1
|
Rassu G, Sorrenti M, Catenacci L, Pavan B, Ferraro L, Gavini E, Bonferoni MC, Giunchedi P, Dalpiaz A. Conjugation, Prodrug, and Co-Administration Strategies in Support of Nanotechnologies to Improve the Therapeutic Efficacy of Phytochemicals in the Central Nervous System. Pharmaceutics 2023; 15:1578. [PMID: 37376027 DOI: 10.3390/pharmaceutics15061578] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Phytochemicals, produced as secondary plant metabolites, have shown interesting potential therapeutic activities against neurodegenerative diseases and cancer. Unfortunately, poor bioavailability and rapid metabolic processes compromise their therapeutic use, and several strategies are currently proposed for overcoming these issues. The present review summarises strategies for enhancing the central nervous system's phytochemical efficacy. Particular attention has been paid to the use of phytochemicals in combination with other drugs (co-administrations) or administration of phytochemicals as prodrugs or conjugates, particularly when these approaches are supported by nanotechnologies exploiting conjugation strategies with appropriate targeting molecules. These aspects are described for polyphenols and essential oil components, which can improve their loading as prodrugs in nanocarriers, or be part of nanocarriers designed for targeted co-delivery to achieve synergistic anti-glioma or anti-neurodegenerative effects. The use of in vitro models, able to simulate the blood-brain barrier, neurodegeneration or glioma, and useful for optimizing innovative formulations before their in vivo administration via intravenous, oral, or nasal routes, is also summarised. Among the described compounds, quercetin, curcumin, resveratrol, ferulic acid, geraniol, and cinnamaldehyde can be efficaciously formulated to attain brain-targeting characteristics, and may therefore be therapeutically useful against glioma or neurodegenerative diseases.
Collapse
Affiliation(s)
- Giovanna Rassu
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Via Muroni 23a, I-07100 Sassari, Italy
| | - Milena Sorrenti
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, I-27100 Pavia, Italy
| | - Laura Catenacci
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, I-27100 Pavia, Italy
| | - Barbara Pavan
- Department of Neuroscience and Rehabilitation-Section of Physiology, University of Ferrara, Via Borsari 46, I-44121 Ferrara, Italy
| | - Luca Ferraro
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Borsari 46, I-44121 Ferrara, Italy
| | - Elisabetta Gavini
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Via Muroni 23a, I-07100 Sassari, Italy
| | | | - Paolo Giunchedi
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Via Muroni 23a, I-07100 Sassari, Italy
| | - Alessandro Dalpiaz
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Fossato di Mortara 19, I-44121 Ferrara, Italy
| |
Collapse
|
2
|
Jang CH, Oh J, Lim JS, Kim HJ, Kim JS. Fermented Soy Products: Beneficial Potential in Neurodegenerative Diseases. Foods 2021; 10:foods10030636. [PMID: 33803607 PMCID: PMC8003083 DOI: 10.3390/foods10030636] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 12/12/2022] Open
Abstract
Fermented soybean products, such as cheonggukjang (Japanese natto), doenjang (soy paste), ganjang (soy sauce), and douchi, are widely consumed in East Asian countries and are major sources of bioactive compounds. The fermentation of cooked soybean with bacteria (Bacillus spp.) and fungi (Aspergillus spp. and Rhizopus spp.) produces a variety of novel compounds, most of which possess health benefits. This review is focused on the preventive and ameliorative potential of fermented soy foods and their components to manage neurodegenerative diseases, including Alzheimer's and Parkinson's diseases.
Collapse
Affiliation(s)
- Chan Ho Jang
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Korea;
| | - Jisun Oh
- Institute of Agricultural Science and Technology, Kyungpook National University, Daegu 41566, Korea; (J.O.); (J.S.L.)
| | - Ji Sun Lim
- Institute of Agricultural Science and Technology, Kyungpook National University, Daegu 41566, Korea; (J.O.); (J.S.L.)
| | - Hyo Jung Kim
- Department of Korean Medicine Development, National Institute for Korean Medicine Development, Gyeongsan 38540, Korea;
| | - Jong-Sang Kim
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Korea;
- Institute of Agricultural Science and Technology, Kyungpook National University, Daegu 41566, Korea; (J.O.); (J.S.L.)
- Department of Integrative Biotechnology, Kyungpook National University, Daegu 41566, Korea
- Correspondence: ; Tel.: +82-53-950-5752; Fax: +82-53-950-6750
| |
Collapse
|
3
|
Duro-Castano A, Borrás C, Herranz-Pérez V, Blanco-Gandía MC, Conejos-Sánchez I, Armiñán A, Mas-Bargues C, Inglés M, Miñarro J, Rodríguez-Arias M, García-Verdugo JM, Viña J, Vicent MJ. Targeting Alzheimer's disease with multimodal polypeptide-based nanoconjugates. SCIENCE ADVANCES 2021; 7:7/13/eabf9180. [PMID: 33771874 PMCID: PMC7997513 DOI: 10.1126/sciadv.abf9180] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 02/08/2021] [Indexed: 05/04/2023]
Abstract
Alzheimer's disease (AD), the most prevalent form of dementia, remains incurable mainly due to our failings in the search for effective pharmacological strategies. Here, we describe the development of targeted multimodal polypeptide-based nanoconjugates as potential AD treatments. Treatment with polypeptide nanoconjugates bearing propargylamine moieties and bisdemethoxycurcumin or genistein afforded neuroprotection and displayed neurotrophic effects, as evidenced by an increase in dendritic density of pyramidal neurons in organotypic hippocampal culture. The additional conjugation of the Angiopep-2 targeting moiety enhanced nanoconjugate passage through the blood-brain barrier and modulated brain distribution with nanoconjugate accumulation in neurogenic areas, including the olfactory bulb. Nanoconjugate treatment effectively reduced neurotoxic β amyloid aggregate levels and rescued impairments to olfactory memory and object recognition in APP/PS1 transgenic AD model mice. Overall, this study provides a description of a targeted multimodal polyglutamate-based nanoconjugate with neuroprotective and neurotrophic potential for AD treatment.
Collapse
Affiliation(s)
- A Duro-Castano
- Polymer Therapeutics Lab., Centro de Investigación Príncipe Felipe (CIPF), Av. Eduardo Primo Yúfera 3, 46012 Valencia, Spain
| | - C Borrás
- Grupo de Investigación FRESHAGE, Departamento de Fisiología, Facultad de Medicina, Univ.. Valencia, CIBERFES-ISCIII, INCLIVA, Av. Blasco Ibáñez 15, 46010 Valencia, Spain
| | - V Herranz-Pérez
- Laboratory of Comparative Neurobiology, Cavanilles Institute of Biodiversity and Evolutionary Biology, Univ. València, CIBERNED, 46980 Valencia, Spain
- Predepartamental Unit of Medicine, Faculty of Health Sciences, Univ. Jaume I, 12071 Castelló de la Plana, Spain
| | - M C Blanco-Gandía
- Departamento de Psicología y Sociología, Facultad de Ciencias Sociales y Humanas, Univ. Zaragoza, Teruel, Spain
| | - I Conejos-Sánchez
- Polymer Therapeutics Lab., Centro de Investigación Príncipe Felipe (CIPF), Av. Eduardo Primo Yúfera 3, 46012 Valencia, Spain
| | - A Armiñán
- Polymer Therapeutics Lab., Centro de Investigación Príncipe Felipe (CIPF), Av. Eduardo Primo Yúfera 3, 46012 Valencia, Spain
| | - C Mas-Bargues
- Grupo de Investigación FRESHAGE, Departamento de Fisiología, Facultad de Medicina, Univ.. Valencia, CIBERFES-ISCIII, INCLIVA, Av. Blasco Ibáñez 15, 46010 Valencia, Spain
| | - M Inglés
- Unidad de Investigación Psicobiología de las Drogodependencias, Departamento de Psicobiología, Facultad de Psicología, Univ. Valencia, Valencia, Spain
| | - J Miñarro
- Unidad de Investigación Psicobiología de las Drogodependencias, Departamento de Psicobiología, Facultad de Psicología, Univ. Valencia, Valencia, Spain
| | - M Rodríguez-Arias
- Unidad de Investigación Psicobiología de las Drogodependencias, Departamento de Psicobiología, Facultad de Psicología, Univ. Valencia, Valencia, Spain
| | - J M García-Verdugo
- Laboratory of Comparative Neurobiology, Cavanilles Institute of Biodiversity and Evolutionary Biology, Univ. València, CIBERNED, 46980 Valencia, Spain
| | - J Viña
- Grupo de Investigación FRESHAGE, Departamento de Fisiología, Facultad de Medicina, Univ.. Valencia, CIBERFES-ISCIII, INCLIVA, Av. Blasco Ibáñez 15, 46010 Valencia, Spain
| | - M J Vicent
- Polymer Therapeutics Lab., Centro de Investigación Príncipe Felipe (CIPF), Av. Eduardo Primo Yúfera 3, 46012 Valencia, Spain.
| |
Collapse
|
4
|
Kridawati A, Hardinsyah H, Sulaeman A, Rahardjo TBW, Hogervorst E. Tempe, Tofu, and Amyloid-β 1-40 Serum Levels in Ovariectomized Rats. J Alzheimers Dis 2020; 76:159-163. [PMID: 32444549 DOI: 10.3233/jad-200220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Estrogens have been found to reduce amyloid-β (Aβ) levels, a risk factor associated with dementia. We hypothesized that phytoestrogenic soybean products such as tempe and tofu might show similar effects. OBJECTIVE The aim of this study were to analyze the effect of tempe and tofu flour on Aβ1-40 serum levels in ovariectomized rats. METHODS This research was conducted on female Sprague Dawley rats, aged 12 months. Before the intervention rats underwent ovariectomy (OVx) and were grouped into 5 intervention groups which were given tempe flour, tofu flour, estradiol, or casein as an active control. There was also a non-OVx control group which was fed a normal diet. RESULTS The intake of tempe and tofu flour decreased Aβ serum levels in all estrogen and phytoestrogenic treatment groups, offsetting effects of OVx (but not in the casein group, where Aβ levels rise). CONCLUSION The tempe flour group showed the strongest decrease in serum Aβ levels compared to the other groups. Future studies should investigate whether tempe can reduce Aβ levels in patients with dementia.
Collapse
Affiliation(s)
- Atik Kridawati
- Public Health Science Graduate Program, Universitas Respati Indonesia, Jakarta Timur, Indonesia.,Centre for Family and Ageing Studies, Universitas Respati Indonesia, Jakarta Timur, Indonesia
| | - Hardinsyah Hardinsyah
- Department of Community Nutrition, Faculty of Human Ecology, Bogor Agricultural University, Bogor, Indonesia
| | - Ahmad Sulaeman
- Department of Community Nutrition, Faculty of Human Ecology, Bogor Agricultural University, Bogor, Indonesia
| | - Tri Budi W Rahardjo
- Centre for Family and Ageing Studies, Universitas Respati Indonesia, Jakarta Timur, Indonesia
| | - Eef Hogervorst
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| |
Collapse
|
5
|
Uddin MS, Kabir MT. Emerging Signal Regulating Potential of Genistein Against Alzheimer's Disease: A Promising Molecule of Interest. Front Cell Dev Biol 2019; 7:197. [PMID: 31620438 PMCID: PMC6763641 DOI: 10.3389/fcell.2019.00197] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 09/02/2019] [Indexed: 01/05/2023] Open
Abstract
Alzheimer’s disease (AD) is a progressive, irreversible brain disorder characterized by pathological aggregation of the amyloid-β peptide (Aβ) and tau protein; both of these are toxic to neurons. Currently, natural products are regarded as an alternative approach to discover novel multipotent drugs against AD. Dietary soy isoflavone genistein is one of the examples of such agents that occurs naturally and is known to exert a number of beneficial health effects. It has been observed that genistein has the capacity to improve the impairments triggered by Aβ and also it possesses the antioxidant potential to scavenge the AD-mediated generation of free radicals. Furthermore, genistein can interact directly with the targeted signaling proteins and also can stabilize their activity to combat AD. In order to advance the development of AD treatment, a better comprehension of the direct interactions of target proteins and genistein might prove beneficial. Therefore, this article focuses on the therapeutic effects and molecular targets of genistein, which has been found to target directly the Aβ and tau to control the intracellular signaling pathways responsible for neurons death in the AD brain.
Collapse
Affiliation(s)
- Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh.,Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | | |
Collapse
|
6
|
Mayo B, Vázquez L, Flórez AB. Equol: A Bacterial Metabolite from The Daidzein Isoflavone and Its Presumed Beneficial Health Effects. Nutrients 2019; 11:E2231. [PMID: 31527435 PMCID: PMC6770660 DOI: 10.3390/nu11092231] [Citation(s) in RCA: 232] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/05/2019] [Accepted: 09/11/2019] [Indexed: 12/11/2022] Open
Abstract
Epidemiological data suggest that regular intake of isoflavones from soy reduces the incidence of estrogen-dependent and aging-associated disorders, such as menopause symptoms in women, osteoporosis, cardiovascular diseases and cancer. Equol, produced from daidzein, is the isoflavone-derived metabolite with the greatest estrogenic and antioxidant activity. Consequently, equol has been endorsed as having many beneficial effects on human health. The conversion of daidzein into equol takes place in the intestine via the action of reductase enzymes belonging to incompletely characterized members of the gut microbiota. While all animal species analyzed so far produce equol, only between one third and one half of human subjects (depending on the community) are able to do so, ostensibly those that harbor equol-producing microbes. Conceivably, these subjects might be the only ones who can fully benefit from soy or isoflavone consumption. This review summarizes current knowledge on the microorganisms involved in, the genetic background to, and the biochemical pathways of, equol biosynthesis. It also outlines the results of recent clinical trials and meta-analyses on the effects of equol on different areas of human health and discusses briefly its presumptive mode of action.
Collapse
Affiliation(s)
- Baltasar Mayo
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias (IPLA), Consejo Superior de Investigaciones Científicas (CSIC), Paseo Río Linares s/n, 33300 Villaviciosa, Spain.
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Avenida de Roma s/n, 33011 Oviedo, Spain.
| | - Lucía Vázquez
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias (IPLA), Consejo Superior de Investigaciones Científicas (CSIC), Paseo Río Linares s/n, 33300 Villaviciosa, Spain.
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Avenida de Roma s/n, 33011 Oviedo, Spain.
| | - Ana Belén Flórez
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias (IPLA), Consejo Superior de Investigaciones Científicas (CSIC), Paseo Río Linares s/n, 33300 Villaviciosa, Spain.
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Avenida de Roma s/n, 33011 Oviedo, Spain.
| |
Collapse
|
7
|
Nootropic and Anti-Alzheimer's Actions of Medicinal Plants: Molecular Insight into Therapeutic Potential to Alleviate Alzheimer's Neuropathology. Mol Neurobiol 2018; 56:4925-4944. [PMID: 30414087 DOI: 10.1007/s12035-018-1420-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 10/29/2018] [Indexed: 12/21/2022]
Abstract
Medicinal plants are the backbone of modern medicine. In recent times, there is a great urge to discover nootropic medicinal plants to reverse cognitive dysfunction owing to their less adverse effects. Alzheimer's disease (AD) is an age-related neurodegenerative disorder characterized by the inevitable loss of cognitive function, memory and language impairment, and behavioral disturbances, which turn into gradually more severe. Alzheimer's has no current cure, but symptomatic treatments are available and research continues. The number of patients suffering from AD continues to rise and today, there is a worldwide effort under study to find better ways to alleviate Alzheimer's pathogenesis. In this review, the nootropic and anti-Alzheimer's potentials of 6 medicinal plants (i.e., Centella asiatica, Clitoria ternatea, Crocus sativus, Terminalia chebula, Withania somnifera, and Asparagus racemosus) were explored through literature review. This appraisal focused on available information about neuroprotective and anti-Alzheimer's use of these plants and their respective bioactive compounds/metabolites and associated effects in animal models and consequences of its use in human as well as proposed molecular mechanisms. This review progresses our existing knowledge to reveal the promising linkage of traditional medicine to halt AD pathogenesis. This analysis also avowed a new insight to search the promising anti-Alzheimer's drugs.
Collapse
|
8
|
Ebrahimzadeh-Bideskan AR, Mansouri S, Ataei ML, Jahanshahi M, Hosseini M. The effects of soy and tamoxifen on apoptosis in the hippocampus and dentate gyrus in a pentylenetetrazole-induced seizure model of ovariectomized rats. Anat Sci Int 2018; 93:218-230. [PMID: 28283880 DOI: 10.1007/s12565-017-0398-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 03/02/2017] [Indexed: 12/13/2022]
Abstract
The effects of tamoxifen and soy on apoptosis of the hippocampus and dentate gyrus of ovariectomized rats after repeated seizures were investigated. Female rats were divided into: (1) Control, (2) Sham, (3) Sham-Tamoxifen (Sham-T), (4) Ovariectomized (OVX), (5) OVX-Tamoxifen (OVX-T), (6)OVX-Soy(OVX-S) and (7) OVX-S-T. The animals in the OVX-S, OVX-T and OVX-S-T groups received soy extract (60 mg/kg; i.p.), tamoxifen (10 mg/kg) or both for 2 weeks before induction of seizures. The animals in these groups additionally received the mentioned treatments before each injection of pentylenetetrazole (PTZ; 40 mg/kg) for 6 days. The animals in the Sham and OVX groups received a vehicle of tamoxifen and soy. A significant decrease in the seizure score and TUNEL-positive neurons was seen in the OVX group compared to the Sham (P < 0.001). The animals in both the OVX-T and OVX-S groups had a significantly higher seizure score as well as number of TUNEL-positive neurons compared to the OVX group (P < 0.01-P < 0.001). Co-treatment of the OVX rats by the extract and tamoxifen decreased the seizure score and number of TUNEL-positive neurons compared to OVX-S (P < 0.001). Treatment of the OVX rats by either soy or tamoxifen increased the seizure score as well as the number of TUNEL-positive neurons in the hippocampal formation. Co-administration of tamoxifen and soy extract inhibited the effects of the soy extract and tamoxifen when they were administered alone. It might be suggested that both soy and tamoxifen have agonistic effects on estrogen receptors by changing the seizure severity.
Collapse
Affiliation(s)
- Ali Reza Ebrahimzadeh-Bideskan
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Microanatomy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Somaieh Mansouri
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mariam Lale Ataei
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehrdad Jahanshahi
- Department of Anatomy, School of Medicine, Golestan University of Medical Sciences, Grogan, Iran
| | - Mahmoud Hosseini
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Azadi Square, Mashhad, Iran.
| |
Collapse
|
9
|
Molecular and Therapeutic Targets of Genistein in Alzheimer's Disease. Mol Neurobiol 2016; 54:7028-7041. [PMID: 27796744 DOI: 10.1007/s12035-016-0215-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 10/11/2016] [Indexed: 12/18/2022]
Abstract
Alzheimer's disease (AD) is a devastating brain disorder characterized by an increased level of amyloid-beta (Aβ) peptide deposition and neuronal cell death leading to an impairment of learning and thinking skills. The Aβ deposition is a key factor in senile plaques of the AD brain which cause the elevation of intracellular calcium ions and the production of formidable free radicals, both of which greatly contribute to the AD-associated cascade, leading to unstoppable neuronal loss in the hippocampal region of the brain. Natural products are currently considered as an alternative strategy for the discovery of novel multipotent drugs against AD. They include the naturally occurring dietary soy isoflavone genistein which has been recognized to possess several health-promoting effects. Genistein has been mainly focused because of its potential on amelioration of Aβ-induced impairment and its antioxidant capacity to scavenge the free radicals produced in AD. It can also directly interact with the targeted signaling proteins and stabilize their activity to prevent AD. An improved understanding of the direct interactions between genistein and target proteins would contribute to the further development of AD treatment. This review mainly focuses on molecular targets and the therapeutic effects regulated by genistein, which has the ability to directly target the Aβ peptide and to control its activity involved in intracellular signaling pathways, which otherwise would lead to neuronal death in the hippocampal region of the AD brain.
Collapse
|
10
|
Thakur S, Sarkar B, Cholia RP, Gautam N, Dhiman M, Mantha AK. APE1/Ref-1 as an emerging therapeutic target for various human diseases: phytochemical modulation of its functions. Exp Mol Med 2014; 46:e106. [PMID: 25033834 PMCID: PMC4119211 DOI: 10.1038/emm.2014.42] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 01/27/2014] [Accepted: 03/05/2014] [Indexed: 12/12/2022] Open
Abstract
Apurinic/apyrimidinic endonuclease 1 (APE1) is a multifunctional enzyme involved in the base excision repair (BER) pathway, which repairs oxidative base damage caused by endogenous and exogenous agents. APE1 acts as a reductive activator of many transcription factors (TFs) and has also been named redox effector factor 1, Ref-1. For example, APE1 activates activator protein-1, nuclear factor kappa B, hypoxia-inducible factor 1α, paired box gene 8, signal transducer activator of transcription 3 and p53, which are involved in apoptosis, inflammation, angiogenesis and survival pathways. APE1/Ref-1 maintains cellular homeostasis (redox) via the activation of TFs that regulate various physiological processes and that crosstalk with redox balancing agents (for example, thioredoxin, catalase and superoxide dismutase) by controlling levels of reactive oxygen and nitrogen species. The efficiency of APE1/Ref-1's function(s) depends on pairwise interaction with participant protein(s), the functions regulated by APE1/Ref-1 include the BER pathway, TFs, energy metabolism, cytoskeletal elements and stress-dependent responses. Thus, APE1/Ref-1 acts as a ‘hub-protein' that controls pathways that are important for cell survival. In this review, we will discuss APE1/Ref-1's versatile nature in various human etiologies, including neurodegeneration, cancer, cardiovascular and other diseases that have been linked with alterations in the expression, subcellular localization and activities of APE/Ref-1. APE1/Ref-1 can be targeted for therapeutic intervention using natural plant products that modulate the expression and functions of APE1/Ref-1. In addition, studies focusing on translational applications based on APE1/Ref-1-mediated therapeutic interventions are discussed.
Collapse
Affiliation(s)
- Shweta Thakur
- Center for Biosciences, School of Basic and Applied Sciences, Central University of Punjab, Punjab, India
| | - Bibekananda Sarkar
- Center for Biosciences, School of Basic and Applied Sciences, Central University of Punjab, Punjab, India
| | - Ravi P Cholia
- Center for Biosciences, School of Basic and Applied Sciences, Central University of Punjab, Punjab, India
| | - Nandini Gautam
- Center for Environmental Science and Technology, School of Environment and Earth Sciences, Central University of Punjab, Punjab, India
| | - Monisha Dhiman
- Center for Genetic Diseases and Molecular Medicine, School of Emerging Life Science Technologies, Central University of Punjab, Punjab, India
| | - Anil K Mantha
- 1] Center for Biosciences, School of Basic and Applied Sciences, Central University of Punjab, Punjab, India [2] Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
11
|
Rabiei Z, Rafieian-Kopaei M, Heidarian E, Saghaei E, Mokhtari S. Effects of Zizyphus jujube extract on memory and learning impairment induced by bilateral electric lesions of the nucleus Basalis of Meynert in rat. Neurochem Res 2014; 39:353-60. [PMID: 24379110 DOI: 10.1007/s11064-013-1232-8] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 12/12/2013] [Accepted: 12/14/2013] [Indexed: 12/19/2022]
Abstract
Alzheimer's disease (AD) is a common neurodegenerative condition that affects the elderly population. Its primary symptom is memory loss. The memory dysfunction in AD has been associated with cortical cholinergic deficiency and loss of cholinergic neurons of the nucleus basalis of Meynert (NBM). Zizyphus jujube (ZJ) activates choline acetyltransferase and may have beneficial effects in AD patients. This study investigates the effect of ZJ extract in intact rats and in rat model of AD. 49 male Wistar rats were divided into seven equal groups (1-control, without surgery, received water), 2-AD (bilateral NBM lesion, received water), 3 and 4-AD + ZJ (NBM bilateral lesion, received ZJ extract 500 and 1,000 mg/kg b.w. per day for 15 days), 5-sham (surgery: electrode introduced into NBM without lesion, received water), 6 and 7-without surgery and lesion, received ZJ extract-the same as groups 3 and 4). The learning and memory performance were assessed using passive avoidance paradigm, and the memory cognition for spatial learning and memory was evaluated by Morris water maze. In shuttle box test ZJ extract (500 and 1,000 mg) significantly increased step-through latency in AD + ZJ groups compared with AD group. In Morris water maze test (in probe day), both AD + ZJ groups receiving extract (500 and 1,000 mg) demonstrated significant preference for the quadrant in which the platform was located on the preceding day as compared with AD group. Our results suggested that ZJ has repairing effects on memory and behavioral disorders produced by NBM lesion in rats and may have beneficial effects in treatment of AD patients.
Collapse
Affiliation(s)
- Zahra Rabiei
- Medical Plants Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | | | | | | | | |
Collapse
|
12
|
Neese SL, Pisani SL, Doerge DR, Helferich WG, Sepehr E, Chittiboyina AG, Rotte SCK, Smillie TJ, Khan IA, Korol DL, Schantz SL. The effects of dietary treatment with S-equol on learning and memory processes in middle-aged ovariectomized rats. Neurotoxicol Teratol 2014; 41:80-8. [PMID: 24368316 PMCID: PMC3943933 DOI: 10.1016/j.ntt.2013.12.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 11/22/2013] [Accepted: 12/17/2013] [Indexed: 01/18/2023]
Abstract
The use of over-the-counter botanical estrogens containing isolated soy isoflavones, including genistein and daidzein, has become a popular alternative to traditional hormone therapies. Menopausal women use these products as an aide in healthy aging, including for the maintenance of cognitive function. The safety and efficacy of many of these commercial preparations remain unknown. Previous research in our lab found that treatment of ovariectomized (OVX) female Long-Evans rats with genistein impaired working memory in an operant delayed spatial alternation (DSA) task and response learning in a plus-maze, but enhanced place learning assessed in the plus-maze. The present study further examined the effects of isolated isoflavones on working memory and place learning by treating middle-aged (12-13 month old) OVX female Long-Evans rats with S-equol, the exclusive enantiomer produced by metabolism of daidzein in the mammalian gut. S-equol binds selectively to ERβ with an affinity similar to that of genistein but has low transcriptional potency. For DSA testing, S-equol at 1.94, 0.97 mg, or 0mg (sucrose control) was orally administered to animals daily, 30 min before behavioral testing, and again both 4 and 8 hours after the first treatment. Rats were tested on the DSA task following the first, morning dose. For place learning, rats received 0.97 mg S-equol every 4 hours during the light portion of the cycle beginning 48 hours prior to behavioral testing (total exposure 8.7 mg S-equol). S-equol treatment was largely without effect on the DSA and place learning tasks. This is the first study to test the behavioral effects of isolated S-equol in OVX rodents, and shows that, unlike genistein or estradiol, repeated daily treatment with this isoflavone metabolite does not alter learning and memory processes in middle-aged OVX rats.
Collapse
Affiliation(s)
- Steven L Neese
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, 2001S. Lincoln Avenue, Urbana, IL 61802, USA; Neuroscience Program, University of Illinois at Urbana-Champaign, 505 South Goodwin Avenue, Urbana, IL 61801, USA; Department of Psychology and Neuroscience, Baldwin Wallace University, 275 Eastland Road, Berea, OH 44017, USA.
| | - Samantha L Pisani
- Neuroscience Program, University of Illinois at Urbana-Champaign, 505 South Goodwin Avenue, Urbana, IL 61801, USA.
| | - Daniel R Doerge
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Road, Jefferson, AR 72079-9502, USA.
| | - William G Helferich
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, 905S Goodwin Avenue, Urbana, IL 61801, USA.
| | - Estatira Sepehr
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Road, Jefferson, AR 72079-9502, USA.
| | - Amar G Chittiboyina
- National Center for Natural Product Research, University of Mississippi, 3011 Thad Cochran Research Center, University, MS 38677, USA.
| | - Sateesh Chandra Kumar Rotte
- National Center for Natural Product Research, University of Mississippi, 3011 Thad Cochran Research Center, University, MS 38677, USA.
| | - Troy J Smillie
- National Center for Natural Product Research, University of Mississippi, 3011 Thad Cochran Research Center, University, MS 38677, USA.
| | - Ikhlas A Khan
- National Center for Natural Product Research, University of Mississippi, 3011 Thad Cochran Research Center, University, MS 38677, USA.
| | - Donna L Korol
- Neuroscience Program, University of Illinois at Urbana-Champaign, 505 South Goodwin Avenue, Urbana, IL 61801, USA; Department of Biology, Syracuse University, 107 College Place, Syracuse, NY 13244, USA.
| | - Susan L Schantz
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, 2001S. Lincoln Avenue, Urbana, IL 61802, USA; Neuroscience Program, University of Illinois at Urbana-Champaign, 505 South Goodwin Avenue, Urbana, IL 61801, USA.
| |
Collapse
|
13
|
Effect of Cyperus rotundus tubers ethanolic extract on learning and memory in animal model of Alzheimer. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.biomag.2013.08.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Hu X, Qin X. Lentivirus-mediated estrogen receptor α overexpression in the central nervous system ameliorates experimental autoimmune encephalomyelitis in mice. Int J Mol Med 2013; 31:1209-21. [PMID: 23525227 DOI: 10.3892/ijmm.2013.1306] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 03/05/2013] [Indexed: 11/05/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disease characterized by inflammatory cell infiltration of the central nervous system (CNS) and multifocal demyelination. Clinical data and clinical indicators demonstrate that estrogen improves the relapse-remittance of MS patients. This study aimed to investigate the anti-inflammatory effects and the underlying mechanism(s) of action of estrogen and estrogen receptor α (ERα) in an experimental autoimmune encephalomyelitis (EAE) mouse model of MS. An ERα recombinant lentivirus was constructed. Mouse neurons were cultured in serum-free culture medium, and ERα recombinant lentivirus with a multiplicity of infection (MOI) of 5 was used to infect the neurons. Furthermore, neuronal ERα mRNA and protein expression were detected using real-time quantitative PCR and western blot analysis. We sterotaxically injected ERα recombinant lentivirus into the lateral ventricle of mouse brains, and successfully identified infected neurons using Flag immunofluorescence staining to determine the optimal dose. A total of 75 C57BL/6 mice were ovariectomized. After 2 weeks, EAE was induced with myelin oligodendrocyte glycoprotein (MOG) 35-55 peptide. The EAE mice were divided into 5 groups: the estrogen group (treatment with estradiol), the ERα agonist group (treatment with raloxifene), the ERα recombinant lentivirus group (ERα group, treatment with ERα recombinant lentivirus), the empty virus group and the normal saline (NS) group; clinical symptoms and body weight were compared among the groups. We assessed EAE-related parameters, detected pathological changes with immunohistochemistry and quantified the expression of myelin basic protein (MBP), matrix metalloproteinase-9 (MMP-9), and a subset of EAE-related cytokines using enzyme-linked immunosorbent assay (ELISA). We successfully constructed an ERα recombinant lentivirus. C57BL/6 mouse neurons can survive in culture for at least 8 weeks. During that period, the recombinant lentivirus was able to infect the neurons, while sustaining green fluorescence protein (GFP) expression. ERα recombinant lentivirus also infected the neurons at a MOI of 5. The ERα mRNA and protein expression levels were higher in the infected neurons compared to the uninfected ones. We successfully infected the CNS of C57BL/6 mice by stereotaxically injecting ERα recombinant lentivirus into the lateral ventricle of the mouse brains and induced EAE. The lentivirus-mediated overexpression of ERα reduced the incidence of EAE, ameliorated the clinical symptoms, inhibited inflammatory cell CNS infiltration, and reduced nerve fiber demyelination. MMP-9, tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ), interleukin (IL)-17 and IL-23 expression levels were decreased, while those of MBP and IL-4 were increased. These data demonstrate that it is possible to induce the overexpression of ERα using a recombinant lentivirus, and that this novel intervention ameliorates EAE in a mouse model. Mechanistically, estrogen and ERα inhibit inflammatory responses, and ERα alleviates damage to the myelin sheath. Collectively, our findings support the potential use of ERα as a therapeutic target for the treatment of MS.
Collapse
Affiliation(s)
- Xiao Hu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | | |
Collapse
|
15
|
Ebrahimzadeh Bideskan AR, Hosseini M, Mohammadpour T, Karami R, Khodamoradi M, Nemati Karimooy H, Alavi H. Effects of soy extract on pentylenetetrazol-induced seizures in ovariectomized rats. ZHONG XI YI JIE HE XUE BAO = JOURNAL OF CHINESE INTEGRATIVE MEDICINE 2011; 9:611-618. [PMID: 21669164 DOI: 10.3736/jcim20110606] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE To investigate the effects of soy extract on pentylenetetrazol (PTZ)-induced seizures in ovariectomized (OVX) rats. METHODS Female Wistar rats were randomly divided into 4 groups (n=15 in each group) as follows: sham-operated, OVX, low-dose soy (LDS) and high-dose soy (HDS). The rats in each group were divided into two subgroups and received daily injection of a low dose of PTZ (40 mg/kg body weight, intraperitoneally, n=7 in each subgroup) for 14 d or a single injection of a high dose of PTZ (90 mg/kg body weight, intraperitoneally, n=8 in each subgroup). The rats of LDS and HDS groups were injected with 20 and 60 mg/kg body weight of soy extract intraperitoneally, respectively, just 30 min before each PTZ injection. The rats of the sham-operated and the OVX groups received saline instead of soy extract. After treatment, the rats were placed in a plexiglas cage and their behaviors were observed for 60 min. RESULTS The results of repeated injection of low dose of PTZ during 14 d showed that the seizure score of the rats of OVX group on days 3, 5, 8, 10, 11, 12, and 13 was lower than that of the sham-operated group (P<0.05 or P<0.01). However, the rats of both LDS and HDS groups had higher score compared with the OVX group on the mentioned days (P<0.05 or P<0.01). The results of a single injection of a high dose of PTZ showed a significant increase (P<0.01) in the generalized tonic-clonic seizure (GTCS), but not the minimal clonic seizure (MCS) in the OVX rats compared with the sham-operated rats. Treatment with both low and high doses of soy extract significantly decreased the GTCS and MCS latencies compared with the OVX group (P<0.01). CONCLUSION Female hormones affect seizure severity induced by PTZ, and phytoestrogens of soy mimic this effects. However, more investigations need to be done in the future.
Collapse
|
16
|
Yang H, Jin G, Ren D, Luo S, Zhou T. Mechanism of isoflavone aglycone’s effect on cognitive performance of senescence-accelerated mice. Brain Cogn 2011; 76:206-10. [PMID: 21463916 DOI: 10.1016/j.bandc.2010.10.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Revised: 10/18/2010] [Accepted: 10/21/2010] [Indexed: 10/18/2022]
|
17
|
Khairallah MI, Kassem LAA. Alzheimer's disease: current status of etiopathogenesis and therapeutic strategies. Pak J Biol Sci 2011; 14:257-272. [PMID: 21870628 DOI: 10.3923/pjbs.2011.257.272] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Alzheimer's Disease (AD) is one of the most common age-related neurodegenerative diseases. It is the most prevalent form of dementia, a general term for memory loss. It is characterized by progressive cognitive dysfunction, various behavioral and neuro-psychiatric disturbances that seriously interfere with daily life. Scientists have identified factors that appear to play a role in the development of AD but no definitive causes have been found for this complex disorder. The pathogenesis of Alzheimer's disease is highly complex. While several pathologies characterize this disease, amyloid plaques and neurofibrillary tangles are hallmark neuropathological lesions in AD brain. Current AD therapies are merely palliative and only temporarily slow cognitive decline and treatments that address the underlying pathologic mechanisms of AD are still lacking. In this review, we focus on the current aspects of AD ranging from the key risk factors for AD, the underlying pathogenic events and the novel medications including disease-modifying properties.
Collapse
|
18
|
Treadmill running improves spatial memory in an animal model of Alzheimer's disease. Behav Brain Res 2011; 216:270-4. [DOI: 10.1016/j.bbr.2010.08.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2010] [Revised: 08/01/2010] [Accepted: 08/05/2010] [Indexed: 01/23/2023]
|
19
|
Neese SL, Wang VC, Doerge DR, Woodling KA, Andrade JE, Helferich WG, Korol DL, Schantz SL. Impact of dietary genistein and aging on executive function in rats. Neurotoxicol Teratol 2010; 32:200-11. [PMID: 19945528 PMCID: PMC2860723 DOI: 10.1016/j.ntt.2009.11.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Revised: 11/10/2009] [Accepted: 11/19/2009] [Indexed: 12/29/2022]
Abstract
Genistein is an estrogenic soy isoflavone widely promoted for healthy aging, but its effects on cognitive function are not well-understood. We examined the cognitive effects of once daily oral genistein treatment at two doses (approximately 162 microg/kg/day low dose and a 323 microg/kg/day high dose) in ovariectomized young (7 month), middle-aged (16 month), and old (22 month) Long-Evans rats. Operant tasks including delayed spatial alternation (DSA), differential reinforcement of low rates of responding (DRL), and reversal learning that tap prefrontal cortical function were used to assess working memory, inhibitory control/timing, and strategy shifting, respectively. At the conclusion of cognitive testing, brains were collected and relative densities of D1 and D2 dopamine receptors and dopamine transporter (DAT) were measured in the prefrontal cortex. On the DSA task, the high dose old group performed worse than both the high dose young and middle-aged groups. On the DRL task, the high dose of genistein resulted in a marginally significant impairment in the ratio of reinforced to non-reinforced lever presses. This effect was present across age groups. Age effects were also found as old rats performed more poorly than the young and middle-aged rats on the DSA overall. In contrast, middle-aged and old rats made fewer lever presses on the DRL than did the young rats, a pattern of behavior associated with better performance on this task. Moreover, while DAT levels overall decreased with age, genistein treatment produced an increase in DAT expression in old rats relative to similarly aged control rats. D1 and D2 densities did not differ between genistein dose groups or by age. These results highlight the fact that aspects of executive function are differentially sensitive to both genistein exposure and aging and suggest that altered prefrontal dopamine function could potentially play a role in mediating these effects.
Collapse
Affiliation(s)
- Steven L. Neese
- Department of Veterinary Sciences, University of Illinois at Urbana-Champaign. 2001 S. Lincoln Avenue, Urbana, IL 61802, USA
- Neuroscience Program, University of Illinois at Urbana-Champaign. 505 South Goodwin Avenue, Urbana, IL 61801, USA
| | - Victor C. Wang
- Department of Veterinary Sciences, University of Illinois at Urbana-Champaign. 2001 S. Lincoln Avenue, Urbana, IL 61802, USA
- Neuroscience Program, University of Illinois at Urbana-Champaign. 505 South Goodwin Avenue, Urbana, IL 61801, USA
| | - Daniel R. Doerge
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration. 3900 NCTR Road, Jefferson, AR 72079-9502, USA
| | - Kellie A. Woodling
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration. 3900 NCTR Road, Jefferson, AR 72079-9502, USA
| | - Juan E. Andrade
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign. 905 S. Goodwin Avenue, Urbana, IL 61801, USA
| | - William G. Helferich
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign. 905 S. Goodwin Avenue, Urbana, IL 61801, USA
| | - Donna L. Korol
- Neuroscience Program, University of Illinois at Urbana-Champaign. 505 South Goodwin Avenue, Urbana, IL 61801, USA
- Department of Psychology, University of Illinois at Urbana-Champaign. 603 East Daniel Street, Champaign, IL 61820, USA
- Institute for Genomic Biology Department of Veterinary Sciences, University of Illinois at Urbana-Champaign. 1206 West Gregory Drive, Urbana, IL 61801, USA
| | - Susan L. Schantz
- Department of Veterinary Sciences, University of Illinois at Urbana-Champaign. 2001 S. Lincoln Avenue, Urbana, IL 61802, USA
- Neuroscience Program, University of Illinois at Urbana-Champaign. 505 South Goodwin Avenue, Urbana, IL 61801, USA
| |
Collapse
|
20
|
Doulah AH, Rohani AH, Khaksari Haddad M, Motamedi F, Farbood Y, Badavi M, Malek M, Sarkaki A. The effect of peripheral administration of growth hormone on AD-like cognitive deficiency in NBM-lesioned rats. Neurosci Lett 2009; 466:47-51. [PMID: 19765635 DOI: 10.1016/j.neulet.2009.09.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Revised: 08/25/2009] [Accepted: 09/07/2009] [Indexed: 10/20/2022]
Abstract
This study aimed to evaluate the peripheral administration of growth hormone (GH) on AD-like cognitive deficiency in NBM-lesioned rats induced by ibotenic acid (5 microg/microl, in each side). Forty-eight male Wistar rats (20-24 months old; weighing 330+/-30 g) randomly divided into six groups (n=8). The groups include control group, which were intact rats; n-L+GH group: non-lesioned rats with GH treatment (1mg/kg, 9.00 am, for 10 consecutive days); n-L+Veh group: non-lesioned rats with vehicle treatment; L group: NBM-lesioned rats; L+GH group: NBM-lesioned rats with GH treatment and L+Veh group: NBM-lesioned rats with same volume of vehicle treatment. Peripheral administration of GH in control had no effect on learning and memory, while in L+GH group produced a significant enhancement in spatial learning and memory comparing to L and L+Veh groups. The percent of time spent in goal quarter during probe trial has decreased significantly in L and L+Veh groups compared to n-L groups. While it has increased significantly in L+GH group compared to L and L+Veh groups. No significant difference in percent of time spent was seen between the control and n-L groups. The GH has known as a mediate that effect through IGF-1. As the IGF-1 itself is earlier shown to improve cognitive function it is likely that the observed effect of GH is mediated through release of IGF-1 from peripheral tissue into the circulation for further transport across the BBB. This mechanism may result in the improvement of learning and memory in rats with NBM lesion.
Collapse
Affiliation(s)
- A H Doulah
- Department of Biology, Sciences & Research Branch, Islamic Azad University (IAU), Poonak Squar, Ashrafi Isfehani High Way, Tehran, Iran
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Y. F, A. S, M. B. Preventive Effect of Grape Seed Hydroalcholic Extract on Dementia Type of Alzheimer's Disease in Aged Male Rats. INT J PHARMACOL 2009. [DOI: 10.3923/ijp.2009.257.262] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|