1
|
Jeong JW, Lee D, Kim H, Gwon H, Lee K, Kim JY, Shim JJ, Lee JH. Lacticaseibacillus paracasei HP7 Improves Gastric Emptying by Modulating Digestive Factors in a Loperamide-Induced Functional Dyspepsia Mouse Model. J Microbiol Biotechnol 2025; 35:e2412035. [PMID: 40081888 PMCID: PMC11925751 DOI: 10.4014/jmb.2412.12035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/03/2025] [Accepted: 01/19/2025] [Indexed: 03/16/2025]
Abstract
Functional dyspepsia (FD) is a condition characterized by persistent indigestion symptoms without a clear underlying cause. We investigated the effects on FD of Lacticaseibacillus paracasei HP7 (HP7), which was isolated from kimchi and is known to inhibit Helicobacter pylori. In a mouse model of loperamide-induced FD, HP7 administration significantly improved gastrointestinal (GI) motility and gastric emptying, as demonstrated by increased charcoal movement in the GI tract, decreased stomach weight, and the amount of remaining phenol red solution. HP7 administration significantly enhanced peristalsis by upregulating the expression of smooth muscle contraction-related genes, such as the 5HT4 receptor, anoctamin-1, ryanodine receptor 3, and smooth muscle myosin light-chain kinase. In addition, digestive factors, including GI regulatory hormones such as gastrin, gastric inhibitory peptide, and peptide YY, and the activity of digestive enzymes, such as amylase, trypsin, and lipase, were restored to normal levels. These results indicate that HP7 is a promising probiotic strain to alleviate FD symptoms by modulating peristalsis and digestive factors.
Collapse
Affiliation(s)
- Ji-Woong Jeong
- R&BD Center, hy Co., Ltd., Yongin-si 17086, Republic of Korea
| | - Daehyeop Lee
- R&BD Center, hy Co., Ltd., Yongin-si 17086, Republic of Korea
| | - Hyeonji Kim
- R&BD Center, hy Co., Ltd., Yongin-si 17086, Republic of Korea
| | - Hyeonjun Gwon
- R&BD Center, hy Co., Ltd., Yongin-si 17086, Republic of Korea
| | - Kippeum Lee
- R&BD Center, hy Co., Ltd., Yongin-si 17086, Republic of Korea
| | - Joo-Yun Kim
- R&BD Center, hy Co., Ltd., Yongin-si 17086, Republic of Korea
| | - Jae-Jung Shim
- R&BD Center, hy Co., Ltd., Yongin-si 17086, Republic of Korea
| | - Jae-Hwan Lee
- R&BD Center, hy Co., Ltd., Yongin-si 17086, Republic of Korea
| |
Collapse
|
2
|
Wang L, Xi M, Cao W, Qin H, Qin D, Chen S, Zhou S, Hou Y, Chen Y, Xiao X, Zheng Q, Li D, Li Y. Electroacupuncture alleviates functional constipation by upregulating host-derived miR-205-5p to modulate gut microbiota and tryptophan metabolism. Front Microbiol 2025; 16:1517018. [PMID: 39973939 PMCID: PMC11835812 DOI: 10.3389/fmicb.2025.1517018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/07/2025] [Indexed: 02/21/2025] Open
Abstract
Electroacupuncture (EA) has shown promise as a treatment for Functional constipation (FC), with growing evidence suggesting it may enhance gut motility. MicroRNAs (miRNAs) serve as key regulatory molecules mediating host-microbiota interactions. However, the specific fecal miRNAs regulating microbiota composition and metabolism in EA-treated constipated mice, along with their key targets, remain unidentified. We examined fecal microbiome composition, metabolism, and colonic miRNA expression in loperamide-induced constipated mice and EA-treated mice to identify differentially expressed miRNAs and assess their relationships with microbial abundance, metabolism, and gut motility. An antibiotic cocktail and adeno-associated virus were employed to interfere with the gut microbiota and target miRNA in vivo, thereby validating the proposed mechanism. Our results indicate that miR-205-5p, significantly upregulated in fecal and colonic tissues of EA-treated constipated mice, promotes intestinal motility in a microbiome-dependent manner. Specifically, EA promoted the growth of Lactobacillus reuteri, enriched in the feces of constipation-recovered mice, through host-derived miR-205-5p regulation. Furthermore, Lactobacillus reuteri and its tryptophan metabolites (indole-3-acetamide, indole-3-acetic acid, and indole-3-carboxaldehyde) alleviated loperamide-induced constipation. These findings underscore the pivotal role of host-derived miR-205-5p in modulating microbial composition and tryptophan metabolites to enhance intestinal motility through EA.
Collapse
Affiliation(s)
- Lu Wang
- Department of Acupuncture, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Menghan Xi
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Department of Acupuncture and Moxibustion, Chengdu Pidu District Hospital of TCM/The Third Clinical Medical College of Chengdu University of TCM, Chengdu, Sichuan, China
| | - Wei Cao
- Center of Preventive Medicine, Chengdu Integrated TCM and Western Medicine Hospital, Chengdu, Sichuan, China
| | - Haiyan Qin
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Di Qin
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Shuai Chen
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Siyuan Zhou
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yujun Hou
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Ying Chen
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xianjun Xiao
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Qianhua Zheng
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Dehua Li
- Department of Acupuncture, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Ying Li
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Huang YP, Shi JY, Luo XT, Luo SC, Cheung PCK, Corke H, Yang QQ, Zhang BB. How do probiotics alleviate constipation? A narrative review of mechanisms. Crit Rev Biotechnol 2025; 45:80-96. [PMID: 38710624 DOI: 10.1080/07388551.2024.2336531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/06/2023] [Accepted: 11/25/2023] [Indexed: 05/08/2024]
Abstract
Constipation is a common gastrointestinal condition, which may occur at any age and affects countless people. The search for new treatments for constipation is ongoing as current drug treatments fail to provide fully satisfactory results. In recent years, probiotics have attracted much attention because of their demonstrated therapeutic efficacy and fewer side effects than pharmaceutical products. Many studies attempted to answer the question of how probiotics can alleviate constipation. It has been shown that different probiotic strains can alleviate constipation by different mechanisms. The mechanisms on probiotics in relieving constipation were associated with various aspects, including regulation of the gut microbiota composition, the level of short-chain fatty acids, aquaporin expression levels, neurotransmitters and hormone levels, inflammation, the intestinal environmental metabolic status, neurotrophic factor levels and the body's antioxidant levels. This paper summarizes the perception of the mechanisms on probiotics in relieving constipation and provides some suggestions on new research directions.
Collapse
Affiliation(s)
- Yu-Ping Huang
- Department of Biology, College of Science, Shantou University, Shantou, P.R. China
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, P.R. China
| | - Jie-Yan Shi
- Department of Biology, College of Science, Shantou University, Shantou, P.R. China
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, P.R. China
| | - Xin-Tao Luo
- Department of Biology, College of Science, Shantou University, Shantou, P.R. China
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, P.R. China
| | - Si-Chen Luo
- Department of Biology, College of Science, Shantou University, Shantou, P.R. China
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, P.R. China
| | - Peter C K Cheung
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, P.R. China
| | - Harold Corke
- Biotechnology and Food Engineering Program, Guangdong Technion-Israel Institute of Technology, Shantou, P.R. China
- Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Qiong-Qiong Yang
- Department of Biology, College of Science, Shantou University, Shantou, P.R. China
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, P.R. China
| | - Bo-Bo Zhang
- Department of Biology, College of Science, Shantou University, Shantou, P.R. China
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, P.R. China
| |
Collapse
|
4
|
Wang ZD, Zhang W, Liang TX. Advancements in Oral Delivery Systems for Probiotics Based on Polysaccharides. Polymers (Basel) 2025; 17:144. [PMID: 39861217 PMCID: PMC11768238 DOI: 10.3390/polym17020144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/14/2024] [Accepted: 12/18/2024] [Indexed: 01/27/2025] Open
Abstract
Probiotics are an essential dietary supplement for intestinal flora balance, inhibition of pathogenic bacteria and immune regulation. However, probiotic inactivation during gastrointestinal transportation remains a big challenge for oral administration. Hence, oral delivery systems (ODSs) based on polysaccharides have been constructed to protect probiotics from harsh environments. Cellulose, chitosan, alginate and their derivates have been used to form a protective layer for probiotics. This review summarizes the superiority and application of polysaccharides in forming protective layers for probiotics. Meanwhile, ODS processes including extrusion, emulsion and spray drying are also summarized. The preparation technique mechanism, the microparticle formation process and especially the role polysaccharides serve in the preparation process are overviewed. Lastly, the need for cell viability retention during the dehydration and construction of core-shell ODS microparticles is emphasized in this review.
Collapse
Affiliation(s)
- Zi-Dan Wang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China; (Z.-D.W.); (W.Z.)
| | - Wei Zhang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China; (Z.-D.W.); (W.Z.)
- Hangzhou VicrobX Biotech Co., Ltd., No. 700 Shixiang Road, Hangzhou 310015, China
| | - Tian-Xin Liang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China; (Z.-D.W.); (W.Z.)
- Hangzhou VicrobX Biotech Co., Ltd., No. 700 Shixiang Road, Hangzhou 310015, China
| |
Collapse
|
5
|
Ma X, Mo J, Shi L, Cheng Y, Feng J, Qin J, Su W, Lv J, Li S, Li Q, Tan H, Han B. Isolation and characterization of Bifidobacterium spp. from breast milk with different human milk oligosaccharides utilization and anti-inflammatory capacity. Food Res Int 2024; 196:115092. [PMID: 39614508 DOI: 10.1016/j.foodres.2024.115092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 12/01/2024]
Abstract
Breast milk is the best source of nutrition for infants. Human milk oligosaccharides (HMOs) and the corresponding HMOs-consuming Bifidobacterium positively influence infant health. This study aims to isolate and characterize Bifidobacterium from breast milk of healthy Chinese mothers, identifying the most efficacious strains for inclusion in simulated maternal milk formulas. Nine Bifidobacterium strains (two of B. breve and seven of B. infantis) were isolated, exhibiting a broad spectrum of probiotic potential. This included tolerance to simulated infant gastrointestinal conditions, notable adhesion, antibacterial, antioxidant activities, and HMOs utilization ability. Lacto-N-Tetraose (LNT) is preferred in early growth among Bifidobacterium isolates. B. breve showed a preference for LNT, whereas B. infantis showed a preference for fucosylated HMOs, and displayed reduced utilization of sialylated HMOs. They also exhibited robust safety profiles, including no hemolytic activity, an appropriate D/L lactate-producing ratio, and non-toxicity in an acute oral toxicity assay on mice. It is noteworthy that B. breve N-90, O-147, B. infantis O-161 and R-1 exhibited anti-inflammatory effects in LPS-induced RAW 264.7 cells. Specifically, a notable reduction in TNF-α levels was observed in pre-treatment, while a decrease in IL-1β and IL-6 levels in co-treatment. B. breve N-90 and B. infantis R-1 were identified finally as promising probiotic candidates. Their whole-genome sequencing analysis confirmed presence of functional genes associated with gastrointestinal colonization, antioxidation, and glycoside hydrolase activity on HMOs. The annotation for antibiotic resistance and virulence genes concurred with phenotypes, further validating the safety. Breast milk is a good source for Bifidobacteria isolation, while Bifidobacteria utilize HMOs in a strain-dependent manner. The two selected strains, B. breve N-90 and B. infantis R-1, are potential candidates for inclusion in simulated maternal milk formulas and deserved further in vivo investigation for their health-promoting effects.
Collapse
Affiliation(s)
- Xinxin Ma
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Jianhui Mo
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Lu Shi
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Yue Cheng
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Jiayu Feng
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Jiale Qin
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Wanghong Su
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Jia Lv
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi 710061, China
| | - Shaoru Li
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi 710061, China
| | - Qiang Li
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi 710061, China
| | - Hui Tan
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| | - Bei Han
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi 710061, China.
| |
Collapse
|
6
|
Li S, Li Y, Cai Y, Yan Z, Wei J, Zhang H, Yue F, Chen T. Lacticaseibacillus paracasei NCU-04 relieves constipation and the depressive-like behaviors induced by loperamide in mice through the microbiome-gut-brain axis. Curr Res Food Sci 2024; 9:100875. [PMID: 39429918 PMCID: PMC11490870 DOI: 10.1016/j.crfs.2024.100875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/23/2024] [Accepted: 10/01/2024] [Indexed: 10/22/2024] Open
Abstract
Constipation is a prevalent gastrointestinal condition that significantly affects patients' physical and mental well-being, yet current treatments often lack safety and efficacy. Emerging evidence highlights the critical role of the microbiota-gut-brain axis (MBGA) in managing constipation, paving the way for probiotics as an adjuvant treatment to improve constipation symptoms. In this study, we isolated a gut probiotic strain, Lacticaseibacillus paracasei NCU-04, and investigated its improvement effects on loperamide-induced constipation in mice. We demonstrated that L. paracasei NCU-04 exhibited excellent probiotic properties, including robust growth, strong antibacterial and antioxidant capacities, and a lack of hemolytic activity in vitro. The administration of L. paracasei NCU-04 effectively improved the defecation-related indicators such as the fecal water content, time to the first black stool defecation, and intestine transit rate, suggesting enhanced gut immobility in constipated mice. Additionally, L. paracasei NCU-04 significantly reduced colon inflammation induced by loperamide. Further, L. paracasei NCU-04 increased levels of colonic motilin, 5-hydroxytryptamine (5-HT), and c-kit, while decreased that of aquaporin 3, vasoactive intestinal peptide, and peptide YY. Notably, L. paracasei NCU-04 effectively upregulated the expression of 5-HT and its receptor (i.e., 5-HT4R) in the brains of constipated mice. High-throughput sequencing revealed that L. paracasei NCU-04 restored the diversity and composition of the gut microbiota disturbed by loperamide, and significantly increased the relative abundance of Prevotella and Lactobacillus genera in the stool, while decreased that of Odoribacter, Rikenella, and Parabacteroides. Importantly, L. paracasei NCU-04 also effectively improved the depression-like behaviors associated with constipation, possibly through 5-HT mediated MGBA. These results suggest that L. paracasei NCU-04 may offer a promising approach for treating constipation and its related depressive symptoms, supporting its potential as a functional food or adjuvant therapy for human health.
Collapse
Affiliation(s)
- Shengjie Li
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Jiangxi Province Key Laboratory of Bioengineering Drugs, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Yi Li
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Jiangxi Province Key Laboratory of Bioengineering Drugs, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Yujie Cai
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Jiangxi Province Key Laboratory of Bioengineering Drugs, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Zizhou Yan
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Jiangxi Province Key Laboratory of Bioengineering Drugs, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
- Jiangxi Province Key Laboratory of Bioengineering Drugs, School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Jing Wei
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Jiangxi Province Key Laboratory of Bioengineering Drugs, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Hongyan Zhang
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Fenfang Yue
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Jiangxi Province Key Laboratory of Bioengineering Drugs, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Tingtao Chen
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Jiangxi Province Key Laboratory of Bioengineering Drugs, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
- Jiangxi Province Key Laboratory of Bioengineering Drugs, School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| |
Collapse
|
7
|
da Silva TF, Glória RDA, Americo MF, Freitas ADS, de Jesus LCL, Barroso FAL, Laguna JG, Coelho-Rocha ND, Tavares LM, le Loir Y, Jan G, Guédon É, Azevedo VADC. Unlocking the Potential of Probiotics: A Comprehensive Review on Research, Production, and Regulation of Probiotics. Probiotics Antimicrob Proteins 2024; 16:1687-1723. [PMID: 38539008 DOI: 10.1007/s12602-024-10247-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2024] [Indexed: 10/02/2024]
Abstract
This review provides a comprehensive overview of the current state of probiotic research, covering a wide range of topics, including strain identification, functional characterization, preclinical and clinical evaluations, mechanisms of action, therapeutic applications, manufacturing considerations, and future directions. The screening process for potential probiotics involves phenotypic and genomic analysis to identify strains with health-promoting properties while excluding those with any factor that could be harmful to the host. In vitro assays for evaluating probiotic traits such as acid tolerance, bile metabolism, adhesion properties, and antimicrobial effects are described. The review highlights promising findings from in vivo studies on probiotic mitigation of inflammatory bowel diseases, chemotherapy-induced mucositis, dysbiosis, obesity, diabetes, and bone health, primarily through immunomodulation and modulation of the local microbiota in human and animal models. Clinical studies demonstrating beneficial modulation of metabolic diseases and human central nervous system function are also presented. Manufacturing processes significantly impact the growth, viability, and properties of probiotics, and the composition of the product matrix and supplementation with prebiotics or other strains can modify their effects. The lack of regulatory oversight raises concerns about the quality, safety, and labeling accuracy of commercial probiotics, particularly for vulnerable populations. Advancements in multi-omics approaches, especially probiogenomics, will provide a deeper understanding of the mechanisms behind probiotic functionality, allowing for personalized and targeted probiotic therapies. However, it is crucial to simultaneously focus on improving manufacturing practices, implementing quality control standards, and establishing regulatory oversight to ensure the safety and efficacy of probiotic products in the face of increasing therapeutic applications.
Collapse
Affiliation(s)
- Tales Fernando da Silva
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
- UMR1253, INRAE, L'Institut Agro Rennes Angers, STLO, Rennes, France
| | - Rafael de Assis Glória
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Monique Ferrary Americo
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Andria Dos Santos Freitas
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Luis Claudio Lima de Jesus
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Fernanda Alvarenga Lima Barroso
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Juliana Guimarães Laguna
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Nina Dias Coelho-Rocha
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Laisa Macedo Tavares
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Yves le Loir
- UMR1253, INRAE, L'Institut Agro Rennes Angers, STLO, Rennes, France
| | - Gwénaël Jan
- UMR1253, INRAE, L'Institut Agro Rennes Angers, STLO, Rennes, France
| | - Éric Guédon
- UMR1253, INRAE, L'Institut Agro Rennes Angers, STLO, Rennes, France
| | - Vasco Ariston de Carvalho Azevedo
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
8
|
Moludi J, Saber A, Zozani MA, Moradi S, Azamian Y, Hajiahmadi S, Pasdar Y, Moradi F. The Efficacy of Probiotics Supplementation on the Quality of Life of Patients with Gastrointestinal Disease: A Systematic Review of Clinical Studies. Prev Nutr Food Sci 2024; 29:237-255. [PMID: 39371511 PMCID: PMC11450280 DOI: 10.3746/pnf.2024.29.3.237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/16/2024] [Accepted: 06/24/2024] [Indexed: 10/08/2024] Open
Abstract
Patients with gastrointestinal (GI) disorders might benefit from probiotic supplementation to resolve their bowel symptoms and enhance their quality of life (QoL). This systematic review aimed to evaluate the effects of oral probiotic supplementation on improving QoL. Relevant studies were systematically searched in online databases, including PubMed, Scopus, Embase, ProQuest, and Google Scholar up to September 2022 using relevant keywords. Studies that were conducted on GI patients and presented QoL outcomes were included. The Revised Cochrane Risk of Bias 2 tool and the Risk Of Bias In Non-randomized Studies of Intervention tool were used to assess the risk of bias. Of the 4,555 results found in the systematic search of databases, only 36 studies were eligible for evaluation. According to this systematic review, 24 studies reported improvements, whereas 12 studies reported no improvements on QoL in GI patients supplemented with probiotics. We found that probiotics may improve the QoL of patients with GI diseases and related metabolic complications. Therefore, probiotics can be a useful supportive treatment strategy in these patients.
Collapse
Affiliation(s)
- Jalal Moludi
- Department of Nutritional Sciences, School of Nutritional Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah 6719851552, Iran
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah 6719851552, Iran
| | - Amir Saber
- Department of Nutritional Sciences, School of Nutritional Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah 6719851552, Iran
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah 6719851552, Iran
| | - Morteza Arab Zozani
- Social Determinants of Health Research Center (SDHRC), School of Health, Birjand University of Medical Sciences, Birjand 32048321, Iran
| | - Shima Moradi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah 6719851552, Iran
| | - Yasaman Azamian
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah 6719851552, Iran
| | - Salimeh Hajiahmadi
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd 8915173160, Iran
| | - Yahya Pasdar
- Department of Nutritional Sciences, School of Nutritional Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah 6719851552, Iran
| | - Fardin Moradi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah 6719851552, Iran
| |
Collapse
|
9
|
Ermann Lundberg L, Pallabi Mishra P, Liu P, Forsberg MM, Sverremark-Ekström E, Grompone G, Håkansson S, Linninge C, Roos S. Bifidobacterium longum subsp. longum BG-L47 boosts growth and activity of Limosilactobacillus reuteri DSM 17938 and its extracellular membrane vesicles. Appl Environ Microbiol 2024; 90:e0024724. [PMID: 38888338 PMCID: PMC11267924 DOI: 10.1128/aem.00247-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/14/2024] [Indexed: 06/20/2024] Open
Abstract
The aim of this study was to identify a Bifidobacterium strain that improves the performance of Limosilactobacillus reuteri DSM 17938. Initial tests showed that Bifidobacterium longum subsp. longum strains boosted the growth of DSM 17938 during in vivo-like conditions. Further characterization revealed that one of the strains, BG-L47, had better bile and acid tolerance compared to BG-L48, as well as mucus adhesion compared to both BG-L48 and the control strain BB536. BG-L47 also had the capacity to metabolize a broad range of carbohydrates and sugar alcohols. Mapping of glycoside hydrolase (GH) genes of BG-L47 and BB536 revealed many GHs associated with plant-fiber utilization. However, BG-L47 had a broader phenotypic fiber utilization capacity. In addition, B. longum subsp. longum cells boosted the bioactivity of extracellular membrane vesicles (MV) produced by L. reuteri DSM 17938 during co-cultivation. Secreted 5'-nucleotidase (5'NT), an enzyme that converts AMP into the signal molecule adenosine, was increased in MV boosted by BG-L47. The MV exerted an improved antagonistic effect on the pain receptor transient receptor potential vanilloid 1 (TRPV1) and increased the expression of the immune development markers IL-6 and IL-1ß in a peripheral blood mononuclear cell (PBMC) model. Finally, the safety of BG-L47 was evaluated both by genome safety assessment and in a human safety study. Microbiota analysis showed that the treatment did not induce significant changes in the composition. In conclusion, B. longum subsp. longum BG-L47 has favorable physiological properties, can boost the in vitro activity of L. reuteri DSM 17938, and is safe for consumption, making it a candidate for further evaluation in probiotic studies. IMPORTANCE By using probiotics that contain a combination of strains with synergistic properties, the likelihood of achieving beneficial interactions with the host can increase. In this study, we first performed a broad screening of Bifidobacterium longum subsp. longum strains in terms of synergistic potential and physiological properties. We identified a superior strain, BG-L47, with favorable characteristics and potential to boost the activity of the known probiotic strain Limosilactobacillus reuteri DSM 17938. Furthermore, we demonstrated that BG-L47 is safe for consumption in a human randomized clinical study and by performing a genome safety assessment. This work illustrates that bacteria-bacteria interactions differ at the strain level and further provides a strategy for finding and selecting companion strains of probiotics.
Collapse
Affiliation(s)
- Ludwig Ermann Lundberg
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
- BioGaia, Stockholm, Sweden
| | - Punya Pallabi Mishra
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | | - Manuel Mata Forsberg
- The Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Eva Sverremark-Ekström
- The Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | | | - Sebastian Håkansson
- BioGaia, Stockholm, Sweden
- Division of Applied Microbiology, Department of Chemistry, Lund University, Lund, Sweden
| | - Caroline Linninge
- BioGaia, Stockholm, Sweden
- Department of Food Technology, Engineering and Nutrition, Lund University, Lund, Sweden
| | - Stefan Roos
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
- BioGaia, Stockholm, Sweden
| |
Collapse
|
10
|
Wang Y, Zhao M, Xie C, Li L, Lin L, Li Q, Li L, Chen F, Yang X, Yang J, Gao M. Fermented Gastrodia elata Bl. Alleviates Cognitive Deficits by Regulating Neurotransmitters and Gut Microbiota in D-Gal/AlCl 3-Induced Alzheimer's Disease-like Mice. Foods 2024; 13:2154. [PMID: 38998659 PMCID: PMC11241452 DOI: 10.3390/foods13132154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/14/2024] [Accepted: 07/01/2024] [Indexed: 07/14/2024] Open
Abstract
Alzheimer's disease (AD) is a common neurological disease with recognition ability loss symptoms and a major contributor to dementia cases worldwide. Gastrodia elata Bl. (GE), a food of medicine-food homology, has been reported to have a mitigating effect on memory and learning ability decline. However, the effect of GE fermented by Lactobacillus plantarum, Acetobacter pasteurianus, and Saccharomyces (FGE) on alleviating cognitive deficits in AD was not studied. Mice were randomly divided into six groups, control, model, donepezil, low, medium, and high doses of FGE, and D-Galactose/Aluminum chloride (D-Gal/AlCl3) was used to establish an AD-like mouse model. The results indicated that FGE could improve the production of neurotransmitters and relieve oxidative stress damage in AD-like mice, which was evidenced by the declined levels of amyloid-β (Aβ), Tau, P-Tau, acetylcholinesterase (AchE), and malondialdehyde (MDA), and increased acetylcholine (Ach), choline acetyltransferase (ChAT), and superoxide dismutase (SOD) levels in brain tissue. Notably, FGE could enhance the richness of the gut microbiota, especially for beneficial bacteria such as Lachnospira and Lactobacillus. Non-target metabolomics results indicated that FGE could affect neurotransmitter levels by regulating amino acid metabolic pathways to improve AD symptoms. The FGE possessed an ameliorative effect on AD by regulating neurotransmitters, oxidative stress levels, and gut microbiota and could be considered a good candidate for ameliorating AD.
Collapse
Affiliation(s)
- Yu Wang
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; (Y.W.); (M.Z.); (L.L.); (L.L.); (Q.L.); (L.L.); (F.C.); (X.Y.); (J.Y.)
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Min Zhao
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; (Y.W.); (M.Z.); (L.L.); (L.L.); (Q.L.); (L.L.); (F.C.); (X.Y.); (J.Y.)
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Chunzhi Xie
- College of Food and Biotechnology Engineering, Xuzhou University of Technology, Xuzhou 221018, China;
| | - Lilang Li
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; (Y.W.); (M.Z.); (L.L.); (L.L.); (Q.L.); (L.L.); (F.C.); (X.Y.); (J.Y.)
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Ling Lin
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; (Y.W.); (M.Z.); (L.L.); (L.L.); (Q.L.); (L.L.); (F.C.); (X.Y.); (J.Y.)
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Qiji Li
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; (Y.W.); (M.Z.); (L.L.); (L.L.); (Q.L.); (L.L.); (F.C.); (X.Y.); (J.Y.)
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Liangqun Li
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; (Y.W.); (M.Z.); (L.L.); (L.L.); (Q.L.); (L.L.); (F.C.); (X.Y.); (J.Y.)
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Faju Chen
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; (Y.W.); (M.Z.); (L.L.); (L.L.); (Q.L.); (L.L.); (F.C.); (X.Y.); (J.Y.)
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Xiaosheng Yang
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; (Y.W.); (M.Z.); (L.L.); (L.L.); (Q.L.); (L.L.); (F.C.); (X.Y.); (J.Y.)
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Juan Yang
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; (Y.W.); (M.Z.); (L.L.); (L.L.); (Q.L.); (L.L.); (F.C.); (X.Y.); (J.Y.)
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Ming Gao
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; (Y.W.); (M.Z.); (L.L.); (L.L.); (Q.L.); (L.L.); (F.C.); (X.Y.); (J.Y.)
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| |
Collapse
|
11
|
Li Y, Zhang XH, Wang ZK. Microbiota treatment of functional constipation: Current status and future prospects. World J Hepatol 2024; 16:776-783. [PMID: 38818289 PMCID: PMC11135260 DOI: 10.4254/wjh.v16.i5.776] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/05/2024] [Accepted: 04/03/2024] [Indexed: 05/22/2024] Open
Abstract
Functional constipation (FC) is a common disorder that is characterized by difficult stool passage, infrequent bowel movement, or both. FC is highly prevalent, recurs often, accompanies severe diseases, and affects quality of life; therefore, safe and effective therapy with long-term benefits is urgently needed. Microbiota treatment has potential value for FC treatment. Microbiota treatments include modulators such as probiotics, prebiotics, synbiotics, postbiotics, and fecal microbiota transplantation (FMT). Some probiotics and prebiotics have been adopted, and the efficacy of other microbiota modulators is being explored. FMT is considered an emerging field because of its curative effects; nevertheless, substantial work must be performed before clinical implementation.
Collapse
Affiliation(s)
- Yan Li
- Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Xiao-Han Zhang
- Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
- Medical School, Nankai University, Tianjin 300071, China
| | - Zi-Kai Wang
- Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
- National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China.
| |
Collapse
|
12
|
Yi W, Wang Q, Xue Y, Cao H, Zhuang R, Li D, Yan J, Yang J, Xia Y, Zhang F. Xylo-oligosaccharides improve functional constipation by targeted enrichment of Bifidobacterium. Food Sci Nutr 2024; 12:1119-1132. [PMID: 38370040 PMCID: PMC10867466 DOI: 10.1002/fsn3.3827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 10/26/2023] [Accepted: 11/01/2023] [Indexed: 02/20/2024] Open
Abstract
Functional constipation (FC) has a negative impact on patients' quality of life. We hypothesized that dietary supplementation with xylo-oligosaccharides (XOS) or fructo-oligosaccharides (FOS) would improve constipation symptoms by influencing the gut microbiota. A randomized double-blind controlled trial was conducted in FC patients. Patients were randomly divided into 6 groups and given a dietary supplement containing XOS at doses of 3, 5, or 10 g/day, FOS at doses of 10 and 20 g/day, or placebo at 5 g/day for one month. We compared improvements in gastrointestinal function after the intervention using the Bristol Stool Form Scale (BSFS), Cleveland Clinic Constipation Score (CCCS), and Quality of Life Scale for Patients with Constipation (PAC-QoL). 16S rRNA sequencing was used to assess changes in the structure of the gut microbiota. Changes in individual bacteria had significant effects in reducing gastrointestinal symptoms during the intervention, even though the flora structure remained unchanged from baseline. Compared to FOS, XOS enriched Bifidobacterium at a lower dose, and patients receiving XOS supplementation showed significant improvements in constipation symptoms without side effects such as diarrhea and flatulence.
Collapse
Affiliation(s)
- Wanya Yi
- Department of NutritionAffiliated Hospital of Jiangnan UniversityWuxiChina
- Wuxi School of MedicineJiangnan UniversityWuxiChina
| | - Qinyue Wang
- Department of NutritionAffiliated Hospital of Jiangnan UniversityWuxiChina
- Functional Food Clinical Evaluation CenterAffiliated Hospital of Jiangnan UniversityWuxiChina
| | - Yuzheng Xue
- Department of GastroenterologyAffiliated Hospital of Jiangnan UniversityWuxiChina
| | - Hong Cao
- Department of NutritionAffiliated Hospital of Jiangnan UniversityWuxiChina
- Functional Food Clinical Evaluation CenterAffiliated Hospital of Jiangnan UniversityWuxiChina
- Department of EndocrinologyAffiliated Hospital of Jiangnan UniversityWuxiChina
| | - Ruijuan Zhuang
- Department of GeriatricsAffiliated Hospital of Jiangnan UniversityWuxiChina
| | - Dan Li
- Department of NutritionAffiliated Hospital of Jiangnan UniversityWuxiChina
- Functional Food Clinical Evaluation CenterAffiliated Hospital of Jiangnan UniversityWuxiChina
| | - Jiai Yan
- Department of NutritionAffiliated Hospital of Jiangnan UniversityWuxiChina
- Functional Food Clinical Evaluation CenterAffiliated Hospital of Jiangnan UniversityWuxiChina
| | - Ju Yang
- Department of NutritionAffiliated Hospital of Jiangnan UniversityWuxiChina
- Functional Food Clinical Evaluation CenterAffiliated Hospital of Jiangnan UniversityWuxiChina
| | - Yanping Xia
- Department of NutritionAffiliated Hospital of Jiangnan UniversityWuxiChina
- Functional Food Clinical Evaluation CenterAffiliated Hospital of Jiangnan UniversityWuxiChina
| | - Feng Zhang
- Department of NutritionAffiliated Hospital of Jiangnan UniversityWuxiChina
- Wuxi School of MedicineJiangnan UniversityWuxiChina
- Functional Food Clinical Evaluation CenterAffiliated Hospital of Jiangnan UniversityWuxiChina
- Yixing Institute of Food and Biotechnology Co., LtdYixing, WuxiChina
| |
Collapse
|
13
|
Cheng S, Cui H, Zhang J, Wang Q, Duan Z. Probiotic potential of Lacticaseibacillus rhamnosus VHProbi M15 on sucralfate-induced constipation in mice. Sci Rep 2024; 14:1131. [PMID: 38212429 PMCID: PMC10784533 DOI: 10.1038/s41598-024-51497-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 01/05/2024] [Indexed: 01/13/2024] Open
Abstract
The main objective of this study was to investigate the potential probiotic properties of Lacticaseibacillus rhamnosus VHProbi®M15 (M15). This study examined the effects of M15 on sucralfate-induced constipation in a mouse model. The BALB/c mice were randomly divided into four groups: the normal group (NOR) was without any treatment, while the constipation (CON), phenolphthalein (PHE), and probiotic (PRO) treatment groups were fed with sucralfate until the appearance of constipation symptoms. Afterward, the NOR and CON groups were given 1 ml saline orally every day until the end of the experiment; the PHE and PRO groups were given phenolphthalein or M15 suspension in 1 ml orally, respectively. Compared with the CON group, the fecal water content and intestinal peristalsis improved in the PRO group. Here, intake of M15 effectively attenuated sucralfate-induced constipation, recuperated colonic epithelial integrity, and increased serum levels of gastrointestinal excitatory neurotransmitters (motilin, gastrin, substance P). Analysis of the intestinal microbiota of mice by 16S rRNA metagenomic revealed an increase in the relative abundance of Bacteroides and a decrease in Sclerotinia, Verrucosa and Proteus in the PRO group. Compared with the CON group, the constipation-induced intestinal microecological changes were partially recovered in the PHE and PRO groups. These results demonstrate that M15 enhanced gastrointestinal transit and alleviated in mice with sucralfate-induced constipation.
Collapse
Affiliation(s)
- Shumin Cheng
- Qingdao Vland Biotech Group Co., Ltd., Qingdao, China
| | - Hongchang Cui
- Qingdao Vland Biotech Group Co., Ltd., Qingdao, China
| | - Jingyan Zhang
- Qingdao Vland Biotech Group Co., Ltd., Qingdao, China
| | - Qian Wang
- Qingdao Vland Biotech Group Co., Ltd., Qingdao, China
| | - Zhi Duan
- Qingdao Vland Biotech Group Co., Ltd., Qingdao, China.
| |
Collapse
|
14
|
Zhang T, Liu W, Lu H, Cheng T, Wang L, Wang G, Zhang H, Chen W. Lactic acid bacteria in relieving constipation: mechanism, clinical application, challenge, and opportunity. Crit Rev Food Sci Nutr 2023; 65:551-574. [PMID: 37971876 DOI: 10.1080/10408398.2023.2278155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Constipation is a prevalent gastrointestinal symptom that can considerably affect a patients' quality of life. Although several drugs have been used to treat constipation, they are associated with high costs, side effects, and low universality. Therefore, alternative intervention strategies are urgently needed. Traditional lactic acid bacteria (LAB), such as Bifidobacterium and Lactobacillus, play a vital role in regulating intestinal microecology and have demonstrated favorable effects in constipation; however, a comprehensive review of their constipation relief mechanisms is limited. This review summarizes the pathogenesis of constipation and the relationship between intestinal motility and gut microbiota, elucidates the possible mechanism by which LAB alleviates of constipation through a systematic summary of animal and clinical research, and highlights the challenges and applications of LAB in the treatment of constipation. Our review can improve our understanding of constipation, and advance targeted microecological therapeutic agents, such as LAB.
Collapse
Affiliation(s)
- Tong Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wenxu Liu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Huimin Lu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Ting Cheng
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Linlin Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, China
| | - Gang Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| |
Collapse
|
15
|
Dehghani F, Abdollahi S, Shidfar F, Clark CCT, Soltani S. Probiotics supplementation and brain-derived neurotrophic factor (BDNF): a systematic review and meta-analysis of randomized controlled trials. Nutr Neurosci 2023; 26:942-952. [PMID: 35996352 DOI: 10.1080/1028415x.2022.2110664] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND AND AIMS An emerging body of evidence has demonstrated the beneficial effects of probiotics on various mental health conditions. In this systematic review and meta-analysis, we sought to examine the effects of probiotics supplementation on brain-derived neurotrophic factor (BDNF) in adults. METHODS PubMed, Scopus, ISI Web of Science, and the Cochrane Library were searched, from database inception to April 2021, for eligible randomized controlled trials (RCTs). We pooled mean differences and standard deviations from RCTs using random-effect models. RESULTS Overall, meta-analysis of 11 trials (n = 648 participants) showed no significant changes in serum level of BDNF following probiotics. However, subgroup analysis revealed that probiotics increased BDNF levels in individuals suffering from neurological disorders (n = 214 participants; WMD = 3.08 ng/mL, 95% CI: 1.83, 4.34; P = 0.001; I2 = 7.5%; P-heterogeneity 0.34), or depression (n = 268 participants; WMD = 0.77 ng/mL, 95% CI: 0.07, 1.47; P = 0.032; I2 = 88.4%; P-heterogeneity < 0.001). Furthermore, a significant increase in BDNF levels was found in studies that administered the mixture of Lactobacillus and Bifidobacterium genera, and were conducted in Asia . CONCLUSION Our main findings suggest that probiotics may be effective in elevating BDNF levels in patients with depression and neurological disorders, and a mixed of Lactobacillus and Bifidobacterium appear to show greater efficacy than the single genus supplement. The low quality of evidence reduces clinical advocacy, and indicates that more large-scale, high-quality, RCTs are needed to facilitate reliable conclusions.
Collapse
Affiliation(s)
- Fereshteh Dehghani
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA
| | - Shima Abdollahi
- Department of Nutrition, School of Health, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Farzad Shidfar
- Department of nutrition, School of public health, Iran University of Medical Sciences, Teharn, Iran
| | - Cain C T Clark
- Centre for Intelligent Healthcare, Coventry University, Coventry, UK
| | - Sepideh Soltani
- Yazd Cardiovascular Research Center, Non-communicable Diseases Research Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
16
|
Walden KE, Moon JM, Hagele AM, Allen LE, Gaige CJ, Krieger JM, Jäger R, Mumford PW, Pane M, Kerksick CM. A randomized controlled trial to examine the impact of a multi-strain probiotic on self-reported indicators of depression, anxiety, mood, and associated biomarkers. Front Nutr 2023; 10:1219313. [PMID: 37720373 PMCID: PMC10501394 DOI: 10.3389/fnut.2023.1219313] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/18/2023] [Indexed: 09/19/2023] Open
Abstract
Objective To examine the efficacy of supplementing with a multi-strain probiotic (MSP) on changes associated with mood, anxiety, and neurotransmitter levels. Method In a randomized, double-blind, placebo-controlled fashion, 70 healthy men and women (31.0 ± 9.5 years, 173.0 ± 10.4 cm, 73.9 ± 13.8 kg, 24.6 ± 3.5 kg/m2) supplemented with a single capsule of MSP (a total daily dose of 4 × 109 colony forming units [CFU] comprised of a 1 × 109 CFU dose from each of the following strains: Limosilactobacillus fermentum LF16, Lacticaseibacillus rhamnosus LR06, Lactiplantibacillus plantarum LP01, and Bifidobacterium longum 04, Probiotical S.p.A., Novara, Italy) or a maltodextrin placebo (PLA). After 0, 2, 4, and 6 weeks of supplementation and 3 weeks after ceasing supplementation, study participants completed the Beck Depression Inventory (BDI-II), State-Trait Anxiety Inventory (STAI), and Leiden Index of Depression Sensitivity (LEIDS-R) questionnaires and had plasma concentrations of cortisol, dopamine, serotonin, and C-reactive protein determined. Results BDI, STAI, and total LEIDS-R scores were reduced from baseline (p < 0.05) with MSP supplementation after 4 and 6 weeks of supplementation and 3 weeks after supplementation while no changes (p > 0.05) were reported in PLA. When compared to PLA, MSP scores for state anxiety, trait anxiety, and LEIDS-R (hopeless, aggression, rumination, and total score) were significantly lower (p < 0.05) after supplementation. Plasma serotonin concentrations in MSP were increased from baseline after 6 weeks of supplementation and 3 weeks after ceasing supplementation. No changes (p > 0.05) in plasma dopamine, C-reactive protein, or cortisol concentrations were observed between groups. Conclusion MSP supplementation resulted in widespread improvements in several questionnaires evaluating mood, anxiety, and depression in young, healthy men and women. MSP supplementation increased serotonin increased after 6 weeks of MSP supplementation with no change in dopamine, C-reactive protein, or cortisol. Clinical trial registration https://classic.clinicaltrials.gov/ct2/show/NCT05343533, NCT05343533.
Collapse
Affiliation(s)
- Kylie E. Walden
- Exercise and Performance Nutrition Laboratory, Department of Kinesiology, College of Science, Technology, and Health, Lindenwood University, Saint Charles, MO, United States
| | - Jessica M. Moon
- Exercise and Performance Nutrition Laboratory, Department of Kinesiology, College of Science, Technology, and Health, Lindenwood University, Saint Charles, MO, United States
| | - Anthony M. Hagele
- Exercise and Performance Nutrition Laboratory, Department of Kinesiology, College of Science, Technology, and Health, Lindenwood University, Saint Charles, MO, United States
| | - Leah E. Allen
- Exercise and Performance Nutrition Laboratory, Department of Kinesiology, College of Science, Technology, and Health, Lindenwood University, Saint Charles, MO, United States
| | - Connor J. Gaige
- Exercise and Performance Nutrition Laboratory, Department of Kinesiology, College of Science, Technology, and Health, Lindenwood University, Saint Charles, MO, United States
| | - Joesi M. Krieger
- Exercise and Performance Nutrition Laboratory, Department of Kinesiology, College of Science, Technology, and Health, Lindenwood University, Saint Charles, MO, United States
| | - Ralf Jäger
- Increnovo LLC, Milwaukee, WI, United States
| | - Petey W. Mumford
- Exercise and Performance Nutrition Laboratory, Department of Kinesiology, College of Science, Technology, and Health, Lindenwood University, Saint Charles, MO, United States
| | | | - Chad M. Kerksick
- Exercise and Performance Nutrition Laboratory, Department of Kinesiology, College of Science, Technology, and Health, Lindenwood University, Saint Charles, MO, United States
| |
Collapse
|
17
|
Peng Y, Ma Y, Luo Z, Jiang Y, Xu Z, Yu R. Lactobacillus reuteri in digestive system diseases: focus on clinical trials and mechanisms. Front Cell Infect Microbiol 2023; 13:1254198. [PMID: 37662007 PMCID: PMC10471993 DOI: 10.3389/fcimb.2023.1254198] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/07/2023] [Indexed: 09/05/2023] Open
Abstract
Objectives Digestive system diseases have evolved into a growing global burden without sufficient therapeutic measures. Lactobacillus reuteri (L. reuteri) is considered as a new potential economical therapy for its probiotic effects in the gastrointestinal system. We have provided an overview of the researches supporting various L. reuteri strains' application in treating common digestive system diseases, including infantile colic, diarrhea, constipation, functional abdominal pain, Helicobacter pylori infection, inflammatory bowel disease, diverticulitis, colorectal cancer and liver diseases. Methods The summarized literature in this review was derived from databases including PubMed, Web of Science, and Google Scholar. Results The therapeutic effects of L. reuteri in digestive system diseases may depend on various direct and indirect mechanisms, including metabolite production as well as modulation of the intestinal microbiome, preservation of the gut barrier function, and regulation of the host immune system. These actions are largely strain-specific and depend on the activation or inhibition of various certain signal pathways. It is well evidenced that L. reuteri can be effective both as a prophylactic measure and as a preferred therapy for infantile colic, and it can also be recommended as an adjuvant strategy to diarrhea, constipation, Helicobacter pylori infection in therapeutic settings. While preclinical studies have shown the probiotic potential of L. reuteri in the management of functional abdominal pain, inflammatory bowel disease, diverticulitis, colorectal cancer and liver diseases, its application in these disease settings still needs further study. Conclusion This review focuses on the probiotic effects of L. reuteri on gut homeostasis via certain signaling pathways, and emphasizes the importance of these probiotics as a prospective treatment against several digestive system diseases.
Collapse
Affiliation(s)
- Yijing Peng
- Department of Neonatology, Women’s Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
- Wuxi Children’s Hospital, Children’s Hospital of Jiangnan University, Wuxi, China
| | - Yizhe Ma
- Department of Neonatology, Women’s Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
- Department of Pediatric, Jiangyin People’s Hospital of Nantong University, Wuxi, China
| | - Zichen Luo
- Department of Neonatology, Women’s Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
| | - Yifan Jiang
- School of Medicine, Nantong University, Nantong, China
| | - Zhimin Xu
- College of Resources and Environment, Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Renqiang Yu
- Department of Neonatology, Women’s Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
- Research Institute for Reproductive Health and Genetic Diseases, Women’s Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
| |
Collapse
|
18
|
Liu Z, Ling Y, Peng Y, Han S, Ren Y, Jing Y, Fan W, Su Y, Mu C, Zhu W. Regulation of serotonin production by specific microbes from piglet gut. J Anim Sci Biotechnol 2023; 14:111. [PMID: 37542282 PMCID: PMC10403853 DOI: 10.1186/s40104-023-00903-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 06/04/2023] [Indexed: 08/06/2023] Open
Abstract
BACKGROUND Serotonin is an important signaling molecule that regulates secretory and sensory functions in the gut. Gut microbiota has been demonstrated to affect serotonin synthesis in rodent models. However, how gut microbes regulate intestinal serotonin production in piglets remains vague. To investigate the relationship between microbiota and serotonin specifically in the colon, microbial composition and serotonin concentration were analyzed in ileum-cannulated piglets subjected to antibiotic infusion from the ileum when comparing with saline infusion. Microbes that correlated positively with serotonin production were isolated from piglet colon and were further used to investigate the regulation mechanisms on serotonin production in IPEC-J2 and a putative enterochromaffin cell line RIN-14B cells. RESULTS Antibiotic infusion increased quantities of Lactobacillus amylovorus (LA) that positively correlated with increased serotonin concentrations in the colon, while no effects observed for Limosilactobacillus reuteri (LR). To understand how microbes regulate serotonin, representative strains of LA, LR, and Streptococcus alactolyticus (SA, enriched in feces from prior observation) were selected for cell culture studies. Compared to the control group, LA, LR and SA supernatants significantly up-regulated tryptophan hydroxylase 1 (TPH1) expression and promoted serotonin production in IPEC-J2 cells, while in RIN-14B cells only LA exerted similar action. To investigate potential mechanisms mediated by microbe-derived molecules, microbial metabolites including lactate, acetate, glutamine, and γ-aminobutyric acid were selected for cell treatment based on computational and metabolite profiling in bacterial supernatant. Among these metabolites, acetate upregulated the expression of free fatty acid receptor 3 and TPH1 while downregulated indoleamine 2,3-dioxygenase 1. Similar effects were also recapitulated when treating the cells with AR420626, an agonist targeting free fatty acid receptor 3. CONCLUSIONS Overall, these results suggest that Lactobacillus amylovorus showed a positive correlation with serotonin production in the pig gut and exhibited a remarkable ability to regulate serotonin production in cell cultures. These findings provide evidence that microbial metabolites mediate the dialogue between microbes and host, which reveals a potential approach using microbial manipulation to regulate intestinal serotonin biosynthesis.
Collapse
Affiliation(s)
- Ziyu Liu
- Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- National Center for International Research on Animal Gut Nutrition, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, China
| | - Yidan Ling
- Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- National Center for International Research on Animal Gut Nutrition, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, China
| | - Yu Peng
- Hubei CAT Biological Technology Co., Ltd., Wuhan, China
| | - Shuibing Han
- Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- National Center for International Research on Animal Gut Nutrition, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, China
| | - Yuting Ren
- Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- National Center for International Research on Animal Gut Nutrition, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, China
| | - Yujia Jing
- Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- National Center for International Research on Animal Gut Nutrition, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, China
| | - Wenlu Fan
- Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- National Center for International Research on Animal Gut Nutrition, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, China
| | - Yong Su
- Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- National Center for International Research on Animal Gut Nutrition, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, China
| | - Chunlong Mu
- Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.
- National Center for International Research on Animal Gut Nutrition, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, China.
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Canada.
| | - Weiyun Zhu
- Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.
- National Center for International Research on Animal Gut Nutrition, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
19
|
Recharla N, Choi J, Puligundla P, Park SJ, Lee HJ. Impact of probiotics on cognition and constipation in the elderly: A meta-analysis. Heliyon 2023; 9:e18306. [PMID: 37539311 PMCID: PMC10395539 DOI: 10.1016/j.heliyon.2023.e18306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 07/05/2023] [Accepted: 07/13/2023] [Indexed: 08/05/2023] Open
Abstract
Cognitive decline and constipation are common complications in the elderly. Probiotics are potential therapeutic agents to ameliorate cognitive impairment through gut-brain axis. Several clinical studies have investigated the beneficial effects of probiotics on cognitive impairment and constipation in elderly. However, a quantitative meta-analysis is required to evaluate the efficacy of probiotics on cognitive function and constipation. Thirteen clinical studies were included in this meta-analysis. We examined the risk of bias assessment and heterogeneity of eight studies for cognition and five studies for constipation, followed by group and subgroup meta-analyses using a random-effects model to evaluate the potential of probiotic supplements on cognition function and constipation in aged people. The results of the pooled meta-analysis revealed that probiotic supplementation did not improve the cognitive rating scale assessment for all studies (estimate = 0.13; 95%CI [-0.18, 0.43]; p = 0.41; I2 = 83.51%). However, subgroup analysis of single strain supplementation showed improved cognitive function in elderly people (estimate = 0.35; 95%CI [0.02, 0.69]; p = 0.039; I2 = 19.19%) compared to multiple strains. Probiotics also enhanced defecation frequency in constipated patients (estimate = 0.27; 95%CI [0.05, 0.5]; p = 0.019; I2 = 67.37%). Furthermore, probiotic supplementation resulted in higher fecal Lactobacillus counts than placebo (estimate = 0.37; 95%CI [0.05, 0.69]; p = 0.026; I2 = 21.3%). Subgroup analysis indicated that a probiotic intervention period of ≥4 weeks was more effective (estimate = 0.35; 95%CI [0.01, 0.68]; p = 0.044; I2 = 0%) in reducing constipation symptoms than a short intervention duration. Based on these results, probiotic supplementation could be a potential intervention to reduce constipation symptoms in the elderly population. The heterogeneity between studies is high, and limited trials are available to evaluate the cognitive function of aged individuals using probiotics. Therefore, further studies are required to determine the effect of probiotics on cognition.
Collapse
Affiliation(s)
- Neeraja Recharla
- Institute for Aging and Clinical Nutrition Research, Gachon University, Seongnam-si, Gyeonggi-do 13120, Republic of Korea
| | - Jihee Choi
- Institute for Aging and Clinical Nutrition Research, Gachon University, Seongnam-si, Gyeonggi-do 13120, Republic of Korea
- Department of Food and Nutrition, College of Bionanotechnology, Gachon University, Seongnam-si, Gyeonggi-do 13120, Republic of Korea
| | - Pradeep Puligundla
- Department of Food Science and Biotechnology, College of Bionanotechnology, Gachon University, Seongnam-si, Gyeonggi-do 13120, Republic of Korea
| | - Seon-Joo Park
- Institute for Aging and Clinical Nutrition Research, Gachon University, Seongnam-si, Gyeonggi-do 13120, Republic of Korea
- Department of Food and Nutrition, College of Bionanotechnology, Gachon University, Seongnam-si, Gyeonggi-do 13120, Republic of Korea
| | - Hae-Jeung Lee
- Institute for Aging and Clinical Nutrition Research, Gachon University, Seongnam-si, Gyeonggi-do 13120, Republic of Korea
- Department of Food and Nutrition, College of Bionanotechnology, Gachon University, Seongnam-si, Gyeonggi-do 13120, Republic of Korea
| |
Collapse
|
20
|
Cao J, Wang K, Li N, Zhang L, Qin L, He Y, Wang J, Qu C, Miao J. Soluble dietary fiber and cellulose from Saccharina japonica by-product ameliorate Loperamide-induced constipation via modulating enteric neurotransmitters, short-chain fatty acids and gut microbiota. Int J Biol Macromol 2023; 226:1319-1331. [PMID: 36511265 DOI: 10.1016/j.ijbiomac.2022.11.243] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/14/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022]
Abstract
The effects of soluble dietary fiber (SDF) and cellulose (IDF) from Saccharina japonica by-product and their differences in improving constipation were further clarified in the present study. We demonstrated that SDF was mainly made up of d-mannuronic acid and d-mannose while IDF consisted of d-glucose , which is different from other reported dietary fibers of terrestrial plants. In this research, both SDF and IDF improved fecal-related indicators, gastrointestinal transit rate and histological morphology in Lop-induced mice. Moreover, they could increase the level of antioxidant enzymes (SOD and GSH-Px), restore the expression of enteric neurotransmitters, and maintain the function of ZO-1, JAM-1 as well as Occludin. Interestingly, SDF and IDF had a significant up-regulated effect on the proportion of Muribaculacea, Prevotellaceaen and Lachnospiraceae, which are critical to preserving intestinal immune homeostasis. Besides, they promoted the biosynthesis of short-chain fatty acids (SCFAs). The overall index showed that SDF is more effective for constipation due to its better water retention capacity. Thus, they can be used as a safe dietary supplement for the treatment of chronic or occasional constipation in humans.
Collapse
Affiliation(s)
- Junhan Cao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Kai Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Nianxu Li
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Liping Zhang
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Ling Qin
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Yingying He
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Jingfeng Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Changfeng Qu
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China; Marine Natural Products R&D Laboratory, Qingdao Key Laboratory, Qingdao 266061, China.
| | - Jinlai Miao
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China; Marine Natural Products R&D Laboratory, Qingdao Key Laboratory, Qingdao 266061, China.
| |
Collapse
|
21
|
Zhang C, Xue P, Zhang H, Tan C, Zhao S, Li X, Sun L, Zheng H, Wang J, Zhang B, Lang W. Gut brain interaction theory reveals gut microbiota mediated neurogenesis and traditional Chinese medicine research strategies. Front Cell Infect Microbiol 2022; 12:1072341. [PMID: 36569198 PMCID: PMC9772886 DOI: 10.3389/fcimb.2022.1072341] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/07/2022] [Indexed: 12/13/2022] Open
Abstract
Adult neurogenesis is the process of differentiation of neural stem cells (NSCs) into neurons and glial cells in certain areas of the adult brain. Defects in neurogenesis can lead to neurodegenerative diseases, mental disorders, and other maladies. This process is directionally regulated by transcription factors, the Wnt and Notch pathway, the extracellular matrix, and various growth factors. External factors like stress, physical exercise, diet, medications, etc., affect neurogenesis and the gut microbiota. The gut microbiota may affect NSCs through vagal, immune and chemical pathways, and other pathways. Traditional Chinese medicine (TCM) has been proven to affect NSCs proliferation and differentiation and can regulate the abundance and metabolites produced by intestinal microorganisms. However, the underlying mechanisms by which these factors regulate neurogenesis through the gut microbiota are not fully understood. In this review, we describe the recent evidence on the role of the gut microbiota in neurogenesis. Moreover, we hypothesize on the characteristics of the microbiota-gut-brain axis based on bacterial phyla, including microbiota's metabolites, and neuronal and immune pathways while providing an outlook on TCM's potential effects on adult neurogenesis by regulating gut microbiota.
Collapse
Affiliation(s)
- Chenxi Zhang
- Basic Medical Science College, Qiqihar Medical University, Qiqihar, China
| | - Peng Xue
- Medical School of Nantong University, Nantong University, Nantong, China
| | - Haiyan Zhang
- Basic Medical Science College, Qiqihar Medical University, Qiqihar, China
| | - Chenxi Tan
- Department of Infection Control, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Shiyao Zhao
- Department of Nuclear Medicine, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Xudong Li
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Lihui Sun
- Basic Medical Science College, Qiqihar Medical University, Qiqihar, China
| | - Huihui Zheng
- Basic Medical Science College, Qiqihar Medical University, Qiqihar, China
| | - Jun Wang
- The Academic Affairs Office, Qiqihar Medical University, Qiqihar, China
| | - Baoling Zhang
- Department of Operating Room, Qiqihar First Hospital, Qiqihar, China
| | - Weiya Lang
- Basic Medical Science College, Qiqihar Medical University, Qiqihar, China,*Correspondence: Weiya Lang,
| |
Collapse
|
22
|
Araújo MM, Botelho PB. Probiotics, prebiotics, and synbiotics in chronic constipation: Outstanding aspects to be considered for the current evidence. Front Nutr 2022; 9:935830. [PMID: 36570175 PMCID: PMC9773270 DOI: 10.3389/fnut.2022.935830] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 11/14/2022] [Indexed: 12/13/2022] Open
Abstract
This integrative aimed to evaluate the effects and the potential mechanism of action of prebiotics, probiotics, and synbiotics on constipation-associated gastrointestinal symptoms and to identify issues that still need to be answered. A literature search was performed in the PubMed database. Animal models (n = 23) and clinical trials (n = 39) were included. In animal studies, prebiotic, probiotic, and synbiotic supplementation showed a decreased colonic transit time (CTT) and an increase in the number and water content of feces. In humans, inulin is shown to be the most promising prebiotic, while B. lactis and L. casei Shirota probiotics were shown to increase defecation frequency, the latter strain being more effective in improving stool consistency and constipation symptoms. Overall, synbiotics seem to reduce CTT, increase defecation frequency, and improve stool consistency with a controversial effect on the improvement of constipation symptoms. Moreover, some aspects of probiotic use in constipation-related outcomes remain unanswered, such as the best dose, duration, time of consumption (before, during, or after meals), and matrices, as well as their effect and mechanisms on the regulation of inflammation in patients with constipation, on polymorphisms associated with constipation, and on the management of constipation via 5-HT. Thus, more high-quality randomized control trials (RCTs) evaluating these lacking aspects are necessary to provide safe conclusions about their effectiveness in managing intestinal constipation.
Collapse
|
23
|
Pan R, Wang L, Xu X, Chen Y, Wang H, Wang G, Zhao J, Chen W. Crosstalk between the Gut Microbiome and Colonic Motility in Chronic Constipation: Potential Mechanisms and Microbiota Modulation. Nutrients 2022; 14:nu14183704. [PMID: 36145079 PMCID: PMC9505360 DOI: 10.3390/nu14183704] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
Chronic constipation (CC) is a highly prevalent and burdensome gastrointestinal disorder. Accumulating evidence highlights the link between imbalances in the gut microbiome and constipation. However, the mechanisms by which the microbiome and microbial metabolites affect gut movement remain poorly understood. In this review, we discuss recent studies on the alteration in the gut microbiota in patients with CC and the effectiveness of probiotics in treating gut motility disorder. We highlight the mechanisms that explain how the gut microbiome and its metabolism are linked to gut movement and how intestinal microecological interventions may counteract these changes based on the enteric nervous system, the central nervous system, the immune function, and the ability to modify intestinal secretion and the hormonal milieu. In particular, microbiota-based approaches that modulate the levels of short-chain fatty acids and tryptophan catabolites or that target the 5-hydroxytryptamine and Toll-like receptor pathways may hold therapeutic promise. Finally, we discuss the existing limitations of microecological management in treating constipation and suggest feasible directions for future research.
Collapse
Affiliation(s)
- Ruili Pan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Linlin Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiaopeng Xu
- The Department of Clinical Laboratory, Wuxi Xishan People’s Hospital, Wuxi 214105, China
| | - Ying Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Haojue Wang
- The Department of of Obstetrics and Gynecology, Wuxi Xishan People’s Hospital, Wuxi 214105, China
- Correspondence: (H.W.); (J.Z.); Tel.: +86-510-8240-2084 (H.W.); +86-510-8591-2155 (J.Z.)
| | - Gang Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
- Correspondence: (H.W.); (J.Z.); Tel.: +86-510-8240-2084 (H.W.); +86-510-8591-2155 (J.Z.)
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| |
Collapse
|
24
|
Dargenio VN, Cristofori F, Dargenio C, Giordano P, Indrio F, Celano G, Francavilla R. Use of Limosilactobacillus reuteri DSM 17938 in paediatric gastrointestinal disorders: an updated review. Benef Microbes 2022; 13:221-242. [PMID: 35212258 DOI: 10.3920/bm2021.0151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Strains of lactobacilli are the most widely used probiotics and can be found in a large variety of food products and food supplements throughout the world. In this study, the evidence on Limosilactobacillus reuteri DSM 17938 (LR DSM 17938) has been reviewed. This species secretes reuterin and other substances singularly or in microvesicles, inhibiting pathogen growth and interacting with the intestinal microbiota and mucosa, restoring homeostasis. The use of LR DSM 17938 has been exploited in several pathological conditions. Preclinical research has shown that this probiotic can ameliorate dysbiosis and, by interacting with intestinal mucosal cells, can raise the pain threshold and promote gastrointestinal motility. These aspects are amongst the significant components in functional gastrointestinal disorders, such as colic and regurgitation in infants, functional abdominal pain and functional constipation in children and adolescents. This strain can decrease the duration of acute diarrhoea and hospitalization for acute gastroenteritis but does not seem to prevent nosocomial diarrhoea and antibiotic-associated diarrhoea. Because of its ability to survive in the gastric environment, it has been tested in Helicobacter pylori infection, showing a significant decrease of antibiotic-associated side effects and a tendency to increase the eradication rate. Finally, all these studies have shown the excellent safety of LR DSM 17938 even at higher dosages. In conclusion data from various clinical trials here reviewed can guide the clinician to find the correct dose, frequency of administration, and therapy duration.
Collapse
Affiliation(s)
- V N Dargenio
- Interdisciplinary Department of Medicine, Paediatric Section. University of Bari Aldo Moro, Children's Hospital 'Giovanni XXIII', Via Amendola 207, 70126 Bari, Italy
| | - F Cristofori
- Interdisciplinary Department of Medicine, Paediatric Section. University of Bari Aldo Moro, Children's Hospital 'Giovanni XXIII', Via Amendola 207, 70126 Bari, Italy
| | - C Dargenio
- Interdisciplinary Department of Medicine, Paediatric Section. University of Bari Aldo Moro, Children's Hospital 'Giovanni XXIII', Via Amendola 207, 70126 Bari, Italy
| | - P Giordano
- Interdisciplinary Department of Medicine, Paediatric Section. University of Bari Aldo Moro, Children's Hospital 'Giovanni XXIII', Via Amendola 207, 70126 Bari, Italy
| | - F Indrio
- Department of Paediatrics, University of Foggia, Via Pinto 1, 71100 Foggia, Italy
| | - G Celano
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Via Amendola 265/a, 70126 Bari, Italy
| | - R Francavilla
- Interdisciplinary Department of Medicine, Paediatric Section. University of Bari Aldo Moro, Children's Hospital 'Giovanni XXIII', Via Amendola 207, 70126 Bari, Italy
| |
Collapse
|
25
|
Dysregulation of the Enteric Nervous System in the Mid Colon of Complement Component 3 Knockout Mice with Constipation Phenotypes. Int J Mol Sci 2022; 23:ijms23126862. [PMID: 35743302 PMCID: PMC9225043 DOI: 10.3390/ijms23126862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/16/2022] [Accepted: 06/18/2022] [Indexed: 02/01/2023] Open
Abstract
Complement component 3 (C3) contributes to neurogenesis, neural migration, and synaptic elimination under normal and disease conditions of the brain, even though it has not been studied in the enteric nervous system (ENS). To determine the role of C3 in the regulatory mechanism of ENS during C3 deficiency-induced constipation, the changes in the markers of neuronal and interstitial cells of Cajal (ICCs), the markers for excitatory and inhibitory transmission of ENS, and expression of C3 receptors were analyzed in the mid colon of C3 knockout (KO) mice at 16 weeks of age. Prominent constipation phenotypes, including the decrease in stool parameters, changes in the histological structure, and suppression of mucin secretion, were detected in C3 KO mice compared to wildtype (WT) mice. The expression levels of the neuron specific enolase (NSE), protein gene product 9.5 (PGP9.5), and C-kit markers for myenteric neurons and ICCs were lower in the mid colon of C3 KO mice than WT mice. Excitatory transmission analysis revealed similar suppression of the 5-hydroxytryptamine (5-HT) concentration, expression of 5-HT receptors, acetylcholine (ACh) concentration, ACh esterase (AChE) activity, and expression of muscarinic ACh receptors (mAChRs), despite the mAChRs downstream signaling pathway being activated in the mid colon of C3 KO mice. In inhibitory transmission analysis, C3 KO mice showed an increase in the nitric oxide (NO) concentration and inducible nitric oxide synthase (iNOS) expression, while neuronal NOS (nNOS) expression, cholecystokinin (CCK), and gastrin concentration were decreased in the same mice. Furthermore, the levels of C3a receptor (C3aR) and C3bR expression were enhanced in the mid colon of C3 KO mice compared to the WT mice during C3 deficiency-induced constipation. Overall, these results indicate that a dysregulation of the ENS may play an important role in C3 deficiency-induced constipation in the mid colon of C3 KO mice.
Collapse
|
26
|
Exploring Molecular Mechanisms of Aloe barbadmsis Miller on Diphenoxylate-Induced Constipation in Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:6225758. [PMID: 35571728 PMCID: PMC9106447 DOI: 10.1155/2022/6225758] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 04/02/2022] [Indexed: 11/17/2022]
Abstract
Aloe barbadensis Miller (Aloe) known as a common succulent perennial herb had been traditionally used in constipation for more than 1,000 years. Aloe contained anthraquinones and other active compounds which had laxative effect and could modulate constipation. However, the therapeutic effects and mechanisms of aloe in constipation were still unclear. To explore the therapeutic effects and mechanisms of aloe in treating constipation, we employed network pharmacology, molecular docking, and mice experiments in this study. Our network pharmacology indicated that beta-carotene, sitosterol, campest-5-en-3beta-ol, CLR, arachidonic acid, aloe-emodin, quercetin, and barbaloin were the main active ingredients of aloe in treating constipation. Besides, the MAPK signaling pathway was the principal pathway utilized by aloe in treating constipation. Molecular docking results revealed that beta-carotene and sitosterol were acting as interference factors in attenuating inflammation by binding to an accessory protein of ERK, JNK, AKT, and NF-κB p65. Otherwise, in vivo experiments, we used diphenoxylate-induced constipation mice model to explore the therapeutic effects and mechanisms of aloe. Results showed that aloe modulated the constipation mice by reducing the discharge time of first melena, improving the fecal conditions, increasing the gastric intestinal charcoal transit ratio, and improving the intestinal secretion in small intestine. Besides, aloe played an important regulation in promoting intestinal motility sufficiency and the levels of neurotransmitters balance with 5-HT, SP, and VIP on constipation mice. Moreover, aloe significantly inhibited the mRNA and proteins expressions of ERK, JNK, AKT and NF-κB p65 in colon. Our study proved that aloe could reverse diphenoxylate-induced changes relating to the intestinal motility, intestinal moisture, and inhibition of the MAPK (ERK, JNK)/AKT/NF-κB p65 inflammatory pathway. Our study provided experimental evidences of the laxative effect of aloe, which was beneficial to the further research and development of aloe.
Collapse
|
27
|
Rianda D, Suradijono SHR, Setiawan EA, Susanto F, Meilianawati M, Prafiantini E, Kok FJ, Shankar AH, Agustina R. Long-term benefits of probiotics and calcium supplementation during childhood, and other biomedical and socioenvironmental factors, on adolescent neurodevelopmental outcomes. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
28
|
Yang L, Wan Y, Li W, Liu C, Li HF, Dong Z, Zhu K, Jiang S, Shang E, Qian D, Duan J. Targeting intestinal flora and its metabolism to explore the laxative effects of rhubarb. Appl Microbiol Biotechnol 2022; 106:1615-1631. [PMID: 35129656 DOI: 10.1007/s00253-022-11813-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/27/2022] [Accepted: 01/29/2022] [Indexed: 12/17/2022]
Abstract
Rhubarb, a traditional herb, has been used in clinical practice for hundreds of years to cure constipation, but its mechanism is still not clear enough. Currently, growing evidence suggests that intestinal flora might be a potential target for the treatment of constipation. Thus, the aim of this study was to clarify the laxative effect of rhubarb via systematically analyzing the metagenome and metabolome of the gut microbiota. In this study, the laxative effects of rhubarb were investigated by loperamide-induced constipation in rats. The gut microbiota was determined by high-throughput sequencing of 16S rRNA gene. Ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry was used for fecal metabolomics analysis. The data showed that rhubarb could significantly shorten gastrointestinal transit time, increase fecal water content and defecation frequency, improve gastrointestinal hormone disruption, and protect the colon mucus layer. Analysis of 16S rRNA gene sequencing indicated that rhubarb could improve the disorder of intestinal microbiota in constipated rats. For example, beneficial bacteria such as Ligilactobacillus, Limosilalactobacillus, and Prevotellaceae UCG-001 were remarkably increased, and pathogens such as Escherichia-Shigella were significantly decreased after rhubarb treatment. Additionally, the fecal metabolic profiles of constipated rats were improved by rhubarb. After rhubarb treatment, metabolites such as chenodeoxycholic acid, cholic acid, prostaglandin F2α, and α-linolenic acid were markedly increased in constipation rats; in contrast, the metabolites such as lithocholic acid, calcidiol, and 10-hydroxystearic acid were notably reduced in constipation rats. Moreover, correlation analysis indicated a close relationship between intestinal flora, fecal metabolites, and biochemical indices associated with constipation. In conclusion, the amelioration of rhubarb in constipation might modulate the intestinal microflora and its metabolism. Moreover, the application of fecal metabolomics could provide a new strategy to uncover the mechanism of herbal medicines.Key points• Rhubarb could significantly improve gut microbiota disorder in constipation rats.• Rhubarb could markedly modulate the fecal metabolite profile of constipated rats.
Collapse
Affiliation(s)
- Lei Yang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, People's Republic of China
| | - Yue Wan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, People's Republic of China
| | - Wenwen Li
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, People's Republic of China
| | - Chen Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, People's Republic of China
| | - Hui-Fang Li
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, People's Republic of China
| | - Zhiling Dong
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, People's Republic of China
| | - Ke Zhu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, People's Republic of China
| | - Shu Jiang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, People's Republic of China.
| | - Erxin Shang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, People's Republic of China
| | - Dawei Qian
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, People's Republic of China
| | - Jinao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, People's Republic of China.
| |
Collapse
|
29
|
He Y, Zhu L, Chen J, Tang X, Pan M, Yuan W, Wang H. Efficacy of Probiotic Compounds in Relieving Constipation and Their Colonization in Gut Microbiota. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030666. [PMID: 35163930 PMCID: PMC8838973 DOI: 10.3390/molecules27030666] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/11/2022] [Accepted: 01/11/2022] [Indexed: 12/20/2022]
Abstract
A number of studies have confirmed the relationship between constipation and gut microbiota. Additionally, many human and animal experiments have identified probiotics as effectors for the relief of constipation symptoms. In this study, probiotic compounds, including Lactobacillus acidophilus LA11-Onlly, Lacticaseibacillus rhamnosus LR22, Limosilactobacillus reuteri LE16, Lactiplantibacillus plantarum LP-Onlly, and Bifidobacterium animalis subsp. lactis BI516, were administered to mice with loperamide-induced constipation, and the impacts of these strains on constipation-related indicators and gut microbiota were evaluated. The effects of probiotic compounds on constipation relief were associated with various aspects, including gastrointestinal transit rate, number and weight of stools, serum and intestinal gastrointestinal regulatory hormones, and serum cytokines. Some of the probiotic compounds, including Limosilactobacillus reuteri, Lactiplantibacillus plantarum, and Lacticaseibacillus rhamnosus, were found to colonize the intestinal tract. Furthermore, higher dosages promoted the colonization of specific strains. This study yields a new perspective for the clinical use of probiotics to improve constipation symptoms by combining strains with different mechanisms for the alleviation of constipation.
Collapse
Affiliation(s)
- Yuan He
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Y.H.); (L.Z.); (M.P.); (W.Y.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Leilei Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Y.H.); (L.Z.); (M.P.); (W.Y.)
| | - Jialun Chen
- Sirio Pharma Co., Ltd., Shantou 515000, China; (J.C.); (X.T.)
| | - Xin Tang
- Sirio Pharma Co., Ltd., Shantou 515000, China; (J.C.); (X.T.)
| | - Mingluo Pan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Y.H.); (L.Z.); (M.P.); (W.Y.)
| | - Weiwei Yuan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Y.H.); (L.Z.); (M.P.); (W.Y.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hongchao Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Y.H.); (L.Z.); (M.P.); (W.Y.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Correspondence: ; Tel.: +86-510-85912155
| |
Collapse
|
30
|
Foshati S, Akhlaghi M, Babajafari S. The Effect of Pro-/Synbiotic Supplementation on Brain-Derived Neurotrophic Factor: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Food Funct 2022; 13:8754-8765. [DOI: 10.1039/d2fo01330d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
There is a growing interest in supplementation with pro-/synbiotics for brain and mental health. Animal studies have reported that pro-/synbiotic administration can increase brain-derived neurotrophic factor (BDNF), a key regulator...
Collapse
|
31
|
Youssef M, Ahmed HY, Zongo A, Korin A, Zhan F, Hady E, Umair M, Shahid Riaz Rajoka M, Xiong Y, Li B. Probiotic Supplements: Their Strategies in the Therapeutic and Prophylactic of Human Life-Threatening Diseases. Int J Mol Sci 2021; 22:11290. [PMID: 34681948 PMCID: PMC8537706 DOI: 10.3390/ijms222011290] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 10/10/2021] [Accepted: 10/13/2021] [Indexed: 12/18/2022] Open
Abstract
Chronic diseases and viral infections have threatened human life over the ages and constitute the main reason for increasing death globally. The rising burden of these diseases extends to negatively affecting the economy and trading globally, as well as daily life, which requires inexpensive, novel, and safe therapeutics. Therefore, scientists have paid close attention to probiotics as safe remedies to combat these morbidities owing to their health benefits and biotherapeutic effects. Probiotics have been broadly adopted as functional foods, nutraceuticals, and food supplements to improve human health and prevent some morbidity. Intriguingly, recent research indicates that probiotics are a promising solution for treating and prophylactic against certain dangerous diseases. Probiotics could also be associated with their essential role in animating the immune system to fight COVID-19 infection. This comprehensive review concentrates on the newest literature on probiotics and their metabolism in treating life-threatening diseases, including immune disorders, pathogens, inflammatory and allergic diseases, cancer, cardiovascular disease, gastrointestinal dysfunctions, and COVID-19 infection. The recent information in this report will particularly furnish a platform for emerging novel probiotics-based therapeutics as cheap and safe, encouraging researchers and stakeholders to develop innovative treatments based on probiotics to prevent and treat chronic and viral diseases.
Collapse
Affiliation(s)
- Mahmoud Youssef
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (M.Y.); (A.Z.); (A.K.); (F.Z.); (E.H.)
- Food Science and Technology Department, Faculty of Agriculture, Al-Azhar University, Cairo 11651, Egypt
| | - Hanaa Y. Ahmed
- The Regional Center for Mycology and Biotechnology, Al-Azhar University, Cairo 11787, Egypt;
| | - Abel Zongo
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (M.Y.); (A.Z.); (A.K.); (F.Z.); (E.H.)
- Biological Sciences, Food and Nutrition Research Center, Department of Biochemistry and Microbiology, University Joseph Ki-Zerbo, Ouagadougou 03 BP 7021, Burkina Faso
| | - Ali Korin
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (M.Y.); (A.Z.); (A.K.); (F.Z.); (E.H.)
- Food Science and Technology Department, Faculty of Agriculture, Al-Azhar University, Cairo 11651, Egypt
| | - Fuchao Zhan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (M.Y.); (A.Z.); (A.K.); (F.Z.); (E.H.)
| | - Essam Hady
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (M.Y.); (A.Z.); (A.K.); (F.Z.); (E.H.)
- Food Science and Technology Department, Faculty of Agriculture, Al-Azhar University, Cairo 11651, Egypt
| | - Muhammad Umair
- Department of Food Science and Engineering, College of Chemistry and Engineering, Shenzhen University, Shenzhen 518060, China; (M.U.); (M.S.R.R.)
| | - Muhammad Shahid Riaz Rajoka
- Department of Food Science and Engineering, College of Chemistry and Engineering, Shenzhen University, Shenzhen 518060, China; (M.U.); (M.S.R.R.)
| | - Yongai Xiong
- Department of Pharmaceutics, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi 563003, China
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (M.Y.); (A.Z.); (A.K.); (F.Z.); (E.H.)
| |
Collapse
|
32
|
Wu Y, Wu J, Lin Z, Wang Q, Li Y, Wang A, Shan X, Liu J. Administration of a Probiotic Mixture Ameliorates Cisplatin-Induced Mucositis and Pica by Regulating 5-HT in Rats. J Immunol Res 2021; 2021:9321196. [PMID: 34568500 PMCID: PMC8461230 DOI: 10.1155/2021/9321196] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/18/2021] [Accepted: 08/21/2021] [Indexed: 12/24/2022] Open
Abstract
Probiotic-based therapies have been shown to be beneficial for chemotherapy-induced mucositis. Previous research has demonstrated that a probiotic mixture (Bifidobacterium brevis, Lactobacillus acidophilus, Lactobacillus casei, and Streptococcus thermophilus) can ameliorate chemotherapy-induced mucositis and dysbiosis in rats, but the underlying mechanism has not been completely elucidated. We aimed to determine the inhibitory effects of the probiotic mixture on cisplatin-induced mucositis and pica and the underlying mechanism, focusing on the levels of 5-hydroxytryptamine (5-HT, serotonin) regulated by the gut microbiota. A rat model of mucositis and pica was established by daily intraperitoneal injection of cisplatin (6 mg/kg) for 3 days. In the probiotic+cisplatin group, predaily intragastric injection of the probiotic mixture (1 × 109 CFU/kg BW) was administrated for 1 week before cisplatin injection. This was then followed by further daily probiotic injections for 6 days. Histopathology, pro-/anti-inflammatory cytokines, oxidative status, and 5-HT levels were assessed on days 3 and 6. The structure of the gut microbiota was analyzed by 16S rRNA gene sequencing and quantitative PCR. Additionally, 5-HT levels in enterochromaffin (EC) cells (RIN-14B cell line) treated with cisplatin and/or various probiotic bacteria were also determined. The probiotic mixture significantly attenuated kaolin consumption, inflammation, oxidative stress, and the increase in 5-HT concentrations in rats with cisplatin-induced intestinal mucositis and pica. Cisplatin markedly increased the relative abundances of Enterobacteriaceae_other, Blautia, Clostridiaceae_other, and members of Clostridium clusters IV and XIVa. These levels were significantly restored by the probiotic mixture. Importantly, most of the genera increased by cisplatin were significantly positively correlated with colonic 5-HT. Furthermore, in vitro, the probiotic mixture had direct inhibitory effects on the 5-HT secretion by EC cells. The probiotic mixture protects against cisplatin-induced intestine injury, exhibiting both anti-inflammatory and antiemetic properties. These results were closely related to the reestablishment of intestinal microbiota ecology and normalization of the dysbiosis-driven 5-HT overproduction.
Collapse
Affiliation(s)
- Yuanhang Wu
- Department of Medical Oncology, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Jianlin Wu
- Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Zhikun Lin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Qian Wang
- Liaoning CapitalBio Technology Co., Ltd., Dalian, China
| | - Ying Li
- Department of Medical Oncology, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Aman Wang
- Department of Medical Oncology, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Xiu Shan
- Department of Medical Oncology, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Jiwei Liu
- Department of Medical Oncology, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| |
Collapse
|
33
|
Chai M, Wang L, Li X, Zhao J, Zhang H, Wang G, Chen W. Different Bifidobacterium bifidum strains change the intestinal flora composition of mice via different mechanisms to alleviate loperamide-induced constipation. Food Funct 2021; 12:6058-6069. [PMID: 34038494 DOI: 10.1039/d1fo00559f] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Constipation is a condition with a high prevalence rate worldwide and may occur in men and women of any age. Bifidobacterium bifidum has been shown to have a relieving effect on constipation, but the underlying mechanism is still unknown. This study explored the effects of gavage of three strains of B. bifidum (CCFM668, FHNFQ25M12 and FXJCJ32M2) from different sources in mice with loperamide-induced constipation. After 38 days of intervention, B. bifidum CCFM668, FHNFQ25M12 and FXJCJ32M2 showed the ability to modify the levels of gastrointestinal active peptides and promote the expression of 5-hydroxytryptamine (5-HT or serotonin) receptor 4 (5-HT4R), thereby promoting small intestinal peristalsis. The strains could also effectively increase the thickness of the colonic mucosa. However, what was different from previous studies was that these results were independent of the levels of short-chain fatty acids (SCFAs) and 5-HT. Further analysis of the intestinal flora revealed that the relative abundances of the genera Faecalibaculum and Ruminococcaceae_UCG_014 in the constipated mice increased significantly, whereas that of Erysipelatoclostridium decreased. A correlation analysis between the intestinal flora and evaluated gastrointestinal indicators demonstrated that the relative abundances of the genera Anaerotruncus, Angelakisella, Erysipelatoclostridium and Ruminococcaceae_UCG_014 were negatively correlated with the levels of gastrointestinal active peptides. B. bifidum FXJCJ32M2 can increase the relative abundances of Turicibacter and Dubosiella, and this was positively correlated with the expression of aquaporin 8 and vasoactive intestinal peptide receptor 1 but could not effectively alleviate faecal dryness or promote colonic motility. These findings suggest that B. bifidum shows significant intraspecific differences in the remission mechanism and provides a theoretical basis for subsequent population experiments and personalised treatment for constipation.
Collapse
Affiliation(s)
- Mao Chai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China. and School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Linlin Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China. and School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xinping Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China. and School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China. and School of Food Science and Technology, Jiangnan University, Wuxi 214122, China and International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi 214122, China and (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, P. R. China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China. and School of Food Science and Technology, Jiangnan University, Wuxi 214122, China and National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China and Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi 214122, P. R. China
| | - Gang Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China. and School of Food Science and Technology, Jiangnan University, Wuxi 214122, China and International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi 214122, China and (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, P. R. China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China. and School of Food Science and Technology, Jiangnan University, Wuxi 214122, China and National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
34
|
Saviano A, Brigida M, Migneco A, Gunawardena G, Zanza C, Candelli M, Franceschi F, Ojetti V. Lactobacillus Reuteri DSM 17938 (Limosilactobacillus reuteri) in Diarrhea and Constipation: Two Sides of the Same Coin? MEDICINA (KAUNAS, LITHUANIA) 2021; 57:643. [PMID: 34201542 PMCID: PMC8306447 DOI: 10.3390/medicina57070643] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/12/2021] [Accepted: 06/22/2021] [Indexed: 02/05/2023]
Abstract
Background and Objectives: Lactobacillus reuteri DSM 17938 (L. reuteri) is a probiotic that can colonize different human body sites, including primarily the gastrointestinal tract, but also the urinary tract, the skin, and breast milk. Literature data showed that the administration of L. reuteri can be beneficial to human health. The aim of this review was to summarize current knowledge on the role of L. reuteri in the management of gastrointestinal symptoms, abdominal pain, diarrhea and constipation, both in adults and children, which are frequent reasons for admission to the emergency department (ED), in order to promote the best selection of probiotic type in the treatment of these uncomfortable and common symptoms. Materials and Methods: We searched articles on PubMed® from January 2011 to January 2021. Results: Numerous clinical studies suggested that L. reuteri may be helpful in modulating gut microbiota, eliminating infections, and attenuating the gastrointestinal symptoms of enteric colitis, antibiotic-associated diarrhea (also related to the treatment of Helicobacter pylori (HP) infection), irritable bowel syndrome, inflammatory bowel disease, and chronic constipation. In both children and in adults, L. reuteri shortens the duration of acute infectious diarrhea and improves abdominal pain in patients with colitis or inflammatory bowel disease. It can ameliorate dyspepsia and symptoms of gastritis in patients with HP infection. Moreover, it improves gut motility and chronic constipation. Conclusion: Currently, probiotics are widely used to prevent and treat numerous gastrointestinal disorders. In our opinion, L. reuteri meets all the requirements to be considered a safe, well-tolerated, and efficacious probiotic that is able to contribute to the beneficial effects on gut-human health, preventing and treating many gastrointestinal symptoms, and speeding up the recovery and discharge of patients accessing the emergency department.
Collapse
Affiliation(s)
- Angela Saviano
- Department of Emergency Medicine, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Mattia Brigida
- Department of Gastroenterology, Università Tor Vergata, 00133 Rome, Italy;
| | - Alessio Migneco
- Department of Emergency Medicine, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy; (A.M.); (M.C.); (F.F.); (V.O.)
| | - Gayani Gunawardena
- Department of Emergency Medicine, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Christian Zanza
- Department of Anesthesiology, Critical Care and Emergency Medicine-Fondazione Nuovo Ospedale Alba-Bra, Michele and Pietro Ferrero Hospital, 12060 Verduno, Italy;
| | - Marcello Candelli
- Department of Emergency Medicine, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy; (A.M.); (M.C.); (F.F.); (V.O.)
| | - Francesco Franceschi
- Department of Emergency Medicine, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy; (A.M.); (M.C.); (F.F.); (V.O.)
| | - Veronica Ojetti
- Department of Emergency Medicine, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy; (A.M.); (M.C.); (F.F.); (V.O.)
| |
Collapse
|
35
|
Li X, Jiang T, Sun X, Yong X, Ma X, Liu J. The relationship between occupational stress, musculoskeletal disorders and the mental health of coal miners: The interaction between BDNF gene, TPH2 gene polymorphism and the environment. J Psychiatr Res 2021; 135:76-85. [PMID: 33450468 DOI: 10.1016/j.jpsychires.2020.12.061] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/25/2020] [Accepted: 12/21/2020] [Indexed: 11/15/2022]
Abstract
OBJECTIVE Mental disorders are prevalent among the population and seriously endanger people's working ability as well as their physical and mental health. This study employed stratified cluster random sampling to examine occupational stress, musculoskeletal disorders (MSDs) and the mental health status of 1675 coal miners in Xinjiang. METHODS A cross-sectional investigation was carried out, and BDNF (rs6265, rs10835210) gene polymorphism and TPH2(rs4570625, rs4131347) gene polymorphism were identified in 30% of the study's participants. This study aimed to analyze the relationship between mental disorders, occupational stress and MSDs, and to explore the role of gene-gene and gene-environment interactions in respect to the incidence of psychological disorders. On this basis, the risk prediction model of mental disorders was constructed. RESULTS The study identified the following risk factors for mental disorders among coal miners: Female, age, four shifts, coal miners, college education or above, single, occupational stress, and MSDs. MSDs, BDNF gene (rs6265) and TPH2 gene (rs4570625) are directly related to mental disorders, and interactions were found between MSDs and BDNF gene (rs6265),TPH2 gene (rs4570625), affecting the incidence of mental disorders. The Bayesian network model of mental disorders showed that MSDs, educational level, TPH2 gene (rs4570625) and marital status had a higher influence on mental disorders. Monthly income and educational level can indirectly affect mental disorders through occupational stress. BDNF gene (rs6265) and TPH2 gene (rs4570625) can indirectly affect mental disorders through MSDs. There may be an interaction between MSDs and educational level. CONCLUSIONS Besides demographic characteristics, occupational stress and musculoskeletal disorders are also factors affecting the mental health of coal miners. It was found that BDNF rs10835210, TPH2 rs4570625 and TPH2 rs4131347 interact with each other, increasing the risk of mental disorders among coal miners.
Collapse
Affiliation(s)
- Xue Li
- Department of Public Health, Xinjiang Medical University, Urumqi, 830011, China
| | - Ting Jiang
- Department of Public Health, Xinjiang Medical University, Urumqi, 830011, China
| | - Xuemei Sun
- Xiangya School of Public Health, Central South University, Changsha, 410008, China
| | - Xianting Yong
- Department of Public Health, Xinjiang Medical University, Urumqi, 830011, China
| | - Xiaofan Ma
- Department of Public Health, Xinjiang Medical University, Urumqi, 830011, China
| | - Jiwen Liu
- Department of Public Health, Xinjiang Medical University, Urumqi, 830011, China.
| |
Collapse
|
36
|
Gravesteijn E, Mensink RP, Plat J. Effects of nutritional interventions on BDNF concentrations in humans: a systematic review. Nutr Neurosci 2021; 25:1425-1436. [PMID: 33427118 DOI: 10.1080/1028415x.2020.1865758] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Objectives: Brain-derived neurotrophic factor (BDNF) plays an essential role in brain and metabolic health. The fact that higher concentrations are associated with improved cognitive performance has resulted in numerous intervention trials that aim at elevating BDNF levels. This systematic review provides an overview of the relation between various nutritional factors and BDNF concentrations in controlled human intervention studies. Methods: A systematic search in May 2020 identified 48 articles that examined the effects of dietary patterns or foods (n = 3), diets based on energy intake (n = 7), vitamins and minerals (n = 7), polyphenols (n = 11), long-chain omega-3 polyunsaturated fatty acids (n = 5), probiotics (n = 8), and miscellaneous food supplements (n = 7). Results: In particular, studies with dietary patterns or foods showed increased peripheral BDNF concentrations. There are also strong indications that polyphenols tend to have a positive effect on BDNF concentrations. Four of the 11 included studies with a polyphenol intervention showed a significant increase in BDNF concentrations, one study showed an increase but this was not statistically analyzed, and two studies showed a trend to an increase. Discussion: The two polyphenol classes, phenolic acids, and other phenolic compounds were responsible for the significant effects. No clear effect was found for the other dietary factors, which might also be related to whether serum or plasma was used for BDNF analysis. More work is needed to understand the relation between peripheral and central BDNF concentrations.
Collapse
Affiliation(s)
- Elske Gravesteijn
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+ (MUMC+), Maastricht, Netherlands
| | - Ronald P Mensink
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+ (MUMC+), Maastricht, Netherlands
| | - Jogchum Plat
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+ (MUMC+), Maastricht, Netherlands
| |
Collapse
|
37
|
Toyoda A, Kawase T, Tsukahara T. Effects of dietary intake of heat-inactivated Lactobacillus gasseri CP2305 on stress-induced behavioral and molecular changes in a subchronic and mild social defeat stress mouse model. Biomed Res 2021; 41:101-111. [PMID: 32307337 DOI: 10.2220/biomedres.41.101] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The intestinal ecosystem is involved in the pathogenesis of mood disorders such as depression. Intestinal microbes can affect the central nervous system through the gut-brain axis, which raises the possibility of using probiotics for preventing depression. In this study, we examined the effect of heat-inactivated Lactobacillus gasseri CP2305 (CP2305) in a subchronic and mild social defeat stress (sCSDS) mouse model. sCSDS suppressed food intake. However, dietary CP2305 intake rescued it, suggesting that CP2305 improved the decreased appetite in sCSDS mice. sCSDS did not alter the gene expression of brain-derived neurotrophic factor, nerve growth factor, and neurotrophin-3 in the hippocampus. However, dietary CP2305 provided following sCSDS increased the gene expression of these neurotrophins in the hippocampus. These findings suggest that CP2305 supplementation would aid in preventing psychosocial stress-induced disorders.
Collapse
Affiliation(s)
- Atsushi Toyoda
- College of Agriculture, Ibaraki University.,Ibaraki University Cooperation between Agriculture and Medical Science (IUCAM).,United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology
| | | | | |
Collapse
|
38
|
Guo Y, Li Q, Yu X, Liang Y. Rhubarb anthraquinone glycosides protect against cerebral ischemia-reperfusion injury in rats by regulating brain-gut neurotransmitters. Biomed Chromatogr 2020; 35:e5058. [PMID: 33373060 DOI: 10.1002/bmc.5058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/08/2020] [Accepted: 12/26/2020] [Indexed: 12/17/2022]
Abstract
Rhubarb anthraquinone glycosides (RAGs) have been proven to have significant therapeutic effects on ischemic stroke, and this effect may be related to the microbiome-gut-brain axis. In this study, an HPLC-FLD method was established to measure brain-gut neurotransmitters of rats with cerebral ischemia-reperfusion injury (CIRI), to explore whether the mechanism of RAGs against CIRI is related to the microbiome-gut-brain axis. A Shimadzu ODS-3 C18 column was used for chromatographic separation, and 5-hydroxytryptamine (5-HT), 5-hydroxy indole acetic acid (5-HIAA), glutamic acid (Glu), aspartic acid (Asp), and γ-aminobutyric acid (GABA) were determined simultaneously. The results showed that there is an excellent linear relationship (R2 ≥ 0.9990) and a high separation degree in the HPLC-FLD method. Whereas the contents of Asp and Glu in the brain and colon increased (p < 0.05), the contents of 5-HT, 5-HIAA, and GABA in the brain and colon decreased (p < 0.05) after CIRI. RAGs could effectively reduce the contents of Asp and Glu (p < 0.05), and increase the contents of 5-HT, 5-HIAA, and GABA in the brain and colon (p < 0.05). Combined with the previous experimental results, we can speculate that RAGs can regulate intestinal flora disorder caused by CIRI, and then regulate the imbalance between the release and decomposition of neurotransmitters caused by intestinal flora disorder.
Collapse
Affiliation(s)
- Ying Guo
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qiuying Li
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiahui Yu
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuhua Liang
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
39
|
Roussin L, Prince N, Perez-Pardo P, Kraneveld AD, Rabot S, Naudon L. Role of the Gut Microbiota in the Pathophysiology of Autism Spectrum Disorder: Clinical and Preclinical Evidence. Microorganisms 2020; 8:microorganisms8091369. [PMID: 32906656 PMCID: PMC7563175 DOI: 10.3390/microorganisms8091369] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/31/2020] [Accepted: 09/03/2020] [Indexed: 02/06/2023] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder affecting 1 in 160 people in the world. Although there is a strong genetic heritability to ASD, it is now accepted that environmental factors can play a role in its onset. As the prevalence of gastrointestinal (GI) symptoms is four-times higher in ASD patients, the potential implication of the gut microbiota in this disorder is being increasingly studied. A disturbed microbiota composition has been demonstrated in ASD patients, accompanied by altered production of bacterial metabolites. Clinical studies as well as preclinical studies conducted in rodents have started to investigate the physiological functions that gut microbiota might disturb and thus underlie the pathophysiology of ASD. The first data support an involvement of the immune system and tryptophan metabolism, both in the gut and central nervous system. In addition, a few clinical studies and a larger number of preclinical studies found that modulation of the microbiota through antibiotic and probiotic treatments, or fecal microbiota transplantation, could improve behavior. Although the understanding of the role of the gut microbiota in the physiopathology of ASD is only in its early stages, the data gathered in this review highlight that this role should be taken in consideration.
Collapse
Affiliation(s)
- Léa Roussin
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France;
- Correspondence:
| | - Naika Prince
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands; (N.P.); (P.P.-P.); (A.D.K.)
| | - Paula Perez-Pardo
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands; (N.P.); (P.P.-P.); (A.D.K.)
| | - Aletta D. Kraneveld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands; (N.P.); (P.P.-P.); (A.D.K.)
| | - Sylvie Rabot
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France;
| | - Laurent Naudon
- Université Paris-Saclay, INRAE, AgroParisTech, CNRS, Micalis Institute, 78350 Jouy-en-Josas, France;
| |
Collapse
|
40
|
Sefidgari-Abrasi S, Roshangar L, Karimi P, Morshedi M, Rahimiyan-Heravan M, Saghafi-Asl M. From the gut to the heart: L. plantarum and inulin administration as a novel approach to control cardiac apoptosis via 5-HT2B and TrkB receptors in diabetes. Clin Nutr 2020; 40:190-201. [PMID: 32446786 DOI: 10.1016/j.clnu.2020.05.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 04/23/2020] [Accepted: 05/05/2020] [Indexed: 12/30/2022]
Abstract
BACKGROUND & AIMS Type 2 diabetes mellitus, as a metabolic disorder, can lead to diabetic cardiomyopathy, identified by cardiomyocyte apoptosis and myocardial fibrosis. Brain-derived neurotrophic factor (BDNF) and serotonin are two neurotransmitters that can control cardiomyocyte apoptosis and myocardial fibrosis through their cardiac receptors. In the present study, we investigated the impacts of L. plantarum and inulin supplementation on the inhibition of cardiac apoptosis and fibrosis by modulating intestinal, serum, and cardiac levels of serotonin and BDNF as well as their cardiac receptors. METHODS Diabetes was induced by a high-fat diet and streptozotocin in male Wistar rats. Rats were divided into six groups and were supplemented with L. plantarum, inulin or their combination for 8 weeks. Finally, the rats were killed and levels of intestinal, serum, and cardiac parameters were evaluated. RESULTS Concurrent administration of L. plantarum and inulin caused a significant rise in the expression of cardiac serotonin and BDNF receptors (P < 0.001) as well as a significant fall in cardiac interstitial and perivascular fibrosis (P < 0.001, both) and apoptosis (P = 0.01). Moreover, there was a strong correlation of cardiac 5-Hydroxytryptamine 2B (5-HT2B) and tropomyosin receptor kinase B (TrkB) receptors with interstitial/perivascular fibrosis and apoptosis (P < 0.001, both). CONCLUSIONS/INTERPRETATION Results revealed beneficial effects of L. plantarum, inulin or their combination on intestinal, serum, and cardiac serotonin and BDNF accompanied by higher expression of their cardiac receptors and lower levels of cardiac apoptotic and fibrotic markers. It seems that L. plantarum and inulin supplementation could be considered as a novel adjunct therapy to reduce cardiac complications of type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Safa Sefidgari-Abrasi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Nutrition Research Center, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Roshangar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pouran Karimi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Morshedi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Marziyeh Rahimiyan-Heravan
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Nutrition Research Center, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Saghafi-Asl
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Nutrition Research Center, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Clinical Nutrition, School of Nutrition and Food Sciences, Tabriz University of Medical Science, Tabriz, Iran.
| |
Collapse
|
41
|
Liu TH, Zhang CY, Din A, Li N, Wang Q, Yu JZ, Xu ZY, Li CX, Zhang XM, Yuan JL, Chen LG, Yang ZS. Bacterial association and comparison between lung and intestine in rats. Biosci Rep 2020; 40:BSR20191570. [PMID: 32323724 PMCID: PMC7189363 DOI: 10.1042/bsr20191570] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 04/20/2020] [Accepted: 04/22/2020] [Indexed: 12/20/2022] Open
Abstract
The association between lung and intestine has already been reported, but the differences in community structures or functions between lung and intestine bacteria yet need to explore. To explore the differences in community structures or functions, the lung tissues and fecal contents in rats were collected and analyzed through 16S rRNA sequencing. It was found that intestine bacteria was more abundant and diverse than lung bacteria. In intestine bacteria, Firmicutes and Bacteroides were identified as major phyla while Lactobacillus was among the most abundant genus. However, in lung the major identified phylum was Proteobacteria and genus Pseudomonas was most prominent genus. On the other hand, in contrast the lung bacteria was more concentrated in cytoskeleton and function in energy production and conversion. While, intestine bacteria were enriched in RNA processing, modification chromatin structure, dynamics and amino acid metabolism. The study provides the basis for understanding the relationships between lung and intestine bacteria.
Collapse
Affiliation(s)
- Tian-hao Liu
- College of Chinese medicine, Jinan University, Guangzhou, Guangdong, China
- Yunnan Key Laboratory of Molecular Biology of Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Chen-yang Zhang
- College of Chinese Medicine, Hunan University of traditional Chinese Medicine, Changsha, Hunan, China
| | - Ahmad Ud Din
- Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, China
| | - Ning Li
- Yan’an Hospital Affiliated to Kunming Medical University, Key Laboratory of Cardiovascular Disease of Yunnan Province, Kunming, Yunnan, China
| | - Qian Wang
- School of Finance, Yunnan University of Finance and Economics, Kunming, Yunnan, China
| | - Jing-ze Yu
- Yunnan Key Laboratory of Molecular Biology of Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Zhen-yuan Xu
- Yunnan Key Laboratory of Molecular Biology of Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Chen-xi Li
- Yunnan Key Laboratory of Molecular Biology of Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Xiao-mei Zhang
- Yunnan Key Laboratory of Molecular Biology of Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Jia-li Yuan
- Yunnan Key Laboratory of Molecular Biology of Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Li-guo Chen
- College of Chinese medicine, Jinan University, Guangzhou, Guangdong, China
| | - Zhong-shan Yang
- Yunnan Key Laboratory of Molecular Biology of Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| |
Collapse
|
42
|
Del Colle A, Israelyan N, Gross Margolis K. Novel aspects of enteric serotonergic signaling in health and brain-gut disease. Am J Physiol Gastrointest Liver Physiol 2020; 318:G130-G143. [PMID: 31682158 PMCID: PMC6985840 DOI: 10.1152/ajpgi.00173.2019] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 10/17/2019] [Accepted: 10/17/2019] [Indexed: 02/08/2023]
Abstract
Gastrointestinal (GI) comorbidities are common in individuals with mood and behavioral dysfunction. Similarly, patients with GI problems more commonly suffer from co-morbid psychiatric diagnoses. Although the central and enteric nervous systems (CNS and ENS, respectively) have largely been studied separately, there is emerging interest in factors that may contribute to disease states involving both systems. There is strong evidence to suggest that serotonin may be an important contributor to these brain-gut conditions. Serotonin has long been recognized for its critical functions in CNS development and function. The majority of the body's serotonin, however, is produced in the GI tract, where it plays key roles in ENS development and function. Further understanding of the specific impact that enteric serotonin has on brain-gut disease may lay the foundation for the creation of novel therapeutic targets. This review summarizes the current data focusing on the important roles that serotonin plays in ENS development and motility, with a focus on novel aspects of serotonergic signaling in medical conditions in which CNS and ENS co-morbidities are common, including autism spectrum disorders and depression.
Collapse
Affiliation(s)
- Andrew Del Colle
- Morgan Stanley Children's Hospital, Department of Pediatrics, Columbia University Medical Center, New York, New York
| | - Narek Israelyan
- Morgan Stanley Children's Hospital, Department of Pediatrics, Columbia University Medical Center, New York, New York
- Vagelos College of Physicians and Surgeons, Columbia University Medical Center, New York, New York
| | - Kara Gross Margolis
- Morgan Stanley Children's Hospital, Department of Pediatrics, Columbia University Medical Center, New York, New York
| |
Collapse
|
43
|
Tsukahara T, Kawase T, Yoshida H, Bukawa W, Kan T, Toyoda A. Preliminary investigation of the effect of oral supplementation of Lactobacillus plantarum strain SNK12 on mRNA levels of neurotrophic factors and GABA receptors in the hippocampus of mice under stress-free and sub-chronic mild social defeat-stressing conditions. Biosci Biotechnol Biochem 2019; 83:2345-2354. [PMID: 31524073 DOI: 10.1080/09168451.2019.1659717] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The effect of Lactobacillus plantarum SNK12 (CPLP) supplementation on mRNA levels of hippocampal neurotrophic factors and gamma aminobutyric acid receptors (GABAR) was tested. In Experiment 1, stress-free, unsupplemented and CPLP (4 × 108 cells/head)-supplemented male C57BL/6J (B6) mice were the experimental animals. In Experiment 2, intruder (male, B6) mice [negative control; unsupplemented, sub-chronic mild social defeat stress (sCSDS)-induced; and CPLP-supplemented, sCSDS-induced] were exposed to aggressor mice (adult male Slc:ICR). mRNA levels of neurotrophic factors and GABAR in hippocampal samples of these mice were analyzed. In CPLP-supplemented mice of both experiments, mRNA levels of bdnf, nt-3, and GABAR were upregulated. Moreover, a tendency toward the improvement of habituation ability (Experiment 1) and behavior (Experiment 2) was observed in mice, which may be associated with upregulated neurotrophic factors and GABAR. We demonstrated that oral supplementation of CPLP to stress-free and stress-induced mice upregulated mRNA levels of hippocampal neurotrophic factors and GABAR.
Collapse
Affiliation(s)
| | | | | | - Wakoto Bukawa
- Non-Profit Organization, The Japanese Association of Clinical Research on Supplements, Saitama, Japan
| | | | - Atsushi Toyoda
- College of Agriculture, Ibaraki University, Ibaraki, Japan.,United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| |
Collapse
|
44
|
Haghighat N, Rajabi S, Mohammadshahi M. Effect of synbiotic and probiotic supplementation on serum brain-derived neurotrophic factor level, depression and anxiety symptoms in hemodialysis patients: a randomized, double-blinded, clinical trial. Nutr Neurosci 2019; 24:490-499. [PMID: 31379269 DOI: 10.1080/1028415x.2019.1646975] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND The aim of this study was to investigate the effects of probiotic and synbiotic supplementation on the depression and anxiety symptoms and serum brain-derived neurotrophic factor (BDNF) level. METHODS Seventy-five HD patients were randomly assigned to receive the synbiotic (15 g of prebiotics, 5 g of probiotic containing Lactobacillus acidophilus T16, Bifidobacterium bifidum BIA-6, Bifidobacterium lactis BIA-7, and Bifidobacterium longum BIA-8 (2.7 × 107 CFU/g each)) or probiotics (5 g probiotics as in synbiotic group with 15 g of maltodextrin as placebo) or placebo (20 g of maltodextrin) for 12 weeks. Serum BDNF was measured by ELISA kit. Hospital Anxiety and Depression Scale (HADS) was used to assess symptoms of depression (HADS-DEP) and anxiety (HADS-ANX). RESULTS From baseline to 12 weeks, synbiotic supplementation resulted in a significant decrease in HADS-DEP score in a subgroup of patients with depressive symptom (HADS-DEP ≥ 8) compared to the placebo and probiotic supplementation (p = .001, p = .002, respectively) and in all patients compared to the placebo (p = .004). There was no significant difference among the groups in terms of HADS-ANX scores. However, the HADS-ANX scores decreased significantly in the synbiotic group compared to the baseline in all patients (p = .047) and also patients with depressive symptom (p = .03). In addition, in a subgroup of HD patients with depressive symptom, the serum BDNF increased significantly in the synbiotic group when compared to the placebo (p < .001) and probiotic group (p = .011). CONCLUSION Overall, 12 weeks of synbiotic supplementation resulted in greater improvement in depression symptoms and serum BDNF level compared to the probiotic supplementation in HD patients especially in the subgroup of patients with depression symptoms.
Collapse
Affiliation(s)
- Neda Haghighat
- Laparoscopy Research Center, School of medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shirin Rajabi
- Department of Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Majid Mohammadshahi
- Nutrition and Metabolic Diseases Research Center, Department of Nutrition, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|