun
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
4
|
Velez G, Wolf J, Dufour A, Mruthyunjaya P, Mahajan VB. Cross-Platform Identification and Validation of Uveal Melanoma Vitreous Protein Biomarkers. Invest Ophthalmol Vis Sci 2023; 64:14. [PMID: 37955612 PMCID: PMC10653261 DOI: 10.1167/iovs.64.14.14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/20/2023] [Indexed: 11/14/2023] Open
Abstract
Purpose The purpose of this study was to profile protein expression liquid vitreous biopsies from patients with uveal melanoma (UM) using mass spectrometry to identify prognostic biomarkers, signaling pathways, and therapeutic targets. Methods Vitreous biopsies were collected from two cohorts in a pilot study: comparative control eyes with epiretinal membranes (ERM; n = 3) and test eyes with UM (n = 8). Samples were analyzed using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Identified proteins were compared to data from a targeted multiplex ELISA proteomics platform. Results A total of 69 significantly elevated proteins were detected in the UM vitreous, including LYVE-1. LC-MS/MS identified 62 significantly upregulated proteins in UM vitreous that were not previously identified by ELISA. Analysis of differential protein expression by tumor molecular classification (gene expression profiling [GEP] and preferentially expressed antigen in melanoma [PRAME]) further identified proteins that correlated with these classifications. Patients with high-risk GEP tumors displayed elevated vitreous expression of HGFR (fold-change [FC] = 2.66E + 03, P value = 0.003) and PYGL (FC = 1.02E + 04, P = 1.72E-08). Patients with PRAME positive tumors displayed elevated vitreous expression of ENPP-2 (FC = 3.21, P = 0.04), NEO1 (FC = 2.65E + 03, P = 0.002), and LRP1 (FC = 5.59E + 02, P value = 0.01). IGF regulatory effectors were highly represented (P value = 1.74E-16). Cross-platform analysis validated seven proteins identified by ELISA and LC-MS/MS. Conclusions Proteomic analysis of liquid biopsies may provide prognostic information supporting gene expression of tumor biopsies. The use of multiple protein detection platforms in the same patient samples increases the sensitivity of candidate biomarker detection and allows for precise characterization of the vitreous proteome.
Collapse
Affiliation(s)
- Gabriel Velez
- Molecular Surgery Laboratory, Stanford University, Palo Alto, California, United States
- Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, California, United States
| | - Julian Wolf
- Molecular Surgery Laboratory, Stanford University, Palo Alto, California, United States
- Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, California, United States
| | - Antoine Dufour
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Prithvi Mruthyunjaya
- Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, California, United States
| | - Vinit B. Mahajan
- Molecular Surgery Laboratory, Stanford University, Palo Alto, California, United States
- Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, California, United States
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California, United States
| |
Collapse
|
5
|
Romejko K, Markowska M, Niemczyk S. The Review of Current Knowledge on Neutrophil Gelatinase-Associated Lipocalin (NGAL). Int J Mol Sci 2023; 24:10470. [PMID: 37445650 DOI: 10.3390/ijms241310470] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Neutrophil gelatinase-associated lipocalin (NGAL) is a 25-kDa protein that is secreted mostly by immune cells such as neutrophils, macrophages, and dendritic cells. Its production is stimulated in response to inflammation. The concentrations of NGAL can be measured in plasma, urine, and biological fluids such as peritoneal effluent. NGAL is known mainly as a biomarker of acute kidney injury and is released after tubular damage and during renal regeneration processes. NGAL is also elevated in chronic kidney disease and dialysis patients. It may play a role as a predictor of the progression of renal function decreases with complications and mortality due to kidney failure. NGAL is also useful in the diagnostic processes of cardiovascular diseases. It is highly expressed in injured heart tissue and atherosclerostic plaque; its serum concentrations correlate with the severity of heart failure and coronary artery disease. NGAL increases inflammatory states and its levels rise in arterial hypertension, obesity, diabetes, and metabolic complications such as insulin resistance, and is also involved in carcinogenesis. In this review, we present the current knowledge on NGAL and its involvement in different pathologies, especially its role in renal and cardiovascular diseases.
Collapse
Affiliation(s)
- Katarzyna Romejko
- Department of Internal Diseases, Nephrology and Dialysis, Military Institute of Medicine-National Research Institute, 128 Szaserów Street, 04-141 Warsaw, Poland
| | - Magdalena Markowska
- Department of Internal Diseases, Nephrology and Dialysis, Military Institute of Medicine-National Research Institute, 128 Szaserów Street, 04-141 Warsaw, Poland
| | - Stanisław Niemczyk
- Department of Internal Diseases, Nephrology and Dialysis, Military Institute of Medicine-National Research Institute, 128 Szaserów Street, 04-141 Warsaw, Poland
| |
Collapse
|
6
|
Kim KE, Lee J, Shin HJ, Jeong EA, Jang HM, Ahn YJ, An HS, Lee JY, Shin MC, Kim SK, Yoo WG, Kim WH, Roh GS. Lipocalin-2 activates hepatic stellate cells and promotes nonalcoholic steatohepatitis in high-fat diet-fed Ob/Ob mice. Hepatology 2023; 77:888-901. [PMID: 35560370 PMCID: PMC9936980 DOI: 10.1002/hep.32569] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/19/2022] [Accepted: 05/08/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND AND AIMS In obesity and type 2 diabetes mellitus, leptin promotes insulin resistance and contributes to the progression of NASH via activation of hepatic stellate cells (HSCs). However, the pathogenic mechanisms that trigger HSC activation in leptin-deficient obesity are still unknown. This study aimed to determine how HSC-targeting lipocalin-2 (LCN2) mediates the transition from simple steatosis to NASH. APPROACH AND RESULTS Male wild-type (WT) and ob/ob mice were fed a high-fat diet (HFD) for 20 weeks to establish an animal model of NASH with fibrosis. Ob/ob mice were subject to caloric restriction or recombinant leptin treatment. Double knockout (DKO) mice lacking both leptin and lcn2 were also fed an HFD for 20 weeks. In addition, HFD-fed ob/ob mice were treated with gadolinium trichloride to deplete Kupffer cells. The LX-2 human HSCs and primary HSCs from ob/ob mice were used to investigate the effects of LCN2 on HSC activation. Serum and hepatic LCN2 expression levels were prominently increased in HFD-fed ob/ob mice compared with normal diet-fed ob/ob mice or HFD-fed WT mice, and these changes were closely linked to liver fibrosis and increased hepatic α-SMA/matrix metalloproteinase 9 (MMP9)/signal transducer and activator of transcription 3 (STAT3) protein levels. HFD-fed DKO mice showed a marked reduction of α-SMA protein compared with HFD-fed ob/ob mice. In particular, the colocalization of LCN2 and α-SMA was increased in HSCs from HFD-fed ob/ob mice. In primary HSCs from ob/ob mice, exogenous LCN2 treatment induced HSC activation and MMP9 secretion. By contrast, LCN2 receptor 24p3R deficiency or a STAT3 inhibitor reduced the activation and migration of primary HSCs. CONCLUSIONS LCN2 acts as a key mediator of HSC activation in leptin-deficient obesity via α-SMA/MMP9/STAT3 signaling, thereby exacerbating NASH.
Collapse
Affiliation(s)
- Kyung Eun Kim
- Department of Anatomy and Convergence Medical Science, College of Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Jaewoong Lee
- Department of Anatomy and Convergence Medical Science, College of Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Hyun Joo Shin
- Department of Anatomy and Convergence Medical Science, College of Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Eun Ae Jeong
- Department of Anatomy and Convergence Medical Science, College of Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Hye Min Jang
- Department of Anatomy and Convergence Medical Science, College of Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Yu Jeong Ahn
- Department of Anatomy and Convergence Medical Science, College of Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Hyeong Seok An
- Department of Anatomy and Convergence Medical Science, College of Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Jong Youl Lee
- Department of Anatomy and Convergence Medical Science, College of Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Meong Cheol Shin
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Soo Kyoung Kim
- Department of Internal Medicine, College of Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Won Gi Yoo
- Department of Parasitology and Tropical Medicine, College of Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Won Ho Kim
- Division of Cardiovascular Diseases, Center for Biomedical Sciences, Korea National Institute of Health, Cheongju, Republic of Korea
| | - Gu Seob Roh
- Department of Anatomy and Convergence Medical Science, College of Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju, Republic of Korea
| |
Collapse
|
7
|
Identification of novel potential molecular targets associated with pediatric septic shock by integrated bioinformatics analysis and validation of in vitro septic shock model. JOURNAL OF SURGERY AND MEDICINE 2022. [DOI: 10.28982/josam.7461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background/Aim: Sepsis is a major cause of morbidity, mortality, and healthcare utilization among children all over the world. Sepsis, characterized as life-threatening organ failure, results from a dysregulated host response to infection. When combined with critically low blood pressure, it causes septic shock, resulting in high mortality rates. The aim of this study was to perform a bioinformatic analysis of gene expression profiles to predict septic shock risk.
Methods: Four datasets related to pediatric septic shock were retrieved from the Gene Expression Omnibus (GEO) database for a total of 240 patients and 83 controls. GEO2R tools based on R were used to find differentially expressed genes (DEGs). The Database for Annotation, Visualization and Integrated Discovery (DAVID) was used to examine the functional enrichment of DEGs. STRING was used to create a protein–protein interaction (PPI) network. After separately analyzing the four datasets, commonly affected genes were removed using the Venny program. Finally, human umbilical vein endothelial cells (HUVECs) were stimulated with supernatants of lipopolysaccharide (LPS)-stimulated RAW267.4 macrophage cells and expression of selected genes was confirmed by real-time reverse-transcriptase polymerase chain reaction (qRT-PCR) and used to construct an in vitro septic shock model.
Results: Seven-hundred seventy-one common differentially expressed genes in the four groups were found. Of these, 433 genes showed increased expression, while 338 had reduced expression. In the DAVID analysis results, DEGs up-regulated according to gene ontology results were enriched in the regulation of innate and adaptive immune responses, complement receptor-mediated signaling, and cytokine secretion processes. Down-regulated DEGs were significantly enriched in the regulation of immune response, T-cell activation, antigen processing, and presentation and integral component of plasma membrane processes. According to The Search Tool for the Retrieval of Interacting Genes/Proteins (STRING), Cystoscape Molecular Complex Detection (MCODE), nine down-regulated genes in the center of the PPI network, ZAP70, ITK, LAT, PRKCQ, LCK, IL2RB, FYN, CD8A, CD247 and four up-regulated genes, MMP9, TIMP1, LCN2, HGF, were associated with septic shock. Expressions of FYN and MMP9 genes in the in vitro septic shock model were consistent with the bioinformatic results.
Conclusion: Comparative bioinformatics analysis of data from four different septic shock studies was performed. As a result, molecular processes and important signal networks and 13 genes that we think will play a role in the development and risk prediction of septic shock are proposed.
Methods: Four datasets related to Pediatric septic shock were retrieved from the Gene Expression Omnibus (GEO) database for a total of 240 patients and 83 controls. GEO2R tools based on R were used to find differentially expressed genes (DEGs). DAVID was used to examine the functional enrichment of DEGs. STRING was used to create a protein-protein interaction (PPI) network. After separately analyzing the four datasets, commonly affected genes were removed using the Venny program. Finally, HUVECs were stimulated with supernatants of LPS-stimulated RAW267.4 macrophage cells and expression of selected genes was confirmed by qRT-PCR, constructing an in vitro septic shock model.
Results: There were 771 common differentially expressed genes in the 4 groups. Of these, 433 genes showed increased expression, while 338 had reducing expression. In the DAVID analysis results, DEGs upregulated by gene ontology were enriched in the regulation of innate and adaptive immune responses, complement receptor-mediated signaling, and cytokine secretion processes. Downregulated DEGs are significantly enriched in the regulation of immune response, T cell activation, antigen processing, and presentation and integral component of plasma membrane processes. According to STRING, cystoscape MCODE, and cytohubba analysis, 9 downregulated genes in the center of the PPI network, ZAP70, ITK, LAT, PRKCQ, LCK, IL2RB, FYN, CD8A, CD247, and 4 upregulated genes, MMP9, TIMP1, LCN2, HGF, were associated with septic shock. Expressions of FYN and MMP9 genes in the in vitro septic shock model were consistent with bioinformatic results.
Conclusion: Important signaling networks and 13 genes potentially indicating molecular processes for the incidence, development, and risk prediction in septic shock were found using bioinformatic analysis of gene expression profiles.
Collapse
|
8
|
Zhang J, Wang Z, Zhang H, Li S, Li J, Liu H, Cheng Q. The role of lipocalin 2 in brain injury and recovery after ischemic and hemorrhagic stroke. Front Mol Neurosci 2022; 15:930526. [PMID: 36187347 PMCID: PMC9520288 DOI: 10.3389/fnmol.2022.930526] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/02/2022] [Indexed: 12/03/2022] Open
Abstract
Ischemic and hemorrhagic stroke (including intracerebral hemorrhage, intraventricular hemorrhage, and subarachnoid hemorrhage) is the dominating cause of disability and death worldwide. Neuroinflammation, blood-brain barrier (BBB) disruption, neuronal death are the main pathological progress, which eventually causes brain injury. Increasing evidence indicated that lipocalin 2 (LCN2), a 25k-Da acute phase protein from the lipocalin superfamily, significantly increased immediately after the stroke and played a vital role in these events. Meanwhile, there exists a close relationship between LCN2 levels and the worse clinical outcome of patients with stroke. Further research revealed that LCN2 elimination is associated with reduced immune infiltrates, infarct volume, brain edema, BBB leakage, neuronal death, and neurological deficits. However, some studies revealed that LCN2 might also act as a beneficial factor in ischemic stroke. Nevertheless, the specific mechanism of LCN2 and its primary receptors (24p3R and megalin) involving in brain injury remains unclear. Therefore, it is necessary to investigate the mechanism of LCN2 induced brain damage after stroke. This review focuses on the role of LCN2 and its receptors in brain injury and aiming to find out possible therapeutic targets to reduce brain damage following stroke.
Collapse
Affiliation(s)
- Jingwei Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Zeyu Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Hao Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Shuwang Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Jing Li
- Department of Rehabilitation, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Hongwei Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Changsha, China
- Clinical Diagnosis and Therapy Center for Glioma of Xiangya Hospital, Central South University, Changsha, China
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
9
|
Abedi M, Rahgozar S. Puzzling Out Iron Complications in Cancer Drug Resistance. Crit Rev Oncol Hematol 2022; 178:103772. [PMID: 35914667 DOI: 10.1016/j.critrevonc.2022.103772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/23/2022] [Accepted: 07/28/2022] [Indexed: 12/09/2022] Open
Abstract
Iron metabolism are frequently disrupted in cancer. Patients with cancer are prone to anemia and receive transfusions frequently; the condition which results in iron overload, contributing to serious therapeutic complications. Iron is introduced as a carcinogen that may increase tumor growth. However, investigations regarding its impact on response to chemotherapy, particularly the induction of drug resistance are still limited. Here, iron contribution to cell signaling and various molecular mechanisms underlying iron-mediated drug resistance are described. A dual role of this vital element in cancer treatment is also addressed. On one hand, the need to administer iron chelators to surmount iron overload and improve the sensitivity of tumor cells to chemotherapy is discussed. On the other hand, the necessary application of iron as a therapeutic option by iron-oxide nanoparticles or ferroptosis inducers is explained. Authors hope that this paper can help unravel the clinical complications related to iron in cancer therapy.
Collapse
Affiliation(s)
- Marjan Abedi
- Department of Cell and Molecular biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| | - Soheila Rahgozar
- Department of Cell and Molecular biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| |
Collapse
|
10
|
Pal D, De K, Shanks CM, Feng K, Yates TB, Morrell-Falvey J, Davidson RB, Parks JM, Muchero W. Core cysteine residues in the Plasminogen-Apple-Nematode (PAN) domain are critical for HGF/c-MET signaling. Commun Biol 2022; 5:646. [PMID: 35778602 PMCID: PMC9249922 DOI: 10.1038/s42003-022-03582-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 06/10/2022] [Indexed: 11/09/2022] Open
Abstract
The Plasminogen-Apple-Nematode (PAN) domain, with a core of four to six cysteine residues, is found in > 28,000 proteins across 959 genera. Still, its role in protein function is not fully understood. The PAN domain was initially characterized in numerous proteins, including HGF. Dysregulation of HGF-mediated signaling results in multiple deadly cancers. The binding of HGF to its cell surface receptor, c-MET, triggers all biological impacts. Here, we show that mutating four core cysteine residues in the HGF PAN domain reduces c-MET interaction, subsequent c-MET autophosphorylation, and phosphorylation of its downstream targets, perinuclear localization, cellular internalization of HGF, and its receptor, c-MET, and c-MET ubiquitination. Furthermore, transcriptional activation of HGF/c-MET signaling-related genes involved in cancer progression, invasion, metastasis, and cell survival were impaired. Thus, targeting the PAN domain of HGF may represent a mechanism for selectively regulating the binding and activation of the c-MET pathway.
Collapse
Affiliation(s)
- Debjani Pal
- Bioscience Division, Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN, 37831, USA
| | - Kuntal De
- Bioscience Division, Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN, 37831, USA
| | - Carly M Shanks
- Bioscience Division, Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN, 37831, USA
| | - Kai Feng
- Bioscience Division, Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN, 37831, USA
| | - Timothy B Yates
- Bioscience Division, Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN, 37831, USA.,Bredesen Center for Interdisciplinary Research, University of Tennessee, Knoxville, TN, 37996, USA
| | - Jennifer Morrell-Falvey
- Bioscience Division, Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN, 37831, USA
| | - Russell B Davidson
- Bioscience Division, Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN, 37831, USA
| | - Jerry M Parks
- Bioscience Division, Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN, 37831, USA
| | - Wellington Muchero
- Bioscience Division, Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN, 37831, USA. .,Bredesen Center for Interdisciplinary Research, University of Tennessee, Knoxville, TN, 37996, USA.
| |
Collapse
|
11
|
Li Y, Feng X, Zhou S, Zheng Z, Yu T, Zheng X, Zhu J. Apios americana
Medikus: A novel and promising food for postpartum uterine involution. FOOD FRONTIERS 2022. [DOI: 10.1002/fft2.138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Yonglu Li
- Department of Food Science and Nutrition Zhejiang University Hangzhou People's Republic of China
- Zhejiang Key Laboratory for Agro‐Food Processing Zhejiang University Hangzhou People's Republic of China
- Fuli Institute of Food Science Zhejiang University Hangzhou People's Republic of China
- National Engineering Laboratory of Intelligent Food Technology and Equipment Zhejiang University Hangzhou People's Republic of China
- Department of Food Science & Technology National University of Singapore Singapore Singapore
| | - Xinyu Feng
- Department of Food Science and Nutrition Zhejiang University Hangzhou People's Republic of China
- Zhejiang Key Laboratory for Agro‐Food Processing Zhejiang University Hangzhou People's Republic of China
- Fuli Institute of Food Science Zhejiang University Hangzhou People's Republic of China
- National Engineering Laboratory of Intelligent Food Technology and Equipment Zhejiang University Hangzhou People's Republic of China
| | - Su Zhou
- Department of Food Science and Nutrition Zhejiang University Hangzhou People's Republic of China
- Zhejiang Key Laboratory for Agro‐Food Processing Zhejiang University Hangzhou People's Republic of China
- Fuli Institute of Food Science Zhejiang University Hangzhou People's Republic of China
- National Engineering Laboratory of Intelligent Food Technology and Equipment Zhejiang University Hangzhou People's Republic of China
| | - Zihuan Zheng
- Department of Food Science and Nutrition Zhejiang University Hangzhou People's Republic of China
- Zhejiang Key Laboratory for Agro‐Food Processing Zhejiang University Hangzhou People's Republic of China
- Fuli Institute of Food Science Zhejiang University Hangzhou People's Republic of China
- National Engineering Laboratory of Intelligent Food Technology and Equipment Zhejiang University Hangzhou People's Republic of China
| | - Ting Yu
- Department of Food Science and Nutrition Zhejiang University Hangzhou People's Republic of China
- Zhejiang Key Laboratory for Agro‐Food Processing Zhejiang University Hangzhou People's Republic of China
- Fuli Institute of Food Science Zhejiang University Hangzhou People's Republic of China
- National Engineering Laboratory of Intelligent Food Technology and Equipment Zhejiang University Hangzhou People's Republic of China
| | - Xiaodong Zheng
- Department of Food Science and Nutrition Zhejiang University Hangzhou People's Republic of China
- Zhejiang Key Laboratory for Agro‐Food Processing Zhejiang University Hangzhou People's Republic of China
- Fuli Institute of Food Science Zhejiang University Hangzhou People's Republic of China
- National Engineering Laboratory of Intelligent Food Technology and Equipment Zhejiang University Hangzhou People's Republic of China
| | - Jiajin Zhu
- Department of Food Science and Nutrition Zhejiang University Hangzhou People's Republic of China
- Zhejiang Key Laboratory for Agro‐Food Processing Zhejiang University Hangzhou People's Republic of China
- Fuli Institute of Food Science Zhejiang University Hangzhou People's Republic of China
- National Engineering Laboratory of Intelligent Food Technology and Equipment Zhejiang University Hangzhou People's Republic of China
| |
Collapse
|
12
|
Nishimura S, Yamamoto Y, Sugimoto A, Kushiyama S, Togano S, Kuroda K, Okuno T, Kasashima H, Ohira M, Maeda K, Yashiro M. Lipocalin-2 negatively regulates epithelial-mesenchymal transition through matrix metalloprotease-2 downregulation in gastric cancer. Gastric Cancer 2022; 25:850-861. [PMID: 35705840 PMCID: PMC9365736 DOI: 10.1007/s10120-022-01305-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/10/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Although the role of Lipocalin-2 (LCN2) in cancer development has been focused on recent studies, the molecular mechanisms and clinical relevance of LCN2 in gastric cancer (GC) still remain unclear. METHODS Transcriptome analysis of GC samples from public human data was performed according to Lauren's classification and molecular classification. In vitro, Western blotting, RT-PCR, wound healing assay and invasion assay were performed to reveal the function and mechanisms of LCN2 in cell proliferation, migration and invasion using LCN2 knockdown cells. Gene set enrichment analysis (GSEA) of GC samples from public human data was analyzed according to LCN2 expression. The clinical significance of LCN2 expression was investigated in GC patients from public data and our hospital. RESULTS LCN2 was downregulated in diffuse-type GC, as well as in Epithelial-Mesenchymal Transition (EMT) type GC. LCN2 downregulation significantly promoted proliferation, invasion and migration of GC cells. The molecular mechanisms of LCN2 downregulation contribute to Matrix Metalloproteinases-2 (MMP2) stimulation which enhances EMT signaling in GC cells. GSEA revealed that LCN2 downregulation in human samples was involved in EMT signaling. Low LCN2 protein and mRNA levels were significantly associated with poor prognosis in patients with GC. LCN2 mRNA level was an independent prognostic factor for overall survival in GC patients. CONCLUSIONS LCN2 has a critical role in EMT signaling via MMP2 activity during GC progression. Thus, LCN2 might be a promising therapeutic target to revert EMT signaling in GC patients with poor outcomes.
Collapse
Affiliation(s)
- Sadaaki Nishimura
- Molecular Oncology and Therapeutics, Osaka Metropolitan University Graduate School of Medicine, 1-4-3, Asahi-machi, Abeno-ku, Osaka City, Osaka 545-8585 Japan ,grid.258799.80000 0004 0372 2033Department of Gastroenterological Surgery, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan ,grid.258799.80000 0004 0372 2033Cancer Center for Translational Research, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Yurie Yamamoto
- Molecular Oncology and Therapeutics, Osaka Metropolitan University Graduate School of Medicine, 1-4-3, Asahi-machi, Abeno-ku, Osaka City, Osaka 545-8585 Japan ,grid.258799.80000 0004 0372 2033Cancer Center for Translational Research, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Atsushi Sugimoto
- Molecular Oncology and Therapeutics, Osaka Metropolitan University Graduate School of Medicine, 1-4-3, Asahi-machi, Abeno-ku, Osaka City, Osaka 545-8585 Japan ,grid.258799.80000 0004 0372 2033Department of Gastroenterological Surgery, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan ,grid.258799.80000 0004 0372 2033Cancer Center for Translational Research, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Shuhei Kushiyama
- grid.258799.80000 0004 0372 2033Department of Gastroenterological Surgery, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Shingo Togano
- grid.258799.80000 0004 0372 2033Department of Gastroenterological Surgery, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Kenji Kuroda
- grid.258799.80000 0004 0372 2033Department of Gastroenterological Surgery, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Tomohisa Okuno
- grid.258799.80000 0004 0372 2033Department of Gastroenterological Surgery, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Hiroaki Kasashima
- Molecular Oncology and Therapeutics, Osaka Metropolitan University Graduate School of Medicine, 1-4-3, Asahi-machi, Abeno-ku, Osaka City, Osaka 545-8585 Japan ,grid.258799.80000 0004 0372 2033Department of Gastroenterological Surgery, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Masaichi Ohira
- grid.258799.80000 0004 0372 2033Department of Gastroenterological Surgery, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Kiyoshi Maeda
- grid.258799.80000 0004 0372 2033Department of Gastroenterological Surgery, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Masakazu Yashiro
- Molecular Oncology and Therapeutics, Osaka Metropolitan University Graduate School of Medicine, 1-4-3, Asahi-machi, Abeno-ku, Osaka City, Osaka 545-8585 Japan ,grid.258799.80000 0004 0372 2033Department of Gastroenterological Surgery, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan ,grid.258799.80000 0004 0372 2033Cancer Center for Translational Research, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
13
|
NGAL as a Potential Target in Tumor Microenvironment. Int J Mol Sci 2021. [DOI: 10.3390/ijms222212333
expr 804735418 + 979474750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
The signaling network between cancer and stromal cells plays a crucial role in tumor microenvironment. The fate of tumor progression mainly depends on the huge amount of information that these cell populations exchange from the onset of neoplastic transformation. Interfering with such signaling has been producing exciting results in cancer therapy: just think of anti-PD-1/anti-PD-L1/anti-CTLA-4 antibodies that, acting as immune checkpoint inhibitors, interrupt the inhibitory signaling exerted by cancer cells on immune cells or the CAR-T technology that fosters the reactivation of anti-tumoral immunity in a restricted group of leukemias and lymphomas. Nevertheless, many types of cancers, in particular solid tumors, are still refractory to these treatments, so the identification of novel molecular targets in tumor secretome would benefit from implementation of current anti-cancer therapeutical strategies. Neutrophil Gelatinase-Associated Lipocalin (NGAL) is a secreted protein abundantly expressed in the secretome of various human tumors. It represents a promising target for the multiple roles that are played inside cancer and stromal cells, and also overall in their cross-talk. The review focuses on the different roles of NGAL in tumor microenvironment and in cancer senescence-associated secretory phenotype (SASP), highlighting the most crucial functions that could be eventually targetable in cancer therapy.
Collapse
|
14
|
Crescenzi E, Leonardi A, Pacifico F. NGAL as a Potential Target in Tumor Microenvironment. Int J Mol Sci 2021; 22:12333. [PMID: 34830212 PMCID: PMC8623964 DOI: 10.3390/ijms222212333&set/a 915137580+984946846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
The signaling network between cancer and stromal cells plays a crucial role in tumor microenvironment. The fate of tumor progression mainly depends on the huge amount of information that these cell populations exchange from the onset of neoplastic transformation. Interfering with such signaling has been producing exciting results in cancer therapy: just think of anti-PD-1/anti-PD-L1/anti-CTLA-4 antibodies that, acting as immune checkpoint inhibitors, interrupt the inhibitory signaling exerted by cancer cells on immune cells or the CAR-T technology that fosters the reactivation of anti-tumoral immunity in a restricted group of leukemias and lymphomas. Nevertheless, many types of cancers, in particular solid tumors, are still refractory to these treatments, so the identification of novel molecular targets in tumor secretome would benefit from implementation of current anti-cancer therapeutical strategies. Neutrophil Gelatinase-Associated Lipocalin (NGAL) is a secreted protein abundantly expressed in the secretome of various human tumors. It represents a promising target for the multiple roles that are played inside cancer and stromal cells, and also overall in their cross-talk. The review focuses on the different roles of NGAL in tumor microenvironment and in cancer senescence-associated secretory phenotype (SASP), highlighting the most crucial functions that could be eventually targetable in cancer therapy.
Collapse
Affiliation(s)
- Elvira Crescenzi
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale, CNR, Via S. Pansini, 5-80131 Naples, Italy;
| | - Antonio Leonardi
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, “Federico II” University of Naples, Via S. Pansini, 5-80131 Naples, Italy;
| | - Francesco Pacifico
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale, CNR, Via S. Pansini, 5-80131 Naples, Italy;
- Correspondence:
| |
Collapse
|
15
|
NGAL as a Potential Target in Tumor Microenvironment. Int J Mol Sci 2021; 22:ijms222212333. [PMID: 34830212 PMCID: PMC8623964 DOI: 10.3390/ijms222212333] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/09/2021] [Accepted: 11/12/2021] [Indexed: 12/29/2022] Open
Abstract
The signaling network between cancer and stromal cells plays a crucial role in tumor microenvironment. The fate of tumor progression mainly depends on the huge amount of information that these cell populations exchange from the onset of neoplastic transformation. Interfering with such signaling has been producing exciting results in cancer therapy: just think of anti-PD-1/anti-PD-L1/anti-CTLA-4 antibodies that, acting as immune checkpoint inhibitors, interrupt the inhibitory signaling exerted by cancer cells on immune cells or the CAR-T technology that fosters the reactivation of anti-tumoral immunity in a restricted group of leukemias and lymphomas. Nevertheless, many types of cancers, in particular solid tumors, are still refractory to these treatments, so the identification of novel molecular targets in tumor secretome would benefit from implementation of current anti-cancer therapeutical strategies. Neutrophil Gelatinase-Associated Lipocalin (NGAL) is a secreted protein abundantly expressed in the secretome of various human tumors. It represents a promising target for the multiple roles that are played inside cancer and stromal cells, and also overall in their cross-talk. The review focuses on the different roles of NGAL in tumor microenvironment and in cancer senescence-associated secretory phenotype (SASP), highlighting the most crucial functions that could be eventually targetable in cancer therapy.
Collapse
|
16
|
Tenascin-C expression in the lymph node pre-metastatic niche in muscle-invasive bladder cancer. Br J Cancer 2021; 125:1399-1407. [PMID: 34564696 PMCID: PMC8575937 DOI: 10.1038/s41416-021-01554-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 08/27/2021] [Accepted: 09/16/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Markers of stromal activation at future metastatic sites may have prognostic value and may allow clinicians to identify and abolish the pre-metastatic niche to prevent metastasis. In this study, we evaluate tenascin-C as a marker of pre-metastatic niche formation in bladder cancer patient lymph nodes. METHODS Tenascin-C expression in benign lymph nodes was compared between metastatic (n = 20) and non-metastatic (n = 27) patients with muscle-invasive bladder cancer. Urinary extracellular vesicle (EV) cytokine levels were measured with an antibody array to examine potential correlation with lymph node inflammation. The ability of bladder cancer EVs to activate primary bladder fibroblasts was assessed in vitro. RESULTS Lymph node tenascin-C expression was elevated in metastatic patients vs. non-metastatic patients, and high expression was associated with worse survival. Urinary EVs contained four cytokines that were positively correlated with lymph node tenascin-C expression. Bladder cancer EVs induced tenascin-C expression in fibroblasts in an NF-κB-dependent manner. CONCLUSIONS Tenascin-C expression in regional lymph nodes may be a good predictor of bladder cancer metastasis and an appropriate imaging target. It may be possible to interrupt pre-metastatic niche formation by targeting EV-borne tumour cytokines or by targeting tenascin-C directly.
Collapse
|
17
|
Tanaka R, Terai M, Londin E, Sato T. The Role of HGF/MET Signaling in Metastatic Uveal Melanoma. Cancers (Basel) 2021; 13:cancers13215457. [PMID: 34771620 PMCID: PMC8582360 DOI: 10.3390/cancers13215457] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 01/01/2023] Open
Abstract
Simple Summary Hepatocyte growth factor (HGF)/mesenchymal-epithelial transition factor (MET) signaling plays an important role in the metastatic formation and therapeutic resistance to uveal melanoma. Here, we review the various functions of MET signaling contributing to metastatic formation, as well as review resistance to treatments in metastatic uveal melanoma. Abstract Hepatocyte growth factor (HGF)/mesenchymal-epithelial transition factor (MET) signaling promotes tumorigenesis and tumor progression in various types of cancer, including uveal melanoma (UM). The roles of HGF/MET signaling have been studied in cell survival, proliferation, cell motility, and migration. Furthermore, HGF/MET signaling has emerged as a critical player not only in the tumor itself but also in the tumor microenvironment. Expression of MET is frequently observed in metastatic uveal melanoma and is associated with poor prognosis. It has been reported that HGF/MET signaling pathway activation is the major mechanism of treatment resistance in metastatic UM (MUM). To achieve maximal therapeutic benefit in MUM patients, it is important to understand how MET signaling drives cellular functions in uveal melanoma cells. Here, we review the HGF/MET signaling biology and the role of HGF/MET blockades in uveal melanoma.
Collapse
Affiliation(s)
- Ryota Tanaka
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; (R.T.); (T.S.)
| | - Mizue Terai
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; (R.T.); (T.S.)
- Correspondence: ; Tel.: +1-215-955-4780
| | - Eric Londin
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA;
| | - Takami Sato
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; (R.T.); (T.S.)
| |
Collapse
|
18
|
Bahrun U, Wildana W, Rahmawati H, Kurniawan LB, Hamdani W. Lipocalin 2 could predict circulating MMP9 levels in patients with breast cancer. Breast Dis 2021; 40:S115-S117. [PMID: 34057126 DOI: 10.3233/bd-219017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Breast cancer is the most prevalent carcinoma found in Indonesian women, and its incidence remains high worldwide. Lipocalin 2 has been linked with the progression of breast cancer. Matrix metalloproteinase 9 (MMP9) is an enzyme that has an important role in angiogenesis. We investigated the relationship between lipocalin 2 and MMP9 and the ability of lipocalin 2 for predicting MMP9 levels in female patients with breast cancer. METHOD A total of 55 female patients with breast cancer were enrolled in this cross-sectional study. Lipocalin 2 and MMP9 were measured by enzyme-linked immunosorbent assay. RESULTS Lipocalin 2 was significantly correlated with MMP9 levels (r = 0.756, p < 0.001). Lipocalin 2 levels could describe the MMP9 levels (𝛽 = 0.76, p < 0.001, R2 = 56.9%). CONCLUSION Higher lipocalin 2 levels in female patients with breast cancer indicate higher MMP9 levels. Lipocalin 2 can be used to predict MMP9 levels.
Collapse
Affiliation(s)
- Uleng Bahrun
- Department of Clinical Pathology, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia.,Hasanuddin University Hospital, Makassar, Indonesia.,Dr. Wahidin Sudirohusodo Hospital, Makassar, Indonesia
| | - Wildana Wildana
- Lamadukkelleng Hospital, Sengkang, South Sulawesi, Indonesia
| | | | - Liong Boy Kurniawan
- Department of Clinical Pathology, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia.,Hasanuddin University Hospital, Makassar, Indonesia
| | - William Hamdani
- Hasanuddin University Hospital, Makassar, Indonesia.,Dr. Wahidin Sudirohusodo Hospital, Makassar, Indonesia.,Division of Oncology, Department of Surgery, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| |
Collapse
|
19
|
Krizanac M, Mass Sanchez PB, Weiskirchen R, Asimakopoulos A. A Scoping Review on Lipocalin-2 and Its Role in Non-Alcoholic Steatohepatitis and Hepatocellular Carcinoma. Int J Mol Sci 2021; 22:2865. [PMID: 33799862 PMCID: PMC8000927 DOI: 10.3390/ijms22062865] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/05/2021] [Accepted: 03/10/2021] [Indexed: 02/06/2023] Open
Abstract
Excess calorie intake and a sedentary lifestyle have made non-alcoholic fatty liver disease (NAFLD) one of the fastest growing forms of liver disease of the modern world. It is characterized by abnormal accumulation of fat in the liver and can range from simple steatosis and non-alcoholic steatohepatitis (NASH) to cirrhosis as well as development of hepatocellular carcinoma (HCC). Biopsy is the golden standard for the diagnosis and differentiation of all NAFLD stages, but its invasiveness poses a risk for patients, which is why new, non-invasive ways of diagnostics ought to be discovered. Lipocalin-2 (LCN2), which is a part of the lipocalin transport protein family, is a protein formally known for its role in iron transport and in inflammatory response. However, in recent years, its implication in the pathogenesis of NAFLD has become apparent. LCN2 shows significant upregulation in several benign and malignant liver diseases, making it a good candidate for the NAFLD biomarker or even a therapeutic target. What makes LCN2 more interesting to study is the fact that it is overexpressed in HCC development induced by chronic NASH, which is one of the primary causes of cancer-related deaths. However, to this day, neither its role as a biomarker for NAFLD nor the molecular mechanisms of its implication in NAFLD pathogenesis have been completely elucidated. This review aims to gather and closely dissect the current knowledge about, sometimes conflicting, evidence on LCN2 as a biomarker for NAFLD, its involvement in NAFLD, and NAFLD-HCC related pathogenesis, while comparing it to the findings in similar pathologies.
Collapse
Affiliation(s)
| | | | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, 52074 Aachen, Germany; (M.K.); (P.B.M.S.)
| | - Anastasia Asimakopoulos
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, 52074 Aachen, Germany; (M.K.); (P.B.M.S.)
| |
Collapse
|
20
|
Sacco A, Battaglia AM, Botta C, Aversa I, Mancuso S, Costanzo F, Biamonte F. Iron Metabolism in the Tumor Microenvironment-Implications for Anti-Cancer Immune Response. Cells 2021; 10:303. [PMID: 33540645 PMCID: PMC7913036 DOI: 10.3390/cells10020303] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 02/06/2023] Open
Abstract
New insights into the field of iron metabolism within the tumor microenvironment have been uncovered in recent years. Iron promotes the production of reactive oxygen species, which may either trigger ferroptosis cell death or contribute to malignant transformation. Once transformed, cancer cells divert tumor-infiltrating immune cells to satisfy their iron demand, thus affecting the tumor immunosurveillance. In this review, we highlight how the bioavailability of this metal shapes complex metabolic pathways within the tumor microenvironment and how this affects both tumor-associated macrophages and tumor-infiltrating lymphocytes functions. Furthermore, we discuss the potentials as well as the current clinical controversies surrounding the use of iron metabolism as a target for new anticancer treatments in two opposed conditions: i) the "hot" tumors, which are usually enriched in immune cells infiltration and are extremely rich in iron availability within the microenvironment, and ii) the "cold" tumors, which are often very poor in immune cells, mainly due to immune exclusion.
Collapse
Affiliation(s)
- Alessandro Sacco
- Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy; (A.S.); (A.M.B.); (I.A.); (F.C.)
| | - Anna Martina Battaglia
- Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy; (A.S.); (A.M.B.); (I.A.); (F.C.)
| | | | - Ilenia Aversa
- Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy; (A.S.); (A.M.B.); (I.A.); (F.C.)
| | - Serafina Mancuso
- U.O. Biochimica Clinica, Azienda Ospedaliero Universitaria Mater Domini, 88100 Catanzaro, Italy;
| | - Francesco Costanzo
- Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy; (A.S.); (A.M.B.); (I.A.); (F.C.)
- Center of Interdepartmental Services (CIS), “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy
| | - Flavia Biamonte
- Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy; (A.S.); (A.M.B.); (I.A.); (F.C.)
- Center of Interdepartmental Services (CIS), “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
21
|
Yu J, Xia X, Dong Y, Gong Z, Li G, Chen GG, Lai PBS. CYP1A2 suppresses hepatocellular carcinoma through antagonizing HGF/MET signaling. Am J Cancer Res 2021; 11:2123-2136. [PMID: 33500715 PMCID: PMC7797680 DOI: 10.7150/thno.49368] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 11/27/2020] [Indexed: 02/06/2023] Open
Abstract
Rationale: Hyperactivation of HGF/MET signaling pathway is a critical driver in liver tumorigenesis. Cytochrome P450 1A2 (CYP1A2) was significantly down-regulated in hepatocellular carcinoma (HCC). However, little is explored about its tumor suppressive role in HCC. In this study, we examined the functional mechanisms and clinical implication of CYP1A2 in HCC. Methods: The clinical impact of CYP1A2 was evaluated in HCC patients in Hong Kong cohort. The biological functions of CYP1A2 were investigated in vitro and in vivo. A series of biochemical experiments including Western blot assay, immunohistochemistry, quantitative reverse transcription-polymerase chain reaction, and Co-immunoprecipitation assay were conducted. Results: CYP1A2 expression was prominently silenced in HCC tumor tissues and the high expression of CYP1A2 was significantly correlated with lower AFP level, less vascular invasion, and better tumor-free survival in local cohort of HCC patients. The overexpression of CYP1A2 inhibited HCC cell viability and clonogenicity, reduced cell migration and invasion abilities in vitro, and suppressed tumorigenicity in vivo, whereas CYP1A2 knockdown exhibited the opposite effects. CYP1A2 significantly hindered HGF/MET signaling and Matrix metalloproteinases (MMPs) expression in HCC cells. Mechanically, CYP1A2 decreased HGF level and diminished HIF-1α expression, both of which are recognized as key regulators of MET activation. As the transcriptional activator of MET, HIF-1α was identified as a binding partner of CYP1A2. Direct binding of CYP1A2 with HIF-1α induced ubiquitin-mediated degradation of HIF-1α, inhibiting HIF-1α-mediated transcriptions. Conclusions: In conclusion, our results have identified CYP1A2 as a novel antagonist of HGF/MET signaling, and CYP1A2 may serve as an independent new biomarker for the prognosis of HCC patients.
Collapse
|
22
|
Xu J, Lv S, Meng W, Zuo F. LCN2 Mediated by IL-17 Affects the Proliferation, Migration, Invasion and Cell Cycle of Gastric Cancer Cells by Targeting SLPI. Cancer Manag Res 2020; 12:12841-12849. [PMID: 33364832 PMCID: PMC7751782 DOI: 10.2147/cmar.s278902] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 11/11/2020] [Indexed: 12/24/2022] Open
Abstract
Introduction Gastric cancer occurred in China and even the whole East Asia with high incidence. The objective of this study was to investigate the role of IL-17 in gastric cancer cells mediated by LCN2 binding to SLPI. Methods The expression of LCN2 and SPLI in gastric cancer cells and transfection effects were confirmed by RT-qPCR analysis. The proliferation, clone formation ability, invasion, migration, apoptosis, and cell cycle of gastric cancer cells were in turn detected by CCK-8 assay, clone formation assay, transwell assay, wound healing assay, and flow cytometry analysis. The combination between LCN2 and SLPI was determined by co-immunoprecipitation assay. The expression of Caspase-3, Bcl-2, cyclinB1, cyclinD1, MMP9, and SLPI in gastric cancer cells was detected by Western blot analysis. Results LCN2 and SPLI exhibited the highest levels in AGS cells, and thus AGS cells were selected for the next experiments. Down-regulation of LCN2 suppressed the proliferation and clone formation ability of AGS cells treated with IL-17. IL-17 promoted the invasion and migration of AGS cells, which was partially reversed by the down-regulation of LCN2. Down-regulation of LCN2 mediated by IL-17 promoted apoptosis and suppressed the cell cycle of AGS cells. Discussion Down-regulation of LCN2 mediated by IL-17 suppressed the proliferation and suppressed the migration and invasion and cell cycle of gastric cancer cells by targeting SLPI.
Collapse
Affiliation(s)
- Jing Xu
- Department of Gastroenterology, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu Province, 222000, People's Republic of China.,Department of Gastroenterology, First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, Jiangsu Province 222000, People's Republic of China
| | - ShengXiang Lv
- Department of Gastroenterology, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu Province, 222000, People's Republic of China.,Department of Gastroenterology, First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, Jiangsu Province 222000, People's Republic of China
| | - Wei Meng
- Department of Functional Examination, Jinan Central Hospital, Jinan, Shandong Province 250014, People's Republic of China
| | - Fang Zuo
- Department of Gastroenterology, Jinan Central Hospital, Jinan, Shandong Province 250014, People's Republic of China
| |
Collapse
|
23
|
Yammine L, Zablocki A, Baron W, Terzi F, Gallazzini M. Lipocalin-2 Regulates Epidermal Growth Factor Receptor Intracellular Trafficking. Cell Rep 2020; 29:2067-2077.e6. [PMID: 31722218 DOI: 10.1016/j.celrep.2019.10.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 08/02/2019] [Accepted: 10/03/2019] [Indexed: 11/27/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) activation and lipocalin-2 (Lcn2) expression are frequently observed in the same pathological contexts, such as cancers or chronic kidney disease (CKD). However, the significance of this association is unknown. Here, we describe the role of Lcn2 in regulating EGFR trafficking. We show that Lcn2 increases EGFR cell surface abundance and is required for transforming growth factor α (TGF-α)-induced EGFR recycling to the plasma membrane and sustained activation. Lcn2 binds to the intracellular domain of EGFR in late endosomal compartments and inhibits its lysosomal degradation. Consistently, Lcn2 enhances EGFR-induced cell migration after TGF-α stimulation. In vivo, Lcn2 gene inactivation prevents EGFR recycling to the plasma membrane in an experimental model of CKD. Remarkably, this is associated with a dramatic decrease of renal lesions. Together, our data identify Lcn2 as a key mediator of EGFR trafficking processes. Hence, therapeutic inhibition of Lcn2 may counteract the deleterious effect of EGFR activation.
Collapse
Affiliation(s)
- Lucie Yammine
- Mechanisms and Therapeutic Strategies of Chronic Kidney Disease, INSERM U1151-CNRS UMR 8253, Institut Necker Enfants Malades, Département "Croissance et Signalisation," Hôpital Necker Enfants Malades, Université Paris Descartes, 149 Rue de Sèvres, Paris 75015, France
| | - Aniela Zablocki
- Mechanisms and Therapeutic Strategies of Chronic Kidney Disease, INSERM U1151-CNRS UMR 8253, Institut Necker Enfants Malades, Département "Croissance et Signalisation," Hôpital Necker Enfants Malades, Université Paris Descartes, 149 Rue de Sèvres, Paris 75015, France
| | - William Baron
- Mechanisms and Therapeutic Strategies of Chronic Kidney Disease, INSERM U1151-CNRS UMR 8253, Institut Necker Enfants Malades, Département "Croissance et Signalisation," Hôpital Necker Enfants Malades, Université Paris Descartes, 149 Rue de Sèvres, Paris 75015, France
| | - Fabiola Terzi
- Mechanisms and Therapeutic Strategies of Chronic Kidney Disease, INSERM U1151-CNRS UMR 8253, Institut Necker Enfants Malades, Département "Croissance et Signalisation," Hôpital Necker Enfants Malades, Université Paris Descartes, 149 Rue de Sèvres, Paris 75015, France
| | - Morgan Gallazzini
- Mechanisms and Therapeutic Strategies of Chronic Kidney Disease, INSERM U1151-CNRS UMR 8253, Institut Necker Enfants Malades, Département "Croissance et Signalisation," Hôpital Necker Enfants Malades, Université Paris Descartes, 149 Rue de Sèvres, Paris 75015, France.
| |
Collapse
|
24
|
Zhao R, Zhou H, Zhu J. MMP-9-C1562T polymorphism and susceptibility to chronic obstructive pulmonary disease: A meta-analysis. Medicine (Baltimore) 2020; 99:e21479. [PMID: 32756173 PMCID: PMC7402884 DOI: 10.1097/md.0000000000021479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND To comprehensively evaluate the association between the polymorphism of matrix metalloproteinase-9 (MMP-9)-C1562T (rs3918242) and susceptibility to chronic obstructive pulmonary disease (COPD) in middle-aged and elderly patients through Meta-analysis. METHODS PubMed, EMBASE, CNKI, Wanfang, VIP, and other databases were searched by computer in the inception to August 2019 to collect all the case-control studies that met the inclusion criteria in this literature. Meta-analysis was performed using Stata 15.0, including the OR value calculations of the association between the merged MMP-9-C1562T polymorphism and the COPD susceptibility. Subgroup analysis, sensitivity analysis, and publication bias test were also performed. A total of 13 literature were included in this Meta-analysis with a total of 2512 cases and 2716 controls. RESULTS The results have shown that the OR of MMP-9-C1562T T allele to C allele was 0.35 (95% confidence interval [CI]: 0.23-0.52, P < .01). The subgroup analysis of ethnicity result showed that the merged OR of MMP-9-C1562T T allele to C allele was 0.24 (95% CI: 0.17-0.34, P < .01) in Caucasian while the merged OR was 0.62 (95% CI: 0.22-1.70, P > .05) in Asian. However, there were no statistically significant models in the dominant, recessive, homozygote and heterozygote genetic models. CONCLUSION The MMP-9-C1562T polymorphism was associated with the susceptibility to middle-aged and elderly COPD patients. Compared with T allele, C allele increased the risk of disease, especially in Caucasian, but not found in Asian.
Collapse
|
25
|
Koh SA, Lee KH. Function of hepatocyte growth factor in gastric cancer proliferation and invasion. Yeungnam Univ J Med 2020; 37:73-78. [PMID: 32074717 PMCID: PMC7142030 DOI: 10.12701/yujm.2019.00437] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 01/28/2020] [Indexed: 11/06/2022] Open
Abstract
Cancer incidence has been increasing steadily and is the leading cause of mortality worldwide. Gastric cancer is still most common malignancy in Korea. Cancer initiation and progression are multistep processes involving various growth factors and their ligands. Among these growth factors, we have studied hepatocyte growth factor (HGF), which is associated with cell proliferation and invasion, leading to cancer and metastasis, especially in gastric cancer. We explored the intercellular communication between HGF and other surface membrane receptors in gastric cancer cell lines. Using complimentary deoxyribonucleic acid microarray technology, we found new genes associated with HGF in the stomach cancer cell lines, NUGC-3 and MKN-28, and identified their function within the HGF pathway. The HGF/N-methyl-N’-nitroso-guanidine human osteosarcoma transforming gene (c-MET) axis interacts with several molecules including E-cadherin, urokinase plasminogen activator, KiSS-1, Jun B, and lipocalin-2. This pathway may affect cell invasion and metastasis or cell apoptosis and is therefore associated with tumorigenesis and metastasis in gastric cancer.
Collapse
Affiliation(s)
- Sung Ae Koh
- Department of Hematology-Oncology, Yeungnam University College of Medicine, Daegu, Korea
| | - Kyung Hee Lee
- Department of Hematology-Oncology, Yeungnam University College of Medicine, Daegu, Korea
| |
Collapse
|
26
|
Implication and role of neutrophil gelatinase-associated lipocalin in cancer: lipocalin-2 as a potential novel emerging comprehensive therapeutic target for a variety of cancer types. Mol Biol Rep 2020; 47:2327-2346. [PMID: 31970626 DOI: 10.1007/s11033-020-05261-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 01/16/2020] [Indexed: 12/18/2022]
Abstract
Cancer is a leading cause of mortalities worldwide. Over the past few decades, exploration of molecular mechanisms behind cancer initiation and progression has been of great interest in the viewpoint of both basic and clinical scientists. It is generally believed that identification of key molecules implicated in cancer pathology not only improves our understanding of the disease, but also could result in introduction of novel therapeutic strategies. Neutrophil gelatinase-associated lipocalin (NGAL)/lipocalin-2 (LCN2) is a member of lipocalin superfamily with a variety of functions. Although the main function of LCN2 is still unknown, many studies confirmed its significant role in the initiation, progression, and metastasis of various types of cancer. Furthermore, aberrant expression of LCN2 is also concerned with the chemo- and radio-resistant phenotypes of tumors. Here, we will review the contribution of known functions of LCN2 to the pathophysiology of cancer. We also highlight how the deregulated expression of LCN2 is associated with a variety of fatal types of cancer for which there are no effective therapeutic modalities. The unique and multiple functions of LCN2 and its widespread expression in different types of cancer prompted us to suggest LCN2 could be considered either as a valuable diagnostic and prognostic biomarker or as a potential novel therapeutic target.
Collapse
|
27
|
Inhibition of HGF/MET signaling decreases overall tumor burden and blocks malignant conversion in Tpl2-related skin cancer. Oncogenesis 2019; 8:1. [PMID: 30631034 PMCID: PMC6328619 DOI: 10.1038/s41389-018-0109-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 11/16/2018] [Accepted: 12/03/2018] [Indexed: 12/15/2022] Open
Abstract
Tumor progression locus 2 (Tpl2) is a member of the mitogen-activated protein kinase kinase kinase (MAP3K) family of serine/threonine kinases. Deletion of the Tpl2 gene is associated with a significantly higher number of papillomas and cutaneous squamous cell carcinomas (cSCCs). Overexpression of hepatocyte growth factor (HGF) and its receptor MET is abundant in cSCC and can lead to increased proliferation, migration, invasion or resistance to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors. The aim of this study was to address whether the increased tumor burden in Tpl2−/− mice is due to aberrant HGF/MET signaling. C57Bl/6 wild type (WT) and Tpl2−/− mice were subjected to a two-stage chemical carcinogenesis protocol for one year. At the time of promotion half of the mice received 44 mg/kg capmatinib (INC 280), a pharmacological inihibitor of MET, in their diet. Tpl2−/− mice had signficantly higher tumor incidence and overall tumor burden compared to WT mice. Further, carcinogen-intiated Tpl2−/− mice could bypass the need for promotion, as 89% of Tpl2−/− mice given only DMBA developed papillomas. v-rasHa -transduced keratinocytes and SCCs from Tpl2−/− mice revealed an upregulation in HGF and p-MET signaling compared to WT animals. Long-term capmatinib treatment had no adverse effects in mice and capmatinib-fed Tpl2−/− mice had a 60% reduction in overall tumor burden. Further, no tumors from Tpl2−/− mice fed capmatinib underwent malignant conversion. In summary targeting MET may be a potential new strategy to combat cutaneous squamous cell carcinomas that result from dysregulation in MAPK signaling.
Collapse
|
28
|
Wang Y, Yu L, Ding J, Chen Y. Iron Metabolism in Cancer. Int J Mol Sci 2018; 20:ijms20010095. [PMID: 30591630 PMCID: PMC6337236 DOI: 10.3390/ijms20010095] [Citation(s) in RCA: 192] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/21/2018] [Accepted: 12/22/2018] [Indexed: 12/11/2022] Open
Abstract
Demanded as an essential trace element that supports cell growth and basic functions, iron can be harmful and cancerogenic though. By exchanging between its different oxidized forms, iron overload induces free radical formation, lipid peroxidation, DNA, and protein damages, leading to carcinogenesis or ferroptosis. Iron also plays profound roles in modulating tumor microenvironment and metastasis, maintaining genomic stability and controlling epigenetics. in order to meet the high requirement of iron, neoplastic cells have remodeled iron metabolism pathways, including acquisition, storage, and efflux, which makes manipulating iron homeostasis a considerable approach for cancer therapy. Several iron chelators and iron oxide nanoparticles (IONPs) has recently been developed for cancer intervention and presented considerable effects. This review summarizes some latest findings about iron metabolism function and regulation mechanism in cancer and the application of iron chelators and IONPs in cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Yafang Wang
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Lei Yu
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jian Ding
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Yi Chen
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| |
Collapse
|
29
|
More than a simple biomarker: the role of NGAL in cardiovascular and renal diseases. Clin Sci (Lond) 2018; 132:909-923. [PMID: 29739822 DOI: 10.1042/cs20171592] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/05/2018] [Accepted: 04/04/2018] [Indexed: 12/15/2022]
Abstract
Neutrophil gelatinase-associated lipocalin (NGAL) is a small circulating protein that is highly modulated in a wide variety of pathological situations, making it a useful biomarker of various disease states. It is one of the best markers of acute kidney injury, as it is rapidly released after tubular damage. However, a growing body of evidence highlights an important role for NGAL beyond that of a biomarker of renal dysfunction. Indeed, numerous studies have demonstrated a role for NGAL in both cardiovascular and renal diseases. In the present review, we summarize current knowledge concerning the involvement of NGAL in cardiovascular and renal diseases and discuss the various mechanisms underlying its pathological implications.
Collapse
|
30
|
Thewke DP, Kou J, Fulmer ML, Xie Q. The HGF/MET Signaling and Therapeutics in Cancer. CURRENT HUMAN CELL RESEARCH AND APPLICATIONS 2018. [DOI: 10.1007/978-981-10-7296-3_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
31
|
De Marco C, Laudanna C, Rinaldo N, Oliveira DM, Ravo M, Weisz A, Ceccarelli M, Caira E, Rizzuto A, Zoppoli P, Malanga D, Viglietto G. Specific gene expression signatures induced by the multiple oncogenic alterations that occur within the PTEN/PI3K/AKT pathway in lung cancer. PLoS One 2017; 12:e0178865. [PMID: 28662101 PMCID: PMC5491004 DOI: 10.1371/journal.pone.0178865] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 05/19/2017] [Indexed: 01/04/2023] Open
Abstract
Hyperactivation of the phosphatydil-inositol-3' phosphate kinase (PI3K)/AKT pathway is observed in most NSCLCs, promoting proliferation, migration, invasion and resistance to therapy. AKT can be activated through several mechanisms that include loss of the negative regulator PTEN, activating mutations of the catalytic subunit of PI3K (PIK3CA) and/or mutations of AKT1 itself. However, number and identity of downstream targets of activated PI3K/AKT pathway are poorly defined. To identify the genes that are targets of constitutive PI3K/AKT signalling in lung cancer cells, we performed a comparative transcriptomic analysis of human lung epithelial cells (BEAS-2B) expressing active mutant AKT1 (AKT1-E17K), active mutant PIK3CA (PIK3CA-E545K) or that are silenced for PTEN. We found that, altogether, aberrant PI3K/AKT signalling in lung epithelial cells regulated the expression of 1,960/20,436 genes (9%), though only 30 differentially expressed genes (DEGs) (15 up-regulated, 12 down-regulated and 3 discordant) out of 20,436 that were common among BEAS-AKT1-E17K, BEAS-PIK3CA-E545K and BEAS-shPTEN cells (0.1%). Conversely, DEGs specific for mutant AKT1 were 133 (85 up-regulated; 48 down-regulated), DEGs specific for mutant PIK3CA were 502 (280 up-regulated; 222 down-regulated) and DEGs specific for PTEN loss were 1549 (799 up-regulated, 750 down-regulated). The results obtained from array analysis were confirmed by quantitative RT-PCR on selected up- and down-regulated genes (n = 10). Treatment of BEAS-C cells and the corresponding derivatives with pharmacological inhibitors of AKT (MK2206) or PI3K (LY294002) further validated the significance of our findings. Moreover, mRNA expression of selected DEGs (SGK1, IGFBP3, PEG10, GDF15, PTGES, S100P, respectively) correlated with the activation status of the PI3K/AKT pathway assessed by S473 phosphorylation in NSCLC cell lines (n = 6). Finally, we made use of Ingenuity Pathway Analysis (IPA) to investigate the relevant BioFunctions enriched by the costitutive activation of AKT1-, PI3K- or PTEN-dependent signalling in lung epithelial cells. Expectedly, the analysis of the DEGs common to all three alterations highlighted a group of BioFunctions that included Cell Proliferation of tumor cell lines (14 DEGs), Invasion of cells (10 DEGs) and Migration of tumour cell lines (10 DEGs), with a common core of 5 genes (ATF3, CDKN1A, GDF15, HBEGF and LCN2) that likely represent downstream effectors of the pro-oncogenic activities of PI3K/AKT signalling. Conversely, IPA analysis of exclusive DEGs led to the identification of different downstream effectors that are modulated by mutant AKT1 (TGFBR2, CTSZ, EMP1), mutant PIK3CA (CCND2, CDK2, IGFBP2, TRIB1) and PTEN loss (ASNS, FHL2). These findings not only shed light on the molecular mechanisms that are activated by aberrant signalling through the PI3K/AKT pathway in lung epithelial cells, but also contribute to the identification of previously unrecognised molecules whose regulation takes part in the development of lung cancer.
Collapse
Affiliation(s)
- Carmela De Marco
- Dipartimento di Medicina Sperimentale e Clinica, Università "Magna Graecia", Catanzaro, Italia
| | - Carmelo Laudanna
- Dipartimento di Medicina Sperimentale e Clinica, Università "Magna Graecia", Catanzaro, Italia
| | - Nicola Rinaldo
- Biogem scarl, Instituto di Rihe Genetiche "Gaetano Salvatore", Ariano Irpino, Italia
| | - Duarte Mendes Oliveira
- Dipartimento di Medicina Sperimentale e Clinica, Università "Magna Graecia", Catanzaro, Italia
| | - Maria Ravo
- Laboratorio di Medicina Molecolare e Genomica, Facoltà di Medicina e Chirurgia, Università di Salerno, Baronissi, Italia
| | - Alessandro Weisz
- Laboratorio di Medicina Molecolare e Genomica, Facoltà di Medicina e Chirurgia, Università di Salerno, Baronissi, Italia
| | - Michele Ceccarelli
- Dipartimento di Studi Biologici e Ambientali, Università del Sannio, Benevento, Italia
| | - Elvira Caira
- Dipartimento di Medicina Sperimentale e Clinica, Università "Magna Graecia", Catanzaro, Italia
| | - Antonia Rizzuto
- Dipartimento di Scienze Mediche e Chirurgiche, Università "Magna Graecia", Catanzaro, Italia
| | - Pietro Zoppoli
- Dipartimento di Medicina Sperimentale e Clinica, Università "Magna Graecia", Catanzaro, Italia
| | - Donatella Malanga
- Dipartimento di Medicina Sperimentale e Clinica, Università "Magna Graecia", Catanzaro, Italia
| | - Giuseppe Viglietto
- Dipartimento di Medicina Sperimentale e Clinica, Università "Magna Graecia", Catanzaro, Italia.,Biogem scarl, Instituto di Rihe Genetiche "Gaetano Salvatore", Ariano Irpino, Italia
| |
Collapse
|
32
|
Sokolova O, Naumann M. NF-κB Signaling in Gastric Cancer. Toxins (Basel) 2017; 9:toxins9040119. [PMID: 28350359 PMCID: PMC5408193 DOI: 10.3390/toxins9040119] [Citation(s) in RCA: 159] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 03/14/2017] [Accepted: 03/22/2017] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer is a leading cause of cancer death worldwide. Diet, obesity, smoking and chronic infections, especially with Helicobacter pylori, contribute to stomach cancer development. H. pylori possesses a variety of virulence factors including encoded factors from the cytotoxin-associated gene pathogenicity island (cagPAI) or vacuolating cytotoxin A (VacA). Most of the cagPAI-encoded products form a type 4 secretion system (T4SS), a pilus-like macromolecular transporter, which translocates CagA into the cytoplasm of the host cell. Only H. pylori strains carrying the cagPAI induce the transcription factor NF-κB, but CagA and VacA are dispensable for direct NF-κB activation. NF-κB-driven gene products include cytokines/chemokines, growth factors, anti-apoptotic factors, angiogenesis regulators and metalloproteinases. Many of the genes transcribed by NF-κB promote gastric carcinogenesis. Since it has been shown that chemotherapy-caused cellular stress could elicit activation of the survival factor NF-κB, which leads to acquisition of chemoresistance, the NF-κB system is recommended for therapeutic targeting. Research is motivated for further search of predisposing conditions, diagnostic markers and efficient drugs to improve significantly the overall survival of patients. In this review, we provide an overview about mechanisms and consequences of NF-κB activation in gastric mucosa in order to understand the role of NF-κB in gastric carcinogenesis.
Collapse
Affiliation(s)
- Olga Sokolova
- Institute of Experimental Internal Medicine, Otto von Guericke University Magdeburg, Magdeburg 39120, Germany.
| | - Michael Naumann
- Institute of Experimental Internal Medicine, Otto von Guericke University Magdeburg, Magdeburg 39120, Germany.
| |
Collapse
|
33
|
Peng D, Guo Y, Chen H, Zhao S, Washington K, Hu T, Shyr Y, El-Rifai W. Integrated molecular analysis reveals complex interactions between genomic and epigenomic alterations in esophageal adenocarcinomas. Sci Rep 2017; 7:40729. [PMID: 28102292 PMCID: PMC5244375 DOI: 10.1038/srep40729] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 12/09/2016] [Indexed: 02/07/2023] Open
Abstract
The incidence of esophageal adenocarcinoma (EAC) is rapidly rising in the United States and Western countries. In this study, we carried out an integrative molecular analysis to identify interactions between genomic and epigenomic alterations in regulating gene expression networks in EAC. We detected significant alterations in DNA copy numbers (CN), gene expression levels, and DNA methylation profiles. The integrative analysis demonstrated that altered expression of 1,755 genes was associated with changes in CN or methylation. We found that expression alterations in 84 genes were associated with changes in both CN and methylation. These data suggest a strong interaction between genetic and epigenetic events to modulate gene expression in EAC. Of note, bioinformatics analysis detected a prominent K-RAS signature and predicted activation of several important transcription factor networks, including β-catenin, MYB, TWIST1, SOX7, GATA3 and GATA6. Notably, we detected hypomethylation and overexpression of several pro-inflammatory genes such as COX2, IL8 and IL23R, suggesting an important role of epigenetic regulation of these genes in the inflammatory cascade associated with EAC. In summary, this integrative analysis demonstrates a complex interaction between genetic and epigenetic mechanisms providing several novel insights for our understanding of molecular events in EAC.
Collapse
Affiliation(s)
- DunFa Peng
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yan Guo
- Department of Biostatistics, Vanderbilt University, Nashville, Tennessee, USA.,Department of Cancer Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Heidi Chen
- Department of Biostatistics, Vanderbilt University, Nashville, Tennessee, USA.,Department of Cancer Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Shilin Zhao
- Department of Biostatistics, Vanderbilt University, Nashville, Tennessee, USA.,Department of Cancer Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Kay Washington
- Department of Pathology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - TianLing Hu
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yu Shyr
- Department of Biostatistics, Vanderbilt University, Nashville, Tennessee, USA
| | - Wael El-Rifai
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Cancer Biology, Vanderbilt University, Nashville, Tennessee, USA.,Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| |
Collapse
|
34
|
Abstract
Neutrophil gelatinase-associated lipocalin (NGAL) is increasingly regarded as a biomarker of acute kidney injury, or kidney injury in general, but the stimuli responsible for its production are incompletely understood. This study tested the relationship between the pro-inflammatory cytokine interleukin-1β (IL-1β) and both circulating and renal NGAL, using chronic subcutaneous infusion of IL-1β in mice and tissue culture of renal cell lines. Following a 14-day subcutaneous infusion of vehicle or IL-1β (10ng/h) in male C57Bl/6 mice, a striking positive correlation (r2=0.94; P<0.01) was observed between plasma IL-1β and NGAL concentrations. NGAL was markedly increased in the kidneys of IL-1β-infused mice compared with vehicle-treated mice, both at the protein and mRNA level, indicating increased local as well as systemic production of NGAL. Immunohistochemical staining revealed prominent increases of NGAL in the proximal tubular epithelium of IL-1β infused mice. These effects occurred in the absence of overt renal injury, with plasma creatinine concentration not significantly different between groups. Further showing that IL-1β has a direct effect on NGAL production by tubular epithelial cells, exposure of a proximal tubular cell line (HK-2 cells) and a cortical collecting duct principal cell line (mpkCCD cells) to IL-1β for 24h produced a significant increase of NGAL mRNA levels (>30-fold). These data indicate IL-1β serves as a powerful stimulus for renal production of NGAL.
Collapse
|
35
|
Garay J, Piazuelo MB, Majumdar S, Li L, Trillo-Tinoco J, Del Valle L, Schneider BG, Delgado AG, Wilson KT, Correa P, Zabaleta J. The homing receptor CD44 is involved in the progression of precancerous gastric lesions in patients infected with Helicobacter pylori and in development of mucous metaplasia in mice. Cancer Lett 2016; 371:90-8. [PMID: 26639196 PMCID: PMC4714604 DOI: 10.1016/j.canlet.2015.10.037] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 09/09/2015] [Accepted: 10/05/2015] [Indexed: 01/06/2023]
Abstract
Infection with Helicobacter pylori (H. pylori) leads to inflammatory events that can promote gastric cancer development. Immune cells transition from the circulation into the infected mucosa through the interaction of their receptors and ligands in the endothelial compartment. CD44 expression is increased in advanced gastric lesions. However, the association of this molecule with the progression of these lesions over time has not been investigated. In addition, there is a lack of understanding of the CD44-dependent cellular processes that lead to gastritis, and possibly to gastric cancer. Here we studied H. pylori-positive subjects with gastric lesions that ranged from multifocal atrophic gastritis to dysplasia to determine gene expression changes associated with disease progression over a period of 6 years. We report that CD44 expression is significantly increased in individuals whose gastric lesions progressed along the gastric precancerous cascade. We also show that CD44-/- mice develop less severe and less extensive H. pylori-induced metaplasia, and show fewer infiltrating Gr1+ cells compared to wild type mice. We present data suggesting that CD44 is associated with disease progression. Mechanisms associated with these effects include induction of interferon gamma responses.
Collapse
MESH Headings
- Animals
- Antigens, Ly/metabolism
- Cells, Cultured
- Chemotaxis, Leukocyte
- Disease Models, Animal
- Disease Progression
- Female
- Gastric Mucosa/immunology
- Gastric Mucosa/metabolism
- Gastric Mucosa/microbiology
- Gastric Mucosa/pathology
- Gastritis, Atrophic/diagnosis
- Gastritis, Atrophic/genetics
- Gastritis, Atrophic/immunology
- Gastritis, Atrophic/metabolism
- Gastritis, Atrophic/microbiology
- Helicobacter Infections/diagnosis
- Helicobacter Infections/genetics
- Helicobacter Infections/immunology
- Helicobacter Infections/metabolism
- Helicobacter Infections/microbiology
- Helicobacter pylori/immunology
- Helicobacter pylori/pathogenicity
- Humans
- Hyaluronan Receptors/genetics
- Hyaluronan Receptors/immunology
- Hyaluronan Receptors/metabolism
- Interferon-gamma/metabolism
- Macrophages, Peritoneal/immunology
- Macrophages, Peritoneal/metabolism
- Mice, Knockout
- Neutrophil Infiltration
- Neutrophils/immunology
- Neutrophils/metabolism
- Precancerous Conditions/diagnosis
- Precancerous Conditions/genetics
- Precancerous Conditions/immunology
- Precancerous Conditions/metabolism
- Precancerous Conditions/microbiology
- Signal Transduction
- Stomach Neoplasms/diagnosis
- Stomach Neoplasms/genetics
- Stomach Neoplasms/immunology
- Stomach Neoplasms/metabolism
- Stomach Neoplasms/microbiology
- Time Factors
Collapse
Affiliation(s)
- Jone Garay
- Stanley S. Scott Cancer Center, LSUHSC, New Orleans, LA, USA
| | - M Blanca Piazuelo
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sumana Majumdar
- Stanley S. Scott Cancer Center, LSUHSC, New Orleans, LA, USA
| | - Li Li
- Stanley S. Scott Cancer Center, LSUHSC, New Orleans, LA, USA
| | | | - Luis Del Valle
- Stanley S. Scott Cancer Center, LSUHSC, New Orleans, LA, USA; Department of Pathology, LSUHSC, New Orleans, LA, USA
| | - Barbara G Schneider
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alberto G Delgado
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Keith T Wilson
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Pelayo Correa
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jovanny Zabaleta
- Stanley S. Scott Cancer Center, LSUHSC, New Orleans, LA, USA; Department of Pediatrics, LSUHSC New Orleans, LA, USA.
| |
Collapse
|