1
|
Kos J, Radić B, Radović R, Šarić B, Jovanov P, Šarić L. Aflatoxins in maize, milk and dairy products from Serbia. FOOD ADDITIVES & CONTAMINANTS. PART B, SURVEILLANCE 2024; 17:296-307. [PMID: 38616521 DOI: 10.1080/19393210.2024.2335656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/24/2024] [Indexed: 04/16/2024]
Abstract
This study presents data on the occurrence of aflatoxins B1, B2, G1 and G2 in maize and aflatoxin M1 (AFM1) in milk and dairy products from Serbia in 2022. A total of 100 maize samples were analysed using liquid chromatography tandem mass spectrometry, while 107 cow and goat milk, besides dairy products were tested with an ELISA method. Aflatoxins contaminated 78% of the maize samples, with aflatoxin B1 as the most prevalent aflatoxin, also at the highest determined level. All milk samples tested positive for AFM1, while contamination in dairy products ranged from 14% to 100%. The hot and dry weather during the 2022 maize growing season, characterised by moderate to extreme drought conditions, significantly increased maize contamination with aflatoxins, impacting subsequent milk and dairy products contamination. The findings of this study confirm the continuous trend and persistent challenge in Serbia concerning the prevalence of aflatoxins in maize and milk, closely linked to climate change.
Collapse
Affiliation(s)
- Jovana Kos
- Institute of food technology in Novi Sad, University of Novi Sad, Serbia
| | - Bojana Radić
- Institute of food technology in Novi Sad, University of Novi Sad, Serbia
| | - Radmila Radović
- Institute of food technology in Novi Sad, University of Novi Sad, Serbia
| | - Bojana Šarić
- Institute of food technology in Novi Sad, University of Novi Sad, Serbia
| | - Pavle Jovanov
- Institute of food technology in Novi Sad, University of Novi Sad, Serbia
| | - Ljubiša Šarić
- Institute of food technology in Novi Sad, University of Novi Sad, Serbia
| |
Collapse
|
2
|
Dodlek Šarkanj I, Vahčić N, Markov K, Haramija J, Uršulin-Trstenjak N, Hajdek K, Sulyok M, Krska R, Šarkanj B. First Report on Mycotoxin Contamination of Hops ( Humulus lupulus L.). Toxins (Basel) 2024; 16:293. [PMID: 39057933 PMCID: PMC11281705 DOI: 10.3390/toxins16070293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/17/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
The presence of mycotoxins and other toxic metabolites in hops (Humulus lupulus L.) was assessed for the first time. In total, 62 hop samples were sampled in craft breweries, and analyzed by a multi-toxin LS-MS/MS method. The study collected samples from craft breweries in all of the Croatian counties and statistically compared the results. Based on previous reports on Alternaria spp. and Fusarium spp. contamination of hops, the study confirmed the contamination of hops with these toxins. Alternaria toxins, particularly tenuazonic acid, were found in all tested samples, while Fusarium toxins, including deoxynivalenol, were present in 98% of samples. However, no Aspergillus or Penicillium metabolites were detected, indicating proper storage conditions. In addition to the Alternaria and Fusarium toxins, abscisic acid, a drought stress indicator in hops, was also detected, as well as several unspecific metabolites. The findings suggest the need for monitoring, risk assessment, and potential regulation of Alternaria and Fusarium toxins in hops to ensure the safety of hop usage in the brewing and pharmaceutical industries. Also, four local wild varieties were tested, with similar results to the commercial varieties for toxin contamination, but the statistically significant regional differences in toxin occurrence highlight the importance and need for targeted monitoring.
Collapse
Affiliation(s)
- Ivana Dodlek Šarkanj
- Department of Food Technology, University North, Trg dr. Žarka Dolinara 1, HR-48000 Koprivnica, Croatia; (I.D.Š.); (N.U.-T.)
| | - Nada Vahčić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, HR-10000 Zagreb, Croatia; (N.V.); (K.M.)
| | - Ksenija Markov
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, HR-10000 Zagreb, Croatia; (N.V.); (K.M.)
| | - Josip Haramija
- Koprivnica Branch, State Inspectorate, Florijanski trg 18, HR-48000, Koprivnica, Croatia;
| | - Natalija Uršulin-Trstenjak
- Department of Food Technology, University North, Trg dr. Žarka Dolinara 1, HR-48000 Koprivnica, Croatia; (I.D.Š.); (N.U.-T.)
| | - Krunoslav Hajdek
- Department of Packaging, Recycling and Environmental Protection, University North, Trg dr. Žarka Dolinara 1, HR-48000 Koprivnica, Croatia;
| | - Michael Sulyok
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna, Konrad Lorenz Str. 20, AT-3430 Tulln, Austria; (M.S.); (R.K.)
| | - Rudolf Krska
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna, Konrad Lorenz Str. 20, AT-3430 Tulln, Austria; (M.S.); (R.K.)
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, University Road, Belfast BT7 1NN, UK
| | - Bojan Šarkanj
- Department of Food Technology, University North, Trg dr. Žarka Dolinara 1, HR-48000 Koprivnica, Croatia; (I.D.Š.); (N.U.-T.)
| |
Collapse
|
3
|
Inglis A, Parnell AC, Subramani N, Doohan FM. Machine Learning Applied to the Detection of Mycotoxin in Food: A Systematic Review. Toxins (Basel) 2024; 16:268. [PMID: 38922162 PMCID: PMC11209146 DOI: 10.3390/toxins16060268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/31/2024] [Accepted: 06/06/2024] [Indexed: 06/27/2024] Open
Abstract
Mycotoxins, toxic secondary metabolites produced by certain fungi, pose significant threats to global food safety and public health. These compounds can contaminate a variety of crops, leading to economic losses and health risks to both humans and animals. Traditional lab analysis methods for mycotoxin detection can be time-consuming and may not always be suitable for large-scale screenings. However, in recent years, machine learning (ML) methods have gained popularity for use in the detection of mycotoxins and in the food safety industry in general due to their accurate and timely predictions. We provide a systematic review on some of the recent ML applications for detecting/predicting the presence of mycotoxin on a variety of food ingredients, highlighting their advantages, challenges, and potential for future advancements. We address the need for reproducibility and transparency in ML research through open access to data and code. An observation from our findings is the frequent lack of detailed reporting on hyperparameters in many studies and a lack of open source code, which raises concerns about the reproducibility and optimisation of the ML models used. The findings reveal that while the majority of studies predominantly utilised neural networks for mycotoxin detection, there was a notable diversity in the types of neural network architectures employed, with convolutional neural networks being the most popular.
Collapse
Affiliation(s)
- Alan Inglis
- Hamilton Institute, Eolas Building, Maynooth University, W23 F2H6 Maynooth, Kildare, Ireland;
| | - Andrew C. Parnell
- Hamilton Institute, Eolas Building, Maynooth University, W23 F2H6 Maynooth, Kildare, Ireland;
| | - Natarajan Subramani
- School of Biology and Environmental Science, University College Dublin, D04 C1P1 Dublin, Ireland; (N.S.); (F.M.D.)
| | - Fiona M. Doohan
- School of Biology and Environmental Science, University College Dublin, D04 C1P1 Dublin, Ireland; (N.S.); (F.M.D.)
| |
Collapse
|
4
|
Wang P, Wang H, Wang X, Li Y, Sun J, Wang X, Zhang G. Mycotoxins in grains (products), Gansu province, China and risk assessment. FOOD ADDITIVES & CONTAMINANTS. PART B, SURVEILLANCE 2024; 17:101-109. [PMID: 38234288 DOI: 10.1080/19393210.2023.2300652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 12/27/2023] [Indexed: 01/19/2024]
Abstract
This study aimed to estimate the dietary exposure towards mycotoxins of residents in Gansu province, China, from 2014-2020 through surveillance data on mycotoxins in grains and grain products. Fumonisin B1 (FB1), Deoxynivalenol (DON), 3- and 15-Acetyl-deoxynivalenol (3-ADON and 15-ADON), Tentoxin (TEN), Tenuazonic acid (TeA) and Zearalenone (ZEN) in 863 grains and grain products were detected by HPLC-MS and UPLC-MS. DON was the most detected mycotoxin of all samples. For women, the average dietary exposure to DON was 1.49 μg/kg bw/day, with 55.8% of the individuals eating dried noodles exceeding tolerable daily intake. The hazard quotient values were 1.24-12.60, so greater than 1 for DON at the average, 90th percentile, 95th percentile, and maximum levels: 44.6% of the HQ values for men and 45.7% for women were greater than 1.
Collapse
Affiliation(s)
- Ping Wang
- School of Public Health, Lanzhou University, Lanzhou, PR China
| | - Haixia Wang
- School of Public Health, Lanzhou University, Lanzhou, PR China
| | - Xin Wang
- School of Public Health, Lanzhou University, Lanzhou, PR China
| | - Yongjun Li
- Gansu Provincial Centre for Disease Control and Prevention, Lanzhou, People's Republic of China
| | - Jianyun Sun
- Gansu Provincial Centre for Disease Control and Prevention, Lanzhou, People's Republic of China
| | - Xiaoxia Wang
- School of Public Health, Lanzhou University, Lanzhou, PR China
| | - Gexiang Zhang
- School of Public Health, Lanzhou University, Lanzhou, PR China
| |
Collapse
|
5
|
Modrzewska M, Popowski D, Błaszczyk L, Stępień Ł, Urbaniak M, Bryła M, Cramer B, Humpf HU, Twarużek M. Antagonistic properties against Fusarium sporotrichioides and glycosylation of HT-2 and T-2 toxins by selected Trichoderma strains. Sci Rep 2024; 14:5865. [PMID: 38467671 PMCID: PMC10928170 DOI: 10.1038/s41598-024-55920-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/28/2024] [Indexed: 03/13/2024] Open
Abstract
The present study assessed the ability of Trichoderma to combat F. sporotrichioides, focusing on their antagonistic properties. Tests showed that Trichoderma effectively inhibited F. sporotrichioides mycelial growth, particularly with T. atroviride strains. In co-cultures on rice grains, Trichoderma almost completely reduced the biosynthesis of T-2 and HT-2 toxins by Fusarium. T-2 toxin-α-glucoside (T-2-3α-G), HT-2 toxin-α-glucoside (HT-2-3α-G), and HT-2 toxin-β-glucoside (HT-2-3β-G) were observed in the common culture medium, while these substances were not present in the control medium. The study also revealed unique metabolites and varying metabolomic profiles in joint cultures of Trichoderma and Fusarium, suggesting complex interactions. This research offers insights into the processes of biocontrol by Trichoderma, highlighting its potential as a sustainable solution for managing cereal plant pathogens and ensuring food safety.
Collapse
Affiliation(s)
- Marta Modrzewska
- Department of Food Safety and Chemical Analysis, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology-State Research Institute, Rakowiecka 36, 02-532, Warsaw, Poland
| | - Dominik Popowski
- Department of Food Safety and Chemical Analysis, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology-State Research Institute, Rakowiecka 36, 02-532, Warsaw, Poland
| | - Lidia Błaszczyk
- Plant Microbiomics Team, Institute of Plant Genetics, Polish Academy of Sciences, 60-479, Poznan, Poland
| | - Łukasz Stępień
- Plant-Pathogen Interaction Team, Institute of Plant Genetics, Polish Academy of Sciences, 60-479, Poznan, Poland
| | - Monika Urbaniak
- Plant-Pathogen Interaction Team, Institute of Plant Genetics, Polish Academy of Sciences, 60-479, Poznan, Poland
| | - Marcin Bryła
- Department of Food Safety and Chemical Analysis, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology-State Research Institute, Rakowiecka 36, 02-532, Warsaw, Poland.
| | - Benedikt Cramer
- Institute of Food Chemistry, University of Münster, Corrensstr. 45, 48149, Münster, Germany
| | - Hans-Ulrich Humpf
- Institute of Food Chemistry, University of Münster, Corrensstr. 45, 48149, Münster, Germany
| | - Magdalena Twarużek
- Department of Physiology and Toxicology, Faculty of Natural Sciences, Institute of Experimental Biology, Kazimierz Wielki University, Chodkiewicza 30, 85-064, Bydgoszcz, Poland
| |
Collapse
|
6
|
Casu A, Camardo Leggieri M, Toscano P, Battilani P. Changing climate, shifting mycotoxins: A comprehensive review of climate change impact on mycotoxin contamination. Compr Rev Food Sci Food Saf 2024; 23:e13323. [PMID: 38477222 DOI: 10.1111/1541-4337.13323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 02/20/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024]
Abstract
Climate change (CC) is a complex phenomenon that has the potential to significantly alter marine, terrestrial, and freshwater ecosystems worldwide. Global warming of 2°C is expected to be exceeded during the 21st century, and the frequency of extreme weather events, including floods, storms, droughts, extreme temperatures, and wildfires, has intensified globally over recent decades, differently affecting areas of the world. How CC may impact multiple food safety hazards is increasingly evident, with mycotoxin contamination in particular gaining in prominence. Research focusing on CC effects on mycotoxin contamination in edible crops has developed considerably throughout the years. Therefore, we conducted a comprehensive literature search to collect available studies in the scientific literature published between 2000 and 2023. The selected papers highlighted how warmer temperatures are enabling the migration, introduction, and mounting abundance of thermophilic and thermotolerant fungal species, including those producing mycotoxins. Certain mycotoxigenic fungal species, such as Aspergillus flavus and Fusarium graminearum, are expected to readily acclimatize to new conditions and could become more aggressive pathogens. Furthermore, abiotic stress factors resulting from CC are expected to weaken the resistance of host crops, rendering them more vulnerable to fungal disease outbreaks. Changed interactions of mycotoxigenic fungi are likewise expected, with the effect of influencing the prevalence and co-occurrence of mycotoxins in the future. Looking ahead, future research should focus on improving predictive modeling, expanding research into different pathosystems, and facilitating the application of effective strategies to mitigate the impact of CC.
Collapse
Affiliation(s)
- Alessia Casu
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Marco Camardo Leggieri
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Piero Toscano
- IBE-CNR, Institute of BioEconomy-National Research Council, Firenze, Italia
| | - Paola Battilani
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| |
Collapse
|
7
|
Meneely J, Greer B, Kolawole O, Elliott C. T-2 and HT-2 Toxins: Toxicity, Occurrence and Analysis: A Review. Toxins (Basel) 2023; 15:481. [PMID: 37624238 PMCID: PMC10467144 DOI: 10.3390/toxins15080481] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/11/2023] [Accepted: 07/27/2023] [Indexed: 08/26/2023] Open
Abstract
One of the major classes of mycotoxins posing serious hazards to humans and animals and potentially causing severe economic impact to the cereal industry are the trichothecenes, produced by many fungal genera. As such, indicative limits for the sum of T-2 and HT-2 were introduced in the European Union in 2013 and discussions are ongoing as to the establishment of maximum levels. This review provides a concise assessment of the existing understanding concerning the toxicological effects of T-2 and HT-2 in humans and animals, their biosynthetic pathways, occurrence, impact of climate change on their production and an evaluation of the analytical methods applied to their detection. This study highlights that the ecology of F. sporotrichioides and F. langsethiae as well as the influence of interacting environmental factors on their growth and activation of biosynthetic genes are still not fully understood. Predictive models of Fusarium growth and subsequent mycotoxin production would be beneficial in predicting the risk of contamination and thus aid early mitigation. With the likelihood of regulatory maximum limits being introduced, increased surveillance using rapid, on-site tests in addition to confirmatory methods will be required. allowing the industry to be proactive rather than reactive.
Collapse
Affiliation(s)
- Julie Meneely
- Institute for Global Food Security, National Measurement Laboratory: Centre of Excellence in Agriculture and Food Integrity, Queen’s University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK; (B.G.); (O.K.); (C.E.)
- The International Joint Research Center on Food Security (IJC-FOODSEC), 113 Thailand Science Park, Pahonyothin Road, Khong Luang 12120, Thailand
| | - Brett Greer
- Institute for Global Food Security, National Measurement Laboratory: Centre of Excellence in Agriculture and Food Integrity, Queen’s University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK; (B.G.); (O.K.); (C.E.)
- The International Joint Research Center on Food Security (IJC-FOODSEC), 113 Thailand Science Park, Pahonyothin Road, Khong Luang 12120, Thailand
| | - Oluwatobi Kolawole
- Institute for Global Food Security, National Measurement Laboratory: Centre of Excellence in Agriculture and Food Integrity, Queen’s University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK; (B.G.); (O.K.); (C.E.)
- The International Joint Research Center on Food Security (IJC-FOODSEC), 113 Thailand Science Park, Pahonyothin Road, Khong Luang 12120, Thailand
| | - Christopher Elliott
- Institute for Global Food Security, National Measurement Laboratory: Centre of Excellence in Agriculture and Food Integrity, Queen’s University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK; (B.G.); (O.K.); (C.E.)
- The International Joint Research Center on Food Security (IJC-FOODSEC), 113 Thailand Science Park, Pahonyothin Road, Khong Luang 12120, Thailand
- School of Food Science and Technology, Faculty of Science and Technology, Thammasat University, 99 Mhu 18, Pahonyothin Road, Khong Luang 12120, Thailand
| |
Collapse
|
8
|
Krausová M, Ayeni KI, Wisgrill L, Ezekiel CN, Braun D, Warth B. Trace analysis of emerging and regulated mycotoxins in infant stool by LC-MS/MS. Anal Bioanal Chem 2022; 414:7503-7516. [PMID: 34932144 PMCID: PMC9482899 DOI: 10.1007/s00216-021-03803-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/12/2021] [Accepted: 11/23/2021] [Indexed: 11/30/2022]
Abstract
Infants are sensitive to negative effects caused by food contaminants such as mycotoxins. To date, analytical methods assessing mycotoxin mixture exposure in infant stool are absent. Herein, we present a novel multi-mycotoxin LC-MS/MS assay capable of detecting 30+ analytes including the regulated mycotoxin classes (aflatoxins, trichothecenes, ochratoxins, zearalenone, citrinin), emerging Alternaria and Fusarium toxins, and several key metabolites. Sample preparation consisted of a 'dilute, filter, and shoot' approach. The method was in-house validated and demonstrated that 25 analytes fulfilled all required criteria despite the high diversity of chemical structures included. Extraction recoveries for most of the analytes were in the range of 65-114% with standard deviations below 30% and limits of detection between 0.03 and 11.3 ng/g dry weight. To prove the methods' applicability, 22 human stool samples from premature Austrian infants (n = 12) and 12-month-old Nigerian infants (n = 10) were analyzed. The majority of the Nigerian samples were contaminated with alternariol monomethyl ether (8/10) and fumonisin B1 (8/10), while fumonisin B2 and citrinin were quantified in some samples. No mycotoxins were detected in any of the Austrian samples. The method can be used for sensitive human biomonitoring (HBM) purposes and to support exposure and, potentially, risk assessment of mycotoxins. Moreover, it allows for investigating potential associations between toxicant exposure and the infants' developing gut microbiome.
Collapse
Affiliation(s)
- Magdaléna Krausová
- Faculty of Chemistry, Department of Food Chemistry and Toxicology, University of Vienna, Währinger Straße 38, 1090, Vienna, Austria
| | - Kolawole I Ayeni
- Faculty of Chemistry, Department of Food Chemistry and Toxicology, University of Vienna, Währinger Straße 38, 1090, Vienna, Austria
- Department of Microbiology, Babcock University, Ilishan Remo, Ogun State, Nigeria
| | - Lukas Wisgrill
- Division of Neonatology, Pediatric Intensive Care and Neuropediatrics, Comprehensive Center for Pediatrics, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, 1090, Vienna, Austria
| | - Chibundu N Ezekiel
- Department of Microbiology, Babcock University, Ilishan Remo, Ogun State, Nigeria
| | - Dominik Braun
- Faculty of Chemistry, Department of Food Chemistry and Toxicology, University of Vienna, Währinger Straße 38, 1090, Vienna, Austria
| | - Benedikt Warth
- Faculty of Chemistry, Department of Food Chemistry and Toxicology, University of Vienna, Währinger Straße 38, 1090, Vienna, Austria.
| |
Collapse
|
9
|
Wang X, Zhao Y, Qi X, Zhao T, Wang X, Ma F, Zhang L, Zhang Q, Li P. Quantitative analysis of metabolites in the aflatoxin biosynthesis pathway for early warning of aflatoxin contamination by UHPLC-HRMS combined with QAMS. JOURNAL OF HAZARDOUS MATERIALS 2022; 431:128531. [PMID: 35220124 DOI: 10.1016/j.jhazmat.2022.128531] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/15/2022] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
Aflatoxins seriously threaten human health and food safety, and early warning benefits the reasonable use of control measures to reduce aflatoxin contamination. In this study, a novel method for quantifying aflatoxins and their precursors in the aflatoxin biosynthesis pathway was developed by combining ultra-high performance liquid chromatography high-resolution mass spectrometry (UHPLC-HRMS) with quantitative analysis of multi-components by a single marker (QAMS). The stability of the relative correction factor (RCF) of QAMS was then systematically evaluated. The validation results showed that the relative deviation (RD) between QAMS and the external standard method (ESM) was less than 11.7%, indicating that the established QAMS method could replace ESM without the use of reference standards. This method was successfully employed to compare the time-course changes of metabolites in the aflatoxin biosynthesis pathway of Aspergillus flavus and Aspergillus parasitica. As a result, the precursors of (1'S,5'R)-5'-Hydroxyaverantin (HAVN) and Versicolorin B (VerB) could be used as potential markers for the early warning of aflatoxin contamination. This study provided a quantitative method of aflatoxins and their precursors in the biosynthesis pathway, and may serve as a reference for the extension of quantitative studies on other metabolic pathways.
Collapse
Affiliation(s)
- Xiao Wang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Ya Zhao
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Xin Qi
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Tiantian Zhao
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Xiupin Wang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Fei Ma
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China; Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Liangxiao Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China; Hubei Hongshan Laboratory, Wuhan 430070, China.
| | - Qi Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Peiwu Li
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China; Hubei Hongshan Laboratory, Wuhan 430070, China.
| |
Collapse
|
10
|
Diniz GFD, Figueiredo JEF, Lana UGP, Marins MS, Silva DD, Cota LV, Marriel IE, Oliveira-Paiva CA. Microorganisms from corn stigma with biocontrol potential of Fusarium verticillioides. BRAZ J BIOL 2022; 82:e262567. [DOI: 10.1590/1519-6984.262567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 08/01/2022] [Indexed: 12/23/2022] Open
Abstract
Abstract The mycotoxigenic fungus Fusarium verticillioides is the primary maize pathogen and causes the maize stalk and ear rot diseases with significant economic losses. Furthermore, the excessive use of fungicides to control F. verticillioides constitutes threats to the environment and human health. Thus, sustainable alternatives such as biological control are needed to minimize the hazards associated with the current method. Although much is known about the vulnerability of the maize silks as a gateway for several fungal pathogens invading the developing grains, studies on the chemical properties of silk extracts and their resident microbiota are scarce. This study isolated and characterized bacteria and fungi that colonize the maize stigma to assess new potential biocontrol agents. The samples were collected from maize fields in the Brazilian localities of Sete Lagoas-MG, Sidrolândia-MS, Sertaneja-PR, and Goiânia-GO. One hundred sixty-seven microorganisms were isolated, 46% endophytic and 54% epiphytic. First, the antagonist activity was evaluated by the agar disc diffusion method performed in triplicate, and 83% of the isolates showed antagonist activity against F. verticillioides. Then, the 42 most efficient isolates were identified based on the partial sequencing of the bacterial 16S rRNA gene and fungi ITS region. The bacteria belong to the genera Bacillus (57.1%), Burkholderia (23.8%), Achromobacter (7.1%), Pseudomonas (2.4%), and Serratia (2.4%), while the fungi are Penicillium (2.4%), Candida (2.4), and Aspergillus (2.4%). The results showed that microorganisms from maize stigma might represent new promising agents for F. verticillioides control.
Collapse
|
11
|
Nóbrega BB, Soares DMM, Zamuner CK, Stevani CV. Optimized methodology for obtention of high-yield and -quality RNA from the mycelium of the bioluminescent fungus Neonothopanus gardneri. J Microbiol Methods 2021; 191:106348. [PMID: 34699864 DOI: 10.1016/j.mimet.2021.106348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/18/2021] [Accepted: 10/18/2021] [Indexed: 10/20/2022]
Abstract
Neonothopanus gardneri, also known as coconut flower mushroom (flor-de-coco), is a Brazilian bioluminescent basidiomycete found in Palm Forest, a transitional biome between the Amazonian Forest and Caatinga (Savanna-like vegetation) in Northeast Brazil, especially in Piauí State. Recent advances toward the elucidation of fungal bioluminescence have contributed to the discovery of four genes (hisps, h3h, luz and cph) involved with the bioluminescence process, the so-called Caffeic Acid Cycle (CAC) and to develop biotechnological applications such autoluminescent tobacco plants and luciferase-based reporter genes. High-yield and -quality RNA-extraction methods are required for most of these purposes. Herein, four methods for RNA isolation from the mycelium of N. gardneri were evaluated: RNeasy® kit (QIAGEN), TRI+, TRI18G+, and TRI26G+. Highest RNA yield was observed for TRI18G+ and TRI26G+ methods, an increase of ~130% in comparison to the RNeasy® method and of ~40% to the TRI+ protocol. All the RNA samples showed good purity and integrity, except by gDNA contamination in RNA samples produced with the RNeasy® method. High quality of RNA samples was confirmed by successful cDNA synthesis and PCR amplification of the coding sequence of h3h gene, responsible for the hydroxylation of the precursor of fungal luciferin (3-hydroxyhispidin). Similarly, RT-qPCR amplification of ef-tu gene, related to the protein biosynthesis in the cell, was demonstrated from RNA samples. This is the first report of a reproducible, time-saving and low-cost optimized method for isolation of high-quality and -yield, DNA-free RNA from a bioluminescent fungus, but that can also be useful for other basidiomycetes.
Collapse
Affiliation(s)
- Bianca B Nóbrega
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil; Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Douglas M M Soares
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil.
| | - Caio K Zamuner
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Cassius V Stevani
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
12
|
Fusarium verticillioides and Aspergillus flavus Co-Occurrence Influences Plant and Fungal Transcriptional Profiles in Maize Kernels and In Vitro. Toxins (Basel) 2021; 13:toxins13100680. [PMID: 34678972 PMCID: PMC8537323 DOI: 10.3390/toxins13100680] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/09/2021] [Accepted: 09/17/2021] [Indexed: 12/26/2022] Open
Abstract
Climate change will increase the co-occurrence of Fusarium verticillioides and Aspergillus flavus, along with their mycotoxins, in European maize. In this study, the expression profiles of two pathogenesis-related (PR) genes and four mycotoxin biosynthetic genes, FUM1 and FUM13, fumonisin pathway, and aflR and aflD, aflatoxin pathway, as well as mycotoxin production, were examined in kernels and in artificial medium after a single inoculation with F. verticillioides or A. flavus or with the two fungi in combination. Different temperature regimes (20, 25 and 30 °C) over a time-course of 21 days were also considered. In maize kernels, PR genes showed the strongest induction at 25 °C in the earlier days post inoculation (dpi)with both fungi inoculated singularly. A similar behaviour was maintained with fungi co-occurrence, but with enhanced defence response at 9 dpi under 20 °C. Regarding FUM genes, in the kernels inoculated with F. verticillioides the maximal transcript levels occurred at 6 dpi at 25 °C. At this temperature regime, expression values decreased with the co-occurrence of A. flavus, where the highest gene induction was detected at 20 °C. Similar results were observed in fungi grown in vitro, whilst A. flavus presence determined lower levels of expression along the entire time-course. As concerns afl genes, considering both A. flavus alone and in combination, the most elevated transcript accumulation occurred at 30 °C during all time-course both in infected kernels and in fungi grown in vitro. Regarding mycotoxin production, no significant differences were found among temperatures for kernel contamination, whereas in vitro the highest production was registered at 25 °C for aflatoxin B1 and at 20 °C for fumonisins in the case of single inoculation. In fungal co-occurrence, both mycotoxins resulted reduced at all the temperatures considered compared to the amount produced with single inoculation.
Collapse
|
13
|
Influence of H 2O 2-Induced Oxidative Stress on In Vitro Growth and Moniliformin and Fumonisins Accumulation by Fusarium proliferatum and Fusarium subglutinans. Toxins (Basel) 2021; 13:toxins13090653. [PMID: 34564657 PMCID: PMC8473447 DOI: 10.3390/toxins13090653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/07/2021] [Accepted: 09/13/2021] [Indexed: 11/18/2022] Open
Abstract
Fusarium proliferatum and Fusarium subglutinans are common pathogens of maize which are known to produce mycotoxins, including moniliformin (MON) and fumonisins (FBs). Fungal secondary metabolism and response to oxidative stress are interlaced, where hydrogen peroxide (H2O2) plays a pivotal role in the modulation of mycotoxin production. The objective of this study is to examine the effect of H2O2-induced oxidative stress on fungal growth, as well as MON and FBs production, in different isolates of these fungi. When these isolates were cultured in the presence of 1, 2, 5, and 10 mM H2O2, the fungal biomass of F. subglutinans isolates showed a strong sensitivity to increasing oxidative conditions (27–58% reduction), whereas F. proliferatum isolates were not affected or even slightly improved (45% increase). H2O2 treatment at the lower concentration of 1 mM caused an almost total disappearance of MON and a strong reduction of FBs content in the two fungal species and isolates tested. The catalase activity, surveyed due to its crucial role as an H2O2 scavenger, showed no significant changes at 1 mM H2O2 treatment, thus indicating a lack of correlation with MON and FB changes. H2O2 treatment was also able to reduce MON and FB content in certified maize material, and the same behavior was observed in the presence and absence of these fungi, highlighting a direct effect of H2O2 on the stability of these mycotoxins. Taken together, these data provide insights into the role of H2O2 which, when increased under stress conditions, could affect the vegetative response and mycotoxin production (and degradation) of these fungi.
Collapse
|
14
|
A review of mycotoxin biosynthetic pathways: associated genes and their expressions under the influence of climatic factors. FUNGAL BIOL REV 2021. [DOI: 10.1016/j.fbr.2021.04.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
15
|
Transmitting silks of maize have a complex and dynamic microbiome. Sci Rep 2021; 11:13215. [PMID: 34168223 PMCID: PMC8225909 DOI: 10.1038/s41598-021-92648-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/14/2021] [Indexed: 12/21/2022] Open
Abstract
In corn/maize, silks emerging from cobs capture pollen, and transmit resident sperm nuclei to eggs. There are > 20 million silks per U.S. maize acre. Fungal pathogens invade developing grain using silk channels, including Fusarium graminearum (Fg, temperate environments) and devastating carcinogen-producers (Africa/tropics). Fg contaminates cereal grains with mycotoxins, in particular Deoxynivalenol (DON), known for adverse health effects on humans and livestock. Fitness selection should promote defensive/healthy silks. Here, we report that maize silks, known as styles in other plants, possess complex and dynamic microbiomes at the critical pollen-fungal transmission interval (henceforth: transmitting style microbiome, TSM). Diverse maize genotypes were field-grown in two trial years. MiSeq 16S rRNA gene sequencing of 328 open-pollinated silk samples (healthy/Fg-infected) revealed that the TSM contains > 5000 taxa spanning the prokaryotic tree of life (47 phyla/1300 genera), including nitrogen-fixers. The TSM of silk tip tissue displayed seasonal responsiveness, but possessed a reproducible core of 7–11 MiSeq-amplicon sequence variants (ASVs) dominated by a single Pantoea MiSeq-taxon (15–26% of sequence-counts). Fg-infection collapsed TSM diversity and disturbed predicted metabolic functionality, but doubled overall microbiome size/counts, primarily by elevating 7–25 MiSeq-ASVs, suggestive of a selective microbiome response against infection. This study establishes the maize silk as a model for fundamental/applied research of plant reproductive microbiomes.
Collapse
|
16
|
Leggieri MC, Toscano P, Battilani P. Predicted Aflatoxin B 1 Increase in Europe Due to Climate Change: Actions and Reactions at Global Level. Toxins (Basel) 2021; 13:292. [PMID: 33924246 PMCID: PMC8074758 DOI: 10.3390/toxins13040292] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/16/2021] [Accepted: 04/18/2021] [Indexed: 02/07/2023] Open
Abstract
Climate change (CC) is predicted to increase the risk of aflatoxin (AF) contamination in maize, as highlighted by a project supported by EFSA in 2009. We performed a comprehensive literature search using the Scopus search engine to extract peer-reviewed studies citing this study. A total of 224 papers were identified after step I filtering (187 + 37), while step II filtering identified 25 of these papers for quantitative analysis. The unselected papers (199) were categorized as "actions" because they provided a sounding board for the expected impact of CC on AFB1 contamination, without adding new data on the topic. The remaining papers were considered as "reactions" of the scientific community because they went a step further in their data and ideas. Interesting statements taken from the "reactions" could be summarized with the following keywords: Chain and multi-actor approach, intersectoral and multidisciplinary, resilience, human and animal health, and global vision. In addition, fields meriting increased research efforts were summarized as the improvement of predictive modeling; extension to different crops and geographic areas; and the impact of CC on fungi and mycotoxin co-occurrence, both in crops and their value chains, up to consumers.
Collapse
Affiliation(s)
- Marco Camardo Leggieri
- Department of Sustainable Crop Production (DI.PRO.VE.S.), Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy;
| | - Piero Toscano
- IBE-CNR, Institute of BioEconomy-National Research Council, Via Giovanni Caproni 8, 50145 Florence, Italy;
| | - Paola Battilani
- Department of Sustainable Crop Production (DI.PRO.VE.S.), Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy;
| |
Collapse
|
17
|
Lilly M, Rheeder J, Proctor R, Gelderblom W. FUM gene expression and variation in fumonisin production of clonal isolates of Fusarium verticillioides MRC 826. WORLD MYCOTOXIN J 2021. [DOI: 10.3920/wmj2020.2626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
B-series fumonisins (FBs) are a family of carcinogenic mycotoxins that commonly occur in maize. These mycotoxins cause multiple diseases in animals and are epidemiologically associated with several human diseases in populations for which maize is a dietary staple. FBs are produced by multiple genera of the fungi Aspergillus, Fusarium and Tolypocladium, but the plant pathogen Fusarium verticillioides is considered the primary cause of FB contamination in maize. One F. verticillioides strain, MRC 826, is reported to produce high levels of FBs. However, in the current study, 18 isolates derived from strain MRC 826 exhibited highly variable levels of FB, which negatively correlated (r=-0.333; P<0.008) with fungal growth. Microsatellite analysis confirmed that all MRC 826 derived isolates examined were clonal, and 100% DNA sequence identity was observed across the FUM gene clusters of two high FB producing and two low FB producing isolates. At the gene expression level, qRT-PCR at each time point (7, 14, 21 and 28 days of incubation) showed differential upregulation of selected FUM genes in the high compared to the low FB isolates. Variation in FB production appears due to differences in FUM gene expression, most likely caused by sequence differences at unexamined loci not part of the FUM cluster or from epigenetic influences. Clarification of the genetic/epigenetic basis for quantitative differences in fumonisin production among strains and isolates of F. verticillioides has potential to reveal targets for reducing FB contamination in maize.
Collapse
Affiliation(s)
- M. Lilly
- Applied Microbial and Health Biotechnology Institute, Cape Peninsula University of Technology, P.O. Box 1906, Bellville 7535, South Africa
| | - J.P. Rheeder
- Applied Microbial and Health Biotechnology Institute, Cape Peninsula University of Technology, P.O. Box 1906, Bellville 7535, South Africa
- Department of Biotechnology and Consumer Science, Cape Peninsula University of Technology, P.O. Box 1906, Bellville 7535, South Africa
| | - R.H. Proctor
- US Department of Agriculture, Agriculture Research Service, National Center for Agricultural Utilization Research, Mycotoxin Prevention and Applied Microbiology Research Unit, 1815 N. University St., Peoria, IL 61604, USA
| | - W.C.A. Gelderblom
- Applied Microbial and Health Biotechnology Institute, Cape Peninsula University of Technology, P.O. Box 1906, Bellville 7535, South Africa
- Department of Biochemistry, Stellenbosch University, Private Bag X9, 7602 Matieland, South Africa
| |
Collapse
|
18
|
Carbas B, Simões D, Soares A, Freitas A, Ferreira B, Carvalho ARF, Silva AS, Pinto T, Diogo E, Andrade E, Brites C. Occurrence of Fusarium spp. in Maize Grain Harvested in Portugal and Accumulation of Related Mycotoxins during Storage. Foods 2021; 10:375. [PMID: 33572250 PMCID: PMC7915971 DOI: 10.3390/foods10020375] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 12/19/2022] Open
Abstract
Maize is an important worldwide commodity susceptible to fungal contamination in the field, at harvest, and during storage. This work aimed to determine the occurrence of Fusarium spp. in maize grains produced in the Tagus Valley region of Portugal and the levels of related mycotoxins in the 2018 harvest and during their storage for six months in barrels, mimicking silos conditions. Continuous monitoring of temperature, CO2, and relative humidity levels were done, as well as the concentration of mycotoxins were evaluated and correlated with the presence of Fusarium spp. F. verticillioides was identified as the predominant Fusarium species. Zearalenone, deoxynivalenol and toxin T2 were not found at harvest and after storage. Maize grains showed some variability in the levels of fumonisins (Fum B1 and Fum B2). At the harvest, fumonisin B1 ranged from 1297 to 2037 µg/kg, and fumonisin B2 ranged from 411 to 618 µg/kg. Fumonisins showed a tendency to increase (20 to 40%) during six months of storage. Although a correlation between the levels of fumonisins and the monitoring parameters was not established, CO2 levels may be used to predict fungal activity during storage. The composition of the fungal population during storage may predict the incidence of mycotoxins.
Collapse
Affiliation(s)
- Bruna Carbas
- National Institute for Agricultural and Veterinary Research (INIAV), I.P., Av. da República, Quinta do Marquês, 2780-157 Oeiras, Portugal; (B.C.); (D.S.); (A.S.); (A.F.); (A.S.S.); (E.D.); (E.A.)
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro (CITAB-UTAD), 5000-801 Vila Real, Portugal
| | - Daniela Simões
- National Institute for Agricultural and Veterinary Research (INIAV), I.P., Av. da República, Quinta do Marquês, 2780-157 Oeiras, Portugal; (B.C.); (D.S.); (A.S.); (A.F.); (A.S.S.); (E.D.); (E.A.)
| | - Andreia Soares
- National Institute for Agricultural and Veterinary Research (INIAV), I.P., Av. da República, Quinta do Marquês, 2780-157 Oeiras, Portugal; (B.C.); (D.S.); (A.S.); (A.F.); (A.S.S.); (E.D.); (E.A.)
| | - Andreia Freitas
- National Institute for Agricultural and Veterinary Research (INIAV), I.P., Av. da República, Quinta do Marquês, 2780-157 Oeiras, Portugal; (B.C.); (D.S.); (A.S.); (A.F.); (A.S.S.); (E.D.); (E.A.)
| | - Bruno Ferreira
- ISQ—Intelligent & Digital Systems, R&Di, Instituto de Soldadura e Qualidade, 4415-491 Grijó, Portugal; (B.F.); (A.R.F.C.)
- Universidade Lusíada—Norte & COMEGI, 4760-108 Vila Nova de Famalicão, Portugal
| | - Alexandre R. F. Carvalho
- ISQ—Intelligent & Digital Systems, R&Di, Instituto de Soldadura e Qualidade, 4415-491 Grijó, Portugal; (B.F.); (A.R.F.C.)
| | - Ana Sanches Silva
- National Institute for Agricultural and Veterinary Research (INIAV), I.P., Av. da República, Quinta do Marquês, 2780-157 Oeiras, Portugal; (B.C.); (D.S.); (A.S.); (A.F.); (A.S.S.); (E.D.); (E.A.)
- Centre for Animal Science Studies (CECA), ICETA, University of Porto, 4051-401 Porto, Portugal
| | - Tiago Pinto
- ANPROMIS—Associação Nacional dos Produtores de Milho e do Sorgo, Rua Mestre Lima de Freitas nº 1–5º Andar, 1549-012 Lisboa, Portugal;
| | - Eugénio Diogo
- National Institute for Agricultural and Veterinary Research (INIAV), I.P., Av. da República, Quinta do Marquês, 2780-157 Oeiras, Portugal; (B.C.); (D.S.); (A.S.); (A.F.); (A.S.S.); (E.D.); (E.A.)
- BioISI—Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisboa, Portugal
| | - Eugénia Andrade
- National Institute for Agricultural and Veterinary Research (INIAV), I.P., Av. da República, Quinta do Marquês, 2780-157 Oeiras, Portugal; (B.C.); (D.S.); (A.S.); (A.F.); (A.S.S.); (E.D.); (E.A.)
- GREEN-IT Bioresources for Sustainability, ITQB NOVA, Av. da República, 2780-157 Oeiras, Portugal
| | - Carla Brites
- National Institute for Agricultural and Veterinary Research (INIAV), I.P., Av. da República, Quinta do Marquês, 2780-157 Oeiras, Portugal; (B.C.); (D.S.); (A.S.); (A.F.); (A.S.S.); (E.D.); (E.A.)
- GREEN-IT Bioresources for Sustainability, ITQB NOVA, Av. da República, 2780-157 Oeiras, Portugal
| |
Collapse
|
19
|
Valencia-Quintana R, Milić M, Jakšić D, Šegvić Klarić M, Tenorio-Arvide MG, Pérez-Flores GA, Bonassi S, Sánchez-Alarcón J. Environment Changes, Aflatoxins, and Health Issues, a Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E7850. [PMID: 33120863 PMCID: PMC7672603 DOI: 10.3390/ijerph17217850] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/28/2020] [Accepted: 10/04/2020] [Indexed: 12/22/2022]
Abstract
Crops contaminated by aflatoxins (AFs), the toxic and carcinogenic mycotoxins produced namely by Aspergillus flavus and Aspergillus parasiticus, have severe impacts on human health. Changes in temperature and water availability related to actual climate changes (increased temperature, heavy rainfalls, and droughts) are modulating factors of mould growth and production of mycotoxins. To protect human and animal health from the harmful effects caused by AFs, the development of a safe and effective multifaceted approach in combating food and feed contamination with AFs is necessary. This review aims to collect and analyze the available information regarding AF presence in food and feed to reinforce AF management and to prevent health issues related to the AF exposure in the light of actual climate changes.
Collapse
Affiliation(s)
- Rafael Valencia-Quintana
- Facultad de Agrobiología, Universidad Autónoma de Tlaxcala, Tlaxcala 90120, Mexico; (R.V.-Q.); (G.A.P.-F.)
| | - Mirta Milić
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000 Zagreb, Croatia;
| | - Daniela Jakšić
- Department of Microbiology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Schrottova 39, 10000 Zagreb, Croatia; (D.J.); (M.Š.K.)
| | - Maja Šegvić Klarić
- Department of Microbiology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Schrottova 39, 10000 Zagreb, Croatia; (D.J.); (M.Š.K.)
| | | | | | - Stefano Bonassi
- Department of Human Sciences and Quality of Life Promotion, San Raffaele University, 00166 Rome, Italy;
- Unit of Clinical and Molecular Epidemiology IRCCS San Raffaele Pisana, 00166 Rome, Italy
| | - Juana Sánchez-Alarcón
- Facultad de Agrobiología, Universidad Autónoma de Tlaxcala, Tlaxcala 90120, Mexico; (R.V.-Q.); (G.A.P.-F.)
| |
Collapse
|
20
|
Gizachew D, De La Torre S, Szonyi B, Ting WE. Effects of oilseed substrates (ground nyjer and flax seeds) on the growth and Ochratoxin A production by
Aspergillus carbonarius. J Food Saf 2020. [DOI: 10.1111/jfs.12826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Dawit Gizachew
- Department of Chemistry and Physics Purdue University Northwest Hammond Indiana USA
| | - Sandra De La Torre
- Department of Chemistry and Physics Purdue University Northwest Hammond Indiana USA
| | | | - Wei‐tsyi Evert Ting
- Department of Biological Sciences Purdue University Northwest Hammond Indiana USA
| |
Collapse
|
21
|
Larran S, Santamarina Siurana MP, Roselló Caselles J, Simón MR, Perelló A. In Vitro Antagonistic Activity of Trichoderma harzianum against Fusarium sudanense Causing Seedling Blight and Seed Rot on Wheat. ACS OMEGA 2020; 5:23276-23283. [PMID: 32954178 PMCID: PMC7495787 DOI: 10.1021/acsomega.0c03090] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/14/2020] [Indexed: 06/02/2023]
Abstract
Fusarium sudanense is a novel fungus recently isolated from asymptomatic samples of wheat grains in Argentina. The fungus caused symptoms of seedling blight and seed rot on wheat after artificial inoculations. It is known that the production of mycotoxins by pathogens belonging to the Fusarium genus is harmful to human and animal health. Moreover, the warm and humid conditions that are favorable for growth and mycotoxin production of these species put the Argentinian wheat production area at a high risk of mycotoxin contamination with this novel pathogen. The aim of this work was to evaluate the antagonistic effect of Trichoderma harzianum against F. sudanense under in vitro tests at different environmental conditions. Fungi were screened in dual culture at different water activities (αw) (0.995, 0.98, 0.95, and 0.90) and temperatures (25 and 15 °C). The growth rate of the fungi, interaction types, and dominance index were evaluated. Also, the interaction between T. harzianum and F. sudanense was examined by light and cryo-scanning microscopy. T. harzianum suppressed the growth of F. sudanense at 0.995, 0.98, and 0.95 αw at 25 °C and 0.995 and 0.98 αw at 15 °C. Macroscopic study revealed different interaction types between F. sudanense and T. harzianum on dual culture. Dominance on contact where the colonies of T. harzianum overgrew the pathogen was the most common interaction type determined. The competitive capacity of T. harzianum was diminished by decreasing the temperature and αw. At 0.95 αw and 15 °C, both fungi grew slowly, and interaction type "A" was assigned. Microscopic analysis from the interaction zone of dual cultures revealed an attachment of T. harzianum to the F. sudanense hyphae, penetration with or without formation of appressorium-like structures, coiling, plasmolysis, and a veil formation. According to our results, T. harzianum demonstrated capability to antagonize F. sudanense and could be a promising biocontrol agent.
Collapse
Affiliation(s)
- Silvina Larran
- Centro
de Investigaciones de Fitopatología (CIDEFI-UNLP-CIC), Facultad
de Ciencias Agrarias y Forestales, Universidad
Nacional de La Plata, 60 y 119, CC
31, La Plata B1900, Buenos
Aires, Argentina
| | - M. Pilar Santamarina Siurana
- Departamento
de Ecosistemas Agroforestales, Escuela Técnica Superior de
Ingeniería Agronómica y del Medio Natural, Universitat Politècnica de València, Camino de Vera s/n, Valencia 46022, Spain
| | - Josefa Roselló Caselles
- Departamento
de Ecosistemas Agroforestales, Escuela Técnica Superior de
Ingeniería Agronómica y del Medio Natural, Universitat Politècnica de València, Camino de Vera s/n, Valencia 46022, Spain
| | - María Rosa Simón
- Facultad
de Ciencias Agrarias y Forestales, Universidad
Nacional de La Plata, 60 y 119, CC
31, La Plata B1900, Buenos
Aires, Argentina
- Comisión
de Investigaciones Científicas de la Provincia de Buenos Aires
(CICBA), La Plata B1900, Buenos Aires, Argentina
| | - Analía Perelló
- Centro
de Investigaciones de Fitopatología (CIDEFI-UNLP-CIC), Facultad
de Ciencias Agrarias y Forestales, Universidad
Nacional de La Plata, 60 y 119, CC
31, La Plata B1900, Buenos
Aires, Argentina
- Consejo
Nacional de Investigaciones Científicas y Técnicas (CONICET), La Plata B1904, Buenos Aires, Argentina
| |
Collapse
|
22
|
Akbar A, Medina A, Magan N. Resilience of Aspergillus westerdijkiae Strains to Interacting Climate-Related Abiotic Factors: Effects on Growth and Ochratoxin A Production on Coffee-Based Medium and in Stored Coffee. Microorganisms 2020; 8:E1268. [PMID: 32825420 PMCID: PMC7569885 DOI: 10.3390/microorganisms8091268] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/16/2020] [Accepted: 08/17/2020] [Indexed: 11/16/2022] Open
Abstract
We examined the resilience of strains of Aspergillus westerdijkiae in terms of growth and ochratoxin A (OTA) production in relation to: (a) two-way interacting climate-related abiotic factors of water activity (aw, 0.99-0.90) × temperature (25-37 °C) on green coffee and roasted coffee-based media; (b) three-way climate-related abiotic factors (temperature, 30 vs. 35 °C; water stress, 0.98-0.90 aw; CO2, 400 vs. 1000 ppm) on growth and OTA production on a 6% green coffee extract-based matrix; and (c) the effect of three-way climate-related abiotic factors on OTA production in stored green coffee beans. Four strains of A. westerdijkiae grew equally well on green or roasted coffee-based media with optimum 0.98 aw and 25-30 °C. Growth was significantly slower on roasted than green coffee-based media at 35 °C, regardless of aw level. Interestingly, on green coffee-based media OTA production was optimum at 0.98-0.95 aw and 30 °C. However, on roasted coffee-based media very little OTA was produced. Three-way climate-related abiotic factors were examined on two of these strains. These interacting factors significantly reduced growth of the A. westerdijkiae strains, especially at 35 °C × 1000 ppm CO2 and all aw levels when compared to 30 °C. At 35 °C × 1000 ppm CO2 there was some stimulation of OTA production by the two A. westerdijkiae strains, especially under water stress. In stored green coffee beans optimum OTA was produced at 0.95-0.97 aw/30 °C. In elevated CO2 and 35 °C, OTA production was stimulated at 0.95-0.90 aw.
Collapse
Affiliation(s)
| | | | - Naresh Magan
- Applied Mycology Group, School of Water, Energy and Environment, Cranfield University, Cranfield, Bedfordshire MK43 0AL, UK; (A.A.); (A.M.)
| |
Collapse
|
23
|
García-Díaz M, Gil-Serna J, Vázquez C, Botia MN, Patiño B. A Comprehensive Study on the Occurrence of Mycotoxins and Their Producing Fungi during the Maize Production Cycle in Spain. Microorganisms 2020; 8:E141. [PMID: 31968531 PMCID: PMC7023295 DOI: 10.3390/microorganisms8010141] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/16/2020] [Accepted: 01/18/2020] [Indexed: 11/16/2022] Open
Abstract
Mycotoxin contamination is one of the main problems affecting corn production, due to its significant risk to human and animal health. The Fusarium and Aspergillus species are the main producers of mycotoxins in maize, infecting both pre-harvest and during storage. In this work, we evaluated the presence of mycotoxins and their producing species along maize production cycles in three different stages (anthesis, harvest, and storage) during three consecutive seasons (2016-2018). Fungal occurrences were studied using species-specific PCR protocols, whereas mycotoxin levels were determined by LC-MS/MS. Fumonisin-producing Fusarium species (F. verticillioides and F. proliferatum), as well as the aflatoxin producer Aspergillus flavus, were the most predominant species at all stages; although, during some seasons, the presence of F. graminearum and A. niger aggregate species were also identified. Contrastingly, fumonisins were the only mycotoxins detected and levels were always under legal regulations. The results presented here demonstrate that even when fungal contamination occurs at the early stages of the maize production cycle, the application of good agricultural and storage practices might be crucial to ensure mycotoxin-free grains.
Collapse
Affiliation(s)
- Marta García-Díaz
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, University Complutense of Madrid, Jose Antonio Novais 12, 28040 Madrid, Spain; (M.G.-D.); (C.V.); (B.P.)
| | - Jéssica Gil-Serna
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, University Complutense of Madrid, Jose Antonio Novais 12, 28040 Madrid, Spain; (M.G.-D.); (C.V.); (B.P.)
| | - Covadonga Vázquez
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, University Complutense of Madrid, Jose Antonio Novais 12, 28040 Madrid, Spain; (M.G.-D.); (C.V.); (B.P.)
| | | | - Belén Patiño
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, University Complutense of Madrid, Jose Antonio Novais 12, 28040 Madrid, Spain; (M.G.-D.); (C.V.); (B.P.)
| |
Collapse
|
24
|
Nazareth TDM, Luz C, Torrijos R, Quiles JM, Luciano FB, Mañes J, Meca G. Potential Application of Lactic Acid Bacteria to Reduce Aflatoxin B 1 and Fumonisin B 1 Occurrence on Corn Kernels and Corn Ears. Toxins (Basel) 2019; 12:E21. [PMID: 31906161 PMCID: PMC7020406 DOI: 10.3390/toxins12010021] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/27/2019] [Accepted: 12/28/2019] [Indexed: 01/19/2023] Open
Abstract
Fungal spoilage is an important issue for the food industry, leading to food sensory defects, food waste, economic losses and public health concern through the production of mycotoxins. Concomitantly, the search for safer natural products has gained importance since consumers began to look for less processed and chemically treated foods. In this context, the aim of this study was to evaluate the antifungal and antimycotoxigenic effect of seven strains of Lactobacillus plantarum. Lactic acid bacteria (LAB) were grown on Man Rogosa Sharpe (MRS) broth at 37 ºC in anaerobic conditions. After that, the cell-free supernatant (CFS) were recovered to determine its antifungal activity by halo diffusion agar test. In addition, minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) was determined for each L. plantarum CFS by 96-well microplates method. Additionally, CFS was used as a natural biocontrol agent on corn kernels and corn ears contaminated with Aspergillus flavus and Fusarium verticillioides, respectively. The L. plantarum CECT 749 CFS showed the highest antifungal effect against all essayed strains. Moreover, the employment of this CFS in food reduced the mycotoxin production at a percentage ranging from 73.7 to 99.7%. These results suggest that the L. plantarum CECT 749 CFS could be promising for the biocontrol of corn.
Collapse
Affiliation(s)
- Tiago de Melo Nazareth
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Spain; (C.L.); (R.T.); (J.M.Q.); (J.M.)
- School of Life Sciences, Pontifícia Universidade Católica do Paraná, st. Imaculada Conceição 1155, Curitiba 80215-901, PR, Brazil;
| | - Carlos Luz
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Spain; (C.L.); (R.T.); (J.M.Q.); (J.M.)
| | - Raquel Torrijos
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Spain; (C.L.); (R.T.); (J.M.Q.); (J.M.)
| | - Juan Manuel Quiles
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Spain; (C.L.); (R.T.); (J.M.Q.); (J.M.)
| | - Fernando Bittencourt Luciano
- School of Life Sciences, Pontifícia Universidade Católica do Paraná, st. Imaculada Conceição 1155, Curitiba 80215-901, PR, Brazil;
| | - Jordi Mañes
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Spain; (C.L.); (R.T.); (J.M.Q.); (J.M.)
| | - Giuseppe Meca
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Spain; (C.L.); (R.T.); (J.M.Q.); (J.M.)
| |
Collapse
|
25
|
Adnan M, Islam W, Noman A, Hussain A, Anwar M, Khan MU, Akram W, Ashraf MF, Raza MF. Q-SNARE protein FgSyn8 plays important role in growth, DON production and pathogenicity of Fusarium graminearum. Microb Pathog 2019; 140:103948. [PMID: 31874229 DOI: 10.1016/j.micpath.2019.103948] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 12/15/2019] [Accepted: 12/20/2019] [Indexed: 10/25/2022]
Abstract
SNAREs (Soluble N-ethylmaleimide-sensitive factor attachment protein receptors) help intracellular vesicle trafficking and membrane fusion among eukaryotes. They are vital for growth and development of phyto-pathogenic fungi such as Fusarium graminearum which causes Fusarium Head Blight (FHB) of wheat and barley. The SNARE protein Syn8 and its homologues play many roles among different organisms. Here, we have characterized FgSyn8 in F. graminearum as a homologue of Syn8. We have integrated biochemical, microbiological and molecular genetic approaches to investigate the roles of this protein. Our results reveal that FgSyn8 is indispensable for normal vegetative growth, conidiation, conidial morphology and pathogenicity of F. graminearum. Deoxynivalenol (DON) biochemical assay reveals active participation of this protein in DON production of F. graminearum. This has further been confirmed by the production of bulbous structures among the intercalary hyphae. FgSyn8 mutant strain produced defects in perithecia formation which portrays its role in sexual reproduction. In summary, our results support that the SNARE protein FgSyn8 is required for vegetative growth, sexual reproduction, DON production and pathogenicity of F. graminearum.
Collapse
Affiliation(s)
- Muhammad Adnan
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Biopesticides and Chemical Biology of Education Ministry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Waqar Islam
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Institute of Geography, Fujian Normal University, Fuzhou, China
| | - Ali Noman
- Department of Botany, Government College University, Faisalabad, Pakistan
| | - Ansar Hussain
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, Ghazi University, Dera Ghazi Khan, Pakistan
| | - Muhammad Anwar
- Guangdong Technology Research Centre for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Muhammad Umar Khan
- Fujian Provincial Key Laboratory of Agro-Ecology Processing and Safety Monitoring, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Waheed Akram
- Guangdong Agriculture Institute, Guangzhou, China
| | | | - Muhammad Fahad Raza
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
26
|
R-SNARE FgSec22 is essential for growth, pathogenicity and DON production of Fusarium graminearum. Curr Genet 2019; 66:421-435. [DOI: 10.1007/s00294-019-01037-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/02/2019] [Accepted: 10/09/2019] [Indexed: 01/10/2023]
|
27
|
Giorni P, Bertuzzi T, Battilani P. Impact of Fungi Co-occurrence on Mycotoxin Contamination in Maize During the Growing Season. Front Microbiol 2019; 10:1265. [PMID: 31244797 PMCID: PMC6563760 DOI: 10.3389/fmicb.2019.01265] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 05/22/2019] [Indexed: 12/25/2022] Open
Abstract
Maize is a possible host of many fungi, some of them able to produce different mycotoxins. Few studies exist on co-occurring fungi and resulting multi-mycotoxin contamination in field; for this reason, in field trials were conducted in two consecutive years to verify fungal incidence and mycotoxin production in the case of the co-occurrence of the three main mycotoxigenic fungi of maize in Italy: Aspergillus flavus, Fusarium verticillioides, and Fusarium graminearum able to produce, respectively, aflatoxin B1 (AFB1), fumonisins (FBs), and deoxynivalenol (DON). Artificial inoculation was done after silk emergence of maize and samples were collected with a 2 week schedule up to harvest time (four samplings). Fungal interaction resulted as playing a role for both fungal incidence and mycotoxins production, as did weather conditions too. Main interactions were noted between A. flavus and F. verticillioides, and between F. verticillioides and F. graminearum. In particular, as a result of fungal co-occurrence, AFB1 resulted stimulated by F. graminearum presence while no effects were noted in FBs and DON in case of F. verticillioides-F. graminearum co-occurrence. Interestingly, the co-presence of A. flavus significantly reduced both FB and DON production.
Collapse
Affiliation(s)
- Paola Giorni
- Department of Sustainable Crop Production (Di.Pro.Ve.S), Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Terenzio Bertuzzi
- Department of Animal Science, Food and Nutrition (DIANA), Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Paola Battilani
- Department of Sustainable Crop Production (Di.Pro.Ve.S), Università Cattolica del Sacro Cuore, Piacenza, Italy
| |
Collapse
|
28
|
Oliveira RC, Nguyen HN, Mallmann CA, Freitas RS, Correa B, Rodrigues DF. Influence of environmental factors on tenuazonic acid production by Epicoccum sorghinum: An integrative approach of field and laboratory conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 640-641:1132-1138. [PMID: 30021278 DOI: 10.1016/j.scitotenv.2018.05.293] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 05/23/2018] [Accepted: 05/23/2018] [Indexed: 06/08/2023]
Abstract
Sorghum is the fifth most cultivated and consumed grain in the world. However, this grain is frequently contaminated with toxins from fungi. The present study evaluated the effects of environmental factors on tenuazonic acid (TeA) production by Epicoccum sorghinum in the field and in controlled laboratory conditions. In this study, 50 sorghum grain samples were collected from summer and autumn growing seasons and analyzed for TeA contamination using LC-MS/MS. To further understand the ecophysiology of this fungus, an isolated strain of E. sorghinum from the field was investigated for its development and TeA production under controlled environmental conditions in the laboratory. In the ecophysiological investigation, the effects of water activity (0.90, 0.95, 0.99) and temperature (18, 22, 26 and 30 °C) were evaluated on the radial growth, enzymatic production and expression of TAS1, which is the gene involved in TeA production. Results showed that in the field, the summer season presented the highest TeA average level in the grains (587.8 μg/kg) compared to level found in the autumn (440.5 μg/kg). The ecophysiological investigation confirmed that E. sorghinum produces more actively TeA under environmental conditions simulating the summer season. Optimum growth, maximum TAS1 gene expression, and higher extracellular enzymatic production were observed at 26 °C with a water activity of 0.99. Pearson correlation analyses showed that the production of TeA highly correlates with fungal growth. The present study demonstrates that abiotic factors in a combined approach of field and laboratory conditions will assist in predicting the driving environmental factors that could affect growth of E. sorghinum and TeA production in sorghum grains.
Collapse
Affiliation(s)
- Rodrigo C Oliveira
- Laboratory of Mycotoxins and Toxigenic Fungi, Department of Microbiology, University of Sao Paulo, 05508-900, SP, Brazil
| | - Hang N Nguyen
- Department of Civil and Environmental Engineering, University of Houston, Houston, 77204-400, TX, USA
| | - Carlos A Mallmann
- Laboratory of Micotoxicological Analysis, Federal University of Santa Maria, Santa Maria, 97105-900, RS, Brazil
| | - Rogerio S Freitas
- São Paulo Agency for Agribusiness Technology, Votuporanga, 15500-970, SP, Brazil
| | - Benedito Correa
- Laboratory of Mycotoxins and Toxigenic Fungi, Department of Microbiology, University of Sao Paulo, 05508-900, SP, Brazil
| | - Debora F Rodrigues
- Department of Civil and Environmental Engineering, University of Houston, Houston, 77204-400, TX, USA.
| |
Collapse
|
29
|
Ojiambo PS, Battilani P, Cary JW, Blum BH, Carbone I. Cultural and Genetic Approaches to Manage Aflatoxin Contamination: Recent Insights Provide Opportunities for Improved Control. PHYTOPATHOLOGY 2018; 108:1024-1037. [PMID: 29869954 DOI: 10.1094/phyto-04-18-0134-rvw] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Aspergillus flavus is a morphologically complex species that can produce the group of polyketide derived carcinogenic and mutagenic secondary metabolites, aflatoxins, as well as other secondary metabolites such as cyclopiazonic acid and aflatrem. Aflatoxin causes aflatoxicosis when aflatoxins are ingested through contaminated food and feed. In addition, aflatoxin contamination is a major problem, from both an economic and health aspect, in developing countries, especially Asia and Africa, where cereals and peanuts are important food crops. Earlier measures for control of A. flavus infection and consequent aflatoxin contamination centered on creating unfavorable environments for the pathogen and destroying contaminated products. While development of atoxigenic (nonaflatoxin producing) strains of A. flavus as viable commercial biocontrol agents has marked a unique advance for control of aflatoxin contamination, particularly in Africa, new insights into the biology and sexuality of A. flavus are now providing opportunities to design improved atoxigenic strains for sustainable biological control of aflatoxin. Further, progress in the use of molecular technologies such as incorporation of antifungal genes in the host and host-induced gene silencing, is providing knowledge that could be harnessed to develop germplasm that is resistant to infection by A. flavus and aflatoxin contamination. This review summarizes the substantial progress that has been made to understand the biology of A. flavus and mitigate aflatoxin contamination with emphasis on maize. Concepts developed to date can provide a basis for future research efforts on the sustainable management of aflatoxin contamination.
Collapse
Affiliation(s)
- Peter S Ojiambo
- First and fifth authors: Center for Integrated Fungal Research, Department of Entomology and Plant Pathology, North Carolina State University, Raleigh 27695; second author: Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy; third author: U.S. Department of Agriculture-Agriculture Research Service, SRRC, New Orleans, LA 70124; and fourth author: Department of Plant Pathology, University of Arkansas, Fayetteville 72701
| | - Paola Battilani
- First and fifth authors: Center for Integrated Fungal Research, Department of Entomology and Plant Pathology, North Carolina State University, Raleigh 27695; second author: Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy; third author: U.S. Department of Agriculture-Agriculture Research Service, SRRC, New Orleans, LA 70124; and fourth author: Department of Plant Pathology, University of Arkansas, Fayetteville 72701
| | - Jeffrey W Cary
- First and fifth authors: Center for Integrated Fungal Research, Department of Entomology and Plant Pathology, North Carolina State University, Raleigh 27695; second author: Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy; third author: U.S. Department of Agriculture-Agriculture Research Service, SRRC, New Orleans, LA 70124; and fourth author: Department of Plant Pathology, University of Arkansas, Fayetteville 72701
| | - Burt H Blum
- First and fifth authors: Center for Integrated Fungal Research, Department of Entomology and Plant Pathology, North Carolina State University, Raleigh 27695; second author: Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy; third author: U.S. Department of Agriculture-Agriculture Research Service, SRRC, New Orleans, LA 70124; and fourth author: Department of Plant Pathology, University of Arkansas, Fayetteville 72701
| | - Ignazio Carbone
- First and fifth authors: Center for Integrated Fungal Research, Department of Entomology and Plant Pathology, North Carolina State University, Raleigh 27695; second author: Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy; third author: U.S. Department of Agriculture-Agriculture Research Service, SRRC, New Orleans, LA 70124; and fourth author: Department of Plant Pathology, University of Arkansas, Fayetteville 72701
| |
Collapse
|
30
|
Medina A, Mohale S, Samsudin NIP, Rodriguez-Sixtos A, Rodriguez A, Magan N. Biocontrol of mycotoxins: dynamics and mechanisms of action. Curr Opin Food Sci 2017. [DOI: 10.1016/j.cofs.2017.09.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
31
|
Monitoring the Temporal Expression of Genes Involved in Ochratoxin A Production of Aspergillus carbonarius under the Influence of Temperature and Water Activity. Toxins (Basel) 2017; 9:toxins9100296. [PMID: 28937586 PMCID: PMC5666343 DOI: 10.3390/toxins9100296] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/11/2017] [Accepted: 09/19/2017] [Indexed: 11/23/2022] Open
Abstract
The objective of this study was to investigate the effect of environmental factors, namely temperature and water activity, on genes involved in the regulation of ochratoxin A (OTA) production over time. For this purpose, the previously characterized toxigenic Aspergilluscarbonarius Ac29 isolate from Greek vineyards and the A. carbonarius ITEM 5010 reference strain were subjected to combined temperature and water activity (aw) treatments to study OTA production and relative gene expression. The fungal isolates were grown on a synthetic grape juice liquid medium (SGM) under different temperature (20 °C, 25 °C and 30 °C) and aw (0.94 and 0.98) regimes. The expression of the AcOTApks, AcOTAnrps, and laeA OTA related genes was investigated using real time PCR. Gene expression was monitored at the same time points, along with fungal biomass and OTA accumulation at three, six and nine days of incubation. In gene expression analysis, stimulation of the biosynthetic genes was observed a few days before any toxin could be detected. This fact may underline a possible early indicator of potential toxin contamination of grapes. However, the transcript levels varied with respect to the different combinations of ecophysiological conditions and time, highlighting a complex regulation of OTA related gene expression of A. carbonarius in the specific medium.
Collapse
|
32
|
Casquete R, Benito MJ, Córdoba MDG, Ruiz-Moyano S, Martín A. The growth and aflatoxin production of Aspergillus flavus strains on a cheese model system are influenced by physicochemical factors. J Dairy Sci 2017; 100:6987-6996. [DOI: 10.3168/jds.2017-12865] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 05/24/2017] [Indexed: 11/19/2022]
|
33
|
Medina A, Akbar A, Baazeem A, Rodriguez A, Magan N. Climate change, food security and mycotoxins: Do we know enough? FUNGAL BIOL REV 2017. [DOI: 10.1016/j.fbr.2017.04.002] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
34
|
Affiliation(s)
- Paola Battilani
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Joerg Stroka
- Joint Research Centre, IRMM, European Commission, Geel, Belgium
| | - Naresh Magan
- Applied Mycology Group, Cranfield University, Cranfield, United Kingdom
| |
Collapse
|