1
|
Wang N, Wu P, Chen XD. New Insights into a Conceptual Bionic Colonic Bioreactor: A Model, 'Probiotics in Human Colon', Showing How Probiotics Alleviate Constipation from a Bioprocess Engineering Perspective. Foods 2025; 14:1335. [PMID: 40282737 PMCID: PMC12027397 DOI: 10.3390/foods14081335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/06/2025] [Accepted: 04/10/2025] [Indexed: 04/29/2025] Open
Abstract
Constipation is a common problem which often causes negative impacts on the patient's quality of life. Apart from the pharmacologic and diet approaches, the use of probiotics has gradually shown promising efficacy to alleviate constipation. However, an exact understanding of the underlying mechanisms of probiotic actions on alleviating constipation is still unclear and need to be explored. In this review, we propose a model, 'probiotics in human colon', from a bioprocess engineering perspective. This model can be interpreted as a new concept of bionic colonic bioreactor design of a human colon in vitro, in which the transport phenomena during the fermentation of chyme by probiotics can be detected. By reviewing the anatomy structure and peristalsis mode of the human colon, we have focused on the influence by probiotics on the physical properties of colonic contents during the fermentation process. We relate physical properties such as shape, water content, density, hardness, viscosity, and elasticity to constipation symptoms directly. The influences on the physical properties of colon contents triggered by probiotics can be a potential key to understand the mechanisms for alleviating constipation.
Collapse
Affiliation(s)
- Ni Wang
- Life Quality Engineering Interest Group, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Material Science, Soochow University, Suzhou 215123, China;
| | | | - Xiao Dong Chen
- Life Quality Engineering Interest Group, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Material Science, Soochow University, Suzhou 215123, China;
| |
Collapse
|
2
|
Chen M, Li Y, Chen P. Restore intestinal steady-state: new advances in the clinical management of chemotherapy-associated diarrhea and constipation. J Mol Histol 2025; 56:101. [PMID: 40056250 PMCID: PMC11890403 DOI: 10.1007/s10735-025-10367-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 02/02/2025] [Indexed: 03/10/2025]
Abstract
Chemotherapy remains the primary therapeutic strategy for most tumors, particularly those at advanced stages with distant metastases and resistance to molecularly targeted therapy or immunotherapy. There are many manifestations of chemotherapy-induced gastrointestinal toxicity (CIGT), including chemotherapy-induced diarrhea (CID) and chemotherapy-induced constipation (CIC). Although the World Health Organisation and the International Association Against Cancer have different grading criteria and strategies for the prevention and treatment of CIGT, there are still many unanswered questions that need to be clarified. This review critically describes pathological mechanisms and clinical research, analyzing the variability in diagnostic criteria and the absence of standardization in grading severity. We identify a critical gap in understanding the molecular underpinnings of CID and CIC and suggest targeted areas for future research, including developing personalized treatment approaches based on genetic profiling. The findings suggest a comprehensive treatment approach combining pharmacological and non-pharmacological strategies to enhance life quality and treatment adherence. This review will offer a comprehensive bird-eye of pathophysiological mechanisms, clinical manifestations, and therapeutic strategies of CIGT, thereby enriching accessible references to clinicians, and helping them to prevent and control CID and CIC.
Collapse
Affiliation(s)
| | - Yamao Li
- Ningxia Medical University, Yinchuan, China
| | - Peijun Chen
- Yancheng Sixth People's Hospital, Yancheng, Jiangsu, China
| |
Collapse
|
3
|
Zhu S, Yu Q, Xue Y, Li J, Huang Y, Liu W, Wang G, Wang L, Zhai Q, Zhao J, Zhang H, Chen W. Bifidobacterium bifidum CCFM1163 alleviates cathartic colon by activating the BDNF-TrkB-PLC/IP 3 pathway to reconstruct the intestinal nerve and barrier. Food Funct 2025; 16:2057-2072. [PMID: 39963068 DOI: 10.1039/d4fo05835f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
Introduction: Cathartic colon (CC) is a type of slow-transit constipation caused by a patient's long-term use of irritating laxatives. Probiotics play a crucial role in managing constipation. Objectives: This study aims to identify probiotics that can alleviate CC and explore their specific mechanisms of action. Methods: The CC-model was constructed using senna leaf extract. Bifidobacterium bifidum was applied to the mice for intervention. Relevant marker changes were then examined using ELISA and RT-qPCR. Furthermore, 16S rDNA sequencing was utilized for functional prediction of intestinal microorganisms, while GC-MS analysis was performed to determine the content of short-chain fatty acids (SCFAs) in feces. Results: Senna damages the intestinal nerve and the intestinal barrier while inducing CC. In contrast, Bifidobacterium bifidum CCFM1163 may enhance the brain-derived neurotrophic factor (BDNF) expression in the colon by altering the intestinal microbiota composition (e.g., increasing Lactobacillus and Bacteroides, and decreasing Faecalibaculum) and by elevating SCFA levels (e.g., acetic and isobutyric acid). Subsequently, elevated BDNF expression activates the BDNF-tyrosine kinase receptor B-phospholipase C/inositol trisphosphate (BDNF-TrkB-PLC/IP3) pathway, which upregulates the gene expression of Uchl1, S100β, and Acta2; repairs the enteric nervous system-interstitial cells of Cajal-smooth muscle cells (ENS-ICC-SMC) network; upregulates the gene expression of Ocln and Tjp1; improves intestinal permeability in CC mice; and modulates the immune response by upregulating Tlr4, downregulating Il1b, and upregulating Il10, ultimately alleviating CC. Conclusion: Bifidobacterium bifidum CCFM1163 was identified as a probiotic that can promote BDNF expression in the colon, activate the BDNF-TrkB-PLC/IP3 signaling pathway, and effectively alleviate CC.
Collapse
Affiliation(s)
- Shengnan Zhu
- State Key Laboratory of Food Science and resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qiangqing Yu
- State Key Laboratory of Food Science and resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yifan Xue
- State Key Laboratory of Food Science and resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jiazhen Li
- State Key Laboratory of Food Science and resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yin Huang
- State Key Laboratory of Food Science and resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wenxu Liu
- State Key Laboratory of Food Science and resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Gang Wang
- State Key Laboratory of Food Science and resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Linlin Wang
- State Key Laboratory of Food Science and resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Wei Chen
- State Key Laboratory of Food Science and resources, Jiangnan University, Wuxi, Jiangsu 214122, P. R China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
4
|
Huang YP, Shi JY, Luo XT, Luo SC, Cheung PCK, Corke H, Yang QQ, Zhang BB. How do probiotics alleviate constipation? A narrative review of mechanisms. Crit Rev Biotechnol 2025; 45:80-96. [PMID: 38710624 DOI: 10.1080/07388551.2024.2336531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/06/2023] [Accepted: 11/25/2023] [Indexed: 05/08/2024]
Abstract
Constipation is a common gastrointestinal condition, which may occur at any age and affects countless people. The search for new treatments for constipation is ongoing as current drug treatments fail to provide fully satisfactory results. In recent years, probiotics have attracted much attention because of their demonstrated therapeutic efficacy and fewer side effects than pharmaceutical products. Many studies attempted to answer the question of how probiotics can alleviate constipation. It has been shown that different probiotic strains can alleviate constipation by different mechanisms. The mechanisms on probiotics in relieving constipation were associated with various aspects, including regulation of the gut microbiota composition, the level of short-chain fatty acids, aquaporin expression levels, neurotransmitters and hormone levels, inflammation, the intestinal environmental metabolic status, neurotrophic factor levels and the body's antioxidant levels. This paper summarizes the perception of the mechanisms on probiotics in relieving constipation and provides some suggestions on new research directions.
Collapse
Affiliation(s)
- Yu-Ping Huang
- Department of Biology, College of Science, Shantou University, Shantou, P.R. China
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, P.R. China
| | - Jie-Yan Shi
- Department of Biology, College of Science, Shantou University, Shantou, P.R. China
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, P.R. China
| | - Xin-Tao Luo
- Department of Biology, College of Science, Shantou University, Shantou, P.R. China
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, P.R. China
| | - Si-Chen Luo
- Department of Biology, College of Science, Shantou University, Shantou, P.R. China
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, P.R. China
| | - Peter C K Cheung
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, P.R. China
| | - Harold Corke
- Biotechnology and Food Engineering Program, Guangdong Technion-Israel Institute of Technology, Shantou, P.R. China
- Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Qiong-Qiong Yang
- Department of Biology, College of Science, Shantou University, Shantou, P.R. China
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, P.R. China
| | - Bo-Bo Zhang
- Department of Biology, College of Science, Shantou University, Shantou, P.R. China
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, P.R. China
| |
Collapse
|
5
|
Zhang C, Wang L, Liu X, Wang G, Zhao J, Chen W. Bifidobacterium longum subsp. longum relieves loperamide hydrochloride-induced constipation in mice by enhancing bile acid dissociation. Food Funct 2025; 16:297-313. [PMID: 39668691 DOI: 10.1039/d4fo04660a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Bifidobacterium species are known for their efficacy in alleviating constipation. This study aimed to compare the constipation-relieving effects of different Bifidobacterium species (Bifidobacterium longum subsp. longum, Bifidobacterium bifidum, Bifidobacterium animalis, Bifidobacterium breve, Bifidobacterium longum subsp. infantis, and Bifidobacterium adolescentis) and to explore the underlying mechanisms from both the bacterial and host perspectives. We evaluated six Bifidobacterium species for their physiological properties, including growth rate, oligosaccharide utilization, osmotic pressure resistance, cell adhesion, and bile acid dissociation capability. Mice with severe constipation induced by loperamide hydrochloride were treated with these bacteria at a density of 109 CFU per mL for 17 days. Gastrointestinal indices such as fecal water content, time to first black stool defecation, and small intestine propulsion rate were measured to assess constipation relief. Microbiome and metabolome (bile acid and tryptophan) analyses were conducted to elucidate the differences in constipation relief among the species. Our results demonstrated that Bifidobacterium longum subsp. longum exhibited superior physiological traits, including rapid growth, extensive oligosaccharide utilization, and high bile salt dissociation capacity. Notably, only Bifidobacterium longum subsp. longum significantly ameliorated constipation symptoms in the mouse model. Furthermore, this strain markedly restored bile acid and short-chain fatty acid levels in the intestines of constipated mice and altered the composition of the intestinal microbiota. These findings suggest that the enhanced efficacy of Bifidobacterium longum subsp. longum in relieving constipation is associated with its ability to modulate intestinal physiology and microbiota structure and metabolism.
Collapse
Affiliation(s)
- Chenyue Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Linlin Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Xiaoming Liu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Gang Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
6
|
Zhang C, Zhang Q, Zhang X, Du S, Zhang Y, Wang X, Liu Y, Fang B, Chen J, Liu R, Hao Y, Li Y, Wang P, Zhao L, Feng H, Zhu L, Chen L, Chen S, Wang F, Jiang Z, Ji Y, Xiao R, Wang R, He J. Effects of synbiotics surpass probiotics alone in improving type 2 diabetes mellitus: A randomized, double-blind, placebo-controlled trial. Clin Nutr 2025; 44:248-258. [PMID: 39719724 DOI: 10.1016/j.clnu.2024.11.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/22/2024] [Accepted: 11/28/2024] [Indexed: 12/26/2024]
Abstract
BACKGROUND AND AIMS Combining probiotics and prebiotics in synbiotics may present a synergistic approach to improve type 2 diabetes mellitus (T2DM); however, further evidence is required to establish the comparative efficacy of synbiotics versus probiotics. This study aimed to evaluate the effects of Bifidobacterium animalis subsp. lactis MN-Gup (MN-Gup) and a synbiotic mixture of MN-Gup and galactooligosaccharide (MN-Gup-GOS) on glycemic control in T2DM patients and explore possible mechanisms. METHODS This randomized, double-blind, placebo-controlled clinical trial assigned 120 T2DM patients, to receive MN-Gup, MN-Gup-GOS, or placebo intervention for 12 weeks. The primary outcome was fasting blood glucose (FBG), with secondary outcomes including hemoglobin A1C (HbA1C), insulin, homeostatic model assessment of insulin resistance (HOMA-IR), inflammatory indicators, oxidative stress indicators, gastrointestinal hormones, gut microbiota, and bile acids (BAs). RESULTS The median age of the 120 participants was 59 years (interquartile range: 55-62 years), with 40 being men. Compared to baseline, all three groups exhibited significant reductions in FBG. Additionally, the MN-Gup-GOS group demonstrated significant decreases in HbA1c, serum insulin, and HOMA-IR after intervention, whereas no such reductions were observed in the placebo and MN-Gup groups. Regarding the between-group comparisons, the MN-Gup-GOS intervention showed a significantly greater reduction in FBG compared to the placebo (least squares mean difference [95 % CI], -0.69 [-1.29, -0.10] mmol/L, P = 0.022) and MN-Gup (-0.59 [-1.17, -0.01], P = 0.047) group, but not for other indicators of glucose metabolism. Additionally, MN-Gup and MN-Gup-GOS intervention, especially the latter, significantly modified inflammation, oxidative stress, gut microbiota, serum BAs, and GLP-1 levels. Correlation analysis showed significant associations between changes in certain gut microbiota (Bifidobacterium) and BAs (deoxycholic acid and lithocholic acid) with glycemic indicators. CONCLUSIONS The auxiliary effect of synbiotics MN-Gup-GOS on reducing FBG levels surpassed that of MN-Gup probiotics alone in T2DM patients, potentially attributed to the enhanced modulation of gut microbiota, BAs, and GLP-1 secretion. TRIAL REGISTRATION This study was registered on the website of www.chictr.org.cn, number ChiCTR2100052187.
Collapse
Affiliation(s)
- Chao Zhang
- Department of Nutrition and Health, Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing 100193, China
| | - Qi Zhang
- Department of Nutrition and Health, Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing 100193, China
| | - Xiaoxu Zhang
- Department of Nutrition and Health, Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing 100193, China
| | - Shuang Du
- Mengniu Hi-Tech Dairy Product Beijing Co., Ltd., Beijing 101100, China
| | - Yong Zhang
- Department of Nutrition, The first medical Center of PLA General Hospital, Beijing 100039, China
| | - Xifan Wang
- Department of Obstetrics and Gynecology, Columbia University, New York 10032, USA
| | - Yinghua Liu
- Department of Nutrition, The first medical Center of PLA General Hospital, Beijing 100039, China
| | - Bing Fang
- Department of Nutrition and Health, Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing 100193, China
| | - Juan Chen
- Research Center for Probiotics, China Agricultural University, Beijing 100193, China
| | - Rong Liu
- Department of Nutrition and Health, Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing 100193, China
| | - Yanling Hao
- Research Center for Probiotics, China Agricultural University, Beijing 100193, China
| | - Yixuan Li
- Department of Nutrition and Health, Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing 100193, China
| | - Pengjie Wang
- Department of Nutrition and Health, Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing 100193, China
| | - Liang Zhao
- Research Center for Probiotics, China Agricultural University, Beijing 100193, China
| | - Haihong Feng
- Research Center for Probiotics, China Agricultural University, Beijing 100193, China; Hebei Engineering Research Center of Animal Product, Langfang 065200, China
| | - Longjiao Zhu
- Department of Nutrition and Health, Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing 100193, China
| | - Lishui Chen
- Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Shuxing Chen
- School of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471003, China
| | - Fuqing Wang
- Tibet Tianhong Science and Technology Co., Ltd., Xizang 850000, China
| | - Zhengqiang Jiang
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yuting Ji
- Center for Mitochondrial Genetics and Health, Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, Guangzhou 511458, China; School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Ran Xiao
- Mengniu Hi-Tech Dairy Product Beijing Co., Ltd., Beijing 101100, China.
| | - Ran Wang
- Research Center for Probiotics, China Agricultural University, Beijing 100193, China.
| | - Jingjing He
- Department of Nutrition and Health, Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
7
|
Chen K, Zhou Z, Nie Y, Cao Y, Yang P, Zhang Y, Xu P, Yu Q, Shen Y, Ma W, Jin S, Liu C. Adjunctive efficacy of Bifidobacterium animalis subsp. lactis XLTG11 for functional constipation in children. Braz J Microbiol 2024; 55:1317-1330. [PMID: 38381349 PMCID: PMC11153453 DOI: 10.1007/s42770-024-01276-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 02/07/2024] [Indexed: 02/22/2024] Open
Abstract
Functional constipation (FC) can seriously affect the physical and mental health of children. The goal of this study is to assess the efficacy and safety of Bifidobacterium animalis subsp. lactis XLTG11 in treating FC in children through a randomized, double-blinded, placebo-controlled approach. Eligible children were randomized into either the intervention group (IG, n = 65, receiving conventional treatment with probiotics) or the control group (CG, n = 66, receiving conventional treatment without probiotics). The primary outcome measure was fecal frequency. Fecal gut microbiota analysis and PICRUSt (Phylogenetic Investigation of Communities by Reconstruction of Unobserved States) were used to predict gene family abundances based on 16S information. Over the course of treatment, the weekly frequency of feces within each group increased significantly (F = 41.97, p < 0.001). The frequency of feces (times/week (t/w)) in the IG was significantly higher than that in the CG (3.69 ± 2.62 t/w vs.3.18 ± 1.43 t/w, 4.03 ± 2.54 t/w vs. 2.89 ± 1.39 t/w and 3.74 ± 2.36 t/w vs. 2.94 ± 1.18 t/w and 3.45 ± 1.98 vs. 3.17 ± 1.41 t/w for the 1st, 2nd, 3rd, and 4th week after intervention, respectively) (F = 7.60, p = 0.0067). After the intervention, dominate species shifted to Bifidobacterium longum, Bifidobacterium breve, and Escherichia coli in the IG. Additionally, genes related to short-chain fatty acid (SCF) metabolism were upregulated, while methane metabolism was downregulated. Administration of XLTG11 at a dose of 1 × 1010 CFU/day to children increased fecal frequency, induced beneficial changes in gut microbiota, and regulated SCFs and methane metabolism-related genes.
Collapse
Affiliation(s)
- Ke Chen
- Department of Nutrition, School of Medicine, Chengdu Women's & Children's Central Hospital, University of Electronic Science and Technology of China, Chengdu, China.
| | - Zengyuan Zhou
- Department of Nutrition, School of Medicine, Chengdu Women's & Children's Central Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yang Nie
- Department of Child Health Care, Chongzhou Maternal and Child Health Care Hospital, Chengdu, China
| | - Yanmei Cao
- Department of Child Health Care, Dayi Maternal and Child Health Care Hospital, Chengdu, China
| | - Ping Yang
- Department of Child Health Care, Xindu Maternal and Child Health Care Hospital, Chengdu, China
| | - Ying Zhang
- Department of Child Health Care, Jinniu Maternal and Child Health Care Hospital, Chengdu, China
| | - Ping Xu
- Department of Child Health Care, Qingbaijiang Maternal and Child Health Care Hospital, Chengdu, China
| | - Qinghua Yu
- Laboratory of Microbiology, Immunology and Metabolism, Diprobio (Shanghai) Co, Limited, Shanghai, China
| | - Yang Shen
- Laboratory of Microbiology, Immunology and Metabolism, Diprobio (Shanghai) Co, Limited, Shanghai, China
| | - Weiwei Ma
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Shanshan Jin
- Department of Nutrition, School of Medicine, Chengdu Women's & Children's Central Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Changqi Liu
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, USA
| |
Collapse
|
8
|
Zhang C, Fang B, Zhang N, Zhang Q, Niu T, Zhao L, Sun E, Wang J, Xiao R, He J, Li S, Chen J, Guo J, Xiong W, Wang R. The Effect of Bifidobacterium animalis subsp. lactis MN-Gup on Glucose Metabolism, Gut Microbiota, and Their Metabolites in Type 2 Diabetic Mice. Nutrients 2024; 16:1691. [PMID: 38892624 PMCID: PMC11174421 DOI: 10.3390/nu16111691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Probiotics have garnered increasing attention as a potential therapeutic approach for type 2 diabetes mellitus (T2DM). Previous studies have confirmed that Bifidobacterium animalis subsp. lactis MN-Gup (MN-Gup) could stimulate the secretion of glucagon-like peptide-1 (GLP-1) in NCI-H716 cells, but whether MN-Gup has a hypoglycemic effect on T2DM in vivo remains unclear. In this study, a T2DM mouse model was constructed, with a high-fat diet and streptozotocin in mice, to investigate the effect of MN-Gup on diabetes. Then, different doses of MN-Gup (2 × 109 CFU/kg, 1 × 1010 CFU/kg) were gavaged for 6 weeks to investigate the effect of MN-Gup on glucose metabolism and its potential mechanisms. The results showed that a high-dose of MN-Gup significantly reduced the fasting blood glucose (FBG) levels and homeostasis model assessment-insulin resistance (HOMA-IR) of T2DM mice compared to the other groups. In addition, there were significant increases in the short-chain fatty acids (SCFAs), especially acetate, and GLP-1 levels in the MN-Gup group. MN-Gup increased the relative abundance of Bifidobacterium and decreased the number of Escherichia-Shigella and Staphylococcus. Moreover, the correlation analysis revealed that Bifidobacterium demonstrated a significant positive correlation with GLP-1 and a negative correlation with the incremental AUC. In summary, this study demonstrates that Bifidobacterium animalis subsp. lactis MN-Gup has significant hypoglycemic effects in T2DM mice and can modulate the gut microbiota, promoting the secretion of SCFAs and GLP-1.
Collapse
Affiliation(s)
- Chao Zhang
- Department of Nutrition and Health, Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing 100193, China
| | - Bing Fang
- Department of Nutrition and Health, Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing 100193, China
| | - Nana Zhang
- Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Qi Zhang
- Research Center for Probiotics, China Agricultural University, Beijing 100193, China
| | - Tianjiao Niu
- Mengniu Hi-Tech Dairy Product Beijing Co., Ltd., Beijing 101100, China
| | - Liang Zhao
- Beijing Laboratory of Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Erna Sun
- Mengniu Hi-Tech Dairy Product Beijing Co., Ltd., Beijing 101100, China
| | - Jian Wang
- Research Center for Probiotics, China Agricultural University, Beijing 100193, China
| | - Ran Xiao
- Mengniu Hi-Tech Dairy Product Beijing Co., Ltd., Beijing 101100, China
| | - Jingjing He
- Research Center for Probiotics, China Agricultural University, Beijing 100193, China
| | - Shusen Li
- Mengniu Hi-Tech Dairy Product Beijing Co., Ltd., Beijing 101100, China
| | - Juan Chen
- Department of Nutrition and Health, Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing 100193, China
| | - Jie Guo
- Research Center for Probiotics, China Agricultural University, Beijing 100193, China
| | - Wei Xiong
- Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Ran Wang
- Department of Nutrition and Health, Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing 100193, China
| |
Collapse
|
9
|
Ming X, Gao S, Sun J, Zhang N, Guo R, Feng X, Luan X, Xing H, Jiao Y, Guo F. Regulation of the MCHergic Neural Circuit to Dorsal Raphe Nucleus on Emotion-Related Behaviors and Intestinal Dysfunction in Mice Model of Irritable Bowel Syndrome with Diarrhea. Neuroendocrinology 2024; 114:605-622. [PMID: 38547853 DOI: 10.1159/000538582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 03/25/2024] [Indexed: 07/10/2024]
Abstract
INTRODUCTION Irritable bowel syndrome with diarrhea (IBS-D) is frequently accompanied by depression and anxiety, resulting in a reduced quality of life and increased medical expenditures. Although psychological factors are known to play an important role in the genesis and development of IBS-D, an understanding of the central neural control of intestinal dysfunction remains elusive. Melanin-concentrating hormone (MCH) is a gut-brain peptide involved in regulating feeding, sleep-wake rhythms, and emotional states. METHODS This study investigated the regulation of the MCHergic neural circuit from the lateral hypothalamic area (LHA) to the dorsal raphe nucleus (DRN) on anxiety- and depression-like behaviors, intestinal motility, and visceral hypersensitivity in a mice model of IBS-D. The models of IBS-D were prepared by inducing chronic unpredictable mild stress. RESULTS Chemogenetic activation of the MCH neurons in the LHA could excite serotonin (5-HT) neurons in the DRN and induce anxiety- and depression-like behaviors and IBS-D-like symptoms, which could be recovered by microinjection of the MCH receptor antagonist SNAP94847 into the DRN. The mice model of IBS-D showed a reduction of 5-HT and brain-derived neurotrophic factor (BDNF) expression in the DRN, while an elevation of 5-HT and BDNF was observed in the colon through immunofluorescent staining, ELISA, and Western blot analysis. SNAP94847 treatment in the DRN alleviated anxiety- and depression-like behaviors, improved intestinal motility, and alleviated visceral hypersensitivity responses by normalizing the 5-HT and BDNF expression in the DRN and colon. CONCLUSION This study suggests that the activation of MCH neurons in the LHA may induce IBS-D symptoms via the DRN and that the MCH receptor antagonist could potentially have therapeutic effects.
Collapse
Affiliation(s)
- Xing Ming
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Shengli Gao
- Biomedical Center, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Jinqiu Sun
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Nana Zhang
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ruixiao Guo
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xufei Feng
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xinchi Luan
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Han Xing
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Yang Jiao
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Feifei Guo
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
10
|
Jaafar MH, Xu P, Mageswaran UM, Balasubramaniam SD, Solayappan M, Woon JJ, Teh CSJ, Todorov SD, Park YH, Liu G, Liong MT. Constipation anti-aging effects by dairy-based lactic acid bacteria. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2024; 66:178-203. [PMID: 38618031 PMCID: PMC11007456 DOI: 10.5187/jast.2023.e93] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/24/2023] [Accepted: 09/01/2023] [Indexed: 04/16/2024]
Abstract
Constipation, which refers to difficulties in defecation and infrequent bowel movement in emptying the gastrointestinal system that ultimately produces hardened fecal matters, is a health concern in livestock and aging animals. The present study aimed to evaluate the potential effects of dairy-isolated lactic acid bacteria (LAB) strains to alleviate constipation as an alternative therapeutic intervention for constipation treatment in the aging model. Rats were aged via daily subcutaneous injection of D-galactose (600 mg/body weight [kg]), prior to induction of constipation via oral administration of loperamide hydrochloride (5 mg/body weight [kg]). LAB strains (L. fermentum USM 4189 or L. plantarum USM 4187) were administered daily via oral gavage (1 × 10 Log CFU/day) while the control group received sterile saline. Aged rats as shown with shorter telomere lengths exhibited increased fecal bulk and soften fecal upon administration of LAB strains amid constipation as observed using the Bristol Stool Chart, accompanied by a higher fecal moisture content as compared to the control (p < 0.05). Fecal water-soluble metabolite profiles showed a reduced concentration of threonine upon administration of LAB strains compared to the control (p < 0.05). Histopathological analysis also showed that the administration of LAB strains contributed to a higher colonic goblet cell count as compared to the control (p < 0.05). The present study illustrates the potential of dairy-sourced LAB strains as probiotics to ameliorate the adverse effect of constipation amid aging, and as a potential dietary intervention strategy for dairy foods including yogurt and cheese.
Collapse
Affiliation(s)
- Mohamad Hafis Jaafar
- Bioprocess Technology, School of
Industrial Technology, Universiti Sains Malaysia, Penang
11800, Malaysia
| | - Pei Xu
- Bioprocess Technology, School of
Industrial Technology, Universiti Sains Malaysia, Penang
11800, Malaysia
- Faculty of Cuisine, Sichuan Tourism
University, Chengdu 610100, China
| | - Uma-Mageswary Mageswaran
- Bioprocess Technology, School of
Industrial Technology, Universiti Sains Malaysia, Penang
11800, Malaysia
| | | | | | - Jia-Jie Woon
- Department of Medical Microbiology,
Faculty of Medicine, University of Malaya, Kuala Lumpur 50603,
Malaysia
| | - Cindy Shuan-Ju Teh
- Department of Medical Microbiology,
Faculty of Medicine, University of Malaya, Kuala Lumpur 50603,
Malaysia
| | - Svetoslav Dimitrov Todorov
- ProBacLab, Department of Food Science and
Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of
Sao Paulo, Sao Paulo 05508-090, Brazil
| | | | - Guoxia Liu
- CAS Key Laboratory of Microbial
Physiological and Metabolic Engineering, State Key Laboratory of Microbial
Resources, Institute of Microbiology, Chinese Academy of
Sciences, Beijing 100864, China
- CAS-TWAS Centre of Excellence for
Biotechnology, Beijing 100101, China
| | - Min-Tze Liong
- Bioprocess Technology, School of
Industrial Technology, Universiti Sains Malaysia, Penang
11800, Malaysia
- Renewable Biomass Transformation
Cluster, School of Industrial Technology, Universiti Sains
Malaysia, Penang 11800, Malaysia
| |
Collapse
|
11
|
Luo M, Xie P, Deng X, Fan J, Xiong L. Rifaximin Ameliorates Loperamide-Induced Constipation in Rats through the Regulation of Gut Microbiota and Serum Metabolites. Nutrients 2023; 15:4502. [PMID: 37960154 PMCID: PMC10648458 DOI: 10.3390/nu15214502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/10/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023] Open
Abstract
Structural changes in the gut microbiota are closely related to the development of functional constipation, and regulating the gut microbiota can improve constipation. Rifaximin is a poorly absorbed antibiotic beneficial for regulating gut microbiota, but few studies have reported its effects on constipation. The purpose of this study was to investigate the effect of rifaximin on loperamide-induced constipation in SD rats. The results showed that rifaximin improved constipation by increasing serum 5-HT, SP, and the mRNA expression of AQP3, AQP8, and reducing the mRNA expression of TLR2 and TLR4. In addition, rifaximin could regulate the gut microbiota of constipated rats, such as increasing the potentially beneficial bacteria Akkermansia muciniphila and Lactobacillus murinus, reducing the Bifidobacterium pseudolongum. According to metabolomics analysis, many serum metabolites, including bile acids and steroids, were changed in constipated rats and were recovered via rifaximin intervention. In conclusion, rifaximin might improve loperamide-induced constipation in rats by increasing serum excitatory neurotransmitters and neuropeptides, modulating water metabolism, and facilitating intestinal inflammation. Muti-Omics analysis results showed that rifaximin has beneficial regulatory effects on the gut microbiota and serum metabolites in constipated rats, which might play critical roles in alleviating constipation. This study suggests that rifaximin might be a potential strategy for treating constipation.
Collapse
Affiliation(s)
| | | | | | | | - Lishou Xiong
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China; (M.L.); (P.X.); (X.D.); (J.F.)
| |
Collapse
|
12
|
Jeong JJ, Ganesan R, Jin YJ, Park HJ, Min BH, Jeong MK, Yoon SJ, Choi MR, Choi J, Moon JH, Min U, Lim JH, Lee DY, Han SH, Ham YL, Kim BY, Suk KT. Multi-strain probiotics alleviate loperamide-induced constipation by adjusting the microbiome, serotonin, and short-chain fatty acids in rats. Front Microbiol 2023; 14:1174968. [PMID: 37333632 PMCID: PMC10272585 DOI: 10.3389/fmicb.2023.1174968] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/15/2023] [Indexed: 06/20/2023] Open
Abstract
Constipation is one of the most common gastrointestinal (GI) disorders worldwide. The use of probiotics to improve constipation is well known. In this study, the effect on loperamide-induced constipation by intragastric administration of probiotics Consti-Biome mixed with SynBalance® SmilinGut (Lactobacillus plantarum PBS067, Lactobacillus rhamnosus LRH020, Bifidobacterium animalis subsp. lactis BL050; Roelmi HPC), L. plantarum UALp-05 (Chr. Hansen), Lactobacillus acidophilus DDS-1 (Chr. Hansen), and Streptococcus thermophilus CKDB027 (Chong Kun Dang Bio) to rats was evaluated. To induce constipation, 5 mg/kg loperamide was intraperitoneally administered twice a day for 7 days to all groups except the normal control group. After inducing constipation, Dulcolax-S tablets and multi-strain probiotics Consti-Biome were orally administered once a day for 14 days. The probiotics were administered 0.5 mL at concentrations of 2 × 108 CFU/mL (G1), 2 × 109 CFU/mL (G2), and 2 × 1010 CFU/mL (G3). Compared to the loperamide administration group (LOP), the multi-strain probiotics not only significantly increased the number of fecal pellets but also improved the GI transit rate. The mRNA expression levels of serotonin- and mucin-related genes in the colons that were treated with the probiotics were also significantly increased compared to levels in the LOP group. In addition, an increase in serotonin was observed in the colon. The cecum metabolites showed a different pattern between the probiotics-treated groups and the LOP group, and an increase in short-chain fatty acids was observed in the probiotic-treated groups. The abundances of the phylum Verrucomicrobia, the family Erysipelotrichaceae and the genus Akkermansia were increased in fecal samples of the probiotic-treated groups. Therefore, the multi-strain probiotics used in this experiment were thought to help alleviate LOP-induced constipation by altering the levels of short-chain fatty acids, serotonin, and mucin through improvement in the intestinal microflora.
Collapse
Affiliation(s)
- Jin-Ju Jeong
- Institute for Liver and Digestive Disease, Hallym University, Chuncheon, Republic of Korea
| | - Raja Ganesan
- Institute for Liver and Digestive Disease, Hallym University, Chuncheon, Republic of Korea
| | - Yoo-Jeong Jin
- R&D Center, Chong Kun Dang Healthcare, Seoul, Republic of Korea
| | - Hee Jin Park
- Institute for Liver and Digestive Disease, Hallym University, Chuncheon, Republic of Korea
| | - Byeong Hyun Min
- Institute for Liver and Digestive Disease, Hallym University, Chuncheon, Republic of Korea
| | - Min Kyo Jeong
- Institute for Liver and Digestive Disease, Hallym University, Chuncheon, Republic of Korea
| | - Sang Jun Yoon
- Institute for Liver and Digestive Disease, Hallym University, Chuncheon, Republic of Korea
| | - Mi Ran Choi
- Institute for Liver and Digestive Disease, Hallym University, Chuncheon, Republic of Korea
| | - Jieun Choi
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Research Institute of Agricultural and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Ji Hyun Moon
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Research Institute of Agricultural and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Uigi Min
- R&D Center, Chong Kun Dang Healthcare, Seoul, Republic of Korea
| | - Jong-Hyun Lim
- R&D Center, Chong Kun Dang Healthcare, Seoul, Republic of Korea
| | - Do Yup Lee
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Research Institute of Agricultural and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sang Hak Han
- Department of Pathology, Hallym University College of Medicine, Chuncheon, Republic of Korea
| | - Young Lim Ham
- Department of Nursing, Daewon University College, Jecheon, Republic of Korea
| | - Byung-Yong Kim
- R&D Center, Chong Kun Dang Healthcare, Seoul, Republic of Korea
| | - Ki Tae Suk
- Institute for Liver and Digestive Disease, Hallym University, Chuncheon, Republic of Korea
| |
Collapse
|
13
|
Xu MM, Guo Y, Chen Y, Zhang W, Wang L, Li Y. Electro-acupuncture promotes gut motility and alleviates functional constipation by regulating gut microbiota and increasing butyric acid generation in mice. JOURNAL OF INTEGRATIVE MEDICINE 2023:S2095-4964(23)00042-0. [PMID: 37331860 DOI: 10.1016/j.joim.2023.05.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/17/2023] [Indexed: 06/20/2023]
Abstract
OBJECTIVE Abnormalities in the gut microbiota and intestinal short-chain fatty acid (SCFA) levels are implicated in the pathogenesis of functional constipation (FC). Electro-acupuncture (EA) has been shown to improve constipation-related symptoms and rebalance the gut microbiota. However, it is currently unknown whether the gut microbiota is a key mechanistic target for EA or how EA promotes gut motility by regulating the gut microbiota and SCFAs. Therefore, we assessed the effects of EA in FC mice and pseudo-germfree (PGF) mice to address these questions. METHODS Forty female Kunming mice were randomly separated into a normal control group (n = 8), an FC group (n = 8), an FC + EA group (n = 8), a PGF group (n = 8) and a PGF + EA group (n = 8). The FC group and FC + EA group were treated with diphenoxylate to establish the FC model; the PGF group and PGF + EA group were given an antibiotic cocktail to initiate the PGF model. After maintaining the model for 14 d, mice in the FC + EA and PGF + EA groups received EA stimulation at the ST25 and ST37 acupoints, once a day, 5 times per week, for 2 weeks. Fecal parameters and intestinal transit rate were calculated to assess the efficacy of EA on constipation and gastrointestinal motility. Colonic contents were used to quantify gut microbial diversity using 16S rRNA sequencing, and measure SCFA concentrations using gas chromatography-mass spectrometry. RESULTS EA significantly shortened the first black stool defecation time (P < 0.05) and increased the intestinal transit rate (P < 0.01), and fecal pellet number (P < 0.05), wet weight (P < 0.05) and water content (P < 0.01) over 8 h, compared with the FC group, showing that EA promoted gut motility and alleviated constipation. However, EA treatment did not reverse slow-transit colonic motility in PGF mice (P > 0.05), demonstrating that the gut microbiota may play a mechanistic role in the EA treatment of constipation. In addition, EA treatment restored the Firmicutes to Bacteroidetes ratio and significantly increased butyric acid generation in FC mice (P < 0.05), most likely due to the upregulation of Staphylococcaceae microorganisms (P < 0.01). CONCLUSION EA-mediated resolution of constipation occurs through rebalancing the gut microbiota and promoting butyric acid generation. Please cite this article as: Xu MM, Guo Y, Chen Y, Zhang W, Wang L, Li Y. Electro-acupuncture promotes gut motility and alleviates functional constipation by regulating gut microbiota and increasing butyric acid generation in mice. J Integr Med. 2023; Epub ahead of print.
Collapse
Affiliation(s)
- Ming-Min Xu
- School of Acupuncture-Moxibustion and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, Sichuan Province, China; School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, Guangdong Province, China
| | - Yu Guo
- School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, Guangdong Province, China
| | - Ying Chen
- School of Acupuncture-Moxibustion and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, Sichuan Province, China
| | - Wei Zhang
- Office of Educational Administration, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, Sichuan Province, China
| | - Lu Wang
- School of Acupuncture-Moxibustion and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, Sichuan Province, China
| | - Ying Li
- School of Acupuncture-Moxibustion and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, Sichuan Province, China.
| |
Collapse
|
14
|
Zheng T, Wu Y, Guo KX, Tan ZJ, Yang T. The process of hypertension induced by high-salt diet: Association with interactions between intestinal mucosal microbiota, and chronic low-grade inflammation, end-organ damage. Front Microbiol 2023; 14:1123843. [PMID: 36925479 PMCID: PMC10011071 DOI: 10.3389/fmicb.2023.1123843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/27/2023] [Indexed: 03/06/2023] Open
Abstract
Inflammation and immunity play a major role in the development of hypertension, and a potential correlation between host mucosal immunity and inflammatory response regulation. We explored the changes of intestinal mucosal microbiota in hypertensive rats induced by high-salt diet and the potential link between the intestinal mucosal microbiota and inflammation in rats. Therefore, we used PacBio (Pacific Bioscience) SMRT sequencing technology to determine the structure of intestinal mucosal microbiota, used enzyme-linked immunosorbent assay (ELISA) to determined the proinflammatory cytokines and hormones associated with hypertension in serum, and used histopathology methods to observe the kidney and vascular structure. We performed a potential association analysis between intestinal mucosal characteristic bacteria and significantly different blood cytokines in hypertensive rats induced by high-salt. The results showed that the kidney and vascular structures of hypertensive rats induced by high salt were damaged, the serum concentration of necrosis factor-α (TNF-α), angiotensin II (AngII), interleukin-6 (IL-6), and interleukin-8 (IL-8) were significantly increased (p < 0.05), and the coefficient of immune organ spleen was significantly changed (p < 0.05), but there was no significant change in serum lipids (p > 0.05). From the perspective of gut microbiota, high-salt diet leads to significant changes in intestinal mucosal microbiota. Bifidobacterium animalis subsp. and Brachybacterium paraconglomeratum were the dominant differential bacteria in intestinal mucosal, with the AUC (area under curve) value of Bifidobacterium animalis subsp. and Brachybacterium paraconglomeratum were 1 and 0.875 according to ROC (receiver operating characteristic) analysis. Correlation analysis showed that Bifidobacterium animalis subsp. was correlated with IL-6, IL-8, TNF-α, and Ang II. Based on our results, we can speculated that high salt diet mediated chronic low-grade inflammation through inhibited the growth of Bifidobacterium animalis subsp. in intestinal mucosa and caused end-organ damage, which leads to hypertension.
Collapse
Affiliation(s)
- Tao Zheng
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Yi Wu
- Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Kang-xiao Guo
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Zhou-jin Tan
- Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Tao Yang
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| |
Collapse
|
15
|
Song J, Zhao X, Park KY, Suo H. Editorial: Probiotics and constipation. Front Nutr 2023; 9:1114149. [PMID: 36687708 PMCID: PMC9848490 DOI: 10.3389/fnut.2022.1114149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 12/14/2022] [Indexed: 01/06/2023] Open
Affiliation(s)
- Jiajia Song
- College of Food Science, Southwest University, Chongqing, China
| | - Xin Zhao
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, China
| | - Kun-young Park
- Department of Food Science and Biotechnology, Cha University, Seongnam-si, Republic of Korea
| | - Huayi Suo
- College of Food Science, Southwest University, Chongqing, China,*Correspondence: Huayi Suo ✉
| |
Collapse
|
16
|
Yu T, Ding Y, Qian D, Lin L, Tang Y. Characteristics of fecal microbiota in different constipation subtypes and association with colon physiology, lifestyle factors, and psychological status. Therap Adv Gastroenterol 2023; 16:17562848231154101. [PMID: 36875281 PMCID: PMC9974631 DOI: 10.1177/17562848231154101] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 01/13/2023] [Indexed: 03/07/2023] Open
Abstract
Background Patients with chronic constipation (CC) show altered gut microbial composition. Objectives To compare the fecal microbiota with different constipation subtypes and to identify potential influencing factors. Design This is a prospective cohort study. Methods The stool samples of 53 individuals with CC and 31 healthy individuals were analyzed using 16S rRNA sequencing. The associations between microbiota composition and colorectal physiology, lifestyle factors, and psychological distress were analyzed. Results In all, 31 patients with CC were classified as having slow-transit constipation, and 22 were classified under normal-transit constipation. The relative abundance of Bacteroidaceae was lower, and the relative abundance of Peptostreptococcaceae, Christensenellaceae, and Clostridiaceae was higher in slow-transit than in normal-transit group. In all, 28 and 25 patients with CC had dyssynergic defecation (DD) and non-DD, respectively. The relative abundance of Bacteroidaceae and Ruminococcaceae was higher in DD than in non-DD. Rectal defecation pressure was negatively correlated with the relative abundance of Prevotellaceae and Ruminococcaceae but positively correlated with that of Bifidobacteriaceae in CC patients. Multiple linear regression analysis suggested that depression was a positive predictor of Lachnospiraceae relative abundance, and sleep quality was an independent predictor of decreased relative abundance of Prevotellaceae. Conclusion Patients with different CC subtypes showed different characteristics of dysbiosis. Depression and poor sleep were the main factors that affected the intestinal microbiota of patients with CC. Plain language summary Characteristics of fecal microbiota in different constipation subtypes and association with colon physiology, lifestyle factors, and psychological status Patients with chronic constipation (CC) show altered gut microbial composition. Previous studies in CC are limited by lacking of subtype stratification, which is reflected in the lack of agreement in findings across the large number of microbiome studies. We analyzed stool microbiome of 53 CC patients and 31 healthy individuals using 16S rRNA sequencing. We found that the relative abundance of Bacteroidaceae was lower, and the relative abundance of Peptostreptococcaceae, Christensenellaceae, and Clostridiaceae was higher in slow-transit than in normal-transit CC patients. The relative abundance of Bacteroidaceae and Ruminococcaceae was higher in dyssynergic defecation (DD) than in non-DD patients with CC. In addition, depression was a positive predictor of Lachnospiraceae relative abundance, and sleep quality was an independent predictor of decreased relative abundance of Prevotellaceae in all CC patients. This study emphasizes patients with different CC subtypes have different characteristics of dysbiosis. Depression and poor sleep may be the main factors that affect the intestinal microbiota of patients with CC.
Collapse
Affiliation(s)
- Ting Yu
- Department of Gastroenterology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Yu Ding
- Department of Gastroenterology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China.,Department of Gastroenterology, Changshu Hospital Affiliated to Soochow University, First People's Hospital of Changshu City, Changshu, China
| | - Dong Qian
- Department of General Surgery, Affiliated Hospital of Nanjing University of TCM, Jiangsu Province Hospital of TCM, Nanjing, China
| | - Lin Lin
- Department of Gastroenterology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Yurong Tang
- Department of Gastroenterology, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Rd, Gulou District, Nanjing, Jiangsu 210029, China
| |
Collapse
|
17
|
Araújo MM, Botelho PB. Probiotics, prebiotics, and synbiotics in chronic constipation: Outstanding aspects to be considered for the current evidence. Front Nutr 2022; 9:935830. [PMID: 36570175 PMCID: PMC9773270 DOI: 10.3389/fnut.2022.935830] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 11/14/2022] [Indexed: 12/13/2022] Open
Abstract
This integrative aimed to evaluate the effects and the potential mechanism of action of prebiotics, probiotics, and synbiotics on constipation-associated gastrointestinal symptoms and to identify issues that still need to be answered. A literature search was performed in the PubMed database. Animal models (n = 23) and clinical trials (n = 39) were included. In animal studies, prebiotic, probiotic, and synbiotic supplementation showed a decreased colonic transit time (CTT) and an increase in the number and water content of feces. In humans, inulin is shown to be the most promising prebiotic, while B. lactis and L. casei Shirota probiotics were shown to increase defecation frequency, the latter strain being more effective in improving stool consistency and constipation symptoms. Overall, synbiotics seem to reduce CTT, increase defecation frequency, and improve stool consistency with a controversial effect on the improvement of constipation symptoms. Moreover, some aspects of probiotic use in constipation-related outcomes remain unanswered, such as the best dose, duration, time of consumption (before, during, or after meals), and matrices, as well as their effect and mechanisms on the regulation of inflammation in patients with constipation, on polymorphisms associated with constipation, and on the management of constipation via 5-HT. Thus, more high-quality randomized control trials (RCTs) evaluating these lacking aspects are necessary to provide safe conclusions about their effectiveness in managing intestinal constipation.
Collapse
|
18
|
van der Schoot A, Helander C, Whelan K, Dimidi E. Probiotics and synbiotics in chronic constipation in adults: A systematic review and meta-analysis of randomized controlled trials. Clin Nutr 2022; 41:2759-2777. [PMID: 36372047 DOI: 10.1016/j.clnu.2022.10.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 01/27/2023]
Abstract
BACKGROUND & AIMS Probiotics and synbiotics have been increasingly investigated for the management of chronic constipation. We aimed to investigate the effect of probiotics and synbiotics on stool output, gut transit time, symptoms and quality of life in adults with chronic constipation via a systematic review and meta-analysis of randomized controlled trials (RCTs). METHODS Studies were identified using electronic databases, backward citation and hand-searching abstracts. The search date was 10 July 2022. RCTs reporting administration of probiotics or synbiotics in adults with chronic constipation were included. Risk of bias (RoB) was assessed with the Cochrane RoB 2.0 tool. Meta-analysis was conducted separately for probiotics and synbiotics. Results were synthesized using risk ratios (RRs), mean differences or standardized mean differences (SMDs) and 95% confidence intervals (CIs) using a random-effects model. RESULTS Thirty RCTs investigating probiotics and four RCTs investigating synbiotics were included. Overall, 369/647 (57%) responded to probiotic treatment and 252/567 (44%) to control (RR 1.28, 95% CI 1.07, 1.52, p = 0.007). Probiotics increased stool frequency (SMD 0.71, 95% CI 0.37, 1.04, p < 0.00001), with Bifidobacterium lactis having a significant effect, but not mixtures of probiotics, Bacillus coagulans Unique IS2 or Lactobacillus casei Shirota. Probiotics did not impact stool consistency (SMD 0.26, 95% CI -0.03, 0.54, p = 0.08). Probiotics improved integrative symptom scores compared to control (SMD -0.46, 95% CI -0.89, -0.04). Synbiotics did not impact stool output or integrative symptom scores compared to control. CONCLUSIONS Certain probiotics may improve response to treatment, stool frequency and integrative constipation symptoms, providing cautious optimism for their use as a dietary management option. There is currently insufficient evidence to recommend synbiotics in the management of chronic constipation. Caution is needed when interpreting these results due to high heterogeneity and risk of bias amongst the studies.
Collapse
Affiliation(s)
- Alice van der Schoot
- Department of Nutritional Sciences, King's College London, 150 Stamford Street, London, SE1 9NH, United Kingdom.
| | - Carina Helander
- Department of Nutritional Sciences, King's College London, 150 Stamford Street, London, SE1 9NH, United Kingdom.
| | - Kevin Whelan
- Department of Nutritional Sciences, King's College London, 150 Stamford Street, London, SE1 9NH, United Kingdom.
| | - Eirini Dimidi
- Department of Nutritional Sciences, King's College London, 150 Stamford Street, London, SE1 9NH, United Kingdom.
| |
Collapse
|
19
|
Niu X, Zhang N, Li S, Li N, Wang R, Zhang Q, He J, Sun E, Kang X, Zhan J. Bifidobacterium animalis subsp. lactis MN-Gup protects mice against gut microbiota-related obesity and endotoxemia induced by a high fat diet. Front Nutr 2022; 9:992947. [PMID: 36407506 PMCID: PMC9667045 DOI: 10.3389/fnut.2022.992947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/17/2022] [Indexed: 08/22/2024] Open
Abstract
Obesity has become a public health concern due to its global prevalence and high risk of complications such as endotoxemia. Given the important role of gut microbiota in obesity, probiotics targeting gut microbiota have been developed and applied to alleviate obesity. However, most studies focused on the effects of probiotics on pre-existing obesity, and the preventive effects of probiotics against obesity were rarely studied. This study aimed to investigate the preventive effects of Bifidobacterium animalis subsp. lactis MN-Gup (MN-Gup) and fermented milk containing MN-Gup against high fat diet (HFD)-induced obesity and endotoxemia in C57BL/6J mice. The results showed that MN-Gup, especially the high dose of MN-Gup (1 × 1010CFU/kg b.w.), could significantly protect mice against HFD-induced body weight gain, increased fat percentage, dyslipidemia, and increased lipopolysaccharides (LPS). Fermented milk containing MN-Gup had better preventive effects on fat percentage and dyslipidemia than fermented milk without MN-Gup, but its overall performance was less effective than MN-Gup. Furthermore, MN-Gup and fermented milk containing MN-Gup could alter HFD-affected gut microbiota and regulate obesity- or endotoxemia-correlated bacteria, which may contribute to the prevention of obesity and endotoxemia. This study revealed that MN-Gup could reduce obesity and endotoxemia under HFD, thereby providing a potential application of MN-Gup in preventing obesity.
Collapse
Affiliation(s)
- Xiaokang Niu
- Beijing Laboratory of Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Nana Zhang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Shusen Li
- Mengniu Hi-Tech Dairy Product Beijing Co., Ltd., Beijing, China
| | - Ning Li
- R&D Center, Inner Mongolia Mengniu Dairy (Group) Co. Ltd., Huhhot, China
| | - Ran Wang
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Qi Zhang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Jingjing He
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Erna Sun
- Mengniu Hi-Tech Dairy Product Beijing Co., Ltd., Beijing, China
| | - Xiaohong Kang
- R&D Center, Inner Mongolia Mengniu Dairy (Group) Co. Ltd., Huhhot, China
| | - Jing Zhan
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| |
Collapse
|
20
|
Pan R, Wang L, Xu X, Chen Y, Wang H, Wang G, Zhao J, Chen W. Crosstalk between the Gut Microbiome and Colonic Motility in Chronic Constipation: Potential Mechanisms and Microbiota Modulation. Nutrients 2022; 14:nu14183704. [PMID: 36145079 PMCID: PMC9505360 DOI: 10.3390/nu14183704] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
Chronic constipation (CC) is a highly prevalent and burdensome gastrointestinal disorder. Accumulating evidence highlights the link between imbalances in the gut microbiome and constipation. However, the mechanisms by which the microbiome and microbial metabolites affect gut movement remain poorly understood. In this review, we discuss recent studies on the alteration in the gut microbiota in patients with CC and the effectiveness of probiotics in treating gut motility disorder. We highlight the mechanisms that explain how the gut microbiome and its metabolism are linked to gut movement and how intestinal microecological interventions may counteract these changes based on the enteric nervous system, the central nervous system, the immune function, and the ability to modify intestinal secretion and the hormonal milieu. In particular, microbiota-based approaches that modulate the levels of short-chain fatty acids and tryptophan catabolites or that target the 5-hydroxytryptamine and Toll-like receptor pathways may hold therapeutic promise. Finally, we discuss the existing limitations of microecological management in treating constipation and suggest feasible directions for future research.
Collapse
Affiliation(s)
- Ruili Pan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Linlin Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiaopeng Xu
- The Department of Clinical Laboratory, Wuxi Xishan People’s Hospital, Wuxi 214105, China
| | - Ying Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Haojue Wang
- The Department of of Obstetrics and Gynecology, Wuxi Xishan People’s Hospital, Wuxi 214105, China
- Correspondence: (H.W.); (J.Z.); Tel.: +86-510-8240-2084 (H.W.); +86-510-8591-2155 (J.Z.)
| | - Gang Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
- Correspondence: (H.W.); (J.Z.); Tel.: +86-510-8240-2084 (H.W.); +86-510-8591-2155 (J.Z.)
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| |
Collapse
|
21
|
Survival and Interplay of γ-Aminobutyric Acid-Producing Psychobiotic Candidates with the Gut Microbiota in a Continuous Model of the Human Colon. BIOLOGY 2022; 11:biology11091311. [PMID: 36138790 PMCID: PMC9495918 DOI: 10.3390/biology11091311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 12/04/2022]
Abstract
Simple Summary Appreciable evidence suggests that gut microbiota interact with the brain and play a key role in the pathogenesis of mental illnesses. Psychobiotics are beneficial bacteria (probiotics) or support for such bacteria (prebiotics) that can positively modulate microbiota–gut–brain interactions. Several trials suggest probiotics are involved in normalizing brain processes related to stress responses and mood improvements. Here, we studied the growth and competitiveness of recently identified GABA-producing psychobiotic candidates in a continuous model of the human colon. In summary, supplementation with these probiotic candidates positively modulated the gut microbiome composition and metabolism, suggesting their suitability for gut health-promoting applications. Abstract Over decades, probiotic research has focused on their benefits to gut health. Recently, the gut microbiota has been proven to share bidirectional connections with the brain through the gut–brain axis. Therefore, the manipulation of this axis via probiotics has garnered interest. We have recently isolated and characterized in vitro probiotic candidates producing γ-aminobutyric acid (GABA), a major neuromodulator of the enteric nervous system. This study investigates the growth and competitiveness of selected GABA-producing probiotic candidates (Bifidobacterium animalis, Streptococcus thermophilus, and Lactobacillus delbrueckii subsp. bulgaricus) in the presence of human gut microbiota ex vivo in a model mimicking physiological and microbiological conditions of the human proximal colon. Supplementation with GABA-producing probiotic candidates did not affect the overall gut microbiota diversity over 48 h of treatment. However, these candidates modulated the microbiota composition, especially by increasing the Bacteroidetes population, a key gut microbe associated with anti-inflammatory activities. The level of microbiota-generated SCFAs within 12 h of treatment was also increased, compared to the control group. Results from this study demonstrate the probiotic potential of the tested GABA-producing bacteria and their impact on gut microbiota structure and metabolism, suggesting their suitability for gut health-promoting applications.
Collapse
|
22
|
Effect of Adding Bifidobacterium animalis BZ25 on the Flavor, Functional Components and Biogenic Amines of Natto by Bacillus subtilis GUTU09. Foods 2022; 11:foods11172674. [PMID: 36076859 PMCID: PMC9455604 DOI: 10.3390/foods11172674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/25/2022] [Accepted: 08/27/2022] [Indexed: 11/17/2022] Open
Abstract
Natto is a high-value fermented soybean produced by B. subtilis. However, B. subtilis produces a pungent amine odor. This study compared the volatile organic compounds (VOCs), free amino acids (FAAs) and biogenic amines (BAs), nattokinase (NK) of natto made by two-strain fermentation with Bifidobacterium animalis BZ25 and Bacillus subtilis GUTU09 (NMBB) and that of natto made by single-strain fermentation with Bacillus subtilis GUTU09 (NMB). Compared with NMB, volatile amine substances disappeared, ketones and aldehydes of NMBB were reduced, and alcohols increased. Besides that, the taste activity value of other bitter amino acids was lowered, and BA content was decreased from 255.88 mg/kg to 238.35 mg/kg but increased NK activity from 143.89 FU/g to 151.05 FU/g. Correlation analysis showed that the addition of BZ25 reduced the correlation between GUTU09 and BAs from 0.878 to 0.808, and pH was changed from a positive correlation to a negative one. All these results showed that the quality of natto was improved by two-strain co-fermentation, which laid a foundation for its potential industrial application.
Collapse
|
23
|
Yi R, Zhou X, Liu T, Xue R, Yang Z. Amelioration effect of Lactobacillus plantarum KFY02 on low-fiber diet-induced constipation in mice by regulating gut microbiota. Front Nutr 2022; 9:938869. [PMID: 36091233 PMCID: PMC9449489 DOI: 10.3389/fnut.2022.938869] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 08/01/2022] [Indexed: 01/30/2023] Open
Abstract
This study aimed to examine the ameliorating effect of Lactobacillus plantarum (LP) KFY02 on low-fiber diet-induced constipation in mice. LP-KFY02 was isolated from the natural fermented yogurt in Korla of Xinjiang. The mice with low-fiber diet-induced constipation in experimental groups were administered 1 × 109 CFU/kg LP-KFY02 (KFY02H) and 1 × 108 CFU/kg LP-KFY02 (KFY02L). After LP-KFY02 treatment with constipation mice, the mice fecal water content, intestinal transit ability and defecation time of constipated mice were improved. The mice fecal flora diversity, abundance and structure of the intestinal flora were regulated to the balanced state. The mice serum levels of gut motility related neuroendocrine factors have been increased, the intestinal mucosal barrier function and gut motility related gene expression were regulated in mice colon tissues. At the same time, the mice colon tissue damage were improved. These parameters in the KFY02H group were close to the normal group. These results suggested that LP-KFY02 could be considered as a potential probiotic to help alleviate low-fiber diet-induced constipation. They also provided a theoretical basis for the study of probiotics to relieve constipation by regulating intestinal flora.
Collapse
Affiliation(s)
- Ruokun Yi
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | - Xin Zhou
- Department of Cardiology, First Affiliated Hospital, Chongqing Institute of Interventional Cardiology, Army Medical University (Third Military Medical University), Chongqing, China
| | - Tongji Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | - Rui Xue
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | - Zhennai Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
- *Correspondence: Zhennai Yang,
| |
Collapse
|
24
|
Zhao Y, Liu Q, Hou Y, Zhao Y. Alleviating effects of gut micro-ecologically regulatory treatments on mice with constipation. Front Microbiol 2022; 13:956438. [PMID: 36016793 PMCID: PMC9396131 DOI: 10.3389/fmicb.2022.956438] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/18/2022] [Indexed: 11/24/2022] Open
Abstract
Treatments targeted for gut microbial regulation are newly developed strategies in constipation management. In this study, the alleviating effects of gut micro-ecologically regulatory treatments on constipation in mice were investigated. Male BALB/c mice were treated with loperamide to induce constipation, and then the corresponding intervention was administered in each group, respectively. The results showed that administration of mixed probiotics (MP), a 5-fold dose of postbiotics (P5), both synbiotics (S and S2), as well as mixed probiotics and postbiotics (MPP) blend for 8 days shortened the time to the first black stool, raised fecal water content, promoted intestinal motility, and increased serum motilin level in loperamide-treated mice. Furthermore, these treatments altered gut microbial composition and metabolism of short-chain fatty acids (SCFA). Based on linear regression analysis, SCFA was positively correlated with serum motilin except for isobutyrate. It suggested gut microbial metabolites affected secretion of motilin to increase gastrointestinal movement and transportation function and thus improved pathological symptoms of mice with constipation. In conclusion, the alteration of gut micro-ecology is closely associated with gastrointestinal function, and it is an effective way to improve constipation via probiotic, prebiotic, and postbiotic treatment.
Collapse
Affiliation(s)
- Yueming Zhao
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin, China
- Hyproca Nutrition Co., Ltd., Changsha, China
| | | | - Yanmei Hou
- Hyproca Nutrition Co., Ltd., Changsha, China
- Hunan Provincial Key Laboratory of Food Science and Biotechnology, Changsha, China
| | - Yiqing Zhao
- Hyproca Nutrition Co., Ltd., Changsha, China
- *Correspondence: Yiqing Zhao,
| |
Collapse
|
25
|
Tang T, Wang J, Jiang Y, Zhu X, Zhang Z, Wang Y, Shu X, Deng Y, Zhang F. Bifidobacterium lactis TY-S01 Prevents Loperamide-Induced Constipation by Modulating Gut Microbiota and Its Metabolites in Mice. Front Nutr 2022; 9:890314. [PMID: 35845767 PMCID: PMC9277448 DOI: 10.3389/fnut.2022.890314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 06/06/2022] [Indexed: 12/12/2022] Open
Abstract
Probiotics have received widespread attention as a healthy ingredient. The preventive effect of Bifidobacterium lactis TY-S01 on loperamide-induced constipation in mice was investigated in this study. TY-S01 accelerated the peristalsis of intestine, maintained the humidity of faeces, and prevented the destruction of gut barrier. TY-S01 also maintained the 5-HT, MTL and SP at normal levels in constipated mice. Simultaneously, TY-S01 up-regulated the mRNA expressions of 5-HT4R, SERT, and MUC-2, while down-regulated the mRNA expressions of pro-inflammatory genes remarkably. The levels of short-chain fatty acids in the feces of constipated mice were also increased because of the intervention with TY-S01. Moreover, TY-S01 prevented gut microbiological dysbiosis in constipated mice. Spearman’s correlation analysis revealed that there was an obvious association between metabolic biomarkers and gut microbiota. In summary, TY-S01 regulated gut microbiota and the production of intestinal metabolites to prevent loperamide-induced constipation.
Collapse
|
26
|
Wang C, Li S, Sun E, Xiao R, Wang R, Ren Y, He J, Zhang Q, Zhan J. Effects of Fermented Milk Containing Bifidobacterium animalis Subsp. lactis MN-Gup (MN-Gup) and MN-Gup-Based Synbiotics on Obesity Induced by High Fat Diet in Rats. Nutrients 2022; 14:2631. [PMID: 35807812 PMCID: PMC9268376 DOI: 10.3390/nu14132631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/18/2022] [Accepted: 06/22/2022] [Indexed: 12/21/2022] Open
Abstract
Given the probiotic effects previously found in Bifidobacterium animalis subsp. lactis MN-Gup (MN-Gup) and its great application potential in dairy products, this study aimed to investigate the effects of fermented milk containing MN-Gup or MN-Gup-based synbiotics on high fat diet (HFD)-induced obesity in rats. Galacto-oligosaccharides (GOS) and xylo-oligosaccharides (XOS) were selected as the tested prebiotics in MN-Gup-based synbiotics due to their promotion of MN-Gup growth in vitro. After nine weeks of HFD feeding, the obese rats were intervened with fermented milk containing MN-Gup (MN-Gup FM) or its synbiotics (MN-Gup + GOS FM, MN-Gup + XOS FM) for eight weeks. The results showed that the interventions could alleviate HFD-induced body weight gain, epididymal fat deposition, adipocyte hypertrophy, dyslipidemia and inflammation, but GOS and XOS did not exhibit significant synergies with MN-Gup on those alleviations. Furthermore, the interventions could regulate the HFD-affected gut microbiota and microbial metabolites, as shown by the increases in short chain fatty acids (SCFAs) and alterations in obesity-related bile acids (BAs), which may play important roles in the mechanism underlying the alleviation of obesity. This study revealed the probiotic effects of MN-Gup on alleviating obesity and provided the basis for MN-Gup applications in the future.
Collapse
Affiliation(s)
- Chenyuan Wang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (C.W.); (R.X.); (Y.R.); (J.H.); (Q.Z.)
- Mengniu Hi-tech Dairy Product Beijing Co., Ltd., Beijing 101100, China; (S.L.); (E.S.)
| | - Shusen Li
- Mengniu Hi-tech Dairy Product Beijing Co., Ltd., Beijing 101100, China; (S.L.); (E.S.)
| | - Erna Sun
- Mengniu Hi-tech Dairy Product Beijing Co., Ltd., Beijing 101100, China; (S.L.); (E.S.)
| | - Ran Xiao
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (C.W.); (R.X.); (Y.R.); (J.H.); (Q.Z.)
- Mengniu Hi-tech Dairy Product Beijing Co., Ltd., Beijing 101100, China; (S.L.); (E.S.)
| | - Ran Wang
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China;
| | - Yimei Ren
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (C.W.); (R.X.); (Y.R.); (J.H.); (Q.Z.)
| | - Jingjing He
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (C.W.); (R.X.); (Y.R.); (J.H.); (Q.Z.)
| | - Qi Zhang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (C.W.); (R.X.); (Y.R.); (J.H.); (Q.Z.)
| | - Jing Zhan
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (C.W.); (R.X.); (Y.R.); (J.H.); (Q.Z.)
| |
Collapse
|
27
|
Xiao R, Wang R, Li S, Kang X, Ren Y, Sun E, Wang C, He J, Zhan J. Preliminary Evaluation of Potential Properties of Three Probiotics and Their Combination with Prebiotics on GLP-1 Secretion and Type 2 Diabetes Alleviation. J FOOD QUALITY 2022; 2022:1-9. [DOI: 10.1155/2022/8586843] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024] Open
Abstract
Type 2 diabetes (T2D) is a disease of global concern characterized by hyperglycemia and insulin resistance. Many studies found that glucagonlike peptide-1 (GLP-1) is an incretin hormone that can alleviate hyperglycemia and T2D. Recently, probiotics and their combination with prebiotics have been found to show great potentials of blood glucose regulation and T2D alleviation. Given the important role of GLP-1 in T2D, screening probiotics with the capacity of promoting GLP-1 secretion is of great help for providing a novel application of T2D treatment. In the current study, we evaluated the effects of three probiotics, namely, Lactobacillus paracasei LC-37 (LC-37), Bifidobacterium animals MN-Gup (MN-Gup), and Bifidobacterium longum BBMN68 (BBMN68), and their combination with prebiotics on promoting GLP-1 secretion using NCI-H716 cells. The results showed that LC-37 and MN-Gup could stimulate more GLP-1 secretion in NCI-H716 cells, but BBMN68 had no significant effect. Further evaluation suggested that the two combinations of LC-37 with isomaltooligosaccharide (IMO) and MN-Gup with galactooligosaccharide (GOS) had the best performance on promoting GLP-1 secretion in vitro. Subsequently, the effects of the two combinations on promoting GLP-1 secretion and alleviating T2D were investigated in vivo using high fat diet (HFD) and streptozotocin (STZ) treated rats. The results showed that the two combinations could significantly reduce fasting blood glucose levels, improve insulin resistance, and modulate serum lipid profiles in HFD/STZ-treated rats. These results will help understand the potential of promoting GLP-1 secretion of LC-37 and MN-Gup and provide theoretical basis for their applications in fermented milk or other foods.
Collapse
Affiliation(s)
- Ran Xiao
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
- Mengniu Hi-Tech Dairy Product Beijing Co. Ltd., Beijing 101100, China
| | - Ran Wang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Shusen Li
- Mengniu Hi-Tech Dairy Product Beijing Co. Ltd., Beijing 101100, China
| | - Xiaohong Kang
- Mengniu Hi-Tech Dairy Product Beijing Co. Ltd., Beijing 101100, China
| | - Yimei Ren
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Erna Sun
- Mengniu Hi-Tech Dairy Product Beijing Co. Ltd., Beijing 101100, China
| | - Chenyuan Wang
- Mengniu Hi-Tech Dairy Product Beijing Co. Ltd., Beijing 101100, China
| | - Jingjing He
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Jing Zhan
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| |
Collapse
|
28
|
Mafra D, Borges NA, Alvarenga L, Ribeiro M, Fonseca L, Leal VO, Shiels PG, Stenvinkel P. Fermented food: Should patients with cardiometabolic diseases go back to an early neolithic diet? Crit Rev Food Sci Nutr 2022; 63:10173-10196. [PMID: 35593230 DOI: 10.1080/10408398.2022.2077300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Fermentation has been used since the Early Neolithic period to preserve foods. It has inherent organoleptic and nutritive properties that bestow health benefits, including reducing inflammation and oxidative stress, supporting the growth of salutogenic microbiota, enhancing intestinal mucosal protection and promoting beneficial immunometabolic health effects. The fermentation of food with specific microbiota increases the production salutogenic bioactive compounds that can activate Nrf2 mediated cytoprotective responses and mitigate the effects of the 'diseasome of aging' and its associated inflammageing, which presents as a prominent feature of obesity, type-2 diabetes, cardiovascular and chronic kidney disease. This review discusses the importance of fermented food in improving health span, with special reference to cardiometabolic diseases.
Collapse
Affiliation(s)
- D Mafra
- Post Graduation Program in Medical Sciences, Federal Fluminense University, Niterói-Rio de Janeiro, Brazil
- Graduate Program in Biological Sciences, Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - N A Borges
- Institute of Nutrition, University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - L Alvarenga
- Post Graduation Program in Medical Sciences, Federal Fluminense University, Niterói-Rio de Janeiro, Brazil
| | - M Ribeiro
- Graduate Program in Biological Sciences, Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - L Fonseca
- Post Graduation Program in Medical Sciences, Federal Fluminense University, Niterói-Rio de Janeiro, Brazil
| | - V O Leal
- Division of Nutrition, Pedro Ernesto University Hospital, University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - P G Shiels
- Wolfson Wohl Translational Research Centre, University of Glasgow, Bearsden, Glasgow, UK
| | - P Stenvinkel
- Division of Renal Medicine, Department of Clinical Science, Technology and Intervention, Karolinska Instituted, Stockholm, Sweden
| |
Collapse
|
29
|
Araújo MM, Vogado CDO, Mendes MM, Gonçalves VSS, Botelho PB. Effects of Bifidobacterium animalis subspecies lactis supplementation on gastrointestinal symptoms: systematic review with meta-analysis. Nutr Rev 2021; 80:1619-1633. [PMID: 34918142 DOI: 10.1093/nutrit/nuab109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
CONTEXT The effects of probiotics on gastrointestinal (GI) symptoms have been increasingly investigated, particularly that of Bifidobacterium animalis. Clinical trials so far have shown differing evidence regarding these effects in healthy adults. OBJECTIVE To synthesize the published evidence on the effects of B. animalis subspecies lactis on GI symptoms (GIS) in healthy adults. DATA SOURCE A search of the Medline, Embase, Lilacs, Scopus, Web of Science, ProQuest, and Google Scholar databases was conducted for reports on randomized controlled trials published up to October 2021. DATA EXTRACTION Population characteristics and data on colonic transit time (CTT), stool consistency, defecation frequency, abdominal pain, bloating, flatulence, volunteer compliance, and adverse events were extracted. A random-effects model was used to estimate the effect of probiotic treatment on these variables. DATA SYNTHESIS In total, 1551 studies were identified, of which 14 were included in the qualitative synthesis and 13 in the meta-analysis. Overall, probiotic supplementation increased defecation frequency (standardized mean difference [SMD], 0.26; 95%CI, 0.13-0.39). Subgroup analysis revealed a decrease in CTT (SMD, -0.34; 95%CI, -0.62 to -0.07) in short-term treatment (≤14 d) and an improvement in stool consistency (SMD, 0.76; 95%CI, 0.44-1.08) in individuals without GIS. No improvement in abdominal pain and bloating was found. CONCLUSIONS B. animalis subspecies lactis supplementation may increase defecation frequency and, in short-term treatment, may reduce CTT in healthy adults and improve stool consistency in individuals without GIS. More high-quality randomized controlled trials are needed to develop a clinical protocol for the use of this strain to improve these symptoms. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration no. CRD42020154060.
Collapse
Affiliation(s)
- Maísa Miranda Araújo
- Graduate Program in Human Nutrition, Department of Nutrition, University of Brasília, Brasília, Federal District, Brazil
| | - Carolina de Oliveira Vogado
- Graduate Program in Human Nutrition, Department of Nutrition, University of Brasília, Brasília, Federal District, Brazil
| | - Marcela Moraes Mendes
- Graduate Program in Human Nutrition, Department of Nutrition, University of Brasília, Brasília, Federal District, Brazil
| | - Vivian Siqueira Santos Gonçalves
- Graduate Program in Public Health, Department of Nutrition, Faculty of Health Science, University of Brasília, Brasília, Federal District, Brazil
| | - Patrícia Borges Botelho
- Graduate Program in Human Nutrition, Department of Nutrition, University of Brasília, Brasília, Federal District, Brazil
| |
Collapse
|
30
|
Youssef M, Ahmed HY, Zongo A, Korin A, Zhan F, Hady E, Umair M, Shahid Riaz Rajoka M, Xiong Y, Li B. Probiotic Supplements: Their Strategies in the Therapeutic and Prophylactic of Human Life-Threatening Diseases. Int J Mol Sci 2021; 22:11290. [PMID: 34681948 PMCID: PMC8537706 DOI: 10.3390/ijms222011290] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 10/10/2021] [Accepted: 10/13/2021] [Indexed: 12/18/2022] Open
Abstract
Chronic diseases and viral infections have threatened human life over the ages and constitute the main reason for increasing death globally. The rising burden of these diseases extends to negatively affecting the economy and trading globally, as well as daily life, which requires inexpensive, novel, and safe therapeutics. Therefore, scientists have paid close attention to probiotics as safe remedies to combat these morbidities owing to their health benefits and biotherapeutic effects. Probiotics have been broadly adopted as functional foods, nutraceuticals, and food supplements to improve human health and prevent some morbidity. Intriguingly, recent research indicates that probiotics are a promising solution for treating and prophylactic against certain dangerous diseases. Probiotics could also be associated with their essential role in animating the immune system to fight COVID-19 infection. This comprehensive review concentrates on the newest literature on probiotics and their metabolism in treating life-threatening diseases, including immune disorders, pathogens, inflammatory and allergic diseases, cancer, cardiovascular disease, gastrointestinal dysfunctions, and COVID-19 infection. The recent information in this report will particularly furnish a platform for emerging novel probiotics-based therapeutics as cheap and safe, encouraging researchers and stakeholders to develop innovative treatments based on probiotics to prevent and treat chronic and viral diseases.
Collapse
Affiliation(s)
- Mahmoud Youssef
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (M.Y.); (A.Z.); (A.K.); (F.Z.); (E.H.)
- Food Science and Technology Department, Faculty of Agriculture, Al-Azhar University, Cairo 11651, Egypt
| | - Hanaa Y. Ahmed
- The Regional Center for Mycology and Biotechnology, Al-Azhar University, Cairo 11787, Egypt;
| | - Abel Zongo
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (M.Y.); (A.Z.); (A.K.); (F.Z.); (E.H.)
- Biological Sciences, Food and Nutrition Research Center, Department of Biochemistry and Microbiology, University Joseph Ki-Zerbo, Ouagadougou 03 BP 7021, Burkina Faso
| | - Ali Korin
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (M.Y.); (A.Z.); (A.K.); (F.Z.); (E.H.)
- Food Science and Technology Department, Faculty of Agriculture, Al-Azhar University, Cairo 11651, Egypt
| | - Fuchao Zhan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (M.Y.); (A.Z.); (A.K.); (F.Z.); (E.H.)
| | - Essam Hady
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (M.Y.); (A.Z.); (A.K.); (F.Z.); (E.H.)
- Food Science and Technology Department, Faculty of Agriculture, Al-Azhar University, Cairo 11651, Egypt
| | - Muhammad Umair
- Department of Food Science and Engineering, College of Chemistry and Engineering, Shenzhen University, Shenzhen 518060, China; (M.U.); (M.S.R.R.)
| | - Muhammad Shahid Riaz Rajoka
- Department of Food Science and Engineering, College of Chemistry and Engineering, Shenzhen University, Shenzhen 518060, China; (M.U.); (M.S.R.R.)
| | - Yongai Xiong
- Department of Pharmaceutics, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi 563003, China
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (M.Y.); (A.Z.); (A.K.); (F.Z.); (E.H.)
| |
Collapse
|
31
|
Roselli M, Natella F, Zinno P, Guantario B, Canali R, Schifano E, De Angelis M, Nikoloudaki O, Gobbetti M, Perozzi G, Devirgiliis C. Colonization Ability and Impact on Human Gut Microbiota of Foodborne Microbes From Traditional or Probiotic-Added Fermented Foods: A Systematic Review. Front Nutr 2021; 8:689084. [PMID: 34395494 PMCID: PMC8360115 DOI: 10.3389/fnut.2021.689084] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/02/2021] [Indexed: 12/22/2022] Open
Abstract
A large subset of fermented foods act as vehicles of live environmental microbes, which often contribute food quality assets to the overall diet, such as health-associated microbial metabolites. Foodborne microorganisms also carry the potential to interact with the human gut microbiome via the food chain. However, scientific results describing the microbial flow connecting such different microbiomes as well as their impact on human health, are still fragmented. The aim of this systematic review is to provide a knowledge-base about the scientific literature addressing the connection between foodborne and gut microbiomes, as well as to identify gaps where more research is needed to clarify and map gut microorganisms originating from fermented foods, either traditional or added with probiotics, their possible impact on human gut microbiota composition and to which extent foodborne microbes might be able to colonize the gut environment. An additional aim was also to highlight experimental approaches and study designs which could be better standardized to improve comparative analysis of published datasets. Overall, the results presented in this systematic review suggest that a complex interplay between food and gut microbiota is indeed occurring, although the possible mechanisms for this interaction, as well as how it can impact human health, still remain a puzzling picture. Further research employing standardized and trans-disciplinary approaches aimed at understanding how fermented foods can be tailored to positively influence human gut microbiota and, in turn, host health, are therefore of pivotal importance.
Collapse
Affiliation(s)
- Marianna Roselli
- Research Centre for Food and Nutrition, CREA (Council for Agricultural Research and Economics), Rome, Italy
| | - Fausta Natella
- Research Centre for Food and Nutrition, CREA (Council for Agricultural Research and Economics), Rome, Italy
| | - Paola Zinno
- Research Centre for Food and Nutrition, CREA (Council for Agricultural Research and Economics), Rome, Italy
| | - Barbara Guantario
- Research Centre for Food and Nutrition, CREA (Council for Agricultural Research and Economics), Rome, Italy
| | - Raffaella Canali
- Research Centre for Food and Nutrition, CREA (Council for Agricultural Research and Economics), Rome, Italy
| | - Emily Schifano
- Research Centre for Food and Nutrition, CREA (Council for Agricultural Research and Economics), Rome, Italy
| | - Maria De Angelis
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy
| | - Olga Nikoloudaki
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Marco Gobbetti
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Giuditta Perozzi
- Research Centre for Food and Nutrition, CREA (Council for Agricultural Research and Economics), Rome, Italy
| | - Chiara Devirgiliis
- Research Centre for Food and Nutrition, CREA (Council for Agricultural Research and Economics), Rome, Italy
| |
Collapse
|