1
|
Yan Z, Zhong Z, Shi C, Feng M, Feng X, Liu T. The prognostic marker KRT81 is involved in suppressing CD8 + T cells and predicts immunotherapy response for triple-negative breast cancer. Cancer Biol Ther 2024; 25:2355705. [PMID: 38778753 PMCID: PMC11123506 DOI: 10.1080/15384047.2024.2355705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024] Open
Abstract
Triple-negative breast Cancer (TNBC) is an aggressive subtype lacking estrogen, progesterone, and HER2 receptors. Known for limited targeted therapies, it poses challenges and requires personalized treatment strategies. Differential analysis revealed a significant decrease in keratin 81 (KRT81) expression in non-TNBC samples and an increase in TNBC samples, lower KRT81 expression correlated with better TNBC patient outcomes. It emerged as an independent predictive factor for TNBC, with associations found between its expression and clinically relevant features. We further developed a nomogram for survival probability assessment based on Cox regression results, demonstrating its accuracy through calibration curves. Gene annotation analysis indicated that KRT81 is involved in immune-related pathways and tumor cell adhesion. KRT81 is associated with immune cell infiltration of Follicular helper T cells (Tfh) and CD8 + T cells, suggesting its potential impact on the immunological microenvironment. The study delved into KRT81's predictive value for immunotherapy responses, high expression of KRT81 was associated with greater potential for immune evasion. Single-cell RNA sequencing analysis pinpointed KRT81 expression within a specific malignant subtype which was a risk factor for TNBC. Furthermore, KRT81 promoted TNBC cell proliferation, migration, invasion, and adhesion was confirmed by gene knockout or overexpression assay. Co-culture experiments further indicated KRT81's potential role in inhibiting CD8 + T cells, and correlation analysis implied KRT81 was highly correlated with immune checkpoint CD276, providing insights into its involvement in the immune microenvironment via CD276. In conclusion, this comprehensive study positions KRT81 as a promising prognostic marker for predicting tumor progression and immunotherapy responses in TNBC.
Collapse
Affiliation(s)
- Zhideng Yan
- Department of General Surgery, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan, Guangdong, China
| | - Zhihui Zhong
- Center of Stem Cell and Regenerative Medicine, Gaozhou People’s Hospital, Gaozhou, Guangdong, China
| | - Chuanke Shi
- Department of General Surgery, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan, Guangdong, China
| | - Muyin Feng
- Department of Pathology, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan, Guangdong, China
| | - Xiaoqiang Feng
- Center of Stem Cell and Regenerative Medicine, Gaozhou People’s Hospital, Gaozhou, Guangdong, China
| | - Tong Liu
- Department of General Surgery, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan, Guangdong, China
| |
Collapse
|
2
|
Laghaee S, Eskandarian M, Fereidoon M, Koohi S. scVAG: Unified single-cell clustering via variational-autoencoder integration with Graph Attention Autoencoder. Heliyon 2024; 10:e40732. [PMID: 39687165 PMCID: PMC11648904 DOI: 10.1016/j.heliyon.2024.e40732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 10/29/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Single-cell RNA sequencing (scRNA-seq) enables high-resolution transcriptional profiling of cell heterogeneity. However, analyzing this noisy, high-dimensional matrix remains challenging. We present scVAG, an integrated deep learning framework combining Variational-Autoencoder (VAE) and Graph Attention Autoencoder (GATE) for enhanced single-cell clustering. Building upon scGAC, our approach replaces its restrictive linear principal component analysis (PCA) with nonlinear dimensionality reduction better suited for scRNA-seq data. Specifically, we integrate VAE and GATE to enable more flexible latent space encoding. Extensive experiments on 20 datasets demonstrate scVAG's superior performance over previous state-of-the-art methods including scGAC, SCEA, SC3, Seurat, scGNN, scASGC, DESC, NIC, scLDS2, DRJCC, sLMIC, and jSRC. On average, scVAG improves clustering accuracy by 5 percent in ARI and 4 percent in NMI parameters. Visualizations highlight scVAG's capacity to recover interpretable biological structures. Our VAE-GATE pipeline extracts intricate expression patterns into compact representations that precisely delineate cell subpopulations consistent with ground truth labels. Overall, scVAG establishes a robust architecture for elucidating cell taxonomies from noisy transcriptomic inputs.
Collapse
Affiliation(s)
- Seyedpouria Laghaee
- Department of Computer Engineering, Sharif University of Technology, Tehran, Tehran, 1458889694, Iran
| | - Morteza Eskandarian
- Department of Computer Science, University of Tehran, Tehran, Tehran, 1417614411, Iran
| | - Mohammadamin Fereidoon
- Department of Computer Engineering, Sharif University of Technology, Tehran, Tehran, 1458889694, Iran
| | - Somayyeh Koohi
- Department of Computer Engineering, Sharif University of Technology, Tehran, Tehran, 1458889694, Iran
| |
Collapse
|
3
|
Srinivas N, Peiffer L, Horny K, Lei KC, Buus TB, Kubat L, Luo M, Yin M, Spassova I, Sucker A, Farahpour F, Kehrmann J, Ugurel S, Livingstone E, Gambichler T, Ødum N, Becker JC. Single-cell RNA and T-cell receptor sequencing unveil mycosis fungoides heterogeneity and a possible gene signature. Front Oncol 2024; 14:1408614. [PMID: 39169943 PMCID: PMC11337020 DOI: 10.3389/fonc.2024.1408614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/19/2024] [Indexed: 08/23/2024] Open
Abstract
Background Mycosis fungoides (MF) is the most common subtype of cutaneous T-cell lymphoma (CTCL). Comprehensive analysis of MF cells in situ and ex vivo is complicated by the fact that is challenging to distinguish malignant from reactive T cells with certainty. Methods To overcome this limitation, we performed combined single-cell RNA (scRNAseq) and T-cell receptor TCR sequencing (scTCRseq) of skin lesions of cutaneous MF lesions from 12 patients. A sufficient quantity of living T cells was obtained from 9 patients, but 2 had to be excluded due to unclear diagnoses (coexisting CLL or revision to a fixed toxic drug eruption). Results From the remaining patients we established single-cell mRNA expression profiles and the corresponding TCR repertoire of 18,630 T cells. TCR clonality unequivocally identified 13,592 malignant T cells. Reactive T cells of all patients clustered together, while malignant cells of each patient formed a unique cluster expressing genes typical of naive/memory, such as CD27, CCR7 and IL7R, or cytotoxic T cells, e.g., GZMA, NKG7 and GNLY. Genes encoding classic CTCL markers were not detected in all clusters, consistent with the fact that mRNA expression does not correlate linearly with protein expression. Nevertheless, we successfully pinpointed distinctive gene signatures differentiating reactive malignant from malignant T cells: keratins (KRT81, KRT86), galectins (LGALS1, LGALS3) and S100 genes (S100A4, S100A6) being overexpressed in malignant cells. Conclusions Combined scRNAseq and scTCRseq not only allows unambiguous identification of MF cells, but also revealed marked heterogeneity between and within patients with unexpected functional phenotypes. While the correlation between mRNA and protein abundance was limited with respect to established MF markers, we were able to identify a single-cell gene expression signature that distinguishes malignant from reactive T cells.
Collapse
Affiliation(s)
- Nalini Srinivas
- Translational Skin Cancer Research, German Cancer Consortium (DKTK), University Medicine Essen, Essen, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Dermatology, University Hospital Essen, and German Cancer Consortium (DKTK) partner site Essen/Düsseldorf, Essen, Germany
| | - Lukas Peiffer
- Translational Skin Cancer Research, German Cancer Consortium (DKTK), University Medicine Essen, Essen, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Kai Horny
- Translational Skin Cancer Research, German Cancer Consortium (DKTK), University Medicine Essen, Essen, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kuan Cheok Lei
- Translational Skin Cancer Research, German Cancer Consortium (DKTK), University Medicine Essen, Essen, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Terkild B. Buus
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Linda Kubat
- Translational Skin Cancer Research, German Cancer Consortium (DKTK), University Medicine Essen, Essen, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Dermatology, University Hospital Essen, and German Cancer Consortium (DKTK) partner site Essen/Düsseldorf, Essen, Germany
| | - Meng Luo
- Translational Skin Cancer Research, German Cancer Consortium (DKTK), University Medicine Essen, Essen, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Menghong Yin
- Translational Skin Cancer Research, German Cancer Consortium (DKTK), University Medicine Essen, Essen, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ivelina Spassova
- Translational Skin Cancer Research, German Cancer Consortium (DKTK), University Medicine Essen, Essen, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Dermatology, University Hospital Essen, and German Cancer Consortium (DKTK) partner site Essen/Düsseldorf, Essen, Germany
| | - Antje Sucker
- Department of Dermatology, University Hospital Essen, and German Cancer Consortium (DKTK) partner site Essen/Düsseldorf, Essen, Germany
| | - Farnoush Farahpour
- Bioinformatics and Computational Biophysics, University Duisburg-Essen, and Group of Molecular Cell Biology, Institute for Cell Biology (Cancer Research), University Hospital Essen, Essen, Germany
| | - Jan Kehrmann
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Selma Ugurel
- Department of Dermatology, University Hospital Essen, and German Cancer Consortium (DKTK) partner site Essen/Düsseldorf, Essen, Germany
| | - Elisabeth Livingstone
- Department of Dermatology, University Hospital Essen, and German Cancer Consortium (DKTK) partner site Essen/Düsseldorf, Essen, Germany
| | - Thilo Gambichler
- Department of Dermatology, Ruhr-University Bochum, Bochum, Germany
- Department of Dermatology, Dortmund Hospital, University Witten/Herdecke, Dortmund, Germany
| | - Niels Ødum
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Jürgen C. Becker
- Translational Skin Cancer Research, German Cancer Consortium (DKTK), University Medicine Essen, Essen, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Dermatology, University Hospital Essen, and German Cancer Consortium (DKTK) partner site Essen/Düsseldorf, Essen, Germany
| |
Collapse
|
4
|
Rao J, Sinn M, Pelzer U, Riess H, Oettle H, Demir IE, Friess H, Jäger C, Steiger K, Muckenhuber A. KRT81 and HNF1A expression in pancreatic ductal adenocarcinoma: investigation of predictive and prognostic value of immunohistochemistry-based subtyping. J Pathol Clin Res 2024; 10:e12377. [PMID: 38750616 PMCID: PMC11096282 DOI: 10.1002/2056-4538.12377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/19/2024] [Accepted: 04/29/2024] [Indexed: 05/18/2024]
Abstract
Even after decades of research, pancreatic ductal adenocarcinoma (PDAC) remains a highly lethal disease and responses to conventional treatments remain mostly poor. Subclassification of PDAC into distinct biological subtypes has been proposed by various groups to further improve patient outcome and reduce unnecessary side effects. Recently, an immunohistochemistry (IHC)-based subtyping method using cytokeratin-81 (KRT81) and hepatocyte nuclear factor 1A (HNF1A) could recapitulate some of the previously established molecular subtyping methods, while providing significant prognostic and, to a limited degree, also predictive information. We refined the KRT81/HNF1A subtyping method to classify PDAC into three distinct biological subtypes. The prognostic value of the IHC-based method was investigated in two primary resected cohorts, which include 269 and 286 patients, respectively. In the second cohort, we also assessed the predictive effect for response to erlotinib + gemcitabine. In both PDAC cohorts, the new HNF1A-positive subtype was associated with the best survival, the KRT81-positive subtype with the worst, and the double-negative with an intermediate survival (p < 0.001 and p < 0.001, respectively) in univariate and multivariate analyses. In the second cohort (CONKO-005), the IHC-based subtype was additionally found to have a potential predictive value for the erlotinib-based treatment effect. The revised IHC-based subtyping using KRT81 and HNF1A has prognostic significance for PDAC patients and may be of value in predicting treatment response to specific therapeutic agents.
Collapse
Affiliation(s)
- Jia Rao
- Institute of PathologyTechnical University of MunichMunichGermany
| | - Marianne Sinn
- Department of Haematology, Oncology and Tumour Immunology, CONKO‐Study‐GroupCharité – University Medicine BerlinBerlinGermany
- Department of Internal Medicine IIUniversity Medical Center of Hamburg‐EppendorfHamburgGermany
| | - Uwe Pelzer
- Department of Haematology, Oncology and Tumour Immunology, CONKO‐Study‐GroupCharité – University Medicine BerlinBerlinGermany
| | - Hanno Riess
- Department of Haematology, Oncology and Tumour Immunology, CONKO‐Study‐GroupCharité – University Medicine BerlinBerlinGermany
| | - Helmut Oettle
- Department of Haematology, Oncology and Tumour Immunology, CONKO‐Study‐GroupCharité – University Medicine BerlinBerlinGermany
| | - Ihsan E Demir
- Department of Surgery, Klinikum rechts der Isar, School of MedicineTechnical University of MunichMunichGermany
- Else Kröner Clinician Scientist Professor for Translational Pancreatic SurgeryMunichGermany
| | - Helmut Friess
- Department of Surgery, Klinikum rechts der Isar, School of MedicineTechnical University of MunichMunichGermany
| | - Carsten Jäger
- Department of Surgery, Klinikum rechts der Isar, School of MedicineTechnical University of MunichMunichGermany
| | - Katja Steiger
- Institute of PathologyTechnical University of MunichMunichGermany
| | | |
Collapse
|
5
|
Zhang H, Zhang P, Lin X, Tan L, Wang Y, Jia X, Wang K, Li X, Sun D. Integrative single-cell analysis of LUAD: elucidating immune cell dynamics and prognostic modeling based on exhausted CD8+ T cells. Front Immunol 2024; 15:1366096. [PMID: 38596689 PMCID: PMC11002145 DOI: 10.3389/fimmu.2024.1366096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/13/2024] [Indexed: 04/11/2024] Open
Abstract
Background The tumor microenvironment (TME) plays a pivotal role in the progression and metastasis of lung adenocarcinoma (LUAD). However, the detailed characteristics of LUAD and its associated microenvironment are yet to be extensively explored. This study aims to delineate a comprehensive profile of the immune cells within the LUAD microenvironment, including CD8+ T cells, CD4+ T cells, and myeloid cells. Subsequently, based on marker genes of exhausted CD8+ T cells, we aim to establish a prognostic model for LUAD. Method Utilizing the Seurat and Scanpy packages, we successfully constructed an immune microenvironment atlas for LUAD. The Monocle3 and PAGA algorithms were employed for pseudotime analysis, pySCENIC for transcription factor analysis, and CellChat for analyzing intercellular communication. Following this, a prognostic model for LUAD was developed, based on the marker genes of exhausted CD8+ T cells, enabling effective risk stratification in LUAD patients. Our study included a thorough analysis to identify differences in TME, mutation landscape, and enrichment across varying risk groups. Moreover, by integrating risk scores with clinical features, we developed a new nomogram. The expression of model genes was validated via RT-PCR, and a series of cellular experiments were conducted, elucidating the potential oncogenic mechanisms of GALNT2. Results Our study developed a single-cell atlas for LUAD from scRNA-seq data of 19 patients, examining crucial immune cells in LUAD's microenvironment. We underscored pDCs' role in antigen processing and established a Cox regression model based on CD8_Tex-LAYN genes for risk assessment. Additionally, we contrasted prognosis and tumor environments across risk groups, constructed a new nomogram integrating clinical features, validated the expression of model genes via RT-PCR, and confirmed GALNT2's function in LUAD through cellular experiments, thereby enhancing our understanding and approach to LUAD treatment. Conclusion The creation of a LUAD single-cell atlas in our study offered new insights into its tumor microenvironment and immune cell interactions, highlighting the importance of key genes associated with exhausted CD8+ T cells. These discoveries have enabled the development of an effective prognostic model for LUAD and identified GALNT2 as a potential therapeutic target, significantly contributing to the improvement of LUAD diagnosis and treatment strategies.
Collapse
Affiliation(s)
- Han Zhang
- Clinical School of Thoracic, Tianjin Medical University, Tianjin, China
| | - Pengpeng Zhang
- Department of Lung Cancer Surgery, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | | | - Lin Tan
- Qingdao Hospital, University of Health and Rehabilitation Sciences, Qingdao Municipal Hospital, Qingdao, China
| | - Yuhang Wang
- Clinical School of Thoracic, Tianjin Medical University, Tianjin, China
| | - Xiaoteng Jia
- Clinical School of Thoracic, Tianjin Medical University, Tianjin, China
| | - Kai Wang
- Tianjin Chest Hospital, Tianjin University, Tianjin, China
| | - Xin Li
- Tianjin Chest Hospital, Tianjin University, Tianjin, China
| | - Daqiang Sun
- Tianjin Chest Hospital, Tianjin University, Tianjin, China
| |
Collapse
|
6
|
Kang DS, Moriarty A, Wang YJ, Thomas A, Hao J, Unger BA, Klotz R, Ahmmed S, Amzaleg Y, Martin S, Vanapalli S, Xu K, Smith A, Shen K, Yu M. Ectopic Expression of a Truncated Isoform of Hair Keratin 81 in Breast Cancer Alters Biophysical Characteristics to Promote Metastatic Propensity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2300509. [PMID: 37949677 PMCID: PMC10837353 DOI: 10.1002/advs.202300509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 08/28/2023] [Indexed: 11/12/2023]
Abstract
Keratins are an integral part of cell structure and function. Here, it is shown that ectopic expression of a truncated isoform of keratin 81 (tKRT81) in breast cancer is upregulated in metastatic lesions compared to primary tumors and patient-derived circulating tumor cells, and is associated with more aggressive subtypes. tKRT81 physically interacts with keratin 18 (KRT18) and leads to changes in the cytosolic keratin intermediate filament network and desmosomal plaque formation. These structural changes are associated with a softer, more elastically deformable cancer cell with enhanced adhesion and clustering ability leading to greater in vivo lung metastatic burden. This work describes a novel biomechanical mechanism by which tKRT81 promotes metastasis, highlighting the importance of the biophysical characteristics of tumor cells.
Collapse
Affiliation(s)
- Diane S. Kang
- Department of Stem Cell Biology and Regenerative MedicineKeck School of Medicine of the University of Southern CaliforniaLos AngelesCA90033USA
- USC Norris Comprehensive Cancer CenterKeck School of Medicine of the University of Southern CaliforniaLos AngelesCA90033USA
| | - Aidan Moriarty
- Department of Stem Cell Biology and Regenerative MedicineKeck School of Medicine of the University of Southern CaliforniaLos AngelesCA90033USA
- USC Norris Comprehensive Cancer CenterKeck School of Medicine of the University of Southern CaliforniaLos AngelesCA90033USA
- Department of PharmacologyUniversity of Maryland School of MedicineBaltimoreMD21201USA
- Marlene and Stewart Greenebaum Comprehensive Cancer CenterUniversity of Maryland School of MedicineBaltimoreMD21201USA
| | - Yiru Jess Wang
- Department of Stem Cell Biology and Regenerative MedicineKeck School of Medicine of the University of Southern CaliforniaLos AngelesCA90033USA
- USC Norris Comprehensive Cancer CenterKeck School of Medicine of the University of Southern CaliforniaLos AngelesCA90033USA
- Department of PharmacologyUniversity of Maryland School of MedicineBaltimoreMD21201USA
- Marlene and Stewart Greenebaum Comprehensive Cancer CenterUniversity of Maryland School of MedicineBaltimoreMD21201USA
| | - Amal Thomas
- Department of Molecular and Computational BiologyUSC David and Dana Dornsife College of LettersArts and SciencesUniversity of Southern CaliforniaLos AngelesCA90089USA
| | - Jia Hao
- Department of Biomedical EngineeringViterbi School of EngineeringUniversity of Southern CaliforniaLos AngelesCA90089USA
| | - Bret A. Unger
- Department of ChemistryUniversity of California at BerkeleyBerkeleyCA94720USA
| | - Remi Klotz
- Department of Stem Cell Biology and Regenerative MedicineKeck School of Medicine of the University of Southern CaliforniaLos AngelesCA90033USA
- USC Norris Comprehensive Cancer CenterKeck School of Medicine of the University of Southern CaliforniaLos AngelesCA90033USA
- Department of PharmacologyUniversity of Maryland School of MedicineBaltimoreMD21201USA
- Marlene and Stewart Greenebaum Comprehensive Cancer CenterUniversity of Maryland School of MedicineBaltimoreMD21201USA
| | - Shamim Ahmmed
- Department of Chemical EngineeringTexas Tech UniversityLubbockTX79409USA
| | - Yonatan Amzaleg
- Department of Stem Cell Biology and Regenerative MedicineKeck School of Medicine of the University of Southern CaliforniaLos AngelesCA90033USA
- USC Norris Comprehensive Cancer CenterKeck School of Medicine of the University of Southern CaliforniaLos AngelesCA90033USA
| | - Stuart Martin
- Department of PharmacologyUniversity of Maryland School of MedicineBaltimoreMD21201USA
- Marlene and Stewart Greenebaum Comprehensive Cancer CenterUniversity of Maryland School of MedicineBaltimoreMD21201USA
| | - Siva Vanapalli
- Department of Chemical EngineeringTexas Tech UniversityLubbockTX79409USA
| | - Ke Xu
- Department of ChemistryUniversity of California at BerkeleyBerkeleyCA94720USA
| | - Andrew Smith
- Department of Molecular and Computational BiologyUSC David and Dana Dornsife College of LettersArts and SciencesUniversity of Southern CaliforniaLos AngelesCA90089USA
| | - Keyue Shen
- Department of Biomedical EngineeringViterbi School of EngineeringUniversity of Southern CaliforniaLos AngelesCA90089USA
| | - Min Yu
- Department of Stem Cell Biology and Regenerative MedicineKeck School of Medicine of the University of Southern CaliforniaLos AngelesCA90033USA
- USC Norris Comprehensive Cancer CenterKeck School of Medicine of the University of Southern CaliforniaLos AngelesCA90033USA
- Department of PharmacologyUniversity of Maryland School of MedicineBaltimoreMD21201USA
- Marlene and Stewart Greenebaum Comprehensive Cancer CenterUniversity of Maryland School of MedicineBaltimoreMD21201USA
| |
Collapse
|
7
|
Wang Y, Guo Z, Tian Y, Cong L, Zheng Y, Wu Z, Shan G, Xia Y, Zhu Y, Li X, Song Y. MAPK1 promotes the metastasis and invasion of gastric cancer as a bidirectional transcription factor. BMC Cancer 2023; 23:959. [PMID: 37817112 PMCID: PMC10563293 DOI: 10.1186/s12885-023-11480-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 10/05/2023] [Indexed: 10/12/2023] Open
Abstract
BACKGROUND The Mitogen-activated protein kinase 1 (MAPK1) has both independent functions of phosphorylating histones as a kinase and directly binding the promoter regions of genes to regulate gene expression as a transcription factor. Previous studies have identified elevated expression of MAPK1 in human gastric cancer, which is associated with its role as a kinase, facilitating the migration and invasion of gastric cancer cells. However, how MAPK1 binds to its target genes as a transcription factor and whether it modulates related gene expressions in gastric cancer remains unclear. RESULTS Here, we integrated biochemical assays (protein interactions and chromatin immunoprecipitation (ChIP)), cellular analysis assays (cell proliferation and migration), RNA sequencing, ChIP sequencing, and clinical analysis to investigate the potential genomic recognition patterns of MAPK1 in a human gastric adenocarcinoma cell-line (AGS) and to uncover its regulatory effect on gastric cancer progression. We confirmed that MAPK1 promotes AGS cells invasion and migration by regulating the target genes in different directions, up-regulating seven target genes (KRT13, KRT6A, KRT81, MYH15, STARD4, SYTL4, and TMEM267) and down-regulating one gene (FGG). Among them, five genes (FGG, MYH15, STARD4, SYTL4, and TMEM267) were first associated with cancer procession, while the other three (KRT81, KRT6A, and KRT13) have previously been confirmed to be related to cancer metastasis and migration. CONCLUSION Our data showed that MAPK1 can bind to the promoter regions of these target genes to control their transcription as a bidirectional transcription factor, promoting AGS cell motility and invasion. Our research has expanded the understanding of the regulatory roles of MAPK1, enriched our knowledge of transcription factors, and provided novel candidates for cancer therapeutics.
Collapse
Affiliation(s)
- Yue Wang
- Gastroenteric Medicine and Digestive Endoscopy Center, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Zheng Guo
- Centre for Precision Health, Edith Cowan University, Joondalup, WA, Australia
| | - Yueli Tian
- Gastroenteric Medicine and Digestive Endoscopy Center, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Liang Cong
- Gastroenteric Medicine and Digestive Endoscopy Center, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Yulu Zheng
- Centre for Precision Health, Edith Cowan University, Joondalup, WA, Australia
| | - Zhiyuan Wu
- Centre for Precision Health, Edith Cowan University, Joondalup, WA, Australia
| | - Guangle Shan
- Department of Bioinformatics, Thrive Bioresearch, Beijing, China
| | - Yao Xia
- School of Science, Edith Cowan University, Joondalup, WA, Australia
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Yahong Zhu
- Department of Bioinformatics, Thrive Bioresearch, Beijing, China
| | - Xingang Li
- Centre for Precision Health, Edith Cowan University, Joondalup, WA, Australia.
| | - Ying Song
- Gastroenteric Medicine and Digestive Endoscopy Center, The Second Hospital of Jilin University, Changchun, Jilin, China.
| |
Collapse
|
8
|
Ran X, Tong L, Chenghao W, Qi L, Bo P, Jiaying Z, Jun W, Linyou Z. Single-cell data analysis of malignant epithelial cell heterogeneity in lung adenocarcinoma for patient classification and prognosis prediction. Heliyon 2023; 9:e20164. [PMID: 37809682 PMCID: PMC10559937 DOI: 10.1016/j.heliyon.2023.e20164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 09/04/2023] [Accepted: 09/13/2023] [Indexed: 10/10/2023] Open
Abstract
Lung cancer is one of the leading causes of cancer-related death. Most advanced lung adenocarcinoma (LUAD) patients have poor survival because of drug resistance and relapse. Neglecting intratumoral heterogeneity might be one of the reasons for treatment insensitivity, while single-cell RNA sequencing (scRNA-seq) technologies can provide transcriptome information at the single-cell level. Herein, we combined scRNA-seq and bulk RNA-seq data of LUAD and identified a novel cluster of malignant epithelial cells - KRT81+ malignant epithelial cells - associated with worse prognoses. Further analysis revealed that the hypoxia and EMT pathways of these cells were activated to predispose them to differentiate into metastatic lung adenocarcinoma cells. Finally, we also studied the role of these tumor cells in the immune microenvironment and their role in the classification and prognosis prediction of lung adenocarcinoma patients.
Collapse
Affiliation(s)
- Xu Ran
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- The Second Clinical Medical College, Harbin Medical University, Harbin, China
| | - Lu Tong
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- The Second Clinical Medical College, Harbin Medical University, Harbin, China
| | - Wang Chenghao
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- The Second Clinical Medical College, Harbin Medical University, Harbin, China
| | - Li Qi
- Department of Child and Adolescent Health, School of Public Health, Harbin Medical University, Harbin, China
| | - Peng Bo
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- The Second Clinical Medical College, Harbin Medical University, Harbin, China
| | - Zhao Jiaying
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- The Second Clinical Medical College, Harbin Medical University, Harbin, China
| | - Wang Jun
- Department of Thoracic Surgery, Baoji Central Hospital, Baoji, China
| | - Zhang Linyou
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
9
|
Mbeje M, Kandhavelu J, Penny C, Kgoebane-Maseko M, Dlamini Z, Marima R. In Silico Bioinformatics Analysis on the Role of Long Non-Coding RNAs as Drivers and Gatekeepers of Androgen-Independent Prostate Cancer Using LNCaP and PC-3 Cells. Curr Issues Mol Biol 2023; 45:7257-7274. [PMID: 37754243 PMCID: PMC10528188 DOI: 10.3390/cimb45090459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/19/2023] [Accepted: 08/28/2023] [Indexed: 09/28/2023] Open
Abstract
Prostate cancer (PCa) is the leading cancer in men globally. The association between PCa and long non-coding RNAs (lncRNAs) has been reported. Aberrantly expressed lncRNAs have been documented in each of the cancer "hallmarks". Androgen signaling plays an important role in PCa progression. This study aimed to profile the aberrantly expressed lncRNAs in androgen-dependent (LNCaP) PCa compared to androgen-independent (PC-3) PCa cells. This was achieved by using a 384-well plate of PCa lncRNA gene panel. Differential expression of ±2 up or downregulation was determined using the CFX Maestro software v2.1. LncSEA and DIANA-miRPath were used to identify the enriched pathways. Telomerase RNA component (TERC) lncRNA was illustrated to participate in various tumourigenic classes by in silico bioinformatics analysis and was thus selected for validation using RT-qPCR. Further bioinformatics analysis revealed the involvement of differentially expressed lncRNAs in oncogenic pathways. Some lncRNAs undergo hypermethylation, others are encapsulated by exosomes, while others interact with several microRNAs (miRNAs), favouring tumourigenic pathways. Notably, TERC lncRNA was shown to interact with tumour-suppressor miRNAs hsa-miR-4429 and hsa-miR-320b. This interaction in turn activates TGF-β-signaling and ECM-receptor interaction pathways, favouring the progression of PCa. Understanding lncRNAs as competitive endogenous RNA molecules and their interactions with miRNAs may aid in the identification of novel prognostic PCa biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Mandisa Mbeje
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield 0028, South Africa; (M.M.); (M.K.-M.)
- Department of Medical Oncology, Faculty of Health Sciences, Steve Biko Academic Hospital, University of Pretoria, Hatfield 0028, South Africa
| | - Jeyalakshmi Kandhavelu
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University Medical Center, Washington, DC 20057, USA;
| | - Clement Penny
- Department of Internal Medicine, Faculty of Health Sciences, School of Clinical Medicine, University of the Witwatersrand, Parktown 2193, South Africa;
| | - Mmamoletla Kgoebane-Maseko
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield 0028, South Africa; (M.M.); (M.K.-M.)
- Department of Anatomical Pathology, Faculty of Health Sciences, University of Pretoria, Hatfield 0028, South Africa
| | - Zodwa Dlamini
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield 0028, South Africa; (M.M.); (M.K.-M.)
| | - Rahaba Marima
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield 0028, South Africa; (M.M.); (M.K.-M.)
| |
Collapse
|
10
|
Belpaire M, Taminiau A, Geerts D, Rezsohazy R. HOXA1, a breast cancer oncogene. Biochim Biophys Acta Rev Cancer 2022; 1877:188747. [PMID: 35675857 DOI: 10.1016/j.bbcan.2022.188747] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/27/2022] [Accepted: 06/01/2022] [Indexed: 12/24/2022]
Abstract
More than 25 years ago, the first literature records mentioned HOXA1 expression in human breast cancer. A few years later, HOXA1 was confirmed as a proper oncogene in mammary tissue. In the following two decades, molecular data about the mode of action of the HOXA1 protein, the factors contributing to activate and maintain HOXA1 gene expression and the identity of its target genes have accumulated and provide a wider view on the association of this transcription factor to breast oncogenesis. Large-scale transcriptomic data gathered from wide cohorts of patients further allowed refining the relationship between breast cancer type and HOXA1 expression. Several recent reports have reviewed the connection between cancer hallmarks and the biology of HOX genes in general. Here we take HOXA1 as a paradigm and propose an extensive overview of the molecular data centered on this oncoprotein, from what its expression modulators, to the interactors contributing to its oncogenic activities, and to the pathways and genes it controls. The data converge to an intricate picture that answers questions on the multi-modality of its oncogene activities, point towards better understanding of breast cancer aetiology and thereby provides an appraisal for treatment opportunities.
Collapse
Affiliation(s)
- Magali Belpaire
- Animal Molecular and Cellular Biology Group (AMCB), Louvain Institute of Biomolecular Science and Technology (LIBST), UCLouvain, Louvain-la-Neuve, Belgium
| | - Arnaud Taminiau
- Animal Molecular and Cellular Biology Group (AMCB), Louvain Institute of Biomolecular Science and Technology (LIBST), UCLouvain, Louvain-la-Neuve, Belgium
| | - Dirk Geerts
- Heart Failure Research Center, Amsterdam University Medical Center (AMC), Universiteit van Amsterdam, Amsterdam, the Netherlands.
| | - René Rezsohazy
- Animal Molecular and Cellular Biology Group (AMCB), Louvain Institute of Biomolecular Science and Technology (LIBST), UCLouvain, Louvain-la-Neuve, Belgium.
| |
Collapse
|
11
|
Wu Y, Fu L, Wang B, Li Z, Wei D, Wang H, Zhang C, Ma Z, Zhu T, Yu G. Construction of a prognostic risk assessment model for lung adenocarcinoma based on Integrin β family‐related genes. J Clin Lab Anal 2022; 36:e24419. [PMID: 35403268 PMCID: PMC9169214 DOI: 10.1002/jcla.24419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/25/2022] [Accepted: 03/27/2022] [Indexed: 12/13/2022] Open
Abstract
Background Integrin β (ITGB) superfamily plays an essential role in the intercellular connection and signal transmission. It was exhibited that overexpressing of ITGB family members promotes the malignant progression of lung adenocarcinoma (LUAD), but the relationship between ITGB superfamily and the LUAD prognosis remains unclear. Methods In this study, the samples were assigned to different subgroups utilizing non‐negative matrix factorization clustering according to the expression of ITGB family members in LUAD. Kaplan–Meier (K‐M) survival analysis revealed the significant differences in the prognosis between different ITGB subgroups. Subsequently, we screened differentially expressed genes among different subgroups and conducted univariate Cox analysis, random forest feature selection, and multivariate Cox analysis. 9‐feature genes (FAM83A, AKAP12, PKP2, CYP17A1, GJB3, TMPRSS11F, KRT81, MARCH4, and STC1) in the ITGB superfamily were selected to establish a prognostic assessment model for LAUD. Results In accordance with the median risk score, LUAD samples were divided into high‐ and low‐risk groups. The receiver operating characteristic (ROC) curve of LUAD patients’ survival was predicted via K‐M survival curve and principal component analysis dimensionality reduction. This model was found to have a favorable performance in LUAD prognostic assessment. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses of differentially expressed genes between groups and Gene Set Enrichment Analysis (GSEA) of intergroup samples confirmed that the high‐ and low‐risk groups had evident differences mainly in the function of extracellular matrix (ECM) interaction. Risk score and univariate and multivariate Cox regression analyses of clinical factors showed that the prognostic model could be applied as an independent prognostic factor for LUAD. Then, we draw the nomogram of 1‐, 3‐, and 5‐year survival of LUAD patients predicted with the risk score and clinical factors. Calibration curve and clinical decision curve proved the favorable predictive ability of nomogram. Conclusion We constructed a LUAD prognostic risk model based on the ITGB superfamily, which can provide guidance for clinicians on their prognostic judgment.
Collapse
Affiliation(s)
- Yuanlin Wu
- Department of Thoracic Surgery Shaoxing People's Hospital Shaoxing China
| | - Linhai Fu
- Department of Thoracic Surgery Shaoxing People's Hospital Shaoxing China
| | - Bin Wang
- Department of Thoracic Surgery Shaoxing People's Hospital Shaoxing China
| | - Zhupeng Li
- Department of Thoracic Surgery Shaoxing People's Hospital Shaoxing China
| | - Desheng Wei
- Department of Thoracic Surgery Shaoxing People's Hospital Shaoxing China
| | - Haiyong Wang
- Department of Thoracic Surgery Shaoxing People's Hospital Shaoxing China
| | - Chu Zhang
- Department of Thoracic Surgery Shaoxing People's Hospital Shaoxing China
| | - Zhifeng Ma
- Department of Thoracic Surgery Shaoxing People's Hospital Shaoxing China
| | - Ting Zhu
- Department of Thoracic Surgery Shaoxing People's Hospital Shaoxing China
| | - Guangmao Yu
- Department of Thoracic Surgery Shaoxing People's Hospital Shaoxing China
| |
Collapse
|
12
|
Li X, Ma J, Leng L, Han M, Li M, He F, Zhu Y. MoGCN: A Multi-Omics Integration Method Based on Graph Convolutional Network for Cancer Subtype Analysis. Front Genet 2022; 13:806842. [PMID: 35186034 PMCID: PMC8847688 DOI: 10.3389/fgene.2022.806842] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/14/2022] [Indexed: 12/17/2022] Open
Abstract
In light of the rapid accumulation of large-scale omics datasets, numerous studies have attempted to characterize the molecular and clinical features of cancers from a multi-omics perspective. However, there are great challenges in integrating multi-omics using machine learning methods for cancer subtype classification. In this study, MoGCN, a multi-omics integration model based on graph convolutional network (GCN) was developed for cancer subtype classification and analysis. Genomics, transcriptomics and proteomics datasets for 511 breast invasive carcinoma (BRCA) samples were downloaded from the Cancer Genome Atlas (TCGA). The autoencoder (AE) and the similarity network fusion (SNF) methods were used to reduce dimensionality and construct the patient similarity network (PSN), respectively. Then the vector features and the PSN were input into the GCN for training and testing. Feature extraction and network visualization were used for further biological knowledge discovery and subtype classification. In the analysis of multi-dimensional omics data of the BRCA samples in TCGA, MoGCN achieved the highest accuracy in cancer subtype classification compared with several popular algorithms. Moreover, MoGCN can extract the most significant features of each omics layer and provide candidate functional molecules for further analysis of their biological effects. And network visualization showed that MoGCN could make clinically intuitive diagnosis. The generality of MoGCN was proven on the TCGA pan-kidney cancer datasets. MoGCN and datasets are public available at https://github.com/Lifoof/MoGCN. Our study shows that MoGCN performs well for heterogeneous data integration and the interpretability of classification results, which confers great potential for applications in biomarker identification and clinical diagnosis.
Collapse
Affiliation(s)
- Xiao Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Life Omics, Beijing, China
| | - Jie Ma
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Life Omics, Beijing, China
| | - Ling Leng
- Stem Cell and Regenerative Medicine Lab, Department of Medical Science Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Translational Medicine Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Mingfei Han
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Life Omics, Beijing, China
| | - Mansheng Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Life Omics, Beijing, China
| | - Fuchu He
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Life Omics, Beijing, China
| | - Yunping Zhu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Life Omics, Beijing, China
| |
Collapse
|
13
|
Wang C, Lv Y, Sha Z, Zhang J, Wu J, Qi Y, Guo Z. Dicer Enhances Bevacizumab-Related Inhibition of Hepatocellular Carcinoma via Blocking the Vascular Endothelial Growth Factor Pathway. J Hepatocell Carcinoma 2022; 8:1643-1653. [PMID: 35004391 PMCID: PMC8721026 DOI: 10.2147/jhc.s327258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 12/22/2021] [Indexed: 12/12/2022] Open
Abstract
Purpose Vascular endothelial growth factor (VEGF) family members contribute greatly to the development and angiogenesis of hypervascular hepatocellular carcinoma (HCC). We have previously shown that Dicer inhibited HCC growth. In this study, we aimed to determine the relationship between Dicer and VEGF in HCC. Methods Gain-of-function studies were performed to determine the effect of different treatments on the proliferation, migration, and invasion of HCC cells. Expression of VEGF-A in xenograft tumor tissues was analysed using Western blotting, and that of CD31 using immunohistochemical analysis. Results We found that Dicer inhibited proliferation, migration and invasion of HCC cells by suppressing VEGF-A expression. Interestingly, VEGF-A165, which is the most prominent VEGF-A isoform, counteracted Dicer-induced inhibition of HCC cells. In addition, a monoclonal anti-VEGF antibody (bevacizumab) enhanced Dicer-induced inhibition of HCC in vitro and in vivo. Further, immunohistochemical analysis of CD31 indicated bevacizumab and Dicer synergized to reduce tumor microvessel density. Conclusion Our data demonstrated that Dicer enhanced bevacizumab-related inhibition of HCC cell via the VEGF pathway; therefore, Dicer in coordination with bevacizumab may provide another potential approach for HCC therapy.
Collapse
Affiliation(s)
- Cuiju Wang
- Department of Gynaecology Ultrasound, The Fourth Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Yalei Lv
- Department of Medical Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Ziyue Sha
- Department of Immunology and Rheumatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Jingjing Zhang
- Department of Immunology and Rheumatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Jianhua Wu
- Animal Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Yixin Qi
- Breast Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Zhanjun Guo
- Department of Immunology and Rheumatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| |
Collapse
|
14
|
Comprehensive Transcriptome and Pathway Analyses Revealed Central Role for Fascin in Promoting Triple-Negative Breast Cancer Progression. Pharmaceuticals (Basel) 2021; 14:ph14121228. [PMID: 34959629 PMCID: PMC8708558 DOI: 10.3390/ph14121228] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 11/16/2022] Open
Abstract
Recent years have witnessed major progress in development of novel therapeutic agents such as chemotherapy, targeted therapy and immune checkpoint inhibitors for breast cancer. However, cancer-related death remains high especially in triple-negative breast cancer (TNBC) due limited therapeutic options. Development of targeted therapies for TNBC requires better understanding of biology and signaling networks that promote disease progression. Fascin, an actin bundling protein, was identified as a key regulator of many signaling pathways that contribute to breast cancer progression. Herein, fascin ShRNA was used to generate stable fascin knockdown (FSCN1KD) in the MDA-MB-231 TNBC cell line and then were subjected to comprehensive mRNA and miRNA transcriptome analysis. We identified 129 upregulated and 114 downregulated mRNA transcripts, while 14 miRNAs were differentially expressed in FSCN1KD. Ingenuity pathway analysis (IPA) was used to predict the impact of differentially expressed transcripts on signaling pathways and functional categories and to construct miRNA-mRNA regulatory networks in the context of FSCN1 knockdown. Compared to FSCN1KD, fascin-positive (FSCN1CON) breast cancer cells showed enrichment in genes promoting cellular proliferation, migration, survival, DNA replication and repair. Expression of FSCN1high (identified in BRCA dataset from TCGA) in conjunction with elevated expression of the top 10 upregulated or decreased expression of the top 10 downregulated genes (identified in our FSCN1CON vs. FSCN1KD) correlates with worst survival outcome. Taken together, these data confirmed fascin's role in promoting TNBC progression, and identified a novel opportunity for therapeutic interventions via targeting those FSCN1-related transcripts.
Collapse
|
15
|
Le J, Ji H, Zhou X, Wei X, Chen Y, Fu Y, Ma Y, Han Q, Sun Y, Gao Y, Wu H. Pharmacology, Toxicology, and Metabolism of Sennoside A, A Medicinal Plant-Derived Natural Compound. Front Pharmacol 2021; 12:714586. [PMID: 34764866 PMCID: PMC8576406 DOI: 10.3389/fphar.2021.714586] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 10/11/2021] [Indexed: 12/12/2022] Open
Abstract
Sennoside A (SA) is a natural dianthrone glycoside mainly from medicinal plants of Senna and Rhubarb, and used as a folk traditional irritant laxative and slimming health food. Accumulating evidences suggest that SA possesses numerous pharmacological properties, such as laxative, anti-obesity, hypoglycemic, hepatoprotective, anti-fibrotic, anti-inflammatory, anti-tumor, anti-bacterial, anti-fungal, anti-viral, and anti-neurodegenerative activities. These pharmacological effects lay the foundation for its potential application in treating a variety of diseases. However, numerous published studies suggest that a long-term use of SA in large doses may have some adverse effects, including the occurrence of melanosis coli and carcinogenesis of colon cancer, thereby limiting its clinical use. It remains to be established whether SA or its metabolites are responsible for the pharmacological and toxicity effects. In this review, the latest advances in the pharmacology, toxicology, and metabolism of SA were summarizedbased on its biological characteristics and mechanism.
Collapse
Affiliation(s)
- Jiamei Le
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China.,Shanghai Key Laboratory of Molecular Imaging, Collaborative Innovation Center for Biomedicine, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Houlin Ji
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China.,Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoxiao Zhou
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China.,Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xindong Wei
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China.,Nanjing University of Chinese Medicine Affiliated 81st Hospital, Nanjing, China
| | - Yifan Chen
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China.,Shanghai Key Laboratory of Molecular Imaging, Collaborative Innovation Center for Biomedicine, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Yi Fu
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China.,Shanghai Key Laboratory of Molecular Imaging, Collaborative Innovation Center for Biomedicine, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Yujie Ma
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China.,Shanghai Key Laboratory of Molecular Imaging, Collaborative Innovation Center for Biomedicine, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Qiuqin Han
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China.,Shanghai Key Laboratory of Molecular Imaging, Collaborative Innovation Center for Biomedicine, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Yongning Sun
- Department of Cardiology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yueqiu Gao
- Department of Liver Diseases, Central Laboratory, Institute of Clinical Immunology, ShuGuang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Laboratory of Cellular Immunity, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hailong Wu
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China.,Shanghai Key Laboratory of Molecular Imaging, Collaborative Innovation Center for Biomedicine, Shanghai University of Medicine and Health Sciences, Shanghai, China
| |
Collapse
|
16
|
Zhang K, Liang Y, Zhang W, Zeng N, Tang S, Tian R. KRT81 Knockdown Inhibits Malignant Progression of Melanoma Through Regulating Interleukin-8. DNA Cell Biol 2021; 40:1290-1297. [PMID: 34591651 DOI: 10.1089/dna.2021.0317] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
KRT81 is involved in carcinogenesis and progression of many types of human cancers. However, little is known about the role of KRT81 in melanoma. In this study, we identified that KRT81 expression is upregulated in melanoma tissues compared with corresponding adjacent nontumor tissues. Overexpression of KRT81 was also found in human melanoma cell lines. Cell functional studies have shown that KRT81 knockdown could inhibit proliferation, colony formation, migration, invasion, and promote apoptosis of A375 cells. Consistently, in vivo tumorigenesis experiments showed that KRT81 knockdown significantly suppressed the growth of xenograft tumors. Moreover, KRT81 knockdown increased the chemosensitivity of A375 cells to DDP. Mechanical exploration revealed that KRT81 knockdown mediated the downregulation of inflammatory cytokine interleukin-8 (IL-8). In conclusion, these findings indicate that downregulation of KRT81 could inhibit progression of melanoma by regulating IL-8. Therefore, KRT81 represents a potential therapeutic target for melanoma therapy.
Collapse
Affiliation(s)
- Kun Zhang
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Plastic Surgery Institute of Shantou University Medical College, Shantou, Guangdong, P.R. China
| | - Yan Liang
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Plastic Surgery Institute of Shantou University Medical College, Shantou, Guangdong, P.R. China
| | - Wancong Zhang
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Plastic Surgery Institute of Shantou University Medical College, Shantou, Guangdong, P.R. China
| | - Ning Zeng
- Department of Nephrology, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, P.R. China
| | - Shijie Tang
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Plastic Surgery Institute of Shantou University Medical College, Shantou, Guangdong, P.R. China
| | - Ruoxi Tian
- School of Basic Medicine, Tianjin Medical University, Tianjin, P.R. China
| |
Collapse
|
17
|
Modi A, Purohit P, Gadwal A, Ukey S, Roy D, Fernandes S, Banerjee M. In-Silico Analysis of Differentially Expressed Genes and Their Regulating microRNA Involved in Lymph Node Metastasis in Invasive Breast Carcinoma. Cancer Invest 2021; 40:55-72. [PMID: 34396887 DOI: 10.1080/07357907.2021.1969574] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Axillary nodal metastasis is related to poor prognosis in breast cancer (BC). Key candidate genes in BC lymph node metastasis have been identified from Gene Expression Omnibus datasets and explored through functional enrichment database for annotation, visualization and integrated discovery (DAVID) , protein-protein interaction by Search Tool for the Retrieval of Interacting Genes and proteins (STRING), network visualization (Cytoscape), survival analysis (GEPIA, KM Plotter), and target prediction (miRNet). A total of 102 overlapping differentially expressed genes were found. In-silico survival and expression analyses revealed six candidate hub genes, Desmocollin 3 (DSC3), KRT5, KRT6B, KRT17, KRT81, and SERPINB5, to be significantly associated with nodal metastasis and overall survival, and 83 MicroRNA (miRNAs), which may be potential diagnostic markers and therapeutic targets in BC patients.
Collapse
Affiliation(s)
- Anupama Modi
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Jodhpur, India
| | - Purvi Purohit
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Jodhpur, India
| | - Ashita Gadwal
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Jodhpur, India
| | - Shweta Ukey
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Jodhpur, India
| | - Dipayan Roy
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Jodhpur, India
| | - Sujoy Fernandes
- Department of Radiation Oncology, All India Institute of Medical Sciences (AIIMS), Jodhpur, India
| | - Mithu Banerjee
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Jodhpur, India
| |
Collapse
|
18
|
Park E, Yoo JE, Hwang HK, Kang CM, Lee CK, Kim MH, Bang S, Park YN. Combined tumor epithelial and stromal histopathology with keratin 81 expression predicts prognosis for pancreatic ductal adenocarcinoma. JOURNAL OF HEPATO-BILIARY-PANCREATIC SCIENCES 2021; 29:250-261. [PMID: 34318617 DOI: 10.1002/jhbp.1025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/01/2021] [Accepted: 07/16/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND Development of a pragmatic pathologic classifier of pancreatic ductal adenocarcinoma (PDAC) that reflects biological behavior is needed. METHODS The tumor epithelial and stromal features of PDAC and molecular subtype-related markers were evaluated in three independent cohorts. RESULTS In the non-neoadjuvant therapy cohort (n = 108), regarding tumor-epithelial feature, non-gland-forming type showed worse prognosis compared to gland-forming type (P < .001). For tumor-stromal feature, in gland-forming type, the prognosis was good in order of inactivated stroma-rich, stroma-poor, and activated stroma-rich (P = .027). Whereas, non-gland-forming type revealed no difference of prognosis according to tumor stroma. Of molecular subtype-related markers, keratin 81 expression was correlated with non-gland-forming type and poor prognosis (P = .005 and P = .021, respectively). Other markers (HNF1A, c-MET, and p53) showed no significant differences in prognosis. In the neoadjuvant therapy cohort (n = 68), non-gland-forming type was correlated with high residual tumor volume (≥20%) (P < .001) and gland-forming/stroma-poor type was not present. In the next-generation sequencing cohort (n = 55), non-gland-forming type was correlated with a higher number of the KRAS, TP53, CDKN2A, and SMAD4 mutations (P = .038). CONCLUSION Combined tumor epithelial and stromal histopathology with keratin 81 expression is suggested to be useful for predicting prognosis of PDAC.
Collapse
Affiliation(s)
- Eunhyang Park
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
| | - Jeong Eun Yoo
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
| | - Ho Kyoung Hwang
- Division of Hepatobiliary and Pancreas, Department of Surgery, Yonsei University College of Medicine, Seoul, Korea
| | - Chang Moo Kang
- Division of Hepatobiliary and Pancreas, Department of Surgery, Yonsei University College of Medicine, Seoul, Korea
| | - Choong-Kun Lee
- Division of Medical Oncology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Min Hwan Kim
- Division of Medical Oncology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Seungmin Bang
- Department of Internal Medicine, Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea
| | - Young Nyun Park
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
19
|
Le J, Fu Y, Han Q, Ma Y, Ji H, Wei X, Chen Y, Sun Y, Gao Y, Wu H. Transcriptome Analysis of the Inhibitory Effect of Sennoside A on the Metastasis of Hepatocellular Carcinoma Cells. Front Pharmacol 2021; 11:566099. [PMID: 33708105 PMCID: PMC7942274 DOI: 10.3389/fphar.2020.566099] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 10/30/2020] [Indexed: 12/24/2022] Open
Abstract
Sennoside A (SA) is a bioactive component of Rheum officinale Baill. with an activity of irritant laxative, which has been reported to possess therapeutic potential in various diseases or conditions including obesity, insulin resistance, liver steatosis, prostate cancer and pancreatic cancer progression. However, whether SA has therapeutic potential in hepatocellular carcinoma (HCC) treatment remains elusive. In this study, we treated two HCC cell lines, HepG2 and SMMC-7721 with SA and found that SA selectively inhibited the growth of HCC cells by proliferation assay. SA has a good inhibitory effect on proliferation of HepG2 cells in a concentration dependent manner, but there was no effect on SMMC-7721 cells. Then we conducted transwell assays and transcriptome analysis in HCC cells and examined the effects of SA on HCC in vivo. The results showed that SA significantly inhibited the migration and invasion of HCC. Comparison of RNA-seq transcriptome profiles from control groups and SA-treated groups identified 171 and 264 differentially expressed genes (DEGs) in HepG2 and SMMC-7721 cells respectively, in which includes 2 overlapping up-regulated DEGs and 12 overlapping down-regulated DEGs between HepG2 and SMMC-7721 cells. The qPCR were applied to investigate the transcriptional level of 9 overlapping down-regulated DEGs related to cancer metastasis, and the results were consistent with RNA-seq data. The dominate pathways including Wnt signaling pathway, TNF signaling pathway, VEGF signaling pathway, and NF-κB signaling pathway were strongly inhibited by SA, which are involved in regulating cancer metastasis. Finally, we confirmed that the downregulation of KRT7 and KRT81 could inhibit HCC metastasis. This study has provided new insight into the understanding of the inhibitory effects and potential targets of SA on the metastasis of HCC.
Collapse
Affiliation(s)
- Jiamei Le
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China.,Shanghai Key Laboratory of Molecular Imaging, Collaborative Innovation Center for Biomedicine, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Yi Fu
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China.,Shanghai Key Laboratory of Molecular Imaging, Collaborative Innovation Center for Biomedicine, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Qiuqin Han
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China.,Shanghai Key Laboratory of Molecular Imaging, Collaborative Innovation Center for Biomedicine, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Yujie Ma
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China.,Shanghai Key Laboratory of Molecular Imaging, Collaborative Innovation Center for Biomedicine, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Houlin Ji
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China.,Shanghai Key Laboratory of Molecular Imaging, Collaborative Innovation Center for Biomedicine, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Xindong Wei
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China.,Shanghai Key Laboratory of Molecular Imaging, Collaborative Innovation Center for Biomedicine, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Yifan Chen
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China.,Shanghai Key Laboratory of Molecular Imaging, Collaborative Innovation Center for Biomedicine, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Yongning Sun
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Department of Cardiology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yueqiu Gao
- Institute of Clinical Immunology, Department of Liver Diseases, Central Laboratory, ShuGuang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Laboratory of Cellular Immunity, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hailong Wu
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China.,Shanghai Key Laboratory of Molecular Imaging, Collaborative Innovation Center for Biomedicine, Shanghai University of Medicine & Health Sciences, Shanghai, China
| |
Collapse
|
20
|
Stark MS, Tell-Martí G, Martins da Silva V, Martinez-Barrios E, Calbet-Llopart N, Vicente A, Sturm RA, Soyer HP, Puig S, Malvehy J, Carrera C, Puig-Butillé JA. The Distinctive Genomic Landscape of Giant Congenital Melanocytic Nevi. J Invest Dermatol 2020; 141:692-695.e2. [PMID: 32800874 DOI: 10.1016/j.jid.2020.07.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 11/19/2022]
Affiliation(s)
- Mitchell S Stark
- The University of Queensland Diamantina Institute, The University of Queensland, Dermatology Research Centre, Brisbane, Australia.
| | - Gemma Tell-Martí
- Dermatology Department, Hospital Clínic de Barcelona. Melanoma Group, IDIBAPS, University of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain
| | - Vanessa Martins da Silva
- Dermatology Department, Hospital Clínic de Barcelona. Melanoma Group, IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Estefania Martinez-Barrios
- Department of Biochemical and Molecular Genetics, Hospital Clínic, IDIBAPS, University of Barcelona, Catalonia, Spain
| | - Neus Calbet-Llopart
- Dermatology Department, Hospital Clínic de Barcelona. Melanoma Group, IDIBAPS, University of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain
| | - Asunción Vicente
- Department of Pediatric Dermatology, Hospital San Joan de Déu, Barcelona, Spain
| | - Richard A Sturm
- The University of Queensland Diamantina Institute, The University of Queensland, Dermatology Research Centre, Brisbane, Australia
| | - H Peter Soyer
- The University of Queensland Diamantina Institute, The University of Queensland, Dermatology Research Centre, Brisbane, Australia; Department of Dermatology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Susana Puig
- Dermatology Department, Hospital Clínic de Barcelona. Melanoma Group, IDIBAPS, University of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain
| | - Josep Malvehy
- Dermatology Department, Hospital Clínic de Barcelona. Melanoma Group, IDIBAPS, University of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain
| | - Cristina Carrera
- Dermatology Department, Hospital Clínic de Barcelona. Melanoma Group, IDIBAPS, University of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain
| | - Joan A Puig-Butillé
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain; Molecular Biology CORE, Hospital Clínic de Barcelona. Melanoma Group, IDIBAPS, University of Barcelona, Barcelona, Spain
| |
Collapse
|
21
|
Sha Z, Lai R, Zhang X, Zhao Y, Wu J, Geng C, Guo Z. A Polymorphism at the microRNA Binding Site in the 3' Untranslated Region of KRT81 Is Associated with Breast Cancer. DNA Cell Biol 2020; 39:1886-1894. [PMID: 32678982 DOI: 10.1089/dna.2019.5179] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Single nucleotide polymorphisms in miRNA binding sites (miR-SNPs) are associated with cancer risk. We assessed the relationship between five miR-SNPs in the 3' untranslated region (3'-UTR) of RYR3 (rs1044129), KIAA0423 (rs1053667), C14orf101 (rs4901706), GOLGA7 (rs11337), and KRT81 (rs3660) and the risk of breast cancer (BC). The CC genotype of rs3660 located in the 3'-UTR of KRT81 was identified for its association with lower BC risk (odds ratio, 0.093; 95% confidence interval, 0.045-0.193; p = 0.000). Immunnochemical analysis and Renilla luciferase reporter assays indicated that the CC genotype of KRT81 was associated with lower expression of KRT81 (p < 0.05). The subsequently functional analysis showed that knockdown the KRT81 could inhibit proliferation and promote apoptosis of the MDA-MB-231 BC cells (p < 0.05) with monocyte chemotactic protein-1 (MCP-1) deregulation. Meanwhile, KRT81 overexpression could promote the proliferation and inhibit the apoptosis of MCF-7 BC cells (p < 0.05). Our data demonstrated that the KRT81 expressional change modulated by rs3660 miR-SNP could modify the carcinogenesis of BC, thereby KRT81 would be a new target for BC treatment.
Collapse
Affiliation(s)
- Ziyue Sha
- Department of Immunology and Rheumatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, P.R. China
| | - Ruixue Lai
- Department of Immunology and Rheumatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, P.R. China
| | - Xiaoyun Zhang
- Department of Immunology and Rheumatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, P.R. China
| | - Yufei Zhao
- Department of Immunology and Rheumatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, P.R. China
| | - Jianhua Wu
- Department of Animal Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, P.R. China
| | - Cuizhi Geng
- Department of Breast Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, P.R. China
| | - Zhanjun Guo
- Department of Immunology and Rheumatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, P.R. China
| |
Collapse
|
22
|
Maniero MÁ, Wuilloud RG, Callegari EA, Smichowski PN, Fanelli MA. Metalloproteomics analysis in human mammary cell lines treated with inorganic mercury. J Trace Elem Med Biol 2020; 58:126441. [PMID: 31812871 PMCID: PMC8061084 DOI: 10.1016/j.jtemb.2019.126441] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 11/19/2019] [Accepted: 11/22/2019] [Indexed: 11/23/2022]
Abstract
The interest in inorganic Hg toxicity and carcinogenicity has been pointed to target organs such as kidney, brain or placenta, but only a few studies have focused on the mammary gland. In this work, analytical combination techniques (SDS-PAGE followed by CV-AFS, and nanoUPLC-ESI-MS/MS) were used to determine proteins that could bind Hg in three human mammary cell lines. Two of them were tumorigenic (MCF-7 and MDA-MB-231) and the other one was the non-tumorigenic cell line (MCF-10A). There are no studies that provide this kind of information in breast cell lines with IHg treatment. Previously, we described the viability, uptake and the subcellular distribution of Hg in human breast cells and analysis of RNA-seq about the genes that encode proteins which are related to cytotoxicity of Hg. This work provides important protein candidates for further studies of Hg toxicity in the mammary gland, thus expanding our understanding of how environmental contaminants might affect tumor progression and contribute with future therapeutic methods.
Collapse
Affiliation(s)
- Mariángeles Ávila Maniero
- Laboratorio de Química Analítica para Investigación y Desarrollo (QUIANID), Instituto Interdisciplinario de Ciencias Básicas, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Exactas y Naturales, Padre J. Contreras 1300, 5500, Mendoza, Argentina; Facultad de Farmacia y Bioquímica, Universidad Juan Agustín Maza, Lateral Sur del Acceso Este 2245, M5519, Guaymallén, Mendoza, Argentina
| | - Rodolfo G Wuilloud
- Laboratorio de Química Analítica para Investigación y Desarrollo (QUIANID), Instituto Interdisciplinario de Ciencias Básicas, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Exactas y Naturales, Padre J. Contreras 1300, 5500, Mendoza, Argentina.
| | - Eduardo A Callegari
- BRIN-USDS SOM Proteomics Facility, University of South Dakota, 414 E Clark St, Vermillion, SD, 57069, USA
| | - Patricia N Smichowski
- Comisión Nacional de Energía Atómica, Gerencia Química, CONICET, Av. Gral. Paz 1499, B1650 Villa Maipú, Buenos Aires, Argentina
| | - Mariel A Fanelli
- Laboratorio de Oncología, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU-CONICET), Av. Dr. Adrian Ruiz Leal, Mendoza, Argentina
| |
Collapse
|
23
|
Hu HB, Yang XP, Zhou PX, Yang XA, Yin B. High expression of keratin 6C is associated with poor prognosis and accelerates cancer proliferation and migration by modulating epithelial-mesenchymal transition in lung adenocarcinoma. Genes Genomics 2019; 42:179-188. [PMID: 31768767 DOI: 10.1007/s13258-019-00889-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 11/12/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) is a more frequent subtype of lung cancer and most cases are discovered in the late stages. The proliferation and metastasis of LUAD are pivotal for disease progression. Despite unremitting deeper understanding of LUAD biology, the mechanisms involved in the proliferation and metastasis of LUAD remain unclear. The objective of our article was to inquiry the expression and the function of keratin 6C (KRT6C) in LUAD cells. METHODS First, the expression level and prognostic value of KRT6C in LUAD tissues were analyzed on the basis of the data acquired from TCGA database. Through qRT-PCR, the expression level of KRT6C on LUAD cell lines (A549, H1299, PC-9) and human normal lung cell line MRC-5 was tested. After that, CCK8 and colony formation assays was utilized to detect cell proliferation. In addition, to explore the influence of KRT6C on LUAD migration and invasion ability, scratch wound healing and transwell assays were utilized. Through western blotting, the protein expression levels of KRT6C, PCNA, E-cadherin, N-cadherin, Snail and Vimentin were detected. RESULTS The outcomes revealed that KRT6C was highly expressed in LUAD tissues and cell lines. Besides, elevated level of KRT6C was related to worse prognosis in LUAD patients. Ablation of KRT6C restrained proliferation, migration and invasion of A549 cells. KRT6C deficiency augmented the expression of E-cadherin as well as reduced the expression of N-cadherin, Snail and Vimentin. CONCLUSION Above all, these consequences indicated that depletion of KRT6C suppressed A549 cell proliferation, migration and invasion, which might be achieved by regulating EMT. In general, KRT6C is identified as a potential therapeutic target for LUAD.
Collapse
Affiliation(s)
- Hai-Bo Hu
- Department of Respiration, Qingdao TCM Hospital, No. 4 Ren Min Road, Qingdao, 266033, Shandong, People's Republic of China
| | - Xiao-Ping Yang
- Department of Respiration, Qingdao TCM Hospital, No. 4 Ren Min Road, Qingdao, 266033, Shandong, People's Republic of China
| | - Pei-Xia Zhou
- Department of Respiration, Qingdao TCM Hospital, No. 4 Ren Min Road, Qingdao, 266033, Shandong, People's Republic of China
| | - Xin-Ai Yang
- Department of Respiration, Qingdao TCM Hospital, No. 4 Ren Min Road, Qingdao, 266033, Shandong, People's Republic of China
| | - Bin Yin
- Department of Respiration, Qingdao TCM Hospital, No. 4 Ren Min Road, Qingdao, 266033, Shandong, People's Republic of China.
| |
Collapse
|