1
|
Hermawan A, Pamungkas Putri DD, Fatimah N, Rhamandana Putra IM, Lestari IA. α-chaconine increases the sensitivity of HER2+ breast cancer cells to trastuzumab by targeting acetylcholinesterase. Comput Biol Med 2025; 188:109809. [PMID: 39955879 DOI: 10.1016/j.compbiomed.2025.109809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 01/20/2025] [Accepted: 02/04/2025] [Indexed: 02/18/2025]
Abstract
BACKGROUND Trastuzumab (TRZ) is the first drug used to treat HER2-positive breast cancer, but some patients become resistant to it because of the PI3K/Akt pathway and other pathways that counteract it. TRZ, in conjunction with other therapeutic agents, is needed to overcome resistance. α-chaconine (CHA), a glycoalkaloid from the Solanaceae family, can suppress lung cancer cell proliferation in vitro by inhibiting PI3K/Akt signaling, one of the key regulatory pathways in TRZ resistance. METHODS This study used integrative bioinformatics analysis to screen for possible targets of CHA that can help fight breast cancer that is resistant to TRZ. In vitro experiments were used to confirm the target genes using TRZ-resistant HCC-1954 (HCC-TRZ) cells for cytotoxicity, gene expression studies, and enzymatic assay. RESULTS We identified several potential target genes of CHA, including EGFR, VEGF, ACHE, and ADORA. We generated HCC1954-TRZ cells, which showed an increase in cell viability after sequential treatment of the parental HCC1954 cells with TRZ. Further experiments showed the high sensitivity of HCC-TRZ toward TRZ when TRZ was combined with CHA. The combination of CHA and TRZ significantly increased the mRNA expression levels of various genes compared to a single TRZ treatment. Additionally, CHA alone and combined with CHA-TRZ inhibited acetylcholinesterase (AChE) activity in HCC-TRZ cells. CONCLUSION CHA increased the sensitivity of HCC-TRZ cells to TRZ by targeting several potential target genes and AChE activity. This study highlights the potential of using CHA in combination with TRZ to overcome TRZ resistance in HER2+ breast cancer cells.
Collapse
Affiliation(s)
- Adam Hermawan
- Laboratory of Macromolecular Engineering, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, 55281, Yogyakarta, Indonesia; Laboratory of Advanced Pharmaceutical Sciences, APSLC Building, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, 55281, Yogyakarta, Indonesia.
| | - Dyaningtyas Dewi Pamungkas Putri
- Laboratory of Pharmacology and Toxicology, Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, 55281, Yogyakarta, Indonesia; Laboratory of Advanced Pharmaceutical Sciences, APSLC Building, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, 55281, Yogyakarta, Indonesia
| | - Nurul Fatimah
- Laboratory of Advanced Pharmaceutical Sciences, APSLC Building, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, 55281, Yogyakarta, Indonesia
| | - I Made Rhamandana Putra
- Laboratory of Macromolecular Engineering, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, 55281, Yogyakarta, Indonesia
| | - Intan Ayu Lestari
- Laboratory of Macromolecular Engineering, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, 55281, Yogyakarta, Indonesia
| |
Collapse
|
2
|
Antonis S, Efthymia P, Maria K, Eleftherios P, Sotiris K, Neoklis G, Fuminori T, George A, Tasuku H, Apostolos K. The effect of combined oral contraceptive pills on angiogenesis in endometriotic lesions. Hormones (Athens) 2025:10.1007/s42000-025-00636-4. [PMID: 39982662 DOI: 10.1007/s42000-025-00636-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 02/06/2025] [Indexed: 02/22/2025]
Abstract
PURPOSE Neoangiogenesis is necessary for adhesion and invasion of endometriotic lesions. We hypothesize that by blocking angiogenetic pathways we can suppress endometriosis. Oral contraceptive pills (OCs) are routinely used in endometriosis to suppress symptoms of the disease. In the current study, we attempt to evaluate the effects of OCs on various angiogenetic factors in women with endometriosis. METHODS Sixty women with endometriosis were randomly divided into two groups. Group A consisted of 30 women who received OCs in a cyclical manner for 3 months before surgery and group B of 30 women who did not. Biopsy specimens of ovarian endometrioma were collected. We used qRT-PCR to study the mRNA expression levels of VEGF, TF, PAR-2, SP1, and FGF1. RESULTS The levels of mRNA of all angiogenic factors were found to be elevated in women who received OCs compared with women who did not. This difference was statistically significant for VEGF, TF, FGF1, SP1 (p < 0.001), and PAR-2 (p = 0.046). CONCLUSION OC administration does not inhibit neoangiogenesis in endometriotic lesions; on the contrary, angiogenetic pathways might be upregulated.
Collapse
Affiliation(s)
- Siampalis Antonis
- Dept. of Obstetrics & Gynecology, Patras University School of Medicine, Patras, Greece
| | | | - Keramida Maria
- Dept. of Obstetrics & Gynecology, Patras University School of Medicine, Patras, Greece
| | - Panteris Eleftherios
- Laboratory of Forensic Medicine and Toxicology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| | | | - Georgopoulos Neoklis
- Dept. of Obstetrics & Gynecology, Patras University School of Medicine, Patras, Greece
| | - Taniguchi Fuminori
- Dept. of Obstetrics & Gynecology, Tottori University Faculty of Medicine, Yonago, Japan
| | - Adonakis George
- Dept. of Obstetrics & Gynecology, Patras University School of Medicine, Patras, Greece
| | - Harada Tasuku
- Dept. of Obstetrics & Gynecology, Tottori University Faculty of Medicine, Yonago, Japan
| | - Kaponis Apostolos
- Dept. of Obstetrics & Gynecology, Patras University School of Medicine, Patras, Greece.
| |
Collapse
|
3
|
Agarwal AP, Kumar MS. Effect of epigenetic changes in hypoxia induced factor (HIF) gene across cancer types. Gene 2025; 934:149047. [PMID: 39490706 DOI: 10.1016/j.gene.2024.149047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/23/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024]
Abstract
Cancer hypoxia, a crucial characteristic of malignancy, ranging from practically non-hypoxic to severe, impacts gene expression, metabolism and mechanisms associated with tumor formation serves as a key obstacle in cancer therapy. It triggers a complex network of cell signaling pathways, such as the NF-κB, PI3K, mTOR/AKT,MAPK, HIF and their associated genes regulating the effects of the same. The onset and advancement of cancer are attributed to genetic and epigenetic modifications which are intrinsically related. Off late, it has been observed that in disease progression, the epigenetic modifications lead to gene mutations that in turn alter the epigenome, presenting a major hurdle in fabricating treatment strategies. However, theprogress in science and technology has led to the emergence of various surfacing omics and multi-view clustering algorithms, which offer unparalleled prospects for further subtyping cancers, enhancing the prognosis and treatment results of these subtypes, and comprehending crucial pathophysiological mechanisms across diverse molecular strata. Multi-omics has allowed scientists to gain a more comprehensive understanding of the various ways that cellular malfunction can lead to cancer. So, it becomes of utmost importance to firstly understand the epigenetic changes taking place in tumor hypoxia at gene level. This review sheds light on the role of HIF gene in hypoxic milieu and its relationship with mechanisms of cancer epigenetics. It further glances as to how omics approach can be used to study the oncogenic cellular changes and how bioinformatic tools aid in identification of complex gene networks involved in disease progression. Lastly, it glimpses through the benefits and shortcomings of the existing epi drug therapy and how it can be used in developing novel treatment options.
Collapse
Affiliation(s)
- Aditi P Agarwal
- Somaiya Institute for Research and Consultancy, Somaiya Vidyavihar University, Vidyavihar (East), Mumbai 400077, India
| | - Maushmi S Kumar
- Somaiya Institute for Research and Consultancy, Somaiya Vidyavihar University, Vidyavihar (East), Mumbai 400077, India..
| |
Collapse
|
4
|
Hoshino R, Nakamura N, Yamauchi T, Aoki Y, Miyabe M, Sasajima S, Ozaki R, Sekiya T, Sato T, Tabuchi M, Miyazawa K, Naruse K. Mechanical loading-induced alveolar bone remodeling is suppressed in the diabetic state via the impairment of the specificity protein 1/vascular endothelial growth factor (SP1/VEGF) axis. J Diabetes Investig 2025; 16:72-82. [PMID: 39460577 DOI: 10.1111/jdi.14338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/01/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
AIMS/INTRODUCTION Orthodontic treatment involves alveolar bone remodeling in response to mechanical loading, resulting in tooth movement through traction-side bone formation and compression-side bone resorption. However, there are conflicting reports regarding alveolar bone resorption during the orthodontic treatment of patients with diabetes. MATERIALS AND METHODS Diabetes was induced in 8-week-old C56BL/6J mice using streptozotocin (STZ). Four weeks after the injection of STZ, a mechanical load was applied between the first and second molars on the right side of the upper jaw using the Waldo method with orthodontic elastics in diabetic (DM) and normal (N) mice tooth movement, gene expression, osteoclast counts, alveolar bone residual volume, and bone beam structure were evaluated. RESULTS The duration until spontaneous elastic loss was significantly longer in the DM group, suggesting that tooth movement may be inhibited in the diabetic state. The number of osteoclasts at 7 days after mechanical loading and the alveolar bone resorption were both significantly lower in the DM group. The gene expression levels of vascular endothelial growth factor (VEGF), a protein related to alveolar bone remodeling, and specificity protein 1 (SP1), a transcription factor of the VEGF gene, were significantly lower in the DM group than in the N group on the compression side of mechanical loading. CONCLUSIONS Mechanical loading-induced alveolar bone remodeling is suppressed in the diabetic state. Our results suggest that VEGF is a key molecule involved in impaired bone remodeling under mechanical loading in the diabetic state.
Collapse
Affiliation(s)
- Rina Hoshino
- Department of Orthodontics, School of Dentistry, Aichi Gakuin University, Nagoya, Aichi, Japan
| | - Nobuhisa Nakamura
- Department of Internal Medicine, School of Dentistry, Aichi Gakuin University, Nagoya, Aichi, Japan
| | - Taisuke Yamauchi
- Department of Orthodontics, School of Dentistry, Aichi Gakuin University, Nagoya, Aichi, Japan
| | - Yuki Aoki
- Department of Orthodontics, School of Dentistry, Aichi Gakuin University, Nagoya, Aichi, Japan
| | - Megumi Miyabe
- Department of Internal Medicine, School of Dentistry, Aichi Gakuin University, Nagoya, Aichi, Japan
| | - Sachiko Sasajima
- Department of Internal Medicine, School of Dentistry, Aichi Gakuin University, Nagoya, Aichi, Japan
| | - Reina Ozaki
- Department of Internal Medicine, School of Dentistry, Aichi Gakuin University, Nagoya, Aichi, Japan
| | - Takeo Sekiya
- Department of Orthodontics, School of Dentistry, Aichi Gakuin University, Nagoya, Aichi, Japan
| | - Takuma Sato
- Department of Orthodontics, School of Dentistry, Aichi Gakuin University, Nagoya, Aichi, Japan
| | - Masako Tabuchi
- Department of Orthodontics, School of Dentistry, Aichi Gakuin University, Nagoya, Aichi, Japan
| | - Ken Miyazawa
- Department of Orthodontics, School of Dentistry, Aichi Gakuin University, Nagoya, Aichi, Japan
| | - Keiko Naruse
- Department of Internal Medicine, School of Dentistry, Aichi Gakuin University, Nagoya, Aichi, Japan
| |
Collapse
|
5
|
Zhang J. Non-coding RNAs and angiogenesis in cardiovascular diseases: a comprehensive review. Mol Cell Biochem 2024; 479:2921-2953. [PMID: 38306012 DOI: 10.1007/s11010-023-04919-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/18/2023] [Indexed: 02/03/2024]
Abstract
Non-coding RNAs (ncRNAs) have key roles in the etiology of many illnesses, including heart failure, myocardial infarction, stroke, and in physiological processes like angiogenesis. In transcriptional regulatory circuits that control heart growth, signaling, and stress response, as well as remodeling in cardiac disease, ncRNAs have become important players. Studies on ncRNAs and cardiovascular disease have made great progress recently. Here, we go through the functions of non-coding RNAs (ncRNAs) like circular RNAs (circRNAs), and microRNAs (miRNAs) as well as long non-coding RNAs (lncRNAs) in modulating cardiovascular disorders.
Collapse
Affiliation(s)
- Jie Zhang
- Medical School, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| |
Collapse
|
6
|
Wang C, Huang W, Zhong Y, Zou X, Liu S, Li J, Sun Y, Zhou K, Chen X, Li Z, Wang S, Huang Y, Bai Y, Yin J, Jin X, Liu S, Yuan Y, Deng Q, Jiang M, Liu C, Liu L, Xu X, Wu L. Single-cell multi-modal chromatin profiles revealing epigenetic regulations of cells in hepatocellular carcinoma. Clin Transl Med 2024; 14:e70000. [PMID: 39210544 PMCID: PMC11362026 DOI: 10.1002/ctm2.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 07/12/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Various epigenetic regulations systematically govern gene expression in cells involving various biological processes. Dysregulation of the epigenome leads to aberrant transcriptional programs and subsequently results in diseases, such as cancer. Therefore, comprehensive profiling epigenomics is essential for exploring the mechanisms underlying gene expression regulation during development and disease. METHODS In this study, we developed single-cell chromatin proteins and accessibility tagmentation (scCPA-Tag), a multi-modal single-cell epigenetic profile capturing technique based on barcoded Tn5 transposases and a droplet microfluidics platform. scCPA-Tag enables the simultaneous capture of DNA profiles of histone modification and chromatin accessibility in the same cell. RESULTS By applying scCPA-Tag to K562 cells and a hepatocellular carcinoma (HCC) sample, we found that the silence of several chromatin-accessible genes can be attributed to lysine-27-trimethylation of the histone H3 tail (H3K27me3) modification. We characterized the epigenetic features of the tumour cells and different immune cell types in the HCC tumour tissue by scCPA-Tag. Besides, a tumour cell subtype (C2) with more aggressive features was identified and characterized by high chromatin accessibility and a lower abundance of H3K27me3 on tumour-promoting genes. CONCLUSIONS Our multi-modal scCPA-Tag provides a comprehensive approach for exploring the epigenetic landscapes of heterogeneous cell types and revealing the mechanisms of gene expression regulation during developmental and pathological processes at the single-cell level. HIGHLIGHTS scCPA-Tag offers a highly efficient and high throughput technique to simultaneously profile histone modification and chromatin accessibility within a single cell. scCPA-Tag enables to uncover multiple epigenetic modification features of cellular compositions within tumor tissues. scCPA-Tag facilitates the exploration of the epigenetic landscapes of heterogeneous cell types and provides the mechanisms governing gene expression regulation.
Collapse
Affiliation(s)
- Chunqing Wang
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
- BGI ResearchChongqingChina
- BGI ResearchShenzhenChina
| | - Waidong Huang
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
- BGI ResearchChongqingChina
| | | | - Xuanxuan Zou
- BGI ResearchChongqingChina
- BGI ResearchShenzhenChina
- Department of Medical LaboratoryHubei Provincial Clinical Research Center for Parkinson's DiseaseXiangyang No.1 People's Hospital, Hubei University of MedicineXiangyangChina
| | - Shang Liu
- BGI ResearchChongqingChina
- BGI ResearchShenzhenChina
| | - Jie Li
- BGI ResearchShenzhenChina
| | - Yunfan Sun
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, and Key Laboratory of Carcinogenesis and Cancer InvasionMinistry of EducationShanghaiChina
- Zhongshan‐BGI Precision Medical CenterZhongshan Hospital, Fudan UniversityShanghaiChina
| | - Kaiqian Zhou
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, and Key Laboratory of Carcinogenesis and Cancer InvasionMinistry of EducationShanghaiChina
- Zhongshan‐BGI Precision Medical CenterZhongshan Hospital, Fudan UniversityShanghaiChina
| | - Xi Chen
- BGI ResearchChongqingChina
- BGI ResearchShenzhenChina
| | - Zihao Li
- BGI ResearchShenzhenChina
- School of Biology and Biological EngineeringSouth China University of TechnologyGuangzhouChina
| | | | | | | | | | | | | | - Yue Yuan
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, and Key Laboratory of Carcinogenesis and Cancer InvasionMinistry of EducationShanghaiChina
| | - Qiuting Deng
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, and Key Laboratory of Carcinogenesis and Cancer InvasionMinistry of EducationShanghaiChina
| | | | - Chuanyu Liu
- BGI ResearchShenzhenChina
- Shanxi Medical University‐BGI Collaborative Center for Future MedicineShanxi Medical UniversityTaiyuanChina
| | - Longqi Liu
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, and Key Laboratory of Carcinogenesis and Cancer InvasionMinistry of EducationShanghaiChina
| | - Xun Xu
- BGI ResearchShenzhenChina
| | - Liang Wu
- BGI ResearchChongqingChina
- BGI ResearchShenzhenChina
- Zhongshan‐BGI Precision Medical CenterZhongshan Hospital, Fudan UniversityShanghaiChina
| |
Collapse
|
7
|
Filindris T, Papakonstantinou E, Keramida M, Panteris E, Kalogeropoulos S, Georgopoulos N, Taniguchi F, Adonakis G, Harada T, Kaponis A. The effect of GnRH-a on the angiogenesis of endometriosis. Hormones (Athens) 2024; 23:509-515. [PMID: 38639888 PMCID: PMC11436414 DOI: 10.1007/s42000-024-00559-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 04/03/2024] [Indexed: 04/20/2024]
Abstract
PURPOSE Neoangiogenesis is necessary for adhesion and invasiveness of endometriotic lesions in women affected by endometriosis. Vascular endothelial growth factor (VEGF) is one of the main components of angiogenesis and is part of the major pathway tissue factor (TF)-protease activated receptor-2 (PAR-2)-VEGF that leads to neoangiogenesis. Specificity protein 1 (SP1) is a transcriptional factor that has recently been studied for its crucial role in angiogenesis via a specific pathway. We hypothesize that by blocking angiogenetic pathways we can suppress endometriotic lesions. Gonadotrophin-releasing hormone-agonists (GnRH-a) are routinely used, especially preoperatively, in endometriosis. It would be of great interest to clarify which angiogenetic pathways are affected and, thereby, pave the way for further research into antiangiogenetic effects on endometriosis. METHODS We used quantitative real-time polymerase chain reaction (qRT-PCR) to study mRNA expression levels of TF, PAR-2, VEGF, and SP1 in endometriotic tissues of women who underwent surgery for endometriosis and received GnRH-a (leuprolide acetate) preoperatively. RESULTS VEGF, TF, and PAR-2 expression is significantly lower in patients who received treatment (p < 0,001) compared to those who did not, whereas SP1 expression is not altered (p = 0.779). CONCLUSIONS GnRH-a administration does affect some pathways of angiogenesis in endometriotic lesions, but not all of them. Therefore, supplementary treatments that affect the SP1 pathway of angiogenesis should be developed to enhance the antiangiogenetic effect of GnRH-a in patients with endometriosis. TRIAL REGISTRATION Clinicaltrial.gov ID: NCT06106932.
Collapse
Affiliation(s)
- Theodoros Filindris
- Dept. of Obstetrics & Gynecology, Patras University School of Medicine, Patras, Greece
| | | | - Maria Keramida
- Dept. of Obstetrics & Gynecology, Patras University School of Medicine, Patras, Greece
| | - Eleftherios Panteris
- Laboratory of Forensic Medicine and Toxicology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| | | | - Neoklis Georgopoulos
- Dept. of Obstetrics & Gynecology, Patras University School of Medicine, Patras, Greece
| | - Fuminori Taniguchi
- Dept. of Obstetrics & Gynecology, Tottori University Faculty of Medicine, Yonago, Japan
| | - George Adonakis
- Dept. of Obstetrics & Gynecology, Patras University School of Medicine, Patras, Greece
| | - Tasuku Harada
- Dept. of Obstetrics & Gynecology, Tottori University Faculty of Medicine, Yonago, Japan
| | - Apostolos Kaponis
- Dept. of Obstetrics & Gynecology, Patras University School of Medicine, Patras, Greece.
| |
Collapse
|
8
|
Kimura K, Jackson TLB, Huang RCC. Interaction and Collaboration of SP1, HIF-1, and MYC in Regulating the Expression of Cancer-Related Genes to Further Enhance Anticancer Drug Development. Curr Issues Mol Biol 2023; 45:9262-9283. [PMID: 37998757 PMCID: PMC10670631 DOI: 10.3390/cimb45110580] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/09/2023] [Accepted: 11/11/2023] [Indexed: 11/25/2023] Open
Abstract
Specificity protein 1 (SP1), hypoxia-inducible factor 1 (HIF-1), and MYC are important transcription factors (TFs). SP1, a constitutively expressed housekeeping gene, regulates diverse yet distinct biological activities; MYC is a master regulator of all key cellular activities including cell metabolism and proliferation; and HIF-1, whose protein level is rapidly increased when the local tissue oxygen concentration decreases, functions as a mediator of hypoxic signals. Systems analyses of the regulatory networks in cancer have shown that SP1, HIF-1, and MYC belong to a group of TFs that function as master regulators of cancer. Therefore, the contributions of these TFs are crucial to the development of cancer. SP1, HIF-1, and MYC are often overexpressed in tumors, which indicates the importance of their roles in the development of cancer. Thus, proper manipulation of SP1, HIF-1, and MYC by appropriate agents could have a strong negative impact on cancer development. Under these circumstances, these TFs have naturally become major targets for anticancer drug development. Accordingly, there are currently many SP1 or HIF-1 inhibitors available; however, designing efficient MYC inhibitors has been extremely difficult. Studies have shown that SP1, HIF-1, and MYC modulate the expression of each other and collaborate to regulate the expression of numerous genes. In this review, we provide an overview of the interactions and collaborations of SP1, HIF1A, and MYC in the regulation of various cancer-related genes, and their potential implications in the development of anticancer therapy.
Collapse
Affiliation(s)
| | | | - Ru Chih C. Huang
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218-2685, USA
| |
Collapse
|
9
|
Park HB, Min Y, Hwang S, Baek KH. Suppression of USP7 negatively regulates the stability of ETS proto-oncogene 2 protein. Biomed Pharmacother 2023; 162:114700. [PMID: 37062218 DOI: 10.1016/j.biopha.2023.114700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/08/2023] [Accepted: 04/10/2023] [Indexed: 04/18/2023] Open
Abstract
Ubiquitin-specific protease 7 (USP7) is one of the deubiquitinating enzymes (DUBs) that remove mono or polyubiquitin chains from target proteins. Depending on cancer types, USP7 has two opposing roles: oncogene or tumor suppressor. Moreover, it also known that USP7 functions in the cell cycle, apoptosis, DNA repair, chromatin remodeling, and epigenetic regulation through deubiquitination of several substrates including p53, mouse double minute 2 homolog (MDM2), Myc, and phosphatase and tensin homolog (PTEN). The [P/A/E]-X-X-S and K-X-X-X-K motifs of target proteins are necessary elements for the binding of USP7. In a previous study, we identified a novel substrate of USP7 through bioinformatics analysis using the binding motifs for USP7, and suggested that it can be an effective tool for finding new substrates for USP7. In the current study, gene ontology (GO) analysis revealed that putative target proteins having the [P/A/E]-X-X-S and K-X-X-K motifs are involved in transcriptional regulation. Moreover, through protein-protein interaction (PPI) analysis, we discovered that USP7 binds to the AVMS motif of ETS proto-oncogene 2 (ETS2) and deubiquitinates M1-, K11-, K27-, and K29-linked polyubiquitination of ETS2. Furthermore, we determined that suppression of USP7 decreases the protein stability of ETS2 and inhibits the transcriptional activity of ETS2 by disrupting the binding between the GGAA/T core motif and ETS2. Therefore, we propose that USP7 can be a novel target in cancers related to the dysregulation of ETS2.
Collapse
Affiliation(s)
- Hong-Beom Park
- Department of Biomedical Science, CHA University, Gyeonggi-Do 13488, Republic of Korea
| | - Yosuk Min
- Department of Biomedical Science, CHA University, Gyeonggi-Do 13488, Republic of Korea
| | - Sohyun Hwang
- Department of Biomedical Science, CHA University, Gyeonggi-Do 13488, Republic of Korea; Department of Pathology, CHA Bundang Medical Center, CHA University School of Medicine, Gyeonggi-Do 13496, Republic of Korea
| | - Kwang-Hyun Baek
- Department of Biomedical Science, CHA University, Gyeonggi-Do 13488, Republic of Korea.
| |
Collapse
|
10
|
Perioperative escape from dormancy of spontaneous micro-metastases: A role for malignant secretion of IL-6, IL-8, and VEGF, through adrenergic and prostaglandin signaling. Brain Behav Immun 2023; 109:175-187. [PMID: 36646396 DOI: 10.1016/j.bbi.2023.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/08/2022] [Accepted: 01/12/2023] [Indexed: 01/15/2023] Open
Abstract
We recently showed that a minimally-invasive removal of MDA-MB-231HM primary tumors (PTs) and elimination of their secreted factors (including IL-6, IL-8, VEGF, EGF, PDGF-aa, MIF, SerpinE1, and M-CSF), caused regression of spontaneous micro-metastases into a non-growing dormant state. To explore the underlying mechanisms and potential clinical ramifications of this phenomenon, we herein used the MDA-MB-231HM human breast cancer cell-line, in-vitro, and in vivo following orthotopic implantation in immune-deficient BALB/C nu/nu mice. Employing bioluminescence imaging, we found that adding laparotomy to minimally-invasive removal of the PT caused an outbreak of micro-metastases. However, perioperative β-adrenergic and COX-2 inhibition, using propranolol + etodolac, maintained metastatic dormancy following laparotomy. In-vitro, β-adrenergic agonists (epinephrine or metaproterenol) and prostaglandin-E2 markedly increased MDA-MB-231HM secretion of the pro-metastatic factors IL-6, IL-8, and VEGF, whereas cortisol reduced their secretion, effects that were maintained even 12 h after the washout of these agonists. In-vivo, laparotomy elevated IL-6 and IL-8 levels in both plasma and ex-vivo PT spontaneous secretion, whereas perioperative propranolol + etodolac administration blocked these effects. Similar trends were evident for EGF and MIF. Promoter-based bioinformatics analyses of excised PT transcriptomes implicated elevated NF-kB activity and reduced IRF1 activity in the gene regulatory effects of laparotomy, and these effects were inhibited by pre-surgical propranolol + etodolac. Taken together, our findings suggest a novel mechanism of post-operative metastatic outbreak, where surgery-induced adrenergic and prostanoid signaling increase the secretion of pro-metastatic factors, including IL-6, IL-8, and VEGF, from PT and possibly residual malignant tissue, and thereby prevent residual disease from entering dormancy.
Collapse
|
11
|
Liu J, Sun X, Du Q, Yao J, Dai M, Cheng Q, Xu H, Li Y, Liu X, Zhang M, Zhou Y, Yang Y. Real-World Outcome and Prognostic Factors Among HER2-Positive Metastatic Breast Cancer Patients Receiving Pyrotinib-Based Therapy: A Multicenter Retrospective Analysis. BREAST CANCER (DOVE MEDICAL PRESS) 2022; 14:491-504. [PMID: 36575687 PMCID: PMC9790158 DOI: 10.2147/bctt.s385341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022]
Abstract
Purpose To explore the efficacy, safety, and potential factors influencing efficacy and outcome of pyrotinib-based therapy in human epidermal growth factor receptor 2 (HER2)-positive metastatic breast cancer (MBC) in complex clinical practice. Methods Real-world data for HER2-positive MBC patients treated with pyrotinib-based regimens from 6 hospitals in Northern Anhui, China, from September 2018 to February 2022, were retrospectively collected, and clinicopathological features, efficacy, prognosis, and safety were analyzed. Potential influencing factors including baseline serum vascular endothelial growth factor-A (VEGF-A) for evaluating pyrotinib's treatment response and outcome were also explored. Results A total of 169 patients with HER2-positive MBC were enrolled. The objective response rate (ORR), disease control rate (DCR), and median progression-free survival (mPFS) of the overall cohort were 65.1%, 87.6%, and 12.4 months, respectively. Pyrotinib is highly beneficial as different treatment lines and appears to be a feasible strategy both in combination with chemotherapeutic drugs and alone. The mPFS values were 16.5 months, 12.4 months, and 9.3 months in the first, second, and third-or-higher lines of anti-HER2 therapy, respectively (P=0.027). The most common adverse event (AE) was diarrhea (88.2%), and patients with < grade 3 diarrhea achieved a longer mPFS than patients with ≥ grade 3 diarrhea (13.3 months vs 6.9 months, P=0.007). Among the patients with available baseline VEGF-A data, the ORR was 43.5% in patients with a high level of VEGF-A, compared to 81.5% in patients with a low level of VEGF-A (P=0.005). Moreover, patients in the VEGF-A-high group exhibited a shorter mPFS time than those in the VEGF-A-low group (7.8 months vs 19.1 months, P=0.004). Further analysis demonstrated AE of diarrhea and VEGF-A at baseline to be independent prognostic factors for PFS. Conclusion Pyrotinib-based regimens showed promising efficacy, with manageable tolerance, and AE occurrence of severe diarrhea and baseline level of serum VEGF-A are helpful in predicting the treatment outcome of pyrotinib in HER2-positive MBC.
Collapse
Affiliation(s)
- Jing Liu
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233004, People’s Republic of China
| | - Xianglu Sun
- Department of Radiation Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233004, People’s Republic of China
| | - Qianyu Du
- Department of Medical Oncology, Suzhou Municipal Hospital, Suzhou, Anhui, 234000, People’s Republic of China
| | - Jinghao Yao
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233004, People’s Republic of China,Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230000, People’s Republic of China
| | - Mengfen Dai
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233004, People’s Republic of China
| | - Qianqian Cheng
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233004, People’s Republic of China
| | - Han Xu
- Department of Medical Oncology, The Third People’s Hospital of Bengbu, Bengbu, Anhui, 233000, People’s Republic of China
| | - Yawei Li
- Department of Medical Oncology, The Second Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233040, People’s Republic of China
| | - Xiuli Liu
- Department of Oncology, The Fifth People’s Hospital of Fuyang, Fuyang, Anhui, 236000, People’s Republic of China
| | - Mingliang Zhang
- Department of Oncology Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233004, People’s Republic of China
| | - Yongchun Zhou
- Department of Radiation Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233004, People’s Republic of China,Yongchun Zhou, Department of Radiation Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233004, People’s Republic of China, Tel/Fax +86 552 3086845, Email
| | - Yan Yang
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233004, People’s Republic of China,Correspondence: Yan Yang, Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233004, People’s Republic of China, Tel/Fax +86 552 3086178, Email
| |
Collapse
|
12
|
Kim SY, Ban HJ, Lee S, Jin HJ. Regulation of CIRP by genetic factors of SP1 related to cold sensitivity. Front Immunol 2022; 13:994699. [PMID: 36189232 PMCID: PMC9524288 DOI: 10.3389/fimmu.2022.994699] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/01/2022] [Indexed: 11/13/2022] Open
Abstract
Cold-inducible RNA-binding-protein (CIRP) is a cold shock protein that plays a protective role in genotoxic stress response. CIRP modulates inflammation in human diseases, inhibits cell proliferation, and protects cells from genotoxic damage during cellular stress. The mild cold responsive element and specificity protein 1 (SP1) play a role in Cirp expression at low temperatures. Although previous studies have provided insights into the immune functions of SP1 or CIRP, the mechanisms by which CIRP and SP1 me diate inflammatory responses remain largely unknown. Therefore, in the current study, we examined whether Cirp expression is affected by genetic factors related to temperature sensitivity as well as under low temperature. We performed a genome-wide association study on cold sensitivity in 2,000 participants. Fifty-six genome-wide significant trait-locus pairs were identified (p<1×10-5, false discovery rate < 0.05). Among these variants, rs1117050 and rs11170510 had a strong linkage disequilibrium (r2 > 0.8) relationship and expression quantitative trait locus-associated signals with the nearest Sp1 gene. We confirmed that the minor alleles of rs11170510 and rs58123204 were associated with increased Sp1 expression. Additionally, Sp1 overexpression led to CIRP translocation from the nucleus to the cytoplasm. CIRP protein levels increased in serum samples that had minor alleles of rs11170510 and rs58123204. Levels of various pro-inflammatory cytokines were also significantly increased in human peripheral blood mononuclear cells with minor alleles of rs11170510 and rs58123204. These results suggest that genetic factors related to cold sensitivity regulate CIRP expression and function and provide valuable insights into prediction of potential diseases through analysis of inherent genetic factors in humans.
Collapse
|
13
|
Morimoto M, Toyoda H, Niwa K, Hanaki R, Okuda T, Nakato D, Amano K, Iwamoto S, Hirayama M. Nafamostat mesylate prevents metastasis and dissemination of neuroblastoma through vascular endothelial growth factor inhibition. Mol Clin Oncol 2022; 17:138. [PMID: 35949892 PMCID: PMC9353881 DOI: 10.3892/mco.2022.2571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/20/2022] [Indexed: 11/08/2022] Open
Abstract
Neuroblastoma is a highly malignant disease with a poor prognosis and few treatment options. Despite conventional chemotherapy for neuroblastoma, resistance, invasiveness, and metastatic mobility limit the treatment efficacy. Therefore, it is necessary to develop new strategies for treating neuroblastoma. The present study aimed to evaluate the anticancer effects of nafamostat mesylate, a previously known serine protease inhibitor, on neuroblastoma cells. Effects of nafamostat mesylate on neuroblastoma cell migration and proliferation were analyzed by wound healing assay and WST-8 assay, respectively. To elucidate the mechanisms underlying the effects of nafamostat mesylate on neuroblastoma, the expression levels of NF-κB were measured via western blotting, and the production of the cytokine vascular endothelial growth factor (VEGF) in the cell culture supernatants was determined via ELISA. In addition, a mouse model of hematogenous metastasis was used to investigate the effects of nafamostat mesylate on neuroblastoma. It was determined that nafamostat mesylate significantly inhibited migration and invasion of Neuro-2a cells, but it had no effect on cell proliferation at 24 h after treatment. Exposure of Neuro-2a cells to nafamostat mesylate resulted in decreased vascular endothelial growth factor production, which could be a pivotal mechanism underlying the inhibitory effects of neuroblastoma metastasis. The results of the present study suggest that nafamostat mesylate may be an effective treatment against neuroblastoma invasion and metastasis.
Collapse
Affiliation(s)
- Mari Morimoto
- Department of Pediatrics, Mie University Graduate School of Medicine, Tsu, Mie 514‑8507, Japan
| | - Hidemi Toyoda
- Department of Pediatrics, Mie University Graduate School of Medicine, Tsu, Mie 514‑8507, Japan
| | - Kaori Niwa
- Department of Pediatrics, Mie University Graduate School of Medicine, Tsu, Mie 514‑8507, Japan
| | - Ryo Hanaki
- Department of Pediatrics, Mie University Graduate School of Medicine, Tsu, Mie 514‑8507, Japan
| | - Taro Okuda
- Department of Pediatrics, Mie University Graduate School of Medicine, Tsu, Mie 514‑8507, Japan
| | - Daisuke Nakato
- Department of Pediatrics, Mie University Graduate School of Medicine, Tsu, Mie 514‑8507, Japan
| | - Keishiro Amano
- Department of Pediatrics, Mie University Graduate School of Medicine, Tsu, Mie 514‑8507, Japan
| | - Shotaro Iwamoto
- Department of Pediatrics, Mie University Graduate School of Medicine, Tsu, Mie 514‑8507, Japan
| | - Masahiro Hirayama
- Department of Pediatrics, Mie University Graduate School of Medicine, Tsu, Mie 514‑8507, Japan
| |
Collapse
|
14
|
Schmidt A, Fuchs M, Stojanović SD, Liang C, Schmidt K, Jung M, Xiao K, Weusthoff J, Just A, Pfanne A, Distler JHW, Dandekar T, Fiedler J, Thum T, Kunz M. Deciphering Pro-angiogenic Transcription Factor Profiles in Hypoxic Human Endothelial Cells by Combined Bioinformatics and in vitro Modeling. Front Cardiovasc Med 2022; 9:877450. [PMID: 35783871 PMCID: PMC9247153 DOI: 10.3389/fcvm.2022.877450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/23/2022] [Indexed: 11/29/2022] Open
Abstract
Background Constant supply of oxygen is crucial for multicellular tissue homeostasis and energy metabolism in cardiac tissue. As a first response to acute hypoxia, endothelial cells (ECs) promote recruitment and adherence of immune cells to the dysbalanced EC barrier by releasing inflammatory mediators and growth factors, whereas chronic hypoxia leads to the activation of a transcription factor (TF) battery, that potently induces expression of growth factors and cytokines including platelet-derived growth factor (PDGF) and vascular endothelial growth factor (VEGF). We report a hypoxia-minded, targeted bioinformatics approach aiming to identify and validate TFs that regulate angiogenic signaling. Results A comprehensive RNA-Seq dataset derived from human ECs subjected to normoxic or hypoxic conditions was selected to identify significantly regulated genes based on (i) fold change (normoxia vs. hypoxia) and (ii) relative abundancy. Transcriptional regulation of this gene set was confirmed via qPCR in validation experiments where HUVECs were subjected to hypoxic conditions for 24 h. Screening the promoter and upstream regulatory elements of these genes identified two TFs, KLF5 and SP1, both with a potential binding site within these regions of selected target genes. In vitro, siRNA experiments confirmed SP1- and KLF5-mediated regulation of identified hypoxia-sensitive endothelial genes. Next to angiogenic signaling, we also validated the impact of TFs on inflammatory signaling, both key events in hypoxic sensing. Both TFs impacted on inflammatory signaling since endogenous repression led to increased NF-κB signaling. Additionally, SP1 silencing eventuated decreased angiogenic properties in terms of proliferation and tube formation. Conclusion By detailed in silico analysis of promoter region and upstream regulatory elements for a list of hypoxia-sensitive genes, our bioinformatics approach identified putative binding sites for TFs of SP or KLF family in vitro. This strategy helped to identify TFs functionally involved in human angiogenic signaling and therefore serves as a base for identifying novel RNA-based drug entities in a therapeutic setting of vascularization.
Collapse
Affiliation(s)
- Arne Schmidt
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hanover, Germany
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases (CIMD), Hanover, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hanover, Germany
| | - Maximilian Fuchs
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases (CIMD), Hanover, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hanover, Germany
| | - Stevan D. Stojanović
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hanover, Germany
- Department of Cardiology and Angiology, Hannover Medical School, Hanover, Germany
| | - Chunguang Liang
- Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Kevin Schmidt
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hanover, Germany
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases (CIMD), Hanover, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hanover, Germany
| | - Mira Jung
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hanover, Germany
| | - Ke Xiao
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hanover, Germany
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases (CIMD), Hanover, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hanover, Germany
| | - Jan Weusthoff
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hanover, Germany
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases (CIMD), Hanover, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hanover, Germany
| | - Annette Just
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hanover, Germany
| | - Angelika Pfanne
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hanover, Germany
| | - Jörg H. W. Distler
- Department of Internal Medicine 3 – Rheumatology and Immunology, Universitätsklinikum Erlangen, Friedrich-Alexander University (FAU) of Erlangen-Nürnberg, Erlangen, Germany
| | - Thomas Dandekar
- Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Jan Fiedler
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hanover, Germany
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases (CIMD), Hanover, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hanover, Germany
- Jan Fiedler,
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hanover, Germany
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases (CIMD), Hanover, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hanover, Germany
- Thomas Thum,
| | - Meik Kunz
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases (CIMD), Hanover, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hanover, Germany
- Chair of Medical Informatics, Friedrich-Alexander University (FAU) of Erlangen-Nürnberg, Erlangen, Germany
- *Correspondence: Meik Kunz,
| |
Collapse
|
15
|
Anti-Cancer Effects of Dietary Polyphenols via ROS-Mediated Pathway with Their Modulation of MicroRNAs. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123816. [PMID: 35744941 PMCID: PMC9227902 DOI: 10.3390/molecules27123816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 12/23/2022]
Abstract
Consumption of coffee, tea, wine, curry, and soybeans has been linked to a lower risk of cancer in epidemiological studies. Several cell-based and animal studies have shown that dietary polyphenols like chlorogenic acid, curcumin, epigallocatechin-3-O-gallate, genistein, quercetin and resveratrol play a major role in these anticancer effects. Several mechanisms have been proposed to explain the anticancer effects of polyphenols. Depending on the cellular microenvironment, these polyphenols can exert double-faced actions as either an antioxidant or a prooxidant, and one of the representative anticancer mechanisms is a reactive oxygen species (ROS)-mediated mechanism. These polyphenols can also influence microRNA (miR) expression. In general, they can modulate the expression/activity of the constituent molecules in ROS-mediated anticancer pathways by increasing the expression of tumor-suppressive miRs and decreasing the expression of oncogenic miRs. Thus, miR modulation may enhance the anticancer effects of polyphenols through the ROS-mediated pathways in an additive or synergistic manner. More precise human clinical studies on the effects of dietary polyphenols on miR expression will provide convincing evidence of the preventive roles of dietary polyphenols in cancer and other diseases.
Collapse
|
16
|
Kumar VS, Anjali K. Tumour generated exosomal miRNAs: A major player in tumour angiogenesis. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166383. [DOI: 10.1016/j.bbadis.2022.166383] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 02/18/2022] [Accepted: 03/07/2022] [Indexed: 12/12/2022]
|
17
|
Huang Y, Chen L, Feng Z, Chen W, Yan S, Yang R, Xiao J, Gao J, Zhang D, Ke X. EPC-Derived Exosomal miR-1246 and miR-1290 Regulate Phenotypic Changes of Fibroblasts to Endothelial Cells to Exert Protective Effects on Myocardial Infarction by Targeting ELF5 and SP1. Front Cell Dev Biol 2021; 9:647763. [PMID: 34055778 PMCID: PMC8155602 DOI: 10.3389/fcell.2021.647763] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/29/2021] [Indexed: 12/20/2022] Open
Abstract
Myocardial infarction (MI) remains a leading cause of morbidity and mortality worldwide. Endothelial progenitor cell (EPC)-derived exosomes have been found to be effective in alleviating MI, while the detailed mechanisms remain unclear. The present study aimed to determine the protective effects of EPC-derived exosomal miR-1246 and miR-1290 on MI-induced injury and to explore the underlying molecular mechanisms. The exosomes were extracted from EPCs; gene expression levels were determined by quantitative real-time PCR, and protein expression levels were determined by western blot and immunofluorescence staining, respectively. The angiogenesis and proliferation of human cardiac fibroblasts (HCFs) were determined by tube formation assay and immunofluorescence staining of PKH67, respectively. Luciferase reporter, CHIP, and EMSA assays determined the interaction between miR-1246/1290 and the targeted genes (EFL5 and SP1). The protective effects of miR-1246/1290 on MI were evaluated in a rat model of MI. EPC-derived exosomes significantly upregulated miR-1246 and miR-1290 expression and promoted phenotypic changes of fibroblasts to endothelial cells, angiogenesis, and proliferation in HCFs. Exosomes from EPCs with miR-1246 or miR-1290 mimics transfection promoted phenotypic changes of fibroblasts to endothelial cells and angiogenesis in HCFs, while exosomes from EPCs with miR-1246 or miR-1290 knockdown showed opposite effects in HCFs. Mechanistically, miR-1246 and miR-1290 from EPC-derived exosomes induced upregulation of ELF5 and SP1, respectively, by targeting the promoter regions of corresponding genes. Overexpression of both ELF5 and SP1 enhanced phenotypic changes of fibroblasts to endothelial cells and angiogenesis in HCFs pretreated with exosomes from EPCs with miR-1246 or miR-1290 mimics transfection, while knockdown of both EFL5 and SP1 exerted the opposite effects in HCFs. Both ELF5 and SP1 can bind to the promoter of CD31, leading to the upregulation of CD31 in HCFs. Furthermore, in vivo animal studies showed that exosomes from EPCs with miR-1246 or miR-1290 overexpression attenuated the MI-induced cardiac injury in the rats and caused an increase in ELF5, SP1, and CD31 expression, respectively, but suppressed α-SMA expression in the cardiac tissues. In conclusion, our study revealed that miR-1246 and miR-1290 in EPC-derived exosomes enhanced in vitro and in vivo angiogenesis in MI, and these improvements may be associated with amelioration of cardiac injury and cardiac fibrosis after MI.
Collapse
Affiliation(s)
- Yulang Huang
- Departmeng of Cardiology, Shenzhen Nanshan District Shekou People's Hospital, Shenzhen, China
| | - Lifang Chen
- Departmeng of Cardiology, Shenzhen Nanshan District Shekou People's Hospital, Shenzhen, China
| | - Zongming Feng
- Department of Cardiology, Fuwai Hospital, Chinese Academy of Medical Sciences (Shenzhen Sun Yat-sen Cardiovascular Hospital), Shenzhen, China
| | - Weixin Chen
- Department of Cardiology, Fuwai Hospital, Chinese Academy of Medical Sciences (Shenzhen Sun Yat-sen Cardiovascular Hospital), Shenzhen, China
| | - Shaodi Yan
- Department of Cardiology, Fuwai Hospital, Chinese Academy of Medical Sciences (Shenzhen Sun Yat-sen Cardiovascular Hospital), Shenzhen, China.,Shenzhen University School of Medicine and Shenzhen University Health Science Center, Shenzhen, China
| | - Rongfeng Yang
- Department of Cardiology, Fuwai Hospital, Chinese Academy of Medical Sciences (Shenzhen Sun Yat-sen Cardiovascular Hospital), Shenzhen, China
| | - Jian Xiao
- Departmeng of Cardiology, Shenzhen Nanshan District Shekou People's Hospital, Shenzhen, China
| | - Jiajia Gao
- Department of Cardiology, Fuwai Hospital, Chinese Academy of Medical Sciences (Shenzhen Sun Yat-sen Cardiovascular Hospital), Shenzhen, China
| | - Debao Zhang
- Departmeng of Cardiology, Shenzhen Nanshan District Shekou People's Hospital, Shenzhen, China
| | - Xiao Ke
- Department of Cardiology, Fuwai Hospital, Chinese Academy of Medical Sciences (Shenzhen Sun Yat-sen Cardiovascular Hospital), Shenzhen, China.,Shenzhen University School of Medicine and Shenzhen University Health Science Center, Shenzhen, China
| |
Collapse
|
18
|
Schweer D, McCorkle JR, Rohr J, Tsodikov OV, Ueland F, Kolesar J. Mithramycin and Analogs for Overcoming Cisplatin Resistance in Ovarian Cancer. Biomedicines 2021; 9:70. [PMID: 33445667 PMCID: PMC7828137 DOI: 10.3390/biomedicines9010070] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 12/12/2022] Open
Abstract
Ovarian cancer is a highly deadly malignancy in which recurrence is considered incurable. Resistance to platinum-based chemotherapy bodes a particularly abysmal prognosis, underscoring the need for novel therapeutic agents and strategies. The use of mithramycin, an antineoplastic antibiotic, has been previously limited by its narrow therapeutic window. Recent advances in semisynthetic methods have led to mithramycin analogs with improved pharmacological profiles. Mithramycin inhibits the activity of the transcription factor Sp1, which is closely linked with ovarian tumorigenesis and platinum-resistance. This article summarizes recent clinical developments related to mithramycin and postulates a role for the use of mithramycin, or its analog, in the treatment of platinum-resistant ovarian cancer.
Collapse
Affiliation(s)
- David Schweer
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology Lexington, University of Kentucky Markey Cancer Center, Lexington, KY 40536, USA; (D.S.); (F.U.)
| | - J. Robert McCorkle
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA; (J.R.M.); (J.R.); (O.V.T.)
| | - Jurgen Rohr
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA; (J.R.M.); (J.R.); (O.V.T.)
| | - Oleg V. Tsodikov
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA; (J.R.M.); (J.R.); (O.V.T.)
| | - Frederick Ueland
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology Lexington, University of Kentucky Markey Cancer Center, Lexington, KY 40536, USA; (D.S.); (F.U.)
| | - Jill Kolesar
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology Lexington, University of Kentucky Markey Cancer Center, Lexington, KY 40536, USA; (D.S.); (F.U.)
| |
Collapse
|
19
|
Li X, Zou ZZ, Wen M, Xie YZ, Peng KJ, Luo T, Liu SY, Gu Q, Li JJ, Luo ZY. ZLM-7 inhibits the occurrence and angiogenesis of breast cancer through miR-212-3p/Sp1/VEGFA signal axis. Mol Med 2020; 26:109. [PMID: 33187481 PMCID: PMC7666510 DOI: 10.1186/s10020-020-00239-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 11/03/2020] [Indexed: 11/26/2022] Open
Abstract
Background Breast cancer (BC) is a common malignant tumor with poor prognosis. Angiogenesis is related to the growth and progression of solid tumors and associated with prognosis. ZLM-7, SP1, VEGFA and miR-212-3p were associated with BC angiogenesis and proliferation, however the detailed mechanism was not clear. This study aimed to reveal the regulatory mechanism of angiogenesis of BC. Methods BC cell lines were treated with 10 nM ZLM-7 for 8 h. We detected protein expression level by western blot and RNA expression level by qRT-PCR. Overexpression or inhibition of miR-212-3p is performed using miR-212-3p mimics or miR-212-3p inhibitor, Sp1 overexpression using pcDNA3.1 vector. Angiogenesis was analyzed by co-culturing BC cell lines and HUVEC cells. To evaluate regulatory relationship between miR-212-3p and Sp1, dual luciferase assay was performed. Besides, the direct interaction between Sp1 and VEGFA was analyzed by ChIP. Migration and invasion were analyzed by transwell assay and proliferation was detected by clone formation assay. In mice xenograft model developed using BC cells, we also detected angiogenesis marker CD31 through immunohistochemistry. Results ZLM-7 up-regulated miR-212-3p and inhibited invasion, migration, proliferation and angiogenesis of BC, while miR-212-3p inhibitor antagonized such effects. Binding sequence was revealed between miR-212-3p and Sp1, and expression of Sp1 was inhibited by miR-212-3p on both protein and mRNA level. Sp1 could interact with VEGFA and promoted its expression. Overexpression of miR-212-3p inhibited migration, invasion, proliferation and angiogenesis of BC cell lines, while Sp1 overexpression showed the opposite effect and could antagonize these effects of miR-212-3p overexpression. ZLM-7 decreased VEGFA expression, which was rescued by co-transfection with miR-212-3p inhibitor. Similar, ZLM-7 could inhibit tumor growth and angiogenesis through the miR-212-3p/Sp1/VEGFA axis in vivo. Conclusions ZLM-7 could directly up-regulate miR-212-3p in BC. MiR-212-3p could inhibit VEGFA expression through Sp1, thereby inhibiting angiogenesis and progression of BC.
Collapse
Affiliation(s)
- Xuan Li
- Molecular Biology Research Centre, Hunan Province Key Laboratory of Basic and Applied Hematology, Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, 410008, Hunan, China
| | - Zi-Zheng Zou
- Molecular Biology Research Centre, Hunan Province Key Laboratory of Basic and Applied Hematology, Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, 410008, Hunan, China
| | - Min Wen
- Molecular Biology Research Centre, Hunan Province Key Laboratory of Basic and Applied Hematology, Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, 410008, Hunan, China
| | - Yuan-Zhu Xie
- Molecular Biology Research Centre, Hunan Province Key Laboratory of Basic and Applied Hematology, Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, 410008, Hunan, China
| | - Kun-Jian Peng
- Molecular Biology Research Centre, Hunan Province Key Laboratory of Basic and Applied Hematology, Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, 410008, Hunan, China
| | - Tiao Luo
- Hunan Key Laboratory of Oral Health Research, Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, 410008, Hunan, China
| | - Su-You Liu
- School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China
| | - Qin Gu
- Molecular Biology Research Centre, Hunan Province Key Laboratory of Basic and Applied Hematology, Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, 410008, Hunan, China
| | - Ji-Jia Li
- Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Zhi-Yong Luo
- Molecular Biology Research Centre, Hunan Province Key Laboratory of Basic and Applied Hematology, Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
20
|
Haider T, Sandha KK, Soni V, Gupta PN. Recent advances in tumor microenvironment associated therapeutic strategies and evaluation models. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 116:111229. [DOI: 10.1016/j.msec.2020.111229] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/08/2020] [Accepted: 06/19/2020] [Indexed: 02/07/2023]
|
21
|
Wang DP, Yu ZX, He ZC, Liao JF, Shen XB, Zhu PL, Chen WN, Lin X, Xu SH. Apolipoprotein L1 is transcriptionally regulated by SP1, IRF1 and IRF2 in hepatoma cells. FEBS Lett 2020; 594:3108-3121. [PMID: 32671843 DOI: 10.1002/1873-3468.13887] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/21/2020] [Accepted: 07/05/2020] [Indexed: 11/07/2022]
Abstract
Apolipoprotein L1 (APOL1) participates in lipid metabolism. Here, we investigate the mechanisms regulating APOL1 gene expression in hepatoma cells. We demonstrate that the -80-nt to +31-nt region of the APOL1 promoter, which contains one SP transcription factor binding GT box and an interferon regulatory factor (IRF) binding ISRE element, maintains the maximum activity. Mutation of the GT box and ISRE element dramatically reduces APOL1 promoter activity. EMSA and chromatin immunoprecipitation assay reveal that the transcription factors Sp1, IRF1 and IRF2 could interact with their cognate binding sites on the APOL1 promoter. Overexpression of Sp1, IRF1 and IRF2 increases promoter activity, leading to increased APOL1 mRNA and protein levels, while knockdown of Sp1, IRF1 and IRF2 has the opposite effects. These results demonstrate that the APOL1 gene could be regulated by Sp1, IRF1 and IRF2 in hepatoma cells.
Collapse
Affiliation(s)
- De-Ping Wang
- Department of Medical Intensive Care Unit, Fujian Provincial Hospital, Provincial Clinical Medical College of Fujian Medical University, Fuzhou, China
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
- Department of Endocrinology and Metabolism, Hongqi Hospital of MuDanJiang Medical College, Mudanjiang, China
| | - Zhao-Xi Yu
- Department of Medical Intensive Care Unit, Fujian Provincial Hospital, Provincial Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Zong-Cun He
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Jin-Fu Liao
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Xue-Bin Shen
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
- Department of Cardiology, Affiliated Nanping First Hospital, Fujian Medical University, Nanping, China
| | - Peng-Li Zhu
- Department of Medical Intensive Care Unit, Fujian Provincial Hospital, Provincial Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Wan-Nan Chen
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Xu Lin
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Shang-Hua Xu
- Department of Cardiology, Affiliated Nanping First Hospital, Fujian Medical University, Nanping, China
| |
Collapse
|
22
|
Wang Q, Peng H, Qi X, Wu M, Zhao X. Targeted therapies in gynecological cancers: a comprehensive review of clinical evidence. Signal Transduct Target Ther 2020; 5:137. [PMID: 32728057 PMCID: PMC7391668 DOI: 10.1038/s41392-020-0199-6] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/12/2020] [Accepted: 05/20/2020] [Indexed: 12/11/2022] Open
Abstract
Advanced and recurrent gynecological cancers are associated with poor prognosis and lack of effective treatment. The developments of the molecular mechanisms on cancer progression provide insight into novel targeted therapies, which are emerging as groundbreaking and promising cancer treatment strategies. In gynecologic malignancies, potential therapeutic targeted agents include antiangiogenic agents, poly (ADP-ribose) polymerase (PARP) inhibitors, tumor-intrinsic signaling pathway inhibitors, selective estrogen receptor downregulators, and immune checkpoint inhibitors. In this article, we provide a comprehensive review of the clinical evidence of targeted agents in gynecological cancers and discuss the future implication.
Collapse
Affiliation(s)
- Qiao Wang
- Department of Gynecology and Obstetrics, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan, 610041, P.R. China
| | - Hongling Peng
- Department of Gynecology and Obstetrics, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan, 610041, P.R. China
| | - Xiaorong Qi
- Department of Gynecology and Obstetrics, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan, 610041, P.R. China
| | - Min Wu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58203, USA
| | - Xia Zhao
- Department of Gynecology and Obstetrics, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan, 610041, P.R. China.
| |
Collapse
|
23
|
Cai F, Chen L, Sun Y, He C, Fu D, Tang J. MiR-539 inhibits the malignant behavior of breast cancer cells by targeting SP1. Biochem Cell Biol 2020; 98:426-433. [PMID: 31742423 DOI: 10.1139/bcb-2019-0111] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The aberrant expression of microRNAs (miRNAs) is involved in the initiation and progression of human cancers. In our study, we found that miR-539 was down-regulated in breast cancer tissues and cell lines. Decreased expression of miR-539 was significantly associated with lymph node metastasis in patients with breast cancer. Overexpression of miR-539 inhibited the proliferation and promoted apoptosis of breast cancer cells. Moreover, highly expressed miR-539 significantly suppressed the epithelial-mesenchymal transition (EMT) and sensitized cells to cisplatin treatment. Mechanistically, miR-539 was found to target the specificity protein 1 (SP1) and down-regulated the expression of SP1 in breast cancer cells. Knockdown of miR-539 consistently increased the expression of SP1. The expression of miR-539 in breast cancer tissues was negatively correlated with the expression of SP1. Restoration of SP1 significantly attenuated the inhibitory effect of miR-539 on the proliferation of breast cancer cells. Taken together, our results indicate that miR-539 has a tumor suppressive role in breast cancer via targeting SP1, suggesting miR-539 as a promising target for the diagnosis of breast cancer.
Collapse
Affiliation(s)
- Fenglin Cai
- Department of General Surgery, Clinical Medical College of Yangzhou University & Northern Jiangsu People's Hospital, Yangzhou 225001, P.R. China
| | - Luhong Chen
- Department of General Surgery, Clinical Medical College of Yangzhou University & Northern Jiangsu People's Hospital, Yangzhou 225001, P.R. China
| | - Yuting Sun
- Department of General Surgery, Clinical Medical College of Yangzhou University & Northern Jiangsu People's Hospital, Yangzhou 225001, P.R. China
| | - Chunlan He
- Department of General Surgery, Clinical Medical College of Yangzhou University & Northern Jiangsu People's Hospital, Yangzhou 225001, P.R. China
| | - Deyuan Fu
- Department of General Surgery, Clinical Medical College of Yangzhou University & Northern Jiangsu People's Hospital, Yangzhou 225001, P.R. China
| | - Jinhai Tang
- Department of General Surgery, the First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, P.R. China
| |
Collapse
|
24
|
Ghosh S, Luo D, He W, Chen J, Su X, Huang H. Diabetes and calcification: The potential role of anti-diabetic drugs on vascular calcification regression. Pharmacol Res 2020; 158:104861. [PMID: 32407954 DOI: 10.1016/j.phrs.2020.104861] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/22/2020] [Accepted: 04/22/2020] [Indexed: 12/15/2022]
Abstract
Vascular calcification (VC) has been well-established as an independent and strong predictor of cardiovascular diseases (CVD) as well as major cardiac adverse events (MACE). VC is associated with increased mortality in patients with CVD. Pathologically, VC is now believed to be a multi-directional active process ultimately resulting in ectopic calcium deposition in vascular beds. On the other hand, prevalence of diabetes mellitus (DM) is gradually increasing thus making the current population more prone to future CVD. Although the mechanisms involved in development and progression of VC in DM patients are not fully understood, a series of evidences demonstrated positive association between DM and VC. It has been highlighted that different cellular pathways are involved in this process. These intermediates such as tumor necrosis factor alpha (TNF-α), various interleukins (ILs) and different cell-signaling pathways are over-expressed in DM patients leading to development of VC. Thus, considering the burden and significance of VC it is of great importance to find a therapeutic approach to prevent or minimize the development of VC in DM patients. Over the past few years various anti diabetic drugs (ADDs) have been introduced and many of them showed desired glucose control. But no study demonstrated the effects of these medications on regression of VC. In this review, we will briefly discuss the current understanding on DM and VC and how commonly used ADDs modulate the development or progression of VC.
Collapse
Affiliation(s)
- Sounak Ghosh
- Cardiovascular Department, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China; Department of Cardiology, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Dongling Luo
- Cardiovascular Department, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Wanbing He
- Cardiovascular Department, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China; Department of Cardiology, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jie Chen
- Department of Radiation Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaoyan Su
- Tungwah Hospital of Sun Yat-sen University, Dongguan, China
| | - Hui Huang
- Cardiovascular Department, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China; Department of Cardiology, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
25
|
Jian J, Li S, Liu LZ, Zhen L, Yao L, Gan LH, Huang YQ, Fang N. XPD inhibits cell growth and invasion and enhances chemosensitivity in esophageal squamous cell carcinoma by regulating the PI3K/AKT signaling pathway. Int J Mol Med 2020; 46:201-210. [PMID: 32377720 PMCID: PMC7255471 DOI: 10.3892/ijmm.2020.4593] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 04/13/2020] [Indexed: 12/24/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is a lethal disease due to its high aggressiveness. The aim of the present study was to investigate the role of xeroderma pigmentosum complementation group D (XPD) in the growth and invasion of ESCC and to elucidate the potential underlying molecular mechanisms. Western blot analysis and RT-qPCR were used to detect the expression level of XPD in ESCC tissue samples and adjacent normal esophageal tissue samples. The pEGFP-N2/XPD plasmid was transfected into human ESCC cell lines (EC9706 and EC109). The proliferation, apoptosis, migration and invasion of EC9706 or EC109 cells were assessed following transfection with the XPD overexpression plasmid. The chemosensitivity of EC9706 or EC109 cells to cisplatin or fluorouracil was evaluated by CCK-8 assay. The expression levels of phosphoinositide 3-kinase (PI3K)/AKT, nuclear factor (NF)-κB, Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) and mitogen-activated protein kinase (MAPK) signaling pathway-related genes were detected by RT-qPCR and western blot analysis. The results demonstrated that the expression level of XPD was markedly lower in ESCC tissue samples than in adjacent normal esophageal tissue samples. The pEGFP-N2/XPD plasmid was successfully transfected into EC9706 or EC109 cells, inducing XPD overexpression. A High XPD expression markedly suppressed cell proliferation, migration and invasion, and increased the apoptotic rate of EC9706 and EC109 cells. Furthermore, the overexpression of XPD significantly increased the chemosensitivity of EC9706 and EC109 cells to cisplatin or fluorouracil. Following XPD overexpression, the expression levels of PI3K, p-AKT, c-Myc, Cyclin D1, Bcl-2, vascular endothelial growth factor (VEGF) and matrix metalloproteinase (MMP)-9 were markedly downregulated, while the expression level of p21 was markedly upregulated. On the whole, the findings of the present study demonstrate that XPD inhibits the growth and invasion of EC9706 and EC109 cells, whilst also enhancing the chemosensitivity of EC9706 and EC109 cells to cisplatin or fluorouracil by regulating the PI3K/AKT signaling pathway. XPD may thus be an underlying target for ESCC treatment and drug resistance.
Collapse
Affiliation(s)
- Jie Jian
- Department of Gastroenterology, Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330008, P.R. China
| | - Shuang Li
- Department of Geriatrics and General Medicine, Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330008, P.R. China
| | - Li-Zhen Liu
- Department of Oncology, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai 201800, P.R. China
| | - Li Zhen
- Department of Gastroenterology, Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330008, P.R. China
| | - Ling Yao
- Department of Gastroenterology, Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330008, P.R. China
| | - Li-Hong Gan
- Department of Gastroenterology, Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330008, P.R. China
| | - Ya-Qing Huang
- Department of Gastroenterology, Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330008, P.R. China
| | - Nian Fang
- Department of Gastroenterology, Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330008, P.R. China
| |
Collapse
|
26
|
Zhu Y, Cui J, Liu J, Hua W, Wei W, Sun G. Sp2 promotes invasion and metastasis of hepatocellular carcinoma by targeting TRIB3 protein. Cancer Med 2020; 9:3592-3603. [PMID: 32160655 PMCID: PMC7221442 DOI: 10.1002/cam4.2977] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 01/20/2020] [Accepted: 02/14/2020] [Indexed: 12/27/2022] Open
Abstract
Objective To explore the biological function and molecular mechanism of Sp2 in hepatocellular carcinoma (HCC). Methods Tissue microarray immunohistochemistry and western blot were used to study the expression of Sp2 in hepatocellular tissue and adjacent non‐neoplastic tissues (ANT). In HCC cell lines, the role of Sp2 was determined by in vitro experiments such as CCK8, clone formation test, Transwell assay, wound‐healing assay, and flow cytometry apoptotic analysis, and its possible mechanism was analyzed. Results Compared with ANT, Sp2 expression in HCC tissues was significantly up‐regulated, which was strongly associated with stage of tumor and poor prognosis of patients. TCGA database were further confirmed these results. Besides, functional studies had shown that Sp2 knockdown not only leads to a decrease in cell proliferation and an increase in cell apoptosis but also inhibits the cells' abilities of migration and invasion. Sp2 silencing could inhibit the expression of TRIB3 protein and down‐regulate the endoplasmic reticulum stress (ERS) level of HCC. Conclusion Sp2 may play a part in promoting cancer by regulating TRIB3 protein, which may be a factor of prognostic and a potential new therapeutic target for HCC.
Collapse
Affiliation(s)
- Yue Zhu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jie Cui
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jiatao Liu
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wei Hua
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Guoping Sun
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
27
|
Vellingiri B, Iyer M, Devi Subramaniam M, Jayaramayya K, Siama Z, Giridharan B, Narayanasamy A, Abdal Dayem A, Cho SG. Understanding the Role of the Transcription Factor Sp1 in Ovarian Cancer: from Theory to Practice. Int J Mol Sci 2020; 21:E1153. [PMID: 32050495 PMCID: PMC7038193 DOI: 10.3390/ijms21031153] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/01/2020] [Accepted: 02/04/2020] [Indexed: 12/23/2022] Open
Abstract
Ovarian cancer (OC) is one of the deadliest cancers among women contributing to high risk of mortality, mainly owing to delayed detection. There is no specific biomarker for its detection in early stages. However, recent findings show that over-expression of specificity protein 1 (Sp1) is involved in many OC cases. The ubiquitous transcription of Sp1 apparently mediates the maintenance of normal and cancerous biological processes such as cell growth, differentiation, angiogenesis, apoptosis, cellular reprogramming and tumorigenesis. Sp1 exerts its effects on cellular genes containing putative GC-rich Sp1-binding site in their promoters. A better understanding of the mechanisms underlying Sp1 transcription factor (TF) regulation and functions in OC tumorigenesis could help identify novel prognostic markers, to target cancer stem cells (CSCs) by following cellular reprogramming and enable the development of novel therapies for future generations. In this review, we address the structure, function, and biology of Sp1 in normal and cancer cells, underpinning the involvement of Sp1 in OC tumorigenesis. In addition, we have highlighted the influence of Sp1 TF in cellular reprogramming of iPSCs and how it plays a role in controlling CSCs. This review highlights the drugs targeting Sp1 and their action on cancer cells. In conclusion, we predict that research in this direction will be highly beneficial for OC treatment, and chemotherapeutic drugs targeting Sp1 will emerge as a promising therapy for OC.
Collapse
Affiliation(s)
- Balachandar Vellingiri
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641046, India
| | - Mahalaxmi Iyer
- Department of Zoology, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore 641043, India; (M.I.); (K.J.)
| | - Mohana Devi Subramaniam
- Department of Genetics and Molecular Biology, Vision Research Foundation, Sankara Nethralaya, Chennai 600006, India;
| | - Kaavya Jayaramayya
- Department of Zoology, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore 641043, India; (M.I.); (K.J.)
| | - Zothan Siama
- Department of Zoology, School of Life-science, Mizoram University, Aizawl 796004, Mizoram, India;
| | - Bupesh Giridharan
- R&D Wing, Sree Balaji Medical College and Hospital (SBMCH), BIHER, Chromepet, Chennai 600044, Tamil Nadu, India;
| | - Arul Narayanasamy
- Disease Proteomics Laboratory, Department of Zoology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India;
| | - Ahmed Abdal Dayem
- Molecular & Cellular Reprogramming Center, Department of Stem Cell & Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea;
| | - Ssang-Goo Cho
- Molecular & Cellular Reprogramming Center, Department of Stem Cell & Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea;
| |
Collapse
|
28
|
Ding A, Bian YY, Zhang ZH. SP1/TGF‑β1/SMAD2 pathway is involved in angiogenesis during osteogenesis. Mol Med Rep 2020; 21:1581-1589. [PMID: 32016481 PMCID: PMC7003058 DOI: 10.3892/mmr.2020.10965] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 11/26/2019] [Indexed: 11/17/2022] Open
Abstract
The relationship between osteoblasts and angiogenesis is vital for bone regeneration, especially mandibular and maxillary bones. Transforming growth factor β1 (TGF-β1) and vascular endothelial growth factor (VEGF) are closely related to angiogenesis; however, the regulatory mechanism between them remains unknown. The present study aimed to reveal this mechanism to provide novel insight for development of potential therapeutic opportunities. Western blotting and reverse transcription-quantitative PCR was used to assess the protein and mRNA expression levels in MC3T3-E1 preosteoblast cells and HUVECs, ELISAs were used to detect the expression levels of secreted VEGF, MTT assays were used to assess the viability of the cells, migratory ability was assessed using Transwell assays, angiogenesis assays were used to analyze the formation of blood vessels, and TGF-β1 regulation was confirmed using a dual-luciferase reporter assay. The overexpression of specificity protein 1 (SP1) or TGF-β1 increased VEGF expression levels and secretion, and promoted angiogenesis of co-cultured HUVECs. SP1 also promoted SMAD2 phosphorylation. These effects of SP1 were all reversed by the TGF-β1 inhibitor. The VEGF inhibitor bevacizumab also reduced the SP1/TGF-β1/SMAD2 pathway-induced angiogenesis of preosteoblasts. In conclusion, it was demonstrated that SP1 promoted TGF-β1 expression, activated the SMAD2 pathway and induced VEGF secretion, which may enhance angiogenic processes in preosteoblasts.
Collapse
Affiliation(s)
- Ao Ding
- Department of Stomatology, The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, P.R. China
| | - Ying-Ying Bian
- Department of Stomatology, The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, P.R. China
| | - Zhi-Hong Zhang
- Department of Stomatology, The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, P.R. China
| |
Collapse
|
29
|
Liu N, Guo XH, Liu JP, Cong YS. Role of telomerase in the tumour microenvironment. Clin Exp Pharmacol Physiol 2019; 47:357-364. [PMID: 31799699 DOI: 10.1111/1440-1681.13223] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/28/2019] [Accepted: 12/01/2019] [Indexed: 12/14/2022]
Abstract
Telomeres are specialized genomic structures that protect chromosomal ends to maintain genomic stability. Telomeric length is primarily regulated by the telomerase complex, essentially consisting of an RNA template (TERC), an enzymatic subunit (telomerase reverse transcriptase, TERT). In humans, telomerase activity is repressed during embryonic differentiation and is absent in most somatic cells. However, it is upregulated or reactivated in 80%-90% of the primary tumours in humans. The human TERT (hTERT) plays a pivotal role in cellular immortality and tumourigenesis. However, the molecular mechanisms of telomerase functioning in cancer have not been fully understood beyond the telomere maintenance. Several research groups, including ours, have demonstrated that hTERT possesses vital functions independent of its telomere maintenance, including angiogenesis, inflammation, cancer cell stemness, and epithelial-mesenchymal transformation (EMT). All these telomere-independent activities of hTERT may contribute to the regulation of the dynamics and homeostasis of the tumour microenvironment (TME), thereby promoting tumour growth and development. Cancer progression and metastasis largely depend upon the interactions between cancer cells and their microenvironment. In this review, the involvement of TERT in the tumour microenvironment and the underlying implications in cancer therapeutics have been summarized.
Collapse
Affiliation(s)
- Ning Liu
- College of Food Sciences and Technology, Shanghai Ocean University, Shanghai, China
| | - Xue-Hua Guo
- College of Food Sciences and Technology, Shanghai Ocean University, Shanghai, China
| | - Jun-Ping Liu
- Institute of Aging Research, Hangzhou Normal University School of Medicine, Hangzhou, China
| | - Yu-Sheng Cong
- Institute of Aging Research, Hangzhou Normal University School of Medicine, Hangzhou, China.,Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou, China
| |
Collapse
|
30
|
Li X, Fu Y, Xia X, Zhang X, Xiao K, Zhuang X, Zhang Y. Knockdown of SP1/Syncytin1 axis inhibits the proliferation and metastasis through the AKT and ERK1/2 signaling pathways in non-small cell lung cancer. Cancer Med 2019; 8:5750-5759. [PMID: 31397118 PMCID: PMC6746043 DOI: 10.1002/cam4.2448] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 05/13/2019] [Accepted: 07/14/2019] [Indexed: 12/30/2022] Open
Abstract
Syncytin 1 is considered as an oncogene in various malignant tumors, but its effect on non-small cell lung cancer (NSCLC) has not been reported. We investigated the specific role of Syncytin 1 on NSCLC through the transfection of Syncytin 1 knockdown or overexpression plamids in A549 cells. Our results proved that knockdown of Syncytin 1 inhibited the proliferation, and blocked the cell cycle on G1 phase by inhibiting the expression of Nusap1, Cyclin D1, CDK6, and CDK4. Cell cycle arrest also leaded to increased apoptosis in Syncytin 1 knockdown cells. Suppression of Syncytin 1 inhibited the migration and invasion, as well as the expressions of epithelial-mesenchymal transition (EMT) makers, N-cadherin, β-catenin, and Vimentin, indicating that Syncytin 1 knockdown inhibited the metastasis via reversing the EMT process in A549 cells. The phosphorylation levels of Akt, mTOR, and Erk1/2 were all decreased in Syncytin 1 knockdown cells, suggesting the signaling pathways by which Syncytin 1 operated as an oncogene in NSCLC. Moreover, the underexpression of transcription factor SP1 downregulated the Syncytin 1 expression in A549 cells. The rescue experiment of Syncytin 1 in SP1 knockdown cells further proved that Syncytin 1 could block the inhibition of cell growth induced by SP1 knockdown. In conclusion, knockdown of SP1/Syncytin1 axis inhibited the progression of NSCLC by the reversion of tumor epithelial-mesenchymal transition process and suppression of Akt and Erk signaling pathways, suggesting that they are potential targets for targeted therapy of NSCLC.
Collapse
Affiliation(s)
- Xiaohui Li
- Department of Clinical Laboratory MedicineShandong University Qilu HospitalJinanChina
| | - Yang Fu
- Jinan Maternity and Child Care HospitalJinanChina
| | - Xiyan Xia
- Jinan‐Vocational College of NursingJinanChina
| | - Xin Zhang
- Department of Clinical Laboratory MedicineShandong University Qilu HospitalJinanChina
| | - Ke Xiao
- Department of Clinical Laboratory MedicineShandong University Qilu HospitalJinanChina
| | - Xuewei Zhuang
- Department of Clinical Laboratory MedicineShandong University Qilu HospitalJinanChina
| | - Yi Zhang
- Department of Clinical Laboratory MedicineShandong University Qilu HospitalJinanChina
| |
Collapse
|
31
|
Liu XB, Wang J, Li K, Fan XN. Sp1 promotes cell migration and invasion in oral squamous cell carcinoma by upregulating Annexin A2 transcription. Mol Cell Probes 2019; 46:101417. [PMID: 31254619 DOI: 10.1016/j.mcp.2019.06.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 06/24/2019] [Accepted: 06/24/2019] [Indexed: 12/27/2022]
Abstract
Oral squamous cell carcinoma (OSCC) is a common malignant tumor with high metastatic potential in head and neck. Revealing the mechanism of OSCC metastasis will benefit the prognosis and prevention of OSCC. Sp1 is a transcription factor involved in the progression of several tumors. Annexin A2 functions as an oncogene, and there are three putative Sp1 binding sites in the Annexin A2 promoter region. Therefore, we hypothesized that Sp1 could regulate OSCC metastasis by regulating Annexin A2 expression. Quantitative real-time PCR (qRT-PCR) and Western blot were used to evaluate Sp1 or Annexin A2 expression. Transwell assays were used to evaluate the migration and invasion capacity of OSCC cells. Luciferase assays and Chromatin immunoprecipitation assays were used to verify whether Sp1 regulate Annexin A2 at the transcriptional level. We found that the expression of Sp1 increased in OSCC tissues compared to paired adjacent normal tissues, and the overexpression of Sp1 was associated with tumor metastasis. Furthermore, Sp1 promoted cell migration and invasion through Annexin A2. In addition, we verified that Sp1 controls Annexin A2 expression at the transcriptional level and identified the binding sites involved. Our study suggests that Sp1/Annexin A2 expression could be a promising prognostic biomarker and therapeutic target for OSCC metastasis.
Collapse
Affiliation(s)
- Xian-Bin Liu
- Oral and maxillofacial surgery, Liaocheng People's Hospital, Liaocheng, Shandong, China
| | - Jing Wang
- Department of Clinical Laboratory, Liaocheng People's Hospital, Liaocheng, Shandong, China
| | - Ke Li
- Central Laboratory, Liaocheng People's Hospital, Liaocheng, Shandong, China
| | - Xian-Nan Fan
- Central Laboratory, Liaocheng People's Hospital, Liaocheng, Shandong, China.
| |
Collapse
|
32
|
Zhao J, Ding D, Zhao G. Reduced miR-202 levels enhanced oral cancer development via targeting Sp1. Exp Ther Med 2019; 18:489-496. [PMID: 31258685 PMCID: PMC6566103 DOI: 10.3892/etm.2019.7603] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 04/18/2019] [Indexed: 12/11/2022] Open
Abstract
The current study aimed to evaluate the possible role of microRNA (miR)-202 in the development of oral cancer. First, miR-202 levels were found to be decreased in the serum and tissues of oral cancer patients compared with healthy controls. Receiver operating characteristic analysis was carried out to explore the diagnostic value of serum miR-202 for oral cancer. Overexpression of miR-202 significantly decreased the migratory capacity of SCC-9 cells, while inhibition of miR-202 markedly increased the migratory capacity of SCC-9 cells. Moreover, the invasive capacity was decreased in SCC-9 cells transfected with an miR-202 mimic. In addition, the invasive capacity was enhanced in SCC-9 cells transfected with an miR-202 inhibitor. A dual luciferase reporter assay showed that overexpression of miR-202 markedly suppressed the relative luciferase activity of the pmirGLO-SP1-3'untranslated region. Overexpression of miR-202 suppressed the protein level of Sp1, but inhibition of miR-202 markedly enhanced the protein expression of Sp1. Inhibition of miR-202 enhanced the phosphorylation of protein kinase B. Additionally, the correlations between the expression levels of Sp1 and miR-202 and the clinicopathological factors of oral cancer were analyzed. The results showed that patients with high expression of Sp1 and miR-202 progressed to earlier clinical stages, had deeper infiltration depths and were more prone to lymph node metastasis compared with the healthy controls. In conclusion, the current study presented novel data indicating that decreased miR-202 enhanced the progression of oral cancer via Sp1.
Collapse
Affiliation(s)
- Jia Zhao
- Special Clinic, Jinan Stomatology Hospital, Jinan, Shandong 250001, P.R. China
| | - Deguang Ding
- Department of Stomatology, Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250001, P.R. China
| | - Ge Zhao
- Department of Stomatology, Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250001, P.R. China
| |
Collapse
|
33
|
The Possible Pathogenesis of Idiopathic Pulmonary Fibrosis considering MUC5B. BIOMED RESEARCH INTERNATIONAL 2019; 2019:9712464. [PMID: 31309122 PMCID: PMC6594326 DOI: 10.1155/2019/9712464] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 04/18/2019] [Accepted: 05/08/2019] [Indexed: 12/27/2022]
Abstract
Background Overexpression of the MUC5B protein is associated with idiopathic pulmonary fibrosis (IPF), but little information is available regarding the pathogenic effects and regulatory mechanisms of overexpressed MUC5B in IPF. Main Body The overexpression of MUC5B in terminal bronchi and honeycomb cysts produces mucosal host defensive dysfunction in the distal airway which may play an important role in the development of IPF. This review addresses the possible association of overexpression of MUC5B, with MUC5B promoter polymorphism, MUC5B gene epigenetic changes, effects of some transcriptional factors, and inflammatory mediators in IPF. In addition, the associated signaling pathways which may influence the expression of MUC5B are also discussed. Conclusion This work has important implications for further exploration of the mechanisms of overexpression of MUC5B in IPF, and future personalized treatment.
Collapse
|
34
|
Zhang H, Lu J, Jiao Y, Chen Q, Li M, Wang Z, Yu Z, Huang X, Yao A, Gao Q, Xie W, Li L, Yao P. Aspirin Inhibits Natural Killer/T-Cell Lymphoma by Modulation of VEGF Expression and Mitochondrial Function. Front Oncol 2019; 8:679. [PMID: 30693272 PMCID: PMC6339948 DOI: 10.3389/fonc.2018.00679] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 12/24/2018] [Indexed: 12/21/2022] Open
Abstract
Extranodal nasal-type natural killer/T-cell lymphoma (NKTCL) is an Epstein-Barr virus (EBV)-associated lymphoma with a strong tendency relapse or be refractory in response to chemotherapy. Development of a new strategy for NKTCL treatment is still quite necessary. In this study, we found that aspirin treatment suppresses VEGF expression in NKTCL SNK-6 cells. Further investigation showed that aspirin treatment increases histone methylation in the range of −100~0 that is proximal to the transcription start site on the VEGF promoter, subsequently decreasing the binding ability of Sp1 to the VEGF promoter with VEGF suppression. Furthermore, aspirin treatment modulates mitochondrial function with increased ROS formation and apoptosis in NKTCL cells. Aspirin treatment alone slightly inhibits NKTCL SNK-6 tumor growth and EBV replication; while in the presence of histone deacetylase inhibitor (HDACi) chidamide (CDM), aspirin significantly suppresses the VEGF signaling pathway with increased ROS overgeneration and EBV inhibition. We also showed that with the addition of chidamide, aspirin significantly suppresses NKTCL tumor growth in both in vitro cell culture and in vivo mouse model with prolonged mouse survival. This is the first time that the potential mechanism for aspirin-mediated VEGF suppression and anti-tumor effect has been discovered, and this study provides a new strategy for anti-tumor drug development for NKTCL treatment based on aspirin-mediated targeting of the VEGF signaling pathway and ROS formation.
Collapse
Affiliation(s)
- Hongyu Zhang
- Department of Hematology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Jianping Lu
- Department of Child Psychiatry, Kangning Hospital of Shenzhen, Shenzhen, China
| | - Yun Jiao
- Department of Pediatrics, Hainan Maternal and Child Health Hospital, Haikou, China
| | - Qi Chen
- Department of Hematology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Min Li
- Institute of Rehabilitation Center, Tongren Hospital of Wuhan University, Wuhan, China
| | - Zichen Wang
- Department of Child Psychiatry, Kangning Hospital of Shenzhen, Shenzhen, China
| | - Zhendong Yu
- Department of Hematology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Xiaodong Huang
- Institute of Rehabilitation Center, Tongren Hospital of Wuhan University, Wuhan, China
| | - Athena Yao
- Institute of Rehabilitation Center, Tongren Hospital of Wuhan University, Wuhan, China
| | - Qiong Gao
- Department of Gynecology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Weiguo Xie
- Institute of Rehabilitation Center, Tongren Hospital of Wuhan University, Wuhan, China
| | - Ling Li
- Department of Pediatrics, Hainan Maternal and Child Health Hospital, Haikou, China
| | - Paul Yao
- Department of Hematology, Peking University Shenzhen Hospital, Shenzhen, China.,Department of Child Psychiatry, Kangning Hospital of Shenzhen, Shenzhen, China.,Department of Pediatrics, Hainan Maternal and Child Health Hospital, Haikou, China.,Institute of Rehabilitation Center, Tongren Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
35
|
Ren Y, Zhang H, Jiang P. MicroRNA-382 inhibits cell growth and migration in colorectal cancer by targeting SP1. Biol Res 2018; 51:51. [PMID: 30474556 PMCID: PMC6260849 DOI: 10.1186/s40659-018-0200-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 11/18/2018] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Emerging evidence showed that microRNAs (miRs) play critical roles in human cancers by functioning as either tumor suppressor or oncogene. MIR-382 was found to function as tumor suppressor in certain cancers. However, the role of MIR-382 in colorectal cancer (CRC) is largely unknown. Specificity protein 1 (SP1) is highly expressed in several cancers including CRC and is correlated with poor prognosis, but it is unclear whether or not MIR-382 can regulate the expression of SP1. METHODS MIR-382 expression level was measured by reverse transcription-quantitative polymerase chain reaction. The connection between MIR-382 and SP1 was validated by luciferase activity reporter assay and western blot assay. Cell counting kit-8 assay and wound-healing assay were conducted to investigate the biological functions of MIR-382 in CRC. RESULTS In this study, we found MIR-382 expression was downregulated in CRC tissues and cell lines, and the transfection of MIR-382 mimic decreased cell growth and migration. Furthermore, we identified SP1 was a direct target of MIR-382. Overexpression of MIR-382 decreased the expression of SP1, whereas MIR-382 knockdown promoted SP1 expression. We also observed an inversely correlation between MIR-382 and SP1 in CRC tissues. Additionally, we showed that knockdown of SP1 inhibited cell growth and migration and attenuated the effect of MIR-382 inhibitor on cell behaviors. CONCLUSIONS In conclusion, the present study describes a potential mechanism underlying a MIR-382/SP1 link contributing to CRC development. Thus, MIR-382 may be able to be developed as a novel treatment target for CRC.
Collapse
Affiliation(s)
- Yupeng Ren
- Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, NO.44 Xiaoheyan Road, Dadong District, Shenyang, 110042 People’s Republic of China
| | - Hao Zhang
- Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, NO.44 Xiaoheyan Road, Dadong District, Shenyang, 110042 People’s Republic of China
| | - Peng Jiang
- Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, NO.44 Xiaoheyan Road, Dadong District, Shenyang, 110042 People’s Republic of China
| |
Collapse
|
36
|
Fang H, Jin J, Huang D, Yang F, Guan X. PAI-1 induces Src inhibitor resistance via CCL5 in HER2-positive breast cancer cells. Cancer Sci 2018; 109:1949-1957. [PMID: 29601121 PMCID: PMC5989873 DOI: 10.1111/cas.13593] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 03/16/2018] [Accepted: 03/21/2018] [Indexed: 12/14/2022] Open
Abstract
Tyrosine kinase Src is overexpressed and activated in various tumors, including breast cancer, and is supposed to promote cancer formation and development. Src inhibitors have been developed recently and have shown efficacy in breast cancer as a single agent or in combination with anti‐HER2 antibodies or chemotherapy. Unfortunately, the potency of Src inhibitor is limited by the development of drug resistance. In our study, we established an Src inhibitor saracatinib‐resistant breast cancer cell line (SKBR‐3/SI) for the first time and by evaluating mRNA expression profile, we found that plasminogen activator inhibitor‐1 (PAI‐1) was upregulated in saracatinib‐resistant cells compared to the parent cells. Further study demonstrated that PAI‐1 might induce saracatinib resistance in breast cancer cells by increasing the secretion of chemokine (C‐C motif) ligand 5 (CCL5). Functional assays showed that PAI‐1 and CCL5 overexpression promoted cell proliferation and migration in breast cancer cells, while inhibition of PAI‐1 and CCL5 decreased cell proliferation and migration in saracatinib‐resistant cells. We also showed that targeting PAI‐1 or CCL5 could reverse saracatinib resistance, which deserves more attention in clinical settings.
Collapse
Affiliation(s)
- Hehui Fang
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Juan Jin
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Doudou Huang
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Fang Yang
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xiaoxiang Guan
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|