1
|
Soto Gomez M, Brown MJM, Pironon S, Bureš P, Verde Arregoitia LD, Veselý P, Elliott TL, Zedek F, Pellicer J, Forest F, Nic Lughadha E, Leitch IJ. Genome size is positively correlated with extinction risk in herbaceous angiosperms. THE NEW PHYTOLOGIST 2024; 243:2470-2485. [PMID: 39080986 DOI: 10.1111/nph.19947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 06/02/2024] [Indexed: 08/23/2024]
Abstract
Angiosperms with large genomes experience nuclear-, cellular-, and organism-level constraints that may limit their phenotypic plasticity and ecological niche, which could increase their risk of extinction. Therefore, we test the hypotheses that large-genomed species are more likely to be threatened with extinction than those with small genomes, and that the effect of genome size varies across three selected covariates: life form, endemism, and climatic zone. We collated genome size and extinction risk information for a representative sample of angiosperms comprising 3250 species, which we analyzed alongside life form, endemism, and climatic zone variables using a phylogenetic framework. Genome size is positively correlated with extinction risk, a pattern driven by a signal in herbaceous but not woody species, regardless of climate and endemism. The influence of genome size is stronger in endemic herbaceous species, but is relatively homogenous across different climates. Beyond its indirect link via endemism and climate, genome size is associated with extinction risk directly and significantly. Genome size may serve as a proxy for difficult-to-measure parameters associated with resilience and vulnerability in herbaceous angiosperms. Therefore, it merits further exploration as a useful biological attribute for understanding intrinsic extinction risk and augmenting plant conservation efforts.
Collapse
Affiliation(s)
| | | | - Samuel Pironon
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
- UN Environment Programme World Conservation Monitoring Centre (UNEP-WCMC), Cambridge, CB3 0DL, UK
- School of Biological and Behavioral Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Petr Bureš
- Faculty of Science, Department of Botany and Zoology, Masaryk University, Brno, 61137, Czech Republic
| | | | - Pavel Veselý
- Faculty of Science, Department of Botany and Zoology, Masaryk University, Brno, 61137, Czech Republic
| | - Tammy L Elliott
- Faculty of Science, Department of Botany and Zoology, Masaryk University, Brno, 61137, Czech Republic
- Department of Biological Sciences, University of Cape Town, Cape Town, 7700, South Africa
| | - František Zedek
- Faculty of Science, Department of Botany and Zoology, Masaryk University, Brno, 61137, Czech Republic
| | - Jaume Pellicer
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
- Institut Botanic de Barcelona (IBB), CSIC-CMCNB, Barcelona, 08038, Spain
| | - Félix Forest
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
| | | | - Ilia J Leitch
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
| |
Collapse
|
2
|
Mancini G, Santini L, Cazalis V, Akçakaya HR, Lucas PM, Brooks TM, Foden W, Di Marco M. A standard approach for including climate change responses in IUCN Red List assessments. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2024; 38:e14227. [PMID: 38111977 DOI: 10.1111/cobi.14227] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/18/2023] [Accepted: 10/05/2023] [Indexed: 12/20/2023]
Abstract
The International Union for Conservation of Nature (IUCN) Red List is a central tool for extinction risk monitoring and influences global biodiversity policy and action. But, to be effective, it is crucial that it consistently accounts for each driver of extinction. Climate change is rapidly becoming a key extinction driver, but consideration of climate change information remains challenging for the IUCN. Several methods can be used to predict species' future decline, but they often fail to provide estimates of the symptoms of endangerment used by IUCN. We devised a standardized method to measure climate change impact in terms of change in habitat quality to inform criterion A3 on future population reduction. Using terrestrial nonvolant tetrapods as a case study, we measured this impact as the difference between the current and the future species climatic niche, defined based on current and future bioclimatic variables under alternative model algorithms, dispersal scenarios, emission scenarios, and climate models. Our models identified 171 species (13% out of those analyzed) for which their current red-list category could worsen under criterion A3 if they cannot disperse beyond their current range in the future. Categories for 14 species (1.5%) could worsen if maximum dispersal is possible. Although ours is a simulation exercise and not a formal red-list assessment, our results suggest that considering climate change impacts may reduce misclassification and strengthen consistency and comprehensiveness of IUCN Red List assessments.
Collapse
Affiliation(s)
- Giordano Mancini
- Department of Biology and Biotechnologies "Charles Darwin,", Sapienza University of Rome, Rome, Italy
| | - Luca Santini
- Department of Biology and Biotechnologies "Charles Darwin,", Sapienza University of Rome, Rome, Italy
| | - Victor Cazalis
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Leipzig University, Leipzig, Germany
| | - H Reşit Akçakaya
- Department of Ecology and Evolution, Stony Brook University, New York, New York, USA
- IUCN Species Survival Commission (SSC), Gland, Switzerland
| | - Pablo M Lucas
- Department of Biology and Biotechnologies "Charles Darwin,", Sapienza University of Rome, Rome, Italy
- Departamento de Biología Vegetal y Ecología, Universidad de Sevilla, Sevilla, Spain
| | - Thomas M Brooks
- IUCN Species Survival Commission (SSC), Gland, Switzerland
- World Agroforestry Center (ICRAF), University of The Philippines Los Baños, Los Baños, Philippines
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Wendy Foden
- Cape Research Centre, South African National Parks, Cape Town, South Africa
- Global Change Biology Group, Department of Botany and Zoology, University of Stellenbosch, Stellenbosch, South Africa
| | - Moreno Di Marco
- Department of Biology and Biotechnologies "Charles Darwin,", Sapienza University of Rome, Rome, Italy
| |
Collapse
|
3
|
Bachman SP, Brown MJM, Leão TCC, Nic Lughadha E, Walker BE. Extinction risk predictions for the world's flowering plants to support their conservation. THE NEW PHYTOLOGIST 2024; 242:797-808. [PMID: 38437880 DOI: 10.1111/nph.19592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 01/23/2024] [Indexed: 03/06/2024]
Abstract
More than 70% of all vascular plants lack conservation status assessments. We aimed to address this shortfall in knowledge of species extinction risk by using the World Checklist of Vascular Plants to generate the first comprehensive set of predictions for a large clade: angiosperms (flowering plants, c. 330 000 species). We used Bayesian Additive Regression Trees (BART) to predict the extinction risk of all angiosperms using predictors relating to range size, human footprint, climate, and evolutionary history and applied a novel approach to estimate uncertainty of individual species-level predictions. From our model predictions, we estimate 45.1% of angiosperm species are potentially threatened with a lower bound of 44.5% and upper bound of 45.7%. Our species-level predictions, with associated uncertainty estimates, do not replace full global, or regional Red List assessments, but can be used to prioritise predicted threatened species for full Red List assessment and fast-track predicted non-threatened species for Least Concern assessments. Our predictions and uncertainty estimates can also guide fieldwork, inform systematic conservation planning and support global plant conservation efforts and targets.
Collapse
|
4
|
de Lima RAF, Dauby G, de Gasper AL, Fernandez EP, Vibrans AC, Oliveira AAD, Prado PI, Souza VC, F de Siqueira M, Ter Steege H. Comprehensive conservation assessments reveal high extinction risks across Atlantic Forest trees. Science 2024; 383:219-225. [PMID: 38207046 DOI: 10.1126/science.abq5099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 12/05/2023] [Indexed: 01/13/2024]
Abstract
Biodiversity is declining globally, yet many biodiversity hotspots still lack comprehensive species conservation assessments. Using multiple International Union for Conservation of Nature (IUCN) Red List criteria to evaluate extinction risks and millions of herbarium and forest inventory records, we present automated conservation assessments for all tree species of the Atlantic Forest biodiversity hotspot, including ~1100 heretofore unassessed species. About 65% of all species and 82% of endemic species are classified as threatened. We rediscovered five species classified as Extinct on the IUCN Red List and identified 13 endemics as possibly extinct. Uncertainties in species information had little influence on the assessments, but using fewer Red List criteria severely underestimated threat levels. We suggest that the conservation status of tropical forests worldwide is worse than previously reported.
Collapse
Affiliation(s)
- Renato A F de Lima
- Tropical Botany, Naturalis Biodiversity Center, Darwinweg 2, 2333 CR Leiden, Netherlands
- Departamento de Ciências Biológicas, ESALQ, Universidade de São Paulo, Avenida Pádua Dias, 11, 13418-900 Piracicaba, Brazil
| | - Gilles Dauby
- Botanique et Modélisation de l'Architecture des Plantes et des Végétations (AMAP), Université de Montpellier, IRD, CNRS, INRAE, CIRAD, Montpellier, France
| | - André L de Gasper
- Departamento de Ciências Naturais, Universidade Regional de Blumenau, Rua Antônio da Veiga, 140, 89030-903 Blumenau, Brazil
| | - Eduardo P Fernandez
- Centro Nacional de Conservação da Flora (IUCN SSC Brazil Plant Red List Authority), Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rua Pacheco Leão, 915, 22460-030 Rio de Janeiro, Brazil
| | - Alexander C Vibrans
- Departamento de Engenharia Florestal, Universidade Regional de Blumenau, Rua São Paulo, 3250, 89030-000 Blumenau, Brazil
| | - Alexandre A de Oliveira
- Departamento de Ecologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, trav. 14, 321, 05508-090 São Paulo, Brazil
| | - Paulo I Prado
- Departamento de Ecologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, trav. 14, 321, 05508-090 São Paulo, Brazil
| | - Vinícius C Souza
- Departamento de Ciências Biológicas, ESALQ, Universidade de São Paulo, Avenida Pádua Dias, 11, 13418-900 Piracicaba, Brazil
| | - Marinez F de Siqueira
- Centro Nacional de Conservação da Flora (IUCN SSC Brazil Plant Red List Authority), Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rua Pacheco Leão, 915, 22460-030 Rio de Janeiro, Brazil
- Departamento de Biologia, Pontifícia Universidade Católica do Rio de Janeiro, Rua Marquês de São Vicente 225, 22451-900 Rio de Janeiro, Brazil
| | - Hans Ter Steege
- Tropical Botany, Naturalis Biodiversity Center, Darwinweg 2, 2333 CR Leiden, Netherlands
- Quantitative Biodiversity Dynamics, Department of Biology, Utrecht University, 3584 CS Utrecht, Netherlands
| |
Collapse
|
5
|
Cazalis V, Santini L, Lucas PM, González-Suárez M, Hoffmann M, Benítez-López A, Pacifici M, Schipper AM, Böhm M, Zizka A, Clausnitzer V, Meyer C, Jung M, Butchart SHM, Cardoso P, Mancini G, Akçakaya HR, Young BE, Patoine G, Di Marco M. Prioritizing the reassessment of data-deficient species on the IUCN Red List. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2023; 37:e14139. [PMID: 37394972 DOI: 10.1111/cobi.14139] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 06/05/2023] [Accepted: 06/08/2023] [Indexed: 07/04/2023]
Abstract
Despite being central to the implementation of conservation policies, the usefulness of the International Union for Conservation of Nature (IUCN) Red List of Threatened Species is hampered by the 14% of species classified as data-deficient (DD) because information to evaluate these species' extinction risk was lacking when they were last assessed or because assessors did not appropriately account for uncertainty. Robust methods are needed to identify which DD species are more likely to be reclassified in one of the data-sufficient IUCN Red List categories. We devised a reproducible method to help red-list assessors prioritize reassessment of DD species and tested it with 6887 DD species of mammals, reptiles, amphibians, fishes, and Odonata (dragonflies and damselflies). For each DD species in these groups, we calculated its probability of being classified in a data-sufficient category if reassessed today from covariates measuring available knowledge (e.g., number of occurrence records or published articles available), knowledge proxies (e.g., remoteness of the range), and species characteristics (e.g., nocturnality); calculated change in such probability since last assessment from the increase in available knowledge (e.g., new occurrence records); and determined whether the species might qualify as threatened based on recent rate of habitat loss determined from global land-cover maps. We identified 1907 species with a probability of being reassessed in a data-sufficient category of >0.5; 624 species for which this probability increased by >0.25 since last assessment; and 77 species that could be reassessed as near threatened or threatened based on habitat loss. Combining these 3 elements, our results provided a list of species likely to be data-sufficient such that the comprehensiveness and representativeness of the IUCN Red List can be improved.
Collapse
Affiliation(s)
- Victor Cazalis
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Leipzig University, Leipzig, Germany
| | - Luca Santini
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza Università di Roma, Rome, Italy
| | - Pablo M Lucas
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza Università di Roma, Rome, Italy
| | - Manuela González-Suárez
- Ecology and Evolutionary Biology, School of Biological Sciences, University of Reading, Reading, UK
| | | | - Ana Benítez-López
- Integrative Ecology Group, Estación Biológica de Doñana (EBD-CSIC), Sevilla, Spain
- Department of Zoology, Faculty of Science, University of Granada, Granada, Spain
| | - Michela Pacifici
- Global Mammal Assessment Programme, Department of Biology and Biotechnologies "Charles Darwin", Sapienza Università di Roma, Rome, Italy
| | - Aafke M Schipper
- Department of Environmental Science, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, Nijmegen, The Netherlands
- PBL Netherlands Environmental Assessment Agency, The Hague, The Netherlands
| | - Monika Böhm
- Global Center for Species Survival, Indianapolis Zoological Society, Indianapolis, Indiana, USA
| | - Alexander Zizka
- Department of Biology, Philipps-University Marburg, Marburg, Germany
| | | | - Carsten Meyer
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Geosciences and Geography, Martin Luther University Halle-Wittenberg, Halle, Germany
- Institute of Biology, Leipzig University, Leipzig, Germany
| | - Martin Jung
- Biodiversity, Ecology and Conservation Group, Biodiversity and Natural Resources Management Programme, International Institute for Applied Systems Analysis, Laxenburg, Austria
| | - Stuart H M Butchart
- BirdLife International, David Attenborough Building, Cambridge, UK
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Pedro Cardoso
- Laboratory for Integrative Biodiversity Research (LIBRe), Finnish Museum of Natural History Luomus, University of Helsinki, Helsinki, Finland
| | - Giordano Mancini
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza Università di Roma, Rome, Italy
| | - H Reşit Akçakaya
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, New York, USA
- IUCN Species Survival Commission (SSC), Gland, Switzerland
| | | | - Guillaume Patoine
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology, Leipzig University, Leipzig, Germany
| | - Moreno Di Marco
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza Università di Roma, Rome, Italy
| |
Collapse
|
6
|
Corlett RT. Achieving zero extinction for land plants. TRENDS IN PLANT SCIENCE 2023; 28:913-923. [PMID: 37142532 DOI: 10.1016/j.tplants.2023.03.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 03/16/2023] [Accepted: 03/18/2023] [Indexed: 05/06/2023]
Abstract
Despite the importance of plants for humans and the threats to their future, plant conservation receives far less support compared with vertebrate conservation. Plants are much cheaper and easier to conserve than are animals, but, although there are no technical reasons why any plant species should become extinct, inadequate funding and the shortage of skilled people has created barriers to their conservation. These barriers include the incomplete inventory, the low proportion of species with conservation status assessments, partial online data accessibility, varied data quality, and insufficient investment in both in and ex situ conservation. Machine learning, citizen science (CS), and new technologies could mitigate these problems, but we need to set national and global targets of zero plant extinction to attract greater support.
Collapse
Affiliation(s)
- Richard T Corlett
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Yunnan 666303, China; Center of Conservation Biology, Core Botanical Gardens, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Yunnan 666303, China.
| |
Collapse
|
7
|
Walker BE, Leão TCC, Bachman SP, Lucas E, Nic Lughadha E. Evidence-based guidelines for automated conservation assessments of plant species. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2023; 37:e13992. [PMID: 36047690 PMCID: PMC10092660 DOI: 10.1111/cobi.13992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 06/30/2022] [Accepted: 08/01/2022] [Indexed: 05/22/2023]
Abstract
Assessing species' extinction risk is vital to setting conservation priorities. However, assessment endeavors, such as those used to produce the IUCN Red List of Threatened Species, have significant gaps in taxonomic coverage. Automated assessment (AA) methods are gaining popularity to fill these gaps. Choices made in developing, using, and reporting results of AA methods could hinder their successful adoption or lead to poor allocation of conservation resources. We explored how choice of data cleaning type and level, taxonomic group, training sample, and automation method affect performance of threat status predictions for plant species. We used occurrences from the Global Biodiversity Information Facility (GBIF) to generate assessments for species in 3 taxonomic groups based on 6 different occurrence-based AA methods. We measured each method's performance and coverage following increasingly stringent occurrence cleaning. Automatically cleaned data from GBIF performed comparably to occurrence records cleaned manually by experts. However, all types of data cleaning limited the coverage of AAs. Overall, machine-learning-based methods performed well across taxa, even with minimal data cleaning. Results suggest a machine-learning-based method applied to minimally cleaned data offers the best compromise between performance and species coverage. However, optimal data cleaning, training sample, and automation methods depend on the study group, intended applications, and expertise.
Collapse
Affiliation(s)
| | | | | | - Eve Lucas
- Royal Botanic GardensKewRichmond, Surrey, TW9 3AEUK
| | | |
Collapse
|
8
|
The likely extinction of hundreds of palm species threatens their contributions to people and ecosystems. Nat Ecol Evol 2022; 6:1710-1722. [PMID: 36163257 DOI: 10.1038/s41559-022-01858-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 07/24/2022] [Indexed: 02/07/2023]
Abstract
Protecting nature's contributions to people requires accelerating extinction risk assessment and better integrating evolutionary, functional and used diversity with conservation planning. Here, we report machine learning extinction risk predictions for 1,381 palm species (Arecaceae), a plant family of high socio-economic and ecological importance. We integrate these predictions with published assessments for 508 species (covering 75% of all palm species) and we identify top-priority regions for palm conservation on the basis of their proportion of threatened evolutionarily distinct, functionally distinct and used species. Finally, we explore palm use resilience to identify non-threatened species that could potentially serve as substitutes for threatened used species by providing similar products. We estimate that over a thousand palms (56%) are probably threatened, including 185 species with documented uses. Some regions (New Guinea, Vanuatu and Vietnam) emerge as top ten priorities for conservation only after incorporating machine learning extinction risk predictions. Potential substitutes are identified for 91% of the threatened used species and regional use resilience increases with total palm richness. However, 16 threatened used species lack potential substitutes and 30 regions lack substitutes for at least one of their threatened used palm species. Overall, we show that hundreds of species of this keystone family face extinction, some of them probably irreplaceable, at least locally. This highlights the need for urgent actions to avoid major repercussions on palm-associated ecosystem processes and human livelihoods in the coming decades.
Collapse
|
9
|
Abstract
This Primer explores the implications of a new PLOS Biology study that presents an innovative method for estimating extinction risk in reptile species worldwide; this method represents a promising avenue to support Red List assessment, alongside some well-known challenges.
Collapse
Affiliation(s)
- Moreno Di Marco
- Department of Biology and Biotechnologies, Sapienza University of Rome, Rome, Italy
- * E-mail:
| |
Collapse
|
10
|
Borgelt J, Sicacha-Parada J, Skarpaas O, Verones F. Native range estimates for red-listed vascular plants. Sci Data 2022; 9:117. [PMID: 35351917 PMCID: PMC8964733 DOI: 10.1038/s41597-022-01233-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 02/24/2022] [Indexed: 01/08/2023] Open
Abstract
Besides being central for understanding both global biodiversity patterns and associated anthropogenic impacts, species range maps are currently only available for a small subset of global biodiversity. Here, we provide a set of assembled spatial data for terrestrial vascular plants listed at the global IUCN red list. The dataset consists of pre-defined native regions for 47,675 species, density of available native occurrence records for 30,906 species, and standardized, large-scale Maxent predictions for 27,208 species, highlighting environmentally suitable areas within species' native regions. The data was generated in an automated approach consisting of data scraping and filtering, variable selection, model calibration and model selection. Generated Maxent predictions were validated by comparing a subset to available expert-drawn range maps from IUCN (n = 4,257), as well as by qualitatively inspecting predictions for randomly selected species. We expect this data to serve as a substitute whenever expert-drawn species range maps are not available for conducting large-scale analyses on biodiversity patterns and associated anthropogenic impacts.
Collapse
Affiliation(s)
- Jan Borgelt
- Industrial Ecology Programme, Department of Energy and Process Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
| | - Jorge Sicacha-Parada
- Department of Mathematical Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Olav Skarpaas
- Natural History Museum, University of Oslo, Oslo, Norway
| | - Francesca Verones
- Industrial Ecology Programme, Department of Energy and Process Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
11
|
Levin MO, Meek JB, Boom B, Kross SM, Eskew EA. Using publicly available data to conduct rapid assessments of extinction risk. CONSERVATION SCIENCE AND PRACTICE 2022. [DOI: 10.1111/csp2.12628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Michael O. Levin
- Ecology, Evolution, and Environmental Biology Columbia University New York New York USA
| | - Jared B. Meek
- Ecology, Evolution, and Environmental Biology Columbia University New York New York USA
| | - Brian Boom
- New York Botanical Garden Bronx New York USA
| | - Sara M. Kross
- Ecology, Evolution, and Environmental Biology Columbia University New York New York USA
| | - Evan A. Eskew
- Department of Biology Pacific Lutheran University Tacoma Washington USA
| |
Collapse
|
12
|
Hochkirch A, Samways MJ, Gerlach J, Böhm M, Williams P, Cardoso P, Cumberlidge N, Stephenson PJ, Seddon MB, Clausnitzer V, Borges PAV, Mueller GM, Pearce-Kelly P, Raimondo DC, Danielczak A, Dijkstra KDB. A strategy for the next decade to address data deficiency in neglected biodiversity. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2021; 35:502-509. [PMID: 32656858 DOI: 10.1111/cobi.13589] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/25/2020] [Accepted: 07/03/2020] [Indexed: 06/11/2023]
Abstract
Measuring progress toward international biodiversity targets requires robust information on the conservation status of species, which the International Union for Conservation of Nature (IUCN) Red List of Threatened Species provides. However, data and capacity are lacking for most hyperdiverse groups, such as invertebrates, plants, and fungi, particularly in megadiverse or high-endemism regions. Conservation policies and biodiversity strategies aimed at halting biodiversity loss by 2020 need to be adapted to tackle these information shortfalls after 2020. We devised an 8-point strategy to close existing data gaps by reviving explorative field research on the distribution, abundance, and ecology of species; linking taxonomic research more closely with conservation; improving global biodiversity databases by making the submission of spatially explicit data mandatory for scientific publications; developing a global spatial database on threats to biodiversity to facilitate IUCN Red List assessments; automating preassessments by integrating distribution data and spatial threat data; building capacity in taxonomy, ecology, and biodiversity monitoring in countries with high species richness or endemism; creating species monitoring programs for lesser-known taxa; and developing sufficient funding mechanisms to reduce reliance on voluntary efforts. Implementing these strategies in the post-2020 biodiversity framework will help to overcome the lack of capacity and data regarding the conservation status of biodiversity. This will require a collaborative effort among scientists, policy makers, and conservation practitioners.
Collapse
Affiliation(s)
- Axel Hochkirch
- Department of Biogeography, Trier University, Trier Centre for Biodiversity Conservation, Trier, D-54286, Germany
- Department of Biogeography, IUCN SSC Invertebrate Conservation Committee, c/o Trier University, Trier, D-54286, Germany
- IUCN SSC Species Monitoring Specialist Group, c/o IUCN, Gland, 1196, Switzerland
| | - Michael J Samways
- Department of Biogeography, IUCN SSC Invertebrate Conservation Committee, c/o Trier University, Trier, D-54286, Germany
- Department of Conservation Ecology and Entomology, Stellenbosch University, Stellenbosch, 7602, South Africa
| | - Justin Gerlach
- Department of Biogeography, IUCN SSC Invertebrate Conservation Committee, c/o Trier University, Trier, D-54286, Germany
- Peterhouse, Cambridge, CB2 1RD, U.K
| | - Monika Böhm
- Department of Biogeography, IUCN SSC Invertebrate Conservation Committee, c/o Trier University, Trier, D-54286, Germany
- Institute of Zoology, Zoological Society of London, Regent's Park, London, NW1 4RY, U.K
| | | | - Pedro Cardoso
- IUCN SSC Species Monitoring Specialist Group, c/o IUCN, Gland, 1196, Switzerland
- Laboratory for Integrative Biodiversity Research (LIBRe), Finnish Museum of Natural History (LUOMUS), University of Helsinki, Helsinki, 00100, Finland
- CE3C - Centre for Ecology, Evolution and Environmental Changes/Azorean Biodiversity Group and Universidade dos Açores, Angra do Heroísmo, 9700-042, Portugal
| | - Neil Cumberlidge
- Department of Biogeography, IUCN SSC Invertebrate Conservation Committee, c/o Trier University, Trier, D-54286, Germany
- Department of Biology, Northern Michigan University, Marquette, MI, 49855, U.S.A
| | - P J Stephenson
- IUCN SSC Species Monitoring Specialist Group, c/o IUCN, Gland, 1196, Switzerland
- Science & Economic Knowledge Unit, IUCN, Gland, 1196, Switzerland
- Ecosystem Management Group, Department of Environmental Systems Science, ETH Zürich, Zürich, 8092, Switzerland
| | - Mary B Seddon
- Department of Biogeography, IUCN SSC Invertebrate Conservation Committee, c/o Trier University, Trier, D-54286, Germany
- IUCN SSC Mollusc Specialist Group, Exbourne, Okehampton, EX20 3RD, U.K
| | - Viola Clausnitzer
- Department of Biogeography, IUCN SSC Invertebrate Conservation Committee, c/o Trier University, Trier, D-54286, Germany
- Senckenberg Research Institute, Görlitz, 02826, Germany
| | - Paulo A V Borges
- Department of Biogeography, IUCN SSC Invertebrate Conservation Committee, c/o Trier University, Trier, D-54286, Germany
- IUCN SSC Species Monitoring Specialist Group, c/o IUCN, Gland, 1196, Switzerland
- CE3C - Centre for Ecology, Evolution and Environmental Changes/Azorean Biodiversity Group and Universidade dos Açores, Angra do Heroísmo, 9700-042, Portugal
| | - Gregory M Mueller
- Negaunee Institute for Plant Conservation and Action, Chicago Botanic Garden, Glencoe, IL, 60022, U.S.A
| | | | | | - Anja Danielczak
- Department of Biogeography, Trier University, Trier Centre for Biodiversity Conservation, Trier, D-54286, Germany
| | | |
Collapse
|
13
|
Albani Rocchetti G, Armstrong CG, Abeli T, Orsenigo S, Jasper C, Joly S, Bruneau A, Zytaruk M, Vamosi JC. Reversing extinction trends: new uses of (old) herbarium specimens to accelerate conservation action on threatened species. THE NEW PHYTOLOGIST 2021; 230:433-450. [PMID: 33280123 DOI: 10.1111/nph.17133] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/22/2020] [Indexed: 05/29/2023]
Abstract
Although often not collected specifically for the purposes of conservation, herbarium specimens offer sufficient information to reconstruct parameters that are needed to designate a species as 'at-risk' of extinction. While such designations should prompt quick and efficient legal action towards species recovery, such action often lags far behind and is mired in bureaucratic procedure. The increase in online digitization of natural history collections has now led to a surge in the number new studies on the uses of machine learning. These repositories of species occurrences are now equipped with advances that allow for the identification of rare species. The increase in attention devoted to estimating the scope and severity of the threats that lead to the decline of such species will increase our ability to mitigate these threats and reverse the declines, overcoming a current barrier to the recovery of many threatened plant species. Thus far, collected specimens have been used to fill gaps in systematics, range extent, and past genetic diversity. We find that they also offer material with which it is possible to foster species recovery, ecosystem restoration, and de-extinction, and these elements should be used in conjunction with machine learning and citizen science initiatives to mobilize as large a force as possible to counter current extinction trends.
Collapse
Affiliation(s)
| | | | - Thomas Abeli
- Department of Science, University Roma Tre, Viale G. Marconi 446, Roma, 00154, Italy
| | - Simone Orsenigo
- Department of Earth and Environmental Sciences, University of Pavia, Pavia, 27100, Italy
| | - Caroline Jasper
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Simon Joly
- Montreal Botanical Garden, Montréal, QC, H1X 2B2, Canada
- Département de Sciences Biologiques and Institut de Recherche en Biologie Végétale, Université de Montréal, Montréal, QC, H1X 2B2, Canada
| | - Anne Bruneau
- Département de Sciences Biologiques and Institut de Recherche en Biologie Végétale, Université de Montréal, Montréal, QC, H1X 2B2, Canada
| | - Maria Zytaruk
- Department of English, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Jana C Vamosi
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
| |
Collapse
|
14
|
Branco VV, Cardoso P. An expert-based assessment of global threats and conservation measures for spiders. Glob Ecol Conserv 2020. [DOI: 10.1016/j.gecco.2020.e01290] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
15
|
Volery L, Jatavallabhula D, Scillitani L, Bertolino S, Bacher S. Ranking alien species based on their risks of causing environmental impacts: a global assessment of alien ungulates. GLOBAL CHANGE BIOLOGY 2020; 27:1003-1016. [PMID: 33289257 DOI: 10.1111/gcb.15467] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/28/2020] [Indexed: 06/12/2023]
Abstract
For an efficient allocation of the limited resources to alien species management, the most damaging species should be prioritized. Comparing alien species based on their impacts is not straightforward, as the same species can cause different types and magnitudes of impacts when introduced to different contexts, making it difficult to summarize its overall impact. The Environmental Impact Classification of Alien Taxa (EICAT) systematically summarizes and compares detrimental impacts caused by alien populations to native biota and has been adopted by the International Union for Conservation of Nature (IUCN). For each alien species, all reported impacts to native populations within the introduced range are classified into five levels of severity, from negligible impact to irreversible local extinction. Currently, EICAT only compares alien species based on their highest impact, thereby ignoring variation in impact magnitudes. Here, we used information on the variation in impact magnitudes of alien species to estimate their risks to cause high impacts if introduced to a novel environment. We demonstrate the usefulness of this approach by classifying the global impacts of alien ungulates. We found impact reports for 27 of the 66 alien ungulate species established worldwide, highlighting substantial knowledge gaps in invasion science. We classified a total of 441 impacts to native fauna and flora caused by these 27 species. Twenty-six of the species were found to cause harmful impacts (native population declines or local extinctions). Mouflon (Ovis orientalis, Gmelin, 1774) and dromedary (Camelus dromedarius, Linnaeus, 1758) had a higher risk of causing local extinctions if introduced to a novel environment than sika deer (Cervus nippon, Temminck, 1838) and goats (Capra hircus, Linnaeus, 1758). Including risk of high impacts allows to discriminate among species with the same EICAT classification and improves alien species prioritization for management.
Collapse
Affiliation(s)
- Lara Volery
- Department of Biology, University of Fribourg, Chemin du Musée 10, CH-1700, Fribourg, Switzerland
| | - Divija Jatavallabhula
- Department of Biology, University of Fribourg, Chemin du Musée 10, CH-1700, Fribourg, Switzerland
| | - Laura Scillitani
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123, Torino, Italy
| | - Sandro Bertolino
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123, Torino, Italy
| | - Sven Bacher
- Department of Biology, University of Fribourg, Chemin du Musée 10, CH-1700, Fribourg, Switzerland
| |
Collapse
|
16
|
Nic Lughadha E, Bachman SP, Leão TCC, Forest F, Halley JM, Moat J, Acedo C, Bacon KL, Brewer RFA, Gâteblé G, Gonçalves SC, Govaerts R, Hollingsworth PM, Krisai‐Greilhuber I, Lirio EJ, Moore PGP, Negrão R, Onana JM, Rajaovelona LR, Razanajatovo H, Reich PB, Richards SL, Rivers MC, Cooper A, Iganci J, Lewis GP, Smidt EC, Antonelli A, Mueller GM, Walker BE. Extinction risk and threats to plants and fungi. PLANTS, PEOPLE, PLANET 2020; 2:389-408. [PMID: 0 DOI: 10.1002/ppp3.10146] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 06/09/2020] [Indexed: 05/29/2023]
Affiliation(s)
| | - Steven P. Bachman
- Conservation Science Department Royal Botanic Gardens, Kew Richmond UK
| | | | - Félix Forest
- Analytical Methods Royal Botanic Gardens, Kew Richmond UK
| | - John M. Halley
- Laboratory of Ecology Department of Biological Applications & Technology University of Ioannina Ioannina Greece
| | - Justin Moat
- Bioinformatics and Spatial Analysis Department Royal Botanic Gardens, Kew Richmond UK
| | - Carmen Acedo
- Department of Biodiversity and Environment Management Faculty of Biological and Environmental Sciences Campus of Vegazana University of León León Spain
| | - Karen L. Bacon
- Botany & Plant Sciences School of Natural Sciences National University of Ireland Galway Ireland
| | - Ryan F. A. Brewer
- Conservation Science Department Royal Botanic Gardens, Kew Richmond UK
| | - Gildas Gâteblé
- Equipe ARBOREAL Institut Agronomique néo‐Calédonien Mont‐Dore New Caledonia
| | - Susana C. Gonçalves
- Centre for Functional Ecology Department of Life Sciences University of Coimbra Coimbra Portugal
| | - Rafaël Govaerts
- Bioinformatics and Spatial Analysis Department Royal Botanic Gardens, Kew Richmond UK
| | | | - Irmgard Krisai‐Greilhuber
- Mycology Research Group Division of Systematic and Evolutionary Biology Department of Botany and Biodiversity Research University of Vienna Vienna Austria
| | - Elton J. Lirio
- Departamento de Botânica Instituto de Biociências Universidade de São Paulo São Paulo Brazil
| | | | - Raquel Negrão
- Conservation Science Department Royal Botanic Gardens, Kew Richmond UK
| | - Jean Michel Onana
- Systematics, Biodiversity and Conservation of Plants Faculty of Science University of Yaoundé I & National Herbarium of Cameroon Yaoundé Cameroon
| | - Landy R. Rajaovelona
- Conservation Science Department Royal Botanic Gardens, Kew Richmond UK
- Kew Madagascar Conservation Centre Antananarivo Madagascar
| | - Henintsoa Razanajatovo
- Conservation Science Department Royal Botanic Gardens, Kew Richmond UK
- Kew Madagascar Conservation Centre Antananarivo Madagascar
| | - Peter B. Reich
- Department of Forest Resources University of Minnesota St. Paul MN USA
- Hawkesbury Institute for the Environment Western Sydney University Penrith NSW Australia
| | | | | | - Amanda Cooper
- Bioinformatics and Spatial Analysis Department Royal Botanic Gardens, Kew Richmond UK
- Department of Biological Sciences Royal HollowayUniversity of London Egham UK
| | - João Iganci
- Instituto de Biologia Departamento de Botânica Universidade Federal de Pelotas Pelotas Brazil
- Instituto de Biociências Programa de Pós‐Graduação em Botânica Universidade Federal do Rio Grande do Sul Porto Alegre Brazil
| | - Gwilym P. Lewis
- Comparative Plant and Fungal Biology Royal Botanic Gardens, Kew Richmond UK
| | - Eric C. Smidt
- Departamento de Botânica Universidade Federal do Paraná Curitiba Brazil
| | - Alexandre Antonelli
- Royal Botanic Gardens, Kew Richmond UK
- Gothenburg Global Biodiversity Centre Department of Biological and Environmental Sciences University of Gothenburg Gothenburg Sweden
| | - Gregory M. Mueller
- Negaunee Institute for Plant Conservation Science and Action Chicago Botanic Garden Chicago IL USA
| | - Barnaby E. Walker
- Conservation Science Department Royal Botanic Gardens, Kew Richmond UK
| |
Collapse
|