1
|
Schols R, Henrard A, Brecko J, Mudavanhu A, Goossens E, Steffanie N, Clegg S, Vanhove MPM, Huyse T. Innovating stomach fluke identification: An integrative approach combining Micro-CT imaging and molecular tools. Int J Parasitol 2025:S0020-7519(25)00093-1. [PMID: 40409527 DOI: 10.1016/j.ijpara.2025.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 04/29/2025] [Accepted: 05/12/2025] [Indexed: 05/25/2025]
Abstract
The rapid loss of biodiversity driven by anthropogenic pressures highlights the urgent need for improved species identification methods. Parasites, vital ecosystem regulators, are being lost at disproportionate rates, with amphistomes-a broadly distributed group of trematode parasites, infecting all major vertebrate groups-facing significant challenges. Many amphistome species remain undescribed, and reference sequences for known species are scarce, partly due to the reliance on labour-intensive identification methods, such as Scanning Electron Microscopy (SEM) and median sagittal sections. While sagittal sectioning is particularly informative for diagnostic traits, it is destructive, requires toxic chemicals, and demands specialized personnel. In this study, we evaluated micro-computed tomography (micro-CT) imaging as a non-destructive alternative for identifying three amphistome species, Gigantocotyle gigantocotyle (Brandes in Otto, 1896); Carmyerius aff. chabaudi van Strydonck, 1970; and Carmyerius aff. endopapillatus Dollfus, 1962, isolated from the common hippopotamus, Hippopotamus amphibius Linnaeus, 1758. By comparing micro-CT imaging with traditional sectioning, SEM and incorporating molecular barcoding, we reveal the need for a taxonomic revision of Carmyerius, focussed on identifying new diagnostic characters, to better reflect species boundaries. Moreover, the integrated taxonomic effort represented in this work uncovered evidence that C. aff. chabaudi is a new species record from the common hippopotamus. Additionally, we provide high-resolution images of the original type specimens of Carmyerius cruciformis (Leiper, 1910) and G. gigantocotyle and designate new lectotypes and paralectotypes. Our findings demonstrate that micro-CT imaging is a powerful, non-invasive tool for amphistome identification, facilitating access to fragile natural history collections and advancing integrative taxonomy.
Collapse
Affiliation(s)
- Ruben Schols
- Laboratory of Aquatic Biology, Microbiome EcoEvo unit, KU Leuven Kulak, E. Sabbelaan 53, 8500 Kortrijk, Belgium; Department of Biology, Royal Museum for Central Africa, Leuvensesteenweg 13, 3080 Tervuren, Belgium.
| | - Arnaud Henrard
- Department of Biology, Royal Museum for Central Africa, Leuvensesteenweg 13, 3080 Tervuren, Belgium
| | - Jonathan Brecko
- Department of Biology, Royal Museum for Central Africa, Leuvensesteenweg 13, 3080 Tervuren, Belgium; Royal Belgian Institute of Natural Sciences, Vautierstraat 29, Brussels, Belgium.
| | - Aspire Mudavanhu
- Laboratory of Animal Ecology, Global Change and Sustainable Development, KU Leuven, Charles Deberiotstraat 32, 3000 Leuven, Belgium; Department of Biological Sciences, Bindura University of Science Education, 741 Chimurenga Road, 2634 Bindura, Zimbabwe.
| | - Emilie Goossens
- Department of Biology, Royal Museum for Central Africa, Leuvensesteenweg 13, 3080 Tervuren, Belgium; Research Group Zoology: Biodiversity & Toxicology, Centre for Environmental Sciences, Hasselt University, Agoralaan Gebouw D, 3590 Diepenbeek, Belgium.
| | - Natascha Steffanie
- Research Group Zoology: Biodiversity & Toxicology, Centre for Environmental Sciences, Hasselt University, Agoralaan Gebouw D, 3590 Diepenbeek, Belgium.
| | - Sarah Clegg
- Malilangwe Wildlife Reserve, Private Bag 7085, Chiredzi, Zimbabwe.
| | - Maarten P M Vanhove
- Research Group Zoology: Biodiversity & Toxicology, Centre for Environmental Sciences, Hasselt University, Agoralaan Gebouw D, 3590 Diepenbeek, Belgium.
| | - Tine Huyse
- Department of Biology, Royal Museum for Central Africa, Leuvensesteenweg 13, 3080 Tervuren, Belgium.
| |
Collapse
|
2
|
Alda F, Mendoza-Franco EF, Hanson-Regan W, Reina RG, Bermingham E, Torchin M. Geography is a stronger predictor of diversification of monogenean parasites (Platyhelminthes) than host relatedness in characin fishes of Middle America. PLoS One 2025; 20:e0316974. [PMID: 40299817 PMCID: PMC12040092 DOI: 10.1371/journal.pone.0316974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 03/11/2025] [Indexed: 05/01/2025] Open
Abstract
Host-parasite associations have historically been considered compelling examples of coevolution and useful in examining cospeciation. However, modern molecular methods have revealed more complex dynamics than previously assumed, with host-switching events appearing commonly across taxa and challenging traditional views of strict coevolution in host-parasite relationships. Monogenean parasites are considered highly host-specific and have long served as models for probing evolution of host-parasite associations, particularly in differentiating geographic and phylogenetic patterns of parasite diversification. We investigated the phylogeographic patterns of monogenean ectoparasites associated with four species of characin fishes across Panama, Nicaragua, and Mexico. We hypothesize that parasite diversity and community structure are more strongly correlated with host species (suggesting cospeciation) than with geographic location (indicative of allopatric speciation). We found high genetic differentiation among parasites and their hosts across different locations. However, while geography explained the genetic structure of both host fishes and parasites, the observed patterns were neither congruent nor parallel. Parasite community structure and genetic similarity were consistently better explained by geographic location than by host species identity, although both factors played a significant role. Contrary to our predictions, we found no evidence of cospeciation. Instead, the diversification of these monogenean parasites appears to be primarily driven by their ability to switch hosts. At this taxonomical scale, host-switching is mediated by the geographical proximity of potential hosts, underscoring the importance of spatial factors in parasite evolution.
Collapse
Affiliation(s)
- Fernando Alda
- Instituto de Investigación en Recursos Cinegéticos (IREC; CSIC-UCLM-JCCM), Ciudad Real, Spain
- Smithsonian Tropical Research Institute, Balboa, Ancón, Republic of Panama
| | - Edgar F. Mendoza-Franco
- Instituto de Ecología, Pesquerías y Oceanografía del Golfo de México (EPOMEX), Universidad Autónoma de Campeche, San Francisco de Campeche, Campeche, Mexico
| | - William Hanson-Regan
- Department of Biology, Geology and Environmental Science, University of Tennessee at Chattanooga, Chattanooga, Tennessee, Unites States of America
| | - Ruth G. Reina
- Smithsonian Tropical Research Institute, Balboa, Ancón, Republic of Panama
| | | | - MarkE. Torchin
- Smithsonian Tropical Research Institute, Balboa, Ancón, Republic of Panama
- Marine Science Institute, University of California, Santa Barbara, California, United States of America
| |
Collapse
|
3
|
Shigoley MI, Kmentová N, Ndegwa DM, Topić M, Thys KJM, Vanhove MPM. Scanning Electron Microscopy Reveals New Ultrastructural Features in Metacercariae of Clinostomum cutaneum (Digenea: Clinostomidae) Infecting Oreochromis niloticus (Actinopterygii: Cichlidae) in Kenya. Pathogens 2025; 14:249. [PMID: 40137734 PMCID: PMC11944436 DOI: 10.3390/pathogens14030249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 03/29/2025] Open
Abstract
Clinostomum is a genus of parasitic trematodes found worldwide, infecting a wide range of hosts, including freshwater fishes, snails, birds and occasionally humans. In this study, clinostomid metacercariae were collected from Nile tilapia raised in fish farms in the Upper Tana River region, Kenya. The prevalence of infection was 17.2%, with metacercariae infecting the skin, gills and buccal cavity of the fish. Using light microscopy, scanning electron microscopy (SEM) and molecular methods targeting both nuclear ribosomal (ITS1, 5.8S, ITS2) and mitochondrial (COI) regions, the metacercariae were identified as C. cutaneum, C. phalacrocoracis, C. tilapiae and Euclinostomum heterostomum. The three species of Clinostomum have previously been reported to infect fish or piscivorous birds in Kenya, while this is the first report of E. heterostomum in this country. SEM analysis revealed new ultrastructural features of C. cutaneum, including an excretory pore surrounded by minute spiny papillae, an everted cirrus and dome-shaped papillae on the tegumental area around the genital pore. The cirrus lacked basal papillae, showing morphological variation between the adult and metacercarial stages. Our study, therefore, provides new insights into the phenotypic identification of flukes that may be pathogenic to fishes and humans and, therefore, of scientific and practical importance.
Collapse
Affiliation(s)
- Miriam Isoyi Shigoley
- Research Group Zoology: Biodiversity & Toxicology, Centre for Environmental Sciences, Hasselt University, Agoralaan Gebouw D, 3590 Diepenbeek, Belgium; (N.K.); (M.T.); (K.J.M.T.); (M.P.M.V.)
- Department of Veterinary Management of Animal Resources, Faculty of Veterinary Medicine, Liège University, 4000 Liège, Belgium
- Kenya Wetlands Biodiversity Research Team (KENWEB), Ichthyology Section, National Museums of Kenya, Nairobi 40658-00100, Kenya
| | - Nikol Kmentová
- Research Group Zoology: Biodiversity & Toxicology, Centre for Environmental Sciences, Hasselt University, Agoralaan Gebouw D, 3590 Diepenbeek, Belgium; (N.K.); (M.T.); (K.J.M.T.); (M.P.M.V.)
- Royal Belgian Institute of Natural Sciences, OD Natural Environment, Freshwater Biology, 1000 Brussels, Belgium
| | - Daniel Mungai Ndegwa
- Kenya Fisheries Service, National Aquaculture Technology Development and Innovations Transfer Centre, Sagana 26-10230, Kenya;
| | - Martina Topić
- Research Group Zoology: Biodiversity & Toxicology, Centre for Environmental Sciences, Hasselt University, Agoralaan Gebouw D, 3590 Diepenbeek, Belgium; (N.K.); (M.T.); (K.J.M.T.); (M.P.M.V.)
| | - Kelly J. M. Thys
- Research Group Zoology: Biodiversity & Toxicology, Centre for Environmental Sciences, Hasselt University, Agoralaan Gebouw D, 3590 Diepenbeek, Belgium; (N.K.); (M.T.); (K.J.M.T.); (M.P.M.V.)
| | - Maarten P. M. Vanhove
- Research Group Zoology: Biodiversity & Toxicology, Centre for Environmental Sciences, Hasselt University, Agoralaan Gebouw D, 3590 Diepenbeek, Belgium; (N.K.); (M.T.); (K.J.M.T.); (M.P.M.V.)
| |
Collapse
|
4
|
Cruz-Laufer AJ, Vanhove MPM, Bachmann L, Barson M, Bassirou H, Bitja Nyom AR, Geraerts M, Hahn C, Huyse T, Kasembele GK, Njom S, Resl P, Smeets K, Kmentová N. Adaptive evolution of stress response genes in parasites aligns with host niche diversity. BMC Biol 2025; 23:10. [PMID: 39800686 PMCID: PMC11727194 DOI: 10.1186/s12915-024-02091-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 12/09/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Stress responses are key the survival of parasites and, consequently, also the evolutionary success of these organisms. Despite this importance, our understanding of the evolution of molecular pathways dealing with environmental stressors in parasitic animals remains limited. Here, we tested the link between adaptive evolution of parasite stress response genes and their ecological diversity and species richness. We comparatively investigated antioxidant, heat shock, osmoregulatory, and behaviour-related genes (foraging) in two model parasitic flatworm lineages with contrasting ecological diversity, Cichlidogyrus and Kapentagyrus (Platyhelminthes: Monopisthocotyla), through whole-genome sequencing of 11 species followed by in silico exon bait capture as well as phylogenetic and codon analyses. RESULTS We assembled the sequences of 48 stress-related genes and report the first foraging (For) gene orthologs in flatworms. We found duplications of heat shock (Hsp) and oxidative stress genes in Cichlidogyrus compared to Kapentagyrus. We also observed positive selection patterns in genes related to mitochondrial protein import (Hsp) and behaviour (For) in species of Cichlidogyrus infecting East African cichlids-a host lineage under adaptive radiation. These patterns are consistent with a potential adaptation linked to a co-radiation of these parasites and their hosts. Additionally, the absence of cytochrome P450 and kappa and sigma-class glutathione S-transferases in monogenean flatworms is reported, genes considered essential for metazoan life. CONCLUSIONS This study potentially identifies the first molecular function linked to a flatworm radiation. Furthermore, the observed gene duplications and positive selection indicate the potentially important role of stress responses for the ecological adaptation of parasite species.
Collapse
Affiliation(s)
- Armando J Cruz-Laufer
- Faculty of Sciences, Centre for Environmental Sciences, Research Group Zoology: Biodiversity and Toxicology, UHasselt - Hasselt University, Diepenbeek, Belgium.
- Systems Ecology and Resource Management Research Unit (SERM), Université Libre de Bruxelles-ULB, Brussels, Belgium.
| | - Maarten P M Vanhove
- Faculty of Sciences, Centre for Environmental Sciences, Research Group Zoology: Biodiversity and Toxicology, UHasselt - Hasselt University, Diepenbeek, Belgium
| | - Lutz Bachmann
- Natural History Museum, University of Oslo, Oslo, Norway
| | - Maxwell Barson
- Department of Biological Sciences, University of Botswana, Gaborone, Botswana
| | - Hassan Bassirou
- Department of Biological Sciences, University of Ngaoundéré, Ngaoundéré, Cameroon
| | - Arnold R Bitja Nyom
- Department of Biological Sciences, University of Ngaoundéré, Ngaoundéré, Cameroon
- Department of Management of Fisheries and Aquatic Ecosystems, Institute of Fisheries, University of Douala, Douala, Cameroon
| | - Mare Geraerts
- Faculty of Sciences, Centre for Environmental Sciences, Research Group Zoology: Biodiversity and Toxicology, UHasselt - Hasselt University, Diepenbeek, Belgium
- Department of Biology, Evolutionary Ecology Group - EVECO, University of Antwerp, Antwerp, Belgium
| | - Christoph Hahn
- Institute of Biology, University of Graz, Graz, Austria.
| | - Tine Huyse
- Department of Biology, Royal Museum for Central Africa, Tervuren, Belgium
| | - Gyrhaiss Kapepula Kasembele
- Faculty of Sciences, Centre for Environmental Sciences, Research Group Zoology: Biodiversity and Toxicology, UHasselt - Hasselt University, Diepenbeek, Belgium
- Unité de Recherche en Biodiversité Et Exploitation Durable Des Zones Humides (BEZHU), Faculté Des Sciences Agronomiques, Université de Lubumbashi, Lubumbashi, Democratic Republic of the Congo
| | - Samuel Njom
- Department of Biological Sciences, University of Ngaoundéré, Ngaoundéré, Cameroon
| | - Philipp Resl
- Institute of Biology, University of Graz, Graz, Austria
| | - Karen Smeets
- Faculty of Sciences, Centre for Environmental Sciences, Research Group Zoology: Biodiversity and Toxicology, UHasselt - Hasselt University, Diepenbeek, Belgium
| | - Nikol Kmentová
- Faculty of Sciences, Centre for Environmental Sciences, Research Group Zoology: Biodiversity and Toxicology, UHasselt - Hasselt University, Diepenbeek, Belgium
- Aquatic and Terrestrial Ecology, Operational Directorate Natural Environment, Royal Belgian Institute for Natural Sciences, Brussels, Belgium
| |
Collapse
|
5
|
Geraerts M, Huyse T, Barson M, Bassirou H, Bilong Bilong CF, Bitja Nyom AR, Manda AC, Cruz-Laufer AJ, Kabalika CK, Kasembele GK, Bukinga FM, Njom S, Van Steenberge M, Artois T, Vanhove MPM. Sharing is caring? Barcoding suggests co-introduction of dactylogyrid monogeneans with Nile tilapia and transfer towards native tilapias in sub-Saharan Africa. Int J Parasitol 2023; 53:711-730. [PMID: 37414208 DOI: 10.1016/j.ijpara.2023.05.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 07/08/2023]
Abstract
Invasive Nile tilapias negatively impact native tilapia species through hybridisation and competition. However, the co-introduction of parasites with Nile tilapia, and subsequent changes in parasite communities, are scarcely documented. Monogeneans are known pathogens of cultured Nile tilapia, although little is known about their fate once Nile tilapias establish in new ecosystems. We investigate the parasitological consequences of Nile tilapia introduction on native tilapias in basins in Cameroon, the Democratic Republic of the Congo (DRC), and Zimbabwe, focusing on ectoparasitic dactylogyrids (Monogenea). Using the mitochondrial cytochrome oxidase c subunit I (COI) and nuclear 18S-internal transcribed spacer 1 (18S-ITS1) rDNA region of 128 and 166 worms, respectively, we evaluated transmission of several dactylogyrid species. Parasite spillover from Nile tilapia was detected for Cichlidogyrus tilapiae to Coptodon guineensis in Cameroon, Cichlidogyrus thurstonae to Oreochromis macrochir in the DRC, and Cichlidogyrus halli and C. tilapiae to Coptodon rendalli in Zimbabwe. Parasite spillback to Nile tilapia was detected for Cichlidogyrus papernastrema and Scutogyrus gravivaginus from Tilapia sparrmanii and Cichlidogyrus dossoui from C. rendalli or T. sparrmanii in the DRC, and Cichlidogyrus chloeae from Oreochromis cf. mortimeri and S. gravivaginus from O. macrochir in Zimbabwe. 'Hidden' transmissions (i.e. transmission of certain parasite lineages of species that are naturally present on both alien and native hosts) were detected for C. tilapiae and Scutogyrus longicornis between Nile tilapia and Oreochromis aureus and C. tilapiae between Nile tilapia and Oreochromis mweruensis in the DRC, and Cichlidogyrus sclerosus and C. tilapiae between Nile tilapia and O. cf. mortimeri in Zimbabwe. A high density of Nile tilapia occurring together with native tilapias, and the broad host range and/or environmental tolerance of the transmitted parasites, are proposed as factors behind parasite transmission through ecological fitting. However, continuous monitoring and the inclusion of environmental variables are necessary to understand the long-term consequences of these transmissions on native tilapias and to elucidate other underlying factors influencing these transmissions.
Collapse
Affiliation(s)
- Mare Geraerts
- UHasselt - Hasselt University, Faculty of Sciences, Centre for Environmental Sciences, Research Group Zoology: Biodiversity and Toxicology, Diepenbeek, Belgium.
| | - Tine Huyse
- Department of Biology, Royal Museum for Central Africa, Tervuren, Belgium; Laboratory of Biodiversity and Evolutionary Genomics, KU Leuven, Leuven, Belgium
| | - Maxwell Barson
- Department of Biological Sciences, University of Zimbabwe, Harare, Zimbabwe; Department of Biological Sciences, University of Botswana, Gaborone, Botswana; Lake Kariba Research Station, University of Zimbabwe, Kariba, Zimbabwe
| | - Hassan Bassirou
- Department of Biological Sciences, University of Ngaoundéré, Ngaoundéré, Cameroon
| | | | - Arnold R Bitja Nyom
- Department of Biological Sciences, University of Ngaoundéré, Ngaoundéré, Cameroon; Department of Management of Fisheries and Aquatic Ecosystems, Institute of Fisheries, University of Douala, Douala, Cameroon
| | - Auguste Chocha Manda
- Unité de Recherche en Biodiversité et Exploitation durable des Zones Humides (BEZHU), Faculté des Sciences Agronomiques, Université de Lubumbashi, Lubumbashi, Democratic Republic of the Congo
| | - Armando J Cruz-Laufer
- UHasselt - Hasselt University, Faculty of Sciences, Centre for Environmental Sciences, Research Group Zoology: Biodiversity and Toxicology, Diepenbeek, Belgium
| | - Clément Kalombo Kabalika
- Unité de Recherche en Biodiversité et Exploitation durable des Zones Humides (BEZHU), Faculté des Sciences Agronomiques, Université de Lubumbashi, Lubumbashi, Democratic Republic of the Congo
| | - Gyrhaiss Kapepula Kasembele
- Unité de Recherche en Biodiversité et Exploitation durable des Zones Humides (BEZHU), Faculté des Sciences Agronomiques, Université de Lubumbashi, Lubumbashi, Democratic Republic of the Congo
| | - Fidel Muterezi Bukinga
- Section de Parasitologie, Département de Biologie, Centre de Recherche en Hydrobiologie, Uvira, Democratic Republic of the Congo
| | - Samuel Njom
- Department of Biological Sciences, University of Ngaoundéré, Ngaoundéré, Cameroon
| | - Maarten Van Steenberge
- Laboratory of Biodiversity and Evolutionary Genomics, KU Leuven, Leuven, Belgium; Vertebrate Section, OD Taxonomy and Phylogeny, Royal Belgian Institute of Natural Sciences, Brussels, Belgium
| | - Tom Artois
- UHasselt - Hasselt University, Faculty of Sciences, Centre for Environmental Sciences, Research Group Zoology: Biodiversity and Toxicology, Diepenbeek, Belgium
| | - Maarten P M Vanhove
- UHasselt - Hasselt University, Faculty of Sciences, Centre for Environmental Sciences, Research Group Zoology: Biodiversity and Toxicology, Diepenbeek, Belgium; Laboratory of Biodiversity and Evolutionary Genomics, KU Leuven, Leuven, Belgium
| |
Collapse
|
6
|
Vorel J, Kmentová N, Hahn C, Bureš P, Kašný M. An insight into the functional genomics and species classification of Eudiplozoon nipponicum (Monogenea, Diplozoidae), a haematophagous parasite of the common carp Cyprinus carpio. BMC Genomics 2023; 24:363. [PMID: 37380941 DOI: 10.1186/s12864-023-09461-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 06/16/2023] [Indexed: 06/30/2023] Open
Abstract
BACKGROUND Monogenea (Platyhelminthes, Neodermata) are the most species-rich class within the Neodermata superclass of primarily fish parasites. Despite their economic and ecological importance, monogenean research tends to focus on their morphological, phylogenetic, and population characteristics, while comprehensive omics analyses aimed at describing functionally important molecules are few and far between. We present a molecular characterisation of monogenean representative Eudiplozoon nipponicum, an obligate haematophagous parasite infecting the gills of the common carp. We report its nuclear and mitochondrial genomes, present a functional annotation of protein molecules relevant to the molecular and biochemical aspect of physiological processes involved in interactions with the fish hosts, and re-examinate the taxonomic position of Eudiplozoon species within the Diplozoidae family. RESULTS We have generated 50.81 Gbp of raw sequencing data (Illumina and Oxford Nanopore reads), bioinformatically processed, and de novo assembled them into a genome draft 0.94 Gbp long, consisting of 21,044 contigs (N50 = 87 kbp). The final assembly represents 57% of the estimated total genome size (~ 1.64 Gbp), whereby repetitive and low-complexity regions account for ~ 64% of the assembled length. In total, 36,626 predicted genes encode 33,031 proteins and homology-based annotation of protein-coding genes (PCGs) and proteins characterises 14,785 (44.76%) molecules. We have detected significant representation of functional proteins and known molecular functions. The numbers of peptidases and inhibitors (579 proteins), characterised GO terms (16,016 unique assigned GO terms), and identified KEGG Orthology (4,315 proteins) acting in 378 KEGG pathways demonstrate the variety of mechanisms by which the parasite interacts with hosts on a macromolecular level (immunomodulation, feeding, and development). Comparison between the newly assembled E. nipponicum mitochondrial genome (length of 17,038 bp) and other diplozoid monogeneans confirms the existence of two distinct Eudiplozoon species infecting different fish hosts: Cyprinus carpio and Carassius spp. CONCLUSIONS Although the amount of sequencing data and characterised molecules of monogenean parasites has recently increased, a better insight into their molecular biology is needed. The E. nipponicum nuclear genome presented here, currently the largest described genome of any monogenean parasite, represents a milestone in the study of monogeneans and their molecules but further omics research is needed to understand these parasites' biological nature.
Collapse
Affiliation(s)
- Jiří Vorel
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, Brno, 611 37, Czech Republic.
| | - Nikol Kmentová
- Research Group Zoology: Biodiversity and Toxicology, Centre for Environmental Sciences, Hasselt University, Agoralaan Gebouw D, Diepenbeek, B-3590, Belgium
| | - Christoph Hahn
- Institute of Biology, University of Graz, Universitätsplatz 2, Graz, A-8010, Austria
| | - Petr Bureš
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, Brno, 611 37, Czech Republic
| | - Martin Kašný
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, Brno, 611 37, Czech Republic
| |
Collapse
|
7
|
Kasembele GK, Manda AC, Abwe E, Pariselle A, Bukinga FM, Huyse T, Jorissen MWP, Vreven EJWMN, Luus-Powell WJ, Smit WJ, Sara JR, Snoeks J, Vanhove MPM. First record of monogenean fish parasites in the Upper Lufira River Basin (Democratic Republic of Congo): dactylogyrids and gyrodactylids infesting Oreochromis mweruensis, Coptodon rendalli and Serranochromis macrocephalus (Teleostei: Cichlidae). Parasit Vectors 2023; 16:48. [PMID: 36732829 PMCID: PMC9893698 DOI: 10.1186/s13071-022-05637-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 12/24/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Monogenean parasites have never been formally reported on fishes from the Lufira River Basin. In this context, we decided to record the monogenean parasite fauna of three cichlid species found in the Upper Lufira River Basin for the first time by inventorizing their diversity (species composition) and analysing their infection parameters (prevalence, mean intensity and abundance). METHODS The African cichlid fishes Oreochromis mweruensis, Coptodon rendalli and Serranochromis macrocephalus were selected for the study, given their economic value and their abundance in the Upper Lufira River Basin. Monogeneans were isolated from the gills and stomach, mounted on glass slides with either Hoyer's medium or ammonium picrate-glycerin for identification under a stereomicroscope, based on morphological analysis of genital and haptoral hard parts. Indices of diversity and infections parameters were calculated. RESULTS A total of 13 gill monogenean parasite species (Cichlidogyrus dossoui, C. halli, C. karibae, C. mbirizei, C. papernastrema, C. quaestio, C. sclerosus, C. tiberianus, C. tilapiae, C. zambezensis, Scutogyrus gravivaginus, S. cf. bailloni and Gyrodactylus nyanzae) and one stomach monogenean (Enterogyrus malmbergi) were identified. A species richness (S) of 10 for O. mweruensis, S = 6 for C. rendalli and S = 2 for S. macrocephalus was recorded. Five parasite species were reported to be common amongst O. mweruensis and C. rendalli. According to cichlid species, the most prevalent parasite species was C. halli (prevalence [P] = 80.9%) on O. mweruensis, C. dossoui (P = 92.9%) on C. rendalli and C. karibae and C. zambezensis (both P = 9.1%) on S. macrocephalus. The parasite species with the highest mean intensity (MI) were G. nyanzae (MI = 8.7) on O. mweruensis, C. papernastrema (MI = 17.1) on C. rendalli and C. karibae (MI = 15) on S. macrocephalus. The findings indicate new host ranges for five parasites species (C. quaestio, S. cf. bailloni, E. malmbergi on O. mweruensis, C. halli on C. rendalli and C. karibae on S. macrocephalus) as well as new geographical records for all of them as they are recorded for the first time in the Lufira River Basin. CONCLUSIONS This study highlighted the richness of monogenean communities in the Upper Lufira River Basin and is a starting point for future helminthological studies, such as on the use of fish parasites as indicators of anthropogenic impacts.
Collapse
Affiliation(s)
- Gyrhaiss Kapepula Kasembele
- grid.440826.c0000 0001 0732 4647Unité de Recherche en Biodiversité et Exploitation durable des Zones Humides (BEZHU), Faculté des Sciences Agronomiques, Université de Lubumbashi, Haut-Katanga, Democratic Republic of Congo
| | - Auguste Chocha Manda
- grid.440826.c0000 0001 0732 4647Unité de Recherche en Biodiversité et Exploitation durable des Zones Humides (BEZHU), Faculté des Sciences Agronomiques, Université de Lubumbashi, Haut-Katanga, Democratic Republic of Congo
| | - Emmanuel Abwe
- grid.440826.c0000 0001 0732 4647Unité de Recherche en Biodiversité et Exploitation durable des Zones Humides (BEZHU), Faculté des Sciences Agronomiques, Université de Lubumbashi, Haut-Katanga, Democratic Republic of Congo ,grid.425938.10000 0001 2155 6508Department of Biology, Royal Museum for Central Africa, Leuvensesteenweg 13, 3080 Tervuren, Belgium ,grid.5596.f0000 0001 0668 7884Laboratory of Biodiversity and Evolutionary Genomics, Department of Biology, University of Leuven, Ch. Deberiotstraat 32, 3000 Leuven, Belgium
| | - Antoine Pariselle
- grid.121334.60000 0001 2097 0141CNRS, IRD, Institut des Sciences de l’Évolution Montpellier (ISEM), Université Montpellier, Montpellier, France ,grid.31143.340000 0001 2168 4024ISEM, Univ Montpellier, CNRS, IRD, Montpellier, France; Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| | - Fidel Muterezi Bukinga
- Section de Parasitologie, Département de Biologie, Centre de Recherche en Hydrobiologie, Uvira, Democratic Republic of Congo
| | - Tine Huyse
- grid.425938.10000 0001 2155 6508Department of Biology, Royal Museum for Central Africa, Leuvensesteenweg 13, 3080 Tervuren, Belgium ,grid.5596.f0000 0001 0668 7884Laboratory of Biodiversity and Evolutionary Genomics, Department of Biology, University of Leuven, Ch. Deberiotstraat 32, 3000 Leuven, Belgium
| | - Michiel Willem Paul Jorissen
- grid.425938.10000 0001 2155 6508Department of Biology, Royal Museum for Central Africa, Leuvensesteenweg 13, 3080 Tervuren, Belgium ,grid.12155.320000 0001 0604 5662Research Group Zoology: Biodiversity & Toxicology, Centre for Environmental Sciences, Hasselt University, 3590 Diepenbeek, Belgium
| | | | - Wilmien Jacoba Luus-Powell
- grid.411732.20000 0001 2105 2799DSI-NRF SARChI Chair, Department of Biodiversity, University of Limpopo, Sovenga, 0727 South Africa
| | - Willem Johannes Smit
- grid.411732.20000 0001 2105 2799DSI-NRF SARChI Chair, Department of Biodiversity, University of Limpopo, Sovenga, 0727 South Africa
| | - Joseph Roderick Sara
- grid.411732.20000 0001 2105 2799DSI-NRF SARChI Chair, Department of Biodiversity, University of Limpopo, Sovenga, 0727 South Africa
| | - Jos Snoeks
- grid.425938.10000 0001 2155 6508Department of Biology, Royal Museum for Central Africa, Leuvensesteenweg 13, 3080 Tervuren, Belgium ,grid.5596.f0000 0001 0668 7884Laboratory of Biodiversity and Evolutionary Genomics, Department of Biology, University of Leuven, Ch. Deberiotstraat 32, 3000 Leuven, Belgium
| | - Maarten Pieterjan Maria Vanhove
- grid.425938.10000 0001 2155 6508Department of Biology, Royal Museum for Central Africa, Leuvensesteenweg 13, 3080 Tervuren, Belgium ,grid.5596.f0000 0001 0668 7884Laboratory of Biodiversity and Evolutionary Genomics, Department of Biology, University of Leuven, Ch. Deberiotstraat 32, 3000 Leuven, Belgium ,grid.12155.320000 0001 0604 5662Research Group Zoology: Biodiversity & Toxicology, Centre for Environmental Sciences, Hasselt University, 3590 Diepenbeek, Belgium ,grid.20478.390000 0001 2171 9581Capacities for Biodiversity and Sustainable Development, Operational Directorate Natural Environment, Royal Belgian Institute of Natural Sciences, Vautierstraat 29, 1000 Brussels, Belgium ,grid.7737.40000 0004 0410 2071Zoology Unit, Finnish Museum of Natural History, University of Helsinki, P.O. Box 17, 00014 Helsinki, Finland
| |
Collapse
|
8
|
Thys KJM, Vanhove MPM, Custers JWJ, Vranken N, Van Steenberge M, Kmentová N. Co-introduction of Dolicirroplectanum lacustre, a monogenean gill parasite of the invasive Nile perch Lates niloticus: intraspecific diversification and mitonuclear discordance in native versus introduced areas. Int J Parasitol 2022; 52:775-786. [PMID: 36228748 DOI: 10.1016/j.ijpara.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 11/05/2022]
Abstract
The Nile perch (Lates niloticus) is a notorious invasive species. The introductions of Nile perch into several lakes and rivers in the Lake Victoria region led to the impoverishment of trophic food webs, particularly well documented in Lake Victoria. Additionally, its parasites were co-introduced, including Dolicirroplectanum lacustre (Monogenea, Diplectanidae). Dolicirroplectanum lacustre is the single monogenean gill parasite of latid fishes (Lates spp.) inhabiting several major African freshwater systems. We examined the intra-specific diversification of D. lacustre from Lates niloticus in Lake Albert, Uganda (native range) and Lake Victoria (introduced range) by assessing morphological and genetic differentiation, and microhabitat preference. We expected reduced morphological and genetic diversity for D. lacustre in Lake Victoria compared with Lake Albert, as a result of the historical introductions. We found that D. lacustre displayed high morphological variability within and between African freshwaters, with two morphotypes identified, as in former studies. The single shared morphotype between Lake Albert and Lake Victoria displayed similar levels of haplotype and nucleotide diversity between the lakes. Mitonuclear discordance within the morphotypes of D. lacustre indicates an incomplete reproductive barrier between the morphotypes. The diversification in the mitochondrial gene portion is directly linked with the morphotypes, while the nuclear gene portions indicate conspecificity. Based on our results, we reported reduced genetic and morphological diversity, potentially being a result of a founder effect in Lake Victoria.
Collapse
Affiliation(s)
- Kelly J M Thys
- Research Group Zoology: Biodiversity and Toxicology, Centre for Environmental Sciences, Hasselt University, Agoralaan Gebouw D, B-3590 Diepenbeek, Belgium.
| | - Maarten P M Vanhove
- Research Group Zoology: Biodiversity and Toxicology, Centre for Environmental Sciences, Hasselt University, Agoralaan Gebouw D, B-3590 Diepenbeek, Belgium
| | - Jonas W J Custers
- Utrecht University, Department of Biology, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Nathan Vranken
- KU Leuven, Laboratory of Biodiversity and Evolutionary Genomics, Department of Biology, Charles Deberiotstraat 32, 3000 Leuven, Belgium; Royal Museum for Central Africa, Biology Department, Section Vertebrates, Leuvensesteenweg 13, 3080 Tervuren, Belgium
| | - Maarten Van Steenberge
- Research Group Zoology: Biodiversity and Toxicology, Centre for Environmental Sciences, Hasselt University, Agoralaan Gebouw D, B-3590 Diepenbeek, Belgium; Operational Directorate Taxonomy and Phylogeny, Royal Belgian Institute for Natural Sciences, Vautierstraat 29, B-1000 Brussels, Belgium
| | - Nikol Kmentová
- Research Group Zoology: Biodiversity and Toxicology, Centre for Environmental Sciences, Hasselt University, Agoralaan Gebouw D, B-3590 Diepenbeek, Belgium
| |
Collapse
|
9
|
Under the radar: co-introduced monogeneans (Polyopisthocotylea: Gastrocotylinea) of the invasive fish Scomberomorus commerson in the Mediterranean Sea. Parasitol Res 2022; 121:2275-2293. [PMID: 35713734 DOI: 10.1007/s00436-022-07560-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 05/23/2022] [Indexed: 10/18/2022]
Abstract
The Levant Basin is in many ways the world's most invaded marine ecosystem owing to the existence of the man-made Suez Canal. The invasion of free-living organisms through this pathway is increasingly documented and monitored in the past two decades, and their ecological impact recognized. Nonetheless, while tremendous scientific effort is invested in documenting introduced fishes, co-introduction events of these fishes and their parasites have drawn relatively little interest. In our research, we examined the presence of gill parasites (Monogenea) on the invasive narrow barred Spanish mackerel Scomberomorus commerson which has been known in the Mediterranean Sea for 80 years. The gills of S. commerson supported numerous, relatively large monogeneans (Monogenea: Gastrocotylinea), reaching prevalence levels of 100% with a mean intensity of ~ 80 worms per host. Using an integrated molecular and morphological approach, four gastrocotylinean species were identified: Gotocotyla acanthura, Cathucotyle cathuaui, Pricea multae, and Pseudothoracocotyla ovalis. Two species, C. cathuaui and P. ovalis, are reported here for the first time from the Mediterranean. Sequences of the 28S rRNA gene of G. acanthura from native hosts, Pomatomus saltatrix and Trachinotus ovatus, differed from individuals collected from S. commerson by 1.8%. We therefore suggest that the taxonomic status and distribution of G. acanthura should be revisited, and we recommend an integrated approach as essential to accurately detect co-introductions.
Collapse
|
10
|
Vodiasova EA, Chelebieva ES, Shikhat OV, Atopkin DM, Dmitrieva EV. Molecular-genetic approaches to species identification of platyhelminthes of the genus <i>Ligophorus</i> (Monogenea) parasitising flathead mullet. Vavilovskii Zhurnal Genet Selektsii 2022; 26:290-297. [PMID: 35774361 PMCID: PMC9167819 DOI: 10.18699/vjgb-22-36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 01/06/2022] [Accepted: 01/18/2021] [Indexed: 12/02/2022] Open
Abstract
Mugil cephalus L., 1758 (flathead mullet) is a valuable commercial fish and a promising object of artificial breeding in the Black Sea and the Sea of Azov, and the study of its parasite fauna is important for fishery and mariculture. Monogeneans of the genus Ligophorus are common ectoparasites dwelling on the gills of mullets. Two representatives of this genus parasitise flathead mullet in the Azov-Black Sea region, namely Ligophorus mediterraneus Sarabeev, Balbuena et Euzet, 2005 and Ligophorus cephali Rubtsova, Balbuena, Sarabeev, Blasco-
Costa et Euzet, 2006. Morphological identification of these species requires spending much time and a high level
of experience in monogenean taxonomy. For quick and correct species identification of these parasites, we have
developed a genotyping approach based on the polymerase chain reaction of allele-specific gene sites for various
Monogenea species. A fragment of the 28S ribosomal gene, which includes conserved and variable sites, was
chosen as a genetic marker. Three approaches were used as follows: amplified fragment length analysis, allelespecific
PCR with endpoint detection and allele-specific real-time PCR using SYBR Green intercalating dye. The
first approach was by obtaining PCR products of different lengths that were specific either to L. mediterraneus or
to L. cephali. This approach was implemented due to the presence of several variable sites located at a distance
from each other. The PCR mixture contained three primers: one forward and two reverse. The forward primer
was complementary to the conserved site, which did not differ between species. Reverse primers were speciesspecific
and, for each species, they were complementary to different DNA regions located 100 bp apart. As a result,
L. mediterraneus was characterized by shorter amplicons than L. cephali. For the second and third approaches,
a pair of primers was designed according to the following principle: the forward primer was complementary to
both species, since it was selected for the conserved gene region. Reverse primers were species-specific and were
designed for the 28S variable region. The two parasite species were distinguished by three-point mutations. Thus,
one pair of primers was complementary to L. mediterraneus, the other, to L. cephali. The amplified fragment length
analysis and the allele-specific real-time PCR demonstrated 100 % coincidence of genotyping results compared
with Sanger sequencing. The developed genotyping protocols can be used not only to distinguish two species of
Ligophorus from flathead mullet in ecological studies and veterinary practice but also for further development of
similar approaches for other monogeneans, among which there are many pathogenic species.
Collapse
Affiliation(s)
- E. A. Vodiasova
- A.O. Kovalevsky Institute of Biology of the Southern Seas of the Russian Academy of Sciences
| | - E. S. Chelebieva
- A.O. Kovalevsky Institute of Biology of the Southern Seas of the Russian Academy of Sciences
| | - O. V. Shikhat
- A.O. Kovalevsky Institute of Biology of the Southern Seas of the Russian Academy of Sciences
| | - D. M. Atopkin
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences
| | - E. V. Dmitrieva
- A.O. Kovalevsky Institute of Biology of the Southern Seas of the Russian Academy of Sciences
| |
Collapse
|
11
|
Rahmouni C, Vanhove MPM, Šimková A, Van Steenberge M. Morphological and Genetic Divergence in a Gill Monogenean Parasitizing Distant Cichlid Lineages of Lake Tanganyika: Cichlidogyrus nshomboi (Monogenea: Dactylogyridae) from Representatives of Boulengerochromini and Perissodini. Evol Biol 2022. [DOI: 10.1007/s11692-022-09564-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
12
|
Geraerts M, Huyse T, Barson M, Bassirou H, Bilong Bilong CF, Bitja Nyom AR, Chocha Manda A, Cruz-Laufer AJ, Kalombo Kabalika C, Kapepula Kasembele G, Muterezi Bukinga F, Njom S, Artois T, Vanhove MPM. Mosaic or melting pot: The use of monogeneans as a biological tag and magnifying glass to discriminate introduced populations of Nile tilapia in sub-Saharan Africa. Genomics 2022; 114:110328. [PMID: 35276332 DOI: 10.1016/j.ygeno.2022.110328] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 02/10/2022] [Accepted: 03/06/2022] [Indexed: 01/14/2023]
Abstract
The origin of introduced Nile tilapia stocks in sub-Saharan Africa is largely unknown. In this study, the potential of monogeneans as a biological tag and magnifying glass is tested to reveal their hosts' stocking history. The monogenean gill community of different Nile tilapia populations in sub-Saharan Africa was explored, and a phylogeographic analysis was performed based on the mitogenomes of four dactylogyrid species (Cichlidogyrus halli, C. sclerosus, C. thurstonae, and Scutogyrus longicornis). Our results encourage the use of dactylogyrids as biological tags. The magnifying glass hypothesis is only confirmed for C. thurstonae, highlighting the importance of the absence of other potential hosts as prerequisites for a parasite to act as a magnifying glass. With the data generated here, we are the first to extract mitogenomes from individual monogeneans and to perform an upscaled survey of the comparative phylogeography of several monogenean species with unprecedented diagnostic resolution.
Collapse
Affiliation(s)
- Mare Geraerts
- UHasselt - Hasselt University, Faculty of Sciences, Centre for Environmental Sciences, Research Group Zoology: Biodiversity and Toxicology, Diepenbeek, Belgium.
| | - Tine Huyse
- Department of Biology, Royal Museum for Central Africa, Tervuren, Belgium
| | - Maxwell Barson
- Department of Biological Sciences, University of Zimbabwe, Harare, Zimbabwe; Department of Biological Sciences, University of Botswana, Gaborone, Botswana; Lake Kariba Research Station, University of Zimbabwe, Kariba, Zimbabwe
| | - Hassan Bassirou
- Department of Biological Sciences, University of Ngaoundéré, Ngaoundéré, Cameroon
| | | | - Arnold R Bitja Nyom
- Department of Biological Sciences, University of Ngaoundéré, Ngaoundéré, Cameroon; Department of Management of Fisheries and Aquatic Ecosystems, Institute of Fisheries, University of Douala, Douala, Cameroon
| | - Auguste Chocha Manda
- Unité de Recherche en Biodiversité et Exploitation durable des Zones Humides (BEZHU), Faculté des Sciences Agronomiques, Université de Lubumbashi, Lubumbashi, Democratic Republic of the Congo
| | - Armando J Cruz-Laufer
- UHasselt - Hasselt University, Faculty of Sciences, Centre for Environmental Sciences, Research Group Zoology: Biodiversity and Toxicology, Diepenbeek, Belgium
| | - Clément Kalombo Kabalika
- Unité de Recherche en Biodiversité et Exploitation durable des Zones Humides (BEZHU), Faculté des Sciences Agronomiques, Université de Lubumbashi, Lubumbashi, Democratic Republic of the Congo
| | - Gyrhaiss Kapepula Kasembele
- Unité de Recherche en Biodiversité et Exploitation durable des Zones Humides (BEZHU), Faculté des Sciences Agronomiques, Université de Lubumbashi, Lubumbashi, Democratic Republic of the Congo
| | - Fidel Muterezi Bukinga
- Section de Parasitologie, Département de Biologie, Centre de Recherche en Hydrobiologie, Uvira, Democratic Republic of the Congo
| | - Samuel Njom
- Department of Biological Sciences, University of Ngaoundéré, Ngaoundéré, Cameroon
| | - Tom Artois
- UHasselt - Hasselt University, Faculty of Sciences, Centre for Environmental Sciences, Research Group Zoology: Biodiversity and Toxicology, Diepenbeek, Belgium
| | - Maarten P M Vanhove
- UHasselt - Hasselt University, Faculty of Sciences, Centre for Environmental Sciences, Research Group Zoology: Biodiversity and Toxicology, Diepenbeek, Belgium; Zoology Unit, Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| |
Collapse
|
13
|
Wendt EW, Malabarba LR, Braga MP, Boeger WA, Landis M, Carvalho TP. Phylogeny, species delimitation, and ecological and morphological diversity of Characithecium (Monogenoidea: Dactylogyridae). Parasitology 2022:1-54. [PMID: 35236513 DOI: 10.1017/s0031182022000221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Abstract
Characithecium (Monogenoidea, Dactylogyridae) is a genus containing nine species that live on the gills of a characid clade containing genera Astyanax, Andromakhe, Psalidodon and Oligosarcus (Characiformes, Characidae) in South and Central America. Earlier studies suggest a tight coevolutionary history between these parasites and their hosts mainly due to the phylogenetic proximity between these genera of fish. Hence, this study explores phylogenetic relationships, species limits and extrinsic factors (geography and ecology) explaining parasite prevalence. To understand the evolutionary history of the genus, we constructed a time-calibrated phylogenetic hypothesis, which includes eight of the nine known species of Characithecium sampled from a broad spectrum of host species. The phylogeny supports the monophyly of Characithecium, with its most recent common ancestor dating from the Miocene. Using generalized mixed-yule coalescent and Bayesian Poisson tree process methods, species delimitation analyses suggested fewer species than the proposed delimitation based on morphology alone, recovering four and six entities, respectively. The results indicate that species of Characithecium have wider geographical and host distribution and higher prevalence on Oligosarcus species compared to Astyanax and Psalidodon. Correlation between parasite prevalence and biotic and abiotic traits, based on generalized linear models, indicates that the frequency of occurrence of different species of Characithecium is associated with distinct factors, such as host genus, high altitudes, rivers and streams, and different ecoregions. Our results suggest that species of Characithecium are highly opportunistic, exploring resources in different manner as our data reveal the ability of these parasites to explore a diverse environment of variable biotic (e.g. hosts) and abiotic features.
Collapse
Affiliation(s)
- Emília W Wendt
- Laboratório de Ictiologia, Departamento de Zoologia, Universidade Federal do Rio Grande do Sul - UFRGS, Av. Bento Gonçalves, 9500, Bloco 4, prédio 43435, 91501-970Porto Alegre, RS, Brazil
| | - Luiz R Malabarba
- Laboratório de Ictiologia, Departamento de Zoologia, Universidade Federal do Rio Grande do Sul - UFRGS, Av. Bento Gonçalves, 9500, Bloco 4, prédio 43435, 91501-970Porto Alegre, RS, Brazil
| | - Mariana P Braga
- Department of Biology, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Walter A Boeger
- Biological Interactions and Departamento de Zoologia, Centro Politécnico, Setor de Ciências Biológicas, Universidade Federal do Paraná (UFPR), Caixa Postal 19073, CEP 81531-980, Curitiba, Paraná, Brazil
| | - Michael Landis
- Department of Biology, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Tiago P Carvalho
- Laboratório de Ictiologia, Departamento de Zoologia, Universidade Federal do Rio Grande do Sul - UFRGS, Av. Bento Gonçalves, 9500, Bloco 4, prédio 43435, 91501-970Porto Alegre, RS, Brazil
- Laboratorio de Ictiología, Unidad de Ecología y Sistemática (UNESIS), Departamento de Biología, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7 N° 43-82, Bogotá D.C., Colombia
| |
Collapse
|
14
|
Lablack L, Rima M, Georgieva S, Marzoug D, Kostadinova A. Novel molecular data for monogenean parasites of sparid fishes in the Mediterranean and a molecular phylogeny of the Microcotylidae Taschenberg, 1879. CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2021; 2:100069. [PMID: 36589867 PMCID: PMC9795350 DOI: 10.1016/j.crpvbd.2021.100069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/05/2021] [Accepted: 12/09/2021] [Indexed: 01/04/2023]
Abstract
During a study of the monogeneans of four sparid fishes (Diplodus vulgaris, Pagellus bogaraveo, Pagrus pagrus and Sparus aurata) from the Western Mediterranean off Algeria, a large collection of parasites was characterised molecularly (28S rRNA and cox1 genes). A total of 46 partial sequences (23 for each gene) were generated from 38 isolates of monogeneans which included four species (Atrispinum acarne, Microcotyle erythrini (sensu stricto), Sparicotyle chrysophrii and Prostatomicrocotylinae gen. sp.) of the family Microcotylidae, two putative species of the family Capsalidae (Encotyllabe spp.), and one species (Choricotyle chrysophryi) of the family Diclidophoridae. Our study provides (i) the first molecular data for the Capsalidae in the Mediterranean; (ii) the first record of a member of the Prostatomicrocotylinae in the Mediterranean and in a sparid fish (D. vulgaris); (iii) the first cox1 sequences for A. acarne; (iv) the second record of M. erythrini (s.s.) from P. pagrus; and (v) the second confirmed by molecular data record of S. chrysophrii in wild populations of S. aurata. The first phylogenetic hypotheses for the family Microcotylidae developed here, revealed the monophyly of the subfamily Prostatomicrocotylinae and the genus Microcotyle but the relationships among the subfamilies were still largely unresolved with the best represented subfamily Microcotylinae being polyphyletic. Our results highlight the importance of molecular methods in the assessment of monogenean diversity and the need for a thorough taxon-sampling approach to increase the accuracy of phylogenetic reconstruction of the relationships of the large and taxonomically complex polyopisthocotylean family Microcotylidae.
Collapse
Affiliation(s)
- Lamia Lablack
- Laboratoire Réseau de Surveillance Environnementale, Faculté des Sciences de la Nature et de la Vie, Université Oran 1 Ahmed Ben Bella, Département de Biologie, 31000 Oran, Algeria
| | - Mohammed Rima
- Laboratoire Réseau de Surveillance Environnementale, Faculté des Sciences de la Nature et de la Vie, Université Oran 1 Ahmed Ben Bella, Département de Biologie, 31000 Oran, Algeria,Département en Eau Environnement et Développement Durable, Faculté des Sciences de la Nature et de la Vie, Université Hassiba BenBouali de Chlef, B.P 78C, Ouled Fares 02180, Chlef, Algeria
| | - Simona Georgieva
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2 Gagarin Street, 1113 Sofia, Bulgaria,Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Parc Científic, Universitat de València, PO Box 22085, Valencia 46071, Spain
| | - Douniazed Marzoug
- Laboratoire Réseau de Surveillance Environnementale, Faculté des Sciences de la Nature et de la Vie, Université Oran 1 Ahmed Ben Bella, Département de Biologie, 31000 Oran, Algeria
| | - Aneta Kostadinova
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2 Gagarin Street, 1113 Sofia, Bulgaria,Corresponding author.
| |
Collapse
|
15
|
Hammoud C, Mulero S, Van Bocxlaer B, Boissier J, Verschuren D, Albrecht C, Huyse T. Simultaneous genotyping of snails and infecting trematode parasites using high-throughput amplicon sequencing. Mol Ecol Resour 2021; 22:567-586. [PMID: 34435445 DOI: 10.1111/1755-0998.13492] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 07/19/2021] [Accepted: 08/18/2021] [Indexed: 01/04/2023]
Abstract
Several methodological issues currently hamper the study of entire trematode communities within populations of their intermediate snail hosts. Here we develop a new workflow using high-throughput amplicon sequencing to simultaneously genotype snail hosts and their infecting trematode parasites. We designed primers to amplify four snail and five trematode markers in a single multiplex PCR. While also applicable to other genera, we focused on medically and economically important snail genera within the superorder Hygrophila and targeted a broad taxonomic range of parasites within the class Trematoda. We tested the workflow using 417 Biomphalaria glabrata specimens experimentally infected with Schistosoma rodhaini, two strains of Schistosoma mansoni and combinations thereof. We evaluated the reliability of infection diagnostics, the robustness of the workflow, its specificity related to host and parasite identification, and the sensitivity to detect co-infections, immature infections and changes of parasite biomass during the infection process. Finally, we investigated its applicability in wild-caught snails of other genera naturally infected with a diverse range of trematodes. After stringent quality control the workflow allows the identification of snails to species level, and of trematodes to taxonomic levels ranging from family to strain. It is sensitive to detect immature infections and changes in parasite biomass described in previous experimental studies. Co-infections were successfully identified, opening the possibility to examine parasite-parasite interactions such as interspecific competition. Together, these results demonstrate that our workflow provides a powerful tool to analyse the processes shaping trematode communities within natural snail populations.
Collapse
Affiliation(s)
- Cyril Hammoud
- Limnology Unit, Department of Biology, Ghent University, Gent, Belgium.,Department of Biology, Royal Museum for Central Africa, Tervuren, Belgium
| | - Stephen Mulero
- IHPE, Univ. Montpellier, CNRS, Univ. Perpignan Via Domitia, IFREMER, Perpignan, France
| | - Bert Van Bocxlaer
- Limnology Unit, Department of Biology, Ghent University, Gent, Belgium.,Univ. Lille, UMR 8198 Evo-Eco-Paleo, CNRS, Lille, France
| | - Jérôme Boissier
- IHPE, Univ. Montpellier, CNRS, Univ. Perpignan Via Domitia, IFREMER, Perpignan, France
| | - Dirk Verschuren
- Limnology Unit, Department of Biology, Ghent University, Gent, Belgium
| | - Christian Albrecht
- Systematics & Biodiversity Lab, Department of Animal Ecology & Systematics, Justus Liebig University, Giessen, Germany
| | - Tine Huyse
- Department of Biology, Royal Museum for Central Africa, Tervuren, Belgium.,Laboratory of Biodiversity and Evolutionary Genomics, University of Leuven, Leuven, Belgium
| |
Collapse
|
16
|
Large-scale phylogenomics of the genus Macrostomum (Platyhelminthes) reveals cryptic diversity and novel sexual traits. Mol Phylogenet Evol 2021; 166:107296. [PMID: 34438051 DOI: 10.1016/j.ympev.2021.107296] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/01/2021] [Accepted: 08/19/2021] [Indexed: 02/07/2023]
Abstract
Free-living flatworms of the genus Macrostomum are small and transparent animals, representing attractive study organisms for a broad range of topics in evolutionary, developmental, and molecular biology. The genus includes the model organism M. lignano for which extensive molecular resources are available, and recently there is a growing interest in extending work to additional species in the genus. These endeavours are currently hindered because, even though >200 Macrostomum species have been taxonomically described, molecular phylogenetic information and geographic sampling remain limited. We report on a global sampling campaign aimed at increasing taxon sampling and geographic representation of the genus. Specifically, we use extensive transcriptome and single-locus data to generate phylogenomic hypotheses including 145 species. Across different phylogenetic methods and alignments used, we identify several consistent clades, while their exact grouping is less clear, possibly due to a radiation early in Macrostomum evolution. Moreover, we uncover a large undescribed diversity, with 94 of the studied species likely being new to science, and we identify multiple novel morphological traits. Furthermore, we identify cryptic speciation in a taxonomically challenging assemblage of species, suggesting that the use of molecular markers is a prerequisite for future work, and we describe the distribution of putative synapomorphies and suggest taxonomic revisions based on our finding. Our large-scale phylogenomic dataset now provides a robust foundation for comparative analyses of morphological, behavioural and molecular evolution in this genus.
Collapse
|
17
|
Leis E, Chi TK, Lumme J. Global Phylogeography of Salmonid Ectoparasites of the Genus Gyrodactylus, with an Emphasis on the Origin of the Circumpolar Gyrodactylus salmonis (Platyhelminthes: Monogenea). COMP PARASITOL 2021. [DOI: 10.1654/1525-2647-88.1.130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
18
|
Schroeder A, Pallavicini A, Edomi P, Pansera M, Camatti E. Suitability of a dual COI marker for marine zooplankton DNA metabarcoding. MARINE ENVIRONMENTAL RESEARCH 2021; 170:105444. [PMID: 34399186 DOI: 10.1016/j.marenvres.2021.105444] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 06/13/2023]
Abstract
As DNA metabarcoding has become an emerging tool for surveying biodiversity, including its application in legally binding assessments, reliable and efficient barcodes are requested, especially for the highly diverse group of zooplankton. This study focuses on comparing the efficiency of two mitochondrial COI barcodes based on the internal primers mlCOIintF and mlCOIintR utilizing mesozooplankton samples collected in a Mediterranean lagoon. Our results indicate that after a slight adjustment, the mlCOIintR primer performs in combination with jdgLCO1490 (herein) very comparably to the much more widely used primer system mlCOIintF/jgHCO2198+dgHCO2198, in terms of level of taxonomic resolution, species detection and their relative abundance in terms of numbers of reads. As for some groups, like Ctenophora, this barcode is not suitable; a combination of them may be the best option to rely on the Folmer region in its entirety without the risk of losing information for a limited primer match.
Collapse
Affiliation(s)
- Anna Schroeder
- National Research Council, Institute of Marine Science (CNR ISMAR) Venice, Arsenale Tesa 104, Castello 2737/F, 30122, Venice, Italy; University of Trieste, Department of Life Sciences, Via Licio Giorgieri 5, 34127, Trieste, Italy.
| | - Alberto Pallavicini
- University of Trieste, Department of Life Sciences, Via Licio Giorgieri 5, 34127, Trieste, Italy; Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy.
| | - Paolo Edomi
- University of Trieste, Department of Life Sciences, Via Licio Giorgieri 5, 34127, Trieste, Italy.
| | - Marco Pansera
- National Research Council, Institute of Marine Science (CNR ISMAR) Venice, Arsenale Tesa 104, Castello 2737/F, 30122, Venice, Italy; Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy.
| | - Elisa Camatti
- National Research Council, Institute of Marine Science (CNR ISMAR) Venice, Arsenale Tesa 104, Castello 2737/F, 30122, Venice, Italy.
| |
Collapse
|
19
|
Nyman T, Papadopoulou E, Ylinen E, Wutke S, Michell CT, Sromek L, Sinisalo T, Andrievskaya E, Alexeev V, Kunnasranta M. DNA barcoding reveals different cestode helminth species in northern European marine and freshwater ringed seals. INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2021; 15:255-261. [PMID: 34277335 PMCID: PMC8261468 DOI: 10.1016/j.ijppaw.2021.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/14/2021] [Accepted: 06/21/2021] [Indexed: 02/08/2023]
Abstract
Three subspecies of the ringed seal (Pusa hispida) are found in northeastern Europe: P. h. botnica in the Baltic Sea, P. h saimensis in Lake Saimaa in Finland, and P. h. ladogensis in Lake Ladoga in Russia. We investigated the poorly-known cestode helminth communities of these closely related but ecologically divergent subspecies using COI barcode data. Our results show that, while cestodes from the Baltic Sea represent Schistocephalus solidus, all worms from the two lakes are identified as Ligula intestinalis, a species that has previously not been reported from seals. The observed shift in cestode communities appears to be driven by differential availability of intermediate fish host species in marine vs. freshwater environments. Both observed cestode species normally infect fish-eating birds, so further work is required to elucidate the health and conservation implications of cestode infections in European ringed seals, whether L. intestinalis occurs also in marine ringed seals, and whether the species is able to reproduce in seal hosts. In addition, a deep barcode divergence found within S. solidus suggests the presence of cryptic diversity under this species name. COI barcoding reveals different cestodes in marine and freshwater ringed seals. Ligula intestinalis is reported for the first time from seals. A deep barcode divergence is found within Schistocephalus solidus in the Baltic Sea.
Collapse
Affiliation(s)
- Tommi Nyman
- Department of Ecosystems in the Barents Region, Norwegian Institute of Bioeconomy Research, Svanvik, Norway
| | - Elena Papadopoulou
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| | - Eeva Ylinen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| | - Saskia Wutke
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| | - Craig T Michell
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| | - Ludmila Sromek
- Department of Marine Ecosystems Functioning, Institute of Oceanography, University of Gdansk, Gdynia, Poland
| | - Tuula Sinisalo
- Department of Biological and Environmental Sciences, University of Jyväskylä, Jyväskylä, Finland
| | | | | | - Mervi Kunnasranta
- Natural Resources Institute Finland, Joensuu, Finland.,Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| |
Collapse
|
20
|
Azizi R, Bouguerche C, Santoro M, Gey D, Tazerouti F, Justine JL, Bahri S. Redescription and molecular characterization of two species of Pauciconfibula (Monogenea, Microcotylidae) from trachinid fishes in the Mediterranean Sea. Parasitol Res 2021; 120:2363-2377. [PMID: 33974138 DOI: 10.1007/s00436-021-07097-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 02/18/2021] [Indexed: 10/21/2022]
Abstract
Many Pauciconfibula spp. have a long and complicated taxonomic history. The remaining unsolved taxonomic confusion in this genus is impelled by the host range and status of Pauciconfibula spp. from trachinid fishes: Pauciconfibula trachini and Pauciconfibula draconis, from Trachinus radiatus and Trachinus draco (Trachinidae), respectively. Pauciconfibula trachini was reported on Trachinus draco, type host of Pauciconfibula draconis suggesting thus a stenoxenic specificity for the former monogenean and the occurrence of two congeneric polyopisthocotyleans on a single host. Moreover, the validity of Pauciconfibula draconis was repeatedly questioned by several authors, unjustified synonymy between the two species was proposed, and the delimitations between the two species remained unsolved. Original descriptions were also incomplete and poorly illustrated. In this study, we provide a detailed illustrated redescription of both species based on newly collected specimens of Pauciconfibula trachini and Pauciconfibula draconis collected from their type hosts from off three Mediterranean localities: Algeria, Tunisia, and Italy. Integrative taxonomy using COI sequences was applied to resolve the delimitation between Pauciconfibula trachini and P. draconis. This study provides the first DNA barcoding for members of this genus.
Collapse
Affiliation(s)
- Ramla Azizi
- Research Unit of Integrative Biology and Evolutionary and Functional Ecology of Aquatic Systems, Faculty of Sciences of Tunis, Université de Tunis El Manar, Tunis, Tunisia
| | - Chahinez Bouguerche
- Faculté des Sciences Biologiques, Laboratoire de Biodiversité et Environnement: Interactions - Génomes, Université des Sciences et de la Technologie Houari Boumediene, BP 32, El Alia Bab Ezzouar, Algérie, Alger, Algeria. .,Institut Systématique Évolution Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 rue Cuvier, CP 51, Paris, 75005, France.
| | - Mario Santoro
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale 1, 80121, Naples, Italy
| | - Delphine Gey
- Service de Systématique Moléculaire, UMS 2700 CNRS, Muséum National d'Histoire Naturelle, Sorbonne Universités, 43 Rue Cuvier, CP 26, 75231, Paris Cedex 05, France.,UMR7245 MCAM, Muséum National d'Histoire Naturelle, 61, Rue Buffon, CP52, 75231, Paris Cedex 05, France
| | - Fadila Tazerouti
- Faculté des Sciences Biologiques, Laboratoire de Biodiversité et Environnement: Interactions - Génomes, Université des Sciences et de la Technologie Houari Boumediene, BP 32, El Alia Bab Ezzouar, Algérie, Alger, Algeria
| | - Jean-Lou Justine
- Institut Systématique Évolution Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 rue Cuvier, CP 51, Paris, 75005, France
| | - Sihem Bahri
- Research Unit of Integrative Biology and Evolutionary and Functional Ecology of Aquatic Systems, Faculty of Sciences of Tunis, Université de Tunis El Manar, Tunis, Tunisia
| |
Collapse
|
21
|
Truter M, Hadfield KA, Weyl OLF, Smit NJ. Pseudodactylogyrus anguillae (Yin & Sproston, 1948) from the giant mottled eel Anguilla marmorata Quoy & Gaimard, 1824, in the Phongolo River, South Africa: an invader on the African continent. Parasitol Res 2021; 120:1247-1268. [PMID: 33544226 DOI: 10.1007/s00436-021-07071-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 01/25/2021] [Indexed: 10/22/2022]
Abstract
The global invasive anguillid gill parasite Pseudodactylogyrus anguillae (Yin and Sproston, 1948) has only recently been documented from eels in South Africa. As there is no known eel trade in South Africa, the source of introduction of this parasite has been debated, and its status as an alien parasite was rendered uncertain. We report on the first infection of Pseudodactylogyrus anguillae from the giant mottled eel Anguilla marmorata from the Phongolo River (South Africa) using classic morphological and molecular methodologies and clarify the introduction status category of this parasite as alien and invasive.
Collapse
Affiliation(s)
- Marliese Truter
- Water Research Group, Unit for Environmental Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa. .,DSI/NRF Research Chair in Inland Fisheries and Freshwater Ecology, South African Institute for Aquatic Biodiversity, Makhanda, 6139, South Africa.
| | - Kerry A Hadfield
- Water Research Group, Unit for Environmental Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - Olaf L F Weyl
- DSI/NRF Research Chair in Inland Fisheries and Freshwater Ecology, South African Institute for Aquatic Biodiversity, Makhanda, 6139, South Africa
| | - Nico J Smit
- Water Research Group, Unit for Environmental Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
| |
Collapse
|
22
|
Schols R, Mudavanhu A, Carolus H, Hammoud C, Muzarabani KC, Barson M, Huyse T. Exposing the Barcoding Void: An Integrative Approach to Study Snail-Borne Parasites in a One Health Context. Front Vet Sci 2020; 7:605280. [PMID: 33363243 PMCID: PMC7758321 DOI: 10.3389/fvets.2020.605280] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/16/2020] [Indexed: 11/13/2022] Open
Abstract
Trematodes are snail-borne parasites of major zoonotic importance that infect millions of people and animals worldwide and frequently hybridize with closely related species. Therefore, it is desirable to study trematodiases in a One Health framework, where human and animal trematodes are considered equally important. It is within this framework that we set out to study the snail and trematode communities in four artificial lakes and an abattoir in Zimbabwe. Trematode infections in snails were detected through multiplex PCR protocols. Subsequently, we identified snails by sequencing a partial mitochondrial cytochrome c oxidase subunit I (COI) fragment, and trematodes (adults from the abattoir and larval stages detected in snails) using COI and nuclear rDNA markers. Of the 1,674 collected snails, 699 were molecularly analyzed, in which we identified 12 snail and 19 trematode species. Additionally, three parasite species were sampled from the abattoir. Merely four trematode species were identified to species level through COI-based barcoding. Moreover, identification of members of the superfamilies Opisthorchioidea and Plagiorchioidea required a phylogenetic inference using the highly conserved 18S rDNA marker, as no related COI reference sequences were present in public databases. These barcoding challenges demonstrate a severe barcoding void in the available databases, which can be attributed to the neglected status of trematodiases. Adding to this, many available sequences cannot be used as different studies use different markers. To fill this gap, more studies on African trematodes, using a standardized COI barcoding region, are desperately needed.
Collapse
Affiliation(s)
- Ruben Schols
- Laboratory of Aquatic Biology, Katholieke Universiteit Leuven Kulak, Kortrijk, Belgium.,Department of Biology, Royal Museum for Central Africa, Tervuren, Belgium
| | - Aspire Mudavanhu
- Department of Biological Sciences, Bindura University of Science Education, Bindura, Zimbabwe
| | - Hans Carolus
- Laboratory of Molecular Cell Biology, Katholieke Universiteit Leuven-Vlaams Instituut voor Biotechnologie Center for Microbiology, Leuven, Belgium
| | - Cyril Hammoud
- Department of Biology, Royal Museum for Central Africa, Tervuren, Belgium.,Limnology Research Unit, Ghent University, Ghent, Belgium
| | | | - Maxwell Barson
- Department of Biological Sciences, University of Zimbabwe, Harare, Zimbabwe.,Department of Biological Sciences, University of Botswana, Gaborone, Botswana
| | - Tine Huyse
- Department of Biology, Royal Museum for Central Africa, Tervuren, Belgium
| |
Collapse
|
23
|
Dos Santos QM, Avenant-Oldewage A. Review on the molecular study of the Diplozoidae: analyses of currently available genetic data, what it tells us, and where to go from here. Parasit Vectors 2020; 13:539. [PMID: 33126913 PMCID: PMC7602351 DOI: 10.1186/s13071-020-04417-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/21/2020] [Indexed: 01/04/2023] Open
Abstract
The use of molecular tools in the study of parasite taxonomy and systematics have become a substantial and crucial component of parasitology. Having genetic characterisation at the disposal of researchers has produced mostly useful, and arguably more objective conclusions. However, there are several groups for which limited genetic information is available and, coupled with the lack of standardised protocols, renders molecular study of these groups challenging. The Diplozoidae are fascinating and unique monogeneans parasitizing mainly freshwater cyprinid fishes in Europe, Asia and Africa. This group was studied from a molecular aspect since the turn of the century and as such, limitations and variability concerning the use of these techniques have not been clearly defined. In this review, all literature and molecular information, primarily from online databases such as GenBank, were compiled and scrupulously analysed for the Diplozoidae. This was done to review the information, detect possible pitfalls, and provide a "checkpoint" for future molecular studies of the family. Hindrances detected are the availability of sequence data for only a limited number of species, frequently limited to a single sequence per species, and the heavy reliance on one non-coding ribosomal marker (ITS2 rDNA) which is difficult to align objectively and displays massive divergences between taxa. Challenging species identification and limited understanding of diplozoid species diversity and plasticity are also likely restricting factors, all of which hamper the accurate taxonomic and phylogenetic study of this group. Thus, a more integrated taxonomic approach through the inclusion of additional markers, application of more rigorous morphological assessment, more structured barcoding techniques, alongside thorough capturing of species descriptions including genetypes, genophore vouchers and reference collections in open sources are encouraged. The pitfalls highlighted are not singular to the Diplozoidae, and the study of other groups may benefit from the points raised here as well.
Collapse
Affiliation(s)
- Quinton Marco Dos Santos
- Department of Zoology, University of Johannesburg, Auckland Park, P.O. Box 524, Johannesburg, 2006 South Africa
| | - Annemariè Avenant-Oldewage
- Department of Zoology, University of Johannesburg, Auckland Park, P.O. Box 524, Johannesburg, 2006 South Africa
| |
Collapse
|
24
|
Santos CP, Borges JN. Current Knowledge of Small Flukes (Digenea: Heterophyidae) from South America. THE KOREAN JOURNAL OF PARASITOLOGY 2020; 58:373-386. [PMID: 32871631 PMCID: PMC7462800 DOI: 10.3347/kjp.2020.58.4.373] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/09/2020] [Indexed: 11/23/2022]
Abstract
Fish-borne heterophyid trematodes are known to have a zoonotic potential, since at least 30 species are able to infect humans worldwide, with a global infection of around 7 million people. In this paper, a ‘state-of-the-art’ review of the South American heterophyid species is provided, including classical and molecular taxonomy, parasite ecology, host-parasite interaction studies and a list of species and their hosts. There is still a lack of information on human infections in South America with undetected or unreported infections probably due to the information shortage and little attention by physicians to these small intestinal flukes. Molecular tools for specific diagnoses of South American heterophyid species are still to be defined. Additional new sequences of Pygidiopsis macrostomum, Ascocotyle pindoramensis and Ascocotyle longa from Brazil are also provided.
Collapse
|
25
|
Bouguerche C, Tazerouti F, Gey D, Justine JL. No vagina, one vagina, or multiple vaginae? An integrative study of Pseudaxine trachuri (Monogenea, Gastrocotylidae) leads to a better understanding of the systematics of Pseudaxine and related genera. Parasite 2020; 27:50. [PMID: 32808922 PMCID: PMC7433403 DOI: 10.1051/parasite/2020046] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/24/2020] [Indexed: 11/14/2022] Open
Abstract
The presence/absence and number of vaginae is a major characteristic for the systematics of the Monogenea. Three gastrocotylid genera share similar morphology and anatomy but are distinguished by this character: Pseudaxine Parona & Perugia, 1890 has no vagina, Allogastrocotyle Nasir & Fuentes Zambrano, 1983 has two vaginae, and Pseudaxinoides Lebedev, 1968 has multiple vaginae. In the course of a study of Pseudaxine trachuri Parona & Perugia 1890, we found specimens with structures resembling "multiple vaginae"; we compared them with specimens without vaginae in terms of both morphology and molecular characterisitics (COI barcode), and found that they belonged to the same species. We also investigated the male copulatory organ (MCO) of this species, the accuracy of the original description of which is known to be a matter of debate. We found that the genital atrium is armed with 12 hooks arranged as a single circle and a central hollow stylet which is probably involved in traumatic insemination. We redescribed Pseudaxine trachuri based on newly collected specimens from off the coast of Algeria and Museum specimens from off France. Specimens from the type-host, Trachurus trachurus, were found to be similar, for both molecular sequences and morphology, to those found on Boops boops. We can therefore confirm, for the first time with molecular evidence, that B. boops is a host of this parasite. We consider that Pseudaxinoides was erected on the basis of an erroneous interpretation of structures which are not vaginae and, consequently, propose the transfer of most of its species to Pseudaxine, as P. australis (Lebedev, 1968) n. comb., P. bychowskyi (Lebedev, 1977) n. comb., P. caballeroi (Lebedev, 1977) n. comb., P. cariacoensis (Nasir & Fuentes-Zambrano, 1983) n. comb., and P. vietnamensis (Lebedev, Parukhin & Roitman, 1970) n. comb. We also propose Allogastrocotyle dillonhargisorum nom. nov. for Pseudaxine bivaginalis Dillon & Hargis, 1965 to avoid a secondary homonymy.
Collapse
Affiliation(s)
- Chahinez Bouguerche
-
Université des Sciences et de la Technologie Houari Boumediene, Faculté des Sciences Biologiques, Laboratoire de Biodiversité et Environnement: Interactions – Génomes BP 32, El Alia Bab Ezzouar 16111 Alger Algérie
| | - Fadila Tazerouti
-
Université des Sciences et de la Technologie Houari Boumediene, Faculté des Sciences Biologiques, Laboratoire de Biodiversité et Environnement: Interactions – Génomes BP 32, El Alia Bab Ezzouar 16111 Alger Algérie
| | - Delphine Gey
-
Service de Systématique Moléculaire, UMS 2700 CNRS, Muséum National d’Histoire Naturelle, Sorbonne Universités 43 Rue Cuvier, CP 26 75231 Paris Cedex 05 France
-
UMR7245 MCAM, Muséum National d’Histoire Naturelle 61, Rue Buffon, CP52 75231 Paris Cedex 05 France
| | - Jean-Lou Justine
-
Institut Systématique Évolution Biodiversité (ISYEB), Muséum National d’Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles 57 Rue Cuvier, CP 51 75231 Paris Cedex 05 France
| |
Collapse
|
26
|
Morphometric and genetic evidence for cryptic diversity in Gyrodactylus (Monogenea) infecting non-native European populations of Ameiurus nebulosus and A. melas. Parasitology 2020; 147:1700-1711. [PMID: 32729452 DOI: 10.1017/s0031182020001195] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Gyrodactylid parasites were observed on non-native populations of North-American freshwater catfishes, Ameiurus nebulosus and Ameiurus melas (Siluriformes: Ictaluridae), at several sites in the Elbe River basin, Czech Republic, Europe. Using a combination of morphological and genetic analyses, the parasites infecting A. nebulosus were determined to be Gyrodactylus nebulosus, a North American parasite co-introduced to Europe along with its Ameiurus fish hosts. Subtle morphometrical differences, as well as seasonal variations, were observed among parasites collected from A. nebulosus and A. melas. The host-related variation was further supported through genetic analysis of the partial 18S rDNA, ITS1-5.8S-ITS2 and COI, showing 0.2, 3.0 and 4.8% divergence, respectively. Consistent genetic differences indicated there were two distinct genotypes. Subtle morphological differences associated with the shape of sickle toe, anchor root and ventral bar membrane, according to host species, also supported the description of a new cryptic species, Gyrodactylus melas n. sp., infecting A. melas. Multivariate morphometrical analysis of haptoral hard parts showed significant differences between the anchor lengths of G. nebulosus and G. melas n. sp. However, the measurements of the haptoral hard structures partially overlapped between species, limiting the usage of these parameters for species delineation.
Collapse
|
27
|
Balsamo M, Artois T, Smith JPS, Todaro MA, Guidi L, Leander BS, Van Steenkiste NWL. The curious and neglected soft-bodied meiofauna: Rouphozoa (Gastrotricha and Platyhelminthes). HYDROBIOLOGIA 2020; 847:2613-2644. [PMID: 33551466 PMCID: PMC7864459 DOI: 10.1007/s10750-020-04287-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 04/25/2020] [Accepted: 05/04/2020] [Indexed: 06/11/2023]
Abstract
Gastrotricha and Platyhelminthes form a clade called Rouphozoa. Representatives of both taxa are main components of meiofaunal communities, but their role in the trophic ecology of marine and freshwater communities is not sufficiently studied. Traditional collection methods for meiofauna are optimized for Ecdysozoa, and include the use of fixatives or flotation techniques that are unsuitable for the preservation and identification of soft-bodied meiofauna. As a result, rouphozoans are usually underestimated in conventional biodiversity surveys and ecological studies. Here, we give an updated outline of their diversity and taxonomy, with some phylogenetic considerations. We describe successfully tested techniques for their recovery and study, and emphasize current knowledge on the ecology, distribution and dispersal of freshwater gastrotrichs and microturbellarians. We also discuss the opportunities and pitfalls of (meta)barcoding studies as a means of overcoming the taxonomic impediment. Finally, we discuss the importance of rouphozoans in aquatic ecosystems and provide future research directions to fill in crucial gaps in the biology of these organisms needed for understanding their basic role in the ecology of benthos and their place in the trophic networks linking micro-, meio- and macrofauna of freshwater ecosystems.
Collapse
Affiliation(s)
- Maria Balsamo
- Department of Biomolecular Sciences, University of Urbino, Urbino, Italy
| | - Tom Artois
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | | | - M Antonio Todaro
- Department of Life Sciences, University of Modena-Reggio Emilia, Modena, Italy
| | - Loretta Guidi
- Department of Biomolecular Sciences, University of Urbino, Urbino, Italy
| | - Brian S Leander
- Departments of Botany and Zoology, University of British Columbia, Vancouver, BC, Canada
| | | |
Collapse
|
28
|
Monnens M, Thijs S, Briscoe AG, Clark M, Frost EJ, Littlewood DTJ, Sewell M, Smeets K, Artois T, Vanhove MPM. The first mitochondrial genomes of endosymbiotic rhabdocoels illustrate evolutionary relaxation of atp8 and genome plasticity in flatworms. Int J Biol Macromol 2020; 162:454-469. [PMID: 32512097 DOI: 10.1016/j.ijbiomac.2020.06.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 02/02/2023]
Abstract
The first three mitochondrial (mt) genomes of endosymbiotic turbellarian flatworms are characterised for the rhabdocoels Graffilla buccinicola, Syndesmis echinorum and S. kurakaikina. Interspecific comparison of the three newly obtained sequences and the only previously characterised rhabdocoel, the free-living species Bothromesostoma personatum, reveals high mt genomic variability, including numerous rearrangements. The first intrageneric comparison within rhabdocoels shows that gene order is not fully conserved even between congeneric species. Atp8, until recently assumed absent in flatworms, was putatively annotated in two sequences. Selection pressure was tested in a phylogenetic framework and is shown to be significantly relaxed in this and another protein-coding gene: cox1. If present, atp8 appears highly derived in platyhelminths and its functionality needs to be addressed in future research. Our findings for the first time allude to a large degree of undiscovered (mt) genomic plasticity in rhabdocoels. It merits further attention whether this variation is correlated with a symbiotic lifestyle. Our results illustrate that this phenomenon is widespread in flatworms as a whole and not exclusive to the better-studied neodermatans.
Collapse
Affiliation(s)
- Marlies Monnens
- Hasselt University, Centre for Environmental Sciences, Research Group Zoology: Biodiversity and Toxicology, Agoralaan Gebouw D, B-3590 Diepenbeek, Belgium.
| | - Sofie Thijs
- Hasselt University, Centre for Environmental Sciences, Research Group Environmental Biology, Agoralaan Gebouw D, B-3590 Diepenbeek, Belgium.
| | - Andrew G Briscoe
- Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, United Kingdom.
| | - Miriam Clark
- School of Biological Sciences, University of Auckland, New Zealand.
| | - Emily Joy Frost
- School of Biological Sciences, University of Auckland, New Zealand.
| | - D Tim J Littlewood
- Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, United Kingdom.
| | - Mary Sewell
- School of Biological Sciences, University of Auckland, New Zealand.
| | - Karen Smeets
- Hasselt University, Centre for Environmental Sciences, Research Group Zoology: Biodiversity and Toxicology, Agoralaan Gebouw D, B-3590 Diepenbeek, Belgium.
| | - Tom Artois
- Hasselt University, Centre for Environmental Sciences, Research Group Zoology: Biodiversity and Toxicology, Agoralaan Gebouw D, B-3590 Diepenbeek, Belgium.
| | - Maarten P M Vanhove
- Hasselt University, Centre for Environmental Sciences, Research Group Zoology: Biodiversity and Toxicology, Agoralaan Gebouw D, B-3590 Diepenbeek, Belgium; Laboratory of Biodiversity and Evolutionary Genomics, University of Leuven, Charles Deberiotstraat 32, B-3000 Leuven, Belgium; Zoology Unit, Finnish Museum of Natural History, University of Helsinki, P.O. Box 17, Helsinki FI-00014, Finland; Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic.
| |
Collapse
|
29
|
Ip YCA, Tay YC, Gan SX, Ang HP, Tun K, Chou LM, Huang D, Meier R. From marine park to future genomic observatory? Enhancing marine biodiversity assessments using a biocode approach. Biodivers Data J 2019; 7:e46833. [PMID: 31866739 PMCID: PMC6917626 DOI: 10.3897/bdj.7.e46833] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 11/21/2019] [Indexed: 12/27/2022] Open
Abstract
Few tropical marine sites have been thoroughly characterised for their animal species, even though they constitute the largest proportion of multicellular diversity. A number of focused biodiversity sampling programmes have amassed immense collections to address this shortfall, but obstacles remain due to the lack of identification tools and large proportion of undescribed species globally. These problems can be partially addressed with DNA barcodes ("biocodes"), which have the potential to facilitate the estimation of species diversity and identify animals to named species via barcode databases. Here, we present the first results of what is intended to be a sustained, systematic study of the marine fauna of Singapore's first marine park, reporting more than 365 animal species, determined based on DNA barcodes and/or morphology represented by 931 specimens (367 zooplankton, 564 macrofauna including 36 fish). Due to the lack of morphological and molecular identification tools, only a small proportion could be identified to species solely based on either morphology (24.5%) or barcodes (24.6%). Estimation of species numbers for some taxa was difficult because of the lack of sufficiently clear barcoding gaps. The specimens were imaged and added to "Biodiversity of Singapore" (http://singapore.biodiversity.online), which now contains images for > 13,000 species occurring in the country.
Collapse
Affiliation(s)
- Yin Cheong Aden Ip
- Department of Biological Sciences, National University of Singapore, Singapore, SingaporeDepartment of Biological Sciences, National University of SingaporeSingaporeSingapore
| | - Ywee Chieh Tay
- National University of Singapore, Singapore, SingaporeNational University of SingaporeSingaporeSingapore
- Temasek Life Sciences Laboratory, Singapore, SingaporeTemasek Life Sciences LaboratorySingaporeSingapore
| | - Su Xuan Gan
- Department of Biological Sciences, National University of Singapore, Singapore, SingaporeDepartment of Biological Sciences, National University of SingaporeSingaporeSingapore
| | - Hui Ping Ang
- National Parks Board, Singapore, SingaporeNational Parks BoardSingaporeSingapore
| | - Karenne Tun
- National Parks Board, Singapore, SingaporeNational Parks BoardSingaporeSingapore
| | - Loke Ming Chou
- Department of Biological Sciences, National University of Singapore, Singapore, SingaporeDepartment of Biological Sciences, National University of SingaporeSingaporeSingapore
- Tropical Marine Science Institute, National University of Singapore, Singapore, SingaporeTropical Marine Science Institute, National University of SingaporeSingaporeSingapore
| | - Danwei Huang
- Department of Biological Sciences, National University of Singapore, Singapore, SingaporeDepartment of Biological Sciences, National University of SingaporeSingaporeSingapore
- Tropical Marine Science Institute, National University of Singapore, Singapore, SingaporeTropical Marine Science Institute, National University of SingaporeSingaporeSingapore
| | - Rudolf Meier
- Department of Biological Sciences, National University of Singapore, Singapore, SingaporeDepartment of Biological Sciences, National University of SingaporeSingaporeSingapore
- Tropical Marine Science Institute, National University of Singapore, Singapore, SingaporeTropical Marine Science Institute, National University of SingaporeSingaporeSingapore
| |
Collapse
|
30
|
Kvach Y, Ondračková M, Seifertová M, Hulak B. Gyrodactylus ginestrae n. sp. (Monogenea: Gyrodactylidae), a parasite of the big-scale sand smelt, Atherina boyeri Risso, 1810 (Actinopterygii: Atherinidae) from the Black Sea. Parasitol Res 2019; 118:3315-3325. [DOI: 10.1007/s00436-019-06483-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 09/25/2019] [Indexed: 11/24/2022]
|
31
|
Irigoitia MM, Braicovich PE, Rossin MA, Canel D, Levy E, Farber MD, Timi JT. Diversity of Empruthotrema Johnston and Tiegs, 1992 parasitizing batoids (Chondrichthyes: Rajiformes and Myliobatiformes) from the Southwest Atlantic Ocean, with description of three new species. Parasitol Res 2019; 118:3113-3127. [DOI: 10.1007/s00436-019-06456-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 09/04/2019] [Indexed: 11/25/2022]
|
32
|
Řehulková E, Kičinjaová ML, Mahmoud ZN, Gelnar M, Seifertová M. Species of Characidotrema Paperna & Thurston, 1968 (Monogenea: Dactylogyridae) from fishes of the Alestidae (Characiformes) in Africa: new species, host-parasite associations and first insights into the phylogeny of the genus. Parasit Vectors 2019; 12:366. [PMID: 31349871 PMCID: PMC6659303 DOI: 10.1186/s13071-019-3580-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 06/19/2019] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND African tetras (Alestidae) belonging to Brycinus Valenciennes are known to be parasitized with monogeneans attributed to two genera, Annulotrema Paperna & Thurston, 1969 and Characidotrema Paperna & Thurston, 1968 (Dactylogyridae). During a survey of monogeneans parasitizing alestids, species of Characidotrema were collected in Cameroon, D. R. Congo, Senegal, South Africa, Sudan and Zimbabwe. This paper provides new morphological data and the first molecular analysis broadening our knowledge on the diversity of these parasites. RESULTS Seven species (four known and three new) of Characidotrema are reported from two species of Brycinus: C. auritum n. sp. and C. vespertilio n. sp. from B. imberi (Peters); and C. brevipenis Paperna, 1969, C. nursei Ergens, 1973, C. pollex n. sp., C. spinivaginus (Paperna, 1973) and C. zelotes Kritsky, Kulo & Boeger, 1987 from B. nurse (Rüppell). Species identification was based on morphological analysis of the sclerotized structures supported by nuclear ribosomal DNA (partial 18S rDNA, ITS1, and 28S rDNA) sequence data. Morphological analysis confirmed that the most apparent character distinguishing species in the genus is the morphology of the male copulatory organ and vagina. Observations on the haptoral sclerotized elements of these parasites by means of phase contrast microscopy revealed the presence of a sheath-like structure relating to the ventral anchor, a feature that supplements the generic diagnosis of Characidotrema. Maximum Likelihood and Bayesian analyses of the large subunit (28S) rDNA sequences recovered Characidotrema species isolated from the two Brycinus hosts as monophyletic, and indicated a closer relationship of this group to monogeneans parasitizing African cyprinids (Dactylogyrus spp.) and cichlids (species of Cichlidogyrus Paperna, 1960, Scutogyrus Pariselle & Euzet, 1995, and Onchobdella Paperna, 1968) than to those from catfishes (species of Quadriacanthus Paperna, 1961, Schilbetrema Paperna & Thurston, 1968 and Synodontella Dossou & Euzet, 1993). The overall agreement between the morphological diversification of the MCOs and the molecular tree observed in this study indicates that significant phylogenetic signals for clarifying relationships among species of Characidotrema are present in the characteristics of the MCO. CONCLUSIONS It seems that intra-host speciation is an important force shaping the present distribution and diversity of Characidotrema but further studies are necessary to confirm this hypothesis and assess questions related to the phylogeny of these parasites. To identify potential co-speciation events, co-phylogenetic analyses of these monogeneans and their alestid hosts are required.
Collapse
Affiliation(s)
- Eva Řehulková
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Maria Lujza Kičinjaová
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Zuheir N. Mahmoud
- Department of Zoology, Faculty of Science, University of Khartoum, Khartoum, Sudan
| | - Milan Gelnar
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Mária Seifertová
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| |
Collapse
|
33
|
Litvaitis MK, Bolaños DM, Quiroga SY. Systematic congruence in Polycladida (Platyhelminthes, Rhabditophora): are DNA and morphology telling the same story? Zool J Linn Soc 2019. [DOI: 10.1093/zoolinnean/zlz007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
Using 28S ribosomal DNA sequences, we inferred the internal relationships of the order Polycladida. We identified morphological characters for clade support when possible. Monophyletic Acotylea and Cotylea were consistently recovered. In Acotylea, the superfamilies Stylochoidea, Cryptoceloidea and Leptoplanoidea were supported, with Stylochoidea representing the most basal acotylean lineage. In Leptoplanoidea, we united genera lacking a penis armature into the new family Notocomplanidae. Gnesiocerotidae was recovered as the most basal leptoplanoid lineage, and Stylochoplanidae and Notoplanidae were paraphyletic. Among cotyleans, Cestoplanidae, Diposthus popeae + Pericelis spp., Boniniidae, Pseudocerotidae and Prosthiostomidae formed clades. Genera in Euryleptidae were monophyletic, but the family itself was recovered with low support only. The established superfamilies Pseudocerotoidea, Euryleptoidea, Periceloidea and Chromoplanoidea are not supported. Pericelis has been moved to Diposthidae and Pericelidae has been abolished. A clade of Boniniidae + Theama spp. + Chromyella sp. was supported. In Pseudocerotidae, the number of male reproductive structures unites Pseudobiceros and Thysanozoon. Tytthosoceros has been abolished, with all currently described species now placed in Phrikoceros. Our results support several additional synonymies and taxonomic corrections. This new phylogeny provides an increased understanding of relationships in the order and offers a framework for future testing of hypotheses of character evolution and life-history strategies.
Collapse
Affiliation(s)
- Marian K Litvaitis
- Department of Natural Resources and the Environment, University of New Hampshire, Durham, NH, USA
| | - D Marcela Bolaños
- Department of Natural Resources and the Environment, University of New Hampshire, Durham, NH, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Sigmer Y Quiroga
- Programa de Biología, Facultad de Ciencias Básicas, Universidad del Magdalena, Santa Marta, Colombia
| |
Collapse
|
34
|
Vanhove MPM, Briscoe AG, Jorissen MWP, Littlewood DTJ, Huyse T. The first next-generation sequencing approach to the mitochondrial phylogeny of African monogenean parasites (Platyhelminthes: Gyrodactylidae and Dactylogyridae). BMC Genomics 2018; 19:520. [PMID: 29973152 PMCID: PMC6032552 DOI: 10.1186/s12864-018-4893-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 06/21/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Monogenean flatworms are the main ectoparasites of fishes. Representatives of the species-rich families Gyrodactylidae and Dactylogyridae, especially those infecting cichlid fishes and clariid catfishes, are important parasites in African aquaculture, even more so due to the massive anthropogenic translocation of their hosts worldwide. Several questions on their evolution, such as the phylogenetic position of Macrogyrodactylus and the highly speciose Gyrodactylus, remain unresolved with available molecular markers. Also, diagnostics and population-level research would benefit from the development of higher-resolution genetic markers. We aim to offer genetic resources for work on African monogeneans by providing mitogenomic data of four species (two belonging to Gyrodactylidae, two to Dactylogyridae), and analysing their gene sequences and gene order from a phylogenetic perspective. RESULTS Using Illumina technology, the first four mitochondrial genomes of African monogeneans were assembled and annotated for the cichlid parasites Gyrodactylus nyanzae, Cichlidogyrus halli, Cichlidogyrus mbirizei (near-complete mitogenome) and the catfish parasite Macrogyrodactylus karibae (near-complete mitogenome). Complete nuclear ribosomal operons were also retrieved, as molecular vouchers. The start codon TTG is new for Gyrodactylus and for Dactylogyridae, as is the incomplete stop codon TA for Dactylogyridae. Especially the nad2 gene is promising for primer development. Gene order was identical for protein-coding genes and differed between the African representatives of these families only in a tRNA gene transposition. A mitochondrial phylogeny based on an alignment of nearly 12,500 bp including 12 protein-coding and two ribosomal RNA genes confirms that the Neotropical oviparous Aglaiogyrodactylus forficulatus takes a sister group position with respect to the other gyrodactylids, instead of the supposedly 'primitive' African Macrogyrodactylus. Inclusion of the African Gyrodactylus nyanzae confirms the paraphyly of Gyrodactylus. The position of the African dactylogyrid Cichlidogyrus is unresolved, although gene order suggests it is closely related to marine ancyrocephalines. CONCLUSIONS The amount of mitogenomic data available for gyrodactylids and dactylogyrids is increased by roughly one-third. Our study underscores the potential of mitochondrial genes and gene order in flatworm phylogenetics, and of next-generation sequencing for marker development for these non-model helminths for which few primers are available.
Collapse
Affiliation(s)
- Maarten P. M. Vanhove
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, CZ-611 37 Brno, Czech Republic
- Zoology Unit, Finnish Museum of Natural History, University of Helsinki, P.O.Box 17, FI-00014 Helsinki, Finland
- Centre for Environmental Sciences, Research Group Zoology: Biodiversity & Toxicology, Hasselt University, Agoralaan Gebouw D, B-3590 Diepenbeek, Belgium
- Laboratory of Biodiversity and Evolutionary Genomics, Department of Biology, University of Leuven, Ch. Deberiotstraat 32, B-3000 Leuven, Belgium
- Biology Department, Royal Museum for Central Africa, Leuvensesteenweg 13, B-3080 Tervuren, Belgium
| | - Andrew G. Briscoe
- Department of Life Sciences, Natural History Museum, Cromwell Road, London, SW7 5BD UK
| | - Michiel W. P. Jorissen
- Centre for Environmental Sciences, Research Group Zoology: Biodiversity & Toxicology, Hasselt University, Agoralaan Gebouw D, B-3590 Diepenbeek, Belgium
- Biology Department, Royal Museum for Central Africa, Leuvensesteenweg 13, B-3080 Tervuren, Belgium
| | - D. Tim J. Littlewood
- Department of Life Sciences, Natural History Museum, Cromwell Road, London, SW7 5BD UK
| | - Tine Huyse
- Laboratory of Biodiversity and Evolutionary Genomics, Department of Biology, University of Leuven, Ch. Deberiotstraat 32, B-3000 Leuven, Belgium
- Biology Department, Royal Museum for Central Africa, Leuvensesteenweg 13, B-3080 Tervuren, Belgium
| |
Collapse
|
35
|
Atherton S, Jondelius U. Wide distributions and cryptic diversity within a Microstomum
(Platyhelminthes) species complex. ZOOL SCR 2018. [DOI: 10.1111/zsc.12290] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sarah Atherton
- Department of Zoology; Naturhistoriska riksmuseet; Stockholm Sweden
| | - Ulf Jondelius
- Department of Zoology; Naturhistoriska riksmuseet; Stockholm Sweden
| |
Collapse
|
36
|
Justine JL, Winsor L, Gey D, Gros P, Thévenot J. Giant worms chez moi! Hammerhead flatworms (Platyhelminthes, Geoplanidae, Bipalium spp., Diversibipalium spp.) in metropolitan France and overseas French territories. PeerJ 2018; 6:e4672. [PMID: 29844951 PMCID: PMC5969052 DOI: 10.7717/peerj.4672] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 04/06/2018] [Indexed: 11/20/2022] Open
Abstract
Background Species of the genera Bipalium and Diversibipalium, or bipaliines, are giants among land planarians (family Geoplanidae), reaching length of 1 m; they are also easily distinguished from other land flatworms by the characteristic hammer shape of their head. Bipaliines, which have their origin in warm parts of Asia, are invasive species, now widespread worldwide. However, the scientific literature is very scarce about the widespread repartition of these species, and their invasion in European countries has not been studied. Methods In this paper, on the basis of a four year survey based on citizen science, which yielded observations from 1999 to 2017 and a total of 111 records, we provide information about the five species present in Metropolitan France and French overseas territories. We also investigated the molecular variability of cytochrome-oxidase 1 (COI) sequences of specimens. Results Three species are reported from Metropolitan France: Bipalium kewense, Diversibipalium multilineatum, and an unnamed Diversibipalium ‘black’ species. We also report the presence of B. kewense from overseas territories, such as French Polynesia (Oceania), French Guiana (South America), the Caribbean French islands of Martinique, Guadeloupe, Saint Martin and Saint Barthélemy, and Montserrat (Central America), and La Réunion island (off South-East Africa). For B. vagum, observations include French Guiana, Guadeloupe, Martinique, Saint Barthélemy, Saint Martin, Montserrat, La Réunion, and Florida (USA). A probable new species, Diversibipalium sp. ‘blue,’ is reported from Mayotte Island (off South–East Africa). B. kewense, B. vagum and D. multilineatum each showed 0% variability in their COI sequences, whatever their origin, suggesting that the specimens are clonal, and that sexual reproduction is probably absent. COI barcoding was efficient in identifying species, with differences over 10% between species; this suggests that barcoding can be used in the future for identifying these invasive species. In Metropolitan south–west France, a small area located in the Department of Pyrénées-Atlantiques was found to be a hot-spot of bipaliine biodiversity and abundance for more than 20 years, probably because of the local mild weather. Discussion The present findings strongly suggest that the species present in Metropolitan France and overseas territories should be considered invasive alien species. Our numerous records in the open in Metropolitan France raise questions: as scientists, we were amazed that these long and brightly coloured worms could escape the attention of scientists and authorities in a European developed country for such a long time; improved awareness about land planarians is certainly necessary.
Collapse
Affiliation(s)
- Jean-Lou Justine
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, Paris, France
| | - Leigh Winsor
- College of Science and Engineering, James Cook University, Townsville, QLD, Australia
| | - Delphine Gey
- Service de Systématique Moléculaire, Muséum National d'Histoire Naturelle, Paris, France
| | | | - Jessica Thévenot
- UMS Patrinat, Muséum National d'Histoire Naturelle, Paris, France
| |
Collapse
|
37
|
Helminth endoparasites of the smooth newt Lissotriton vulgaris: linking morphological identification and molecular data. J Helminthol 2018; 93:332-341. [PMID: 29502544 DOI: 10.1017/s0022149x18000184] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The helminth endoparasites of many European amphibian species are often known exclusively from morphological descriptions. A molecular library of DNA sequence data linked to morphological identifications is still in its infancy. In this paper, we aim to contribute to such a library on the smooth newt Lissotriton vulgaris, the intermediate and definitive host of 31 helminth parasites, according to evidence published so far. Newts (n = 69) were collected at two study sites in western Germany and examined for the presence of helminths. A total of five helminth species were detected in 56 (81%) of the newts, but only one or two species infected a single host. Four out of five helminth species were identified morphologically and based on DNA sequences as Parastrigea robusta (metacercariae), Oswaldocruzia filiformis, Megalobatrachonema terdentatum (adults and larvae) and Cosmocerca longicauda, and the corresponding sequences were provided subsequently. Oswaldocruzia molgeta was confirmed to be a junior synonym of O. filiformis. Molecular data on a fifth species (a cosmocercid nematode) that could not be identified at species level were added to GenBank. These findings increased the molecular library on morphologically identified smooth newt parasites significantly, from 12 to 15 entries.
Collapse
|
38
|
Clonorchis sinensis and Clonorchiasis: The Relevance of Exploring Genetic Variation. ADVANCES IN PARASITOLOGY 2018; 100:155-208. [PMID: 29753338 DOI: 10.1016/bs.apar.2018.03.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Parasitic trematodes (flukes) cause substantial mortality and morbidity in humans. The Chinese liver fluke, Clonorchis sinensis, is one of the most destructive parasitic worms in humans in China, Vietnam, Korea and the Russian Far East. Although C. sinensis infection can be controlled relatively well using anthelmintics, the worm is carcinogenic, inducing cholangiocarcinoma and causing major suffering in ~15 million people in Asia. This chapter provides an account of C. sinensis and clonorchiasis research-covering aspects of biology, epidemiology, pathogenesis and immunity, diagnosis, treatment and control, genetics and genomics. It also describes progress in the area of molecular biology (genetics, genomics, transcriptomics and proteomics) and highlights challenges associated with comparative genomics and population genetics. It then reviews recent advances in the sequencing and characterisation of the mitochondrial and nuclear genomes for a Korean isolate of C. sinensis and summarises salient comparative genomic work and the implications thereof. The chapter concludes by considering how advances in genomic and informatics will enable research on the genetics of C. sinensis and related parasites, as well as the discovery of new fluke-specific intervention targets.
Collapse
|
39
|
Species diversity in the marine microturbellarian Astrotorhynchus bifidus sensu lato (Platyhelminthes: Rhabdocoela) from the Northeast Pacific Ocean. Mol Phylogenet Evol 2017; 120:259-273. [PMID: 29248627 DOI: 10.1016/j.ympev.2017.12.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 10/26/2017] [Accepted: 12/10/2017] [Indexed: 12/21/2022]
Abstract
Increasing evidence suggests that many widespread species of meiofauna are in fact regional complexes of (pseudo-)cryptic species. This knowledge has challenged the 'Everything is Everywhere' hypothesis and also partly explains the meiofauna paradox of widespread nominal species with limited dispersal abilities. Here, we investigated species diversity within the marine microturbellarian Astrotorhynchus bifidus sensu lato in the Northeast Pacific Ocean. We used a multiple-evidence approach combining multi-gene (18S, 28S, COI) phylogenetic analyses, several single-gene and multi-gene species delimitation methods, haplotype networks and conventional taxonomy to designate Primary Species Hypotheses (PSHs). This included the development of rhabdocoel-specific COI barcode primers, which also have the potential to aid in species identification and delimitation in other rhabdocoels. Secondary Species Hypotheses (SSHs) corresponding to morphospecies and pseudo-cryptic species were then proposed based on the minimum consensus of different PSHs. Our results showed that (a) there are at least five species in the A. bifidus complex in the Northeast Pacific Ocean, four of which can be diagnosed based on stylet morphology, (b) the A. bifidus complex is a mixture of sympatric and allopatric species with regional and/or subglobal distributions, (c) sympatry occurs on local (sample sites), regional (Northeastern Pacific) and subglobal (Northern Atlantic, Arctic, Northeastern Pacific) scales. Mechanisms for this co-occurrence are still poorly understood, but we hypothesize they could include habitat differentiation (spatial and/or seasonal) and life history characteristics such as sexual selection and dispersal abilities. Our results also suggest the need for improved sampling and exploration of molecular markers to accurately map gene flow and broaden our understanding of species diversity and distribution of microturbellarians in particular and meiofauna in general.
Collapse
|
40
|
Kalogianni E, Kmentová N, Harris E, Zimmerman B, Giakoumi S, Chatzinikolaou Y, Vanhove MPM. Occurrence and effect of trematode metacercariae in two endangered killifishes from Greece. Parasitol Res 2017; 116:3007-3018. [PMID: 28905265 DOI: 10.1007/s00436-017-5610-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 09/04/2017] [Indexed: 10/18/2022]
Abstract
We report digeneans (Diplostomidae, Crassiphialinae) in the endangered freshwater fishes Valencia letourneuxi and Valencia robertae, endemics of Western Greece. Digenean metacercariae occurred in two forms in the abdominal cavity, excysted and encysted, the latter attached to the gonads, liver and alimentary tract. Parasites were, using morphological and molecular techniques, identified as two representatives of Crassiphialinae, specifically part of the Posthodiplostomum-Ornithodiplostomum clade. The spatial, seasonal, and age class variation in parasite prevalence was examined. Autumn parasite prevalence varied between the six populations sampled (18.2 to 100%). Seasonal prevalence at the two sites sampled quadannually peaked in autumn and reached its lowest value in spring; prevalence increased with size to 100% in young adult fish. We did not find a correlation between prevalence and host sex. Overall parasites' weight averaged 0.64% of the host's, while parasite weight increased with host weight. A comparison of relative condition and hepatosomatic and gonadosomatic indices of infected and metacercariae-free specimens showed that infection did not have a significant effect on host body condition and reproduction. Regarding the parasite's life cycle, planorbid gastropods are proposed as potential first intermediate hosts in view of the host's diet and occurrence data of molluscs in the ecosystem. This is the first record of a diplostomid digenean in valenciid fishes and of representatives of the Posthodiplostomum-Ornithodiplostomum clade in a native Greek freshwater fish. Our findings are discussed in conjunction to fish conservation interventions, since parasites may contribute to the decline of endangered species.
Collapse
Affiliation(s)
- Eleni Kalogianni
- Institute of Marine Biological Resources and Inland Waters, Hellenic Centre for Marine Research, 46.7 km Athinon - Souniou Av., P.O. Box 712, 190 13, Anavyssos, Greece
| | - Nikol Kmentová
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic
| | - Eileen Harris
- Division of Parasites and Vectors, Department of Life Sciences, The Natural History Museum, Cromwell Road, London, SW7 5BD, UK
| | - Brian Zimmerman
- Zoological Society of London, Regent's Park, London, NW1 4RY, UK
| | - Sofia Giakoumi
- Institute of Marine Biological Resources and Inland Waters, Hellenic Centre for Marine Research, 46.7 km Athinon - Souniou Av., P.O. Box 712, 190 13, Anavyssos, Greece
| | - Yorgos Chatzinikolaou
- Institute of Marine Biological Resources and Inland Waters, Hellenic Centre for Marine Research, 46.7 km Athinon - Souniou Av., P.O. Box 712, 190 13, Anavyssos, Greece
| | - Maarten P M Vanhove
- Institute of Marine Biological Resources and Inland Waters, Hellenic Centre for Marine Research, 46.7 km Athinon - Souniou Av., P.O. Box 712, 190 13, Anavyssos, Greece. .,Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic. .,Laboratory of Biodiversity and Evolutionary Genomics, Department of Biology, University of Leuven, Ch. Deberiotstraat 32, 3000, Leuven, Belgium. .,Capacities for Biodiversity and Sustainable Development, Operational Directorate Natural Environment, Royal Belgian Institute of Natural Sciences, Vautierstraat 29, 1000, Brussels, Belgium. .,Centre for Environmental Sciences, Research Group Zoology: Biodiversity and Toxicology, Hasselt University, Agoralaan Gebouw D, 3590, Diepenbeek, Belgium.
| |
Collapse
|
41
|
Opportunities and challenges in metabarcoding approaches for helminth community identification in wild mammals. Parasitology 2017; 145:608-621. [PMID: 28534454 DOI: 10.1017/s0031182017000610] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Despite metabarcoding being widely used to analyse bacterial community composition, its application in parasitological research remains limited. What interest there has been has focused on previously intractable research settings where traditional methods are inappropriate, for example, in longitudinal studies and studies involving endangered species. In settings such as these, non-invasive sampling combined with metabarcoding can provide a fast and accurate assessment of component communities. In this paper we review the use of metabarcoding in the study of helminth communities in wild mammals, outlining the necessary procedures from sample collection to statistical analysis. We highlight the limitations of the metabarcoding approach and speculate on what type of parasitological study would benefit from such methods in the future.
Collapse
|
42
|
Co-phylogeographic study of the flatworm Gyrodactylus gondae and its goby host Pomatoschistus minutus. Parasitol Int 2017; 66:119-125. [DOI: 10.1016/j.parint.2016.12.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 12/13/2016] [Accepted: 12/14/2016] [Indexed: 11/23/2022]
|
43
|
Ye F, Easy RH, King SD, Cone DK, You P. Comparative analyses within Gyrodactylus (Platyhelminthes: Monogenea) mitochondrial genomes and conserved polymerase chain reaction primers for gyrodactylid mitochondrial DNA. JOURNAL OF FISH DISEASES 2017; 40:541-555. [PMID: 27502106 DOI: 10.1111/jfd.12539] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/02/2016] [Accepted: 06/17/2016] [Indexed: 06/06/2023]
Abstract
In this study, we describe the complete mitochondrial genomes of Gyrodactylus brachymystacis and Gyrodactylus parvae infecting rainbow trout (Oncorhynchus mykiss) and the invasive topmouth gudgeon (Pseudorasbora parva), respectively. The two circular genomes have a common genome organization found in other Gyrodactylus species. Comparative analyses of mitochondrial genomes from six Gyrodactylus species were carried out to determine base composition, codon usage, transfer RNA and ribosomal RNA genes, major non-coding regions, and nucleotide diversity within the genus. We also provide the first universal models of the secondary structures of rrnS and rrnL for this group thereby promoting utilization of these genetic markers. Universal primers provided herein can be used to obtain more mitochondrial information for pathogen identification and may reveal different levels of molecular phylogenetic inferences for this lineage.
Collapse
Affiliation(s)
- F Ye
- Co-Innovation Center for Qinba Regions' Sustainable Development, College of Life Science, Shaanxi Normal University, Xi'an, China
| | - R H Easy
- Department of Biology, Acadia University, Wolfville, NS, Canada
| | - S D King
- Department of Biology, Dalhousie University, Halifax, NS, Canada
| | - D K Cone
- Department of Biology, Saint Mary's University, Dayspring, NS, Canada
| | - P You
- Co-Innovation Center for Qinba Regions' Sustainable Development, College of Life Science, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
44
|
Borges JN, Costa VS, Mantovani C, Barros E, Santos EGN, Mafra CL, Santos CP. Molecular characterization and confocal laser scanning microscopic study of Pygidiopsis macrostomum (Trematoda: Heterophyidae) parasites of guppies Poecilia vivipara. JOURNAL OF FISH DISEASES 2017; 40:191-203. [PMID: 27260384 DOI: 10.1111/jfd.12504] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 04/13/2016] [Accepted: 04/15/2016] [Indexed: 06/05/2023]
Abstract
Pygidiopsis macrostomum and Ascocotyle (Phagicola) pindoramensis (Digenea: Heterophyidae) parasitize guppies as intermediate hosts and, respectively, fish-eating mammals or birds as definitive hosts. Heterophyids have zoonotic potential, and molecular studies associated with morphological and ecological aspects have helped to clarify their taxonomy and phylogeny. Poecilia vivipara naturally parasitized by metacercariae of both species (100% prevalence) exhibit no external signs of parasitism. In this work, four new sequences of P. macrostomum (18S rDNA, 28S rDNA and ITS2 rDNA) and one new sequence of A. (P.) pindoramensis (mtDNA cox-1) are presented. Phylogeny reconstructions linked P. macrostomum to other heterophyids, but the separation of the Heterophyidae and Opisthorchiidae remains unclear. Additionally, we used indirect immunocytochemistry and the phalloidin-fluorescence techniques allied with confocal laser scanning microscopy to describe muscular and neuronal structures of P. macrostomum. A complex arrangement of muscular fibres is associated with the tegument, suckers, gut and reproductive system. Radial fibres around the ventral sucker are thick, branched and extend to the body wall. High-resolution confocal imaging revealed a typical digenean muscular arrangement and important heterophyid morphological traits. These data will support future control measures to reduce the parasitism in guppies reared in fish farming systems, especially for aquarium and experimental purposes.
Collapse
Affiliation(s)
- J N Borges
- Laboratório de Avaliação e Promoção da Saúde Ambiental (LAPSA), Fiocruz, Rio de Janeiro, Brazil
| | - V S Costa
- Laboratório de Avaliação e Promoção da Saúde Ambiental (LAPSA), Fiocruz, Rio de Janeiro, Brazil
| | - C Mantovani
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, Brazil
| | - E Barros
- Núcleo de Análises de Biomoléculas do Centro de Ciências Biológicas e da Saúde, Universidade Federal de Viçosa, Viçosa, Brazil
| | - E G N Santos
- Laboratório de Avaliação e Promoção da Saúde Ambiental (LAPSA), Fiocruz, Rio de Janeiro, Brazil
| | - C L Mafra
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, Brazil
| | - C P Santos
- Laboratório de Avaliação e Promoção da Saúde Ambiental (LAPSA), Fiocruz, Rio de Janeiro, Brazil
| |
Collapse
|
45
|
Lumme J, Ziętara MS, Lebedeva D. Ancient and modern genome shuffling: Reticulate mito-nuclear phylogeny of four related allopatric species of Gyrodactylus von Nordmann, 1832 (Monogenea: Gyrodactylidae), ectoparasites on the Eurasian minnow Phoxinus phoxinus (L.) (Cyprinidae). Syst Parasitol 2017; 94:183-200. [PMID: 28130668 DOI: 10.1007/s11230-016-9696-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 12/07/2016] [Indexed: 11/26/2022]
Abstract
Phylogenetic analyses including four allopatric species of Gyrodactylus von Nordmann, 1832 on the Eurasian minnow Phoxinus phoxinus (L.) (Cyprinidae) revealed incongruence between the nuclear ITS1-5.8S-ITS2 and mitochondrial cox1 phylogenies due to ancient hybridisation. Gyrodactylus pannonicus Molnár, 1968 was sampled close to its type-locality, the upper reaches of River Tisza, tributary of Danube in the Black Sea Basin. Faunistic search detected three new related species with maximum composite likelihood distances in cox1 between 16.8-23.2% (tentatively 1.3 to 1.8 My of divergence). Gyrodactylus albolacustris n. sp. recorded in the White Sea Basin, eastern Baltic Basin and Mongolia was close to G. pannonicus in the nuclear ITS (divergence of 0.9%), but diverged in cox1 by 19.8%. The Mongolian isolate of G. albolacustris n. sp. diverged from the European isolates in cox1 by 8.9%, suggesting 0.7 My of isolation. The two other new species differed from G. pannonicus by >4% in ITS and some large indels in ITS1, and by >20% in cox1. Gyrodactylus danastriae n. sp. was found in River Strwiąż, a tributary of the River Dniester (Black Sea Basin) and was characterised by smaller size of anchors and by 29-41 bp dimorphic insertion in ITS1. Gyrodactylus botnicus n. sp. is considered endemic in the Baltic Basin, but was also found in the White Sea Basin as a postglacial immigrant, where it had hybridised with G. albolacustris n. sp. in spite of the high divergence in ITS (3.9%) and cox1 (22%). The discordant nuclear and mitochondrial phylogenies revealed an ancient mitochondrial introgression: G. albolacustris n. sp. was derived from a hybridisation combining proto-pannonicus ITS with proto-danastriae mitochondria, perhaps 1.3 My ago. The postglacial hybridisation of G. albolacustris n. sp. (as the donor of mtDNAalb and ITSalb) and G. botnicus n. sp. (donor of the ITSbot) offered a model of shuffling of the genomic components: the process of the homogenisation and stabilisation of nuclear ITS (concerted evolution) and the lineage sorting has hardly begun.
Collapse
Affiliation(s)
- Jaakko Lumme
- Department of Biology, University of Oulu, 90014, Oulu, Finland
| | - Marek S Ziętara
- Department of Molecular Evolution, University of Gdańsk, Wita Stwosza St., 59, 80-308, Gdańsk, Poland
| | - Dar'ya Lebedeva
- Institute of Biology of Karelian Research Center, Pushkinskaya St., 11, Petrozavodsk, Russian Federation, 185910.
| |
Collapse
|
46
|
Kmentová N, Gelnar M, Mendlová M, Van Steenberge M, Koblmüller S, Vanhove MPM. Reduced host-specificity in a parasite infecting non-littoral Lake Tanganyika cichlids evidenced by intraspecific morphological and genetic diversity. Sci Rep 2016; 6:39605. [PMID: 28004766 PMCID: PMC5177900 DOI: 10.1038/srep39605] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 11/24/2016] [Indexed: 12/27/2022] Open
Abstract
Lake Tanganyika is well-known for its high species-richness and rapid radiation processes. Its assemblage of cichlid fishes recently gained momentum as a framework to study parasite ecology and evolution. It offers a rare chance to investigate the influence of a deepwater lifestyle in a freshwater fish-parasite system. Our study represents the first investigation of parasite intraspecific genetic structure related to host specificity in the lake. It focused on the monogenean flatworm Cichlidogyrus casuarinus infecting deepwater cichlids belonging to Bathybates and Hemibates. Morphological examination of C. casuarinus had previously suggested a broad host range, while the lake's other Cichlidogyrus species are usually host specific. However, ongoing speciation or cryptic diversity could not be excluded. To distinguish between these hypotheses, we analysed intraspecific diversity of C. casuarinus. Monogeneans from nearly all representatives of the host genera were examined using morphometrics, geomorphometrics and genetics. We confirmed the low host-specificity of C. casuarinus based on morphology and nuclear DNA. Yet, intraspecific variation of sclerotized structures was observed. Nevertheless, the highly variable mitochondrial DNA indicated recent population expansion, but no ongoing parasite speciation, confirming, for the first time in freshwater, reduced parasite host specificity in the deepwater realm, probably an adaptation to low host availability.
Collapse
Affiliation(s)
- Nikol Kmentová
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Milan Gelnar
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Monika Mendlová
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Maarten Van Steenberge
- Biology Department, Royal Museum for Central Africa, Leuvensesteenweg 13, B-3080 Tervuren, Belgium.,Institute of Zoology, University of Graz, Universitätsplatz 2, A-8010 Graz, Austria.,Laboratory of Biodiversity and Evolutionary Genomics, Department of Biology, University of Leuven, Ch. Deberiotstraat 32, B-3000 Leuven, Belgium
| | - Stephan Koblmüller
- Institute of Zoology, University of Graz, Universitätsplatz 2, A-8010 Graz, Austria.,Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, Květná 8, 603 65 Brno, Czech Republic
| | - Maarten P M Vanhove
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic.,Biology Department, Royal Museum for Central Africa, Leuvensesteenweg 13, B-3080 Tervuren, Belgium.,Laboratory of Biodiversity and Evolutionary Genomics, Department of Biology, University of Leuven, Ch. Deberiotstraat 32, B-3000 Leuven, Belgium.,Hasselt University, Centre for Environmental Sciences, Research Group Zoology: Biodiversity &Toxicology, Agoralaan Gebouw D, B-3590 Diepenbeek, Belgium
| |
Collapse
|
47
|
Vanhove MPM, Hablützel PI, Pariselle A, Šimková A, Huyse T, Raeymaekers JAM. Cichlids: A Host of Opportunities for Evolutionary Parasitology. Trends Parasitol 2016; 32:820-832. [PMID: 27595383 DOI: 10.1016/j.pt.2016.07.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 05/31/2016] [Accepted: 07/14/2016] [Indexed: 01/07/2023]
Abstract
Thanks to high species diversity and a broad range of speciation mechanisms, cichlid fishes represent a textbook model in evolutionary biology. They are also of substantial economic value. Despite this importance, cichlid parasites remain understudied, although some are more diverse than their hosts. They may offer important insights into cichlid evolution and the evolution of host-parasite interactions. We review five major lines of research conducted on cichlid parasites so far: the study of parasite diversity and speciation; the role of parasites in cichlid diversification; the evolutionary ecology of host specificity; historical biogeography; and biological invasions. We call for more research in these areas and suggest approaches to valorise the potential that cichlid parasites hold for the study of evolutionary parasitology.
Collapse
Affiliation(s)
- Maarten P M Vanhove
- Laboratory of Biodiversity and Evolutionary Genomics, Department of Biology, University of Leuven, Charles Deberiotstraat 32, B-3000 Leuven, Belgium; Biology Department, Royal Museum for Central Africa, Leuvensesteenweg 13, B-3080 Tervuren, Belgium; Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, CZ-611 37 Brno, Czech Republic.
| | - Pascal I Hablützel
- Laboratory of Biodiversity and Evolutionary Genomics, Department of Biology, University of Leuven, Charles Deberiotstraat 32, B-3000 Leuven, Belgium
| | - Antoine Pariselle
- Institut des Sciences de l'Évolution, IRD-CNRS-Université de Montpellier, CC 063, Place Eugène Bataillon, F-34095 Montpellier cedex 05, France
| | - Andrea Šimková
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, CZ-611 37 Brno, Czech Republic
| | - Tine Huyse
- Laboratory of Biodiversity and Evolutionary Genomics, Department of Biology, University of Leuven, Charles Deberiotstraat 32, B-3000 Leuven, Belgium; Biology Department, Royal Museum for Central Africa, Leuvensesteenweg 13, B-3080 Tervuren, Belgium
| | - Joost A M Raeymaekers
- Laboratory of Biodiversity and Evolutionary Genomics, Department of Biology, University of Leuven, Charles Deberiotstraat 32, B-3000 Leuven, Belgium; Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| |
Collapse
|
48
|
Species of Pseudorhabdosynochus (Monogenea, Diplectanidae) from Groupers (Mycteroperca spp., Epinephelidae) in the Mediterranean and Eastern Atlantic Ocean, with Special Reference to the 'Beverleyburtonae Group' and Description of Two New Species. PLoS One 2016; 11:e0159886. [PMID: 27532108 PMCID: PMC4988817 DOI: 10.1371/journal.pone.0159886] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 07/08/2016] [Indexed: 12/28/2022] Open
Abstract
Pseudorhabdosynochus Yamaguti, 1958 is a species-rich diplectanid genus, mainly restricted to the gills of groupers (Epinephelidae) and especially abundant in warm seas. Species from the Mediterranean are not fully documented. Two new and two previously known species from the gills of Mycteroperca spp. (M. costae, M. rubra, and M. marginata) in the Mediterranean and Eastern Atlantic Ocean are described here from new material and slides kept in collections. Identifications of newly collected fish were ascertained by barcoding of cytochrome c oxidase subunit I (COI) sequences. Pseudorhabdosynochus beverleyburtonae (Oliver, 1984) Kritsky & Beverley-Burton, 1986 and P. sosia Neifar & Euzet 2007 are redescribed from type-specimens and new specimens collected off Tunisia and Libya from M. marginata and M. costae, respectively. Pseudorhabdosynochus oliveri n. sp., from M. marginata (type-host) off the Mediterranean coast of France (type-locality), is described from specimens found among voucher specimens of P. beverleyburtonae deposited by Guy Oliver in the collection of the Muséum National d’Histoire Naturelle, Paris. Pseudorhabdosynochus oliveri is distinguished by the shape of its sclerotised vagina; it was not found in the other localities investigated. Pseudorhabdosynochus hayet n. sp. is described from M. rubra (type host) off Senegal (type-locality) and Tunisia. Pseudorhabdosynochus hayet is morphologically similar to P. sosia (type-host: M. costae) but was distinguished by differences in measurements of the vagina and male copulatory organ, different host, and divergent COI sequences. The four species (P. beverleyburtonae, P. sosia, P. oliveri, and P. hayet) share common characteristics such as squamodiscs with 2 innermost circular rows of rodlets and a similar general structure of the sclerotised vagina; we propose to group them into a ‘beverleyburtonae group’ within Pseudorhabdosynochus.
Collapse
|
49
|
Tambireddy N, Gayatri T, Gireesh-Babu P, Pavan-Kumar A. Molecular characterization and phylogeny of some mazocraeidean monogeneans from carangid fish. Acta Parasitol 2016; 61:360-8. [PMID: 27078660 DOI: 10.1515/ap-2016-0047] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 12/11/2015] [Indexed: 11/15/2022]
Abstract
Polyopisthocotylean monogenean parasites of fishes are highly host specific and have been used as an appropriate model to study the host-parasite co-evolution. In the present study, eight monogeneans of the order Mazocraeidea were characterized by nuclear 28S rDNA sequences and their phylogenetic relationship with other polyopisthocotylean species was investigated. Neighbour-joining, maximum parsimony, maximum likelihood and Bayesian Inference methods were used for phylogenetic reconstruction. The topology sustained by high bootstrap was: (((Hexabothriidae (Mazocraeidae (Discocotylidae (Diplozoidae (Diclidophoridae (Plectanocotylidae (Heteromicrocotylidae (Microcotylidae (Heteraxinidae), (Thoracocotylidae, Gotocotylidae (Gastrocoylidae (Allodiscocotylidae: Protomicrocotylidae))). In addition, we have also developed DNA barcodes (COI sequences) for six species and the barcodes clearly discriminated all the species. The polytomy within Protomicrocotylidae family is resolved in this study for the first time and it appears that within this family, Bilaterocotyloides species are basal compared to Neomicrocotyle and Lethacotyle species while the latter is the more derived.
Collapse
|
50
|
Khang TF, Soo OYM, Tan WB, Lim LHS. Monogenean anchor morphometry: systematic value, phylogenetic signal, and evolution. PeerJ 2016; 4:e1668. [PMID: 26966649 PMCID: PMC4783769 DOI: 10.7717/peerj.1668] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 01/18/2016] [Indexed: 12/22/2022] Open
Abstract
Background. Anchors are one of the important attachment appendages for monogenean parasites. Common descent and evolutionary processes have left their mark on anchor morphometry, in the form of patterns of shape and size variation useful for systematic and evolutionary studies. When combined with morphological and molecular data, analysis of anchor morphometry can potentially answer a wide range of biological questions. Materials and Methods. We used data from anchor morphometry, body size and morphology of 13 Ligophorus (Monogenea: Ancyrocephalidae) species infecting two marine mugilid (Teleostei: Mugilidae) fish hosts: Moolgarda buchanani (Bleeker) and Liza subviridis (Valenciennes) from Malaysia. Anchor shape and size data (n = 530) were generated using methods of geometric morphometrics. We used 28S rRNA, 18S rRNA, and ITS1 sequence data to infer a maximum likelihood phylogeny. We discriminated species using principal component and cluster analysis of shape data. Adams's K mult was used to detect phylogenetic signal in anchor shape. Phylogeny-correlated size and shape changes were investigated using continuous character mapping and directional statistics, respectively. We assessed morphological constraints in anchor morphometry using phylogenetic regression of anchor shape against body size and anchor size. Anchor morphological integration was studied using partial least squares method. The association between copulatory organ morphology and anchor shape and size in phylomorphospace was used to test the Rohde-Hobbs hypothesis. We created monogeneaGM, a new R package that integrates analyses of monogenean anchor geometric morphometric data with morphological and phylogenetic data. Results. We discriminated 12 of the 13 Ligophorus species using anchor shape data. Significant phylogenetic signal was detected in anchor shape. Thus, we discovered new morphological characters based on anchor shaft shape, the length between the inner root point and the outer root point, and the length between the inner root point and the dent point. The species on M. buchanani evolved larger, more robust anchors; those on L. subviridis evolved smaller, more delicate anchors. Anchor shape and size were significantly correlated, suggesting constraints in anchor evolution. Tight integration between the root and the point compartments within anchors confirms the anchor as a single, fully integrated module. The correlation between male copulatory organ morphology and size with anchor shape was consistent with predictions from the Rohde-Hobbs hypothesis. Conclusions. Monogenean anchors are tightly integrated structures, and their shape variation correlates strongly with phylogeny, thus underscoring their value for systematic and evolutionary biology studies. Our MonogeneaGM R package provides tools for researchers to mine biological insights from geometric morphometric data of speciose monogenean genera.
Collapse
Affiliation(s)
- Tsung Fei Khang
- Institute of Mathematical Sciences, University of Malaya, Kuala Lumpur, Malaysia
| | | | - Wooi Boon Tan
- Centre for Tropical Biodiversity Research, University of Malaya, Kuala Lumpur, Malaysia
| | - Lee Hong Susan Lim
- Institute of Biological Sciences, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|