1
|
Liu W, Lu D, Jia S, Yang Y, Meng F, Du Y, Yang Y, Yuan L, Nan Y. Molecular mechanism of Gancao Xiexin Decoction regulating EMT and suppressing hepatic metastasis of gastric cancer via the TGF-β1/SMAD pathway. JOURNAL OF ETHNOPHARMACOLOGY 2025; 342:119430. [PMID: 39900270 DOI: 10.1016/j.jep.2025.119430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/16/2025] [Accepted: 01/28/2025] [Indexed: 02/05/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Gastric cancer (GC) is a highly malignant tumor of the digestive tract, posing a significant menace to human health. Gancao Xiexin Decoction (GCXXD), being a traditional Chinese medicine (TCM), has a good effect on inhibiting the proliferation and metastasis of GC. However, its mechanisms still need further investigation. AIM OF STUDY To investigate the mechanism by which GCXXD inhibits GC metastasis through network pharmacology, and to verify through in vivo and in vitro experiments. MATERIALS AND METHODS The TCMSP and GEO databases, in combination with UPLC-MS/MS techniques, were employed to identify the hub genes, active ingredients, and critical pathways of GCXXD in the treatment of GC. Subsequently, molecular docking was conducted on both the hub genes and the core components. Finally, based on the results of the bioinformatics analysis, the role of GCXXD in inhibiting liver metastasis of GC was elucidated through in vivo and in vitro experiments, including scratch assays, Transwell assays, HE staining, immunohistochemistry, in vivo live imaging, qRT-PCR, and Western blotting. RESULTS Utilizing UPLC-MS/MS and network pharmacology, we identified 20 active ingredients and 5 hub targets in the treatment of GC by GCXXD. Through KEGG analyses, GCXXD treatment of GC could through the TGF-beta pathway. In vivo and in vitro experiments, GCXXD downregulated the mRNA and protein expression level of hub genes involved in the TGF-β1/SMAD pathway and the EMT process. Additionally, GCXXD significantly reduced the incidence of liver metastases in GC. CONCLUSION GCXXD inhibited EMT via blocking the TGF-β1/SMAD pathway, which suppressed GC cell growth and liver metastasis. This study provides data to support the treatment of liver metastasis in GC with TCM and holds significant importance for the research and development of new anticancer drugs.
Collapse
Affiliation(s)
- Wenjing Liu
- Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Doudou Lu
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Shumin Jia
- Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Yating Yang
- The Second Hospital of Chinese Medicine of BAO JI City, Baoji, 721300, Xian, China
| | - Fandi Meng
- Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Yuhua Du
- College of Pharmacy, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Yi Yang
- College of Pharmacy, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Ling Yuan
- College of Pharmacy, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Yi Nan
- Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, 750004, Ningxia, China; Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan, 750004, Ningxia, China.
| |
Collapse
|
2
|
Gu T, Vasilatos SN, Yin J, Qin Y, Zhang L, Davidson NE, Huang Y. Restoration of TFPI2 by LSD1 inhibition suppresses tumor progression and potentiates antitumor immunity in breast cancer. Cancer Lett 2024; 600:217182. [PMID: 39154703 PMCID: PMC11384719 DOI: 10.1016/j.canlet.2024.217182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/16/2024] [Accepted: 08/11/2024] [Indexed: 08/20/2024]
Abstract
Histone lysine-specific demethylase 1 (LSD1) is frequently overexpressed in triple negative breast cancer (TNBC), which is associated with worse clinical outcome in TNBC patients. However, the underlying mechanisms by which LSD1 promotes TNBC progression remain to be identified. We recently established a genetically engineered murine model by crossing mammary gland conditional LSD1 knockout mice with Brca1-deficient mice to explore the role of LSD1 in TNBC pathogenesis. Cre-mediated Brca1 loss led to higher incidence of tumor formation in mouse mammary glands, which was hindered by concurrent depletion of LSD1, indicating a critical role of LSD1 in promoting Brca1-deficient tumors. We also demonstrated that the silencing of a tumor suppressor gene, Tissue Factor Pathway Inhibitor 2 (TFPI2), is functionally associated with LSD1-mediated TNBC progression. Mouse Brca1-deficient tumors exhibited elevated LSD1 expression and decreased TFPI2 level compared to normal mammary tissues. Analysis of TCGA database revealed that TFPI2 expression is significantly lower in aggressive ER-negative or basal-like BC. Restoration of TFPI2 through LSD1 inhibition increased H3K4me2 enrichment at the TFPI2 promoter, suppressed tumor progression, and enhanced antitumor efficacy of chemotherapeutic agent. Induction of TFPI2 by LSD1 ablation downregulates activity of matrix metalloproteinases (MMPs) that in turn increases the level of cytotoxic T lymphocyte attracting chemokines in tumor environment, leading to enhanced tumor infiltration of CD8+ T cells. Moreover, induction of TFPI2 potentiates antitumor effect of LSD1 inhibitor and immune checkpoint blockade in poorly immunogenic TNBC. Together, our study identifies previously unrecognized roles of TFPI2 in LSD1-mediated TNBC progression, therapeutic response, and immunogenic effects.
Collapse
Affiliation(s)
- Tiezheng Gu
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Shauna N Vasilatos
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jun Yin
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ye Qin
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lin Zhang
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA; Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Medicine, University of Southern California, Keck School of Medicine, Los Angeles, CA, USA
| | - Nancy E Davidson
- Fred Hutchinson Cancer Center and University of Washington, Seattle, WA, USA
| | - Yi Huang
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA; Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Internal Medicine, Division of Hematology, Oncology, and Blood & Marrow Transplantation, Carver College of Medicine, University of Iowa, Iowa City, IA, USA; Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
3
|
Zhang W, Xie Y, Liu Z, Zhang J, Ni B, Gao W, Xing W, Zhou Y, Si T. The aminophospholipid transporter, ATP8B3, as a potential biomarker and target for enhancing the therapeutic effect of PD-L1 blockade in colon adenocarcinoma. Genomics 2024; 116:110907. [PMID: 39074670 DOI: 10.1016/j.ygeno.2024.110907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/02/2024] [Accepted: 07/22/2024] [Indexed: 07/31/2024]
Abstract
BACKGROUND Colon adenocarcinoma (COAD) is a prevalent malignant tumor globally, contributing significantly to cancer-related mortality. COAD guidelines label MSI (Microsatellite instability) and MSS (Microsatellite stability) subtypes as global classification criteria and treatment strategy selection criteria for COAD. Various combination therapies involving PD-L1 inhibitors and adjuvant therapy to enhance anti-tumor efficacy. METHODS Datasets from single-cell RNA sequencing and bulk RNA sequencing in the TCGA and GEO databases were utilized to identify differentially expressed genes (DEGs). Furthermore, the correlation between ATP8B3 and PD-L1 was validated using siRNA, shRNA, and western blot analysis. Additionally, the association between ATP8B3 and immune checkpoint blockade (ICB) therapy was investigated through immune infiltration analysis and flow cytometry in both in vivo and in vitro assays. RESULTS In the COAD patient group, ATP8B3 significantly contributed to the establishment of an immunosuppressive microenvironment. Inhibiting ATP8B3 led to a reduction in PD-L1 expression in colon cancer cell lines. Additionally, ATP8B3 expression levels could serve as a potential guide for PD-L1 treatment in MSI-H COAD patients, with higher ATP8B3 expression associated with increased sensitivity to PD-L1 therapy. However, due to the lack of immuno-killer cells in the microenvironment of MSS subtypes, elevated ATP8B3 expression couldn't increase the sensitivity of MSS COAD patients to PD-L1 inhibitors. CONCLUSION Our research results support that Inhibiting ATP8B3 could enhance TIL (tumor-infiltrating lymphocyte) infiltration by reducing PD-L1 expression in MSI-H COAD, thereby serving as an effective strategy to improve PD-L1 blocker efficacy. The treatment strategy of combining ATP8B3 inhibitors and immunotherapy for MSI/MSS COAD patients will be the best choice.
Collapse
Affiliation(s)
- Weihao Zhang
- Department of Interventional Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China; Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China; Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
| | - Yongjie Xie
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 's Clinical Research Center for Cancer, Tianjin, China
| | - Ziyun Liu
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 's Clinical Research Center for Cancer, Tianjin, China
| | - Jie Zhang
- Tianjin Medical University, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Bo Ni
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 's Clinical Research Center for Cancer, Tianjin, China
| | - Wei Gao
- Department of Interventional Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China; Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China; Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
| | - Wenge Xing
- Department of Interventional Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China; Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China; Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
| | - Yaoyao Zhou
- Tianjin Medical University, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.
| | - Tongguo Si
- Department of Interventional Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China; Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China; Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China.
| |
Collapse
|
4
|
Zhang Y, Mi X, Zhang Y, Li J, Qin Y, He P, Zhao Y, Su B, He L. Immune checkpoint activity exacerbate renal interstitial fibrosis progression by enhancing PD-L1 expression in renal tubular epithelial cells. Transl Res 2024; 271:52-67. [PMID: 38723861 DOI: 10.1016/j.trsl.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 05/04/2024] [Accepted: 05/06/2024] [Indexed: 05/23/2024]
Abstract
Renal interstitial fibrosis (RIF) is often associated with inflammatory cell infiltration and no effective therapy. Programmed death cell-1 (PD-1) and its ligand PD-L1 were playing critical roles in T cell coinhibition and exhaustion, but the role in RIF is unclear. Here the data analyses of serum from 122 IgA nephrology (IgAN) patients showed that high level of soluble PD-1(sPD-1) was an independent risk factor for RIF and renal function progression. PD-L1 was also overexpressed in renal interstitial tissues from both IgAN patients with high level of sPD-1 and the unilateral ureteral obstruction (UUO) mouse. PD-L1 was significantly overexpressed in HK-2 cells with upregulated collagen and α-SMA when stimulated by inflammation or hypoxia in vitro. Additionally, matrix metalloproteinases (MMP-2) could increase the level of sPD-1 in culture supernatant when added in co-culture system of HK-2 and jurkat cells, which implied serum sPD-1 of IgAN might be cleaved by MMP-2 from T cells infiltrated into the tubulointerstitial inflammatory microenvironment. Crucially, injection of PD-L1 fusion protein, the blocker of sPD-1, could ameliorate kidney fibrosis in UUO mice by increasing T cell coinhibition and exhaustion, suggesting the therapeutic potential of PD-L1 fusion targeting for renal fibrosis. Take together, it reveals a novel causal role of sPD-1 in serum and PD-L1 of renal interstitial tissues in the development of renal fibrosis of IgAN, and targeting sPD-1 in serum by PD-L1 fusion protein is a potential therapeutic approach to prevent renal fibrosis of IgAN.
Collapse
Affiliation(s)
- Yuting Zhang
- Department of Nephrology, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Xue Mi
- Department of Nephrology, Xijing Hospital, Air Force Medical University, Xi'an, China; Medical School of Yan'an University, Yan'an, China
| | - Yunchao Zhang
- Department of Nephrology, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Jipeng Li
- Department of Nephrology, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Yunlong Qin
- Department of Nephrology, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Peng He
- Department of Nephrology, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Ya Zhao
- Department of Medical Microbiology and Parasitology, Air Force Medical University, Xi'an, China.
| | - Binxiao Su
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Air Force Medical University, Xi'an, China; Department of Intensive Care Unit, Xijing Hospital, Air Force Medical University, Xi'an, China.
| | - Lijie He
- Department of Nephrology, Xijing Hospital, Air Force Medical University, Xi'an, China.
| |
Collapse
|
5
|
Mardi A, Alizadeh M, Abdolalizadeh AS, Baghbanzadeh A, Baradaran B, Aghebaqti-Maleki A, Sandoghchian Shotorbani S, Movloudi M, Aghebati-Maleki L. CTLA-4 silencing could promote anti-tumor effects in hepatocellular. Med Oncol 2024; 41:193. [PMID: 38955918 DOI: 10.1007/s12032-024-02361-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/19/2024] [Indexed: 07/04/2024]
Abstract
Preclinical and clinical research showed that immune checkpoint blockade provides beneficial effects for many patients with liver cancer. This study aimed to assess the effect of CTLA-4-specific siRNA on the proliferation, cell cycle, migration, and apoptosis of HePG2 cells. Transfection of siRNA was performed by electroporation. The viability of cells was determined through MTT assay. Flow cytometry was performed to investigate the cell cycle and apoptosis rate, and the wound-healing assay was used to determine HepG2 cells migration. The expression levels of CTLA-4, c-Myc, Ki-67, BCL-2, BAX, caspase-9 (CAS9), and MMP-2,9,13 were measured by qRT-PCR. Transfection of specific CTLA-4-siRNA significantly inhibited the expression of the CTLA-4 gene. Also, our results revealed that CTLA-4 silencing diminished the proliferation and migration as well as induced the apoptosis of HePG2 cells. CTLA-4-siRNA transfection induced the cell cycle arrest in G2 phase. Moreover, CTLA-4-siRNA transfection reduced the expression levels of c-Myc, Ki-67, BCL-2, MMP-2,9,13, and elevated the expression levels of BAX and caspase-9. Our results suggest that silencing CTLA-4 through specific siRNA may be a promising strategy for future therapeutic interventions for treating liver cancer.
Collapse
Affiliation(s)
- Amirhossein Mardi
- Student Research Committee, Tabriz University of Medical Science, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran
| | - Mahsan Alizadeh
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Tabriz Medical Sciences, Islamic Azad University, Tabriz, Iran
| | - Amir Shahabaddin Abdolalizadeh
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Tabriz Medical Sciences, Islamic Azad University, Tabriz, Iran
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Aghebaqti-Maleki
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mohammad Movloudi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
6
|
Carrera-Aguado I, Marcos-Zazo L, Carrancio-Salán P, Guerra-Paes E, Sánchez-Juanes F, Muñoz-Félix JM. The Inhibition of Vessel Co-Option as an Emerging Strategy for Cancer Therapy. Int J Mol Sci 2024; 25:921. [PMID: 38255995 PMCID: PMC10815934 DOI: 10.3390/ijms25020921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/09/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Vessel co-option (VCO) is a non-angiogenic mechanism of vascularization that has been associated to anti-angiogenic therapy. In VCO, cancer cells hijack the pre-existing blood vessels and use them to obtain oxygen and nutrients and invade adjacent tissue. Multiple primary tumors and metastases undergo VCO in highly vascularized tissues such as the lungs, liver or brain. VCO has been associated with a worse prognosis. The cellular and molecular mechanisms that undergo VCO are poorly understood. Recent studies have demonstrated that co-opted vessels show a quiescent phenotype in contrast to angiogenic tumor blood vessels. On the other hand, it is believed that during VCO, cancer cells are adhered to basement membrane from pre-existing blood vessels by using integrins, show enhanced motility and a mesenchymal phenotype. Other components of the tumor microenvironment (TME) such as extracellular matrix, immune cells or extracellular vesicles play important roles in vessel co-option maintenance. There are no strategies to inhibit VCO, and thus, to eliminate resistance to anti-angiogenic therapy. This review summarizes all the molecular mechanisms involved in vessel co-option analyzing the possible therapeutic strategies to inhibit this process.
Collapse
Affiliation(s)
- Iván Carrera-Aguado
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, 37007 Salamanca, Spain; (I.C.-A.); (L.M.-Z.); (P.C.-S.); (E.G.-P.); (F.S.-J.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Laura Marcos-Zazo
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, 37007 Salamanca, Spain; (I.C.-A.); (L.M.-Z.); (P.C.-S.); (E.G.-P.); (F.S.-J.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Patricia Carrancio-Salán
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, 37007 Salamanca, Spain; (I.C.-A.); (L.M.-Z.); (P.C.-S.); (E.G.-P.); (F.S.-J.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Elena Guerra-Paes
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, 37007 Salamanca, Spain; (I.C.-A.); (L.M.-Z.); (P.C.-S.); (E.G.-P.); (F.S.-J.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Fernando Sánchez-Juanes
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, 37007 Salamanca, Spain; (I.C.-A.); (L.M.-Z.); (P.C.-S.); (E.G.-P.); (F.S.-J.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
| | - José M. Muñoz-Félix
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, 37007 Salamanca, Spain; (I.C.-A.); (L.M.-Z.); (P.C.-S.); (E.G.-P.); (F.S.-J.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
| |
Collapse
|
7
|
Wu T, Zhang X, Liu X, Cai X, Shen T, Pan D, Liang R, Ding R, Hu R, Dong J, Li F, Li J, Xie L, Wang C, Geng S, Yang Z, Xing L, Li Y. Single-cell sequencing reveals the immune microenvironment landscape related to anti-PD-1 resistance in metastatic colorectal cancer with high microsatellite instability. BMC Med 2023; 21:161. [PMID: 37106440 PMCID: PMC10142806 DOI: 10.1186/s12916-023-02866-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
BACKGROUND The objective response rate of microsatellite instability-high (MSI-H) metastatic colorectal cancer (mCRC) patients with first-line anti-programmed cell death protein-1 (PD-1) monotherapy is only 40-45%. Single-cell RNA sequencing (scRNA-seq) enables unbiased analysis of the full variety of cells comprising the tumor microenvironment. Thus, we used scRNA-seq to assess differences among microenvironment components between therapy-resistant and therapy-sensitive groups in MSI-H/mismatch repair-deficient (dMMR) mCRC. Resistance-related cell types and genes identified by this analysis were subsequently verified in clinical samples and mouse models to further reveal the molecular mechanism of anti-PD-1 resistance in MSI-H or dMMR mCRC. METHODS The response of primary and metastatic lesions to first-line anti-PD-1 monotherapy was evaluated by radiology. Cells from primary lesions of patients with MSI-H/dMMR mCRC were analyzed using scRNA-seq. To identify the marker genes in each cluster, distinct cell clusters were identified and subjected to subcluster analysis. Then, a protein‒protein interaction network was constructed to identify key genes. Immunohistochemistry and immunofluorescence were applied to verify key genes and cell marker molecules in clinical samples. Immunohistochemistry, quantitative real-time PCR, and western blotting were performed to examine the expression of IL-1β and MMP9. Moreover, quantitative analysis and sorting of myeloid-derived suppressor cells (MDSCs) and CD8+ T cells were performed using flow cytometry. RESULTS Tumor responses in 23 patients with MSI-H/dMMR mCRC were evaluated by radiology. The objective response rate was 43.48%, and the disease control rate was 69.57%. ScRNA-seq analysis showed that, compared with the treatment-resistant group, the treatment-sensitive group accumulated more CD8+ T cells. Experiments with both clinical samples and mice indicated that infiltration of IL-1β-driven MDSCs and inactivation of CD8+ T cells contribute to anti-PD-1 resistance in MSI-H/dMMR CRC. CONCLUSIONS CD8+ T cells and IL-1β were identified as the cell type and gene, respectively, with the highest correlation with anti-PD-1 resistance. Infiltration of IL-1β-driven MDSCs was a significant factor in anti-PD-1 resistance in CRC. IL-1β antagonists are expected to be developed as a new treatment for anti-PD-1 inhibitor resistance.
Collapse
Affiliation(s)
- Tao Wu
- Department of Colorectal Surgery, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, No. 519, Kunzhou Road, Xishan District, Kunming, 650118, China
| | - Xuan Zhang
- Department of Colorectal Surgery, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, No. 519, Kunzhou Road, Xishan District, Kunming, 650118, China
| | - Xinxing Liu
- Department of Colorectal Surgery, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, No. 519, Kunzhou Road, Xishan District, Kunming, 650118, China
| | - Xinyi Cai
- Department of Colorectal Surgery, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, No. 519, Kunzhou Road, Xishan District, Kunming, 650118, China
| | - Tao Shen
- Department of Colorectal Surgery, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, No. 519, Kunzhou Road, Xishan District, Kunming, 650118, China
| | - Dingguo Pan
- Department of Colorectal Surgery, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, No. 519, Kunzhou Road, Xishan District, Kunming, 650118, China
| | - Rui Liang
- College of Bioengineering, Chongqing University, Chongqing, China
| | - Rong Ding
- Department of Minimally Invasive Intervention, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Ruixi Hu
- Department of Colorectal Surgery, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, No. 519, Kunzhou Road, Xishan District, Kunming, 650118, China
| | - Jianhua Dong
- Department of Colorectal Surgery, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, No. 519, Kunzhou Road, Xishan District, Kunming, 650118, China
| | - Furong Li
- Department of Gastroenteroscopy, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jinsha Li
- Department of Gastroenteroscopy, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Lin Xie
- Department of Oncology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Chunlong Wang
- Department of Radiology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Shilei Geng
- Department of Colorectal Surgery, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, No. 519, Kunzhou Road, Xishan District, Kunming, 650118, China
| | - Zhaoyu Yang
- Department of Colorectal Surgery, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, No. 519, Kunzhou Road, Xishan District, Kunming, 650118, China
| | - Lu Xing
- Department of Dermatology, Kunming Children's Hospital, Kunming, China.
| | - YunFeng Li
- Department of Colorectal Surgery, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, No. 519, Kunzhou Road, Xishan District, Kunming, 650118, China.
| |
Collapse
|
8
|
Peng K, Zhang Y, Liu D, Chen J. MMP2 is a immunotherapy related biomarker and correlated with cancer-associated fibroblasts infiltrate in melanoma. Cancer Cell Int 2023; 23:26. [PMID: 36788565 PMCID: PMC9930295 DOI: 10.1186/s12935-023-02862-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 01/28/2023] [Indexed: 02/16/2023] Open
Abstract
BACKGROUND Mounting evidence supports that matrix metalloproteinase (MMPs) are highly associated with tumor progression and that targeting MMPs may overcome the barrier of immune suppression. Among these, whether MMP2 functions as an immunosuppressive role in melanoma, remains unclear. METHODS The Cancer Genome Atlas (TCGA) and Gene Expression Profiling Interactive Analysis 2 (GEPIA2) databases were used to assess the prognosis of MMP2 in melanoma, after which Tumor immune estimation resource (TIMER) was used to explore the relationship between MMP2 expression and cancer associated fibroblasts (CAFs) infiltration. Finally, we evaluated the efficacy of MMP2 inhibitor on CAFs infiltration and immunotherapy using a mouse melanoma model. RESULTS In general, the expression of MMP2, MMP13, MMP16, MMP17 and MMP25 were significantly associated with skin cutaneous melanoma (SKCM) patients prognosis, among which MMP2 low expression benefited patients the most. Especially, the overall survival (OS) of BRAF mutation patients with high MMP2 expression was significantly lower than the MMP2 low expression group, but there was no significant difference in BRAF wild-type patients. KEGG and GO enrichment analysis indicated that MMP2 related genes were mostly associated with extracellular structure organization, collagen-containing extracellular matrix and extracellular matrix structural constituent. Furthermore, in almost all cancers, MMP2 expression was positively correlated with CAFs infiltration. MMP2 inhibitor works synergistically with PD-1 antibody and induces tumor regression in a mouse melanoma model, which is dependent on decreased CAFs infiltration. CONCLUSIONS This suggests that MMP2 plays a vital role in the regulation of CAFs infiltration, potentially participating in immunotherapy response, and thus representing a valuable target of immunotherapy in melanoma.
Collapse
Affiliation(s)
- Kunwei Peng
- grid.412534.5Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumour Microenvironment, Department of Medical Oncology, The Second Affiliated Hospital of Guangzhou Medical University, No. 250 Changgang East Road, Guangzhou, 510260 Guangdong People’s Republic of China
| | - Yanyan Zhang
- grid.79703.3a0000 0004 1764 3838Department of Infectious Diseases, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong People’s Republic of China
| | - Deyi Liu
- grid.412534.5Department of General Practice, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong People’s Republic of China
| | - Jingqi Chen
- Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumour Microenvironment, Department of Medical Oncology, The Second Affiliated Hospital of Guangzhou Medical University, No. 250 Changgang East Road, Guangzhou, 510260, Guangdong, People's Republic of China. .,Translational Medicine Center, The Second Affiliated Hospital of Guangzhou Medical University, No. 250 Changgang East Road, Guangzhou, 510260, Guangdong, People's Republic of China.
| |
Collapse
|
9
|
Breast cancer tumor microenvironment affects Treg/IL-17-producing Treg/Th17 cell axis: Molecular and therapeutic perspectives. Mol Ther Oncolytics 2023; 28:132-157. [PMID: 36816749 PMCID: PMC9922830 DOI: 10.1016/j.omto.2023.01.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The tumor microenvironment (TME) comprises a variety of immune cells, among which T cells exert a prominent axial role in tumor development or anti-tumor responses in patients with breast cancer (BC). High or low levels of anti-inflammatory cytokines, such as transforming growth factor β, in the absence or presence of proinflammatory cytokines, such as interleukin-6 (IL-6), delineate the fate of T cells toward either regulatory T (Treg) or T helper 17 (Th17) cells, respectively. The transitional state of RORγt+Foxp3+ Treg (IL-17-producing Treg) resides in the middle of this reciprocal polarization, which is known as Treg/IL-17-producing Treg/Th17 cell axis. TME secretome, including microRNAs, cytokines, and extracellular vesicles, can significantly affect this axis. Furthermore, immune checkpoint inhibitors may be used to reconstruct immune cells; however, some of these novel therapies may favor tumor development. Therefore, understanding secretory and cell-associated factors involved in their differentiation or polarization and functions may be targeted for BC management. This review discusses microRNAs, cytokines, and extracellular vesicles (as secretome), as well as transcription factors and immune checkpoints (as cell-associated factors), which influence the Treg/IL-17-producing Treg/Th17 cell axis in BC. Furthermore, approved or ongoing clinical trials related to the modulation of this axis in the TME of BC are described to broaden new horizons of promising therapeutic approaches.
Collapse
|
10
|
Wu Y, Jiang T, Hua J, Xiong Z, Chen H, Li L, Peng J, Xiong W. Integrated Bioinformatics-Based Analysis of Hub Genes and the Mechanism of Immune Infiltration Associated With Acute Myocardial Infarction. Front Cardiovasc Med 2022; 9:831605. [PMID: 35463752 PMCID: PMC9019083 DOI: 10.3389/fcvm.2022.831605] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/28/2022] [Indexed: 11/20/2022] Open
Abstract
Background Acute myocardial infarction (AMI) is a fatal disease that causes high morbidity and mortality. It has been reported that AMI is associated with immune cell infiltration. Now, we aimed to identify the potential diagnostic biomarkers of AMI and uncover the immune cell infiltration profile of AMI. Methods From the Gene Expression Omnibus (GEO) data set, three data sets (GSE48060, GSE60993, and GSE66360) were downloaded. Differentially expressed genes (DEGs) from AMI and healthy control samples were screened. Furthermore, DEGs were performed via gene ontology (GO) functional and kyoto encyclopedia of genes and genome (KEGG) pathway analyses. The Gene set enrichment analysis (GSEA) was used to analyze GO terms and KEGG pathways. Utilizing the Search Tool for Retrieval of Interacting Genes/Proteins (STRING) database, a protein–protein interaction (PPI) network was constructed, and the hub genes were identified. Then, the receiver operating characteristic (ROC) curves were constructed to analyze the diagnostic value of hub genes. And, the diagnostic value of hub genes was further validated in an independent data set GSE61144. Finally, CIBERSORT was used to represent the compositional patterns of the 22 types of immune cell fractions in AMI. Results A total of 71 DEGs were identified. These DEGs were mainly enriched in immune response and immune-related pathways. Toll-like receptor 2 (TLR2), interleukin-1B (IL1B), leukocyte immunoglobulin-like receptor subfamily B2 (LILRB2), Fc fragment of IgE receptor Ig (FCER1G), formyl peptide receptor 1 (FPR1), and matrix metalloproteinase 9 (MMP9) were identified as diagnostic markers with the value of p < 0.05. Also, the immune cell infiltration analysis indicated that TLR2, IL1B, LILRB2, FCER1G, FPR1, and MMP9 were correlated with neutrophils, monocytes, resting natural killer (NK) cells, gamma delta T cells, and CD4 memory resting T cells. The fractions of monocytes and neutrophils were significantly higher in AMI tissues than in control tissues. Conclusion TLR2, IL1B, LILRB2, FCER1G, FPR1, and MMP9 are involved in the process of AMI, which can be used as molecular biomarkers for the screening and diagnosis of AMI. In addition, the immune system plays a vital role in the occurrence and progression of AMI.
Collapse
Affiliation(s)
- Yanze Wu
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Ting Jiang
- Department Hospital Infection Control, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jinghai Hua
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhiping Xiong
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Hui Chen
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Lei Li
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jingtian Peng
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wenjun Xiong
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- *Correspondence: Wenjun Xiong,
| |
Collapse
|
11
|
Lin X, Chen H, Xie Y, Zhou X, Wang Y, Zhou J, Long S, Hu Z, Zhang S, Qiu W, Zeng Z, Liu L. Combination of CTLA-4 blockade with MUC1 mRNA nanovaccine induces enhanced anti-tumor CTL activity by modulating tumor microenvironment of triple negative breast cancer. Transl Oncol 2021; 15:101298. [PMID: 34875483 PMCID: PMC8652013 DOI: 10.1016/j.tranon.2021.101298] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 11/22/2021] [Indexed: 11/16/2022] Open
Abstract
The immunosuppressive tumor microenvironment (TME) is the main reason for the failure of many immunotherapies that directly stimulate anti-tumor immune response. Anti-CTLA-4 antibody may reduce effector regulatory T (Treg) cell numbers and their suppressive activity in the TME. We have previously reported that combination of anti-CTLA-4 antibody with MUC1 mRNA nanovaccine may mutually enhance each single treatment. But the enhancement mechanism of therapeutic efficacy of MUC1 mRNA nanovaccine plus anti-CTLA-4 monoclonal antibody (mAb) is unknown. In this study, anti-tumor CTL activity induced by combination of CTLA-4 Blockade with MUC1 mRNA nanovaccine and immunosuppressive factors in the TME of triple negative breast cancer were investigated. The results demonstrated that combined therapy with nanovaccine and anti-CTLA-4 mAb could induce stronger anti-tumor CTL response than each monotherapy, result in significantly decreased numbers of myeloid-derived suppressor cells (MDSC), Treg cells, tumor-associated fibroblasts (TAFs) and tumor vasculature in the TME, downregulated levels of interleukin-6, tumor necrosis factor-α and transforming growth factor-β, and significantly upregulated levels of IFN-γ and interleukin-12 as well as increased number of CD8+ T cell, and appear more effective than either nanovaccine or anti-CTLA-4 mAb alone at increasing level of apoptosis in tumor cells. In addition, combination immunotherapy could significantly downregulated the signal transducer and activator of transcription 3 (STAT3) signal pathway. Therefore, it can be concluded that combination of CTLA-4 blockade with MUC1 mRNA nanovaccine enhances anti-tumor cytotoxic T-lymphocyte activity by reducing immunosuppressive TME and inhibiting tumor-promoting STAT3 signaling pathway.
Collapse
Affiliation(s)
- Xuan Lin
- Key Laboratory of Biological and Medical Engineering/Immune Cells and Antibody Engineering Research Center of Guizhou Province/Engineering Research Center of Medical Biotechnology, School of Biology and Engineering, Guizhou Medical University, Guiyang, Guizhou 550025, China; Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Hedan Chen
- Key Laboratory of Biological and Medical Engineering/Immune Cells and Antibody Engineering Research Center of Guizhou Province/Engineering Research Center of Medical Biotechnology, School of Biology and Engineering, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Ying Xie
- Key Laboratory of Biological and Medical Engineering/Immune Cells and Antibody Engineering Research Center of Guizhou Province/Engineering Research Center of Medical Biotechnology, School of Biology and Engineering, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Xue Zhou
- Key Laboratory of Biological and Medical Engineering/Immune Cells and Antibody Engineering Research Center of Guizhou Province/Engineering Research Center of Medical Biotechnology, School of Biology and Engineering, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Yun Wang
- Key Laboratory of Biological and Medical Engineering/Immune Cells and Antibody Engineering Research Center of Guizhou Province/Engineering Research Center of Medical Biotechnology, School of Biology and Engineering, Guizhou Medical University, Guiyang, Guizhou 550025, China; School of Basic Medical Science, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Jing Zhou
- Key Laboratory of Biological and Medical Engineering/Immune Cells and Antibody Engineering Research Center of Guizhou Province/Engineering Research Center of Medical Biotechnology, School of Biology and Engineering, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Shiqi Long
- School of Basic Medical Science, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Zuquan Hu
- Key Laboratory of Biological and Medical Engineering/Immune Cells and Antibody Engineering Research Center of Guizhou Province/Engineering Research Center of Medical Biotechnology, School of Biology and Engineering, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Shichao Zhang
- Key Laboratory of Biological and Medical Engineering/Immune Cells and Antibody Engineering Research Center of Guizhou Province/Engineering Research Center of Medical Biotechnology, School of Biology and Engineering, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Wei Qiu
- Key Laboratory of Biological and Medical Engineering/Immune Cells and Antibody Engineering Research Center of Guizhou Province/Engineering Research Center of Medical Biotechnology, School of Biology and Engineering, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Zhu Zeng
- Key Laboratory of Biological and Medical Engineering/Immune Cells and Antibody Engineering Research Center of Guizhou Province/Engineering Research Center of Medical Biotechnology, School of Biology and Engineering, Guizhou Medical University, Guiyang, Guizhou 550025, China; Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, China; School of Basic Medical Science, Guizhou Medical University, Guiyang, Guizhou 550025, China.
| | - Lina Liu
- Key Laboratory of Biological and Medical Engineering/Immune Cells and Antibody Engineering Research Center of Guizhou Province/Engineering Research Center of Medical Biotechnology, School of Biology and Engineering, Guizhou Medical University, Guiyang, Guizhou 550025, China; Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, China.
| |
Collapse
|
12
|
Cao Y, Chen C, Tao Y, Lin W, Wang P. Immunotherapy for Triple-Negative Breast Cancer. Pharmaceutics 2021; 13:2003. [PMID: 34959285 PMCID: PMC8705248 DOI: 10.3390/pharmaceutics13122003] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/03/2021] [Accepted: 11/23/2021] [Indexed: 01/12/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is characterized by extensive tumor heterogeneity at both the pathologic and molecular levels, particularly accelerated aggressiveness, and terrible metastasis. It is responsible for the increased mortality of breast cancer patients. Due to the negative expression of estrogen receptors, progesterone receptors, and human epidermal growth factor receptor 2, the progress of targeted therapy has been hindered. Higher immune response in TNBCs than for other breast cancer types makes immunotherapy suitable for TNBC therapy. At present, promising treatments in immunotherapy of TNBC include immune checkpoints (ICs) blockade therapy, adoptive T-cell immunotherapy, and tumor vaccine immunotherapy. In addition, nanomedicines exhibit great potential in cancer therapy through the enhanced permeability and retention (EPR) effect. Immunotherapy-involved combination therapy may exert synergistic effects by combining with other treatments, such as traditional chemotherapy and new treatments, including photodynamic therapy (PTT), photodynamic therapy (PDT), and sonodynamic therapy (SDT). This review focuses on introducing the principles and latest development as well as progress in using nanocarriers as drug-delivery systems for the immunotherapy of TNBC.
Collapse
Affiliation(s)
- Yifeng Cao
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China; (C.C.); (Y.T.)
| | - Chuyang Chen
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China; (C.C.); (Y.T.)
| | - Yi Tao
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China; (C.C.); (Y.T.)
| | - Weifeng Lin
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 76100, Israel;
| | - Ping Wang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China; (C.C.); (Y.T.)
| |
Collapse
|
13
|
Yuan JQ, Zhang KJ, Wang SM, Guo L. YAP1/MMP7/CXCL16 axis affects efficacy of neoadjuvant chemotherapy via tumor environment immunosuppression in triple-negative breast cancer. Gland Surg 2021; 10:2799-2814. [PMID: 34733729 PMCID: PMC8514296 DOI: 10.21037/gs-21-612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/17/2021] [Indexed: 11/06/2022]
Abstract
BACKGROUND To evaluate the association of potential YAP1/MMP7/CXCL16 axis and tumor infiltrating lymphocytes (TILs) related chemo-response in triple-negative breast cancer (TNBC) patients. METHODS We estimated the messenger RNA (mRNA) expression levels of Yes-associated protein 1 (YAP1), MMP7, and CXCL16 in paired TNBC tumor/para-tumor tissues by quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR), and performed statistical analysis according to neoadjuvant chemotherapy (NAC) response. Based on The Cancer Genome Atlas (TCGA) data, we noticed outstanding expression of MMP7/CXCL16 in TNBC cases, as well as associations between MMP7/CXCL16 and HIPPO-YAP1-relevant kinases. We also performed gene set enrichment analysis (GSEA) between MMP7/CXCL16 and YAP1-associated pathways. Western blotting assay was employed to evaluate YAP1/MMP7/CXCL16 expression in vitro and their modulation sequence. Logistic model stepwise regression analysis was used to assess YAP1, MMP7, CXCL16, and TILs as therapeutic predictors. Residual cancer burden (RCB) score was calculated and statistically analyzed according to intensity of these variables, and receiver operating characteristic (ROC) curve also showed their predictive value in NAC response. Recruitment efficacy for CD4+/CD8+ TIL cells (TCGA data) as well as quantified TIL cells density were both explored according to YAP1, MMP7, and CXCL16 expression level. RESULTS Up-regulation of YAP1/MMP7 and down-regulation of CXCL16 were both significant in TNBC cases with poor NAC response. Inhibition of YAP1 induced down-regulation of MMP7 and up-regulation of CXCL16, whereas inhibition of MMP7 also induced up-regulation of CXCL16. It was also shown that MMP7/CXCL16 was enriched in the YAP1-related pathway. Activation of the YAP1/MMP7/CXCL16 axis obviously affected RCB of TNBC cases. The ROC curve also supported the predictive value of YAP1/MMP7/CXCL16 axis and TILs density in NAC response prospect. The density of TILs, meanwhile, demonstrated a strong link with the YAP1/MMP7/CXCL16 axis. Over expression of YAP1/MMP7 significantly suppressed recruitment of CD4+/CD8+ TILs, while CXCL16 over expression had a beneficial impact on anti-tumor immune. CONCLUSIONS Over expression of causes up-regulation of MMP7 and down-regulation of CXCL16, which suppressed CD4+/CD8+ TILs recruitment and indirectly affected NAC response of TNBC patients.
Collapse
Affiliation(s)
- Jia-Qi Yuan
- Clinical Research Center for Breast Cancer Control and Prevention in Hunan Province, Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Ke-Jing Zhang
- Clinical Research Center for Breast Cancer Control and Prevention in Hunan Province, Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Shou-Man Wang
- Clinical Research Center for Breast Cancer Control and Prevention in Hunan Province, Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Lei Guo
- Clinical Research Center for Breast Cancer Control and Prevention in Hunan Province, Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
14
|
Kim HS, Kim MG, Min KW, Jung US, Kim DH. High MMP-11 expression associated with low CD8+ T cells decreases the survival rate in patients with breast cancer. PLoS One 2021; 16:e0252052. [PMID: 34038440 PMCID: PMC8153507 DOI: 10.1371/journal.pone.0252052] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/10/2021] [Indexed: 12/23/2022] Open
Abstract
Matrix metalloproteinase-11 (MMP-11) promote cancer invasion and metastasis through degrading the extracellular matrix. Protein degradation by MMP-11 in tumor cells may progressively suppress cancer surveillance activities with blocking immune response in breast cancer. The aim of study is to analyze clinicopathological parameters, molecular interactions and anticancer immune response in patients with MMP-11 expression and to provide candidate target drugs. We investigated the clinicopathologic parameters, specific gene sets, tumor antigenicity, and immunologic relevance according to MMP-11 expression in 226 and 776 breast cancer patients from the Hanyang University Guri Hospital (HUGH) cohort and The Cancer Genome Atlas (TCGA) data, respectively. We analyzed pathway networks and in vitro drug response. High MMP-11 expression was associated with worse survival rate in breast cancer from HUGH cohort and TCGA data (all p < 0.05). In analysis of immunologic gene sets, high MMP-11 expression was related to low immune response such as CD8+T cell, CD4+T cell and B cell. In silico cytometry, there was a decrease of cancer testis antigen and low tumor infiltrating lymphocyte in patient with high MMP-11 expression: activated dendritic cell, CD8+T cell, CD4+ memory T cell, and memory B cell. In pathway networks, MMP-11 was linked to the pathways including low immune response, response to growth hormone and catabolic process. We found that pictilisib and AZ960 effectively inhibited the breast cancer cell lines with high MMP-11 expression. Strategies making use of MMP-11-related hub genes could contribute to better clinical management/research for patients with breast cancer.
Collapse
Affiliation(s)
- Hyung Suk Kim
- Division of Breast Surgery, Department of Surgery, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, Gyeonggi-do, Republic of Korea
| | - Min Gyu Kim
- Department of Surgery, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, Gyeonggi-do, Republic of Korea
| | - Kyueng-Whan Min
- Department of Pathology, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, Gyeonggi-do, Republic of Korea
| | - Un Suk Jung
- Department of Obstetrics and Gynecology, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, Gyeonggi-do, Republic of Korea
- * E-mail: (USJ); (DHK)
| | - Dong-Hoon Kim
- Department of Pathology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- * E-mail: (USJ); (DHK)
| |
Collapse
|
15
|
Liu S, Yu G, Liu L, Zou X, Zhou L, Hu E, Song Y. Identification of Prognostic Stromal-Immune Score-Based Genes in Hepatocellular Carcinoma Microenvironment. Front Genet 2021; 12:625236. [PMID: 33643387 PMCID: PMC7905188 DOI: 10.3389/fgene.2021.625236] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/06/2021] [Indexed: 01/10/2023] Open
Abstract
A growing amount of evidence has suggested the clinical importance of stromal and immune cells in the liver cancer microenvironment. However, reliable prognostic signatures based on assessments of stromal and immune components have not been well-established. This study aimed to identify stromal-immune score–based potential prognostic biomarkers for hepatocellular carcinoma. Stromal and immune scores were estimated from transcriptomic profiles of a liver cancer cohort from The Cancer Genome Atlas using the ESTIMATE (Estimation of STromal and Immune cells in MAlignant Tumors using Expression data) algorithm. Least absolute shrinkage and selection operator (LASSO) algorithm was applied to select prognostic genes. Favorable overall survivals and progression-free interval were found in patients with high stromal score and immune score, and 828 differentially expressed genes were identified. Functional enrichment analysis and protein–protein interaction networks further showed that these genes mainly participated in immune response, extracellular matrix, and cell adhesion. MMP9 (matrix metallopeptidase 9) was identified as a prognostic tumor microenvironment–associated gene by using LASSO and TIMER (Tumor IMmune Estimation Resource) algorithms and was found to be positively correlated with immunosuppressive molecules and drug response.
Collapse
Affiliation(s)
- Shanshan Liu
- Country Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China.,State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Guangchuang Yu
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Li Liu
- Country Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Medical Quality Management, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xuejing Zou
- Country Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China.,State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lang Zhou
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Erqiang Hu
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yang Song
- Country Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
16
|
Ye Y, Kuang X, Xie Z, Liang L, Zhang Z, Zhang Y, Ma F, Gao Q, Chang R, Lee HH, Zhao S, Su J, Li H, Peng J, Chen H, Yin M, Peng C, Yang N, Wang J, Liu J, Liu H, Han L, Chen X. Small-molecule MMP2/MMP9 inhibitor SB-3CT modulates tumor immune surveillance by regulating PD-L1. Genome Med 2020; 12:83. [PMID: 32988398 PMCID: PMC7523356 DOI: 10.1186/s13073-020-00780-z] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 09/10/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Immune checkpoint blockade (ICB) therapy has demonstrated considerable clinical benefit in several malignancies, but has shown favorable response in only a small proportion of cancer patients. Recent studies have shown that matrix metalloproteinases (MMPs) are highly associated with the microenvironment of tumors and immune cells. However, it is unknown whether MMPs are involved in immunotherapy. METHODS Here, we used integrative analysis to explore the expression landscape of the MMP family and its association with immune features across multiple cancer types. We used T cell cytotoxicity-mediated tumor killing assay to determine the co-cultured T cell activity of SB-3CT, an MMP2/9 inhibitor. We then used in vitro assays to examine the regulating roles of SB-3CT on PD-L1. We further characterized the efficacy of SB-3CT, in combination with anti-PD-1 and/or anti-CTLA4 treatment in mouse models with melanoma and lung cancer. RESULTS Our computational analysis demonstrated a strong association between MMP2/9 and immune features. We demonstrated that inhibition of MMP2/9 by SB-3CT significantly reduced the tumor burden and improved survival time by promoting anti-tumor immunity. Mechanistically, we showed that SB-3CT treatment significantly diminished both mRNA and protein levels of PD-L1 in cancer cells. Pre-clinically, SB-3CT treatment enhanced the therapeutic efficacy of PD-1 or CTLA-4 blockade in the treatment of both primary and metastatic tumors. CONCLUSIONS Our study unraveled novel molecular mechanisms regarding the regulation of tumor PD-L1 and provided a novel combination therapeutic strategy of SB-3CT and ICB therapy to enhance the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Youqiong Ye
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, 77030, USA.
| | - Xinwei Kuang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, 410013, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, 410008, Hunan, China
- Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, 410008, Hunan, China
| | - Zuozhong Xie
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, 410013, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, 410008, Hunan, China
- Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, 410008, Hunan, China
| | - Long Liang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Medical Genetics & School of Life Sciences, Central South University, Changsha, 410008, Hunan, China
| | - Zhao Zhang
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, 77030, USA
| | - Yongchang Zhang
- Department of medical oncology, lung cancer and gastrointestinal unit, Hunan cancer hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410008, Hunan, China
| | - Fangyu Ma
- Department of Health Management Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Qian Gao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, 410013, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, 410008, Hunan, China
- Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, 410008, Hunan, China
| | - Ruimin Chang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, 410013, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, 410008, Hunan, China
- Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, 410008, Hunan, China
| | - Heng-Huan Lee
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Shuang Zhao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, 410013, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, 410008, Hunan, China
- Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, 410008, Hunan, China
| | - Juan Su
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, 410013, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, 410008, Hunan, China
- Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, 410008, Hunan, China
| | - Hui Li
- Medical Genetics & School of Life Sciences, Central South University, Changsha, 410008, Hunan, China
| | - Jingbo Peng
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Huifang Chen
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Minzhu Yin
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, 410013, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, 410008, Hunan, China
- Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, 410008, Hunan, China
| | - Cong Peng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, 410013, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, 410008, Hunan, China
- Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, 410008, Hunan, China
| | - Nong Yang
- Department of medical oncology, lung cancer and gastrointestinal unit, Hunan cancer hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410008, Hunan, China
| | - Jing Wang
- Early Clinical Trial Center, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410008, Hunan, China
| | - Jing Liu
- Medical Genetics & School of Life Sciences, Central South University, Changsha, 410008, Hunan, China
| | - Hong Liu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, 410013, Hunan, China.
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, 410008, Hunan, China.
- Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, 410008, Hunan, China.
- Research Center of Molecular Metabolomics, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Leng Han
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, 77030, USA.
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, 410013, Hunan, China.
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, 410008, Hunan, China.
- Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
17
|
Deepak KGK, Vempati R, Nagaraju GP, Dasari VR, S N, Rao DN, Malla RR. Tumor microenvironment: Challenges and opportunities in targeting metastasis of triple negative breast cancer. Pharmacol Res 2020; 153:104683. [PMID: 32050092 DOI: 10.1016/j.phrs.2020.104683] [Citation(s) in RCA: 357] [Impact Index Per Article: 71.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 02/06/2020] [Accepted: 02/06/2020] [Indexed: 02/08/2023]
Abstract
Triple negative breast cancer (TNBC) is most aggressive subtype of breast cancers with high probability of metastasis as well as lack of specific targets and targeted therapeutics. TNBC is characterized with unique tumor microenvironment (TME), which differs from other subtypes. TME is associated with induction of proliferation, angiogenesis, inhibition of apoptosis and immune system suppression, and drug resistance. Exosomes are promising nanovesicles, which orchestrate the TME by communicating with different cells within TME. The components of TME including transformed ECM, soluble factors, immune suppressive cells, epigenetic modifications and re-programmed fibroblasts together hamper antitumor response and helps progression and metastasis of TNBCs. Therefore, TME could be a therapeutic target of TNBC. The current review presents latest updates on the role of exosomes in modulation of TME, approaches for targeting TME and combination of immune checkpoint inhibitors and target chemotherapeutics. Finally, we also discussed various phytochemicals that alter genetic, transcriptomic and proteomic profiles of TME along with current challenges and future implications. Thus, as TME is associated with the hallmarks of TNBC, the understanding of the impact of different components can improve the clinical benefits of TNBC patients.
Collapse
Affiliation(s)
- K G K Deepak
- Cancer Biology Lab, Department of Biochemistry and Bioinformatics, Institute of Science, GITAM (Deemed to be University), Visakhapatnam, 530045, India
| | - Rahul Vempati
- Cancer Biology Lab, Department of Biochemistry and Bioinformatics, Institute of Science, GITAM (Deemed to be University), Visakhapatnam, 530045, India
| | - Ganji Purnachandra Nagaraju
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA
| | - Venkata Ramesh Dasari
- Department of Molecular and Functional Genomics, Geisinger Clinic, 100 N. Academy Ave, Danville, PA, 17822, USA
| | - Nagini S
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, 608 002, India
| | - D N Rao
- Department of Biochemistry, All India Institute of Medical Science, New Delhi, India
| | - Rama Rao Malla
- Cancer Biology Lab, Department of Biochemistry and Bioinformatics, Institute of Science, GITAM (Deemed to be University), Visakhapatnam, 530045, India.
| |
Collapse
|
18
|
Hashemi V, Maleki LA, Esmaily M, Masjedi A, Ghalamfarsa G, Namdar A, Yousefi M, Yousefi B, Jadidi-Niaragh F. Regulatory T cells in breast cancer as a potent anti-cancer therapeutic target. Int Immunopharmacol 2019; 78:106087. [PMID: 31841758 DOI: 10.1016/j.intimp.2019.106087] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/23/2019] [Accepted: 11/25/2019] [Indexed: 02/08/2023]
Abstract
Despite marked advances in treatment approaches, breast cancer is still going to be more prevalent, worldwide. High levels of regulatory T (Treg) cells have repeatedly been demonstrated in circulation, lymph nodes, and tumor samples from patients with various cancer types. The transcription factor Forkhead box protein 3 (Foxp3)-expressing Treg cells have the high suppressive potential of the immune system and are fundamental in preserving immune homeostasis and self-tolerance. However, they enhance tumor development by curbing efficient anti-tumor immune mechanisms in malignancies. Moreover, the accumulation of Treg cells in breast tumors is related to the short overall survival of patients. Treg cell frequency has been applied as an independent predicting factor to diagnose patients with a high risk of relapse. Pulling out all populations of Treg cells to promote the efficacy of anticancer treatment methods may potentially lead to hazardous autoimmune disorders. Thus, realizing the exact structure of tumor-infiltrating Treg cells is pivotal to efficiently target Treg cells in tumors. There are exclusive and non-exclusive approaches to lower down and degrade the number/function of Treg cells. These approaches can include inhibiting tumoral migration, depletion, interference with function, and utilizing T cell plasticity. This review article attempts to clarify the implications concerning the involvement of Treg cells in breast cancer progression and discuss the current approaches in the treatment of this cancer via modulation of Treg cells function.
Collapse
Affiliation(s)
- Vida Hashemi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Basic Science, Faculty of Medicine, Maragheh University of Medical Sciences, Maragheh, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Maryam Esmaily
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Masjedi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ghasem Ghalamfarsa
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Afshin Namdar
- Katz Group Centre for Pharmacy and Health Research, University of Alberta, Edmonton, Canada
| | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahman Yousefi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
19
|
Nagesh PK, Chowdhury P, Hatami E, Kumari S, Kashyap VK, Tripathi MK, Wagh S, Meibohm B, Chauhan SC, Jaggi M, Yallapu MM. Cross-Linked Polyphenol-Based Drug Nano-Self-Assemblies Engineered to Blockade Prostate Cancer Senescence. ACS APPLIED MATERIALS & INTERFACES 2019; 11:38537-38554. [PMID: 31553876 PMCID: PMC8020616 DOI: 10.1021/acsami.9b14738] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Cellular senescence is one of the prevailing issues in cancer therapeutics that promotes cancer relapse, chemoresistance, and recurrence. Patients undergoing persistent chemotherapy often develop drug-induced senescence. Docetaxel, an FDA-approved treatment for prostate cancer, is known to induce cellular senescence which often limits the overall survival of patients. Strategic therapies that counter the cellular and drug-induced senescence are an unmet clinical need. Towards this an effort was made to develop a novel therapeutic strategy that targets and removes senescent cells from the tumors, we developed a nanoformulation of tannic acid-docetaxel self-assemblies (DSAs). The construction of DSAs was confirmed through particle size measurements, spectroscopy, thermal, and biocompatibility studies. This formulation exhibited enhanced in vitro therapeutic activity in various biological functional assays with respect to native docetaxel treatments. Microarray and immunoblot analysis results demonstrated that DSAs exposure selectively deregulated senescence associated TGFβR1/FOXO1/p21 signaling. Decrease in β-galactosidase staining further suggested reversion of drug-induced senescence after DSAs exposure. Additionally, DSAs induced profound cell death by activation of apoptotic signaling through bypassing senescence. Furthermore, in vivo and ex vivo imaging analysis demonstrated the tumor targeting behavior of DSAs in mice bearing PC-3 xenograft tumors. The antisenescence and anticancer activity of DSAs was further shown in vivo by inhibiting TGFβR1 proteins and regressing tumor growth through apoptotic induction in the PC-3 xenograft mouse model. Overall, DSAs exhibited such advanced features due to a natural compound in the formulation as a matrix/binder for docetaxel. Overall, DSAs showed superior tumor targeting and improved cellular internalization, promoting docetaxel efficacy. These findings may have great implications in prostate cancer therapy.
Collapse
Affiliation(s)
- Prashanth K.B. Nagesh
- Department of Microbiology and Immunology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Pallabita Chowdhury
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Elham Hatami
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Sonam Kumari
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Vivek Kumar Kashyap
- Department of Microbiology and Immunology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Manish K. Tripathi
- Department of Microbiology and Immunology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Santosh Wagh
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Bernd Meibohm
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Subhash C. Chauhan
- Department of Microbiology and Immunology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Meena Jaggi
- Department of Microbiology and Immunology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Murali M. Yallapu
- Department of Microbiology and Immunology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
- Corresponding Author Mailing address: Department of Immunology and Microbiology, 5300 North L Street, Room 2.249, McAllen, TX 78504. Phone: (956) 296-1705. Fax No: (956)-296-1325.
| |
Collapse
|
20
|
Seliger B. Combinatorial Approaches With Checkpoint Inhibitors to Enhance Anti-tumor Immunity. Front Immunol 2019; 10:999. [PMID: 31178856 PMCID: PMC6538766 DOI: 10.3389/fimmu.2019.00999] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 04/18/2019] [Indexed: 12/13/2022] Open
Abstract
Treatment of cancer patients has been recently revolutionized by the application of various immunotherapeutics. However, the response rates are still limited ranging between approximately 20 and 40% suggesting that combinations of immunotherapy with conventional treatment, like chemotherapy, radiation, epigenetic modulators, targeted therapies using small molecules as well as other (immuno) therapeutics, might be an option to increase systemic anti-tumor immunity. It is postulated that different non-immune based therapies in combination with immunotherapies could reprogram the immune suppressive tumor microenvironment and enhance the immunogenicity of tumor cells leading to an improved therapeutic efficacy and a better patients' outcome. Despite there exist various examples of increased objective responses achieved by adding these different therapies to immunotherapies, strategies for rational and evidence-based design of checkpoint inhibitor combinations to maximize the clinical benefit for patients are urgently required. Therefore, the main purpose of this review is to summarize recent results obtained from experimental models and clinical trials to enhance tumor immunogenicity by combining immunotherapy with other therapeutic options to maximize patients' outcome and minimize adverse events.
Collapse
Affiliation(s)
- Barbara Seliger
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
21
|
Lowry LE, Zehring WA. Potentiation of Natural Killer Cells for Cancer Immunotherapy: A Review of Literature. Front Immunol 2017; 8:1061. [PMID: 28919894 PMCID: PMC5585139 DOI: 10.3389/fimmu.2017.01061] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 08/15/2017] [Indexed: 11/14/2022] Open
Abstract
It is widely acknowledged that the human immune system plays a crucial role in preventing the formation and progression of innumerable types of cancer (1). The mechanisms by which this occurs are numerous, including contributions from both the innate and adaptive immune systems. As such, immunotherapy has long been believed to be an auspicious solution in the treatment of malignancy (2). Recent research has highlighted the promise of natural killer (NK) cells as a more directed immunotherapy approach. This paper will focus on the methods of potentiation of NK cells for their use in cancer therapy.
Collapse
Affiliation(s)
- Lacy E Lowry
- Department of Basic Science, Geisinger Commonwealth School of Medicine, Scranton, PA, United States
| | - William A Zehring
- Department of Biochemistry, Geisinger Commonwealth School of Medicine, Scranton, PA, United States
| |
Collapse
|
22
|
Chen X, Li Q, Kan XX, Wang YJ, Li YJ, Yang Q, Xiao HB, Chen Y, Weng XG, Cai WY, Zhu XX. Extract of Caulis Spatholobi, a novel blocker targeting tumor cell‑induced platelet aggregation, inhibits breast cancer metastasis. Oncol Rep 2016; 36:3215-3224. [PMID: 27779702 DOI: 10.3892/or.2016.5184] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 03/22/2016] [Indexed: 11/05/2022] Open
Abstract
Metastasis of breast cancer is the vital step for malignant progression. During such a process, hematogenous metastasis is an indispensable approach for the dissemination of cancer cells. A platelet, contributes to hypercoagulable state, and is also identified the crucial factor in the coagulation system for supporting metastasis. Therefore, the relationship of a platelet and a tumor cell plays a critical role in tumor cell metastasis. Consequently, inhibiting tumor cell‑induced platelet aggregation (TCIPA) is recongnized as a crucial target on suppression of tumor metastasis such as aspirin (ASA). Under such circumstance, here we report that, through dissociating the tumor‑platelet (T‑P) complex, 80% ethanol extracts of Caulis Spatholobi (SET) successfully alleviated the hypercoagulation state, thereby reducing tumor metastasis and improving the prospects of survival in breast cancer cell model. Through MTT and anti‑aggregation assay stimulated by ADP, we detected the optimum treatment time and the optimum dose of SET. By using confocal microscopy, we observed that SET can strongly block the formation of T‑P complex in vitro. The result was further quantified and confirmed by the FACS analysis. The fluorescent value of T‑P complex was obviously decreased in the drug‑treated groups. In vivo, 4T1 cells were injected through the mouse tail vein for dynamic visualization by small animal imaging system. The metastatic intensity was quantified and the survival curve was analyzed. Additionally, general observation and hematoxylin and eosin (H&E) staining of lung tissue was performed. SET exerted an obvious effect on the inhibition of metastasis and increasing the survival rate of mice. For the molecular mechanism study of anti‑TCIPA, zymography and RT‑PCR assay preliminarily revealed the molecular mechanism of SET in the regulation of P‑T interaction. Collectively, through drug efficacy identification and pharmacological revealing, we have obtained a promising candidate for the interference of breast metastasis by suppressing TCIPA, which will be beneficial for clinical cancer treatment.
Collapse
Affiliation(s)
- Xi Chen
- Capital Medical University School of Traditional Chinese Medicine, Beijing 100069, P.R. China
| | - Qi Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, P.R. China
| | - Xiao-Xi Kan
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, P.R. China
| | - Ya-Jie Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, P.R. China
| | - Yu-Jie Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, P.R. China
| | - Qing Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, P.R. China
| | - Hong-Bin Xiao
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, P.R. China
| | - Ying Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, P.R. China
| | - Xiao-Gang Weng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, P.R. China
| | - Wei-Yan Cai
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, P.R. China
| | - Xiao-Xin Zhu
- Capital Medical University School of Traditional Chinese Medicine, Beijing 100069, P.R. China
| |
Collapse
|
23
|
Optimization of the fermentation process of Cordyceps sobolifera Se-CEPS and its anti-tumor activity in vivo. J Biol Eng 2016; 10:8. [PMID: 27347005 PMCID: PMC4919858 DOI: 10.1186/s13036-016-0029-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 06/14/2016] [Indexed: 01/28/2023] Open
Abstract
Background Cordyceps sobolifera (C. sobolifera) isolated from cicadae was used as the starting fungus to produce selenium-enriched C. sobolifera extracellular polysaccharide (Se-CEPS). An orthogonal experimental design based on a single-factor experiment was used to optimize the C. sobolifera fermentation conditions, including the potato juice, peptone, and KH2PO4 concentrations. Ultraviolet (UV) and infrared (IR) analyses of CEPS and Se-CEPS were conducted, as well as an in vivo anti-tumor analysis. Results Under optimal conditions (i.e., 40 potato juice, 0.4 KH2PO4, and 0.5 % peptone), the fermentation yield of Se-CEPS was 5.64 g/L. UV and IR spectra showed that Se-CEPS contained a characteristic absorption peak of a selenite Se = O double bond, demonstrating the successful preparation of Se-CEPS. Activity tests showed that Se-CEPS improved the immune organ index, serum cytokine content, and CD8+ and CD4+ T lymphocyte ratio in colon cancer CT26 tumor-bearing mice, thereby inhibiting tumor growth. When combined with 5-FU, Se-CEPS reduced the toxicity and enhanced the function of 5-FU. Conclusion The result of these experiments indicated that orthogonal experimental design is a promising method for the optimization of Se-CEPS production, and the Se-CEPS from C. sobolifera can improve the anti-tumor capacity of mice. Electronic supplementary material The online version of this article (doi:10.1186/s13036-016-0029-0) contains supplementary material, which is available to authorized users.
Collapse
|