1
|
Zhang N, Liu Q, Wang D, Wang X, Pan Z, Han B, He G. Multifaceted roles of Galectins: from carbohydrate binding to targeted cancer therapy. Biomark Res 2025; 13:49. [PMID: 40134029 PMCID: PMC11934519 DOI: 10.1186/s40364-025-00759-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 03/05/2025] [Indexed: 03/27/2025] Open
Abstract
Galectins play pivotal roles in cellular recognition and signaling processes by interacting with glycoconjugates. Extensive research has highlighted the significance of Galectins in the context of cancer, aiding in the identification of biomarkers for early detection, personalized therapy, and predicting treatment responses. This review offers a comprehensive overview of the structural characteristics, ligand-binding properties, and interacting proteins of Galectins. We delve into their biological functions and examine their roles across various cancer types. Galectins, characterized by a conserved carbohydrate recognition domain (CRD), are divided into prototype, tandem-repeat, and chimera types based on their structural configurations. Prototype Galectins contain a single CRD, tandem-repeat Galectins contain two distinct CRDs linked by a peptide, and the chimera-type Galectin-3 features a unique structural arrangement. The capacity of Galectins to engage in multivalent interactions allows them to regulate a variety of signaling pathways, thereby affecting cell fate and function. In cancer, Galectins contribute to tumor cell transformation, angiogenesis, immune evasion, and metastasis, making them critical targets for therapeutic intervention. This review discusses the multifaceted roles of Galectins in cancer progression and explores current advancements in the development of Galectin-targeted therapies. We also address the challenges and future directions for integrating Galectin research into clinical practice to enhance cancer treatment outcomes. In brief, understanding the complex functions of Galectins in cancer biology opens new avenues for therapeutic strategies. Continued research on Galectin interactions and their pathological roles is essential for developing effective carbohydrate-based treatments and improving clinical interventions for cancer patients.
Collapse
Affiliation(s)
- Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- Institute of Precision Drug Innovation and Cancer Center, the Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Qiao Liu
- Institute of Precision Drug Innovation and Cancer Center, the Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Daihan Wang
- Institute of Precision Drug Innovation and Cancer Center, the Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Xiaoyun Wang
- Institute of Precision Drug Innovation and Cancer Center, the Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Zhaoping Pan
- Institute of Precision Drug Innovation and Cancer Center, the Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Gu He
- Institute of Precision Drug Innovation and Cancer Center, the Second Hospital of Dalian Medical University, Dalian, 116023, China.
| |
Collapse
|
2
|
Xiao Z, Wang S, Chen J, Li Y, Jiang Y, Tin VP, Liu J, Hu H, Wong MP, Pan Y, Yam JWP. The Dual Role of the NFATc2/galectin-9 Axis in Modulating Tumor-Initiating Cell Phenotypes and Immune Suppression in Lung Adenocarcinoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306059. [PMID: 38528665 PMCID: PMC11132051 DOI: 10.1002/advs.202306059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 03/04/2024] [Indexed: 03/27/2024]
Abstract
Tumor-initiating cells (TICs) resilience and an immunosuppressive microenvironment are aggressive oncogenic phenotypes that contribute to unsatisfactory long-term outcomes in lung adenocarcinoma (LUAD) patients. The molecular mechanisms mediating the interaction between TICs and immune tolerance have not been elucidated. The role of Galectin-9 in oncogenesis and immunosuppressive microenvironment is still unknown. This study explored the potential role of galectin-9 in TIC regulation and immune modulation in LUAD. The results show that galectin-9 supports TIC properties in LUAD. Co-culture of patient-derived organoids and matched peripheral blood mononuclear cells showed that tumor-secreted galectin-9 suppressed T cell cytotoxicity and induced regulatory T cells (Tregs). Clinically, galectin-9 is upregulated in human LUAD. High expression of galectin-9 predicted poor recurrence-free survival and correlated with high levels of Treg infiltration. LGALS9, the gene encoding galectin-9, is found to be transcriptionally regulated by the nuclear factor of activated T cells 2 (NFATc2), a previously reported TIC regulator, via in silico prediction and luciferase reporter assays. Overall, the results suggest that the NFATc2/galectin-9 axis plays a dual role in TIC regulation and immune suppression.
Collapse
Affiliation(s)
- Zhi‐Jie Xiao
- Scientific Research CentreThe Seventh Affiliated HospitalSun Yat‐sen UniversityShenzhen518000China
- Shenzhen Key Laboratory of Bone Tissue Repair and Translational ResearchThe Seventh Affiliated HospitalSun Yat‐sen UniversityShenzhen518000China
- Department of PathologySchool of Clinical MedicineThe University of Hong KongHong Kong999077Hong Kong
| | - Si‐Qi Wang
- Department of PathologySchool of Clinical MedicineThe University of Hong KongHong Kong999077Hong Kong
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101China
- Key Laboratory of Organ Regeneration and ReconstructionChinese Academy of SciencesBeijing100101China
- Beijing Institute for Stem Cell and Regenerative MedicineBeijing100101China
| | - Jun‐Jiang Chen
- Department of PhysiologySchool of MedicineJinan UniversityGuangzhou510000China
| | - Yun Li
- Department of Thoracic SurgeryThe Seventh Affiliated Hospital of Sun Yat‐Sen UniversityShenzhenChina
| | - Yuchen Jiang
- Scientific Research CentreThe Seventh Affiliated HospitalSun Yat‐sen UniversityShenzhen518000China
| | - Vicky Pui‐Chi Tin
- Department of PathologySchool of Clinical MedicineThe University of Hong KongHong Kong999077Hong Kong
| | - Jia Liu
- Scientific Research CentreThe Seventh Affiliated HospitalSun Yat‐sen UniversityShenzhen518000China
| | - Huiyi Hu
- Scientific Research CentreThe Seventh Affiliated HospitalSun Yat‐sen UniversityShenzhen518000China
| | - Maria Pik Wong
- Department of PathologySchool of Clinical MedicineThe University of Hong KongHong Kong999077Hong Kong
| | - Yihang Pan
- Scientific Research CentreThe Seventh Affiliated HospitalSun Yat‐sen UniversityShenzhen518000China
| | - Judy Wai Ping Yam
- Department of PathologySchool of Clinical MedicineThe University of Hong KongHong Kong999077Hong Kong
| |
Collapse
|
3
|
Zhang M, Liu C, Li Y, Li H, Zhang W, Liu J, Wang L, Sun C. Galectin-9 in cancer therapy: from immune checkpoint ligand to promising therapeutic target. Front Cell Dev Biol 2024; 11:1332205. [PMID: 38264357 PMCID: PMC10803597 DOI: 10.3389/fcell.2023.1332205] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/22/2023] [Indexed: 01/25/2024] Open
Abstract
Galectin-9 (Gal-9) is a vital member of the galectin family, functioning as a multi-subtype galactose lectin with diverse biological roles. Recent research has revealed that Gal-9's interaction with tumors is an independent factor that influences tumor progression. Furthermore, Gal-9 in the immune microenvironment cross-talks with tumor-associated immune cells, informing the clarification of Gal-9's identity as an immune checkpoint. A thorough investigation into Gal-9's role in various cancer types and its interaction with the immune microenvironment could yield novel strategies for subsequent targeted immunotherapy. This review focuses on the latest advances in understanding the direct and indirect cross-talk between Gal-9 and hematologic malignancies, in addition to solid tumors. In addition, we discuss the prospects of Gal-9 in tumor immunotherapy, including its cross-talk with the ligand TIM-3 and its potential in immune-combination therapy.
Collapse
Affiliation(s)
- Minpu Zhang
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Cun Liu
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang, China
| | - Ye Li
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Huayao Li
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang, China
| | - Wenfeng Zhang
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Jingyang Liu
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Liquan Wang
- Department of Thyroid and Breast Surgery, Weifang People’s Hospital, Weifang, China
| | - Changgang Sun
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang, China
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China
| |
Collapse
|
4
|
Choukrani G, Visser N, Ustyanovska Avtenyuk N, Olthuis M, Marsman G, Ammatuna E, Lourens HJ, Niki T, Huls G, Bremer E, Wiersma VR. Galectin-9 has non-apoptotic cytotoxic activity toward acute myeloid leukemia independent of cytarabine resistance. Cell Death Discov 2023; 9:228. [PMID: 37407572 DOI: 10.1038/s41420-023-01515-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/14/2023] [Accepted: 06/21/2023] [Indexed: 07/07/2023] Open
Abstract
Acute myeloid leukemia (AML) is a malignancy still associated with poor survival rates, among others, due to frequent occurrence of therapy-resistant relapse after standard-of-care treatment with cytarabine (AraC). AraC triggers apoptotic cell death, a type of cell death to which AML cells often become resistant. Therefore, therapeutic options that trigger an alternate type of cell death are of particular interest. We previously identified that the glycan-binding protein Galectin-9 (Gal-9) has tumor-selective and non-apoptotic cytotoxicity towards various types of cancer, which depended on autophagy inhibition. Thus, Gal-9 could be of therapeutic interest for (AraC-resistant) AML. In the current study, treatment with Gal-9 was cytotoxic for AML cells, including for CD34+ patient-derived AML stem cells, but not for healthy cord blood-derived CD34+ stem cells. This Gal-9-mediated cytotoxicity did not rely on apoptosis but was negatively associated with autophagic flux. Importantly, both AraC-sensitive and -resistant AML cell lines, as well as AML patient samples, were sensitive to single-agent treatment with Gal-9. Additionally, Gal-9 potentiated the cytotoxic effect of DNA demethylase inhibitor Azacytidine (Aza), a drug that is clinically used for patients that are not eligible for intensive AraC treatment. Thus, Gal-9 is a potential therapeutic agent for the treatment of AML, including AraC-resistant AML, by inducing caspase-independent cell death.
Collapse
Affiliation(s)
- Ghizlane Choukrani
- Department of Hematology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Nienke Visser
- Department of Hematology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Natasha Ustyanovska Avtenyuk
- Department of Hematology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Surflay Nanotec GmbH, Berlin, Germany
| | - Mirjam Olthuis
- Department of Hematology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Glenn Marsman
- Department of Hematology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Emanuele Ammatuna
- Department of Hematology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Harm Jan Lourens
- Department of Hematology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Toshiro Niki
- Department of Immunology, Kagawa University, Takamatsu, Kagawa, Japan
| | - Gerwin Huls
- Department of Hematology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Edwin Bremer
- Department of Hematology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Valerie R Wiersma
- Department of Hematology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
5
|
Morishita A, Oura K, Tadokoro T, Shi T, Fujita K, Tani J, Atsukawa M, Masaki T. Galectin-9 in Gastroenterological Cancer. Int J Mol Sci 2023; 24:ijms24076174. [PMID: 37047155 PMCID: PMC10094448 DOI: 10.3390/ijms24076174] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/07/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023] Open
Abstract
Immunochemotherapy has become popular in recent years. The detailed mechanisms of cancer immunity are being elucidated, and new developments are expected in the future. Apoptosis allows tissues to maintain their form, quantity, and function by eliminating excess or abnormal cells. When apoptosis is inhibited, the balance between cell division and death is disrupted and tissue homeostasis is impaired. This leads to dysfunction and the accumulation of genetically abnormal cells, which can contribute to carcinogenesis. Lectins are neither enzymes nor antibodies but proteins that bind sugar chains. Among soluble endogenous lectins, galectins interact with cell surface sugar chains outside the cell to regulate signal transduction and cell growth. On the other hand, intracellular lectins are present at the plasma membrane and regulate signal transduction by regulating receptor–ligand interactions. Galectin-9 expressed on the surface of thymocytes induces apoptosis of T lymphocytes and plays an essential role in immune self-tolerance by negative selection in the thymus. Furthermore, the administration of extracellular galectin-9 induces apoptosis of human cancer and immunodeficient cells. However, the detailed pharmacokinetics of galectin-9 in vivo have not been elucidated. In addition, the cell surface receptors involved in galectin-9-induced apoptosis of cancer cells have not been identified, and the intracellular pathways involved in apoptosis have not been fully investigated. We have previously reported that galectin-9 induces apoptosis in various gastrointestinal cancers and suppresses tumor growth. However, the mechanism of galectin-9 and apoptosis induction in gastrointestinal cancers and the detailed mechanisms involved in tumor growth inhibition remain unknown. In this article, we review the effects of galectin-9 on gastrointestinal cancers and its mechanisms.
Collapse
|
6
|
Liu D, Zhu H, Li C. Galectins and galectin-mediated autophagy regulation: new insights into targeted cancer therapy. Biomark Res 2023; 11:22. [PMID: 36814341 PMCID: PMC9945697 DOI: 10.1186/s40364-023-00466-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
Galectins are animal lectins with specific affinity for galactosides via the conserved carbohydrate recognition domains. Increasing studies recently have identified critical roles of galectin family members in tumor progression. Abnormal expression of galectins contributes to the proliferation, metastasis, epithelial-mesenchymal transformation (EMT), immunosuppression, radio-resistance and chemoresistance in various cancers, which has attracted cumulative clinical interest in galectin-based cancer treatment. Galectin family members have been reported to participate in autophagy regulation under physiological conditions and in non-tumoral diseases, and implication of galectins in multiple processes of carcinogenesis also involves regulation of autophagy, however, the relationship between galectins, autophagy and cancer remains largely unclear. In this review, we introduce the structure and function of galectins at the molecular level, summarize their engagements in autophagy and cancer progression, and also highlight the regulation of autophagy by galectins in cancer as well as the therapeutic potentials of galectin and autophagy-based strategies. Elaborating on the mechanism of galectin-regulated autophagy in cancers will accelerate the exploitation of galectins-autophagy targeted therapies in treatment for cancer.
Collapse
Affiliation(s)
- Dan Liu
- grid.33199.310000 0004 0368 7223Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongtao Zhu
- grid.412793.a0000 0004 1799 5032Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chuanzhou Li
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
7
|
Li E, Xu J, Chen Q, Zhang X, Xu X, Liang T. Galectin-9 and PD-L1 antibody blockade combination therapy inhibits tumour progression in pancreatic cancer. Immunotherapy 2023; 15:135-147. [PMID: 36779368 DOI: 10.2217/imt-2021-0075] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023] Open
Abstract
Background: The study aimed to evaluate the effect of a galectin-9 and PD-L1 combined blockade in pancreatic ductal adenocarcinoma (PDAC). Methods: The expression of galectin-9 and PD-L1 was analyzed in PDAC. Furthermore, we explored the therapeutic effect of combined anti-galectin-9 and anti-PD-L1 therapy on pancreatic cancer in vivo. Results: Higher expression of galectin-9 and PD-L1 was observed in human PDAC compared with the normal pancreas. Furthermore, in a murine model of PDAC, combined anti-galectin-9 and anti-PD-L1 treatment was associated with a greater decrease in tumor growth compared with treatment with either antibody therapy alone. Conclusion: Anti-PD-L1 antibody treatment for PDAC patients may be enhanced by inhibiting galectin-9.
Collapse
Affiliation(s)
- Enliang Li
- Department of Hepatobiliary & Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, 310009, China.,Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Hangzhou, 310009, China.,Department of Hepatobiliary & Pancreatic Surgery, The Second Affiliated Hospital, Nanchang University, Jiangxi, 330006, China
| | - Jian Xu
- Department of Hepatobiliary & Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, 310009, China.,Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Hangzhou, 310009, China
| | - Qi Chen
- Department of Hepatobiliary & Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, 310009, China.,Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Hangzhou, 310009, China
| | - Xiaozhen Zhang
- Department of Hepatobiliary & Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, 310009, China.,Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Hangzhou, 310009, China
| | - Xingyuan Xu
- Department of Hepatobiliary & Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, 310009, China.,Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Hangzhou, 310009, China
| | - Tingbo Liang
- Department of Hepatobiliary & Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, 310009, China.,Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Hangzhou, 310009, China.,Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary & Pancreatic Diseases, Hangzhou, 310003, China.,Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| |
Collapse
|
8
|
Galectin-9 Triggers Neutrophil-Mediated Anticancer Immunity. Biomedicines 2021; 10:biomedicines10010066. [PMID: 35052746 PMCID: PMC8772786 DOI: 10.3390/biomedicines10010066] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/22/2021] [Accepted: 12/24/2021] [Indexed: 12/26/2022] Open
Abstract
In earlier studies, galectin-9 (Gal-9) was identified as a multifaceted player in both adaptive and innate immunity. Further, Gal-9 had direct cytotoxic and tumor-selective activity towards cancer cell lines of various origins. In the current study, we identified that treatment with Gal-9 triggered pronounced membrane alterations in cancer cells. Specifically, phosphatidyl serine (PS) was rapidly externalized, and the anti-phagocytic regulator, CD47, was downregulated within minutes. In line with this, treatment of mixed neutrophil/tumor cell cultures with Gal-9 triggered trogocytosis and augmented antibody-dependent cellular phagocytosis of cancer cells. Interestingly, this pro-trogocytic effect was also due to the Gal-9-mediated activation of neutrophils with upregulation of adhesion markers and mobilization of gelatinase, secretory, and specific granules. These activation events were accompanied by a decrease in cancer cell adhesion in mixed cultures of leukocytes and cancer cells. Further, prominent cytotoxicity was detected when leukocytes were mixed with pre-adhered cancer cells, which was abrogated when neutrophils were depleted. Taken together, Gal-9 treatment potently activated neutrophil-mediated anticancer immunity, resulting in the elimination of epithelial cancer cells.
Collapse
|
9
|
Esmail S, Manolson MF. Advances in understanding N-glycosylation structure, function, and regulation in health and disease. Eur J Cell Biol 2021; 100:151186. [PMID: 34839178 DOI: 10.1016/j.ejcb.2021.151186] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/14/2021] [Accepted: 11/18/2021] [Indexed: 01/17/2023] Open
Abstract
N-linked glycosylation is a post-translational modification crucial for membrane protein folding, stability and other cellular functions. Alteration of membrane protein N-glycans is implicated in wide range of pathological conditions including cancer metastasis, chronic inflammatory diseases, and viral pathogenesis. Even though the roles of N-glycans have been studied extensively, our knowledge of their mechanisms remains unclear due to the lack of detailed structural analysis of the N-glycome. Mapping the N-glycome landscape will open new avenues to explore disease mechanisms and identify novel therapeutic targets. This review discusses the diverse structure of N-linked glycans, the function and regulation of N-glycosylation in health and disease, and ends with a focus on recent approaches to target N-glycans in rheumatoid arthritis and cancer metastasis.
Collapse
Affiliation(s)
- Sally Esmail
- Faculty of Dentistry, University of Toronto, Toronto, Ontario M5G 1G6, Canada.
| | - Morris F Manolson
- Faculty of Dentistry, University of Toronto, Toronto, Ontario M5G 1G6, Canada
| |
Collapse
|
10
|
Zargar Balajam N, Shabani M, Aghaei M. Galectin-9 inhibits cell proliferation and induces apoptosis in Jurkat and KE-37 acute lymphoblastic leukemia cell lines via caspase-3 activation. Res Pharm Sci 2021; 16:612-622. [PMID: 34760009 PMCID: PMC8562407 DOI: 10.4103/1735-5362.327507] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 04/06/2021] [Accepted: 09/12/2021] [Indexed: 11/27/2022] Open
Abstract
Background and purpose: Acute lymphoblastic leukemia (ALL) is a type of cancer of blood and bone marrow characterized by abnormal proliferation of lymphoid progenitor cells. Galectin-9 is a tandem-repeat type galectin expressed in various tumor cells. It seems that the connection between galectin-9 and T cell immunoglobulin mucin-3 receptor acts as a negative regulator of cancer cells proliferation. Experimental approach: In this research, the effects of galectin-9 were investigated using MTS cell proliferation colorimetric, colony-forming, annexin V-FITC/PI, and caspase-3 assays in the Jurkat and KE-37 cell lines of ALL. Furthermore, the western blotting technique was used to evaluate the levels of apoptotic proteins such as Bax and Bcl-2 in these cell lines. Findings/Results: Our results indicated that galectin-9 can considerably reduce the cell growth and colony formation ability of both Jurkat and KE-37 cell lines in a concentration-dependent manner. Besides, galectin-9 induced apoptosis in a concentration-dependent manner in ALL cells by a mechanism associated with Bax/Bcl-2 expression and activation of the caspase-3 activation. Conclusion and implications: Galectin-9 inhibited the growth and proliferation of cell lines with increased programmed cell death, therefore it can be considered as a potential factor in the progression of ALL therapeutics that needs more research in this context.
Collapse
Affiliation(s)
- Narges Zargar Balajam
- Department of Clinical Biochemistry and Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Mahdi Shabani
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, I.R. Iran
| | - Mahmoud Aghaei
- Department of Clinical Biochemistry and Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| |
Collapse
|
11
|
Kremsreiter SM, Kroell ASH, Weinberger K, Boehm H. Glycan-Lectin Interactions in Cancer and Viral Infections and How to Disrupt Them. Int J Mol Sci 2021; 22:10577. [PMID: 34638920 PMCID: PMC8508825 DOI: 10.3390/ijms221910577] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 09/24/2021] [Accepted: 09/26/2021] [Indexed: 02/07/2023] Open
Abstract
Glycan-lectin interactions play an essential role in different cellular processes. One of their main functions is involvement in the immune response to pathogens or inflammation. However, cancer cells and viruses have adapted to avail themselves of these interactions. By displaying specific glycosylation structures, they are able to bind to lectins, thus promoting pathogenesis. While glycan-lectin interactions promote tumor progression, metastasis, and/or chemoresistance in cancer, in viral infections they are important for viral entry, release, and/or immune escape. For several years now, a growing number of investigations have been devoted to clarifying the role of glycan-lectin interactions in cancer and viral infections. Various overviews have already summarized and highlighted their findings. In this review, we consider the interactions of the lectins MGL, DC-SIGN, selectins, and galectins in both cancer and viral infections together. A possible transfer of ways to target and disrupt them might lead to new therapeutic approaches in different pathological backgrounds.
Collapse
Affiliation(s)
- Stefanie Maria Kremsreiter
- Institute for Pharmacy and Molecular Biotechnology (IPMB), Ruprecht Karls University Heidelberg, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany; (S.M.K.); (A.-S.H.K.); (K.W.)
| | - Ann-Sophie Helene Kroell
- Institute for Pharmacy and Molecular Biotechnology (IPMB), Ruprecht Karls University Heidelberg, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany; (S.M.K.); (A.-S.H.K.); (K.W.)
| | - Katharina Weinberger
- Institute for Pharmacy and Molecular Biotechnology (IPMB), Ruprecht Karls University Heidelberg, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany; (S.M.K.); (A.-S.H.K.); (K.W.)
| | - Heike Boehm
- Max-Planck-Institute for Medical Research, Jahnstr. 29, 69120 Heidelberg, Germany
| |
Collapse
|
12
|
Prognostic Role of Immune Checkpoint Regulators in Cholangiocarcinoma: A Pilot Study. J Clin Med 2021; 10:jcm10102191. [PMID: 34069452 PMCID: PMC8159105 DOI: 10.3390/jcm10102191] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/30/2021] [Accepted: 05/14/2021] [Indexed: 12/11/2022] Open
Abstract
Cholangiocarcinoma (CCA) is a hepatobiliary malignancy associated with steadily increasing incidence and poor prognosis. Ongoing clinical trials are assessing the effectiveness and safety of a few immune checkpoint inhibitors (ICIs) in CCA patients. However, these ICI treatments as monotherapies may be effective for a proportion of patients with CCA. The prevalence and distribution of other immune checkpoints (ICs) in CCA remain unclear. In this pilot study, we screened databases of CCA patients for the expression of 19 ICs and assessed the prognostic significance of these ICs in CCA patients. Notably, expression of immune modulator IDO1 and PD-L1 were linked with poor overall survival, while FASLG and NT5E were related to both worse overall survival and progression-free survival. We also identified immune modulators IDO1, FASLG, CD80, HAVCR2, NT5E, CTLA-4, LGALS9, VTCN1 and TNFRSF14 that synergized with PD-L1 and correlated with worse patient outcomes. In vitro studies revealed that the expression of ICs was closely linked with aggressive CCA subpopulations, such as cancer stem cells and cells undergoing TGF-β and TNF-α-mediated epithelial-to-mesenchymal transition. These findings suggest that the aforementioned IC molecules may serve as potential prognostic biomarkers and drug targets in CCA patients, leading to lasting and durable treatment outcomes.
Collapse
|
13
|
Morishita A, Nomura K, Tani J, Fujita K, Iwama H, Takuma K, Nakahara M, Tadokoro T, Oura K, Chiyo T, Fujihara S, Niki T, Hirashima M, Nishiyama A, Himoto T, Masaki T. Galectin‑9 suppresses the tumor growth of colon cancer in vitro and in vivo. Oncol Rep 2021; 45:105. [PMID: 33907832 PMCID: PMC8072828 DOI: 10.3892/or.2021.8056] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 02/11/2021] [Indexed: 12/15/2022] Open
Abstract
Colon cancer is the second leading cause of cancer-related mortality worldwide, and the prognosis of advanced colon cancer has remained poor in recent years. Galectin-9 (Gal-9) is a tandem-repeat type galectin that has recently been shown to exert antiproliferative effects on various types of cancer cells. The present study aimed to assess the effects of Gal-9 on human colon and colorectal cancer cells in vitro and in vivo, as well as to evaluate the microRNAs (miRNAs/miRs) associated with the antitumor effects of Gal-9. We examined the ability of Gal-9 to inhibit cell proliferation via apoptosis, and the effects of Gal-9 on cell cycle-related molecules in various human colon and colorectal cancer cell lines. In addition, Gal-9-mediated changes in activated tyrosine kinase receptors and angiogenic molecules were assessed using protein array chips in colon and colorectal cancer cells. Moreover, miRNA array analysis was performed to examine Gal-9-induced miRNA expression profiles. We also elucidated if Gal-9 inhibited tumor growth in a murine in vivo model. We found that Gal-9 suppressed the cell proliferation of colon cancer cell lines in vitro and in vivo. Our data further revealed that Gal-9 increased caspase-cleaved keratin 18 levels in Gal-9-treated colon cancer cells. In addition, Gal-9 enhanced the phosphorylation of ALK, DDR1, and EphA10 proteins. Furthermore, the miRNA expression levels, such as miR-1246, miR-15b-5p, and miR-1237, were markedly altered by Gal-9 treatment in vitro and in vivo. In conclusion, Gal-9 suppresses the cell proliferation of human colon cancer by inducing apoptosis, and these findings suggest that Gal-9 can be a potential therapeutic target in the treatment of colon cancer.
Collapse
Affiliation(s)
- Asahiro Morishita
- Department of Gastroenterology and Neurology, Kagawa University, Faculty of Medicine, Miki‑cho, Kita‑gun, Kagawa 761‑0793, Japan
| | - Kei Nomura
- Department of Gastroenterology and Neurology, Kagawa University, Faculty of Medicine, Miki‑cho, Kita‑gun, Kagawa 761‑0793, Japan
| | - Joji Tani
- Department of Gastroenterology and Neurology, Kagawa University, Faculty of Medicine, Miki‑cho, Kita‑gun, Kagawa 761‑0793, Japan
| | - Koji Fujita
- Department of Gastroenterology and Neurology, Kagawa University, Faculty of Medicine, Miki‑cho, Kita‑gun, Kagawa 761‑0793, Japan
| | - Hisakazu Iwama
- Life Science Research Center, Kagawa University, Faculty of Medicine, Miki‑cho, Kita‑gun, Kagawa 761‑0793, Japan
| | - Kei Takuma
- Department of Gastroenterology and Neurology, Kagawa University, Faculty of Medicine, Miki‑cho, Kita‑gun, Kagawa 761‑0793, Japan
| | - Mai Nakahara
- Department of Gastroenterology and Neurology, Kagawa University, Faculty of Medicine, Miki‑cho, Kita‑gun, Kagawa 761‑0793, Japan
| | - Tomoko Tadokoro
- Department of Gastroenterology and Neurology, Kagawa University, Faculty of Medicine, Miki‑cho, Kita‑gun, Kagawa 761‑0793, Japan
| | - Kyoko Oura
- Department of Gastroenterology and Neurology, Kagawa University, Faculty of Medicine, Miki‑cho, Kita‑gun, Kagawa 761‑0793, Japan
| | - Taiga Chiyo
- Department of Gastroenterology and Neurology, Kagawa University, Faculty of Medicine, Miki‑cho, Kita‑gun, Kagawa 761‑0793, Japan
| | - Shintaro Fujihara
- Department of Gastroenterology and Neurology, Kagawa University, Faculty of Medicine, Miki‑cho, Kita‑gun, Kagawa 761‑0793, Japan
| | - Toshiro Niki
- Department of Immunology and Immunopathology, Kagawa University, Faculty of Medicine, Miki‑cho, Kita‑gun, Kagawa 761‑0793, Japan
| | - Mitsuomi Hirashima
- Department of Immunology and Immunopathology, Kagawa University, Faculty of Medicine, Miki‑cho, Kita‑gun, Kagawa 761‑0793, Japan
| | - Akira Nishiyama
- Department of Pharmacology, Kagawa University, Faculty of Medicine, Miki‑cho, Kita‑gun, Kagawa 761‑0793, Japan
| | - Takashi Himoto
- Department of Medical Technology, Kagawa Prefectural University of Health Sciences, Mure‑cho, Takamatsu, Kagawa 761‑0123, Japan
| | - Tsutomu Masaki
- Department of Gastroenterology and Neurology, Kagawa University, Faculty of Medicine, Miki‑cho, Kita‑gun, Kagawa 761‑0793, Japan
| |
Collapse
|
14
|
Porębska N, Poźniak M, Matynia A, Żukowska D, Zakrzewska M, Otlewski J, Opaliński Ł. Galectins as modulators of receptor tyrosine kinases signaling in health and disease. Cytokine Growth Factor Rev 2021; 60:89-106. [PMID: 33863623 DOI: 10.1016/j.cytogfr.2021.03.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 12/11/2022]
Abstract
Receptor tyrosine kinases (RTKs) constitute a large group of cell surface proteins that mediate communication of cells with extracellular environment. RTKs recognize external signals and transfer information to the cell interior, modulating key cellular activities, like metabolism, proliferation, motility, or death. To ensure balanced stream of signals the activity of RTKs is tightly regulated by numerous mechanisms, including receptor expression and degradation, ligand specificity and availability, engagement of co-receptors, cellular trafficking of the receptors or their post-translational modifications. One of the most widespread post-translational modifications of RTKs is glycosylation of their extracellular domains. The sugar chains attached to RTKs form a new layer of information, so called glyco-code that is read by galectins, carbohydrate binding proteins. Galectins are family of fifteen lectins implicated in immune response, inflammation, cell division, motility and death. The versatility of cellular activities attributed to galectins is a result of their high abundance and diversity of their cellular targets. A various sugar specificity of galectins and the differential ability of galectin family members to form oligomers affect the spatial distribution and the function of their cellular targets. Importantly, galectins and RTKs are tightly linked to the development, progression and metastasis of various cancers. A growing number of studies points on the close cooperation between RTKs and galectins in eliciting specific cellular responses. This review focuses on the identified complexes between galectins and RTK members and discusses their relevance for the cell physiology both in healthy tissues and in cancer.
Collapse
Affiliation(s)
- Natalia Porębska
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Marta Poźniak
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Aleksandra Matynia
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Dominika Żukowska
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Małgorzata Zakrzewska
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Jacek Otlewski
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Łukasz Opaliński
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland.
| |
Collapse
|
15
|
Chen P, Zhang L, Zhang W, Sun C, Wu C, He Y, Zhou C. Galectin-9-based immune risk score model helps to predict relapse in stage I-III small cell lung cancer. J Immunother Cancer 2020; 8:jitc-2020-001391. [PMID: 33082168 PMCID: PMC7577067 DOI: 10.1136/jitc-2020-001391] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2020] [Indexed: 12/14/2022] Open
Abstract
Background For small cell lung cancer (SCLC) therapy, immunotherapy might have unique advantages to some extent. Galectin-9 (Gal-9) plays an important role in antitumor immunity, while little is known of its function in SCLC. Materials and methods By mean of immunohistochemistry (IHC), we tested the expression level of Gal-9 and other immune markers on both tumor cells and tumor-infiltrating lymphocytes (TILs) in 102 surgical-resected early stage SCLC clinical samples. On the basis of statistical analysis and machine learning results, the Gal-9-based immune risk score model was constructed and its predictive performance was evaluated. Then, we thoroughly explored the effects of Gal-9 and immune risk score on SCLC immune microenvironment and immune infiltration in different cohorts and platforms. Results In the SCLC cohort for IHC, the expression level of Gal-9 on TILs was statistically correlated with the levels of program death-1 (p=0.001), program death-ligand 1 (PD-L1) (p<0.001), CD3 (p<0.001), CD4 (p<0.001), CD8 (p<0.001), and FOXP3 (p=0.047). High Gal-9 protein expression on TILs indicated better recurrence-free survival (30.4 months, 95% CI: 23.7–37.1 vs 39.4 months, 95% CI: 31.6–47.3, p=0.009). The immune risk score model which consisted of Gal-9 on TILs, CD4, and PD-L1 on TILs was established and validated so as to differentiate high-risk or low-risk patients with SCLC. The prognostic predictive performance of immune risk score model was better than single immune biomarker (area under the curve 0.671 vs 0.621–0.644). High Gal-9-related enrichment pathways in SCLC were enriched in immune system diseases and rheumatic disease. Furthermore, we found that patients with SCLC with low immune risk score presented higher fractions of activated memory CD4 T cells than patients with high immune risk score (p=0.048). Conclusions Gal-9 is markedly related to tumor-immune microenvironment and immune infiltration in SCLC. This study emphasized the predictive value and promising clinical applications of Gal-9 in stage I–III SCLC.
Collapse
Affiliation(s)
- Peixin Chen
- Department of Medical Oncology, Shanghai Pulmonary Hospital,Tongji University Medical School Cancer Institute, Tongji University School of Medicine, No 507 Zhengmin Road, Shanghai 200433, China.,Tongji University, No 1239 Siping Road, Shanghai 200433, China
| | - Liping Zhang
- Department of Pathology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, No 507 Zhengmin Road, Shanghai 200433, China
| | - Wei Zhang
- Department of Pathology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, No 507 Zhengmin Road, Shanghai 200433, China
| | - Chenglong Sun
- Department of Medical Oncology, Shanghai Pulmonary Hospital,Tongji University Medical School Cancer Institute, Tongji University School of Medicine, No 507 Zhengmin Road, Shanghai 200433, China.,Tongji University, No 1239 Siping Road, Shanghai 200433, China
| | - Chunyan Wu
- Department of Pathology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, No 507 Zhengmin Road, Shanghai 200433, China
| | - Yayi He
- Department of Medical Oncology, Shanghai Pulmonary Hospital,Tongji University Medical School Cancer Institute, Tongji University School of Medicine, No 507 Zhengmin Road, Shanghai 200433, China
| | - Caicun Zhou
- Department of Medical Oncology, Shanghai Pulmonary Hospital,Tongji University Medical School Cancer Institute, Tongji University School of Medicine, No 507 Zhengmin Road, Shanghai 200433, China
| |
Collapse
|
16
|
Sun MJ, Cao ZQ, Leng P. The roles of galectins in hepatic diseases. J Mol Histol 2020; 51:473-484. [PMID: 32734557 DOI: 10.1007/s10735-020-09898-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 07/14/2020] [Indexed: 12/24/2022]
Abstract
Hepatic diseases include all diseases that occur in the liver, including hepatitis, cirrhosis, hepatocellular carcinoma, etc. Hepatic diseases worldwide are characterized by high incidences of digestive system diseases, which present with subtle symptoms, are difficult to treat and have high mortality. Galectins are β-galactoside-binding proteins that have been found to be aberrantly expressed during hepatic disease progression. An increasing number of studies have shown that abnormal expression of galectins is extensively involved in hepatic diseases, such as hepatocellular carcinoma (HCC), liver cirrhosis, hepatitis and liver fibrosis. Galectins function as intracellular and extracellular hepatic disease regulators mainly through the binding of their carbohydrate recognition domain to glycoconjugates expressed in hepatocytes. In this review, we summarize current research on the various roles of galectins in cirrhosis, hepatitis, liver fibrosis and HCC, which may provide a preliminary theoretical basis for the exploration of new targets for the treatment of hepatic diseases.
Collapse
Affiliation(s)
- Mei-Juan Sun
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, No. 16 Jiang Su Road, Qingdao, 266003, People's Republic of China
| | - Zhan-Qi Cao
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, No. 16 Jiang Su Road, Qingdao, 266003, People's Republic of China
| | - Ping Leng
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, No. 16 Jiang Su Road, Qingdao, 266003, People's Republic of China.
| |
Collapse
|
17
|
Possible therapeutic applicability of galectin-9 in cutaneous T-cell lymphoma. J Dermatol Sci 2019; 96:134-142. [PMID: 31787505 DOI: 10.1016/j.jdermsci.2019.09.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/26/2019] [Accepted: 09/10/2019] [Indexed: 01/08/2023]
Abstract
BACKGROUND Galectin-9, a member of the galectin family, can promote tumor growth through inducing apoptosis in anti-tumor immune cells via T cell immunoglobulin and mucin domain 3 (TIM-3). On the other hand, galectin-9 also induces tumor cell apoptosis in many malignancies and thought to have potential as an anti-cancer agent. OBJECTIVE To examine the expression and therapeutic applicability of galectin-9 in cutaneous T-cell lymphoma (CTCL). METHODS Galectin-9 expression in lesional skin and sera was measured using CTCL samples. The effect of galectin-9 on CTCL cell lines was investigated in vitro. We also examined effect of galectin-9 on tumor growth of CTCL cells in immune-deficient mice. Moreover, we examined the efficacy of galectin-9, anti-TIM-3 blocking antibody, or their combination on tumor growth of EL-4 cells in wild-type mice. RESULTS Galectin-9 was expressed on tumor cells in lesional skin of CTCL and the expression levels were associated with decreased CD8+ T-cell infiltration. Serum galectin-9 levels were correlated with disease severity markers. High-dose galectin-9 induced cell death of CTCL cell lines through activation of caspase-3 and caspase-9, independently of TIM-3. High-dose galectin-9 suppressed the growth of CTCL cells and EL-4 cells in vivo. Furthermore, additional anti-TIM-3 blocking antibody administration to galectin-9 achieved greater inhibition of tumor growth compared to single administration. CONCLUSION Galectin-9 expression on tumor cells may be associated with CTCL progression through attenuating anti-tumor immunity. On the other hand, exogenous high-dose galectin-9 administration can be a therapeutic strategy for CTCL and anti-TIM-3 blocking antibody can augment the efficacy of galectin-9.
Collapse
|
18
|
Chiyo T, Fujita K, Iwama H, Fujihara S, Tadokoro T, Ohura K, Matsui T, Goda Y, Kobayashi N, Nishiyama N, Yachida T, Morishita A, Kobara H, Mori H, Niki T, Hirashima M, Himoto T, Masaki T. Galectin-9 Induces Mitochondria-Mediated Apoptosis of Esophageal Cancer In Vitro and In Vivo in a Xenograft Mouse Model. Int J Mol Sci 2019; 20:ijms20112634. [PMID: 31146370 PMCID: PMC6600680 DOI: 10.3390/ijms20112634] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/20/2019] [Accepted: 05/24/2019] [Indexed: 12/30/2022] Open
Abstract
Galectin-9 (Gal-9) enhances tumor immunity mediated by T cells, macrophages, and dendritic cells. Its expression level in various cancers correlates with prognosis. Furthermore, Gal-9 directly induces apoptosis in various cancers; however, its mechanism of action and bioactivity has not been clarified. We evaluated Gal-9 antitumor effect against esophageal squamous cell carcinoma (ESCC) to analyze the dynamics of apoptosis-related molecules, elucidate its mechanism of action, and identify relevant changes in miRNA expressions. KYSE-150 and KYSE-180 cells were treated with Gal-9 and their proliferation was evaluated. Gal-9 inhibited cell proliferation in a concentration-dependent manner. The xenograft mouse model established with KYSE-150 cells was administered with Gal-9 and significant suppression in the tumor growth observed. Gal-9 treatment of KYSE-150 cells increased the number of Annexin V-positive cells, activation of caspase-3, and collapse of mitochondrial potential, indicating apoptosis induction. c-Jun NH2-terminal kinase (JNK) and p38 mitogen-activated protein kinase (p38) phosphorylation were activated and could be involved in apoptosis. Therefore, Gal-9 induces mitochondria-mediated apoptosis of ESCC and inhibits cell proliferation in vitro and in vivo with JNK and p38 activation.
Collapse
Affiliation(s)
- Taiga Chiyo
- Department of Gastroenterology and Neurology, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan.
| | - Koji Fujita
- Department of Gastroenterology and Neurology, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan.
| | - Hisakazu Iwama
- Life Science Research Center, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan.
| | - Shintaro Fujihara
- Department of Gastroenterology and Neurology, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan.
| | - Tomoko Tadokoro
- Department of Gastroenterology and Neurology, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan.
| | - Kyoko Ohura
- Department of Gastroenterology and Neurology, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan.
| | - Takanori Matsui
- Department of Gastroenterology and Neurology, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan.
| | - Yasuhiro Goda
- Department of Gastroenterology and Neurology, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan.
| | - Nobuya Kobayashi
- Department of Gastroenterology and Neurology, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan.
| | - Noriko Nishiyama
- Department of Gastroenterology and Neurology, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan.
| | - Tatsuo Yachida
- Department of Gastroenterology and Neurology, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan.
| | - Asahiro Morishita
- Department of Gastroenterology and Neurology, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan.
| | - Hideki Kobara
- Department of Gastroenterology and Neurology, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan.
| | - Hirohito Mori
- Department of Gastroenterology and Neurology, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan.
| | - Toshiro Niki
- Department of Immunology and Immunopathology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan.
| | - Mitsuomi Hirashima
- Department of Gastroenterology and Neurology, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan.
| | - Takashi Himoto
- Department of Medical Technology, Kagawa Prefectural University of Health Sciences, 281-1, Hara, Mure-Cho, Takamatsu, Kagawa 761-0123, Japan.
| | - Tsutomu Masaki
- Department of Gastroenterology and Neurology, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan.
| |
Collapse
|
19
|
Bertino P, Premeaux TA, Fujita T, Haun BK, Marciel MP, Hoffmann FW, Garcia A, Yiang H, Pastorino S, Carbone M, Niki T, Berestecky J, Hoffmann PR, Ndhlovu LC. Targeting the C-terminus of galectin-9 induces mesothelioma apoptosis and M2 macrophage depletion. Oncoimmunology 2019; 8:1601482. [PMID: 31413910 PMCID: PMC6682368 DOI: 10.1080/2162402x.2019.1601482] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 03/18/2019] [Accepted: 03/22/2019] [Indexed: 10/27/2022] Open
Abstract
Galectin-9 has emerged as a promising biological target for cancer immunotherapy due to its role as a regulator of macrophage and T-cell differentiation. In addition, its expression in tumor cells modulates tumor cell adhesion, metastasis, and apoptosis. Malignant mesothelioma (MM) is an aggressive neoplasm of the mesothelial cells lining the pleural and peritoneal cavities, and in this study, we found that both human MM tissues and mouse MM cells express high levels of galectin-9. Using a novel monoclonal antibody (mAb) (Clone P4D2) that binds the C-terminal carbohydrate recognition domain (CRD) of galectin-9, we demonstrate unique agonistic properties resulting in MM cell apoptosis. Furthermore, the P4D2 mAb reduced tumor-associated macrophages differentiation toward a protumor phenotype. Importantly, these effects exerted by the P4D2 mAb were observed in both human and mouse in vitro experiments and not observed with another antigalectin-9 specific mAb (clone P1D9) that engages the N-terminus CRD of galectin-9. In syngeneic murine models of MM, P4D2 mAb treatment inhibited tumor growth and improved survival, with tumors from P4D2-treated mice exhibited reduced infiltration of tumor-associated M2 macrophages. This was consistent with an increased production of inducible nitric oxide synthase, which is a major enzyme-regulating macrophage inflammatory response to cancer. These data suggest that using an antigalectin 9 mAb with agonistic properties similar to those exerted by galectin-9 may provide a novel multitargeted strategy for the treatment of mesothelioma and possibly other galectin-9 expressing tumors.
Collapse
Affiliation(s)
- Pietro Bertino
- Department of Cell and Molecular Biology, Honolulu, HI, USA
| | - Thomas A. Premeaux
- Department of Tropical Medicine, John A. Burns School of Medicine, Honolulu, HI, USA
| | - Tsuyoshi Fujita
- Department of Tropical Medicine, John A. Burns School of Medicine, Honolulu, HI, USA
| | - Brien K. Haun
- Department of Cell and Molecular Biology, Honolulu, HI, USA
| | | | | | - Alan Garcia
- Department of Microbiology and Biotechnology, Kapi‘olani Community College, Honolulu, HI, USA
| | - Haining Yiang
- University of Hawai’i Cancer Center, University of Hawai’i, Honolulu, HI, USA
| | - Sandra Pastorino
- University of Hawai’i Cancer Center, University of Hawai’i, Honolulu, HI, USA
| | - Michele Carbone
- University of Hawai’i Cancer Center, University of Hawai’i, Honolulu, HI, USA
| | - Toshiro Niki
- Department of Immunology and Immunopathology, Faculty of Medicine, Kagawa University, Kagawa, Japan
- GalPharma, Co., Ltd., Takamatsu, Japan
| | - John Berestecky
- Department of Microbiology and Biotechnology, Kapi‘olani Community College, Honolulu, HI, USA
| | | | - Lishomwa C. Ndhlovu
- Department of Tropical Medicine, John A. Burns School of Medicine, Honolulu, HI, USA
| |
Collapse
|
20
|
Zhou X, Sun L, Jing D, Xu G, Zhang J, Lin L, Zhao J, Yao Z, Lin H. Galectin-9 Expression Predicts Favorable Clinical Outcome in Solid Tumors: A Systematic Review and Meta-Analysis. Front Physiol 2018; 9:452. [PMID: 29765332 PMCID: PMC5939667 DOI: 10.3389/fphys.2018.00452] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 04/11/2018] [Indexed: 01/01/2023] Open
Abstract
Background and Objective: Galectin-9 (Gal-9) is one of the galectin family members which are known as proteins with β-galactoside-binding affinity. Accumulative evidence suggest that Gal-9 plays multifaceted roles in tumor biology. However, the prognostic significance of Gal-9 in solid cancer patients remains controversial. The objective of the study was to clarify the prognostic significance of Gal-9 in solid tumors via meta-analysis. Methods: We searched PubMed, Embase and the Cochrane library for studies that report the correlation between Gal-9 expression and prognosis or clinicopathological parameters in solid cancer patients from inception to October 2017, with no language restriction. We calculated pooled hazard ratio (HR) and 95% confidence interval (CI) to investigate the prognostic significance of Gal-9 expression in solid tumors. We also calculated Odds ratio (OR) to explore the association between Gal-9 expression and clinicopathological features. Results: We included Fourteen studies with 2326 patients in our meta-analysis. The synthetic results revealed that high Gal-9 expression indicated improved overall survival (OS; HR = 0.70, 95% CI = 0.51-0.71, P = 0.006) but had no correlation with disease-free survival (DFS)/recurrence-free survival (RFS) (HR = 0.85, 95% CI = 0.51-1.41, P = 0.527) in solid tumors. In stratified analyses, high Gal-9 expression was significantly correlated with improved OS in hepatocellular carcinoma and colon cancer and with improved DFS/RFS in gastric cancer and non-small cell lung cancer. In addition, ethnicity and the method of data extraction didn't affect the positive prognostic values of high Gal-9 expression. Moreover, high Gal-9 expression was significantly correlated with a smaller depth of invasion (TI/TII vs. TIII/TIV, OR = 2.80, 95% CI = 1.97-3.96, P < 0.001), an earlier histopathological stage (I/II vs. III/IV, OR = 3.00, 95% CI = 2.04-4.42, P < 0.001), negative lymph node metastasis (Presence vs. Absence, OR = 0.47, 95% CI = 0.25-0.89, P = 0.020) and negative distal tumor metastasis (Presence vs. Absence, OR = 13.85, 95% CI = 3.50-54.76, P < 0.001). Conclusion: Gal-9 expression indicates beneficial outcome in patients with solid tumors and is correlated with the pathogenesis of solid tumors. Gal-9 may serve as a prognostic biomarker and an emerging therapeutic target against solid tumors.
Collapse
Affiliation(s)
- Xiaoxiang Zhou
- Department of Liver Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Lejia Sun
- Department of Liver Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Dan Jing
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Gang Xu
- Department of Liver Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jinmei Zhang
- Department of Hepatobiliary Surgery, Weifang People's Hospital, Weifang, China
| | - Li Lin
- Department of Hepatobiliary Surgery, Weifang People's Hospital, Weifang, China
| | - Jingjing Zhao
- Department of Hepatobiliary Surgery, Weifang People's Hospital, Weifang, China
| | - Zhuoran Yao
- Department of Liver Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Hongfeng Lin
- Department of Hepatobiliary Surgery, Weifang People's Hospital, Weifang, China
| |
Collapse
|
21
|
Dubé-Delarosbil C, St-Pierre Y. The emerging role of galectins in high-fatality cancers. Cell Mol Life Sci 2018; 75:1215-1226. [PMID: 29119229 PMCID: PMC11105754 DOI: 10.1007/s00018-017-2708-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 10/16/2017] [Accepted: 11/02/2017] [Indexed: 12/13/2022]
Abstract
Although we witnessed considerable progress in the prevention and treatment of cancer during the past few decades, a number of cancers remain difficult to treat. The main reasons for this are a lack of effective biomarkers necessary for an early detection and inefficient treatments for cancer that are diagnosed at late stages of the disease. Because of their alarmin-like properties and their protumorigenic role during cancer progression, members of the galectin family are uniquely positioned to provide information that could be used for the exploration of possible avenues for the treatment of high fatality cancer (HFC). A rapid overview of studies that examined the expressions and functions of galectins in cancer cells reveals that they play a central role in at least three major features that characterize HFCs: (1) induction of systemic and local immunosuppression, (2) chemoresistance of cancer cells, and (3) increased invasive behavior. Defining the galectinome in HFCs will also lead to a better understanding of tumor heterogeneity while providing critical information that could improve the accuracy of biomarker panels for a more personalized treatment of HFCs. In this review, we discuss the relevance of the galectinome in HFC and its possible contribution to providing potential solutions.
Collapse
Affiliation(s)
| | - Yves St-Pierre
- INRS-Institut Armand-Frappier, 531 Boul. des Prairies, Laval, QC, H7V 1B7, Canada.
| |
Collapse
|
22
|
Ferreira IG, Pucci M, Venturi G, Malagolini N, Chiricolo M, Dall'Olio F. Glycosylation as a Main Regulator of Growth and Death Factor Receptors Signaling. Int J Mol Sci 2018; 19:ijms19020580. [PMID: 29462882 PMCID: PMC5855802 DOI: 10.3390/ijms19020580] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 02/12/2018] [Accepted: 02/14/2018] [Indexed: 12/22/2022] Open
Abstract
Glycosylation is a very frequent and functionally important post-translational protein modification that undergoes profound changes in cancer. Growth and death factor receptors and plasma membrane glycoproteins, which upon activation by extracellular ligands trigger a signal transduction cascade, are targets of several molecular anti-cancer drugs. In this review, we provide a thorough picture of the mechanisms bywhich glycosylation affects the activity of growth and death factor receptors in normal and pathological conditions. Glycosylation affects receptor activity through three non-mutually exclusive basic mechanisms: (1) by directly regulating intracellular transport, ligand binding, oligomerization and signaling of receptors; (2) through the binding of receptor carbohydrate structures to galectins, forming a lattice thatregulates receptor turnover on the plasma membrane; and (3) by receptor interaction with gangliosides inside membrane microdomains. Some carbohydrate chains, for example core fucose and β1,6-branching, exert a stimulatory effect on all receptors, while other structures exert opposite effects on different receptors or in different cellular contexts. In light of the crucial role played by glycosylation in the regulation of receptor activity, the development of next-generation drugs targeting glyco-epitopes of growth factor receptors should be considered a therapeutically interesting goal.
Collapse
Affiliation(s)
- Inês Gomes Ferreira
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), General Pathology Building, University of Bologna, 40126 Bologna, Italy.
| | - Michela Pucci
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), General Pathology Building, University of Bologna, 40126 Bologna, Italy.
| | - Giulia Venturi
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), General Pathology Building, University of Bologna, 40126 Bologna, Italy.
| | - Nadia Malagolini
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), General Pathology Building, University of Bologna, 40126 Bologna, Italy.
| | - Mariella Chiricolo
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), General Pathology Building, University of Bologna, 40126 Bologna, Italy.
| | - Fabio Dall'Olio
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), General Pathology Building, University of Bologna, 40126 Bologna, Italy.
| |
Collapse
|
23
|
Role of Galectins in Tumors and in Clinical Immunotherapy. Int J Mol Sci 2018; 19:ijms19020430. [PMID: 29389859 PMCID: PMC5855652 DOI: 10.3390/ijms19020430] [Citation(s) in RCA: 163] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 01/25/2018] [Accepted: 01/30/2018] [Indexed: 02/07/2023] Open
Abstract
Galectins are glycan-binding proteins that contain one or two carbohydrate domains and mediate multiple biological functions. By analyzing clinical tumor samples, the abnormal expression of galectins is known to be linked to the development, progression and metastasis of cancers. Galectins also have diverse functions on different immune cells that either promote inflammation or dampen T cell-mediated immune responses, depending on cognate receptors on target cells. Thus, tumor-derived galectins can have bifunctional effects on tumor and immune cells. This review focuses on the biological effects of galectin-1, galectin-3 and galectin-9 in various cancers and discusses anticancer therapies that target these molecules.
Collapse
|
24
|
Oyanadel C, Holmes C, Pardo E, Retamal C, Shaughnessy R, Smith P, Cortés P, Bravo-Zehnder M, Metz C, Feuerhake T, Romero D, Roa JC, Montecinos V, Soza A, González A. Galectin-8 induces partial epithelial-mesenchymal transition with invasive tumorigenic capabilities involving a FAK/EGFR/proteasome pathway in Madin-Darby canine kidney cells. Mol Biol Cell 2018; 29:557-574. [PMID: 29298841 PMCID: PMC6004583 DOI: 10.1091/mbc.e16-05-0301] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 12/07/2017] [Accepted: 12/27/2017] [Indexed: 12/22/2022] Open
Abstract
Epithelial cells can acquire invasive and tumorigenic capabilities through epithelial–mesenchymal-transition (EMT). The glycan-binding protein galectin-8 (Gal-8) activates selective β1-integrins involved in EMT and is overexpressed by certain carcinomas. Here we show that Gal-8 overexpression or exogenous addition promotes proliferation, migration, and invasion in nontumoral Madin–Darby canine kidney (MDCK) cells, involving focal-adhesion kinase (FAK)-mediated transactivation of the epidermal growth factor receptor (EGFR), likely triggered by α5β1integrin binding. Under subconfluent conditions, Gal-8–overexpressing MDCK cells (MDCK-Gal-8H) display hallmarks of EMT, including decreased E-cadherin and up-regulated expression of vimentin, fibronectin, and Snail, as well as increased β-catenin activity. Changes related to migration/invasion included higher expression of α5β1 integrin, extracellular matrix-degrading MMP13 and urokinase plasminogen activator/urokinase plasminogen activator receptor (uPA/uPAR) protease systems. Gal-8–stimulated FAK/EGFR pathway leads to proteasome overactivity characteristic of cancer cells. Yet MDCK-Gal-8H cells still develop apical/basolateral polarity reverting EMT markers and proteasome activity under confluence. This is due to the opposite segregation of Gal-8 secretion (apical) and β1-integrins distribution (basolateral). Strikingly, MDCK-Gal-8H cells acquired tumorigenic potential, as reflected in anchorage-independent growth in soft agar and tumor generation in immunodeficient NSG mice. Therefore, Gal-8 can promote oncogenic-like transformation of epithelial cells through partial and reversible EMT, accompanied by higher proliferation, migration/invasion, and tumorigenic properties.
Collapse
Affiliation(s)
- Claudia Oyanadel
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina, Universidad San Sebastián, 7510156 Santiago, Chile.,Fundación Ciencia y Vida, 7780272 Santiago, Chile
| | - Christopher Holmes
- Center for Aging and Regeneration (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8330023 Santiago, Chile
| | - Evelyn Pardo
- Center for Aging and Regeneration (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8330023 Santiago, Chile
| | - Claudio Retamal
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina, Universidad San Sebastián, 7510156 Santiago, Chile.,Center for Aging and Regeneration (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8330023 Santiago, Chile
| | - Ronan Shaughnessy
- Center for Aging and Regeneration (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8330023 Santiago, Chile
| | - Patricio Smith
- Unidad de Odontología, Pontificia Universidad Católica de Chile, 8330023 Santiago, Chile
| | - Priscilla Cortés
- Center for Aging and Regeneration (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8330023 Santiago, Chile
| | - Marcela Bravo-Zehnder
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina, Universidad San Sebastián, 7510156 Santiago, Chile.,Center for Aging and Regeneration (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8330023 Santiago, Chile
| | - Claudia Metz
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina, Universidad San Sebastián, 7510156 Santiago, Chile.,Center for Aging and Regeneration (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8330023 Santiago, Chile
| | - Teo Feuerhake
- Center for Aging and Regeneration (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8330023 Santiago, Chile
| | - Diego Romero
- Departamento de Patología, Pontificia Universidad Católica de Chile, 8330023 Santiago, Chile
| | - Juan Carlos Roa
- Departamento de Patología, Pontificia Universidad Católica de Chile, 8330023 Santiago, Chile
| | - Viviana Montecinos
- Departamento de Hematología y Oncología, Facultad de Medicina, Pontificia Universidad Católica de Chile, 8330023 Santiago, Chile
| | - Andrea Soza
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina, Universidad San Sebastián, 7510156 Santiago, Chile .,Center for Aging and Regeneration (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8330023 Santiago, Chile
| | - Alfonso González
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina, Universidad San Sebastián, 7510156 Santiago, Chile .,Center for Aging and Regeneration (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8330023 Santiago, Chile
| |
Collapse
|
25
|
Okura R, Fujihara S, Iwama H, Morishita A, Chiyo T, Watanabe M, Hirose K, Kobayashi K, Fujimori T, Kato K, Kamada H, Kobara H, Mori H, Niki T, Hirashima M, Okano K, Suzuki Y, Masaki T. MicroRNA profiles during galectin-9-induced apoptosis of pancreatic cancer cells. Oncol Lett 2017; 15:407-414. [PMID: 29387226 DOI: 10.3892/ol.2017.7316] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 02/17/2017] [Indexed: 01/05/2023] Open
Abstract
Pancreatic cancer is the eighth-leading cause of cancer-associated mortality in males and the ninth-leading cause in females worldwide. Even when diagnosed early enough to be potentially resectable, the prognosis of invasive pancreatic cancer is poor. Galectin-9 (Gal-9) is a tandem-repeat type galectin that has recently been demonstrated to possess an anti-proliferative effect on cancer cells. Therefore, the present study evaluated the effects of Gal-9 on the proliferation of human pancreatic cancer cells and examined the microRNAs that are associated with the antitumor effects of Gal-9. Gal-9 suppressed the proliferation of multiple pancreatic cancer cell lines. In addition, Gal-9 treatment increased the levels of caspase-cleaved keratin 18 and the expression of cytochrome c in pancreatic cancer cell lines. This data suggests that Gal-9 induces intrinsic apoptosis in pancreatic cancer cell lines through the caspase-dependent and caspase-independent pathways. In addition, Gal-9 reduced the expression levels of phosphorylated epidermal growth factor receptor and numerous receptor tyrosine kinases (RTKs). In conclusion, Gal-9 may suppress the growth of human pancreatic cancer cells in vitro. These findings suggest that Gal-9 may be a new therapeutic agent for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Ryoichi Okura
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kagawa 761-0793, Japan
| | - Shintaro Fujihara
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kagawa 761-0793, Japan
| | - Hisakazu Iwama
- Life Science Research Center, Faculty of Medicine, Kagawa University, Kagawa 761-0793, Japan
| | - Asahiro Morishita
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kagawa 761-0793, Japan
| | - Taiga Chiyo
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kagawa 761-0793, Japan
| | - Miwako Watanabe
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kagawa 761-0793, Japan
| | - Kayo Hirose
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kagawa 761-0793, Japan
| | - Kiyoyuki Kobayashi
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kagawa 761-0793, Japan
| | - Takayuki Fujimori
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kagawa 761-0793, Japan
| | - Kiyohito Kato
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kagawa 761-0793, Japan
| | - Hideki Kamada
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kagawa 761-0793, Japan
| | - Hideki Kobara
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kagawa 761-0793, Japan
| | - Hirohito Mori
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kagawa 761-0793, Japan
| | - Toshiro Niki
- Department of Immunology, Faculty of Medicine, Kagawa University, Kagawa 761-0793, Japan
| | - Mitsuomi Hirashima
- Department of Immunology, Faculty of Medicine, Kagawa University, Kagawa 761-0793, Japan
| | - Keiichi Okano
- Department of Gastroenterological Surgery, Faculty of Medicine, Kagawa University, Kagawa 761-0793, Japan
| | - Yasuyuki Suzuki
- Department of Gastroenterological Surgery, Faculty of Medicine, Kagawa University, Kagawa 761-0793, Japan
| | - Tsutomu Masaki
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kagawa 761-0793, Japan
| |
Collapse
|
26
|
Samukawa E, Fujihara S, Oura K, Iwama H, Yamana Y, Tadokoro T, Chiyo T, Kobayashi K, Morishita A, Nakahara M, Kobara H, Mori H, Okano K, Suzuki Y, Himoto T, Masaki T. Angiotensin receptor blocker telmisartan inhibits cell proliferation and tumor growth of cholangiocarcinoma through cell cycle arrest. Int J Oncol 2017; 51:1674-1684. [PMID: 29075786 PMCID: PMC5673010 DOI: 10.3892/ijo.2017.4177] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 09/25/2017] [Indexed: 12/22/2022] Open
Abstract
Cholangiocarcinoma (CCA) is at an advanced stage at the time of its diagnosis, and developing a more effective treatment of CCA would be desirable. Angiotensin II type 1 (AT1) receptor blocker (ARB), telmisartan may inhibit cancer cell proliferation, but the mechanisms by which telmisartan affects various cancers remain unknown. In this study, we evaluated the effects of telmisartan on human CCA cells and to assess the expression of microRNAs (miRNAs). We studied the effects of telmisartan on CCA cells using two cell lines, HuCCT-1 and TFK-1. In our experiments, telmisartan inhibited the proliferation of HuCCT-1 and TFK-1 cells. Additionally, telmisartan induced G0/G1 cell cycle arrest via blockade of the G0 to G1 cell cycle transition. Notably, telmisartan did not induce apoptosis in HuCCT-1 cells. This blockade was accompanied by a strong decrease in cell cycle-related protein, especially G1 cyclin, cyclin D1, and its catalytic subumits, Cdk4 and Cdk6. Telmisartan reduced the phosphorylation of EGFR (p-EGFR) and TIMP-1 by using p-RTK and angiogenesis array. Furthermore, miRNA expression was markedly altered by telmisartan in HuCCT-1. Telmisartan inhibits tumor growth in CCA xenograft model in vivo. In conclusion, telmisartan was shown to inhibit human CCA cell proliferation by inducing cell cycle arrest.
Collapse
Affiliation(s)
- Eri Samukawa
- Department of Gastroenterology and Neurology, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | - Shintaro Fujihara
- Department of Gastroenterology and Neurology, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | - Kyoko Oura
- Department of Gastroenterology and Neurology, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | - Hisakazu Iwama
- Life Science Research Center, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | - Yoshimi Yamana
- Department of Gastroenterology and Neurology, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | - Tomoko Tadokoro
- Department of Gastroenterology and Neurology, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | - Taiga Chiyo
- Department of Gastroenterology and Neurology, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | - Kiyoyuki Kobayashi
- Department of Gastroenterology and Neurology, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | - Asahiro Morishita
- Department of Gastroenterology and Neurology, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | - Mai Nakahara
- Department of Gastroenterology and Neurology, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | - Hideki Kobara
- Department of Gastroenterology and Neurology, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | - Hirohito Mori
- Department of Gastroenterology and Neurology, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | - Keiichi Okano
- Gastroenterological Surgery, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | - Yasuyuki Suzuki
- Gastroenterological Surgery, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | - Takashi Himoto
- Department of Gastroenterology and Neurology, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | - Tsutomu Masaki
- Department of Gastroenterology and Neurology, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| |
Collapse
|
27
|
Golden-Mason L, Rosen HR. Galectin-9: Diverse roles in hepatic immune homeostasis and inflammation. Hepatology 2017; 66:271-279. [PMID: 28195343 PMCID: PMC5521806 DOI: 10.1002/hep.29106] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 01/27/2017] [Accepted: 02/06/2017] [Indexed: 12/11/2022]
Abstract
Glycan-binding proteins, which include galectins, are involved at all stages of immunity and inflammation, from initiation through resolution. Galectin-9 (Gal-9) is highly expressed in the liver and has a wide variety of biological functions in innate and adaptive immunity that are instrumental in the maintenance of hepatic homeostasis. In the setting of viral hepatitis, increased expression of Gal-9 drives the expansion of regulatory T cells and contraction of effector T cells, thereby favoring viral persistence. The dichotomous nature of Gal-9 is evident in hepatocellular carcinoma, where loss of expression in hepatocytes promotes tumor growth and metastasis, whereas overexpression by Kupffer cells and endothelial cells inhibits the antitumor immune response. In nonalcoholic fatty liver disease, Gal-9 is involved indirectly in the expansion of protective natural killer T-cell populations. In ischemic liver injury, hepatocyte-derived Gal-9 is both diagnostic and cytoprotective. In drug-induced acute liver failure, plasma levels correlate with outcome. Here, we offer a synthesis of recent and emerging findings on Gal-9 in the regulation of hepatic inflammation. Ongoing studies are warranted to better elucidate the pathophysiology of hepatic immune-mediated diseases and to develop new therapeutic interventions using glycan-binding proteins. (Hepatology 2017;66:271-279).
Collapse
Affiliation(s)
- Lucy Golden-Mason
- Division of Gastroenterology & Hepatology, University of Colorado Denver Medical Center, Aurora, CO
| | - Hugo R Rosen
- Division of Gastroenterology & Hepatology, University of Colorado Denver Medical Center, Aurora, CO
| |
Collapse
|
28
|
Tadokoro T, Fujihara S, Chiyo T, Oura K, Samukawa E, Yamana Y, Fujita K, Mimura S, Sakamoto T, Nomura T, Tani J, Yoneyama H, Morishita A, Himoto T, Iwama H, Niki T, Hirashima M, Masaki T. Induction of apoptosis by Galectin-9 in liver metastatic cancer cells: In vitro study. Int J Oncol 2017; 51:607-614. [PMID: 28656219 DOI: 10.3892/ijo.2017.4053] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 06/01/2017] [Indexed: 11/05/2022] Open
Abstract
Liver metastasis from gastrointestinal cancer defines a patient's prognosis. Despite medical developments, pancreatic cancer with liver metastasis confers a very poor prognosis. Galectin-9 (Gal‑9) is a tandem-repeat-type galectin that has recently been demonstrated to exert antitumor effects on various types of cancer cells by inducing apoptosis. However, the apoptotic pathway of Gal‑9 in solid tumors is unclear. The aim of the present study was to evaluate the effects of Gal‑9 on human liver metastasis from pancreatic cancer. Gal‑9 suppressed cell proliferation in metastatic liver cancer cell lines derived from pancreatic cancer (KMP2, KMP7, and KMP8) and increased the levels of caspase-cleaved keratin 18 and fluorescein isothiocyanate (FITC)-conjugated Annexin V. Furthermore, expression of apoptosis-related molecules such as caspase-7, cleaved caspase-3, cleaved PARP, cytochrome c, Smac/Diablo and HtrA2/Omi was enhanced. However, Gal‑9 did not affect expression of various cell cycle-related proteins. The microRNA (miRNA) expression profile was markedly altered by Gal‑9, and various miRNAs might contribute to tumor growth suppression. Our data reveal that Gal‑9 suppresses the growth of liver metastasis, possibly by inducing apoptosis through a mechanism involving mitochondria and changes in miRNA expression. Thus, Gal‑9 might serve as a therapeutic agent for the treatment of liver metastasis from pancreatic cancer.
Collapse
Affiliation(s)
- Tomoko Tadokoro
- Department of Gastroenterology and Neurology, Kagawa University, Takamatsu, Kagawa, Japan
| | - Shintaro Fujihara
- Department of Gastroenterology and Neurology, Kagawa University, Takamatsu, Kagawa, Japan
| | - Taiga Chiyo
- Department of Gastroenterology and Neurology, Kagawa University, Takamatsu, Kagawa, Japan
| | - Kyoko Oura
- Department of Gastroenterology and Neurology, Kagawa University, Takamatsu, Kagawa, Japan
| | - Eri Samukawa
- Department of Gastroenterology and Neurology, Kagawa University, Takamatsu, Kagawa, Japan
| | - Yoshimi Yamana
- Department of Gastroenterology and Neurology, Kagawa University, Takamatsu, Kagawa, Japan
| | - Koji Fujita
- Department of Gastroenterology and Neurology, Kagawa University, Takamatsu, Kagawa, Japan
| | - Shima Mimura
- Department of Gastroenterology and Neurology, Kagawa University, Takamatsu, Kagawa, Japan
| | - Teppei Sakamoto
- Department of Gastroenterology and Neurology, Kagawa University, Takamatsu, Kagawa, Japan
| | - Takako Nomura
- Department of Gastroenterology and Neurology, Kagawa University, Takamatsu, Kagawa, Japan
| | - Joji Tani
- Department of Gastroenterology and Neurology, Kagawa University, Takamatsu, Kagawa, Japan
| | - Hirohito Yoneyama
- Department of Gastroenterology and Neurology, Kagawa University, Takamatsu, Kagawa, Japan
| | - Asahiro Morishita
- Department of Gastroenterology and Neurology, Kagawa University, Takamatsu, Kagawa, Japan
| | - Takashi Himoto
- Department of Gastroenterology and Neurology, Kagawa University, Takamatsu, Kagawa, Japan
| | - Hisakazu Iwama
- Life Science Research Center, Kagawa University, Takamatsu, Kagawa, Japan
| | - Toshiro Niki
- Department of Immunology and Immunopathology, Kagawa University, Takamatsu, Kagawa, Japan
| | - Mitsuomi Hirashima
- Department of Immunology and Immunopathology, Kagawa University, Takamatsu, Kagawa, Japan
| | - Tsutomu Masaki
- Department of Gastroenterology and Neurology, Kagawa University, Takamatsu, Kagawa, Japan
| |
Collapse
|
29
|
Akashi E, Fujihara S, Morishita A, Tadokoro T, Chiyo T, Fujikawa K, Kobara H, Mori H, Iwama H, Okano K, Suzuki Y, Niki T, Hirashima M, Masaki T. Effects of galectin-9 on apoptosis, cell cycle and autophagy in human esophageal adenocarcinoma cells. Oncol Rep 2017; 38:506-514. [PMID: 28586026 DOI: 10.3892/or.2017.5689] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 05/22/2017] [Indexed: 11/06/2022] Open
Abstract
The incidence of esophageal adenocarcinoma (EAC) is rapidly increasing in western countries. The overall mortality of this disease remains high with a 5-year survival rate of less than 20%, despite remarkable advances in the care of patients with EAC. Galectin-9 (Gal-9) is a tandem-repeat type galectin that exerts anti-proliferative effects on various cancer cell types. The aim of the present study was to evaluate the effects of Gal-9 on human EAC cells and to assess the expression of microRNAs (miRNAs) associated with the antitumor effects of Gal-9 in vitro. Gal-9 suppressed the proliferation of the EAC cell lines OE19, OE33, SK-GT4, and OACM 5.1C. Additionally, Gal-9 treatment induced apoptosis and increased the expression levels of caspase-cleaved cytokeratin 18, activated caspase-3 and activated caspase-9. However, it did not promote cell cycle arrest by reducing cell cycle-related protein levels. Furthermore, Gal-9 increased the level of the angiogenesis-related protein interleukin-8 (IL-8) and markedly altered miRNA expression. Based on these findings, Gal-9 may be of clinical use for the treatment of EAC.
Collapse
Affiliation(s)
- Emiko Akashi
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kita-gun, Kagawa 761-0793, Japan
| | - Shintaro Fujihara
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kita-gun, Kagawa 761-0793, Japan
| | - Asahiro Morishita
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kita-gun, Kagawa 761-0793, Japan
| | - Tomoko Tadokoro
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kita-gun, Kagawa 761-0793, Japan
| | - Taiga Chiyo
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kita-gun, Kagawa 761-0793, Japan
| | - Keiko Fujikawa
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kita-gun, Kagawa 761-0793, Japan
| | - Hideki Kobara
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kita-gun, Kagawa 761-0793, Japan
| | - Hirohito Mori
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kita-gun, Kagawa 761-0793, Japan
| | - Hisakazu Iwama
- Life Science Research Center, Faculty of Medicine, Kagawa University, Kita-gun, Kagawa 761-0793, Japan
| | - Keiichi Okano
- Gastroenterological Surgery, Faculty of Medicine, Kagawa University, Kita-gun, Kagawa 761-0793, Japan
| | - Yasuyuki Suzuki
- Gastroenterological Surgery, Faculty of Medicine, Kagawa University, Kita-gun, Kagawa 761-0793, Japan
| | - Toshiro Niki
- Immunology and Immunopathology, Faculty of Medicine, Kagawa University, Kita-gun, Kagawa 761-0793, Japan
| | - Mitsuomi Hirashima
- Immunology and Immunopathology, Faculty of Medicine, Kagawa University, Kita-gun, Kagawa 761-0793, Japan
| | - Tsutomu Masaki
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kita-gun, Kagawa 761-0793, Japan
| |
Collapse
|
30
|
Tadokoro T, Morishita A, Sakamoto T, Fujihara S, Fujita K, Mimura S, Oura K, Nomura T, Tani J, Yoneyama H, Iwama H, Himoto T, Niki T, Hirashima M, Masaki T. Galectin‑9 ameliorates fulminant liver injury. Mol Med Rep 2017; 16:36-42. [PMID: 28534962 PMCID: PMC5482106 DOI: 10.3892/mmr.2017.6606] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 03/16/2017] [Indexed: 01/21/2023] Open
Abstract
Fulminant hepatitis is a severe liver disease resulting in hepatocyte necrosis. Galectin-9 (Gal-9) is a tandem-repeat-type galectin that has been evaluated as a potential therapeutic agent for various diseases that regulate the host immune system. Concanavalin A (ConA) injection into mice results in serious, immune-mediated liver injury similar to human viral, autoimmune and fulminant hepatitis. The present study investigated the effects of Gal-9 treatment on fulminant hepatitis in vivo and the effect on the expression of microRNAs (miRNAs), in order to identify specific miRNAs associated with the immune effects of Gal-9. A ConA-induced mouse hepatitis model was used to investigate the effects of Gal-9 treatment on overall survival rates, liver enzymes, histopathology and miRNA expression levels. Histological analyses, TUNEL assay, immunohistochemistry and miRNA expression characterization, were used to investigate the degree of necrosis, fibrosis, apoptosis and infiltration of neutrophils and macrophages. Overall survival rates following ConA administration were significantly higher in Gal-9-treated mice compared with control mice treated with ConA + PBS. Histological examination revealed that Gal-9 attenuated hepatocellular damage, reduced local neutrophil infiltration and prevented the local accumulation of macrophages and liver cell apoptosis in ConA-treated mice. In addition, various miRNAs induced by Gal-9 may contribute to its anti-apoptotic, anti-inflammatory and pro-proliferative effects on hepatocytes. The results of the present study demonstrate that Gal-9 may be a candidate therapeutic target for the treatment of fulminant hepatitis.
Collapse
Affiliation(s)
- Tomoko Tadokoro
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kagawa 761‑0793, Japan
| | - Asahiro Morishita
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kagawa 761‑0793, Japan
| | - Teppei Sakamoto
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kagawa 761‑0793, Japan
| | - Shintaro Fujihara
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kagawa 761‑0793, Japan
| | - Koji Fujita
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kagawa 761‑0793, Japan
| | - Shima Mimura
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kagawa 761‑0793, Japan
| | - Kyoko Oura
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kagawa 761‑0793, Japan
| | - Takako Nomura
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kagawa 761‑0793, Japan
| | - Joji Tani
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kagawa 761‑0793, Japan
| | - Hirohito Yoneyama
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kagawa 761‑0793, Japan
| | - Hisakazu Iwama
- Life Science Research Center, Faculty of Medicine, Kagawa University, Kagawa 761‑0793, Japan
| | - Takashi Himoto
- Department of Medical Technology, Kagawa Prefectural University of Health Sciences, Kagawa 761‑0123, Japan
| | - Toshiro Niki
- Department of Immunology and Immunopathology, Faculty of Medicine, Kagawa University, Kagawa 761‑0793, Japan
| | - Mitsuomi Hirashima
- Department of Immunology and Immunopathology, Faculty of Medicine, Kagawa University, Kagawa 761‑0793, Japan
| | - Tsutomu Masaki
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kagawa 761‑0793, Japan
| |
Collapse
|
31
|
Abstract
Galectins is a family of non-classically secreted, beta-galactoside-binding proteins that has recently received considerable attention in the spatio-temporal regulation of surface 'signal lattice' organization, membrane dynamics, cell-adhesion and disease therapeutics. Galectin-9 is a unique member of this family, with two non-homologous carbohydrate recognition domains joined by a linker peptide sequence of variable lengths, generating isoforms with distinct properties and functions in both physiological and pathological settings, such as during development, immune reaction, neoplastic transformations and metastasis. In this review, we summarize the latest knowledge on the structure, receptors, cellular targets, trafficking pathways and functional properties of galectin-9 and discuss how galectin-9-mediated signalling cascades can be exploited in cancers and immunotherapies.
Collapse
Affiliation(s)
- Sebastian John
- Department of Neurobiology and Genetics, Division of Disease Biology, Rajiv Gandhi Centre for Biotechnology, Poojappura, Thiruvananthapuram 695014, India
| | | |
Collapse
|
32
|
Cancer Therapy Due to Apoptosis: Galectin-9. Int J Mol Sci 2017; 18:ijms18010074. [PMID: 28045432 PMCID: PMC5297709 DOI: 10.3390/ijms18010074] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 11/25/2016] [Accepted: 12/27/2016] [Indexed: 12/22/2022] Open
Abstract
Dysregulation of apoptosis is a major hallmark in cancer biology that might equip tumors with a higher malignant potential and chemoresistance. The anti-cancer activities of lectin, defined as a carbohydrate-binding protein that is not an enzyme or antibody, have been investigated for over a century. Recently, galectin-9, which has two distinct carbohydrate recognition domains connected by a linker peptide, was noted to induce apoptosis in thymocytes and immune cells. The apoptosis of these cells contributes to the development and regulation of acquired immunity. Furthermore, human recombinant galectin-9, hG9NC (null), which lacks an entire region of the linker peptide, was designed to resist proteolysis. The hG9NC (null) has demonstrated anti-cancer activities, including inducing apoptosis in hematological, dermatological and gastrointestinal malignancies. In this review, the molecular characteristics, history and apoptosis-inducing potential of galectin-9 are described.
Collapse
|
33
|
Tadokoro T, Morishita A, Fujihara S, Iwama H, Niki T, Fujita K, Akashi E, Mimura S, Oura K, Sakamoto T, Nomura T, Tani J, Miyoshi H, Yoneyama H, Himoto T, Hirashima M, Masaki T. Galectin-9: An anticancer molecule for gallbladder carcinoma. Int J Oncol 2016; 48:1165-74. [PMID: 26797414 DOI: 10.3892/ijo.2016.3347] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 12/16/2015] [Indexed: 11/05/2022] Open
Abstract
Gallbladder cancer (GBC) is the most common and aggressive type of biliary tract cancer. There are various histological types of GBC, and the vast majority of GBC cases are adenocarcinomas. Squamous and adenosquamous carcinomas are rare GBC subtypes that are traditionally considered to be more aggressive and to be associated with a poorer prognosis than adenocarcinoma. Galectin-9 (Gal-9), a tandem-repeat-type galectin, has been reported to induce apoptosis-mediated elimination of various cancers, including hepatocellular carcinoma, cholangiocarcinoma, and hematologic malignancies. Therefore, we investigated the antitumor effects of Gal-9 on GBC in vitro and in vivo. In our in vitro experiments, Gal-9 suppressed cell proliferation in various GBC cell lines but not in the OCUG-1 cell line, which represents a poorly differentiated type of adenosquamous carcinoma. Gal-9 induced the apoptosis of Gal-9-sensitive GBC cells by increasing the levels of caspase-cleaved keratin 18 and phosphorylated p53. However, Gal-9 did not affect the expression of various cell cycle-related proteins. In addition, Gal-9 suppressed tumor growth by implanted human GBC cells in a xenograft model. Furthermore, Gal-9 induced the phosphorylation of the Ephrin type-B receptor, and the microRNA (miRNA) expression profile was markedly altered by Gal-9. Based on these results, various miRNAs might contribute to the suppression of tumor growth. Our data reveal that Gal-9 suppresses the growth of GBC, possibly by inducing apoptosis and altering miRNA expression. Thus, Gal-9 might serve as a therapeutic agent for the treatment of GBC.
Collapse
Affiliation(s)
- Tomoko Tadokoro
- Department of Gastroenterology and Neurology, Kagawa University, Kagawa, Japan
| | - Asahiro Morishita
- Department of Gastroenterology and Neurology, Kagawa University, Kagawa, Japan
| | - Shintaro Fujihara
- Department of Gastroenterology and Neurology, Kagawa University, Kagawa, Japan
| | - Hisakazu Iwama
- Life Science Research Center, Kagawa University, Kagawa, Japan
| | - Toshiro Niki
- Department of Immunology and Immunopathology, Kagawa University, Kagawa, Japan
| | - Koji Fujita
- Department of Gastroenterology and Neurology, Kagawa University, Kagawa, Japan
| | - Emiko Akashi
- Department of Gastroenterology and Neurology, Kagawa University, Kagawa, Japan
| | - Shima Mimura
- Department of Gastroenterology and Neurology, Kagawa University, Kagawa, Japan
| | - Kyoko Oura
- Department of Gastroenterology and Neurology, Kagawa University, Kagawa, Japan
| | - Teppei Sakamoto
- Department of Gastroenterology and Neurology, Kagawa University, Kagawa, Japan
| | - Takako Nomura
- Department of Gastroenterology and Neurology, Kagawa University, Kagawa, Japan
| | - Joji Tani
- Department of Gastroenterology and Neurology, Kagawa University, Kagawa, Japan
| | - Hisaaki Miyoshi
- Department of Gastroenterology and Neurology, Kagawa University, Kagawa, Japan
| | - Hirohito Yoneyama
- Department of Gastroenterology and Neurology, Kagawa University, Kagawa, Japan
| | - Takashi Himoto
- Department of Gastroenterology and Neurology, Kagawa University, Kagawa, Japan
| | - Mitsuomi Hirashima
- Department of Immunology and Immunopathology, Kagawa University, Kagawa, Japan
| | - Tsutomu Masaki
- Department of Gastroenterology and Neurology, Kagawa University, Kagawa, Japan
| |
Collapse
|
34
|
Takano J, Morishita A, Fujihara S, Iwama H, Kokado F, Fujikawa K, Fujita K, Chiyo T, Tadokoro T, Sakamoto T, Nomura T, Tani J, Miyoshi H, Yoneyama H, Kobara H, Mori H, Niki T, Hirashima M, Masaki T. Galectin-9 suppresses the proliferation of gastric cancer cells in vitro. Oncol Rep 2015; 35:851-60. [PMID: 26717877 DOI: 10.3892/or.2015.4452] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 10/26/2015] [Indexed: 11/06/2022] Open
Abstract
Gastric cancer is the second-leading cause of cancer-related mortality worldwide, and the prognosis of advanced gastric cancer remains poor. Galectin-9 (Gal-9) is a tandem-repeat-type galectin that has recently been demonstrated to exert anti-proliferative effects on various types of cancer cells. The aim of our present study was to evaluate the effects of Gal-9 on human gastric cancer cells and the expression levels of microRNAs (miRNAs) associated with the antitumor effects of Gal-9 in vitro. In our initial experiments, Gal-9 suppressed the proliferation of gastric cancer cell lines in vitro. Our data further revealed that Gal-9 increased caspase-cleaved keratin 18 (CCK18) levels in gastric cancer cells. Additionally, Gal-9 reduced the phosphorylation of vascular endothelial growth factor receptor-3 (VEGFR-3) and insulin-like growth factor-1 receptor (IGF-1R). Furthermore, miRNA expression levels were markedly altered with Gal-9 treatment in vitro. In conclusion, Gal-9 suppressed the proliferation of human gastric cancer cells by inducing apoptosis. These findings suggest that Gal-9 could be a potential therapeutic target in the treatment of gastric cancer.
Collapse
Affiliation(s)
- Jitsuko Takano
- Department of Gastroenterology and Neurology, Kagawa University School of Medicine, Kagawa 761-0793, Japan
| | - Asahiro Morishita
- Department of Gastroenterology and Neurology, Kagawa University School of Medicine, Kagawa 761-0793, Japan
| | - Shintaro Fujihara
- Department of Gastroenterology and Neurology, Kagawa University School of Medicine, Kagawa 761-0793, Japan
| | - Hisakazu Iwama
- Life Science Research Center, Kagawa University School of Medicine, Kagawa 761-0793, Japan
| | - Fuyuko Kokado
- Department of Gastroenterology and Neurology, Kagawa University School of Medicine, Kagawa 761-0793, Japan
| | - Keiko Fujikawa
- Department of Gastroenterology and Neurology, Kagawa University School of Medicine, Kagawa 761-0793, Japan
| | - Koji Fujita
- Department of Gastroenterology and Neurology, Kagawa University School of Medicine, Kagawa 761-0793, Japan
| | - Taiga Chiyo
- Department of Gastroenterology and Neurology, Kagawa University School of Medicine, Kagawa 761-0793, Japan
| | - Tomoko Tadokoro
- Department of Gastroenterology and Neurology, Kagawa University School of Medicine, Kagawa 761-0793, Japan
| | - Teppei Sakamoto
- Department of Gastroenterology and Neurology, Kagawa University School of Medicine, Kagawa 761-0793, Japan
| | - Takako Nomura
- Department of Gastroenterology and Neurology, Kagawa University School of Medicine, Kagawa 761-0793, Japan
| | - Joji Tani
- Department of Gastroenterology and Neurology, Kagawa University School of Medicine, Kagawa 761-0793, Japan
| | - Hisaaki Miyoshi
- Department of Gastroenterology and Neurology, Kagawa University School of Medicine, Kagawa 761-0793, Japan
| | - Hirohito Yoneyama
- Department of Gastroenterology and Neurology, Kagawa University School of Medicine, Kagawa 761-0793, Japan
| | - Hideki Kobara
- Department of Gastroenterology and Neurology, Kagawa University School of Medicine, Kagawa 761-0793, Japan
| | - Hirohito Mori
- Department of Gastroenterology and Neurology, Kagawa University School of Medicine, Kagawa 761-0793, Japan
| | - Toshihiro Niki
- Department of Immunology and Immunopathology, Kagawa University School of Medicine, Kagawa 761-0793, Japan
| | - Mitsuomi Hirashima
- Department of Immunology and Immunopathology, Kagawa University School of Medicine, Kagawa 761-0793, Japan
| | - Tsutomu Masaki
- Department of Gastroenterology and Neurology, Kagawa University School of Medicine, Kagawa 761-0793, Japan
| |
Collapse
|