1
|
Zaib S, Javed H, Rana N, Zaib Z, Iqbal S, Khan I. Therapeutic Chemoresistance in Ovarian Cancer: Emerging Hallmarks, Signaling Mechanisms and Alternative Pathways. Curr Med Chem 2025; 32:923-938. [PMID: 38275065 DOI: 10.2174/0109298673276871231205043417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 01/27/2024]
Abstract
Ovarian cancer is the fifth leading cause of mortality and the most lethal gynecologic malignancy among females. It may arise from atypical borderline tumors (Type I) or serous tubal intraepithelial carcinoma (Type II). The diagnosis of cancer at its early stages is difficult because of non-specific symptoms, most patients are diagnosed at the advanced stage. Several drugs and therapeutic strategies are available to treat ovarian cancer such as surgery, chemotherapy, neoadjuvant therapy, and maintenance therapy. However, the cancer cells have developed resistance to a number of available therapies causing treatment failure. This emerging chemoresistance in ovarian cancer cells is becoming an obstacle due to alterations in multiple cellular processes. These processes involve altered drug target response, drug pumps, detoxification systems, lower sensitivity to apoptosis, and altered proliferation, and are responsible for developing resistance to anticancer medicines. Various research reports have evidenced that these altered processes might play a role in the emergence of resistance. This review addresses the recent advances in understanding the underlying mechanisms of ovarian cancer resistance and covers sophisticated alternative pathways to overcome these resistance mechanisms in patients.
Collapse
Affiliation(s)
- Sumera Zaib
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore, 54590, Pakistan
| | - Hira Javed
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore, 54590, Pakistan
| | - Nehal Rana
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore, 54590, Pakistan
| | - Zainab Zaib
- Combined Military Hospital Abbottabad, Abbottabad, 22010, Pakistan
| | - Shahid Iqbal
- Department of Chemistry, School of Natural Sciences (SNS), National University of Science and Technology (NUST), H-12, Islamabad, 46000, Pakistan
| | - Imtiaz Khan
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
| |
Collapse
|
2
|
Jardanowska-Kotuniak M, Dramiński M, Własnowolski M, Łapiński M, Sengupta K, Agarwal A, Filip A, Ghosh N, Pancaldi V, Grynberg M, Saha I, Plewczynski D, Dąbrowski MJ. Unveiling epigenetic regulatory elements associated with breast cancer development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.12.623187. [PMID: 39605637 PMCID: PMC11601335 DOI: 10.1101/2024.11.12.623187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Breast cancer is the most common cancer in women and the 2nd most common cancer worldwide, yearly impacting over 2 million females and causing 650 thousand deaths. It has been widely studied, but its epigenetic variation is not entirely unveiled. We aimed to identify epigenetic mechanisms impacting the expression of breast cancer related genes to detect new potential biomarkers and therapeutic targets. We considered The Cancer Genome Atlas database with over 800 samples and several omics datasets such as mRNA, miRNA, DNA methylation, which we used to select 2701 features that were statistically significant to differ between cancer and control samples using the Monte Carlo Feature Selection and Interdependency Discovery algorithm, from an initial total of 417,486. Their biological impact on cancerogenesis was confirmed using: statistical analysis, natural language processing, linear and machine learning models as well as: transcription factors identification, drugs and 3D chromatin structure analyses. Classification of cancer vs control samples on the selected features returned high classification weighted Accuracy from 0.91 to 0.98 depending on feature-type: mRNA, miRNA, DNA methylation, and classification algorithm. In general, cancer samples showed lower expression of differentially expressed genes and increased β-values of differentially methylated sites. We identified mRNAs whose expression is well explained by miRNA expression and differentially methylated sites β-values. We recognized differentially methylated sites possibly affecting NRF1 and MXI1 transcription factors binding, causing a disturbance in NKAPL and PITX1 expression, respectively. Our 3D models showed more loosely packed chromatin in cancer. This study successfully points out numerous possible regulatory dependencies.
Collapse
Affiliation(s)
- Marta Jardanowska-Kotuniak
- Computational Biology Group, Institute of Computer Science of the Polish Academy of Sciences, Warsaw, Poland
- Institute of Biochemistry and Biophysics of the Polish Academy of Sciences, Warsaw, Poland
| | - Michał Dramiński
- Computational Biology Group, Institute of Computer Science of the Polish Academy of Sciences, Warsaw, Poland
| | - Michał Własnowolski
- Laboratory of Bioinformatics and Computational Genomics, Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland
| | - Marcin Łapiński
- Computational Biology Group, Institute of Computer Science of the Polish Academy of Sciences, Warsaw, Poland
| | - Kaustav Sengupta
- Laboratory of Bioinformatics and Computational Genomics, Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland
| | - Abhishek Agarwal
- Laboratory of Functional and Structural Genomics, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Adam Filip
- Computational Biology Group, Institute of Computer Science of the Polish Academy of Sciences, Warsaw, Poland
| | - Nimisha Ghosh
- Department of Computer Science and Information Technology, Institute of Technical Education and Research, Siksha O Anusandhan University, Bhubaneswar, Odisha, 751030, India
| | - Vera Pancaldi
- CRCT, Université de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - Marcin Grynberg
- Institute of Biochemistry and Biophysics of the Polish Academy of Sciences, Warsaw, Poland
| | - Indrajit Saha
- Department of Computer Science and Engineering, National Institute of Technical Teachers’ Training and Research, Kolkata 700106, India
| | - Dariusz Plewczynski
- Laboratory of Bioinformatics and Computational Genomics, Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland
- Laboratory of Functional and Structural Genomics, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Michał J. Dąbrowski
- Computational Biology Group, Institute of Computer Science of the Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
3
|
Li L, Cheng H, Peng Y, Tang D. Targeting Mitochondrial Cholesterol Efflux via TCF21/ABCA10 Pathway to Enhance Cisplatin Efficacy in Ovarian Cancer. Biochem Genet 2024:10.1007/s10528-024-10939-7. [PMID: 39438390 DOI: 10.1007/s10528-024-10939-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 10/06/2024] [Indexed: 10/25/2024]
Abstract
Cisplatin (DDP) resistance is one of the causes of treatment failure for ovarian cancer (OV). Mitochondrial cholesterol level was reported to be associated with OV chemoresistance. We found that ABCA10, a potential cholesterol transport protein, was highly expressed in ovarian tissues and downregulated in OV tissues. Our study aimed to explore TCF21/ABCA10 axis resistance to DDP therapy in ovarian cancer based on regulating mitochondrial cholesterol efflux. Thirty epithelial ovarian cancer tumors and thirty ovarian tissues from non-cancer patients were collected. Western blot and RT-qPCR were used to measure ABCA10 and TCF21 expression levels in these tissues, as well as in a human ovarian epithelial cell line (IOSE-80), OV cells (A2780 and SKOV3), and DDP-resistant OV cell lines (A2780/DDP and SKOV3/DDP). IOSE-80 cells were also infected with ABCA10 knockdown lentivirus to identify the most effective ABCA10 knockdown plasmid. Lentiviral infection was used to create ABCA10 knockdown, ABCA10 overexpression, and TCF21 overexpression anti-DDP OV cell lines. Cell proliferation was detected by CCK-8 and EDU staining, flow cytometry for apoptosis, MTT for metabolic activity, calcium-induced Cytochrome C release, and mitochondrial matrix swelling for mitochondrial function and Oil Red O staining for lipid accumulation. Cholesterol metabolism was evaluated by measuring mitochondrial cholesterol and cholesterol efflux. Protein concentration was determined using the BCA method. A dual-luciferase reporter assay confirmed TCF21's interaction with ABCA10. ChIP also verified this interaction. The mRNA level (P < 0.01) and protein level (P < 0.001) of ABCA10 were downregulated in cancer tissues of OV patients relative to normal ovarian tissues. Relative to human ovarian epithelial cells, ABCA10 expression was significantly downregulated in OV cells (P < 0.01) and even more significantly downregulated in DDP-resistant OV cells (P < 0.001). Compared to the group treated solely with DDP, the overexpression of ABCA10 significantly inhibited the proliferation of DDP-resistant OV cells (P < 0.01), markedly reduced the staining intensity of EDU in these cells (P < 0.05), and substantially accelerated apoptosis in DDP-resistant OV cells (P < 0.01).Overexpression of ABCA10 further accelerated Cytochrome C expression and mitochondrial matrix swelling in DDP-resistant OV cells compared to the DDP-alone group (P < 0.01). The addition of cholesterol reversed the decrease in lipid accumulation, the decrease in mitochondrial cholesterol levels (P < 0.05), and the increase in cholesterol efflux (P < 0.01) in DDP-resistant OV cells caused by overexpression of ABCA10. The transcription factor TCF21 was bound to the promoter of ABCA10. Overexpression of TCF21 significantly increased ABCA10 expression in DDP-resistant OV cells (P < 0.01) and increased cytochrome C expression in A2780/DDP (P < 0.05) and SKOV3/DDP (P < 0.01) cells, with accelerated mitochondrial matrix swelling in A2780/DDP (P < 0.01) and SKOV3/DDP (P < 0.001) cells, while knockdown of ABCA10 reversed these effects. Our study found that TCF21 boosts ABCA10 expression, which in turn reduces DDP resistance in OV cells by enhancing mitochondrial cholesterol efflux. This mechanism increases the sensitivity of DDP-resistant OV cells to DDP. Our findings will provide new therapeutic targets for the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Li Li
- The Fourth Department of Gynecology and Oncology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, Hunan, People's Republic of China
| | - Hui Cheng
- Family Planning and Minimally Invasive Specialist, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, 410028, Hunan, People's Republic of China
| | - Yang Peng
- The Fourth Department of Gynecology and Oncology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, Hunan, People's Republic of China
| | - Dihong Tang
- The Fourth Department of Gynecology and Oncology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, Hunan, People's Republic of China.
| |
Collapse
|
4
|
Lukanović D, Polajžer S, Matjašič M, Kobal B, Černe K. Analysis of ATP7A Expression and Ceruloplasmin Levels as Biomarkers in Patients Undergoing Neoadjuvant Chemotherapy for Advanced High-Grade Serous Ovarian Carcinoma. Int J Mol Sci 2024; 25:10195. [PMID: 39337685 PMCID: PMC11432368 DOI: 10.3390/ijms251810195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/20/2024] [Accepted: 09/21/2024] [Indexed: 09/30/2024] Open
Abstract
Ovarian cancer (OC), particularly high-grade serous carcinoma (HGSC), is a leading cause of gynecological cancer mortality due to late diagnosis and chemoresistance. While studies on OC cell lines have shown that overexpression of the ATP7A membrane transporter correlates with resistance to platinum-based drugs (PtBMs) and cross-resistance to copper (Cu), clinical evidence is lacking. The functionality of ceruloplasmin (CP), the main Cu-transporting protein in the blood, is dependent on, among other things, ATP7A activity. This study investigated ATP7A expression and CP levels as potential biomarkers for predicting responses to PtBMs. We included 28 HGSC patients who underwent neoadjuvant chemotherapy (NACT). ATP7A expression in ovarian and peritoneal tissues before NACT and in peritoneal and omental tissues after NACT was analyzed via qPCR, and CP levels in ascites and plasma were measured via ELISA before and after NACT. In total, 54% of patients exhibited ATP7A expression in pretreatment tissue (ovary and/or peritoneum), while 43% of patients exhibited ATP7A expression in tissue after treatment (peritoneum and/or omentum). A significant association was found between higher ATP7A expression in the peritoneum before NACT and an unfavorable CA-125 elimination rate constant k (KELIM) score. Patients with omental ATP7A expression had significantly higher plasma mean CP levels before NACT. Plasma CP levels decreased significantly after NACT, and higher CP levels after NACT were associated with a shorter platinum-free interval (PFI). These findings suggest that the ATP7A transporter and CP have the potential to serve as predictive markers of chemoresistance, but further research is needed to validate their clinical utility.
Collapse
Affiliation(s)
- David Lukanović
- Department of Gynecology, Division of Gynecology and Obstetrics, University Medical Centre Ljubljana, Zaloška 2, SI-1000 Ljubljana, Slovenia; (D.L.); (B.K.)
- Department of Gynecology and Obstetrics, Faculty of Medicine, University of Ljubljana, Šlajmerjeva 3, SI-1000 Ljubljana, Slovenia
| | - Sara Polajžer
- Institute of Pharmacology and Experimental Toxicology, Faculty of Medicine, University of Ljubljana, Korytkova 2, SI-1000 Ljubljana, Slovenia;
| | - Miha Matjašič
- Department of Education Studies, Faculty of Education, University of Ljubljana, SI-1000 Ljubljana, Slovenia;
| | - Borut Kobal
- Department of Gynecology, Division of Gynecology and Obstetrics, University Medical Centre Ljubljana, Zaloška 2, SI-1000 Ljubljana, Slovenia; (D.L.); (B.K.)
- Department of Gynecology and Obstetrics, Faculty of Medicine, University of Ljubljana, Šlajmerjeva 3, SI-1000 Ljubljana, Slovenia
| | - Katarina Černe
- Institute of Pharmacology and Experimental Toxicology, Faculty of Medicine, University of Ljubljana, Korytkova 2, SI-1000 Ljubljana, Slovenia;
| |
Collapse
|
5
|
Li Y, Yu Z. Pan-cancer analysis reveals copper transporters as promising potential targets. Heliyon 2024; 10:e37007. [PMID: 39281483 PMCID: PMC11402228 DOI: 10.1016/j.heliyon.2024.e37007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 08/26/2024] [Indexed: 09/18/2024] Open
Abstract
Background Copper transport proteins (SLC31A1, ATP7A, ATP7B) regulate copper levels in the body and may be involved in tumor development. However, their comprehensive expression and function across various cancers remain unclear. Methods The expressions of copper transporters in 33 tumors and normal tissues were analyzed using TCGA, GTEx, CCLE, ULCAN, and HPA databases. Cox regression assessed their impact on patient survival. Gene alterations were explored using cBioPortal. Spearman correlation tests were performed to investigate the associations between copper transporters and tumor mutation burden (TMB), microsatellite instability (MSI), and infiltration of immune cells. Gene functions were analyzed using STRING and GeneMANIA databases. Drug sensitivity was assessed using GSCALite database. ATP7B expression in lung squamous cell carcinoma (LUSC) was validated by immunohistochemical staining. Results Copper transporters exhibited variable expression patterns across various cancer types, indicating their potential dual role as either oncogenes or tumor suppressor genes, depending on the cancer type. Significant associations were found between these transporters and tumor stage, as well as prognosis in most tumors studied. Pathway analysis identified links between copper transporters and tumor-related pathways like apoptosis and RAS/MAPK. Copy number variation (CNV) analysis revealed varying degrees of gene amplification and deletion of copper transporters in most tumors. Copper transporters exhibited strong correlations with immune features, including TMB, MSI, and immune-infiltrating cells, suggesting their potential role in guiding immunotherapy. They were also associated with sensitivity to various chemotherapeutic and immunotherapeutic drugs. Immunohistochemical tests validated the correlation between elevated ATP7B level and worse progression-free survival (PFS) in LUSC. Conclusion Copper transporters may serve as potential tumor markers and therapeutic targets.
Collapse
Affiliation(s)
- Yueqin Li
- Institute of Integrative Chinese Medicine, Department of Integrated Chinese Medicine, Xiangya Hospital, Central South University, Changsha, China
- NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhen Yu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
6
|
Galluccio M, Tripicchio M, Pochini L. The Human OCTN Sub-Family: Gene and Protein Structure, Expression, and Regulation. Int J Mol Sci 2024; 25:8743. [PMID: 39201429 PMCID: PMC11354717 DOI: 10.3390/ijms25168743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/01/2024] [Accepted: 08/08/2024] [Indexed: 09/02/2024] Open
Abstract
OCTN1 and OCTN2 are membrane transport proteins encoded by the SLC22A4 and SLC22A5 genes, respectively. Even though several transcripts have been predicted by bioinformatics for both genes, only one functional protein isoform has been described for each of them. Both proteins are ubiquitous, and depending on the physiopathological state of the cell, their expression is regulated by well-known transcription factors, although some aspects have been neglected. A plethora of missense variants with uncertain clinical significance are reported both in the dbSNP and the Catalogue of Somatic Mutations in Cancer (COSMIC) databases for both genes. Due to their involvement in human pathologies, such as inflammatory-based diseases (OCTN1/2), systemic primary carnitine deficiency (OCTN2), and drug disposition, it would be interesting to predict the impact of variants on human health from the perspective of precision medicine. Although the lack of a 3D structure for these two transport proteins hampers any speculation on the consequences of the polymorphisms, the already available 3D structures for other members of the SLC22 family may provide powerful tools to perform structure/function studies on WT and mutant proteins.
Collapse
Affiliation(s)
- Michele Galluccio
- Laboratory of Biochemistry, Molecular Biotechnology, and Molecular Biology, Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Via P. Bucci 4c, 87036 Arcavacata di Rende, Italy;
| | - Martina Tripicchio
- Laboratory of Biochemistry, Molecular Biotechnology, and Molecular Biology, Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Via P. Bucci 4c, 87036 Arcavacata di Rende, Italy;
| | - Lorena Pochini
- Laboratory of Biochemistry, Molecular Biotechnology, and Molecular Biology, Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Via P. Bucci 4c, 87036 Arcavacata di Rende, Italy;
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnology (IBIOM), National Research Council (CNR), Via Amendola 122/O, 70126 Bari, Italy
| |
Collapse
|
7
|
Khosroshahi EM, Maghsoudloo M, Fahimi H, Mokhtari K, Entezari M, Peymani M, Hashemi M, Wan R. Determining expression changes of ANO7 and SLC38A4 membrane transporters in colorectal cancer. Heliyon 2024; 10:e34464. [PMID: 39114022 PMCID: PMC11305260 DOI: 10.1016/j.heliyon.2024.e34464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/21/2024] [Accepted: 07/09/2024] [Indexed: 08/10/2024] Open
Abstract
Membrane transporters are proteins responsible for facilitating the movement of molecules within biological membranes. They play a vital role in maintaining cellular homeostasis by regulating the transport of nutrients, ions, and other molecules into and out of cells. Our aim is to identify biomarkers in colorectal cancer using membrane transporter proteins. We utilized COAD TCGA data for this purpose. Subsequently, we conducted differential gene analysis and feature selection using membrane transporter proteins. Furthermore, we identified two potential genes, including ANO7 and SLC38A4. To validate the expression profiles of ANO7 and SLC38A4, key genes in this context, RT-qPCR was employed on colorectal cancer samples and adjacent normal tissues. Additionally, utilizing GEPIA2, Kaplan-Meier survival analysis, and cBioPortal, we assessed the status of these genes in various cancers, examining their methylation and mutation patterns. In conclusion, we suggest that ANO7 and SLC38A4 serve as prognostic biomarkers in colorectal cancer.
Collapse
Affiliation(s)
- Elaheh Mohandesi Khosroshahi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Mazaher Maghsoudloo
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Hossein Fahimi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Khatere Mokhtari
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Maryam Peymani
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Runlan Wan
- Department of Oncology, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
8
|
Holý P, Hlaváč V, Šeborová K, Šůsová S, Tesařová T, Rob L, Hruda M, Bouda J, Bartáková A, Mrhalová M, Kopečková K, Al Obeed Allah M, Špaček J, Sedláková I, Souček P, Václavíková R. Targeted DNA sequencing of high-grade serous ovarian carcinoma reveals association of TP53 mutations with platinum resistance when combined with gene expression. Int J Cancer 2024; 155:104-116. [PMID: 38447012 DOI: 10.1002/ijc.34908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 03/08/2024]
Abstract
High-grade serous ovarian carcinoma (HGSC) is the most common subtype of ovarian cancer and is among the most fatal gynecological malignancies worldwide, due to late diagnosis at advanced stages and frequent therapy resistance. In 47 HGSC patients, we assessed somatic and germline genetic variability of a custom panel of 144 known or suspected HGSC-related genes by high-coverage targeted DNA sequencing to identify the genetic determinants associated with resistance to platinum-based therapy. In the germline, the most mutated genes were DNAH14 (17%), RAD51B (17%), CFTR (13%), BRCA1 (11%), and RAD51 (11%). Somatically, the most mutated gene was TP53 (98%), followed by CSMD1/2/3 (19/19/36%), and CFTR (23%). Results were compared with those from whole exome sequencing of a similar set of 35 HGSC patients. Somatic variants in TP53 were also validated using GENIE data of 1287 HGSC samples. Our approach showed increased prevalence of high impact somatic and germline mutations, especially those affecting splice sites of TP53, compared to validation datasets. Furthermore, nonsense TP53 somatic mutations were negatively associated with patient survival. Elevated TP53 transcript levels were associated with platinum resistance and presence of TP53 missense mutations, while decreased TP53 levels were found in tumors carrying mutations with predicted high impact, which was confirmed in The Cancer Genome Atlas data (n = 260). Targeted DNA sequencing of TP53 combined with transcript quantification may contribute to the concept of precision oncology of HGSC. Future studies should explore targeting the p53 pathway based on specific mutation types and co-analyze the expression and mutational profiles of other key cancer genes.
Collapse
Affiliation(s)
- Petr Holý
- Toxicogenomics Unit, National Institute of Public Health, Prague, Czech Republic
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Viktor Hlaváč
- Toxicogenomics Unit, National Institute of Public Health, Prague, Czech Republic
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Karolína Šeborová
- Toxicogenomics Unit, National Institute of Public Health, Prague, Czech Republic
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Simona Šůsová
- Toxicogenomics Unit, National Institute of Public Health, Prague, Czech Republic
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Tereza Tesařová
- Toxicogenomics Unit, National Institute of Public Health, Prague, Czech Republic
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Lukáš Rob
- Department of Gynecology and Obstetrics, Third Faculty of Medicine and University Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - Martin Hruda
- Department of Gynecology and Obstetrics, Third Faculty of Medicine and University Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - Jiří Bouda
- Department of Gynecology and Obstetrics, University Hospital in Pilsen, Charles University, Pilsen, Czech Republic
| | - Alena Bartáková
- Department of Gynecology and Obstetrics, University Hospital in Pilsen, Charles University, Pilsen, Czech Republic
| | - Marcela Mrhalová
- Department of Pathology and Molecular Medicine, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Kateřina Kopečková
- Department of Oncology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Mohammad Al Obeed Allah
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Jiří Špaček
- University Hospital Hradec Králové, Hradec Kralove, Czech Republic
| | - Iva Sedláková
- University Hospital Hradec Králové, Hradec Kralove, Czech Republic
| | - Pavel Souček
- Toxicogenomics Unit, National Institute of Public Health, Prague, Czech Republic
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Radka Václavíková
- Toxicogenomics Unit, National Institute of Public Health, Prague, Czech Republic
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| |
Collapse
|
9
|
Xinyi X, Gong Y. The role of ATP-binding cassette subfamily G member 1 in tumor progression. Cancer Med 2024; 13:e7285. [PMID: 38896016 PMCID: PMC11187935 DOI: 10.1002/cam4.7285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 04/13/2024] [Accepted: 04/30/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND ATP-binding cassette subfamily G member 1 is mostly known as a transporter for intracellular cholesterol efflux, and a number of studies indicate that ABCG1 also functions actively in tumor initiation and progression. This review aimed to provide an overall review of how ABCG1 acts in tumor progression. METHOD A comprehensive searching about ABCG1 and tumor was conducted up to November 2023 using proper keywords through databases including PubMed and Web of Science. RESULT Overall, ABCG1 plays a crucial role in the development of multiple tumorigenesis. ABCG1 enhances tumor-promoting ability through conferring stem-like properties to cancer cells and mediates chemoresistance in multiple cancers. Additionally, ABCG1 may act as a kinase to phosphorylate downstream molecules and induces tumor growth. In tumor microenvironment, ABCG1 plays a substantial role in immunity response through macrophages to create a tumor-favoring circumstance. CONCLUSION High expression of ABCG1 is usually associated with poor prognosis, which means ABCG1 may be a potential biomarker for early diagnosis and prognosis of various cancers. ABCG1-targeted therapy may provide a novel treatment for cancer patients.
Collapse
Affiliation(s)
- Xu Xinyi
- Central Laboratory, The Fifth People's Hospital of ShanghaiFudan UniversityShanghaiChina
| | - Yang Gong
- Central Laboratory, The Fifth People's Hospital of ShanghaiFudan UniversityShanghaiChina
- Cancer InstituteFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyFudan University Shanghai Medical SchoolShanghaiChina
| |
Collapse
|
10
|
Norris AC, Mansueto AJ, Jimenez M, Yazlovitskaya EM, Jain BK, Graham TR. Flipping the script: Advances in understanding how and why P4-ATPases flip lipid across membranes. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119700. [PMID: 38382846 DOI: 10.1016/j.bbamcr.2024.119700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 11/15/2023] [Accepted: 02/16/2024] [Indexed: 02/23/2024]
Abstract
Type IV P-type ATPases (P4-ATPases) are a family of transmembrane enzymes that translocate lipid substrates from the outer to the inner leaflet of biological membranes and thus create an asymmetrical distribution of lipids within membranes. On the cellular level, this asymmetry is essential for maintaining the integrity and functionality of biological membranes, creating platforms for signaling events and facilitating vesicular trafficking. On the organismal level, this asymmetry has been shown to be important in maintaining blood homeostasis, liver metabolism, neural development, and the immune response. Indeed, dysregulation of P4-ATPases has been linked to several diseases; including anemia, cholestasis, neurological disease, and several cancers. This review will discuss the evolutionary transition of P4-ATPases from cation pumps to lipid flippases, the new lipid substrates that have been discovered, the significant advances that have been achieved in recent years regarding the structural mechanisms underlying the recognition and flipping of specific lipids across biological membranes, and the consequences of P4-ATPase dysfunction on cellular and physiological functions. Additionally, we emphasize the requirement for additional research to comprehensively understand the involvement of flippases in cellular physiology and disease and to explore their potential as targets for therapeutics in treating a variety of illnesses. The discussion in this review will primarily focus on the budding yeast, C. elegans, and mammalian P4-ATPases.
Collapse
Affiliation(s)
- Adriana C Norris
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | | | - Mariana Jimenez
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | | | - Bhawik K Jain
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Todd R Graham
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
11
|
Golozar M, Motlagh AV, Mahdevar M, Peymani M, InanlooRahatloo K, Ghaedi K. TBX15 and SDHB expression changes in colorectal cancer serve as potential prognostic biomarkers. Exp Mol Pathol 2024; 136:104890. [PMID: 38378070 DOI: 10.1016/j.yexmp.2024.104890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 01/07/2024] [Accepted: 02/16/2024] [Indexed: 02/22/2024]
Abstract
Alterations in the expression of certain genes could be associated with both patient mortality rates and drug resistance. This study aimed to identify genes in colorectal cancer (CRC) that potentially serve as hub genes influencing patient survival rates. RNA-Seq data were downloaded from the cancer genome atlas database, and differential expression analysis was performed between tumors and healthy controls. Through the utilization of univariate and multivariate Cox regression analyses, in combination with the MCODE clustering module, the genes whose expression changes were related to survival rate and the hub genes related to them were identified. The mortality risk model was computed using the hub genes. CRC samples and the RT-qPCR method were utilized to confirm the outcomes. PharmacoGx data were employed to link the expression of potential genes to medication resistance and sensitivity. The results revealed the discovery of seven hub genes, which emerged as independent prognostic markers. These included HOXC6, HOXC13, HOXC8, and TBX15, which were associated with poor prognosis and overexpression, as well as SDHB, COX5A, and UQCRC1, linked to favorable prognosis and downregulation. Applying the risk model developed with the mentioned genes revealed a markedly higher incidence of deceased patients in the high-risk group compared to the low-risk group. RT-qPCR results indicated a decrease in SDHB expression and an elevation in TBX15 levels in cancer samples relative to adjacent healthy tissue. Also, PharmacoGx data indicated that the expression level of SDHB was correlated with drug sensitivity to Crizotinib and Dovitinib. Our findings highlight the potential association between alterations in the expression of genes such as HOXC6, HOXC13, HOXC8, TBX15, SDHB, COX5A, and UQCRC1 and increased mortality rates in CRC patients. As revealed by the PPI network, these genes exhibited the most connections with other genes linked to survival.
Collapse
Affiliation(s)
- Melika Golozar
- Kish International Campus, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Ali Valipour Motlagh
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan 8165131378, Iran
| | - Mohammad Mahdevar
- Genius Gene, Genetics and Biotechnology Company, Tehran, Iran; Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maryam Peymani
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Kolsoum InanlooRahatloo
- Kish International Campus, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Kamran Ghaedi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| |
Collapse
|
12
|
Mehrotra M, Phadte P, Shenoy P, Chakraborty S, Gupta S, Ray P. Drug-Resistant Epithelial Ovarian Cancer: Current and Future Perspectives. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1452:65-96. [PMID: 38805125 DOI: 10.1007/978-3-031-58311-7_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Epithelial ovarian cancer (EOC) is a complex disease with diverse histological subtypes, which, based on the aggressiveness and course of disease progression, have recently been broadly grouped into type I (low-grade serous, endometrioid, clear cell, and mucinous) and type II (high-grade serous, high-grade endometrioid, and undifferentiated carcinomas) categories. Despite substantial differences in pathogenesis, genetics, prognosis, and treatment response, clinical diagnosis and management of EOC remain similar across the subtypes. Debulking surgery combined with platinum-taxol-based chemotherapy serves as the initial treatment for High Grade Serous Ovarian Carcinoma (HGSOC), the most prevalent one, and for other subtypes, but most patients exhibit intrinsic or acquired resistance and recur in short duration. Targeted therapies, such as anti-angiogenics (e.g., bevacizumab) and PARP inhibitors (for BRCA-mutated cancers), offer some success, but therapy resistance, through various mechanisms, poses a significant challenge. This comprehensive chapter delves into emerging strategies to address these challenges, highlighting factors like aberrant miRNAs, metabolism, apoptosis evasion, cancer stem cells, and autophagy, which play pivotal roles in mediating resistance and disease relapse in EOC. Beyond standard treatments, the focus of this study extends to alternate targeted agents, including immunotherapies like checkpoint inhibitors, CAR T cells, and vaccines, as well as inhibitors targeting key oncogenic pathways in EOC. Additionally, this chapter covers disease classification, diagnosis, resistance pathways, standard treatments, and clinical data on various emerging approaches, and advocates for a nuanced and personalized approach tailored to individual subtypes and resistance mechanisms, aiming to enhance therapeutic outcomes across the spectrum of EOC subtypes.
Collapse
Affiliation(s)
- Megha Mehrotra
- Imaging Cell Signalling & Therapeutics Lab, Advanced Centre for Treatment, Research and Education in Cancer-Tata Memorial Centre, Navi Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Pratham Phadte
- Imaging Cell Signalling & Therapeutics Lab, Advanced Centre for Treatment, Research and Education in Cancer-Tata Memorial Centre, Navi Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Priti Shenoy
- Imaging Cell Signalling & Therapeutics Lab, Advanced Centre for Treatment, Research and Education in Cancer-Tata Memorial Centre, Navi Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Sourav Chakraborty
- Imaging Cell Signalling & Therapeutics Lab, Advanced Centre for Treatment, Research and Education in Cancer-Tata Memorial Centre, Navi Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Sudeep Gupta
- Homi Bhabha National Institute, Mumbai, India
- Department of Medical Oncology, Tata Memorial Centre, Mumbai, India
| | - Pritha Ray
- Imaging Cell Signalling & Therapeutics Lab, Advanced Centre for Treatment, Research and Education in Cancer-Tata Memorial Centre, Navi Mumbai, India.
- Homi Bhabha National Institute, Mumbai, India.
| |
Collapse
|
13
|
Matera I, Miglionico R, Abruzzese V, Marchese G, Ventola GM, Castiglione Morelli MA, Bisaccia F, Ostuni A. A Regulator Role for the ATP-Binding Cassette Subfamily C Member 6 Transporter in HepG2 Cells: Effect on the Dynamics of Cell-Cell and Cell-Matrix Interactions. Int J Mol Sci 2023; 24:16391. [PMID: 38003580 PMCID: PMC10670978 DOI: 10.3390/ijms242216391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/12/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
There is growing evidence that various ATP-binding cassette (ABC) transporters contribute to the growth and development of tumors, but relatively little is known about how the ABC transporter family behaves in hepatocellular carcinoma (HCC), one of the most common cancers worldwide. Cellular model studies have shown that ABCC6, which belongs to the ABC subfamily C (ABCC), plays a role in the cytoskeleton rearrangement and migration of HepG2 hepatocarcinoma cells, thus highlighting its role in cancer biology. Deep knowledge on the molecular mechanisms underlying the observed results could provide therapeutic insights into the tumors in which ABCC6 is modulated. In this study, differential expression levels of mRNA transcripts between ABCC6-silenced HepG2 and control groups were measured, and subsequently, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed. Real-Time PCR and Western blot analyses confirmed bioinformatics; functional studies support the molecular mechanisms underlying the observed effects. The results provide valuable information on the dysregulation of fundamental cellular processes, such as the focal adhesion pathway, which allowed us to obtain detailed information on the active role that the down-regulation of ABCC6 could play in the biology of liver tumors, as it is involved not only in cell migration but also in cell adhesion and invasion.
Collapse
Affiliation(s)
- Ilenia Matera
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy; (I.M.); (R.M.); (V.A.); (M.A.C.M.)
| | - Rocchina Miglionico
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy; (I.M.); (R.M.); (V.A.); (M.A.C.M.)
| | - Vittorio Abruzzese
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy; (I.M.); (R.M.); (V.A.); (M.A.C.M.)
| | - Giovanna Marchese
- Genomix4Life Srl, 84081 Baronissi, Italy; (G.M.); (G.M.V.)
- Genome Research Center for Health—CRGS, 84081 Baronissi, Italy
| | | | | | - Faustino Bisaccia
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy; (I.M.); (R.M.); (V.A.); (M.A.C.M.)
| | - Angela Ostuni
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy; (I.M.); (R.M.); (V.A.); (M.A.C.M.)
| |
Collapse
|
14
|
Marjamaa A, Gibbs B, Kotrba C, Masamha CP. The role and impact of alternative polyadenylation and miRNA regulation on the expression of the multidrug resistance-associated protein 1 (MRP-1/ABCC1) in epithelial ovarian cancer. Sci Rep 2023; 13:17476. [PMID: 37838788 PMCID: PMC10576765 DOI: 10.1038/s41598-023-44548-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 10/10/2023] [Indexed: 10/16/2023] Open
Abstract
The ATP-binding cassette transporter (ABCC1) is associated with poor survival and chemotherapy drug resistance in high grade serous ovarian cancer (HGSOC). The mechanisms driving ABCC1 expression are poorly understood. Alternative polyadenylation (APA) can give rise to ABCC1 mRNAs which differ only in the length of their 3'untranslated regions (3'UTRs) in a process known as 3'UTR-APA. Like other ABC transporters, shortening of the 3'UTR of ABCC1 through 3'UTR-APA would eliminate microRNA binding sites found within the longer 3'UTRs, hence eliminating miRNA regulation and altering gene expression. We found that the HGSOC cell lines Caov-3 and Ovcar-3 express higher levels of ABCC1 protein than normal cells. APA of ABCC1 occurs in all three cell lines resulting in mRNAs with both short and long 3'UTRs. In Ovcar-3, mRNAs with shorter 3'UTRs dominate resulting in a six-fold increase in protein expression. We were able to show that miR-185-5p and miR-326 both target the ABCC1 3'UTR. Hence, 3'UTR-APA should be considered as an important regulator of ABCC1 expression in HGSOC. Both HGSOC cell lines are cisplatin resistant, and we used erastin to induce ferroptosis, an alternative form of cell death. We showed that we could induce ferroptosis and sensitize the cisplatin resistant cells to cisplatin by using erastin. Knocking down ABCC1 resulted in decreased cell viability, but did not contribute to erastin induced ferroptosis.
Collapse
Affiliation(s)
- Audrey Marjamaa
- Department of Chemistry and Biochemistry, Butler University, Indianapolis, IN, 46208, USA
| | - Bettine Gibbs
- Department of Pharmaceutical Sciences, Butler University, Indianapolis, IN, 46208, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, 02115, USA
| | - Chloe Kotrba
- Department of Pharmaceutical Sciences, Butler University, Indianapolis, IN, 46208, USA
| | | |
Collapse
|
15
|
Yazlovitskaya EM, Graham TR. Type IV P-Type ATPases: Recent Updates in Cancer Development, Progression, and Treatment. Cancers (Basel) 2023; 15:4327. [PMID: 37686603 PMCID: PMC10486736 DOI: 10.3390/cancers15174327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/15/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Adaptations of cancer cells for survival are remarkable. One of the most significant properties of cancer cells to prevent the immune system response and resist chemotherapy is the altered lipid metabolism and resulting irregular cell membrane composition. The phospholipid distribution in the plasma membrane of normal animal cells is distinctly asymmetric. Lipid flippases are a family of enzymes regulating membrane asymmetry, and the main class of flippases are type IV P-type ATPases (P4-ATPases). Alteration in the function of flippases results in changes to membrane organization. For some lipids, such as phosphatidylserine, the changes are so drastic that they are considered cancer biomarkers. This review will analyze and discuss recent publications highlighting the role that P4-ATPases play in the development and progression of various cancer types, as well as prospects of targeting P4-ATPases for anti-cancer treatment.
Collapse
Affiliation(s)
| | - Todd R. Graham
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
16
|
Farahzadi R, Hejazi MS, Molavi O, Pishgahzadeh E, Montazersaheb S, Jafari S. Clinical Significance of Carnitine in the Treatment of Cancer: From Traffic to the Regulation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:9328344. [PMID: 37600065 PMCID: PMC10435298 DOI: 10.1155/2023/9328344] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 10/12/2022] [Accepted: 03/23/2023] [Indexed: 08/22/2023]
Abstract
Metabolic reprogramming is a common hallmark of cancer cells. Cancer cells exhibit metabolic flexibility to maintain high proliferation and survival rates. In other words, adaptation of cellular demand is essential for tumorigenesis, since a diverse supply of nutrients is required to accommodate tumor growth and progression. Diversity of carbon substrates fueling cancer cells indicate metabolic heterogeneity, even in tumors sharing the same clinical diagnosis. In addition to the alteration of glucose and amino acid metabolism in cancer cells, there is evidence that cancer cells can alter lipid metabolism. Some tumors rely on fatty acid oxidation (FAO) as the primary energy source; hence, cancer cells overexpress the enzymes involved in FAO. Carnitine is an essential cofactor in the lipid metabolic pathways. It is crucial in facilitating the transport of long-chain fatty acids into the mitochondria for β-oxidation. This role and others played by carnitine, especially its antioxidant function in cellular processes, emphasize the fine regulation of carnitine traffic within tissues and subcellular compartments. The biological activity of carnitine is orchestrated by specific membrane transporters that mediate the transfer of carnitine and its derivatives across the cell membrane. The concerted function of carnitine transporters creates a collaborative network that is relevant to metabolic reprogramming in cancer cells. Here, the molecular mechanisms relevant to the role and expression of carnitine transporters are discussed, providing insights into cancer treatment.
Collapse
Affiliation(s)
- Raheleh Farahzadi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Saeid Hejazi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ommoleila Molavi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elahe Pishgahzadeh
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soheila Montazersaheb
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sevda Jafari
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
17
|
Papierniak-Wyglądała A, Lamch W, Jurewicz E, Nałęcz KA. The activity and surface presence of organic cation/carnitine transporter OCTN2 (SLC22A5) in breast cancer cells depends on AKT kinase. Arch Biochem Biophys 2023; 742:109616. [PMID: 37187422 DOI: 10.1016/j.abb.2023.109616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/06/2023] [Accepted: 04/26/2023] [Indexed: 05/17/2023]
Abstract
l-carnitine is indispensable for transfer of fatty acids to mitochondria for the process of β-oxidation, a process, whose significance in cancer has drawn attention in recent years. In humans majority of carnitine is delivered by diet and enters the cell due to activity of solute carriers (SLCs), mainly by ubiquitously expressed organic cation/carnitine transporter (OCTN2/SLC22A5). In control and cancer human breast epithelial cell lines the major fraction of OCTN2 is present as a not matured non-glycosylated form. Studies on overexpressed OCTN2 demonstrated an exclusive interaction with SEC24C, as the cargo-recognizing subunit of coatomer II in transporter exit from endoplasmic reticulum. Co-transfection with SEC24C dominant negative mutant completely abolished presence of the mature form of OCTN2, pointing to a possibility of trafficking regulation. SEC24C was previously shown to be phosphorylated by serine/threonine kinase AKT, known to be activated in cancer. Further studies on breast cell lines showed that inhibition of AKT with MK-2206 in control and cancer lines decreased level of OCTN2 mature form. Proximity ligation assay showed that phosphorylation of OCTN2 on threonine was significantly abolished by AKT inhibition with MK-2206. Carnitine transport was positively correlated with the level of OCTN2 phosphorylated by AKT on threonine moiety. The observed regulation of OCTN2 by AKT places this kinase in the center of metabolic control. This points to both proteins, AKT and OCTN2, as druggable targets, in particular in a combination therapy of breast cancer.
Collapse
Affiliation(s)
- Anna Papierniak-Wyglądała
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland.
| | - Weronika Lamch
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland.
| | - Ewelina Jurewicz
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland.
| | - Katarzyna A Nałęcz
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland.
| |
Collapse
|
18
|
Roundhill EA, Pantziarka P, Liddle DE, Shaw LA, Albadrani G, Burchill SA. Exploiting the Stemness and Chemoresistance Transcriptome of Ewing Sarcoma to Identify Candidate Therapeutic Targets and Drug-Repurposing Candidates. Cancers (Basel) 2023; 15:cancers15030769. [PMID: 36765727 PMCID: PMC9913297 DOI: 10.3390/cancers15030769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/08/2023] [Accepted: 01/17/2023] [Indexed: 01/28/2023] Open
Abstract
Outcomes for most patients with Ewing sarcoma (ES) have remained unchanged for the last 30 years, emphasising the need for more effective and tolerable treatments. We have hypothesised that using small-molecule inhibitors to kill the self-renewing chemotherapy-resistant cells (Ewing sarcoma cancer stem-like cells; ES-CSCs) responsible for progression and relapse could improve outcomes and minimise treatment-induced morbidities. For the first time, we demonstrate that ABCG1, a potential oncogene in some cancers, is highly expressed in ES-CSCs independently of CD133. Using functional models, transcriptomics and a bespoke in silico drug-repurposing pipeline, we have prioritised a group of tractable small-molecule inhibitors for further preclinical studies. Consistent with the cellular origin of ES, 21 candidate molecular targets of pluripotency, stemness and chemoresistance were identified. Small-molecule inhibitors to 13 of the 21 molecular targets (62%) were identified. POU5F1/OCT4 was the most promising new therapeutic target in Ewing sarcoma, interacting with 10 of the 21 prioritised molecular targets and meriting further study. The majority of small-molecule inhibitors (72%) target one of two drug efflux proteins, p-glycoprotein (n = 168) or MRP1 (n = 13). In summary, we have identified a novel cell surface marker of ES-CSCs and cancer/non-cancer drugs to targets expressed by these cells that are worthy of further preclinical evaluation. If effective in preclinical models, these drugs and drug combinations might be repurposed for clinical evaluation in patients with ES.
Collapse
Affiliation(s)
- Elizabeth Ann Roundhill
- Children’s Cancer Research Group, Leeds Institute of Medical Research, St James’s University Hospital, Beckett Street, Leeds LS9 7TF, UK
- Correspondence: (E.A.R.); (S.A.B.)
| | - Pan Pantziarka
- Anticancer Fund, Brusselsesteenweg 11, 1860 Meise, Belgium
| | - Danielle E. Liddle
- Children’s Cancer Research Group, Leeds Institute of Medical Research, St James’s University Hospital, Beckett Street, Leeds LS9 7TF, UK
| | - Lucy A. Shaw
- Children’s Cancer Research Group, Leeds Institute of Medical Research, St James’s University Hospital, Beckett Street, Leeds LS9 7TF, UK
| | - Ghadeer Albadrani
- Children’s Cancer Research Group, Leeds Institute of Medical Research, St James’s University Hospital, Beckett Street, Leeds LS9 7TF, UK
| | - Susan Ann Burchill
- Children’s Cancer Research Group, Leeds Institute of Medical Research, St James’s University Hospital, Beckett Street, Leeds LS9 7TF, UK
- Correspondence: (E.A.R.); (S.A.B.)
| |
Collapse
|
19
|
Daniel P, Balušíková K, Václavíková R, Šeborová K, Ransdorfová Š, Valeriánová M, Wei L, Jelínek M, Tlapáková T, Fleischer T, Kristensen VN, Souček P, Ojima I, Kovář J. ABCB1 Amplicon Contains Cyclic AMP Response Element-Driven TRIP6 Gene in Taxane-Resistant MCF-7 Breast Cancer Sublines. Genes (Basel) 2023; 14:genes14020296. [PMID: 36833223 PMCID: PMC9957548 DOI: 10.3390/genes14020296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
A limited number of studies are devoted to regulating TRIP6 expression in cancer. Hence, we aimed to unveil the regulation of TRIP6 expression in MCF-7 breast cancer cells (with high TRIP6 expression) and taxane-resistant MCF-7 sublines (manifesting even higher TRIP6 expression). We found that TRIP6 transcription is regulated primarily by the cyclic AMP response element (CRE) in hypomethylated proximal promoters in both taxane-sensitive and taxane-resistant MCF-7 cells. Furthermore, in taxane-resistant MCF-7 sublines, TRIP6 co-amplification with the neighboring ABCB1 gene, as witnessed by fluorescence in situ hybridization (FISH), led to TRIP6 overexpression. Ultimately, we found high TRIP6 mRNA levels in progesterone receptor-positive breast cancer and samples resected from premenopausal women.
Collapse
Affiliation(s)
- Petr Daniel
- Department of Biochemistry, Cell and Molecular Biology, Third Faculty of Medicine, Charles University, 100 00 Prague, Czech Republic
| | - Kamila Balušíková
- Department of Biochemistry, Cell and Molecular Biology, Third Faculty of Medicine, Charles University, 100 00 Prague, Czech Republic
| | - Radka Václavíková
- Toxicogenomics Unit, National Institute of Public Health, 100 00 Prague, Czech Republic
- Laboratory of Pharmacogenomics, Biomedical Center, Faculty of Medicine, Charles University, 323 00 Pilsen, Czech Republic
| | - Karolína Šeborová
- Toxicogenomics Unit, National Institute of Public Health, 100 00 Prague, Czech Republic
- Laboratory of Pharmacogenomics, Biomedical Center, Faculty of Medicine, Charles University, 323 00 Pilsen, Czech Republic
| | - Šárka Ransdorfová
- Department of Cytogenetics, Institute of Hematology and Blood Transfusion, 128 00 Prague, Czech Republic
| | - Marie Valeriánová
- Department of Cytogenetics, Institute of Hematology and Blood Transfusion, 128 00 Prague, Czech Republic
| | - Longfei Wei
- Department of Chemistry, Institute of Chemical Biology & Drug Discovery, Stony Brook University—State University of New York, Stony Brook, NY 11794, USA
| | - Michael Jelínek
- Department of Biochemistry, Cell and Molecular Biology, Third Faculty of Medicine, Charles University, 100 00 Prague, Czech Republic
| | - Tereza Tlapáková
- Department of Cell Biology, Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| | - Thomas Fleischer
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, 0310 Oslo, Norway
| | - Vessela N. Kristensen
- Department of Medical Genetics, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0424 Oslo, Norway
| | - Pavel Souček
- Toxicogenomics Unit, National Institute of Public Health, 100 00 Prague, Czech Republic
- Laboratory of Pharmacogenomics, Biomedical Center, Faculty of Medicine, Charles University, 323 00 Pilsen, Czech Republic
| | - Iwao Ojima
- Department of Chemistry, Institute of Chemical Biology & Drug Discovery, Stony Brook University—State University of New York, Stony Brook, NY 11794, USA
| | - Jan Kovář
- Department of Biochemistry, Cell and Molecular Biology, Third Faculty of Medicine, Charles University, 100 00 Prague, Czech Republic
- Correspondence: ; Tel.: +420-267-102-658
| |
Collapse
|
20
|
Li J, Zhang Y, Qu Z, Ding R, Yin X. ABCD3 is a prognostic biomarker for glioma and associated with immune infiltration: A study based on oncolysis of gliomas. Front Cell Infect Microbiol 2022; 12:956801. [PMID: 35959373 PMCID: PMC9358688 DOI: 10.3389/fcimb.2022.956801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Background Gliomas are the most lethal primary brain tumors and are still a major therapeutic challenge. Oncolytic virus therapy is a novel and effective means for glioma. However, little is known about gene expression changes during this process and their biological functions on glioma clinical characteristics and immunity. Methods The RNA-seq data after oncolytic virus EV-A71 infection on glioma cells were analyzed to screen significantly downregulated genes. Once ABCD3 was selected, The Cancer Genome Atlas (TCGA), Chinese Glioma Genome Atlas (CGGA), Genotype-Tissue Expression (GTEx), Clinical Proteomic Tumor Analysis Consortium (CPTAC), and Human Protein Atlas (HPA) data were used to analyze the relationship between ABCD3 expression and clinical characteristics in glioma. We also evaluated the influence of ABCD3 on the survival of glioma patients. CIBERSORT and Tumor Immune Estimation Resource (TIMER) were also used to investigate the correlation between ABCD3 and cancer immune infiltrates. Gene set enrichment analysis (GSEA) was performed to functionally annotate the potential functions or signaling pathways related to ABCD3 expression. Results ABCD3 was among the top 5 downregulated genes in glioma cells after oncolytic virus EV-A71 infection and was significantly enriched in several GO categories. Both the mRNA and protein expression levels of ABCD3 were upregulated in glioma samples and associated with the prognosis and grades of glioma patients. The Kaplan–Meier (K-M) curve analysis revealed that patients with high ABCD3 expression had shorter disease-specific survival (DSS) and overall survival (OS) than those with low ABCD3 expression. Moreover, ABCD3 expression could affect the immune infiltration levels and diverse immune marker sets in glioma. A positive correlation was found between ABCD3 and macrophages and active dendritic cells in the microenvironment of both the GBM and LGG. Gene sets including the plk1 pathway, tyrobp causal network, ir-damage and cellular response, and interleukin-10 signaling showed significant differential enrichment in the high ABCD3 expression phenotype. Conclusion Our results suggested that ABCD3 could be a potential biomarker for glioma prognosis and immunotherapy response and also further enriched the theoretical and molecular mechanisms of oncolytic virus treatment for malignant gliomas.
Collapse
Affiliation(s)
- Jinchuan Li
- Department of Neurosurgery, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Yi Zhang
- Department of Neurosurgery, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Zhizhao Qu
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Rui Ding
- Department of Neurosurgery, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiaofeng Yin
- Department of Neurosurgery, Second Hospital of Shanxi Medical University, Taiyuan, China
- *Correspondence: Xiaofeng Yin, ;
| |
Collapse
|
21
|
Pavlič R, Gjorgoska M, Rižner TL. Model Cell Lines and Tissues of Different HGSOC Subtypes Differ in Local Estrogen Biosynthesis. Cancers (Basel) 2022; 14:cancers14112583. [PMID: 35681563 PMCID: PMC9179372 DOI: 10.3390/cancers14112583] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/20/2022] [Accepted: 05/21/2022] [Indexed: 12/27/2022] Open
Abstract
Simple Summary Ovarian cancer (OC) comprises a heterogeneous group of hormone-dependent diseases with very high mortality. Estrogens have been shown to promote the progression of OC; however, their exact role in OC subtypes remains unknown. Here, we investigated the local estrogen biosynthesis in OC. We performed targeted transcriptomics and estrogen metabolism analyses in high-grade serous OC (HGSOC) cell lines that differed in chemoresistance status and compared these data with publicly available transcriptome and proteome data for HGSOC tissues. In HGSOC cells, estrogen metabolism decreased with increasing chemoresistance. In highly chemoresistant cells and platinum-resistant HGSOC tissues, HSD17B14 expression was increased. Proteome data showed differential levels of HSD17B10, SULT1E1, CYP1B1, and NQO1 between the four HGSOC subtypes. Our results confirm that estrogen biosynthesis differs between different HGSOC cell models and possibly between different HGSOC subtypes. Such differentially expressed enzymes have potential as targets in the search of new treatment options. Abstract Ovarian cancer (OC) is highly lethal and heterogeneous. Several hormones are involved in OC etiology including estrogens; however, their role in OC is not completely understood. Here, we performed targeted transcriptomics and estrogen metabolism analyses in high-grade serous OC (HGSOC), OVSAHO, Kuramochi, COV632, and immortalized normal ovarian epithelial HIO-80 cells. We compared these data with public transcriptome and proteome data for the HGSOC tissues. In all model systems, high steroid sulfatase expression and weak/undetected aromatase (CYP19A1) expression indicated the formation of estrogens from the precursor estrone-sulfate (E1-S). In OC cells, the metabolism of E1-S to estradiol was the highest in OVSAHO, followed by Kuramochi and COV362 cells, and decreased with increasing chemoresistance. In addition, higher HSD17B14 and CYP1A2 expressions were observed in highly chemoresistant COV362 cells and platinum-resistant tissues compared to those in HIO-80 cells and platinum-sensitive tissues. The HGSOC cell models differed in HSD17B10, CYP1B1, and NQO1 expression. Proteomic data also showed different levels of HSD17B10, CYP1B1, NQO1, and SULT1E1 between the four HGSOC subtypes. These results suggest that different HGSOC subtypes form different levels of estrogens and their metabolites and that the estrogen-biosynthesis-associated targets should be further studied for the development of personalized treatment.
Collapse
|
22
|
DNA Copy Number Aberrations and Expression of ABC Transporter Genes in Breast Tumour: Correlation with the Effect of Neoadjuvant Chemotherapy and Prognosis of the Disease. Pharmaceutics 2022; 14:pharmaceutics14050948. [PMID: 35631534 PMCID: PMC9146568 DOI: 10.3390/pharmaceutics14050948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/21/2022] [Accepted: 04/26/2022] [Indexed: 11/17/2022] Open
Abstract
One of the important reasons for the ineffectiveness of chemotherapy in breast cancer (BC) is considered to be the formation of a multidrug resistance phenotype in tumour cells, which is caused by the expression of energy-dependent ABC transporters. The aim of this work was to assess chromosomal aberrations and the level of transcripts of all 49 known ABC transporter genes in breast tumours. Materials and Methods. The study included 129 patients with breast cancer. A microarray study of all tumour samples was carried out on microchips. Results. This study established that the presence of a deletion in genes ABCB1, ABCB4, ABCB8, ABCC7, ABCC11, ABCC12, ABCF2, and ABCG4 is associated with an objective response to treatment (p ≤ 0.05). A decrease in the expression of genes was associated with a good response to chemotherapy, whereas an increase in expression caused the progression and stabilization of the tumour. Analysis of metastatic-free survival rates showed that the presence of ABCB1/4 and ABCC1/6 deletions was associated with 100% survival (log-rank test p = 0.01 and p = 0.03). Conclusions. The study showed that the aberrant state of ABC transporter genes, as well as a decrease in the expression of these genes, is a predictor of the effectiveness of therapeutic treatment and a potential prognostic marker of metastatic survival.
Collapse
|
23
|
Jin Z, Kang J, Yu T. Feature selection and classification over the network with missing node observations. Stat Med 2022; 41:1242-1262. [PMID: 34816464 PMCID: PMC9773124 DOI: 10.1002/sim.9267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 09/14/2021] [Accepted: 10/29/2021] [Indexed: 12/25/2022]
Abstract
Jointly analyzing transcriptomic data and the existing biological networks can yield more robust and informative feature selection results, as well as better understanding of the biological mechanisms. Selecting and classifying node features over genome-scale networks has become increasingly important in genomic biology and genomic medicine. Existing methods have some critical drawbacks. The first is they do not allow flexible modeling of different subtypes of selected nodes. The second is they ignore nodes with missing values, very likely to increase bias in estimation. To address these limitations, we propose a general modeling framework for Bayesian node classification (BNC) with missing values. A new prior model is developed for the class indicators incorporating the network structure. For posterior computation, we resort to the Swendsen-Wang algorithm for efficiently updating class indicators. BNC can naturally handle missing values in the Bayesian modeling framework, which improves the node classification accuracy and reduces the bias in estimating gene effects. We demonstrate the advantages of our methods via extensive simulation studies and the analysis of the cutaneous melanoma dataset from The Cancer Genome Atlas.
Collapse
Affiliation(s)
| | - Jian Kang
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan
| | - Tianwei Yu
- School of Data Science and Warshel Institute, The Chinese University of Hong Kong - Shenzhen, and Shenzhen Research Institute of Big Data, Shenzhen, China
| |
Collapse
|
24
|
Tang Y, Xu L, Ren Y, Li Y, Yuan F, Cao M, Zhang Y, Deng M, Yao Z. Identification and Validation of a Prognostic Model Based on Three MVI-Related Genes in Hepatocellular Carcinoma. Int J Biol Sci 2022; 18:261-275. [PMID: 34975331 PMCID: PMC8692135 DOI: 10.7150/ijbs.66536] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/20/2021] [Indexed: 12/13/2022] Open
Abstract
MVI has significant clinical value for treatment selection and prognosis evaluation in hepatocellular carcinoma (HCC). We aimed to construct a model based on MVI-Related Genes (MVIRGs) for risk assessment and prognosis prediction in patients with HCC. This study utilized various statistical analysis methods for prognostic model construction and validation in the Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) cohorts, respectively. In addition, immunohistochemistry and qRT-PCR were used to analyze and identify the value of the model in our cohort. After the analyses, 153 differentially expressed MVIRGs were identified, and three key genes were selected to construct a prognostic model. The high-risk group showed significantly lower overall survival (OS), and this trend was observed in all subgroups: different age groups, genders, stages, and grades. Risk score was a risk factor independent of age, gender, stage, and grade. Moreover, the ICGC cohort validated the prognostic value of the model corresponding to the TCGA. In our cohort, qRT-PCR and immunohistochemistry showed that all three genes had higher expression levels in HCC samples than in normal controls. High expression levels of genes and high-risk scores showed significantly lower recurrence-free survival (RFS) and OS, especially in MVI-positive HCC samples. Therefore, the prognostic model constructed by three MVIRGs can reliably predict the RFS and OS of patients with HCC and is valuable for guiding clinical treatment selection and prognostic assessment of HCC.
Collapse
Affiliation(s)
- Yongchang Tang
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Lei Xu
- Department of Nuclear Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China.,Department of Nuclear Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Yupeng Ren
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Yuxuan Li
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Feng Yuan
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Mingbo Cao
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Yong Zhang
- Department of Nuclear Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Meihai Deng
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Zhicheng Yao
- Department of General Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| |
Collapse
|
25
|
Meng X, Dong S, Yangyang L, Wang S, Xu X, Liu T, Zhuang X. Adenosine triphosphate-binding cassette subfamily C members in liver hepatocellular carcinoma: Bioinformatics-driven prognostic value. Medicine (Baltimore) 2022; 101:e28869. [PMID: 35363194 PMCID: PMC9282002 DOI: 10.1097/md.0000000000028869] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 12/16/2021] [Indexed: 01/04/2023] Open
Abstract
Aberrant expression of adenosine triphosphate-binding cassette subfamily C (ABCC), one of the largest superfamilies and transporter gene families of membrane proteins, is associated with various tumors. However, its relationship with liver hepatocellular carcinoma (LIHC) remains unclear.We used the Oncomine, UALCAN, Human Protein Atlas, GeneMANIA, GO, Kyoto Encyclopedia of Genes and Genomes (KEGG), TIMER, and Kaplan-Meier Plotter databases. On May 20, 2021, we searched these databases for the terms ABCC1, ABCC2, ABCC3, ABCC4, ABCC5, ABCC6, ABCC7, ABCC8, ABCC9, ABCC10, ABCC11, ABCC12, ABCC13, and "liver cancer." The exposure group comprised LIHC patients, and the control group comprised normal patients (those with noncancerous liver tissue). All patients shown in the retrieval language search were included. We compared the mRNA expression of these proteins in LIHC and control patients to examine the potential role of ABCC1-13 in LIHC.Relative to the normal liver tissue, mRNA expression of ABCC1/2/3/4/5/6/10 was significantly upregulated (P < .001), and that of ABCC9/11 significantly downregulated (both P < .001), in LIHC. ABCC mRNA expression varied with gender (P < .05), except for ABCC11-13; with tumor grade (P < 0.05), except for ABCC7/12/13; with tumor stage (P < .05), except for ABCC11-13; and with lymph node metastasis status (P < .05), except for ABCC7/8/11/12/13. Based on KEGG enrichment analysis, these genes were associated with the following pathways: ABC transporters, Bile secretion, Antifolate resistance, and Peroxisome (P < .05). Except for ABCC12/13, the ABCCs were significantly associated with B cell, CD8+ T cell, CD4+ T cell, macrophage, neutrophil, and dendritic cell infiltration (P < .05). High mRNA expression of ABCC1/4/5/8 (P < .05) and low expression of ABCC6/7/9/12/13 (P < .05) indicated poor prognosis. Prognostic significance was indicated for ABCC2/13 for both men and women (P < .05); for ABCC1/6/12/13 for tumor grades 1-3 (P < .05); for ABCC5/11/12/13 for all tumor stages (P < .05); for ABCC1/11/12/13 for American Joint Committee on Cancer T stages 1-3 (P < .05); and for ABCC1/5/6/13 for vascular invasion. None showed prognostic significance for microvascular invasion (P < .05).We identified ABCC1/2/3/4/5/6/9/10/11 as potential diagnostic markers, and ABCC1/4/5/6/7/8/9/12/13 as prognostic markers, of LIHC. Our future work will promote the use of ABCCs in the diagnosis and treatment of LIHC.
Collapse
Affiliation(s)
- Xiangtong Meng
- Changchun University of Chinese Medicine, 1035 Bo Shuo Road, Changchun City, Jilin Province, China
| | - Shen Dong
- Changchun University of Chinese Medicine, 1035 Bo Shuo Road, Changchun City, Jilin Province, China
| | - Liu Yangyang
- Changchun University of Chinese Medicine, 1035 Bo Shuo Road, Changchun City, Jilin Province, China
- Endocrinology, First Affiliated Hospital to Changchun University of Chinese Medicine, 1478 Gongnong Road, Changchun City, Jilin Province, China
| | - Song Wang
- Changchun University of Chinese Medicine, 1035 Bo Shuo Road, Changchun City, Jilin Province, China
| | - Xiaohao Xu
- Changchun University of Chinese Medicine, 1035 Bo Shuo Road, Changchun City, Jilin Province, China
- Research Center of Traditional Chinese Medicine, First Affiliated Hospital to Changchun University of Chinese Medicine, Changchun City, Jilin Province, China
| | - Tiejun Liu
- Changchun University of Chinese Medicine, 1035 Bo Shuo Road, Changchun City, Jilin Province, China
- Department of Hepatology, First Affiliated Hospital to Changchun University of Chinese Medicine, 1478 Gongnong Road, Changchun City, Jilin Province, China
| | - Xiong Zhuang
- Changchun University of Chinese Medicine, 1035 Bo Shuo Road, Changchun City, Jilin Province, China
- Department of Hepatology, First Affiliated Hospital to Changchun University of Chinese Medicine, 1478 Gongnong Road, Changchun City, Jilin Province, China
| |
Collapse
|
26
|
The Role of TRIP6, ABCC3 and CPS1 Expression in Resistance of Ovarian Cancer to Taxanes. Int J Mol Sci 2021; 23:ijms23010073. [PMID: 35008510 PMCID: PMC8744980 DOI: 10.3390/ijms23010073] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/18/2021] [Accepted: 12/19/2021] [Indexed: 02/07/2023] Open
Abstract
The main problem precluding successful therapy with conventional taxanes is de novo or acquired resistance to taxanes. Therefore, novel experimental taxane derivatives (Stony Brook taxanes; SB-Ts) are synthesized and tested as potential drugs against resistant solid tumors. Recently, we reported alterations in ABCC3, CPS1, and TRIP6 gene expression in a breast cancer cell line resistant to paclitaxel. The present study aimed to investigate gene expression changes of these three candidate molecules in the highly resistant ovarian carcinoma cells in vitro and corresponding in vivo models treated with paclitaxel and new experimental Stony Brook taxanes of the third generation (SB-T-121605 and SB-T-121606). We also addressed their prognostic meaning in ovarian carcinoma patients treated with taxanes. We estimated and observed changes in mRNA and protein profiles of ABCC3, CPS1, and TRIP6 in resistant and sensitive ovarian cancer cells and after the treatment of resistant ovarian cancer models with paclitaxel and Stony Brook taxanes in vitro and in vivo. Combining Stony Brook taxanes with paclitaxel caused downregulation of CPS1 in the paclitaxel-resistant mouse xenograft tumor model in vivo. Moreover, CPS1 overexpression seems to play a role of a prognostic biomarker of epithelial ovarian carcinoma patients’ poor survival. ABCC3 was overexpressed in EOC tumors, but after the treatment with taxanes, its up-regulation disappeared. Based on our results, we can suggest ABCC3 and CPS1 for further investigations as potential therapeutic targets in human cancers.
Collapse
|
27
|
He J, Siu MKY, Ngan HYS, Chan KKL. Aberrant Cholesterol Metabolism in Ovarian Cancer: Identification of Novel Therapeutic Targets. Front Oncol 2021; 11:738177. [PMID: 34820325 PMCID: PMC8606538 DOI: 10.3389/fonc.2021.738177] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 10/15/2021] [Indexed: 01/10/2023] Open
Abstract
Cholesterol is an essential substance in mammalian cells, and cholesterol metabolism plays crucial roles in multiple biological functions. Dysregulated cholesterol metabolism is a metabolic hallmark in several cancers, beyond the Warburg effect. Reprogrammed cholesterol metabolism has been reported to enhance tumorigenesis, metastasis and chemoresistance in multiple cancer types, including ovarian cancer. Ovarian cancer is one of the most aggressive malignancies worldwide. Alterations in metabolic pathways are characteristic features of ovarian cancer; however, the specific role of cholesterol metabolism remains to be established. In this report, we provide an overview of the key proteins involved in cholesterol metabolism in ovarian cancer, including the rate-limiting enzymes in cholesterol biosynthesis, and the proteins involved in cholesterol uptake, storage and trafficking. Also, we review the roles of cholesterol and its derivatives in ovarian cancer and the tumor microenvironment, and discuss promising related therapeutic targets for ovarian cancer.
Collapse
Affiliation(s)
- Jiangnan He
- Departments of Obstetrics and Gynaecology, Li Ka Shing (LKS) Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong, SAR China
| | - Michelle K Y Siu
- Departments of Obstetrics and Gynaecology, Li Ka Shing (LKS) Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong, SAR China
| | - Hextan Y S Ngan
- Departments of Obstetrics and Gynaecology, Li Ka Shing (LKS) Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong, SAR China
| | - Karen K L Chan
- Departments of Obstetrics and Gynaecology, Li Ka Shing (LKS) Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong, SAR China
| |
Collapse
|
28
|
Viet CT, Yu G, Asam K, Thomas CM, Yoon AJ, Wongworawat YC, Haghighiabyaneh M, Kilkuts CA, McGue CM, Couey MA, Callahan NF, Doan C, Walker PC, Nguyen K, Kidd SC, Lee SC, Grandhi A, Cheng AC, Patel AA, Philipone E, Ricks OL, Allen CT, Aouizerat BE. The REASON score: an epigenetic and clinicopathologic score to predict risk of poor survival in patients with early stage oral squamous cell carcinoma. Biomark Res 2021; 9:42. [PMID: 34090518 PMCID: PMC8178935 DOI: 10.1186/s40364-021-00292-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/06/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) is a capricious cancer with poor survival rates, even for early-stage patients. There is a pressing need to develop more precise risk assessment methods to appropriately tailor clinical treatment. Genome-wide association studies have not produced a viable biomarker. However, these studies are limited by using heterogeneous cohorts, not focusing on methylation although OSCC is a heavily epigenetically-regulated cancer, and not combining molecular data with clinicopathologic data for risk prediction. In this study we focused on early-stage (I/II) OSCC and created a risk score called the REASON score, which combines clinicopathologic characteristics with a 12-gene methylation signature, to predict the risk of 5-year mortality. METHODS We combined data from an internal cohort (n = 515) and The Cancer Genome Atlas (TCGA) cohort (n = 58). We collected clinicopathologic data from both cohorts to derive the non-molecular portion of the REASON score. We then analyzed the TCGA cohort DNA methylation data to derive the molecular portion of the risk score. RESULTS 5-year disease specific survival was 63% for the internal cohort and 86% for the TCGA cohort. The clinicopathologic features with the highest predictive ability among the two the cohorts were age, race, sex, tobacco use, alcohol use, histologic grade, stage, perineural invasion (PNI), lymphovascular invasion (LVI), and margin status. This panel of 10 non-molecular features predicted 5-year mortality risk with a concordance (c)-index = 0.67. Our molecular panel consisted of a 12-gene methylation signature (i.e., HORMAD2, MYLK, GPR133, SOX8, TRPA1, ABCA2, HGFAC, MCPH1, WDR86, CACNA1H, RNF216, CCNJL), which had the most significant differential methylation between patients who survived vs. died by 5 years. All 12 genes have already been linked to survival in other cancers. Of the genes, only SOX8 was previously associated with OSCC; our study was the first to link the remaining 11 genes to OSCC survival. The combined molecular and non-molecular panel formed the REASON score, which predicted risk of death with a c-index = 0.915. CONCLUSIONS The REASON score is a promising biomarker to predict risk of mortality in early-stage OSCC patients. Validation of the REASON score in a larger independent cohort is warranted.
Collapse
Affiliation(s)
- Chi T Viet
- Department of Oral and Maxillofacial Surgery, Loma Linda University School of Dentistry, 11092 Anderson St., Suite 3304, Loma Linda, CA, 92350, USA.
| | - Gary Yu
- New York University Rory Meyers College of Nursing, New York, NY, USA
| | - Kesava Asam
- Department of Oral and Maxillofacial Surgery, New York University College of Dentistry, New York, NY, USA
- Bluestone Center for Clinical Research, New York University College of Dentistry, New York, NY, USA
| | - Carissa M Thomas
- Department of Otolaryngology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Angela J Yoon
- Division of Oral and Maxillofacial Pathology, Department of Pathology & Cell Biology, Columbia University College of Dental Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Yan Chen Wongworawat
- Department of Pathology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Mina Haghighiabyaneh
- Department of Pathology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Courtney A Kilkuts
- Department of Oral and Maxillofacial Surgery, Loma Linda University School of Dentistry, 11092 Anderson St., Suite 3304, Loma Linda, CA, 92350, USA
| | - Caitlyn M McGue
- Department of Oral and Maxillofacial Surgery, Loma Linda University School of Dentistry, 11092 Anderson St., Suite 3304, Loma Linda, CA, 92350, USA
| | - Marcus A Couey
- Head and Neck Surgery, Providence Cancer Institute, Portland, OR, USA
- Head and Neck Surgery, Legacy Cancer Center, Portland, OR, USA
| | - Nicholas F Callahan
- Department of Oral and Maxillofacial Surgery, University of Illinois at Chicago, College of Dentistry, Chicago, IL, USA
| | - Coleen Doan
- Department of Oral and Maxillofacial Surgery, Loma Linda University School of Dentistry, 11092 Anderson St., Suite 3304, Loma Linda, CA, 92350, USA
| | - Paul C Walker
- Department of Otolaryngology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Khanh Nguyen
- Department of Otolaryngology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Stephanie C Kidd
- Department of Otolaryngology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Steve C Lee
- Department of Otolaryngology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Anupama Grandhi
- Department of Oral and Maxillofacial Surgery, Loma Linda University School of Dentistry, 11092 Anderson St., Suite 3304, Loma Linda, CA, 92350, USA
| | - Allen C Cheng
- Head and Neck Surgery, Providence Cancer Institute, Portland, OR, USA
- Head and Neck Surgery, Legacy Cancer Center, Portland, OR, USA
| | - Ashish A Patel
- Head and Neck Surgery, Providence Cancer Institute, Portland, OR, USA
- Head and Neck Surgery, Legacy Cancer Center, Portland, OR, USA
| | - Elizabeth Philipone
- Division of Oral and Maxillofacial Pathology, Department of Pathology & Cell Biology, Columbia University College of Dental Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Olivia L Ricks
- School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Clint T Allen
- Section on Translational Tumor Immunology, National Institute on Deafness and Other Communication Disorders (NIDCD), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Bradley E Aouizerat
- New York University Rory Meyers College of Nursing, New York, NY, USA
- Department of Oral and Maxillofacial Surgery, New York University College of Dentistry, New York, NY, USA
- Bluestone Center for Clinical Research, New York University College of Dentistry, New York, NY, USA
| |
Collapse
|
29
|
SLC46A1 Haplotype with Predicted Functional Impact has Prognostic Value in Breast Carcinoma. Mol Diagn Ther 2021; 25:99-110. [PMID: 33387348 DOI: 10.1007/s40291-020-00506-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND AND OBJECTIVE Membrane solute carrier transporters play an important role in the transport of a wide spectrum of substrates including anticancer drugs and cancer-related physiological substrates. This study aimed to assess the prognostic relevance of gene expression and genetic variability of selected solute carrier transporters in breast cancer. METHODS Gene expression was determined by quantitative real-time polymerase chain reaction. All SLC46A1 and SLCO1A2 exons and surrounding non-coding sequences in DNA extracted from the blood of patients with breast cancer (exploratory phase) were analyzed by next-generation sequencing technology. Common variants (minor allele frequency ≥ 5%) with in silico-predicted functional relevance were further analyzed in a large cohort of patients with breast cancer (n = 815) and their prognostic and predictive potential was estimated (validation phase). RESULTS A gene expression and bioinformatics analysis suggested SLC46A1 and SLCO1A2 to play a putative role in the prognosis of patients with breast cancer. In total, 135 genetic variants (20 novel) were identified in both genes in the exploratory phase. Of these variants, 130 were non-coding, three missense, and two synonymous. One common variant in SLCO1A2 and four variants in SLC46A1 were predicted to be pathogenic by in silico programs and subsequently validated. A SLC46A1 haplotype block composed of rs2239911-rs2239910-rs8079943 was significantly associated with ERBB2/HER2 status and disease-free survival of hormonally treated patients. CONCLUSIONS This study revealed the prognostic value of a SLC46A1 haplotype block for breast cancer that should be further studied.
Collapse
|
30
|
Dvorak P, Hlavac V, Soucek P. 5' Untranslated Region Elements Show High Abundance and Great Variability in Homologous ABCA Subfamily Genes. Int J Mol Sci 2020; 21:ijms21228878. [PMID: 33238634 PMCID: PMC7700387 DOI: 10.3390/ijms21228878] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/16/2020] [Accepted: 11/20/2020] [Indexed: 11/16/2022] Open
Abstract
The 12 members of the ABCA subfamily in humans are known for their ability to transport cholesterol and its derivatives, vitamins, and xenobiotics across biomembranes. Several ABCA genes are causatively linked to inborn diseases, and the role in cancer progression and metastasis is studied intensively. The regulation of translation initiation is implicated as the major mechanism in the processes of post-transcriptional modifications determining final protein levels. In the current bioinformatics study, we mapped the features of the 5' untranslated regions (5'UTR) known to have the potential to regulate translation, such as the length of 5'UTRs, upstream ATG codons, upstream open-reading frames, introns, RNA G-quadruplex-forming sequences, stem loops, and Kozak consensus motifs, in the DNA sequences of all members of the subfamily. Subsequently, the conservation of the features, correlations among them, ribosome profiling data as well as protein levels in normal human tissues were examined. The 5'UTRs of ABCA genes contain above-average numbers of upstream ATGs, open-reading frames and introns, as well as conserved ones, and these elements probably play important biological roles in this subfamily, unlike RG4s. Although we found significant correlations among the features, we did not find any correlation between the numbers of 5'UTR features and protein tissue distribution and expression scores. We showed the existence of single nucleotide variants in relation to the 5'UTR features experimentally in a cohort of 105 breast cancer patients. 5'UTR features presumably prepare a complex playground, in which the other elements such as RNA binding proteins and non-coding RNAs play the major role in the fine-tuning of protein expression.
Collapse
Affiliation(s)
- Pavel Dvorak
- Department of Biology, Faculty of Medicine in Pilsen, Charles University, 32300 Pilsen, Czech Republic
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, 32300 Pilsen, Czech Republic; (V.H.); (P.S.)
- Correspondence: ; Tel.: +420-377593263
| | - Viktor Hlavac
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, 32300 Pilsen, Czech Republic; (V.H.); (P.S.)
- Toxicogenomics Unit, National Institute of Public Health, 100 42 Prague, Czech Republic
| | - Pavel Soucek
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, 32300 Pilsen, Czech Republic; (V.H.); (P.S.)
- Toxicogenomics Unit, National Institute of Public Health, 100 42 Prague, Czech Republic
| |
Collapse
|
31
|
Shou Y, Yang L, Yang Y, Zhu X, Li F, Xu J. Identification of Signatures of Prognosis Prediction for Melanoma Using a Hypoxia Score. Front Genet 2020; 11:570530. [PMID: 33133157 PMCID: PMC7550673 DOI: 10.3389/fgene.2020.570530] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 09/08/2020] [Indexed: 01/16/2023] Open
Abstract
Melanoma is one of the most aggressive cancers. Hypoxic microenvironment affects multiple cellular pathways and contributes to tumor progression. The purpose of the research was to investigate the association between hypoxia and melanoma, and identify the prognostic value of hypoxia-related genes. Based on the GSVA algorithm, gene expression profile collected from The Cancer Genome Atlas (TCGA) was used for calculating the hypoxia score. The Kaplan–Meier plot suggested that a high hypoxia score was correlated with the inferior survival of melanoma patients. Using differential gene expression analysis and WGCNA, a total of 337 overlapping genes associated with hypoxia were determined. Protein-protein interaction network and functional enrichment analysis were conducted, and Lasso Cox regression was performed to establish the prognostic gene signature. Lasso regression showed that seven genes displayed the best features. A novel seven-gene signature (including ABCA12, PTK6, FERMT1, GSDMC, KRT2, CSTA, and SPRR2F) was constructed for prognosis prediction. The ROC curve inferred good performance in both the TCGA cohort and validation cohorts. Therefore, our study determined the prognostic implication of the hypoxia score in melanoma and showed a novel seven-gene signature to predict prognosis, which may provide insights into the prognosis evaluation and clinical decision making.
Collapse
Affiliation(s)
- Yanhong Shou
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Lu Yang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yongsheng Yang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaohua Zhu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Feng Li
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jinhua Xu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China.,Institute of Dermatology, Shanghai, China
| |
Collapse
|
32
|
Console L, Scalise M, Mazza T, Pochini L, Galluccio M, Giangregorio N, Tonazzi A, Indiveri C. Carnitine Traffic in Cells. Link With Cancer. Front Cell Dev Biol 2020; 8:583850. [PMID: 33072764 PMCID: PMC7530336 DOI: 10.3389/fcell.2020.583850] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 08/31/2020] [Indexed: 12/16/2022] Open
Abstract
Metabolic flexibility is a peculiar hallmark of cancer cells. A growing number of observations reveal that tumors can utilize a wide range of substrates to sustain cell survival and proliferation. The diversity of carbon sources is indicative of metabolic heterogeneity not only across different types of cancer but also within those sharing a common origin. Apart from the well-assessed alteration in glucose and amino acid metabolisms, there are pieces of evidence that cancer cells display alterations of lipid metabolism as well; indeed, some tumors use fatty acid oxidation (FAO) as the main source of energy and express high levels of FAO enzymes. In this metabolic pathway, the cofactor carnitine is crucial since it serves as a “shuttle-molecule” to allow fatty acid acyl moieties entering the mitochondrial matrix where these molecules are oxidized via the β-oxidation pathway. This role, together with others played by carnitine in cell metabolism, underlies the fine regulation of carnitine traffic among different tissues and, within a cell, among different subcellular compartments. Specific membrane transporters mediate carnitine and carnitine derivatives flux across the cell membranes. Among the SLCs, the plasma membrane transporters OCTN2 (Organic cation transport novel 2 or SLC22A5), CT2 (Carnitine transporter 2 or SLC22A16), MCT9 (Monocarboxylate transporter 9 or SLC16A9) and ATB0, + [Sodium- and chloride-dependent neutral and basic amino acid transporter B(0+) or SLC6A14] together with the mitochondrial membrane transporter CAC (Mitochondrial carnitine/acylcarnitine carrier or SLC25A20) are the most acknowledged to mediate the flux of carnitine. The concerted action of these proteins creates a carnitine network that becomes relevant in the context of cancer metabolic rewiring. Therefore, molecular mechanisms underlying modulation of function and expression of carnitine transporters are dealt with furnishing some perspective for cancer treatment.
Collapse
Affiliation(s)
- Lara Console
- Unit of Biochemistry and Molecular Biotechnology, Department DiBEST (Biologia, Ecologia, Scienze della Terra), University of Calabria, Arcavacata di Rende, Italy
| | - Mariafrancesca Scalise
- Unit of Biochemistry and Molecular Biotechnology, Department DiBEST (Biologia, Ecologia, Scienze della Terra), University of Calabria, Arcavacata di Rende, Italy
| | - Tiziano Mazza
- Unit of Biochemistry and Molecular Biotechnology, Department DiBEST (Biologia, Ecologia, Scienze della Terra), University of Calabria, Arcavacata di Rende, Italy
| | - Lorena Pochini
- Unit of Biochemistry and Molecular Biotechnology, Department DiBEST (Biologia, Ecologia, Scienze della Terra), University of Calabria, Arcavacata di Rende, Italy
| | - Michele Galluccio
- Unit of Biochemistry and Molecular Biotechnology, Department DiBEST (Biologia, Ecologia, Scienze della Terra), University of Calabria, Arcavacata di Rende, Italy
| | - Nicola Giangregorio
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council, Bari, Italy
| | - Annamaria Tonazzi
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council, Bari, Italy
| | - Cesare Indiveri
- Unit of Biochemistry and Molecular Biotechnology, Department DiBEST (Biologia, Ecologia, Scienze della Terra), University of Calabria, Arcavacata di Rende, Italy.,Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council, Bari, Italy
| |
Collapse
|
33
|
Noguera-Uclés JF, Boyero L, Salinas A, Cordero Varela JA, Benedetti JC, Bernabé-Caro R, Sánchez-Gastaldo A, Alonso M, Paz-Ares L, Molina-Pinelo S. The Roles of Imprinted SLC22A18 and SLC22A18AS Gene Overexpression Caused by Promoter CpG Island Hypomethylation as Diagnostic and Prognostic Biomarkers for Non-Small Cell Lung Cancer Patients. Cancers (Basel) 2020; 12:cancers12082075. [PMID: 32726996 PMCID: PMC7466018 DOI: 10.3390/cancers12082075] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 07/23/2020] [Indexed: 12/11/2022] Open
Abstract
Genomic imprinting is a process that involves one gene copy turned-off in a parent-of-origin-dependent manner. The regulation of imprinted genes is broadly dependent on promoter methylation marks, which are frequently associated with both oncogenes and tumor suppressors. The purpose of this study was to assess the DNA methylation patterns of the imprinted solute-carrier family 22 member 18 (SLC22A18) and SLC22A18 antisense (SLC22A18AS) genes in non-small cell lung cancer (NSCLC) patients to study their relevance to the disease. We found that both genes were hypomethylated in adenocarcinoma and squamous cell carcinoma patients. Due to this imprinting loss, SLC22A18 and SLC22A18AS were found to be overexpressed in NSCLC tissues, which is significantly more evident in lung adenocarcinoma patients. These results were validated through analyses of public databases of NSCLC patients. The reversed gene profile of both genes was achieved in vitro by treatment with ademetionine. We then showed that high SLC22A18 and SLC22A18AS expression levels were significantly associated with worsening disease progression. In addition, low levels of SLC22A18AS were also correlated with better overall survival for lung adenocarcinoma patients. We found that SLC22A18 and SLC22A18AS knockdown inhibits cell proliferation in vitro. All these results suggest that both genes may be useful as diagnostic and prognostic biomarkers in NSCLC, revealing novel therapeutic opportunities.
Collapse
Affiliation(s)
- José Francisco Noguera-Uclés
- Institute of Biomedicine of Seville (IBiS) (HUVR, CSIC, Universidad de Sevilla), 41013 Seville, Spain; (J.F.N.-U.); (L.B.); (A.S.); (J.A.C.V.); (J.C.B.); (R.B.-C.); (A.S.-G.); (M.A.)
| | - Laura Boyero
- Institute of Biomedicine of Seville (IBiS) (HUVR, CSIC, Universidad de Sevilla), 41013 Seville, Spain; (J.F.N.-U.); (L.B.); (A.S.); (J.A.C.V.); (J.C.B.); (R.B.-C.); (A.S.-G.); (M.A.)
| | - Ana Salinas
- Institute of Biomedicine of Seville (IBiS) (HUVR, CSIC, Universidad de Sevilla), 41013 Seville, Spain; (J.F.N.-U.); (L.B.); (A.S.); (J.A.C.V.); (J.C.B.); (R.B.-C.); (A.S.-G.); (M.A.)
| | - Juan Antonio Cordero Varela
- Institute of Biomedicine of Seville (IBiS) (HUVR, CSIC, Universidad de Sevilla), 41013 Seville, Spain; (J.F.N.-U.); (L.B.); (A.S.); (J.A.C.V.); (J.C.B.); (R.B.-C.); (A.S.-G.); (M.A.)
| | - Johana Cristina Benedetti
- Institute of Biomedicine of Seville (IBiS) (HUVR, CSIC, Universidad de Sevilla), 41013 Seville, Spain; (J.F.N.-U.); (L.B.); (A.S.); (J.A.C.V.); (J.C.B.); (R.B.-C.); (A.S.-G.); (M.A.)
- Medical Oncology Department, Hospital Universitario Virgen del Rocío, 41013 Seville, Spain
| | - Reyes Bernabé-Caro
- Institute of Biomedicine of Seville (IBiS) (HUVR, CSIC, Universidad de Sevilla), 41013 Seville, Spain; (J.F.N.-U.); (L.B.); (A.S.); (J.A.C.V.); (J.C.B.); (R.B.-C.); (A.S.-G.); (M.A.)
- Medical Oncology Department, Hospital Universitario Virgen del Rocío, 41013 Seville, Spain
| | - Amparo Sánchez-Gastaldo
- Institute of Biomedicine of Seville (IBiS) (HUVR, CSIC, Universidad de Sevilla), 41013 Seville, Spain; (J.F.N.-U.); (L.B.); (A.S.); (J.A.C.V.); (J.C.B.); (R.B.-C.); (A.S.-G.); (M.A.)
- Medical Oncology Department, Hospital Universitario Virgen del Rocío, 41013 Seville, Spain
| | - Miriam Alonso
- Institute of Biomedicine of Seville (IBiS) (HUVR, CSIC, Universidad de Sevilla), 41013 Seville, Spain; (J.F.N.-U.); (L.B.); (A.S.); (J.A.C.V.); (J.C.B.); (R.B.-C.); (A.S.-G.); (M.A.)
- Medical Oncology Department, Hospital Universitario Virgen del Rocío, 41013 Seville, Spain
| | - Luis Paz-Ares
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain;
- H12O-CNIO Lung Cancer Clinical Research Unit, Instituto de Investigación Hospital 12 de Octubre & Centro Nacional de Investigaciones Oncológicas (CNIO), 28029 Madrid, Spain
- Medical Oncology Department, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
| | - Sonia Molina-Pinelo
- Institute of Biomedicine of Seville (IBiS) (HUVR, CSIC, Universidad de Sevilla), 41013 Seville, Spain; (J.F.N.-U.); (L.B.); (A.S.); (J.A.C.V.); (J.C.B.); (R.B.-C.); (A.S.-G.); (M.A.)
- Medical Oncology Department, Hospital Universitario Virgen del Rocío, 41013 Seville, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain;
- Correspondence:
| |
Collapse
|
34
|
Recapitulation of prostate tissue cell type-specific transcriptomes by an in vivo primary prostate tissue xenograft model. PLoS One 2020; 15:e0233899. [PMID: 32584883 PMCID: PMC7316257 DOI: 10.1371/journal.pone.0233899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 05/14/2020] [Indexed: 11/19/2022] Open
Abstract
Studies of the normal functions and diseases of the prostate request in vivo models that maintain the tissue architecture and the multiple-cell type compartments of human origin in order to recapitulate reliably the interactions of different cell types. Cell type-specific transcriptomes are critical to reveal the roles of each cell type in the functions and diseases of the prostate. A primary prostate tissue xenograft model was developed using fresh human prostate tissue specimens transplanted onto male mice that were castrated surgically and implanted with a device to maintain circulating testosterone levels comparable to adult human males. Endothelial cells and epithelial cells were isolated from 7 fresh human prostate tissue specimens and from primary tissue xenografts established from 9 fresh human prostate tissue specimens, using antibody-conjugated magnetic beads specific to human CD31 and human EpCAM, respectively. Transcriptomes of endothelial, epithelial and stromal cell fractions were obtained using RNA-Seq. Global and function-specific gene expression profiles were compared in inter-cell type and inter-tissue type manners. Gene expression profiles in the individual cell types isolated from xenografts were similar to those of cells isolated from fresh tissue, demonstrating the value of the primary tissue xenograft model for studies of the inter-relationships between prostatic cell types and the role of such inter-relationships in organ development, disease progression, and response to drug treatments.
Collapse
|
35
|
Yu S, Wu Y, Li C, Qu Z, Lou G, Guo X, Ji J, Li N, Guo M, Zhang M, Lei L, Tai S. Comprehensive analysis of the SLC16A gene family in pancreatic cancer via integrated bioinformatics. Sci Rep 2020; 10:7315. [PMID: 32355273 PMCID: PMC7193566 DOI: 10.1038/s41598-020-64356-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 04/10/2020] [Indexed: 12/13/2022] Open
Abstract
SLC16A family members play crucial roles in tumorigenesis and tumor progression. However, the exact role of distinct members in the SLC16A family in human pancreatic cancer remains unclear. Integrated bioinformatics analysis for the identification of therapeutic targets for certain cancers based on transcriptomics, proteomics and high-throughput sequencing could help us obtain novel information and understand potential underlying molecular mechanisms. In the present study, we investigated SLC16A family members in pancreatic cancer through accumulated data from GEO (Gene Expression Omnibus), TCGA (The Cancer Genome Atlas) and other available databases. The expression profile, clinical application significance and prognostic value of the SLC16A family for patients with pancreatic cancer were explored. SLC16A1, SLC16A3 and SLC16A13 exhibited biomarker potential for prognosis, and we further identified their related genes and regulatory networks, revealing core molecular pathways that require further investigation for pancreatic cancer.
Collapse
Affiliation(s)
- Shan Yu
- Department of Pathology, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.
| | - Yanshuang Wu
- Department of Histology and Embryology, Harbin Medical University, Harbin, 150001, China
| | - Chunlong Li
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Zhaowei Qu
- Department of Hepatobiliary and Pancreatic Surgery, Harbin Medical University Cancer Hospital, Harbin, 150001, China
| | - Ge Lou
- Department of Pathology, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Xiaorong Guo
- Department of Pathology, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Jingjing Ji
- Department of Pathology, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Nan Li
- Department of Pathology, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Mian Guo
- Department of Neurosurgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Maomao Zhang
- The Key Laboratory of Myocardial Ischemia, Department of Cardiology, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Lei Lei
- Department of Histology and Embryology, Harbin Medical University, Harbin, 150001, China
- The Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Harbin Medical University, Ministry of Education, Harbin, 150001, China
| | - Sheng Tai
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.
| |
Collapse
|
36
|
Zhang Y, Zhang Y, Wang J, Yang J, Yang G. Abnormal expression of ABCD3 is an independent prognostic factor for colorectal cancer. Oncol Lett 2020; 19:3567-3577. [PMID: 32269631 PMCID: PMC7114719 DOI: 10.3892/ol.2020.11463] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 02/13/2020] [Indexed: 12/31/2022] Open
Abstract
ATP binding cassette subfamily D member 3 (ABCD3) is a member of the superfamily of ATP-binding cassette (ABC) transporters, which serve crucial roles in the process of tumor cell resistance to chemotherapy. The present study investigated the diagnostic and prognostic capabilities of ABCD3 in colorectal cancer (CRC) by bioinformatics analysis. Gene expression data and corresponding clinical information of patients with CRC were collected from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. The results demonstrated that ABCD3 mRNA level was decreased in CRC tissues compared with normal tissues following Wilcoxon test analysis. Furthermore, ABCD3 protein expression was significantly higher in normal colon tissues compared with colon adenocarcinoma tissues according to the Human Protein Atlas. In addition, the area under the Receiver Operating Characteristic curve based on comparison between the tumor and normal groups derived from TCGA and GEO databases demonstrated that the use of ABCD3 mRNA level may be used for the diagnosis of CRC. ABCD3 expression was significantly associated with clinical stage, T stage, and lymph node status following Kruskal-Wallis test or Wilcoxon rank sum test, logistic regression and χ2 test. Furthermore, the results from Kaplan-Meier survival analysis indicated that low ABCD3 mRNA expression had a poorer prognosis value compared with ABCD3 high expression in patients with CRC. In addition, results from univariate Cox regression analysis indicated that ABCD3 mRNA expression was associated with overall survival (OS), and results from multivariate Cox analysis indicated that ABCD3 mRNA expression may be considered an independent prognostic factor from other clinical factors, such as clinical stage, sex and age. The results from Gene Set Enrichment Analysis demonstrated that the ABCD3 high-expression phenotype was differentially enriched in five biological processes, including apoptosis, cell cycle, renal cell carcinoma, thyroid cancer and colorectal cancer. The findings from this study demonstrated that ABCD3 mRNA expression may be considered as a potential diagnostic and prognostic biomarker in patients with CRC. ABCD3 expression levels may participate in the regulation of cell apoptosis and cell cycle. In addition, GSEA analysis identified Kyoto Encyclopaedia of Genes and Genomes pathways for renal cell carcinoma, thyroid cancer and CRC involving ABCD3.
Collapse
Affiliation(s)
- Yujiao Zhang
- Department of Respiratory Medicine, Huanggang Central Hospital Affiliated to Yangtze University, Huanggang, Hubei 438000, P.R. China
| | - Yaqi Zhang
- Department of Oncology, Huanggang Central Hospital Affiliated to Yangtze University, Huanggang, Hubei 438000, P.R. China
| | - Jiping Wang
- Department of Radiotherapy, Huanggang Central Hospital Affiliated to Yangtze University, Huanggang, Hubei 438000, P.R. China
| | - Jiyuan Yang
- Department of Oncology, The First People's Hospital Affiliated to Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Guodong Yang
- Department of Oncology, Huanggang Central Hospital Affiliated to Yangtze University, Huanggang, Hubei 438000, P.R. China
| |
Collapse
|
37
|
Yang Y, Ding L, Li Y, Xuan C. Hsa_circ_0039411 promotes tumorigenesis and progression of papillary thyroid cancer by miR-1179/ABCA9 and miR-1205/MTA1 signaling pathways. J Cell Physiol 2020; 235:1321-1329. [PMID: 31270819 DOI: 10.1002/jcp.29048] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 06/12/2019] [Accepted: 06/14/2019] [Indexed: 12/15/2022]
Abstract
Papillary thyroid cancer (PTC) is a common malignancy in endocrine system worldwide. Increasing evidence has shown that dysregulation of circular RNAs (circRNAs) could contribute to PTC tumorigenesis. The aims of this project are to investigate the potential role and molecular mechanism of hsa_circ_0039411 in PTC. In the project, RT-qPCR was performed to measure the expression profile of hsa_circ_0039411 in PTC tissues and cells. Cell counting kit-8, clonogenic, flow cytometric, and transwell experiments were used to identify the biological role of hsa_circ_0039411 on PTC cell progression. Bioinformatics methods, along with the dual-luciferase reporter test, was used to identify the potential mechanism of hsa_circ_0039411. Hsa_circ_0039411 was identified as enhanced in PTC tissues/cells. Gain-of-function experiments indicated that hsa_circ_0039411 facilitated PTC cell growth, migration, and invasion and inhibited cell apoptosis. Knockdown of hsa_circ_0039411 caused the opposite effects mentioned above. The mechanism exploration showed that hsa_circ_0039411 functioned as a sponge for miR-1179 and miR-1205 to elevate ATP-binding cassette transporter A9 (ABCA9) and metastasis-associated 1 (MTA1) expression at the post-transcriptional level, respectively. Further investigation confirmed that the functions of hsa_circ_0039411 are dependent on its modulation of ABCA9 and MTA1 in PTC cells. This study uncovered a mechanism of hsa_circ_0039411 in PTC, which might act as a novel therapeutic target for PTC.
Collapse
Affiliation(s)
- Yimin Yang
- Department of Intensive Care Unit, The First Hospital of Jilin University, Changchun, China
| | - Lili Ding
- Department of Intensive Care Unit, The First Hospital of Jilin University, Changchun, China
| | - Yanhua Li
- Department of Intensive Care Unit, The First Hospital of Jilin University, Changchun, China
| | - Chengluan Xuan
- Department of Anesthesiology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
38
|
Nobili S, Lapucci A, Landini I, Coronnello M, Roviello G, Mini E. Role of ATP-binding cassette transporters in cancer initiation and progression. Semin Cancer Biol 2020; 60:72-95. [PMID: 31412294 DOI: 10.1016/j.semcancer.2019.08.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/07/2019] [Accepted: 08/07/2019] [Indexed: 12/18/2022]
Abstract
ATP Binding Cassette (ABC) transporters, widely studied in cancer for their role in drug resistance, have been more recently also considered for their contribution to cancer cell biology. To date, many data provide evidences for their potential role in all the phases of cancer development from cancer susceptibility, tumor initiation, tumor progression and metastasis. Although many evidences are based on correlative analyses, data describing a direct or indirect role of ABC transporters in cancer biology are increasing. Overall, current available information suggests a relevant molecular effector role of some ABC transporters in cancer invasion and metastasis as reported in experimental tumor models. From a therapeutic point of view, due to the physiological relevant roles that ABC transporters play in the organism, the capability to selectively inhibit the function or the expression of ABC transporters in cancer stem cells or other tumor cells, represents the main challenge for researcher scientists. A detailed and updated description of the current knowledge on the role of ABC transporters in cancer biology is provided.
Collapse
Affiliation(s)
- Stefania Nobili
- Department of Health Sciences, University of Florence, Florence, Italy.
| | - Andrea Lapucci
- Department of Health Sciences, University of Florence, Florence, Italy
| | - Ida Landini
- Department of Health Sciences, University of Florence, Florence, Italy
| | | | | | - Enrico Mini
- Department of Health Sciences, University of Florence, Florence, Italy
| |
Collapse
|
39
|
Juraszek B, Nałęcz KA. SLC22A5 (OCTN2) Carnitine Transporter-Indispensable for Cell Metabolism, a Jekyll and Hyde of Human Cancer. Molecules 2019; 25:molecules25010014. [PMID: 31861504 PMCID: PMC6982704 DOI: 10.3390/molecules25010014] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/12/2019] [Accepted: 12/14/2019] [Indexed: 12/26/2022] Open
Abstract
Oxidation of fatty acids uses l-carnitine to transport acyl moieties to mitochondria in a so-called carnitine shuttle. The process of β-oxidation also takes place in cancer cells. The majority of carnitine comes from the diet and is transported to the cell by ubiquitously expressed organic cation transporter novel family member 2 (OCTN2)/solute carrier family 22 member 5 (SLC22A5). The expression of SLC22A5 is regulated by transcription factors peroxisome proliferator-activated receptors (PPARs) and estrogen receptor. Transporter delivery to the cell surface, as well as transport activity are controlled by OCTN2 interaction with other proteins, such as PDZ-domain containing proteins, protein phosphatase PP2A, caveolin-1, protein kinase C. SLC22A5 expression is altered in many types of cancer, giving an advantage to some of them by supplying carnitine for β-oxidation, thus providing an alternative to glucose source of energy for growth and proliferation. On the other hand, SLC22A5 can also transport several chemotherapeutics used in clinics, leading to cancer cell death.
Collapse
|
40
|
Li H, Gao C, Liu L, Zhuang J, Yang J, Liu C, Zhou C, Feng F, Sun C. 7-lncRNA Assessment Model for Monitoring and Prognosis of Breast Cancer Patients: Based on Cox Regression and Co-expression Analysis. Front Oncol 2019; 9:1348. [PMID: 31850229 PMCID: PMC6901675 DOI: 10.3389/fonc.2019.01348] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 11/15/2019] [Indexed: 01/11/2023] Open
Abstract
Background: Breast cancer is one of the deadliest malignant tumors worldwide. Due to its complex molecular and cellular heterogeneity, the efficacy of existing breast cancer risk prediction models is unsatisfactory. In this study, we developed a new lncRNA model to predict the prognosis of patients with BRCA. Methods: BRCA-related differentially-expressed long non-coding RNA were screened from the Cancer Genome Atlas database. A novel lncRNA model was developed by univariate and multivariate analyses to predict the prognosis of patients with BRCA. The efficacy of the model was verified by TCGA-based breast cancer samples. Identified lncRNA-related mRNA based on the co-expression method. Results: We constructed a 7-lncRNA breast cancer prediction model including LINC00377, LINC00536, LINC01224, LINC00668, LINC01234, LINC02037, and LINC01456. The breast cancer samples were divided into high-risk and low-risk groups based on the model, which verified the specificity and sensitivity of the model. The Area Under Curve (AUC) of the 3- and 5-year Receiver Operating Characteristic curve were 0.711 and 0.734, respectively, indicating that the model has good performance. Conclusion: We constructed a 7-lncRNA model to predict the prognosis of patients with BRCA, and suggest that these lncRNAs may play a specific role in the carcinogenesis of BRCA.
Collapse
Affiliation(s)
- Huayao Li
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chundi Gao
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lijuan Liu
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China.,Department of Oncology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Jing Zhuang
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China.,Department of Oncology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Jing Yang
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China
| | - Cun Liu
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chao Zhou
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China.,Department of Oncology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Fubin Feng
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China.,Department of Oncology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Changgang Sun
- Chinese Medicine Innovation Institute, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
41
|
Screening of Molecular Targets of Action of Atractylodin in Cholangiocarcinoma by Applying Proteomic and Metabolomic Approaches. Metabolites 2019; 9:metabo9110260. [PMID: 31683902 PMCID: PMC6918361 DOI: 10.3390/metabo9110260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 10/29/2019] [Accepted: 10/31/2019] [Indexed: 12/21/2022] Open
Abstract
Cholangiocarcinoma (CCA) is cancer of the bile duct and the highest incidence of CCA in the world is reported in Thailand. Our previous in vitro and in vivo studies identified Atractylodes lancea (Thunb) D.C. as a promising candidate for CCA treatment. The present study aimed to examine the molecular targets of action of atractylodin, the bioactive compound isolated from A. lancea, in CCA cell line by applying proteomic and metabolomic approaches. Intra- and extracellular proteins and metabolites were identified by LC-MS/MS following exposure of CL-6, the CCA cell line, to atractylodin for 24 and 48 h. Analysis of the protein functions and pathways involved was performed using a Venn diagram, PANTHER, and STITCH software. Analysis of the metabolite functions and pathways involved, including the correlation between proteins and metabolites identified was performed using MetaboAnalyst software. Results suggested the involvement of atractylodin in various cell biology processes. These include the cell cycle, apoptosis, DNA repair, immune response regulation, wound healing, blood vessel development, pyrimidine metabolism, the citrate cycle, purine metabolism, arginine and proline metabolism, glyoxylate and dicarboxylate metabolism, the pentose phosphate pathway, and fatty acid biosynthesis. Therefore, it was proposed that the action of atractylodin may involve the destruction of the DNA of cancer cells, leading to cell cycle arrest and cell apoptosis.
Collapse
|
42
|
Chen J, Qian X, He Y, Han X, Pan Y. Novel key genes in triple‐negative breast cancer identified by weighted gene co‐expression network analysis. J Cell Biochem 2019; 120:16900-16912. [PMID: 31081967 DOI: 10.1002/jcb.28948] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 04/15/2019] [Accepted: 04/18/2019] [Indexed: 12/28/2022]
Affiliation(s)
- Jian Chen
- Department of Oncology The First Affiliated Hospital of University of Science and Technology of China Hefei China
| | - Xiaojun Qian
- Department of Oncology The First Affiliated Hospital of University of Science and Technology of China Hefei China
| | - Yifu He
- Department of Oncology The First Affiliated Hospital of University of Science and Technology of China Hefei China
| | - Xinghua Han
- Department of Oncology The First Affiliated Hospital of University of Science and Technology of China Hefei China
| | - Yueyin Pan
- Department of Oncology The First Affiliated Hospital of University of Science and Technology of China Hefei China
| |
Collapse
|
43
|
Seborova K, Vaclavikova R, Soucek P, Elsnerova K, Bartakova A, Cernaj P, Bouda J, Rob L, Hruda M, Dvorak P. Association of ABC gene profiles with time to progression and resistance in ovarian cancer revealed by bioinformatics analyses. Cancer Med 2019; 8:606-616. [PMID: 30672151 PMCID: PMC6382717 DOI: 10.1002/cam4.1964] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 12/07/2018] [Accepted: 12/18/2018] [Indexed: 12/31/2022] Open
Abstract
Introduction Ovarian cancer (OC) represents a serious disease with high mortality and lack of efficient predictive and prognostic biomarkers. ATP‐binding cassette (ABC) proteins constitute a large family dedicated to active transmembrane transport including transport of xenobiotics. Materials and methods mRNA level was measured by quantitative RT‐PCR in tumor tissues from OC patients. Bioinformatics analyses were applied to two gene expression datasets (60 primary tumors and 29 peritoneal metastases). Two different approaches of expression data normalization were applied in parallel, and their results were compared. Data from publically available cancer datasets were checked to further validate our conclusions. Results The results showed significant connections between ABC gene expression profiles and time to progression (TTP), chemotherapy resistance, and metastatic progression in OC. Two consensus ABC gene profiles with clinical meaning were documented. (a) Downregulation of ABCC4, ABCC10, ABCD3, ABCE1, ABCF1, ABCF2, and ABCF3 was connected with the best sensitivity to chemotherapy and TTP. (b) Oppositely, downregulation of ABCB11 and upregulation of ABCB1 and ABCG2 were connected with the worst sensitivity to chemotherapy and TTP. Results from publicly available online databases supported our conclusions. Conclusion This study stressed the connection between two well‐documented ABC genes and clinicopathological features—ABCB1 and ABCG2. Moreover, we showed a comparable connection also for several other ABC genes—ABCB11, ABCC4, ABCC10, ABCD3,ABCE1, ABCF1, ABCF2, and ABCF3. Our results add new clinically relevant information to this oncology field and can stimulate further exploration.
Collapse
Affiliation(s)
- Karolina Seborova
- Toxicogenomics Unit, National Institute of Public Health, Prague, Czech Republic.,Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Radka Vaclavikova
- Toxicogenomics Unit, National Institute of Public Health, Prague, Czech Republic.,Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Pavel Soucek
- Toxicogenomics Unit, National Institute of Public Health, Prague, Czech Republic.,Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Katerina Elsnerova
- Toxicogenomics Unit, National Institute of Public Health, Prague, Czech Republic.,Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic.,Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Alena Bartakova
- Department of Gynecology and Obstetrics, Faculty of Medicine and University Hospital in Pilsen, Charles University, Pilsen, Czech Republic
| | - Petr Cernaj
- Department of Gynecology and Obstetrics, Faculty of Medicine and University Hospital in Pilsen, Charles University, Pilsen, Czech Republic
| | - Jiri Bouda
- Department of Gynecology and Obstetrics, Faculty of Medicine and University Hospital in Pilsen, Charles University, Pilsen, Czech Republic
| | - Lukas Rob
- Department of Gynecology and Obstetrics, Third Faculty of Medicine and Faculty Hospital Kralovske Vinohrady, Charles University, Prague, Czech Republic
| | - Martin Hruda
- Department of Gynecology and Obstetrics, Third Faculty of Medicine and Faculty Hospital Kralovske Vinohrady, Charles University, Prague, Czech Republic
| | - Pavel Dvorak
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic.,Department of Biology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| |
Collapse
|
44
|
Use of Germline Genetic Variability for Prediction of Chemoresistance and Prognosis of Breast Cancer Patients. Cancers (Basel) 2018; 10:cancers10120511. [PMID: 30545124 PMCID: PMC6316878 DOI: 10.3390/cancers10120511] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 11/29/2018] [Accepted: 12/08/2018] [Indexed: 01/27/2023] Open
Abstract
The aim of our study was to set up a panel for targeted sequencing of chemoresistance genes and the main transcription factors driving their expression and to evaluate their predictive and prognostic value in breast cancer patients. Coding and regulatory regions of 509 genes, selected from PharmGKB and Phenopedia, were sequenced using massive parallel sequencing in blood DNA from 105 breast cancer patients in the testing phase. In total, 18,245 variants were identified of which 2565 were novel variants (without rs number in dbSNP build 150) in the testing phase. Variants with major allele frequency over 0.05 were further prioritized for validation phase based on a newly developed decision tree. Using emerging in silico tools and pharmacogenomic databases for functional predictions and associations with response to cytotoxic therapy or disease-free survival of patients, 55 putative variants were identified and used for validation in 805 patients with clinical follow up using KASPTM technology. In conclusion, associations of rs2227291, rs2293194, and rs4376673 (located in ATP7A, KCNAB1, and DFFB genes, respectively) with response to neoadjuvant cytotoxic therapy and rs1801160 in DPYD with disease-free survival of patients treated with cytotoxic drugs were validated and should be further functionally characterized.
Collapse
|
45
|
Kim S, Lee M, Dhanasekaran DN, Song YS. Activation of LXRɑ/β by cholesterol in malignant ascites promotes chemoresistance in ovarian cancer. BMC Cancer 2018; 18:1232. [PMID: 30526541 PMCID: PMC6288854 DOI: 10.1186/s12885-018-5152-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 11/29/2018] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The purpose of this study was to investigate the role of malignant ascites tumor microenvironment in ovarian cancer progression and chemoresistance. METHODS A total of 45 patients with ovarian cancer and three benign ascites were collected at the time of clinical intervention. Ascites cholesterol levels were quantitated using cholesterol quantitation kit and recurrence free survival (RFS) of ovarian cancer patients were collected. The sensitivity of ovarian cancer cells to cisplatin (CDDP) and paclitaxel (PAC) were assessed by viability assay, flow cytometry and protein expression. Receiver operating characteristics (ROC) curve and Youden index analysis were applied to calculate the optimal cut-off values for ascites cholesterol. Kaplan-Meier curve were applied to compare RFS between high and low ascites cholesterol levels in ovarian cancer patients. RESULTS Here we show that cholesterol is elevated in malignant ascites and modulates the sensitivity of ovarian cancer cells to CDDP and PAC by upregulating the expression of drug efflux pump proteins, ABCG2 and MDR1, together with upregulation of LXRɑ/β, the cholesterol receptor. Transfection of LXRɑ/β siRNA inhibited cholesterol-induced chemoresistance and upregulation of MDR1. In addition, the cholesterol level in malignant ascites was negatively correlated with number of CDDP-induced apoptotic cell death, but not with that of PAC-induced apoptotic cell death. Cholesterol depletion by methyl beta cyclodextrin (MβCD) inhibited malignant ascites-induced chemoresistance to CDDP and upregulation of MDR1 and LXRɑ/β. For patients with ovarian cancer, high cholesterol level in malignant ascites correlated with short RFS. CONCLUSIONS High cholesterol in malignant ascites contributes to poor prognosis in ovarian cancer patients, partly by contributing to multidrug resistance through upregulation of MDR1 via activation of LXRɑ/β.
Collapse
Affiliation(s)
- Soochi Kim
- Seoul National University Hospital Biomedical Research Institute, Seoul, 03080 Republic of Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, 03080 Republic of Korea
| | - Maria Lee
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, 03080 Republic of Korea
| | - Danny N. Dhanasekaran
- Stephenson Cancer Center, university of Oklahoma Health Sciences Center, Oklahoma City, OK 73012 USA
| | - Yong Sang Song
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, 03080 Republic of Korea
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, 03080 Republic of Korea
- Interdisciplinary Program in Cancer Biology, Seoul National University College of Medicine, Seoul, 03080 Republic of Korea
- Biomodulation, Department of Agricultural Biotechnology, Seoul National University, Seoul, 03080 Republic of Korea
| |
Collapse
|
46
|
Liu X, Li Q, Zhou J, Zhang S. ATP-binding cassette transporter A7 accelerates epithelial-to-mesenchymal transition in ovarian cancer cells by upregulating the transforming growth factor-β signaling pathway. Oncol Lett 2018; 16:5868-5874. [PMID: 30333865 PMCID: PMC6176408 DOI: 10.3892/ol.2018.9366] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 04/24/2018] [Indexed: 01/10/2023] Open
Abstract
Ovarian cancer (OC) has the highest fatality rates of all gynecological malignancies worldwide. The epithelial-to-mesenchymal transition (EMT) serves an essential role in the progression of OC. An improved understanding of the molecular mechanism underlying EMT in OC may increase the survival rate. ATP-binding cassette transporter A7 (ABCA7) is a candidate regulator of OC progression. However, the role of ABCA7 in OC is unclear. Using the PROGgeneV2 platform, the present study revealed that increased expression of ABCA7 is associated with poor outcomes in OC. The expression of ABCA7 was higher in OC tissues than in adjacent noncancerous tissues. ABCA7-knockdown decreased the migration of OC cells and the activation of mothers against decapentaplegic homolog 4 (SMAD4). Notably, downregulation of ABCA7 also increased the expression of an epithelial marker (E-cadherin) and decreased that of a mesenchymal marker (N-cadherin). In addition, the decreased expression of SMAD4 and EMT markers induced by ABCA7 depletion could be rescued by transforming growth factor β1 (TGF-β1) stimulation. Overall, these findings suggested that ABCA7 accelerates EMT in OC by upregulating the TGF-β signaling pathway.
Collapse
Affiliation(s)
- Xia Liu
- Department of Gynecology and Obstetrics, Jining No. 1 People's Hospital, Jining, Shandong 272111, P.R. China
| | - Qing Li
- Department of Nursing, Jining No. 1 People's Hospital, Jining, Shandong 272111, P.R. China
| | - Jing Zhou
- Department of Gynecology and Obstetrics, Jining No. 1 People's Hospital, Jining, Shandong 272111, P.R. China
| | - Su Zhang
- Department of Gynecology and Obstetrics, Jining No. 1 People's Hospital, Jining, Shandong 272111, P.R. China
| |
Collapse
|
47
|
Svoboda M, Mungenast F, Gleiss A, Vergote I, Vanderstichele A, Sehouli J, Braicu E, Mahner S, Jäger W, Mechtcheriakova D, Cacsire-Tong D, Zeillinger R, Thalhammer T, Pils D. Clinical Significance of Organic Anion Transporting Polypeptide Gene Expression in High-Grade Serous Ovarian Cancer. Front Pharmacol 2018; 9:842. [PMID: 30131693 PMCID: PMC6090214 DOI: 10.3389/fphar.2018.00842] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 07/13/2018] [Indexed: 12/31/2022] Open
Abstract
High-grade serous ovarian cancer (HGSOC) is considered the most deadly and frequently occurring type of ovarian cancer and is associated with various molecular compositions and growth patterns. Evaluating the mRNA expression pattern of the organic anion transporters (OATPs) encoded by SLCO genes may allow for improved stratification of HGSOC patients for targeted invention. The expression of SLCO mRNA and genes coding for putative functionally related ABC-efflux pumps, enzymes, pregnane-X-receptor, ESR1 and ESR2 (coding for estrogen receptors ERα and ERß) and HER-2 were assessed using RT-qPCR. The expression levels were assessed in a cohort of 135 HGSOC patients to elucidate the independent impact of the expression pattern on the overall survival (OS). For identification of putative regulatory networks, Graphical Gaussian Models were constructed from the expression data with a tuning parameter K varying between meaningful borders (Pils et al., 2012; Auer et al., 2015, 2017; Kurman and Shih Ie, 2016; Karam et al., 2017; Labidi-Galy et al., 2017; Salomon-Perzynski et al., 2017; Sukhbaatar et al., 2017). The final value used (K = 4) was determined by maximizing the proportion of explained variation of the corresponding LASSO Cox regression model for OS. The following two networks of directly correlated genes were identified: (i) SLCO2B1 with ABCC3 implicated in estrogen homeostasis; and (ii) two ABC-efflux pumps in the immune regulation (ABCB2/ABCB3) with ABCC3 and HER-2. Combining LASSO Cox regression and univariate Cox regression analyses, SLCO5A1 coding for OATP5A1, an estrogen metabolite transporter located in the cytoplasm and plasma membranes of ovarian cancer cells, was identified as significant and independent prognostic factor for OS (HR = 0.68, CI 0.49-0.93; p = 0.031). Furthermore, results indicated the benefits of patients with high expression by adding 5.1% to the 12.8% of the proportion of explained variation (PEV) for clinicopathological parameters known for prognostic significance (FIGO stage, age and residual tumor after debulking). Additionally, overlap with previously described signatures that indicated a more favorable prognosis for ovarian cancer patients was shown for SLCO5A1, the network ABCB2/ABCB3/ABCC4/HER2 as well as ESR1. Furthermore, expression of SLCO2A1 and PGDH, which are important for PGE2 degradation, was associated with the non-miliary peritoneal tumor spreading. In conclusion, the present findings suggested that SLCOs and the related molecules identified as potential biomarkers in HGSOC may be useful for the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Martin Svoboda
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Felicitas Mungenast
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Andreas Gleiss
- Institute of Clinical Biometrics, Center for Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Vienna, Austria
| | - Ignace Vergote
- Division of Gynaecological Oncology, Department of Gynaecology and Obstetrics, Leuven Cancer Institute, University Hospital Leuven, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Adriaan Vanderstichele
- Division of Gynaecological Oncology, Department of Gynaecology and Obstetrics, Leuven Cancer Institute, University Hospital Leuven, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Jalid Sehouli
- Department of Gynecology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Elena Braicu
- Department of Gynecology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sven Mahner
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Walter Jäger
- Department of Clinical Pharmacy and Diagnostics, University of Vienna, Vienna, Austria
| | - Diana Mechtcheriakova
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Dan Cacsire-Tong
- Translational Gynecology Group, Department of Obstetrics and Gynaecology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Robert Zeillinger
- Molecular Oncology Group, Department of Obstetrics and Gynaecology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Theresia Thalhammer
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Dietmar Pils
- Institute of Clinical Biometrics, Center for Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Vienna, Austria.,Department of Surgery, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
48
|
Song M, Kumaran MN, Gounder M, Gibbon DG, Nieves-Neira W, Vaidya A, Hellmann M, Kane MP, Buckley B, Shih W, Caffrey PB, Frenkel GD, Rodriguez-Rodriguez L. Phase I trial of selenium plus chemotherapy in gynecologic cancers. Gynecol Oncol 2018; 150:478-486. [PMID: 30068487 DOI: 10.1016/j.ygyno.2018.07.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/27/2018] [Accepted: 07/01/2018] [Indexed: 10/28/2022]
Abstract
PURPOSE Preclinical studies performed in our laboratory have shown that high-dose selenium inhibits the development of carboplatin drug resistance in an ovarian cancer mouse xenograft model. Based on these data, as well as the potential serious toxicities of supranutritional doses of selenium, a phase I trial of a combination of selenium/carboplatin/paclitaxel was designed to determine the maximum tolerated dose, safety, and effects of selenium on carboplatin pharmacokinetics in the treatment of chemo-naive women with gynecologic cancers. Correlative studies were performed to identify gene targets of selenium. METHODS Chemo-naïve patients with gynecologic malignancy received selenious acid IV on day 1 followed by carboplatin IV and paclitaxel IV on day 3. A standard 3 + 3 dose-escalating design was used for addition of selenium to standard dose chemotherapy. Concentrations of selenium in plasma and carboplatin in plasma ultrafiltrate were analyzed. RESULTS Forty-five patients were enrolled and 291 treatment cycles were administered. Selenium was administered as selenious acid to 9 cohorts of patients with selenium doses ranging from 50 μg to 5000 μg. Grade 3/4 toxicities included neutropenia (66.7%), febrile neutropenia (2.2%), pain (20.0%), infection (13.3%), neurologic (11.1%), and pulmonary adverse effects (11.1%). The maximum tolerated dose of selenium was not reached. Selenium had no effect on carboplatin pharmacokinetics. Correlative studies showed post-treatment downregulation of RAD51AP1, a protein involved in DNA repair, in both cancer cell lines and patient tumors. CONCLUSION Overall, the addition of selenium to carboplatin/paclitaxel chemotherapy is safe and well tolerated, and does not alter carboplatin pharmacokinetics. A 5000 μg dose of elemental selenium as selenious acid is suggested as the dose to be evaluated in a phase II trial.
Collapse
Affiliation(s)
- Mihae Song
- Rutgers Cancer Institute of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08903, United States
| | - Muthu N Kumaran
- Rutgers Cancer Institute of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08903, United States
| | - Murugesan Gounder
- Rutgers Cancer Institute of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08903, United States
| | - Darlene G Gibbon
- Rutgers Cancer Institute of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08903, United States
| | - Wilberto Nieves-Neira
- Rutgers Cancer Institute of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08903, United States
| | - Ami Vaidya
- Rutgers Cancer Institute of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08903, United States
| | - Mira Hellmann
- Rutgers Cancer Institute of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08903, United States
| | - Michael P Kane
- Rutgers Cancer Institute of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08903, United States
| | - Brian Buckley
- Rutgers Environmental and Occupational Health Sciences Institute, 170 Frelinghuysen Road, Piscataway, NJ 08854, United States
| | - Weichung Shih
- Rutgers Cancer Institute of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08903, United States
| | - Paula B Caffrey
- Department of Biological Sciences, Rutgers University, 195 University Avenue, Newark, NJ 07102, United States; Department of Biological and Environmental Sciences, 250 University Avenue, California University of PA, California, PA 15419, United States
| | - Gerald D Frenkel
- Department of Biological Sciences, Rutgers University, 195 University Avenue, Newark, NJ 07102, United States
| | - Lorna Rodriguez-Rodriguez
- Rutgers Cancer Institute of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08903, United States; Rutgers-Robert Wood Johnson Medical School, Department of Obstetrics, Gynecology and Reproductive Sciences, 125 Paterson Street, New Brunswick, NJ 08901, United States.
| |
Collapse
|
49
|
Hussain I, Waheed S, Ahmad KA, Pirog JE, Syed V. Scutellaria baicalensis
targets the hypoxia‐inducible factor‐1α and enhances cisplatin efficacy in ovarian cancer. J Cell Biochem 2018; 119:7515-7524. [DOI: 10.1002/jcb.27063] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 04/23/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Imran Hussain
- Department of Obstetrics and GynecologyUniformed Services University of the Health SciencesBethesdaMaryland
| | - Sana Waheed
- Department of Obstetrics and GynecologyUniformed Services University of the Health SciencesBethesdaMaryland
| | - Kashif A. Ahmad
- Carle Illinois College of MedicineUniversity of Illinois Urbana ChampaignChampaignIllinois
| | - John E. Pirog
- College of Health and WellnessAcupuncture and Chinese Medicine ProgramNorthwestern Health Sciences UniversityBloomingtonMinnesota
| | - Viqar Syed
- Department of Obstetrics and GynecologyUniformed Services University of the Health SciencesBethesdaMaryland
- John P. Murtha Cancer Center at Walter Reed National Military Medical CenterBethesdaMaryland
- Department of Molecular and Cell BiologyUniformed Services UniversityBethesdaMaryland
| |
Collapse
|
50
|
Fisel P, Schaeffeler E, Schwab M. Clinical and Functional Relevance of the Monocarboxylate Transporter Family in Disease Pathophysiology and Drug Therapy. Clin Transl Sci 2018; 11:352-364. [PMID: 29660777 PMCID: PMC6039204 DOI: 10.1111/cts.12551] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 02/27/2018] [Indexed: 12/14/2022] Open
Abstract
The solute carrier (SLC) SLC16 gene family comprises 14 members and encodes for monocarboxylate transporters (MCTs), which mediate the absorption and distribution of monocarboxylic compounds across plasma membranes. As the knowledge about their physiological function, activity, and regulation increases, their involvement and contribution to cancer and other diseases become increasingly evident. Moreover, promising opportunities for therapeutic interventions by directly targeting their endogenous functions or by exploiting their ability to deliver drugs to specific organ sites emerge.
Collapse
Affiliation(s)
- Pascale Fisel
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,University of Tübingen, Tübingen, Germany
| | - Elke Schaeffeler
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,University of Tübingen, Tübingen, Germany
| | - Matthias Schwab
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,University of Tübingen, Tübingen, Germany.,Department of Clinical Pharmacology, University Hospital Tübingen, Tübingen, Germany.,Department of Pharmacy and Biochemistry, University of Tübingen, Tübingen, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|