1
|
Sarkar MM, Saha P, Karmakar B, Toppo P, Paul P, Dua TK, Mathur P, Roy S. Sugar-coating on the surface of silica nanoparticles attenuates the dose- and size-dependent toxicity of the nanoparticles for plant-based applications. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 223:109778. [PMID: 40112757 DOI: 10.1016/j.plaphy.2025.109778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/01/2025] [Accepted: 03/10/2025] [Indexed: 03/22/2025]
Abstract
Silica nanoparticles (SiNPs) are one of the most promising nanoparticles in stimulating plant growth and alleviating environmental stresses. Besides beneficial attributes, these nanoparticles may also possess serious toxicity issues. In this context, the present study aimed to evaluate the dose and size-dependent toxicity attributes of SiNPs using Allium cepa root tip assay. The dose-dependent study conducted using moderate-size SiNPs (∼50 nm) with different concentrations (1-500 g/L) depicted non-toxic effects up to the dose of 75 g/L. However, concentrations above 100 g/L imparted a gradual increase in toxicity with the increasing dosage of SiNPs, where mitotic index (MI) was reduced, and chromosomal aberration (CA), ROS accumulation, and membrane disruption increased significantly. Moreover, among the 3 different sizes of SiNPs viz. ∼30, ∼50, and ∼100 nm, ∼50 nm was relatively non-toxic. Further, a significant reduction in toxicity level at higher concentrations (≥200 g/L) was achieved when the SiNPs (∼50 nm) surface was functionalized with glucose (GSiNPs) and trehalose (TSiNPs) compared to bare SiNPs. In this context, the reduction in CA by GSiNPs was 1.6-2.9 folds and by TSiNPs 1.9-3.3 folds. Also, GSiNPs and TSiNPs improved the plant growth and soil microflora colonization, without imparting toxic effects.
Collapse
Affiliation(s)
- Mahima Misti Sarkar
- Plant Biochemistry Laboratory, Department of Botany, University of North Bengal, Raja Rammohunpur, West Bengal, 734013, India.
| | - Puja Saha
- Plant Biochemistry Laboratory, Department of Botany, University of North Bengal, Raja Rammohunpur, West Bengal, 734013, India.
| | - Biswanath Karmakar
- Plant Biochemistry Laboratory, Department of Botany, University of North Bengal, Raja Rammohunpur, West Bengal, 734013, India.
| | - Prabha Toppo
- Microbiology Laboratory, Department of Botany, University of North Bengal, Raja Rammohunpur, West Bengal, 734013, India.
| | - Paramita Paul
- Department of Pharmaceutical Technology, University of North Bengal, Raja Rammohunpur, Dist. Darjeeling, West Bengal, 734013, India.
| | - Tarun Kumar Dua
- Department of Pharmaceutical Technology, University of North Bengal, Raja Rammohunpur, Dist. Darjeeling, West Bengal, 734013, India.
| | - Piyush Mathur
- Department of Botany, Banaras Hindu University, Institute of Science, Ajagara, Varanasi, Uttar Pradesh, 221005, India.
| | - Swarnendu Roy
- Plant Biochemistry Laboratory, Department of Botany, University of North Bengal, Raja Rammohunpur, West Bengal, 734013, India.
| |
Collapse
|
2
|
Zhang Y, Luo Z, Li L, Nian L, Li L, Niu Y, He R, Liu J. Nitrogen Fertilization Shapes Soil Microbial Diversity and Ecosystem Multifunctionality by Modulating Soil Nutrients. Microorganisms 2025; 13:540. [PMID: 40142433 PMCID: PMC11944318 DOI: 10.3390/microorganisms13030540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 02/22/2025] [Accepted: 02/25/2025] [Indexed: 03/28/2025] Open
Abstract
Soil microbial communities play an important role in driving diverse ecosystem functions and ecological processes and are the main driving force for maintaining biogeochemical cycles. To investigate the effects of nitrogen fertilizer addition on soil microbial community characteristics and ecosystem multifunctionality in alfalfa fields, a field experiment was conducted in the semi-arid region of the Loess Plateau. Ecological network analysis revealed a strong cooperative relationship among bacterial community species under the N100 treatment, while a strong competitive relationship was observed among fungal community species under the N50 treatment. Furthermore, compared with the control check, the soil carbon nutrient function, ecosystem multifunctionality and grassland productivity of N150 treatment increased by 45.17%, 34.01%, and 7.92%, while the soil phosphorus function decreased by 13.44%. Additionally, soil pH significantly influences ecosystem multifunctionality, soil carbon nutrient function, and grassland productivity. Soil water content notably affects the soil phosphorus nutrient function, while soil microbial diversity has a significant impact on grassland productivity and soil potassium nutrient function. The above results suggest that alterations in soil nutrient levels influence ecosystem multifunctionality by regulating microbial community diversity, offering new insights into the mechanisms by which nutrients impact soil microbial communities and ecosystem properties.
Collapse
Affiliation(s)
- Yaoquan Zhang
- College of Forestry, Gansu Agricultural University, Lanzhou 730070, China; (Y.Z.); (R.H.)
| | - Zhuzhu Luo
- College of Forestry, Gansu Agricultural University, Lanzhou 730070, China; (Y.Z.); (R.H.)
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, China;
| | - Liangliang Li
- Grassland Science College, Gansu Agricultural University, Lanzhou 730070, China;
| | - Lili Nian
- Institute of Soil, Fertilizer and Water-Saving Agriculture, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China;
| | - Lingling Li
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (L.L.); (Y.N.)
| | - Yining Niu
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (L.L.); (Y.N.)
| | - Renyuan He
- College of Forestry, Gansu Agricultural University, Lanzhou 730070, China; (Y.Z.); (R.H.)
| | - Jiahe Liu
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, China;
| |
Collapse
|
3
|
Abd El-Daim IA, Raynes G, Fernandez-Fuentes N, Hawkins S, Cookson A, Farrar K. Halotolerant bacterial endophyte Bacillus velezensis CBE mediates abiotic stress tolerance with minimal transcriptional modifications in Brachypodium distachyon. FRONTIERS IN PLANT SCIENCE 2025; 15:1485391. [PMID: 39866317 PMCID: PMC11757260 DOI: 10.3389/fpls.2024.1485391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 12/10/2024] [Indexed: 01/28/2025]
Abstract
Nitrogen and water are the primary resources limiting agricultural production worldwide. We have demonstrated the ability of a novel halotolerant bacterial endophyte, Bacillus velezensis CBE, to induce osmotic stress tolerance in Brachypodium distachyon under nitrogen-deprived conditions. Additionally, we aimed to identify the molecular factors in plants that contribute to the beneficial effects induced by B. velezensis CBE in B. distachyon. To achieve this, we conducted transcriptomic profiling using RNA-seq on 18-day-old B. distachyon seedlings treated with B. velezensis CBE in the presence or absence of available nitrogen, with and without osmotic stress. These profiles were then compared to those obtained from B. distachyon treated with known plant growth-promoting bacterial strains, Azospirillum brasilense Cd and Azoarcus olearius DQS4, under the same growth conditions. We identified differentially expressed genes (DEGs) in response to the combinations of bacterial strains and stress treatments. Interestingly, only 73 transcripts showed significant differential expression in B. velezensis CBE-treated plants under stress conditions, compared to 1,078 DEGs in plants treated with A. brasilense Cd and 2,015 DEGs in A. olearius DQS4. Our findings suggest that the novel endophyte B. velezensis CBE mediates osmotic stress tolerance in B. distachyon through the fine-tuning of molecular mechanisms with minimal transcriptional modifications.
Collapse
Affiliation(s)
- Islam A. Abd El-Daim
- Institute of Biological, Environmental and Rural Sciences (IBERS) Aberystwyth University, Aberystwyth, United Kingdom
- Department of Microbiology, Soils, Water and Environment Research Institute, Agricultural Research Centre, Giza, Egypt
| | - Gareth Raynes
- Institute of Biological, Environmental and Rural Sciences (IBERS) Aberystwyth University, Aberystwyth, United Kingdom
| | - Narcis Fernandez-Fuentes
- Institute of Biological, Environmental and Rural Sciences (IBERS) Aberystwyth University, Aberystwyth, United Kingdom
| | - Sarah Hawkins
- Institute of Biological, Environmental and Rural Sciences (IBERS) Aberystwyth University, Aberystwyth, United Kingdom
| | - Alan Cookson
- Institute of Biological, Environmental and Rural Sciences (IBERS) Aberystwyth University, Aberystwyth, United Kingdom
| | - Kerrie Farrar
- Institute of Biological, Environmental and Rural Sciences (IBERS) Aberystwyth University, Aberystwyth, United Kingdom
| |
Collapse
|
4
|
Choi Y, Ganzorig M, Lee K. Analysis of the Genomes and Adaptive Traits of Skermanella cutis sp. nov., a Human Skin Isolate, and the Type Strains Skermanella rosea and Skermanella mucosa. Microorganisms 2025; 13:94. [PMID: 39858862 PMCID: PMC11767975 DOI: 10.3390/microorganisms13010094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 12/30/2024] [Accepted: 12/31/2024] [Indexed: 01/27/2025] Open
Abstract
The genus Skermanella comprises important soil bacteria that are often associated with the crop rhizospheres, but its physiological traits remain poorly understood. This study characterizes Skermanella sp. TT6T, isolated from human skin, with a focus on its metabolic and environmental adaptations. Genome sequencing and phylogenomic analyses revealed that the strain TT6T is most closely related to S. rosea M1T, with average nucleotide identity and digital DNA-DNA hybridization values of 94.14% (±0.5%) and 64.7%, respectively. Comparative genomic analysis showed that the strains TT6T, S. rosea M1T and S. mucosa 8-14-6T share the Calvin cycle, and possess photosynthetic genes associated with the purple bacteria-type photosystem II. The strains TT6T and S. rosea M1T exhibited growth in a nitrogen-free medium under microaerobic conditions, which were generated in test tubes containing 0.1% soft agar. Under these conditions, with nitrate as a nitrogen source, S. rosea M1T formed gases, indicating denitrification. Strain TT6T also contains gene clusters involved in trehalose and carotenoid biosynthesis, along with salt-dependent colony morphology changes, highlighting its adaptive versatility. Genomic analyses further identified pathways related to hydrogenase and sulfur oxidation. Phenotypic and chemotaxonomic traits of strain TT6T were also compared with closely related type strains, confirming its genotypic and phenotypic distinctiveness. The new species, Skermanella cutis sp. nov., is proposed, with TT6T (=KCTC 82306T = JCM 34945T) as the type strain. This study underscores the agricultural and ecological significance of the genus Skermanella.
Collapse
Affiliation(s)
| | | | - Kyoung Lee
- Department of Bio Health Science, Changwon National University, Changwon 51140, Gyeongnam, Republic of Korea; (Y.C.); (M.G.)
| |
Collapse
|
5
|
Domnariu H, Trippe KM, Botez F, Partal E, Postolache C. Long-term impact of tillage on microbial communities of an Eastern European Chernozem. Sci Rep 2025; 15:642. [PMID: 39753736 PMCID: PMC11698901 DOI: 10.1038/s41598-024-84590-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 12/24/2024] [Indexed: 01/06/2025] Open
Abstract
As conservation agricultural practices continue to spread, there is a need to understand how reduced tillage impacts soil microbes. Effects of no till (NT) and disk till (DT) relative to moldboard plow (MP) were investigated in a long-term experiment established on Chernozem. Results showed that conservation practices, especially NT, increased total, active and microbial biomass carbon. The effects on diversity measured through amplicon sequencing were greater for prokaryotes than for fungi. NT increased prokaryotic richness at both the lower and the higher taxonomic level, while for both microbial groups it tended to decrease Shannon index at the higher taxonomic level. No differences were observed between DT and MP. Conversely, tillage intensity induced a clear separation of both prokaryotic and fungal communities among all three practices. Comparing abundance of ecologically meaningful groups revealed more abundant saprotrophic fungi in MP and differences in the bacterial groups involved in the N cycle. Differential analysis showed relatively similar numbers of plant growth promoting prokaryotic taxa. However, it also revealed higher numbers of pathogenic fungal taxa that are enriched in NT. Overall, our findings illustrate that tillage changes the structure of both prokaryotic and fungal communities, including distribution of functional groups, without necessarily changing diversity.
Collapse
Affiliation(s)
- Horia Domnariu
- Department of Systems Ecology and Sustainability, Faculty of Biology, University of Bucharest, Bucharest, Romania
- Department of Soil Biology, National Research and Development Institute for Soil Science, Agrochemistry and Environment - ICPA Bucharest, Bucharest, Romania
| | - Kristin M Trippe
- Department of Crop and Soil Science, Oregon State University, Corvallis, OR, USA
- National Forage Seed Production Research Center, USDA-ARS, Corvallis, OR, USA
| | - Florina Botez
- Department of Systems Ecology and Sustainability, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Elena Partal
- National Agricultural Research and Development Institute of Fundulea, Fundulea, Romania
| | - Carmen Postolache
- Department of Systems Ecology and Sustainability, Faculty of Biology, University of Bucharest, Bucharest, Romania.
| |
Collapse
|
6
|
Qadir M, Iqbal A, Hussain A, Hussain A, Shah F, Yun BW, Mun BG. Exploring Plant-Bacterial Symbiosis for Eco-Friendly Agriculture and Enhanced Resilience. Int J Mol Sci 2024; 25:12198. [PMID: 39596264 PMCID: PMC11594960 DOI: 10.3390/ijms252212198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/07/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
This review explores the intricate relationship between plants and bacterial endophytes, revealing their multifaceted roles in promoting plant growth, resilience, and defense mechanisms. By selectively shaping their microbiome, plants harness diverse endophytic bacterial strains to enhance nutrient absorption, regulate hormones, mitigate damage, and contribute to overall plant health. The review underscores the potential of bacterial endophytes in self-sustaining agricultural systems, offering solutions to reduce reliance on fertilizers and pesticides. Additionally, the review highlights the importance of endophytes in enhancing plant tolerance to various environmental stresses, such as drought, salinity, extreme temperatures, and heavy metal toxicity. The review emphasizes the significance of understanding and harnessing the mutualistic relationship between plants and endophytes for maximizing agricultural yields and promoting sustainable farming practices.
Collapse
Affiliation(s)
- Muhammad Qadir
- Department of Botany, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa 23200, Pakistan; (M.Q.)
- Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China
| | - Amjad Iqbal
- Department of Food Science & Technology, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa 23200, Pakistan
| | - Anwar Hussain
- Department of Botany, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa 23200, Pakistan; (M.Q.)
| | - Adil Hussain
- Department of Entomology, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa 23200, Pakistan
| | - Farooq Shah
- Department of Agronomy, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa 23200, Pakistan
| | - Byung-Wook Yun
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Bong-Gyu Mun
- Department of Environmental Biochemistry, Chungbuk National University, Chungbuk 28644, Republic of Korea
| |
Collapse
|
7
|
Thabah S, Joshi SR. Performance Evaluation of Native Plant Growth-Promoting Bacteria Associated with Organic Tea Plantations for Development of Bioinoculants for Crop Plants. Curr Microbiol 2024; 81:444. [PMID: 39495358 DOI: 10.1007/s00284-024-03962-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 10/21/2024] [Indexed: 11/05/2024]
Abstract
This study aimed at isolation of native plant growth-promoting bacteria (PGPB) associated with organic tea plantations. Most research on tea and associated microbes have been on Darjeeling and Assam, known for their world-class tea. However, emerging tea plantations in remote Northeast India are gaining prominence due to their unique geographical location, favorable climate, and organic practices. This study investigated PGBP associated with these organic tea plantations, aimed to assess their potential cross-infectivity on non-host plants. A total of 58 PGP bacterial isolates were isolated from four organic tea plantations. Six potential isolates were further evaluated individually and as consortium for their PGP on rice and maize. Bacillus, Pseudomonas, and Serratia spp. as individual and in consortium were found to have potent cross-infectivity with significant growth promotion in non-host plants indicated by plant height, root length, shoot, and root weight. The present findings suggest that PGPB native to organic tea plantations have potential cross-infectivity for use as a biofertilizers to improve the growth and productivity of non-host crops. This provides prospectives of using native bacteria on non-host plants paving the way for their potential application in sustainable agriculture practices for growth promotion of staple food crops.
Collapse
Affiliation(s)
- Stevenson Thabah
- Microbiology Laboratory, Department of Biotechnology & Bioinformatics, North-Eastern Hill University, Shillong, Meghalaya, 793022, India
| | - S R Joshi
- Microbiology Laboratory, Department of Biotechnology & Bioinformatics, North-Eastern Hill University, Shillong, Meghalaya, 793022, India.
| |
Collapse
|
8
|
Rivera-Hernández G, Tijerina-Castro GD, Cortés-Pérez S, Ferrera-Cerrato R, Alarcón A. Evaluation of functional plant growth-promoting activities of culturable rhizobacteria associated to tunicate maize ( Zea mays var. tunicata A. St. Hil), a Mexican exotic landrace grown in traditional agroecosystems. Front Microbiol 2024; 15:1478807. [PMID: 39417083 PMCID: PMC11480017 DOI: 10.3389/fmicb.2024.1478807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 09/12/2024] [Indexed: 10/19/2024] Open
Abstract
Tunicate maize (Zea mays var. tunicata A. St. Hil) is a landrace that constitutes a fundamental aspect of the socio-cultural identity of Ixtenco, Tlaxcala (Mexico) and represents an exotic phenotype whose kernels are enclosed in leaflike glumes. Despite multiple studies conducted worldwide on plant growth-promoting-rhizobacteria (PGPR) in commercial maize varieties grown under monoculture systems, very little is known about bacteria inhabiting native maize landraces in agroecosystems, but for tunicate maize such knowledge is non-existent. This research described and profiled functional groups of culturable rhizobacteria from tunicate maize at two phenological stages (tasseling and maturity/senescence) in a polyculture system, highlighting potential PGPR for biotechnological purposes. Ninety-five rhizobacteria were isolated and molecularly identified, and their physiological activities such as plant growth promotion, production of exogenous lytic enzymes, and antagonism against fungal pathogens were determined. The culturable rhizobacterial community associated to tunicate maize comprised 42 genera, dominated by Bacillaceae, Comamonadaceae, Microbacteriaceae, Micrococcaceae, Oxalobacteraceae, Pseudomonadaceae, and Rhizobaceae families. At tasseling stage, the identified bacteria corresponded to Arthrobacter, Priestia, Herbaspirillum, Pseudomonas, and Rhizobium, and exhibited redundant capabilities for stimulating plant growth and nutrition, and inhibiting fungal phytopathogens. At maturity/senescence stage, the main genera Arthrobacter and Microbacterium displayed lytic capabilities to support mineralization process. We recorded potential novel rhizosphere functional bacteria such as Rhizobium, Sphingobium, and Arthrobacter which are not previously described associated to maize landraces, as well as their bioprospection as PGPR detected at plant phenological stages poorly explored (like maturity/senescence). This taxonomic and functional diversity was attributed to the application of agricultural practices as well as the rhizosphere effect during specific phenological stages. Results described the diversity and functionality of culturable rhizosphere bacteria from tunicate maize in polyculture systems that allowed us the detection of potential rhizobacteria for further developing of biofertilizers and biocontrollers directed as biotechnology for sustainable agriculture, and for generating strategies for conservation of native plants and their microbial genetic resources.
Collapse
|
9
|
Pal G, Saxena S, Kumar K, Verma A, Kumar D, Shukla P, Pandey A, White J, Verma SK. Seed endophytic bacterium Lysinibacillus sp. (ZM1) from maize (Zea mays L.) shapes its root architecture through modulation of auxin biosynthesis and nitrogen metabolism. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 212:108731. [PMID: 38761545 DOI: 10.1016/j.plaphy.2024.108731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 04/25/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
Seed endophytic bacteria have been shown to promote the growth and development of numerous plants. However, the underlying mechanism still needs to be better understood. The present study aims to investigate the role of a seed endophytic bacterium Lysinibacillus sp. (ZM1) in promoting plant growth and shaping the root architecture of maize seedlings. The study explores how bacteria-mediated auxin biosynthesis and nitrogen metabolism affect plant growth promotion and shape the root architecture of maize seedlings. The results demonstrate that ZM1 inoculation significantly enhances root length, root biomass, and the number of seminal roots in maize seedlings. Additionally, the treated seedlings exhibit increased shoot biomass and higher levels of photosynthetic pigments. Confocal laser scanning microscopy (CLSM) analysis revealed extensive colonization of ZM1 on root hairs, as well as in the cortical and stellar regions of the root. Furthermore, LC-MS analysis demonstrated elevated auxin content in the roots of the ZM1 treated maize seedlings compared to the uninoculated control. Inoculation with ZM1 significantly increased the levels of endogenous ammonium content, GS, and GOGAT enzyme activities in the roots of treated maize seedlings compared to the control, indicating enhanced nitrogen metabolism. Furthermore, inoculation of bacteria under nitrogen-deficient conditions enhanced plant growth, as evidenced by increased root shoot length, fresh and dry weights, average number of seminal roots, and content of photosynthetic pigments. Transcript analysis indicated upregulation of auxin biosynthetic genes, along with genes involved in nitrogen metabolism at different time points in roots of ZM1-treated maize seedlings. Collectively, our findings highlight the positive impact of Lysinibacillus sp. ZM1 inoculation on maize seeds by improving root architecture through modulation of auxin biosynthesis and affecting various nitrogen metabolism related parameters. These findings provide valuable insights into the potential utilization of seed endophytic bacteria as biofertilizers to enhance plant growth and yield in nutrient deficient soils.
Collapse
Affiliation(s)
- Gaurav Pal
- Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India; Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 276957612, USA.
| | - Samiksha Saxena
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Kanchan Kumar
- Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Anand Verma
- Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Deepak Kumar
- Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Pooja Shukla
- Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Ashutosh Pandey
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - James White
- Department of Plant Biology, Rutgers University, New Brunswick, NJ, USA
| | - Satish K Verma
- Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India.
| |
Collapse
|
10
|
Patil R, Ramli ANM, Xuan AS, Xin NZ, Azelee NIW, Bhuyar P. Unlocking the growth potential: harnessing the power of synbiotics to enhance cultivation of Pleurotus spp. J Zhejiang Univ Sci B 2024; 25:293-306. [PMID: 38584092 PMCID: PMC11009439 DOI: 10.1631/jzus.b2300383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/11/2023] [Indexed: 04/09/2024]
Abstract
The oyster mushroom (Pleurotus spp.) is one of the most widely cultivated mushroom species globally. The present study investigated the effect of synbiotics on the growth and quality of Pleurotus ostreatus and Pleurotus pulmonarius. Different synbiotics formulations were applied by spraying mushroom samples daily and measuring their growth parameters, yield, biological efficiency, proximate composition, mineral content, total phenolic content (TPC), and diphenyl-1-picryl-hydrazyl (DPPH) radical scavenging activity. Results demonstrated that the most significant yield of oyster mushrooms was harvested from synbiotics sprayed with inulin and Lactobacillus casei (56.92 g). Likewise, the highest biological efficiency obtained with a similar synbiotic was 12.65%. Combining inulin and L. casei was the most effective method of improving the mushrooms' growth performance and nutrient content in both samples. Furthermore, synbiotics that combined inulin and L. casei resulted in the highest TPC (20.550 mg gallic acid equivalent (GAE)/g dry extract (DE)) in white oyster mushrooms (P. ostreatus). In comparison, in grey mushroom (P. pulmonarius) the highest TPC was yielded by L. casei (1.098 mg GAE/g DE) followed by inulin and L. casei (1.079 mg GAE/g DE). The DPPH results indicated that the oyster mushroom could be an efficient antioxidant. The results revealed that applying synbiotics improved the mushrooms' quality by increasing their antioxidant capacity with higher amounts of phenolic compounds and offering better health benefits with the increased levels of mineral elements. Together, these studies demonstrated the potential of using synbiotics as a biofertilizer, which is helpful for mushroom cultivation; therefore, it might solve the challenge of inconsistent quality mushroom growers face.
Collapse
Affiliation(s)
- Reshma Patil
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah (UMPSA), Gambang, 26300, Malaysia
- BioAromatic Research Centre of Excellence, Universiti Malaysia Pahang Al-Sultan Abdullah (UMPSA), Gambang, 26300, Malaysia
| | - Aizi Nor Mazila Ramli
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah (UMPSA), Gambang, 26300, Malaysia.
- BioAromatic Research Centre of Excellence, Universiti Malaysia Pahang Al-Sultan Abdullah (UMPSA), Gambang, 26300, Malaysia.
| | - Ang Shu Xuan
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah (UMPSA), Gambang, 26300, Malaysia
| | - Ng Zhi Xin
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah (UMPSA), Gambang, 26300, Malaysia
| | - Nur Izyan Wan Azelee
- Department of Bioprocess & Polymer Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor, 81310, Malaysia
| | - Prakash Bhuyar
- Organic Agriculture Management, Maejo University International College (MJU-IC), Maejo University, Chiang Mai, 50290, Thailand
- International Industry and Agriculture Innovation Research Center (IIAR), International College, Maejo University, Chiang Mai, 50290, Thailand
| |
Collapse
|
11
|
Etesami H, Glick BR. Bacterial indole-3-acetic acid: A key regulator for plant growth, plant-microbe interactions, and agricultural adaptive resilience. Microbiol Res 2024; 281:127602. [PMID: 38228017 DOI: 10.1016/j.micres.2024.127602] [Citation(s) in RCA: 46] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/18/2024]
Abstract
Indole-3-acetic acid (IAA), a fundamental phytohormone categorized under auxins, not only influences plant growth and development but also plays a critical role in plant-microbe interactions. This study reviews the role of IAA in bacteria-plant communication, with a focus on its biosynthesis, regulation, and the subsequent effects on host plants. Bacteria synthesize IAA through multiple pathways, which include the indole-3-acetamide (IAM), indole-3-pyruvic acid (IPyA), and several other routes, whose full mechanisms remain to be fully elucidated. The production of bacterial IAA affects root architecture, nutrient uptake, and resistance to various abiotic stresses such as drought, salinity, and heavy metal toxicity, enhancing plant resilience and thus offering promising routes to sustainable agriculture. Bacterial IAA synthesis is regulated through complex gene networks responsive to environmental cues, impacting plant hormonal balances and symbiotic relationships. Pathogenic bacteria have adapted mechanisms to manipulate the host's IAA dynamics, influencing disease outcomes. On the other hand, beneficial bacteria utilize IAA to promote plant growth and mitigate abiotic stresses, thereby enhancing nutrient use efficiency and reducing dependency on chemical fertilizers. Advancements in analytical methods, such as liquid chromatography-tandem mass spectrometry, have improved the quantification of bacterial IAA, enabling accurate measurement and analysis. Future research focusing on molecular interactions between IAA-producing bacteria and host plants could facilitate the development of biotechnological applications that integrate beneficial bacteria to improve crop performance, which is essential for addressing the challenges posed by climate change and ensuring global food security. This integration of bacterial IAA producers into agricultural practice promises to revolutionize crop management strategies by enhancing growth, fostering resilience, and reducing environmental impact.
Collapse
Affiliation(s)
- Hassan Etesami
- Soil Science Department, University of Tehran, Tehran, Iran.
| | - Bernard R Glick
- Department of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
12
|
Labarthe MM, Maroniche GA, Lamattina L, Creus CM. Nitric oxide synthase expression in Pseudomonas koreensis MME3 improves plant growth promotion traits. Appl Microbiol Biotechnol 2024; 108:212. [PMID: 38358431 PMCID: PMC10869383 DOI: 10.1007/s00253-024-13029-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 01/03/2024] [Accepted: 01/25/2024] [Indexed: 02/16/2024]
Abstract
The development of novel biotechnologies that promote a better use of N to optimize crop yield is a central goal for sustainable agriculture. Phytostimulation, biofertilization, and bioprotection through the use of bio-inputs are promising technologies for this purpose. In this study, the plant growth-promoting rhizobacteria Pseudomonas koreensis MME3 was genetically modified to express a nitric oxide synthase of Synechococcus SyNOS, an atypical enzyme with a globin domain that converts nitric oxide to nitrate. A cassette for constitutive expression of synos was introduced as a single insertion into the genome of P. koreensis MME3 using a miniTn7 system. The resulting recombinant strain MME3:SyNOS showed improved growth, motility, and biofilm formation. The impact of MME3:SyNOS inoculation on Brachypodium distachyon growth and N uptake and use efficiencies under different N availability situations was analyzed, in comparison to the control strain MME3:c. After 35 days of inoculation, plants treated with MME3:SyNOS had a higher root dry weight, both under semi-hydroponic and greenhouse conditions. At harvest, both MME3:SyNOS and MME3:c increased N uptake and use efficiency of plants grown under low N soil. Our results indicate that synos expression is a valid strategy to boost the phytostimulatory capacity of plant-associated bacteria and improve the adaptability of plants to N deficiency. KEY POINTS: • synos expression improves P. koreensis MME3 traits important for rhizospheric colonization • B. distachyon inoculated with MME3:SyNOS shows improved root growth • MME3 inoculation improves plant N uptake and use efficiencies in N-deficient soil.
Collapse
Affiliation(s)
- María M Labarthe
- Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata, Balcarce, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Guillermo A Maroniche
- Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata, Balcarce, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Lorenzo Lamattina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
- IIB, Universidad Nacional de Mar del Plata, Mar del Plata, Buenos Aires, Argentina
| | - Cecilia M Creus
- Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata, Balcarce, Buenos Aires, Argentina.
| |
Collapse
|
13
|
Li F, Xi K, Li Y, Ming T, Huang Y, Zhang L. Genome-wide analysis of transmembrane 9 superfamily genes in wheat ( Triticum aestivum) and their expression in the roots under nitrogen limitation and Bacillus amyloliquefaciens PDR1 treatment conditions. FRONTIERS IN PLANT SCIENCE 2024; 14:1324974. [PMID: 38259936 PMCID: PMC10800943 DOI: 10.3389/fpls.2023.1324974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024]
Abstract
Introduction Transmembrane 9 superfamily (TM9SF) proteins play significant roles in plant physiology. However, these proteins are poorly characterized in wheat (Triticum aestivum). The present study aimed at the genome-wide analysis of putative wheat TM9SF (TraesTM9SF) proteins and their potential involvement in response to nitrogen limitation and Bacillus amyloliquefaciens PDR1 treatments. Methods TraesTM9SF genes were retrieved from the wheat genome, and their physiochemical properties, alignment, phylogenetic, motif structure, cis-regulatory element, synteny, protein-protein interaction (PPI), and transcription factor (TF) prediction analyses were performed. Transcriptome sequencing and quantitative real-time polymerase reaction (qRT-PCR) were performed to detect gene expression in roots under single or combined treatments with nitrogen limitation and B. amyloliquefaciens PDR1. Results and discussion Forty-seven TraesTM9SF genes were identified in the wheat genome, highlighting the significance of these genes in wheat. TraesTM9SF genes were absent on some wheat chromosomes and were unevenly distributed on the other chromosomes, indicating that potential regulatory functions and evolutionary events may have shaped the TraesTM9SF gene family. Fifty-four cis-regulatory elements, including light-response, hormone response, biotic/abiotic stress, and development cis-regulatory elements, were present in the TraesTM9SF promoter regions. No duplication of TraesTM9SF genes in the wheat genome was recorded, and 177 TFs were predicted to target the 47 TraesTM9SF genes in a complex regulatory network. These findings offer valued data for predicting the putative functions of uncharacterized TM9SF genes. Moreover, transcriptome analysis and validation by qRT-PCR indicated that the TraesTM9SF genes are expressed in the root system of wheat and are potentially involved in the response of this plant to single or combined treatments with nitrogen limitation and B. amyloliquefaciens PDR1, suggesting their functional roles in plant growth, development, and stress responses. Conclusion These findings may be vital in further investigation of the function and biological applications of TM9SF genes in wheat.
Collapse
Affiliation(s)
- Fei Li
- The Key Laboratory of Biodiversity Conservation in Karst Mountain Area of Southwest of China, Forestry Ministry, School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Kuanling Xi
- The Key Laboratory of Biodiversity Conservation in Karst Mountain Area of Southwest of China, Forestry Ministry, School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Yuke Li
- The Key Laboratory of Biodiversity Conservation in Karst Mountain Area of Southwest of China, Forestry Ministry, School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Tang Ming
- The Key Laboratory of Biodiversity Conservation in Karst Mountain Area of Southwest of China, Forestry Ministry, School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Yufeng Huang
- The Key Laboratory of Biodiversity Conservation in Karst Mountain Area of Southwest of China, Forestry Ministry, School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Lijun Zhang
- Science and Technology Division, Guizhou Normal University, Guiyang, China
| |
Collapse
|
14
|
Maslennikova VS, Tsvetkova VP, Shelikhova EV, Selyuk MP, Alikina TY, Kabilov MR, Dubovskiy IM. Bacillus subtilis and Bacillus amyloliquefaciens Mix Suppresses Rhizoctonia Disease and Improves Rhizosphere Microbiome, Growth and Yield of Potato ( Solanum tuberosum L.). J Fungi (Basel) 2023; 9:1142. [PMID: 38132743 PMCID: PMC10744094 DOI: 10.3390/jof9121142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/14/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
Black scurf and stem canker caused by Rhizoctonia solani is a significant disease problem of potatoes. Currently, chemical methods are the primary means of controlling this pathogen. This study sought to explore an alternative approach by harnessing the biocontrol potential of a bacterial mix of Bacillus subtilis and Bacillus amyloliquefaciens against black scurf, and to determine their effect on rhizosphere microorganisms of soil microbiota. This study showed that these bacteria demonstrate antagonistic activity against Rhizoctonia solani. Reduced damage to potato plants during the growing season in Siberia was observed. The index of disease development decreased from 40.9% to 12.0%. The treatment of tubers with this mix of bacteria also led to a change in the composition of the rhizosphere microbiota (according to CFU, 16S and ITS sequencing). This effect was accompanied by a positive change in plant physiological parameters (spectrophotometric analysis). The concentration of chlorophyll in potatoes with the bacterial mix treatment increased by 1.3 fold (p ≤ 0.001), and of carotenoids by 1.2 fold (p ≤ 0.01) compared with the control. After bacterial mix treatment, the length of the aerial parts of plants was 1.3 fold higher (p ≤ 0.001), and the number of stems 1.4 fold higher (p ≤ 0.05). The yield of potatoes was increased by 8.2 t/ha, while the large tuber fraction was increased by 16% (p ≤ 0.05). The bacteria mix of Bacillus subtilis and Bacillus amyloliquefaciens suppressed the plant pathogenic fungus Rhizoctonia solani, and simultaneously enhanced the physiological parameters of potato plants. This treatment can be used to enhance the yield/quality of potato tubers under field conditions.
Collapse
Affiliation(s)
- Vladislava S. Maslennikova
- Laboratory of Biological Plant Protection and Biotechnology, Novosibirsk State Agrarian University, Dobrolubova Str. 160, 630039 Novosibirsk, Russia; (V.S.M.)
- Laboratory of Biotechnology of Microorganisms and Plants, Tomsk State University, 634050 Tomsk, Russia
| | - Vera P. Tsvetkova
- Laboratory of Biological Plant Protection and Biotechnology, Novosibirsk State Agrarian University, Dobrolubova Str. 160, 630039 Novosibirsk, Russia; (V.S.M.)
| | - Evgenia V. Shelikhova
- Laboratory of Biological Plant Protection and Biotechnology, Novosibirsk State Agrarian University, Dobrolubova Str. 160, 630039 Novosibirsk, Russia; (V.S.M.)
- Laboratory of Biotechnology of Microorganisms and Plants, Tomsk State University, 634050 Tomsk, Russia
| | - Marina P. Selyuk
- Laboratory of Biological Plant Protection and Biotechnology, Novosibirsk State Agrarian University, Dobrolubova Str. 160, 630039 Novosibirsk, Russia; (V.S.M.)
| | - Tatyana Y. Alikina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Marsel R. Kabilov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Ivan M. Dubovskiy
- Laboratory of Biological Plant Protection and Biotechnology, Novosibirsk State Agrarian University, Dobrolubova Str. 160, 630039 Novosibirsk, Russia; (V.S.M.)
- Laboratory of Biotechnology of Microorganisms and Plants, Tomsk State University, 634050 Tomsk, Russia
| |
Collapse
|
15
|
Li J, Wang J, Liu H, Macdonald CA, Singh BK. Microbial inoculants with higher capacity to colonize soils improved wheat drought tolerance. Microb Biotechnol 2023; 16:2131-2144. [PMID: 37815273 PMCID: PMC10616649 DOI: 10.1111/1751-7915.14350] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/16/2023] [Accepted: 09/20/2023] [Indexed: 10/11/2023] Open
Abstract
Microbial inoculants have gained increasing attention worldwide as an eco-friendly solution for improving agriculture productivity. Several studies have demonstrated their potential benefits, such as enhanced resistance to drought, salinity, and pathogens. However, the beneficial impacts of inoculants remain inconsistent. This variability is attributed to limited knowledge of the mechanisms by which microbial inoculants affect crop growth and a lack of ecological characteristics of these inoculants that limit our ability to predict their beneficial effects. The first important step is believed to be the evaluation of the inoculant's ability to colonize new habitats (soils and plant roots), which could provide crops with beneficial functions and improve the consistency and efficiency of the inoculants. In this study, we aimed to investigate the impact of three microbial inoculants (two bacterial: P1 and P2, and one fungal: P3) on the growth and stress responses of three wheat varieties in two different soil types under drought conditions. Furthermore, we investigated the impact of microbial inoculants on soil microbial communities. Plant biomass and traits were measured, and high-throughput sequencing was used to characterize bulk and rhizosphere soil microbiomes after exposure to drought stress. Under drought conditions, plant shoot weight significantly increased (11.37%) under P1 treatments compared to uninoculated controls. In addition, total nitrogen enzyme activity increased significantly under P1 in sandy soil but not in clay soil. Importantly, network analyses revealed that P1, consisting of Bacillus paralicheniformis and Bacillus subtilis, emerged as the keystone taxa in sandy soil. Conversely, P2 and P3 failed to establish as keystone taxa, which may explain their insignificant impact on wheat performance under drought conditions. In conclusion, our study emphasizes the importance of effective colonization by microbial inoculants in promoting crop growth under drought conditions. Our findings support the development of microbial inoculants that robustly colonize plant roots for improved agricultural productivity.
Collapse
Affiliation(s)
- Jiayu Li
- Hawkesbury Institute for the Environment, Western Sydney University, New South Wales, Penrith, Australia
| | - Juntao Wang
- Hawkesbury Institute for the Environment, Western Sydney University, New South Wales, Penrith, Australia
- Global Centre for Land-Based Innovation, Western Sydney University, New South Wales, Penrith, Australia
- School of Science, Western Sydney University, Penrith, New South Wales, Australia
| | - Hongwei Liu
- Hawkesbury Institute for the Environment, Western Sydney University, New South Wales, Penrith, Australia
| | - Catriona A Macdonald
- Hawkesbury Institute for the Environment, Western Sydney University, New South Wales, Penrith, Australia
| | - Brajesh K Singh
- Hawkesbury Institute for the Environment, Western Sydney University, New South Wales, Penrith, Australia
- Global Centre for Land-Based Innovation, Western Sydney University, New South Wales, Penrith, Australia
| |
Collapse
|
16
|
Lastochkina OV, Garipova SR, Pusenkova LI, Garshina DY, Baymiev AK, Koryakov IS. Effect of Endophytic Bacteria Bacillus subtilis on Seedling Growth and Root Lignification of Pisum sativum L. under Normal and Sodium Chloride Salt Conditions. RUSSIAN JOURNAL OF PLANT PHYSIOLOGY 2023; 70:97. [DOI: 10.1134/s102144372360085x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/28/2023] [Accepted: 03/06/2023] [Indexed: 06/23/2023]
|
17
|
Hazarika DJ, Bora SS, Naorem RS, Sharma D, Boro RC, Barooah M. Genomic insights into Bacillus subtilis MBB3B9 mediated aluminium stress mitigation for enhanced rice growth. Sci Rep 2023; 13:16467. [PMID: 37777563 PMCID: PMC10542363 DOI: 10.1038/s41598-023-42804-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 09/14/2023] [Indexed: 10/02/2023] Open
Abstract
Aluminium (Al) toxicity in acid soil ecosystems is a major impediment to crop production as it drastically affects plant root growth, thereby acquisition of nutrients from the soil. Plant growth-promoting bacteria offers an interesting avenue for promoting plant growth under an Al-phytotoxic environment. Here, we report the plant growth-promoting activities of an acid-tolerant isolate of Bacillus subtilis that could ameliorate acid-induced Al-stress in rice (Oryza sativa L.). The whole genome sequence data identified the major genes and genetic pathways in B. subtilis MBB3B9, which contribute to the plant growth promotion in acidic pH. Genetic pathways for organic acid production, denitrification, urea metabolism, indole-3-acetic acid (IAA) production, and cytokinin biosynthesis were identified as major genetic machinery for plant growth promotion and mitigation of Al-stress in plants. The in-vitro analyses revealed the production of siderophores and organic acid production as primary mechanisms for mitigation of Al-toxicity. Other plant growth-promoting properties such as phosphate solubilization, zinc solubilization, and IAA production were also detected in significant levels. Pot experiments involving rice under acidic pH and elevated concentrations of aluminium chloride (AlCl3) suggested that soil treatment with bacterial isolate MBB3B9 could enhance plant growth and productivity compared to untreated plants. A significant increase in plant growth and productivity was recorded in terms of plant height, chlorophyll content, tiller number, panicle number, grain yield, root growth, and root biomass production.
Collapse
Affiliation(s)
- Dibya Jyoti Hazarika
- DBT - North East Centre for Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, 785013, India
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, 785013, India
| | - Sudipta Sankar Bora
- DBT - North East Centre for Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, 785013, India
| | - Romen Singh Naorem
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, 785013, India
| | - Darshana Sharma
- DBT - North East Centre for Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, 785013, India
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, 785013, India
| | - Robin Chandra Boro
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, 785013, India
| | - Madhumita Barooah
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, 785013, India.
| |
Collapse
|
18
|
Duan M, Yang C, Bao L, Han D, Wang H, Zhang Y, Liu H, Yang S. Morchella esculenta cultivation in fallow paddy fields and drylands affects the diversity of soil bacteria and soil chemical properties. Front Genet 2023; 14:1251695. [PMID: 37772255 PMCID: PMC10523323 DOI: 10.3389/fgene.2023.1251695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 08/31/2023] [Indexed: 09/30/2023] Open
Abstract
The properties of paddy field (DT) and dry land (HD) soil and food production can be enhanced by the cultivation of Morchella esculenta (ME) during the fallow period. However, whether ME cultivation affects the soil health and microbial diversity of paddy fields and drylands during the cultivation period remains unclear, and this has greatly limited the wider use of this cultivation model. Here, we analyzed the soil chemical properties and bacterial diversity (via metabarcoding sequencing) of DT and HD soils following ME cultivation. Our findings indicated that ME cultivation could enhance soil health. The content of soil phosphorus and potassium (K) was increased in DT soil under ME cultivation, and the K content was significantly higher in HD soil than in DT soil under ME cultivation. ME cultivation had a weak effect on alpha diversity, and ME cultivation affected the abundance of some genera of soil bacteria. The cultivation of ME might reduce the methane production capacity of DT soil and enhance the nitrogen cycling process of HD soil based on the results of functional annotation analysis. Network analysis and correlation analysis showed that Gemmatimonas, Bryobacter, and Anaeromyxobacter were the key bacterial genera regulating soil chemical properties in DT soil under ME cultivation, and Bryobacter, Bacillus, Streptomyces, and Paenarthrobacter were the key taxa associated with the accumulation of K in HD soil. The results of our study will aid future efforts to further improve this cultivation model.
Collapse
Affiliation(s)
- Mingzheng Duan
- Yunnan Key Laboratory of Gastrodia Elata and Fungal Symbiotic Biology, College of Agronomy and Life Sciences, Zhaotong University, Zhaotong, China
- Yunnan Engineering Research Center of Green Planting and Processing of Gastrodia Elata, College of Agronomy and Life Sciences, Zhaotong University, Zhaotong, China
| | - Chengcui Yang
- Yunnan Key Laboratory of Gastrodia Elata and Fungal Symbiotic Biology, College of Agronomy and Life Sciences, Zhaotong University, Zhaotong, China
- Yunnan Engineering Research Center of Green Planting and Processing of Gastrodia Elata, College of Agronomy and Life Sciences, Zhaotong University, Zhaotong, China
| | - Liuyuan Bao
- Yunnan Key Laboratory of Gastrodia Elata and Fungal Symbiotic Biology, College of Agronomy and Life Sciences, Zhaotong University, Zhaotong, China
- Yunnan Engineering Research Center of Green Planting and Processing of Gastrodia Elata, College of Agronomy and Life Sciences, Zhaotong University, Zhaotong, China
| | - Duo Han
- Yunnan Key Laboratory of Gastrodia Elata and Fungal Symbiotic Biology, College of Agronomy and Life Sciences, Zhaotong University, Zhaotong, China
- Yunnan Engineering Research Center of Green Planting and Processing of Gastrodia Elata, College of Agronomy and Life Sciences, Zhaotong University, Zhaotong, China
| | - Huaizheng Wang
- Yunnan Key Laboratory of Gastrodia Elata and Fungal Symbiotic Biology, College of Agronomy and Life Sciences, Zhaotong University, Zhaotong, China
- Yunnan Engineering Research Center of Green Planting and Processing of Gastrodia Elata, College of Agronomy and Life Sciences, Zhaotong University, Zhaotong, China
| | - Yongzhi Zhang
- Yunnan Key Laboratory of Gastrodia Elata and Fungal Symbiotic Biology, College of Agronomy and Life Sciences, Zhaotong University, Zhaotong, China
- Yunnan Engineering Research Center of Green Planting and Processing of Gastrodia Elata, College of Agronomy and Life Sciences, Zhaotong University, Zhaotong, China
| | - Honggao Liu
- Yunnan Key Laboratory of Gastrodia Elata and Fungal Symbiotic Biology, College of Agronomy and Life Sciences, Zhaotong University, Zhaotong, China
- Yunnan Engineering Research Center of Green Planting and Processing of Gastrodia Elata, College of Agronomy and Life Sciences, Zhaotong University, Zhaotong, China
| | - Shunqiang Yang
- Yunnan Key Laboratory of Gastrodia Elata and Fungal Symbiotic Biology, College of Agronomy and Life Sciences, Zhaotong University, Zhaotong, China
- Yunnan Engineering Research Center of Green Planting and Processing of Gastrodia Elata, College of Agronomy and Life Sciences, Zhaotong University, Zhaotong, China
| |
Collapse
|
19
|
Wang L, Tang X, Liu X, Zhang J. Active permanent greening - a new slope greening technology based on mineral solubilizing microorganisms. FRONTIERS IN PLANT SCIENCE 2023; 14:1219139. [PMID: 37711299 PMCID: PMC10498118 DOI: 10.3389/fpls.2023.1219139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/08/2023] [Indexed: 09/16/2023]
Abstract
Introduction With social and economic development and the associated large-scale exploitation of natural resources, the number of slopes has significantly increased. As slope instability can lead to serious geological disasters, the ecological protection and reconstruction of slopes has become a hot topic of common global concern. Methods In order to achieve scientific slope management and overcome the difficulty of maintaining slope greening in the long term, this study explored eight strategies (A, B, C, AB, AC, BC, ABC, CK), involving different patented mineral solubilizing microorganisms (MSMs), and analyzed the field application of active permanent greening (APG) based on MSMs. Results The results revealed that MSMs significantly increased the content of effective metal ions and available nutrients in soil and enhanced soil enzyme activity. Among all strategies, strategy A showed significant superiority, with soil effective calcium, magnesium, potassium, nitrogen, phosphorus and organic matter contents increasing by 51.62%, 55.41%, 30.42%, 39.77%, 181.69% and 76.92%, respectively, while urease, sucrase and peroxidase activities increased by 89.59%, 74.68% and 85.30%. MSMs strongly promoted the growth of Amorpha. Strategy A showed the best performance, with plant seedling height, ground diameter, leaf area, root length, and root volume increasing by 95.75%, 47.78%, 124.14%, 108.83%, and 139. 86%, respectively. According to a comprehensive evaluation using the entropy-analysis hierarchy process, strategy A has great potential for application. The field test results verified that APG has significantly better greening performance than the traditional greening method, with high vegetation cover and stable soil layer. Discussion The results of this study provide a reliable practical basis and technical reference for the development, promotion, and application of APG.
Collapse
Affiliation(s)
- Lingjian Wang
- Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Xinggang Tang
- Jiangxi Institute of Land Space Survey and Planning, Nanchang, Jiangxi, China
- Technology Innovation Center for Land Spatial Eco-protection and Restoration in Great Lakes Basin, MNR, Nanchang, Jiangxi, China
| | - Xin Liu
- Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Jinchi Zhang
- Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, Nanjing, Jiangsu, China
| |
Collapse
|
20
|
Asghar I, Ahmed M, Farooq MA, Ishtiaq M, Arshad M, Akram M, Umair A, Alrefaei AF, Jat Baloch MY, Naeem A. Characterizing indigenous plant growth promoting bacteria and their synergistic effects with organic and chemical fertilizers on wheat ( Triticum aestivum). FRONTIERS IN PLANT SCIENCE 2023; 14:1232271. [PMID: 37727857 PMCID: PMC10505817 DOI: 10.3389/fpls.2023.1232271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/24/2023] [Indexed: 09/21/2023]
Abstract
The excessive use of chemical fertilizers is deteriorating both the environment and soil, making it a big challenge faced by sustainable agriculture. To assist the efforts for the solution of this burning issue, nine different potential native strains of plant growth-promoting bacteria (PGPB) namely, SA-1(Bacillus subtilis), SA-5 (Stenotrophomonas humi),SA-7(Azospirillum brasilense), BH-1(Azospirillum oryzae), BH-7(Azotobacter armeniacus), BH-8(Rhizobium pusense), BA-3(Azospirillum zeae), BA-6(Rhizobium pusense), and BA-7(Pseudomonas fragi) were isolated that were characterized morphologically, biochemically and molecularly on the basis of 16S rRNA sequencing. Furthermore, the capability of indigenous PGPB in wheat (Triticum aestivum, Chakwal-50) under control, DAP+FYM, SA-1,5,7, BH-1,7,8, BA-3,6,7, DAP+ FYM + SA-1,5,7, DAP+FYM+ BH-1,7,8 and DAP+FYM+ BA-3,6,7 treatments was assessed in a randomized complete block design (RCBD). The results of the study showed that there was a significant increase in plant growth, nutrients, quality parameters, crop yield, and soil nutrients at three depths under SA-1,5,7, BH-1,7,8, and BA-3,6,7 in combination with DAP+FYM. Out of all these treatments, DAP+ FYM + BA-3,6,7 was found to be the most efficient for wheat growth having the highest 1000-grain weight of 55.1 g. The highest values for plant height, no. of grains/spike, spike length, shoot length, root length, shoot dry weight, root dry weight, 1000 grain weight, biological yield, and economic yield were found to be 90.7 cm, 87.7 cm, 7.20 cm, 53.5 cm, 33.5 cm, 4.87 g, 1.32 g, 55.1 g, 8209 kg/h, and 4572 kg/h, respectively, in the DAP+FYM+BA treatment. The DAP+FYM+BA treatment had the highest values of TN (1.68 µg/mL), P (0.38%), and K (1.33%). Likewise, the value of mean protein (10.5%), carbohydrate (75%), lipid (2.5%), and available P (4.68 ppm) was also highest in the DAP+FYM+BA combination. C:P was found to be significantly highest (20.7) in BA alone but was significantly lowest (11.9) in DAP+FYM+BA. Hence, the integration of strains BA-3, BA-5, and BA-7 in fertilizers can be regarded as the most suitable choice for agricultural growth in the sub-mountainous lower region of AJK. This could serve as the best choice for sustainable wheat growth and improved soil fertility with lesser impacts on the environment.
Collapse
Affiliation(s)
- Israr Asghar
- Department of Biotechnology, Mirpur University of Science and Technology (MUST), Mirpur, Pakistan
| | - Maqsood Ahmed
- Department of Biotechnology, Mirpur University of Science and Technology (MUST), Mirpur, Pakistan
| | - Muhammad Ansar Farooq
- Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Muhammad Ishtiaq
- Department of Botany, Mirpur University of Science and Technology (MUST), Bhimber, Pakistan
| | - Muhammad Arshad
- Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Muhammad Akram
- Department of Environmental Sciences, COMSATS University Islamabad (CUI), Vehari, Pakistan
| | - Adnan Umair
- Department of Agriculture, Research wing, Soil and Water Testing Laboratory, Sialkot, Pakistan
| | | | | | - Aamna Naeem
- Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University of Sciences and Technology (NUST), Islamabad, Pakistan
| |
Collapse
|
21
|
Yadav RC, Sharma SK, Varma A, Singh UB, Kumar A, Bhupenchandra I, Rai JP, Sharma PK, Singh HV. Zinc-solubilizing Bacillus spp. in conjunction with chemical fertilizers enhance growth, yield, nutrient content, and zinc biofortification in wheat crop. Front Microbiol 2023; 14:1210938. [PMID: 37469421 PMCID: PMC10352851 DOI: 10.3389/fmicb.2023.1210938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 05/29/2023] [Indexed: 07/21/2023] Open
Abstract
Micronutrient deficiency is a serious health issue in resource-poor human populations worldwide, which is responsible for the death of millions of women and underage children in most developing countries. Zinc (Zn) malnutrition in middle- and lower-class families is rampant when daily calorie intake of staple cereals contains extremely low concentrations of micronutrients, especially Zn and Fe. Looking at the importance of the problem, the present investigation aimed to enhance the growth, yield, nutrient status, and biofortification of wheat crop by inoculation of native zinc-solubilizing Bacillus spp. in conjunction with soil-applied fertilizers (NPK) and zinc phosphate in saline soil. In this study, 175 bacterial isolates were recovered from the rhizosphere of wheat grown in the eastern parts of the Indo-Gangetic Plain of India. These isolates were further screened for Zn solubilization potential using sparingly insoluble zinc carbonate (ZnCO3), zinc oxide (ZnO), and zinc phosphate {Zn3(PO4)2} as a source of Zn under in vitro conditions. Of 175 bacterial isolates, 42 were found to solubilize either one or two or all the three insoluble Zn compounds, and subsequently, these isolates were identified based on 16S rRNA gene sequences. Based on zone halo diameter, solubilization efficiency, and amount of solubilized zinc, six potential bacterial strains, i.e., Bacillus altitudinis AJW-3, B. subtilis ABW-30, B. megaterium CHW-22, B. licheniformis MJW-38, Brevibacillus borstelensis CHW-2, and B. xiamenensis BLW-7, were further shortlisted for pot- and field-level evaluation in wheat crop. The results of the present investigation clearly indicated that these inoculants not only increase plant growth but also enhance the yield and yield attributes. Furthermore, bacterial inoculation also enhanced available nutrients and microbial activity in the wheat rhizosphere under pot experiments. It was observed that the application of B. megaterium CHW-22 significantly increased the Zn content in wheat straw and grains along with other nutrients (N, P, K, Fe, Cu, and Mn) followed by B. licheniformis MJW-38 as compared to other inoculants. By and large, similar observations were recorded under field conditions. Interestingly, when comparing the nutrient use efficiency (NUE) of wheat, bacterial inoculants showed their potential in enhancing the NUE in a greater way, which was further confirmed by correlation and principal component analyses. This study apparently provides evidence of Zn biofortification in wheat upon bacterial inoculation in conjunction with chemical fertilizers and zinc phosphate in degraded soil under both nethouse and field conditions.
Collapse
Affiliation(s)
- Ramesh Chandra Yadav
- Amity Institute of Microbial Technology, Amity University, Noida, Uttar Pradesh, India
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Kushmaur, Uttar Pradesh, India
| | - Sushil K. Sharma
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Kushmaur, Uttar Pradesh, India
| | - Ajit Varma
- Amity Institute of Microbial Technology, Amity University, Noida, Uttar Pradesh, India
| | - Udai B. Singh
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Kushmaur, Uttar Pradesh, India
| | - Adarsh Kumar
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Kushmaur, Uttar Pradesh, India
| | - Ingudam Bhupenchandra
- Farm Science Centre, ICAR-Research Complex for North Eastern Hill Region, Tamenglong, Manipur, India
| | - Jai P. Rai
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Pawan K. Sharma
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Kushmaur, Uttar Pradesh, India
| | - Harsh V. Singh
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Kushmaur, Uttar Pradesh, India
| |
Collapse
|
22
|
Kumar M, Ansari WA, Zeyad MT, Singh A, Chakdar H, Kumar A, Farooqi MS, Sharma A, Srivastava S, Srivastava AK. Core microbiota of wheat rhizosphere under Upper Indo-Gangetic plains and their response to soil physicochemical properties. FRONTIERS IN PLANT SCIENCE 2023; 14:1186162. [PMID: 37255554 PMCID: PMC10226189 DOI: 10.3389/fpls.2023.1186162] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 04/21/2023] [Indexed: 06/01/2023]
Abstract
Wheat is widely cultivated in the Indo-Gangetic plains of India and forms the major staple food in the region. Understanding microbial community structure in wheat rhizosphere along the Indo-Gangetic plain and their association with soil properties can be an important base for developing strategies for microbial formulations. In the present study, an attempt was made to identify the core microbiota of wheat rhizosphere through a culture-independent approach. Rhizospheric soil samples were collected from 20 different sites along the upper Indo-Gangetic plains and their bacterial community composition was analyzed based on sequencing of the V3-V4 region of the 16S rRNA gene. Diversity analysis has shown significant variation in bacterial diversity among the sites. The taxonomic profile identified Proteobacteria, Chloroflexi, Actinobacteria, Bacteroidetes, Acidobacteria, Gemmatimonadetes, Planctomycetes, Verrucomicrobia, Firmicutes, and Cyanobacteria as the most dominant phyla in the wheat rhizosphere in the region. Core microbiota analysis revealed 188 taxa as core microbiota of wheat rhizosphere with eight genera recording more than 0.5% relative abundance. The order of most abundant genera in the core microbiota is Roseiflexus> Flavobacterium> Gemmatimonas> Haliangium> Iamia> Flavisolibacter> Ohtaekwangia> Herpetosiphon. Flavobacterium, Thermomonas, Massilia, Unclassified Rhizobiaceae, and Unclassified Crenarchaeota were identified as keystone taxa of the wheat rhizosphere. Correlation studies revealed, pH, organic carbon content, and contents of available nitrogen, phosphorus, and iron as the major factors driving bacterial diversity in the wheat rhizosphere. Redundancy analysis has shown the impact of different soil properties on the relative abundance of different genera of the core microbiota. The results of the present study can be used as a prelude to be developing microbial formulations based on core microbiota.
Collapse
Affiliation(s)
- Murugan Kumar
- ICAR-National Bureau of Agriculturally Important Microorganisms, Mau, Uttar Pradesh, India
| | - Waquar Akhter Ansari
- ICAR-National Bureau of Agriculturally Important Microorganisms, Mau, Uttar Pradesh, India
| | - Mohammad Tarique Zeyad
- ICAR-National Bureau of Agriculturally Important Microorganisms, Mau, Uttar Pradesh, India
| | - Arjun Singh
- ICAR-Central Soil Salinity Research Institute, Regional Research Station (RRS), Lucknow, Uttar Pradesh, India
| | - Hillol Chakdar
- ICAR-National Bureau of Agriculturally Important Microorganisms, Mau, Uttar Pradesh, India
| | - Adarsh Kumar
- ICAR-National Bureau of Agriculturally Important Microorganisms, Mau, Uttar Pradesh, India
| | | | - Anu Sharma
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Sudhir Srivastava
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Alok Kumar Srivastava
- ICAR-National Bureau of Agriculturally Important Microorganisms, Mau, Uttar Pradesh, India
| |
Collapse
|
23
|
Lastochkina O, Yakupova A, Avtushenko I, Lastochkin A, Yuldashev R. Effect of Seed Priming with Endophytic Bacillus subtilis on Some Physio-Biochemical Parameters of Two Wheat Varieties Exposed to Drought after Selective Herbicide Application. PLANTS (BASEL, SWITZERLAND) 2023; 12:1724. [PMID: 37111947 PMCID: PMC10144775 DOI: 10.3390/plants12081724] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 06/19/2023]
Abstract
Wheat plants are frequently exposed to combined herbicide and drought stress (HDS) which induces complex responses negatively, affects productivity, and is becoming more exacerbated with current climate change. In this work, we studied the influence of seed priming with endophytic bacteria Bacillus subtilis (strains 104 and 26D) on growth and tolerance of two wheat (Triticum aestivum L.) varieties (E70-drought tolerant; SY-drought susceptible) exposed to soil drought after application of selective herbicide Sekator® Turbo in pot experiments under controlled conditions; 17-day-old plants sprayed with herbicide and after 3 days were subjected to soil drought by stopping irrigating the plants for 7 days with subsequent resumption of normal irrigation (recovery). Additionally, the growth of tested strains (104, 26D) in the presence of different concentrations of herbicide Sekator® Turbo and drought (PEG-6000) were evaluated. It was established that both strains are herbicide and drought tolerant and capable to improve seed germination and early seedlings' growth under different herbicide and drought stress degrees. The results of pot experiments showed that HDS exposure declined growth (plant length, biomass), photosynthetic pigments (chlorophyll a and b), leaf area, and increased lipid peroxidation (LPO) and proline accumulation in plants, demonstrating higher damaging effects for SY variety. Strains 104 and 26D mitigated (in different levels) such negative impacts of HDS on growth of both varieties by increasing length of roots and shoots, biomass, photosynthetic pigments (chlorophyll a and b), and leaf area, reducing stress-caused LPO (i.e., malondialdehyde), and regulating proline biosynthesis, as well as contributing to a faster recovery of growth, photosynthetic pigments, and redox-status of plants in post-stress period in comparison with non-primed plants. These ultimately manifested in forming a better grain yield of both varieties primed with 104, 26D, and exposed to HDS. Thus, both strains 104 and 26D (which are herbicide and drought tolerant) may be used as seed priming agents to improve wheat HDS tolerance and grain yield; however, strain 104 more effectively protected plants of E70, while strain 26D-plants of SY. Further research should be focused on understanding the mechanisms that determine the strain and variety-specificity of endophytic symbiosis and the role of bacteria in the modulation of physiological states of primed plants under stress conditions, including HDS.
Collapse
Affiliation(s)
- Oksana Lastochkina
- Institute of Biochemistry and Genetics UFRC RAS, 71 Pr. Oktyabrya, 450054 Ufa, Russia
| | - Albina Yakupova
- Department of Biology, Ufa University of Sciences and Technology, 32 Zaki Validi, 450076 Ufa, Russia
| | - Irina Avtushenko
- Department of Biology, Ufa University of Sciences and Technology, 32 Zaki Validi, 450076 Ufa, Russia
| | - Artem Lastochkin
- Department of Biology, Ufa University of Sciences and Technology, 32 Zaki Validi, 450076 Ufa, Russia
| | - Ruslan Yuldashev
- Institute of Biochemistry and Genetics UFRC RAS, 71 Pr. Oktyabrya, 450054 Ufa, Russia
| |
Collapse
|
24
|
Massahiro Yassue R, Galli G, James Chen C, Fritsche‐Neto R, Morota G. Genome-wide association analysis of hyperspectral reflectance data to dissect the genetic architecture of growth-related traits in maize under plant growth-promoting bacteria inoculation. PLANT DIRECT 2023; 7:e492. [PMID: 37102161 PMCID: PMC10123960 DOI: 10.1002/pld3.492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 06/19/2023]
Abstract
Plant growth-promoting bacteria (PGPB) may be of use for increasing crop yield and plant resilience to biotic and abiotic stressors. Using hyperspectral reflectance data to assess growth-related traits may shed light on the underlying genetics as such data can help assess biochemical and physiological traits. This study aimed to integrate hyperspectral reflectance data with genome-wide association analyses to examine maize growth-related traits under PGPB inoculation. A total of 360 inbred maize lines with 13,826 single nucleotide polymorphisms (SNPs) were evaluated with and without PGPB inoculation; 150 hyperspectral wavelength reflectances at 386-1021 nm and 131 hyperspectral indices were used in the analysis. Plant height, stalk diameter, and shoot dry mass were measured manually. Overall, hyperspectral signatures produced similar or higher genomic heritability estimates than those of manually measured phenotypes, and they were genetically correlated with manually measured phenotypes. Furthermore, several hyperspectral reflectance values and spectral indices were identified by genome-wide association analysis as potential markers for growth-related traits under PGPB inoculation. Eight SNPs were detected, which were commonly associated with manually measured and hyperspectral phenotypes. Different genomic regions were found for plant growth and hyperspectral phenotypes between with and without PGPB inoculation. Moreover, the hyperspectral phenotypes were associated with genes previously reported as candidates for nitrogen uptake efficiency, tolerance to abiotic stressors, and kernel size. In addition, a Shiny web application was developed to explore multiphenotype genome-wide association results interactively. Taken together, our results demonstrate the usefulness of hyperspectral-based phenotyping for studying maize growth-related traits in response to PGPB inoculation.
Collapse
Affiliation(s)
- Rafael Massahiro Yassue
- Department of Genetics, ‘Luiz de Queiroz’ College of AgricultureUniversity of São PauloSão PauloBrazil
- School of Animal SciencesVirginia Polytechnic Institute and State UniversityBlacksburgVirginiaUSA
| | - Giovanni Galli
- Department of Genetics, ‘Luiz de Queiroz’ College of AgricultureUniversity of São PauloSão PauloBrazil
| | - Chun‐Peng James Chen
- School of Animal SciencesVirginia Polytechnic Institute and State UniversityBlacksburgVirginiaUSA
- Center for Advanced Innovation in AgricultureVirginia Polytechnic Institute and State UniversityBlacksburgVirginiaUSA
| | - Roberto Fritsche‐Neto
- Department of Genetics, ‘Luiz de Queiroz’ College of AgricultureUniversity of São PauloSão PauloBrazil
- Quantitative Genetics and Biometrics ClusterInternational Rice Research InstituteLos BañosPhilippines
| | - Gota Morota
- School of Animal SciencesVirginia Polytechnic Institute and State UniversityBlacksburgVirginiaUSA
- Center for Advanced Innovation in AgricultureVirginia Polytechnic Institute and State UniversityBlacksburgVirginiaUSA
| |
Collapse
|
25
|
Chaudhary S, Sindhu SS, Dhanker R, Kumari A. Microbes-mediated sulphur cycling in soil: Impact on soil fertility, crop production and environmental sustainability. Microbiol Res 2023; 271:127340. [PMID: 36889205 DOI: 10.1016/j.micres.2023.127340] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/06/2023] [Accepted: 02/18/2023] [Indexed: 03/08/2023]
Abstract
Reduction in soil fertility and depletion of natural resources due to current intensive agricultural practices along with climate changes are the major constraints for crop productivity and global food security. Diverse microbial populations' inhabiting the soil and rhizosphere participate in biogeochemical cycling of nutrients and thereby, improve soil fertility and plant health, and reduce the adverse impact of synthetic fertilizers on the environment. Sulphur is 4th most common crucial macronutrient required by all organisms including plants, animals, humans and microorganisms. Effective strategies are required to enhance sulphur content in crops for minimizing adverse effects of sulphur deficiency on plants and humans. Various microorganisms are involved in sulphur cycling in soil through oxidation, reduction, mineralization, and immobilization, and volatalization processes of diverse sulphur compounds. Some microorganisms possess the unique ability to oxidize sulphur compounds into plant utilizable sulphate (SO42-) form. Considering the importance of sulphur as a nutrient for crops, many bacteria and fungi involved in sulphur cycling have been characterized from soil and rhizosphere. Some of these microbes have been found to positively affect plant growth and crop yield through multiple mechanisms including the enhanced mobilization of nutrients in soils (i.e., sulphate, phosphorus and nitrogen), production of growth-promoting hormones, inhibition of phytopathogens, protection against oxidative damage and mitigation of abiotic stresses. Application of these beneficial microbes as biofertilizers may reduce the conventional fertilizer application in soils. However, large-scale, well-designed, and long-term field trials are necessary to recommend the use of these microbes for increasing nutrient availability for growth and yield of crop plants. This review discusses the current knowledge regarding sulphur deficiency symptoms in plants, biogeochemical cycling of sulphur and inoculation effects of sulphur oxidizing microbes in improving plant biomass and crop yield in different crops.
Collapse
Affiliation(s)
- Suman Chaudhary
- Research Associate, EBL Laboratory, ICAR-Central Institute of Research on Buffaloes, Hisar 125001, Haryana, India.
| | - Satyavir Singh Sindhu
- Department of Microbiology, CCS Haryana Agricultural University, Hisar 125004, Haryana, India.
| | - Rinku Dhanker
- International Institute of Veterinary, Education & Research, Bahuakbarpur, Rohtak 124001, Haryana, India.
| | - Anju Kumari
- Center of Food Science and Technology, CCS Haryana Agricultural University, Hisar 125004, Haryana, India.
| |
Collapse
|
26
|
Vlajkov V, Pajčin I, Vučetić S, Anđelić S, Loc M, Grahovac M, Grahovac J. Bacillus-Loaded Biochar as Soil Amendment for Improved Germination of Maize Seeds. PLANTS (BASEL, SWITZERLAND) 2023; 12:1024. [PMID: 36903885 PMCID: PMC10004800 DOI: 10.3390/plants12051024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Biochar is considered one of the most promising long-term solutions for soil quality improvement, representing an ideal environment for microorganisms' immobilization. Hence there is a possibility to design microbial products formulated using biochar as a solid carrier. The present study was aimed at development and characterization of Bacillus-loaded biochar to be applied as a soil amendment. The producing microorganism Bacillus sp. BioSol021 was evaluated in terms of plant growth promotion traits, indicating significant potential for production of hydrolytic enzymes, indole acetic acid (IAA) and surfactin and positive tests for ammonia and 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase production. Soybean biochar was characterised in terms of physicochemical properties to evaluate its suitability for agricultural applications. The experimental plan for Bacillus sp. BioSol021 immobilisation to biochar included variation of biochar concentration in cultivation broth and adhesion time, while the soil amendment effectiveness was evaluated during maize germination. The best results in terms of maize seed germination and seedling growth promotion were achieved by applying 5% of biochar during the 48 h immobilisation procedure. Germination percentage, root and shoot length and seed vigour index were significantly improved when using Bacillus-biochar soil amendment compared to separate treatments including biochar and Bacillus sp. BioSol021 cultivation broth. The results indicated the synergistic effect of producing microorganism and biochar on maize seed germination and seedling growth promotion, pointing out the promising potential of this proposed multi-beneficial solution for application in agricultural practices.
Collapse
Affiliation(s)
- Vanja Vlajkov
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia
| | - Ivana Pajčin
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia
| | - Snežana Vučetić
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia
| | - Stefan Anđelić
- Faculty of Technical Sciences, University of Novi Sad, Trg Dositeja Obradovića 6, 21000 Novi Sad, Serbia
| | - Marta Loc
- Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovića 8, 21000 Novi Sad, Serbia
| | - Mila Grahovac
- Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovića 8, 21000 Novi Sad, Serbia
| | - Jovana Grahovac
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia
| |
Collapse
|
27
|
Nam JH, Thibodeau A, Qian YL, Qian MC, Park SH. Multidisciplinary evaluation of plant growth promoting rhizobacteria on soil microbiome and strawberry quality. AMB Express 2023; 13:18. [PMID: 36795258 PMCID: PMC9935790 DOI: 10.1186/s13568-023-01524-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 02/04/2023] [Indexed: 02/17/2023] Open
Abstract
The natural soil environment is considered one of the most diverse habitats containing numerous bacteria, fungi, and larger organisms such as nematodes, insects, or rodents. Rhizosphere bacteria play vital roles in plant nutrition and the growth promotion of their host plant. The aim of this study was to evaluate the effects of three plant growth-promoting rhizobacteria (PGPR), Bacillus subtilis, Bacillus amyloliquefaciens, and Pseudomonas monteilii for their potential role as a biofertilizer. The effect of the PGPR was examined at a commercial strawberry farm in Dayton, Oregon. The PGPR were applied to the soil of the strawberry (Fragaria × ananassa cultivar Hood) plants in two different concentrations of PGPR, T1 (0.24% PGPR) and T2 (0.48% PGPR), and C (no PGPR). A total of 450 samples from August 2020 to May 2021 were collected, and microbiome sequencing based on the V4 region of the 16S rRNA gene was conducted. The strawberry quality was measured by sensory evaluation, total acidity (TA), total soluble solids (TSS), color (lightness and chroma), and volatile compounds. Application of the PGPR significantly increased the populations of Bacillus and Pseudomonas and promoted the growth of nitrogen-fixing bacteria. The TSS and color evaluation showed that the PGPR presumptively behaved as a ripening enhancer. The PGPR contributed to the production of fruit-related volatile compounds, while the sensory evaluation did not show significant differences among the three groups. The major finding of this study suggests that the consortium of the three PGPR have a potential role as a biofertilizer by supporting the growth of other microorganisms (nitrogen-fixing bacteria) as part of a synergetic effect and strawberry quality such as sweetness and volatile compounds.
Collapse
Affiliation(s)
- Jun Haeng Nam
- grid.4391.f0000 0001 2112 1969Department of Food Science and Technology, Oregon State University, 3051 SW Campus Way, Corvallis, OR 97331 USA
| | - Alyssa Thibodeau
- grid.4391.f0000 0001 2112 1969Department of Food Science and Technology, Oregon State University, 3051 SW Campus Way, Corvallis, OR 97331 USA
| | - Yanping L. Qian
- grid.4391.f0000 0001 2112 1969Department of Food Science and Technology, Oregon State University, 3051 SW Campus Way, Corvallis, OR 97331 USA
| | - Michael C. Qian
- grid.4391.f0000 0001 2112 1969Department of Food Science and Technology, Oregon State University, 3051 SW Campus Way, Corvallis, OR 97331 USA
| | - Si Hong Park
- Department of Food Science and Technology, Oregon State University, 3051 SW Campus Way, Corvallis, OR, 97331, USA.
| |
Collapse
|
28
|
Nagrale DT, Chaurasia A, Kumar S, Gawande SP, Hiremani NS, Shankar R, Gokte-Narkhedkar N, Renu, Prasad YG. PGPR: the treasure of multifarious beneficial microorganisms for nutrient mobilization, pest biocontrol and plant growth promotion in field crops. World J Microbiol Biotechnol 2023; 39:100. [PMID: 36792799 DOI: 10.1007/s11274-023-03536-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 01/30/2023] [Indexed: 02/17/2023]
Abstract
Plant growth-promoting rhizobacteria (PGPR) have multifarious beneficial activities for plant growth promotion; act as source of metabolites, enzymes, nutrient mobilization, biological control of pests, induction of disease resistance vis-a-vis bioremediation potentials by phytoextraction and detoxification of heavy metals, pollutants and pesticides. Agrochemicals and synthetic pesticides are currently being utilized widely in all major field crops, thereby adversely affecting human and animal health, and posing serious threats to the environments. Beneficial microorganisms like PGPR could potentially substitute and supplement the toxic chemicals and pesticides with promising application in organic farming leading to sustainable agriculture practices and bioremediation of heavy metal contaminated sites. Among field crops limited bio-formulations have been prepared till now by utilization of PGPR strains having plant growth promotion, metabolites, enzymes, nutrient mobilization and biocontrol activities. The present review contributes comprehensive description of PGPR applications in field crops including commercial, oilseeds, leguminous and cereal crops to further extend the utilization of these potent groups of beneficial microorganisms so that even higher level of crop productivity and quality produce of field crops could be achieved. PGPR and bacteria based commercialized bio-formulations available worldwide for its application in the field crops have been compiled in this review which can be a substitute for the harmful synthetic chemicals. The current knowledge gap and potential target areas for future research have also been projected.
Collapse
Affiliation(s)
- D T Nagrale
- ICAR-Central Institute for Cotton Research, Nagpur, Maharashtra, 440010, India.
| | - A Chaurasia
- ICAR-Indian Institute of Vegetable Research, Varanasi, Uttar Pradesh, 221305, India.
| | - S Kumar
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, Library Avenue, Pusa, New Delhi, 110012, India
| | - S P Gawande
- ICAR-Central Institute for Cotton Research, Nagpur, Maharashtra, 440010, India
| | - N S Hiremani
- ICAR-Central Institute for Cotton Research, Nagpur, Maharashtra, 440010, India
| | - Raja Shankar
- ICAR-Indian Institute of Horticultural Research, Hessaraghatta Lake Post, Bengaluru, 560089, India
| | - N Gokte-Narkhedkar
- ICAR-Central Institute for Cotton Research, Nagpur, Maharashtra, 440010, India
| | - Renu
- Indian Council of Agricultural Research, Krishi Bhawan, New Delhi, 110001, India
| | - Y G Prasad
- ICAR-Central Institute for Cotton Research, Nagpur, Maharashtra, 440010, India
| |
Collapse
|
29
|
Lastochkina OV, Allagulova CR. The Mechanisms of the Growth Promotion and Protective Effects of Endophytic PGP Bacteria in Wheat Plants Under the Impact of Drought (Review). APPL BIOCHEM MICRO+ 2023; 59:14-32. [DOI: 10.1134/s0003683823010039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/26/2022] [Accepted: 09/02/2022] [Indexed: 06/23/2023]
|
30
|
Mapping Genetic Variation in Arabidopsis in Response to Plant Growth-Promoting Bacterium Azoarcus olearius DQS-4T. Microorganisms 2023; 11:microorganisms11020331. [PMID: 36838296 PMCID: PMC9961961 DOI: 10.3390/microorganisms11020331] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 02/03/2023] Open
Abstract
Plant growth-promoting bacteria (PGPB) can enhance plant health by facilitating nutrient uptake, nitrogen fixation, protection from pathogens, stress tolerance and/or boosting plant productivity. The genetic determinants that drive the plant-bacteria association remain understudied. To identify genetic loci highly correlated with traits responsive to PGPB, we performed a genome-wide association study (GWAS) using an Arabidopsis thaliana population treated with Azoarcus olearius DQS-4T. Phenotypically, the 305 Arabidopsis accessions tested responded differently to bacterial treatment by improving, inhibiting, or not affecting root system or shoot traits. GWA mapping analysis identified several predicted loci associated with primary root length or root fresh weight. Two statistical analyses were performed to narrow down potential gene candidates followed by haplotype block analysis, resulting in the identification of 11 loci associated with the responsiveness of Arabidopsis root fresh weight to bacterial inoculation. Our results showed considerable variation in the ability of plants to respond to inoculation by A. olearius DQS-4T while revealing considerable complexity regarding statistically associated loci with the growth traits measured. This investigation is a promising starting point for sustainable breeding strategies for future cropping practices that may employ beneficial microbes and/or modifications of the root microbiome.
Collapse
|
31
|
Jalal A, Oliveira CEDS, Bastos ADC, Fernandes GC, de Lima BH, Furlani Junior E, de Carvalho PHG, Galindo FS, Gato IMB, Teixeira Filho MCM. Nanozinc and plant growth-promoting bacteria improve biochemical and metabolic attributes of maize in tropical Cerrado. FRONTIERS IN PLANT SCIENCE 2023; 13:1046642. [PMID: 36714773 PMCID: PMC9878843 DOI: 10.3389/fpls.2022.1046642] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/05/2022] [Indexed: 05/10/2023]
Abstract
INTRODUCTION Plant growth-promoting bacteria (PGPBs) could be developed as a sustainable strategy to promote plant growth and yield to feed the ever-growing global population with nutritious food. Foliar application of nano-zinc oxide (ZnO) is an environmentally safe strategy that alleviates zinc (Zn) malnutrition by improving biochemical attributes and storage proteins of grain. METHODS In this context, the current study aimed to investigate the combined effect of seed inoculation with PGPBs and foliar nano-ZnO application on the growth, biochemical attributes, nutrient metabolism, and yield of maize in the tropical savannah of Brazil. The treatments consisted of four PGPB inoculations [i.e., without inoculation, Azospirillum brasilense (A. brasilense), Bacillus subtilis (B. subtilis), Pseudomonas fluorescens (P. fluorescens), which was applied on the seeds] and two doses of Zn (i.e., 0 and 3 kg ha-1, applied from nano-ZnO in two splits on the leaf). RESULTS Inoculation of B. subtilis with foliar ZnO application increased shoot dry matter (7.3 and 9.8%) and grain yield (17.1 and 16.7%) in 2019-20 and 2020-2021 crop seasons respectively. Inoculation with A. brasilense increased 100-grains weight by 9.5% in both crop seasons. Shoot Zn accumulation was improved by 30 and 51% with inoculation of P. fluorescens in 2019-20 and 2020-2021 crop seasons. Whereas grain Zn accumulation was improved by 49 and 50.7% with inoculation of B. subtilis and P. fluorescens respectively. In addition, biochemical attributes (chlorophyll a, b and total, carotenoids, total soluble sugar and amino acids) were improved with inoculation of B. subtilis along with foliar nano ZnO application as compared to other treatments. Co-application of P. fluorescens with foliar ZnO improved concentration of grains albumin (20 and 13%) and globulin (39 and 30%). Also, co-application of B. subtilis and foliar ZnO improved concentration of grains glutelin (8.8 and 8.7%) and prolamin (15 and 21%) in first and second seasons. DISCUSSION Therefore, inoculation of B. subtilis and P. fluorescens with foliar nano-ZnO application is considered a sustainable and environmentally safe strategy for improving the biochemical, metabolic, nutritional, and productivity attributes of maize in tropical Savannah regions.
Collapse
Affiliation(s)
- Arshad Jalal
- Department of Plant Protection, Rural Engineering and Soils (DEFERS), São Paulo State University (UNESP), Ilha Solteira, Brazil
| | | | - Andréa de Castro Bastos
- Department of Plant Protection, Rural Engineering and Soils (DEFERS), São Paulo State University (UNESP), Ilha Solteira, Brazil
| | - Guilherme Carlos Fernandes
- Department of Plant Protection, Rural Engineering and Soils (DEFERS), São Paulo State University (UNESP), Ilha Solteira, Brazil
| | - Bruno Horschut de Lima
- Department of Plant Protection, Rural Engineering and Soils (DEFERS), São Paulo State University (UNESP), Ilha Solteira, Brazil
| | - Enes Furlani Junior
- Department of Plant Science, Food Technology and Socio-Economics, São Paulo State University (UNESP), Ilha Solteira, Brazil
| | | | | | - Isabela Martins Bueno Gato
- Department of Plant Protection, Rural Engineering and Soils (DEFERS), São Paulo State University (UNESP), Ilha Solteira, Brazil
| | | |
Collapse
|
32
|
Volkogon VV, Potapenko LV, Volkogon MV. Vertical migration of nutrients and water-soluble organic matter in the soil profile under pre-sowing seed treatment with plant growth promoting rhizobacteria. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2023. [DOI: 10.3389/fsufs.2022.1054113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Studies conducted in a stationary lysimeter experiment in the conditions of the washing water regime have shown that the use of PGPR for pre-sowing seed inoculation of agricultural crops reduces vertical migration of biogenic nutrients and water-soluble organic matter down the soil profile. The effect of seed inoculation with PGPR on the reduction of nutrient losses was not specific to the type of rhizobacteria and was similar for crops grown on different mineral fertilizers backgrounds (spring barley and winter rye seeds were inoculated with the nitrogen-fixing bacteria—Azospirillum brasilense 410 and A. brasilense 18-2, respectively, while maize seeds were inoculated with the phosphate-mobilizing Paenibacillus polymyxa KB). Seed inoculation has decreased nitrogen leaching down the soil profile by 4–9 kg/ha, phosphorus compounds—by 0.5–3.0 kg/ha, potassium—by 0.6–3.0 kg/ha, calcium—by 6–42 kg/ha, magnesium—by 3.0–6.0 kg/ha, water-soluble organic matter—by 0.8–8.0 kg/ha, subject to crop and norms of mineral fertilizers. Maize seeds inoculated with phosphorous-mobilizing P. polymyxa KB under crop cultivation on the cattle manure background did not affect the intensity of nutrient migration. On the other hand, the combination of green manure (narrow-leaved lupine as an intermediate crop) with pre-sowing seed inoculation had significantly reduced nutrient losses beyond the root zone soil layer. It is concluded that the use of PGPR in crop production on mineral and green manure backgrounds contributes to the preservation of soil fertility by limiting biogenic nutrients and water-soluble organic matter leaching with the water drainage down the soil profile. Pre-sowing seed inoculation had no significant effect on the vertical migration of nutrients in the soil on the background of cattle manure, due to the highly competitive environment created with the introduction of microorganisms from organic fertilizer, preventing the establishment of close interactions between PGPR and plants.
Collapse
|
33
|
Gangwar J, Kadanthottu Sebastian J, Puthukulangara Jaison J, Kurian JT. Nano-technological interventions in crop production-a review. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:93-107. [PMID: 36733843 PMCID: PMC9886790 DOI: 10.1007/s12298-022-01274-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 10/21/2022] [Accepted: 12/23/2022] [Indexed: 06/18/2023]
Abstract
Agricultural industry is facing huge crisis due to fast changing climate, decreased soil fertility, macro and micronutrient insufficiency, misuse of chemical fertilizers and pesticides, and heavy metal presence in soil. With exponential increase in world's population, food consumption has increased significantly. Maintaining the production to consumption ratio is a significant challenge due to shortage caused by various issues faced by agricultural industry even with the improved agricultural practices. Recent scientific evidence suggests that nanotechnology can positively impact the agriculture sector by reducing the harmful effects of farming operations on human health and nature, as well as improving food productivity and security. Farmers are combining improved agricultural practices like usage of fertilizers, pesticides etc. with nano-based materials to improve the efficiency and productivity of crops. Nano technology is also playing a significant role improving animal health products, food packaging materials, and nanosensors for detecting pathogens, toxins, and heavy metals in soil among others. The nanobased materials have improved the productivity twice with half the resources being utilized. Nanoparticles that are currently in use include titanium dioxide, zinc oxide, silicon oxide, magnesium oxide, gold, and silver used for increasing soil fertility and plant growth. Crop growth, yield, and productivity are improved by controlled release nanofertilizers. In this review we elaborate on the recent developments in the agricultural sector by the usage of nanomaterial based composites which has significantly improved the agricultural sector especially how nanoparticles play an important role in plant growth and soil fertility, in controlling plant diseases by the use of nanopesticides, nanoinsecticides, nanofertilizers, Nanoherbicides, nanobionics, nanobiosensors. The review also highlights the mechanism of migration of nanoparticles in plants and most importantly the effects of nanoparticles in causing plant and soil toxicity.
Collapse
Affiliation(s)
- Jaya Gangwar
- Department of Life Sciences, Christ University, Bangalore, Karnataka 560029 India
| | | | | | - Jissa Theresa Kurian
- Department of Life Sciences, Christ University, Bangalore, Karnataka 560029 India
| |
Collapse
|
34
|
Lastochkina O, Ivanov S, Petrova S, Garshina D, Lubyanova A, Yuldashev R, Kuluev B, Zaikina E, Maslennikova D, Allagulova C, Avtushenko I, Yakupova A, Farkhutdinov R. Role of Endogenous Salicylic Acid as a Hormonal Intermediate in the Bacterial Endophyte Bacillus subtilis-Induced Protection of Wheat Genotypes Contrasting in Drought Susceptibility under Dehydration. PLANTS (BASEL, SWITZERLAND) 2022; 11:3365. [PMID: 36501403 PMCID: PMC9736644 DOI: 10.3390/plants11233365] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/30/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Endophytic Bacillus subtilis is a non-pathogenic beneficial bacterium which promotes plant growth and tolerance to abiotic stresses, including drought. However, the underlying physiological mechanisms are not well understood. In this study, the potential role that endogenous salicylic acid (SA) plays in regulating endophytic B. subtilis-mediated drought tolerance in wheat (Triticum aestivum L.) was examined. The study was conducted on genotypes with contrasting levels of intrinsic drought tolerance (drought-tolerant (DT) cv. Ekada70; drought-susceptible (DS) cv. Salavat Yulaev). It was revealed that B. subtilis 10-4 promoted endogenous SA accumulation and increased the relative level of transcripts of the PR-1 gene, a marker of the SA-dependent defense pathway, but two wheat cultivars responded differently, with the highest levels exhibited in DT wheat seedlings. These had a positive correlation with the ability of strain 10-4 to effectively protect DT wheat seedlings against drought injury by decreasing osmotic and oxidative damages (i.e., proline, water holding capacity (WHC), and malondialdehyde (MDA)). However, the use of the SA biosynthesis inhibitor 1-aminobenzotriazole prevented endogenous SA accumulation under normal conditions and the maintenance of its increased level under stress as well as abolished the effects of B. subtilis treatment. Particularly, the suppression of strain 10-4-induced effects on proline and WHC, which are both contributing factors to dehydration tolerance, was found. Moreover, the prevention of strain 10-4-induced wheat tolerance to the adverse impacts of drought, as judged by the degree of membrane lipid peroxidation (MDA) and plant growth (length, biomass), was revealed. Thus, these data provide an argument in favor of a key role of endogenous SA as a hormone intermediate in triggering the defense responses by B. subtilis 10-4, which also afford the foundation for the development of the bacterial-induced tolerance of these two different wheat genotypes under dehydration.
Collapse
Affiliation(s)
- Oksana Lastochkina
- Institute of Biochemistry and Genetics UFRC RAS, 71 Pr. Oktyabrya, 450054 Ufa, Russia
| | - Sergey Ivanov
- Ufa Institute of Chemistry UFRC RAS, 69 Pr. Oktyabrya, 450054 Ufa, Russia
| | - Svetlana Petrova
- Ufa Institute of Chemistry UFRC RAS, 69 Pr. Oktyabrya, 450054 Ufa, Russia
| | - Darya Garshina
- Institute of Biochemistry and Genetics UFRC RAS, 71 Pr. Oktyabrya, 450054 Ufa, Russia
| | - Alsu Lubyanova
- Institute of Biochemistry and Genetics UFRC RAS, 71 Pr. Oktyabrya, 450054 Ufa, Russia
| | - Ruslan Yuldashev
- Institute of Biochemistry and Genetics UFRC RAS, 71 Pr. Oktyabrya, 450054 Ufa, Russia
| | - Bulat Kuluev
- Institute of Biochemistry and Genetics UFRC RAS, 71 Pr. Oktyabrya, 450054 Ufa, Russia
| | - Evgenia Zaikina
- Institute of Biochemistry and Genetics UFRC RAS, 71 Pr. Oktyabrya, 450054 Ufa, Russia
| | - Dilara Maslennikova
- Institute of Biochemistry and Genetics UFRC RAS, 71 Pr. Oktyabrya, 450054 Ufa, Russia
| | - Chulpan Allagulova
- Institute of Biochemistry and Genetics UFRC RAS, 71 Pr. Oktyabrya, 450054 Ufa, Russia
| | - Irina Avtushenko
- Department of Biology, Bashkir State University, 32 Zaki Validi, 450076 Ufa, Russia
| | - Albina Yakupova
- Department of Biology, Bashkir State University, 32 Zaki Validi, 450076 Ufa, Russia
| | - Rashit Farkhutdinov
- Department of Biology, Bashkir State University, 32 Zaki Validi, 450076 Ufa, Russia
| |
Collapse
|
35
|
Sarkar S, Kamke A, Ward K, Hartung E, Ran Q, Feehan B, Galliart M, Jumpponen A, Johnson L, Lee STM. Pseudomonas cultivated from Andropogon gerardii rhizosphere show functional potential for promoting plant host growth and drought resilience. BMC Genomics 2022; 23:784. [PMID: 36451103 PMCID: PMC9710129 DOI: 10.1186/s12864-022-09019-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 11/16/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Climate change will result in more frequent droughts that can impact soil-inhabiting microbiomes (rhizobiomes) in the agriculturally vital North American perennial grasslands. Rhizobiomes have contributed to enhancing drought resilience and stress resistance properties in plant hosts. In the predicted events of more future droughts, how the changing rhizobiome under environmental stress can impact the plant host resilience needs to be deciphered. There is also an urgent need to identify and recover candidate microorganisms along with their functions, involved in enhancing plant resilience, enabling the successful development of synthetic communities. RESULTS In this study, we used the combination of cultivation and high-resolution genomic sequencing of bacterial communities recovered from the rhizosphere of a tallgrass prairie foundation grass, Andropogon gerardii. We cultivated the plant host-associated microbes under artificial drought-induced conditions and identified the microbe(s) that might play a significant role in the rhizobiome of Andropogon gerardii under drought conditions. Phylogenetic analysis of the non-redundant metagenome-assembled genomes (MAGs) identified a bacterial genome of interest - MAG-Pseudomonas. Further metabolic pathway and pangenome analyses recovered genes and pathways related to stress responses including ACC deaminase; nitrogen transformation including assimilatory nitrate reductase in MAG-Pseudomonas, which might be associated with enhanced drought tolerance and growth for Andropogon gerardii. CONCLUSIONS Our data indicated that the metagenome-assembled MAG-Pseudomonas has the functional potential to contribute to the plant host's growth during stressful conditions. Our study also suggested the nitrogen transformation potential of MAG-Pseudomonas that could impact Andropogon gerardii growth in a positive way. The cultivation of MAG-Pseudomonas sets the foundation to construct a successful synthetic community for Andropogon gerardii. To conclude, stress resilience mediated through genes ACC deaminase, nitrogen transformation potential through assimilatory nitrate reductase in MAG-Pseudomonas could place this microorganism as an important candidate of the rhizobiome aiding the plant host resilience under environmental stress. This study, therefore, provided insights into the MAG-Pseudomonas and its potential to optimize plant productivity under ever-changing climatic patterns, especially in frequent drought conditions.
Collapse
Affiliation(s)
- Soumyadev Sarkar
- Division of Biology, Kansas State University, Manhattan, KS, USA
| | - Abigail Kamke
- Division of Biology, Kansas State University, Manhattan, KS, USA
| | - Kaitlyn Ward
- Division of Biology, Kansas State University, Manhattan, KS, USA
| | - Eli Hartung
- Division of Biology, Kansas State University, Manhattan, KS, USA
| | - Qinghong Ran
- Division of Biology, Kansas State University, Manhattan, KS, USA
| | - Brandi Feehan
- Division of Biology, Kansas State University, Manhattan, KS, USA
| | - Matthew Galliart
- Department of Biological Sciences, Fort Hays State University, Hays, KS, USA
| | - Ari Jumpponen
- Division of Biology, Kansas State University, Manhattan, KS, USA
| | - Loretta Johnson
- Division of Biology, Kansas State University, Manhattan, KS, USA
| | - Sonny T M Lee
- Division of Biology, Kansas State University, Manhattan, KS, USA.
| |
Collapse
|
36
|
Ganugi P, Fiorini A, Rocchetti G, Bonini P, Tabaglio V, Lucini L. A response surface methodology approach to improve nitrogen use efficiency in maize by an optimal mycorrhiza-to- Bacillus co-inoculation rate. FRONTIERS IN PLANT SCIENCE 2022; 13:956391. [PMID: 36035726 PMCID: PMC9404334 DOI: 10.3389/fpls.2022.956391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Co-inoculation of arbuscular mycorrhizal fungi (AMF) and bacteria can synergically and potentially increase nitrogen use efficiency (NUE) in plants, thus, reducing nitrogen (N) fertilizers use and their environmental impact. However, limited research is available on AMF-bacteria interaction, and the definition of synergisms or antagonistic effects is unexplored. In this study, we adopted a response surface methodology (RSM) to assess the optimal combination of AMF (Rhizoglomus irregulare and Funneliformis mosseae) and Bacillus megaterium (a PGPR-plant growth promoting rhizobacteria) formulations to maximize agronomical and chemical parameters linked to N utilization in maize (Zea mays L.). The fitted mathematical models, and also 3D response surface and contour plots, allowed us to determine the optimal AMF and bacterial doses, which are approximately accorded to 2.1 kg ha-1 of both formulations. These levels provided the maximum values of SPAD, aspartate, and glutamate. On the contrary, agronomic parameters were not affected, except for the nitrogen harvest index (NHI), which was slightly affected (p-value of < 0.10) and indicated a higher N accumulation in grain following inoculation with 4.1 and 0.1 kg ha-1 of AMF and B. megaterium, respectively. Nonetheless, the identification of the saddle points for asparagine and the tendency to differently allocate N when AMF or PGPR were used alone, pointed out the complexity of microorganism interaction and suggests the need for further investigations aimed at unraveling the mechanisms underlying this symbiosis.
Collapse
Affiliation(s)
- Paola Ganugi
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Andrea Fiorini
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Gabriele Rocchetti
- Department of Animal Science, Food and Nutrition, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | | | - Vincenzo Tabaglio
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| |
Collapse
|
37
|
Plant Development of Early-Maturing Spring Wheat (Triticum aestivum L.) under Inoculation with Bacillus sp. V2026. PLANTS 2022; 11:plants11141817. [PMID: 35890450 PMCID: PMC9317556 DOI: 10.3390/plants11141817] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/07/2022] [Accepted: 07/07/2022] [Indexed: 11/18/2022]
Abstract
The effect of a plant growth-promoting bacterium (PGPB) Bacillus sp. V2026, a producer of indolyl-3-acetic acid (IAA) and gibberellic acid (GA), on the ontogenesis and productivity of four genotypes of early-maturing spring wheat was studied under controlled conditions. The inoculation of wheat plants with Bacillus sp. V2026 increased the levels of endogenous IAA and GA in wheat of all genotypes and the level of trans-Zeatin in Sonora 64 and Leningradskaya rannyaya cvs but decreased it in AFI177 and AFI91 ultra-early lines. Interactions between the factors “genotype” and “inoculation” were significant for IAA, GA, and trans-Zeatin concentrations in wheat shoots and roots. The inoculation increased the levels of chlorophylls and carotenoids and reduced lipid peroxidation in leaves of all genotypes. The inoculation resulted in a significant increase in grain yield (by 33–62%), a reduction in the time for passing the stages of ontogenesis (by 2–3 days), and an increase in the content of macro- and microelements and protein in the grain. Early-maturing wheat genotypes showed a different response to inoculation with the bacterium Bacillus sp. V2026. Cv. Leningradskaya rannyaya was most responsive to inoculation with Bacillus sp. V2026.
Collapse
|
38
|
Zhang Z, Jatana BS, Campbell BJ, Gill J, Suseela V, Tharayil N. Cross-inoculation of rhizobiome from a congeneric ruderal plant imparts drought tolerance in maize (Zea mays) through changes in root morphology and proteome. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:54-71. [PMID: 35426964 PMCID: PMC9542220 DOI: 10.1111/tpj.15775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 04/12/2022] [Indexed: 06/14/2023]
Abstract
Rhizobiome confer stress tolerance to ruderal plants, yet their ability to alleviate stress in crops is widely debated, and the associated mechanisms are poorly understood. We monitored the drought tolerance of maize (Zea mays) as influenced by the cross-inoculation of rhizobiota from a congeneric ruderal grass Andropogon virginicus (andropogon-inoculum), and rhizobiota from organic farm maintained under mesic condition (organic-inoculum). Across drought treatments (40% field capacity), maize that received andropogon-inoculum produced two-fold greater biomass. This drought tolerance translated to a similar leaf metabolomic composition as that of the well-watered control (80% field capacity) and reduced oxidative damage, despite a lower activity of antioxidant enzymes. At a morphological-level, drought tolerance was associated with an increase in specific root length and surface area facilitated by the homeostasis of phytohormones promoting root branching. At a proteome-level, the drought tolerance was associated with upregulation of proteins related to glutathione metabolism and endoplasmic reticulum-associated degradation process. Fungal taxa belonging to Ascomycota, Mortierellomycota, Archaeorhizomycetes, Dothideomycetes, and Agaricomycetes in andropogon-inoculum were identified as potential indicators of drought tolerance. Our study provides a mechanistic understanding of the rhizobiome-facilitated drought tolerance and demonstrates a better path to utilize plant-rhizobiome associations to enhance drought tolerance in crops.
Collapse
Affiliation(s)
- Ziliang Zhang
- Department of Plant & Environmental SciencesClemson UniversityClemsonSCUSA
| | | | | | - Jasmine Gill
- Department of Plant & Environmental SciencesClemson UniversityClemsonSCUSA
| | - Vidya Suseela
- Department of Plant & Environmental SciencesClemson UniversityClemsonSCUSA
| | - Nishanth Tharayil
- Department of Plant & Environmental SciencesClemson UniversityClemsonSCUSA
| |
Collapse
|
39
|
Massa F, Defez R, Bianco C. Exploitation of Plant Growth Promoting Bacteria for Sustainable Agriculture: Hierarchical Approach to Link Laboratory and Field Experiments. Microorganisms 2022; 10:865. [PMID: 35630310 PMCID: PMC9144938 DOI: 10.3390/microorganisms10050865] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/15/2022] [Accepted: 04/19/2022] [Indexed: 11/24/2022] Open
Abstract
To feed a world population, which will reach 9.7 billion in 2050, agricultural production will have to increase by 35-56%. Therefore, more food is urgently needed. Yield improvements for any given crop would require adequate fertilizer, water, and plant protection from pests and disease, but their further abuse will be economically disadvantageous and will have a negative impact on the environment. Using even more agricultural inputs is simply not possible, and the availability of arable land will be increasingly reduced due to climate changes. To improve agricultural production without further consumption of natural resources, farmers have a powerful ally: the beneficial microorganisms inhabiting the rhizosphere. However, to fully exploit the benefits of these microorganisms and therefore to widely market microbial-based products, there are still gaps that need to be filled, and here we will describe some critical issues that should be better addressed.
Collapse
Affiliation(s)
| | | | - Carmen Bianco
- Institute of Biosciences and BioResources, Via P. Castellino 111, 80131 Naples, Italy; (F.M.); (R.D.)
| |
Collapse
|
40
|
Gupta A, Mishra R, Rai S, Bano A, Pathak N, Fujita M, Kumar M, Hasanuzzaman M. Mechanistic Insights of Plant Growth Promoting Bacteria Mediated Drought and Salt Stress Tolerance in Plants for Sustainable Agriculture. Int J Mol Sci 2022; 23:3741. [PMID: 35409104 PMCID: PMC8998651 DOI: 10.3390/ijms23073741] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 12/17/2022] Open
Abstract
Climate change has devastating effects on plant growth and yield. During ontogenesis, plants are subjected to a variety of abiotic stresses, including drought and salinity, affecting the crop loss (20-50%) and making them vulnerable in terms of survival. These stresses lead to the excessive production of reactive oxygen species (ROS) that damage nucleic acid, proteins, and lipids. Plant growth-promoting bacteria (PGPB) have remarkable capabilities in combating drought and salinity stress and improving plant growth, which enhances the crop productivity and contributes to food security. PGPB inoculation under abiotic stresses promotes plant growth through several modes of actions, such as the production of phytohormones, 1-aminocyclopropane-1-carboxylic acid deaminase, exopolysaccharide, siderophore, hydrogen cyanide, extracellular polymeric substances, volatile organic compounds, modulate antioxidants defense machinery, and abscisic acid, thereby preventing oxidative stress. These bacteria also provide osmotic balance; maintain ion homeostasis; and induce drought and salt-responsive genes, metabolic reprogramming, provide transcriptional changes in ion transporter genes, etc. Therefore, in this review, we summarize the effects of PGPB on drought and salinity stress to mitigate its detrimental effects. Furthermore, we also discuss the mechanistic insights of PGPB towards drought and salinity stress tolerance for sustainable agriculture.
Collapse
Affiliation(s)
- Anmol Gupta
- IIRC-3, Plant–Microbe Interaction and Molecular Immunology Laboratory, Department of Biosciences, Faculty of Science, Integral University, Lucknow 226026, Uttar Pradesh, India; (A.G.); (S.R.); (A.B.)
| | - Richa Mishra
- Department of Biochemistry, Dr. Rammanohar Lohia Avadh University, Ayodhya 224123, Uttar Pradesh, India; (R.M.); (N.P.)
| | - Smita Rai
- IIRC-3, Plant–Microbe Interaction and Molecular Immunology Laboratory, Department of Biosciences, Faculty of Science, Integral University, Lucknow 226026, Uttar Pradesh, India; (A.G.); (S.R.); (A.B.)
| | - Ambreen Bano
- IIRC-3, Plant–Microbe Interaction and Molecular Immunology Laboratory, Department of Biosciences, Faculty of Science, Integral University, Lucknow 226026, Uttar Pradesh, India; (A.G.); (S.R.); (A.B.)
| | - Neelam Pathak
- Department of Biochemistry, Dr. Rammanohar Lohia Avadh University, Ayodhya 224123, Uttar Pradesh, India; (R.M.); (N.P.)
| | - Masayuki Fujita
- Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa University, Kagawa 761-0795, Japan
| | - Manoj Kumar
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion 7505101, Israel
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| |
Collapse
|
41
|
Hernández-Guzmán M, Pérez-Hernández V, Navarro-Noya YE, Luna-Guido ML, Verhulst N, Govaerts B, Dendooven L. Application of ammonium to a N limited arable soil enriches a succession of bacteria typically found in the rhizosphere. Sci Rep 2022; 12:4110. [PMID: 35260645 PMCID: PMC8904580 DOI: 10.1038/s41598-022-07623-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 02/01/2022] [Indexed: 12/30/2022] Open
Abstract
Crop residue management and tillage are known to affect the soil bacterial community, but when and which bacterial groups are enriched by application of ammonium in soil under different agricultural practices from a semi-arid ecosystem is still poorly understood. Soil was sampled from a long-term agronomic experiment with conventional tilled beds and crop residue retention (CT treatment), permanent beds with crop residue burned (PBB treatment) or retained (PBC) left unfertilized or fertilized with 300 kg urea-N ha−1 and cultivated with wheat (Triticum durum L.)/maize (Zea mays L.) rotation. Soil samples, fertilized or unfertilized, were amended or not (control) with a solution of (NH4)2SO4 (300 kg N ha−1) and were incubated aerobically at 25 ± 2 °C for 56 days, while CO2 emission, mineral N and the bacterial community were monitored. Application of NH4+ significantly increased the C mineralization independent of tillage-residue management or N fertilizer. Oxidation of NH4+ and NO2− was faster in the fertilized soil than in the unfertilized soil. The relative abundance of Nitrosovibrio, the sole ammonium oxidizer detected, was higher in the fertilized than in the unfertilized soil; and similarly, that of Nitrospira, the sole nitrite oxidizer. Application of NH4+ enriched Pseudomonas, Flavisolibacter, Enterobacter and Pseudoxanthomonas in the first week and Rheinheimera, Acinetobacter and Achromobacter between day 7 and 28. The application of ammonium to a soil cultivated with wheat and maize enriched a sequence of bacterial genera characterized as rhizospheric and/or endophytic independent of the application of urea, retention or burning of the crop residue, or tillage.
Collapse
Affiliation(s)
- Mario Hernández-Guzmán
- Laboratory of Soil Ecology, CINVESTAV, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Alcaldía Gustavo A Madero, Mexico City, Mexico
| | - Valentín Pérez-Hernández
- Laboratory of Soil Ecology, CINVESTAV, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Alcaldía Gustavo A Madero, Mexico City, Mexico.,Department of Chemistry and Biochemistry, Instituto Tecnológico de Tuxtla-Gutiérrez, Tuxtla Gutiérrez, Mexico
| | - Yendi E Navarro-Noya
- Centro de Investigación en Ciencias Biológicas, Universidad Autónoma de Tlaxcala, Tlaxcala, México
| | - Marco L Luna-Guido
- Laboratory of Soil Ecology, CINVESTAV, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Alcaldía Gustavo A Madero, Mexico City, Mexico
| | - Nele Verhulst
- International Maize and Wheat Improvement Center (CIMMYT), El Batán, Texcoco, Mexico
| | - Bram Govaerts
- International Maize and Wheat Improvement Center (CIMMYT), El Batán, Texcoco, Mexico.,Cornell University, Ithaca, USA
| | - Luc Dendooven
- Laboratory of Soil Ecology, CINVESTAV, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Alcaldía Gustavo A Madero, Mexico City, Mexico.
| |
Collapse
|
42
|
Styczynski M, Biegniewski G, Decewicz P, Rewerski B, Debiec-Andrzejewska K, Dziewit L. Application of Psychrotolerant Antarctic Bacteria and Their Metabolites as Efficient Plant Growth Promoting Agents. Front Bioeng Biotechnol 2022; 10:772891. [PMID: 35284420 PMCID: PMC8907978 DOI: 10.3389/fbioe.2022.772891] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 02/07/2022] [Indexed: 01/04/2023] Open
Abstract
Iron is the fourth most abundant element on earth. However, its low bioavailability is a key plant-growth limiting factor. Bacteria play an important role in plant growth promotion since they produce specific secondary metabolites that may increase macro- and micronutrient accessibility in soil. Therefore, bacterial-derived iron chelators, as well as surface-active compounds, are recognised as essential to plant welfare. In this study, three cold-active Antarctic bacterial strains, i.e. Pseudomonas sp. ANT_H12B, Psychrobacter sp. ANT_H59 and Bacillus sp. ANT_WA51, were analysed. The physiological and genomic characterisation of these strains revealed their potential for plant growth promotion, reflected in the production of various biomolecules, including biosurfactants (that may lower the medium surface tension of even up to 53%) and siderophores (including ANT_H12B-produced mixed-type siderophore that demonstrated the highest production, reaching the concentration of up to 1.065 mM), increasing the availability of nutrients in the environment and neutralising fungal pathogens. Tested bacteria demonstrated an ability to promote the growth of a model plant, alfalfa, increasing shoots’ length and fresh biomass even up to 26 and 46% respectively; while their metabolites increased the bioavailability of iron in soil up to 40%. It was also revealed that the introduced strains did not disrupt physicochemical conditions and indigenous soil microbial composition, which suggests that they are promising amendments preserving the natural biodiversity of soil and increasing its fertility.
Collapse
Affiliation(s)
- Michal Styczynski
- Institute of Microbiology, Department of Environmental Microbiology and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Gabriel Biegniewski
- Institute of Microbiology, Department of Environmental Microbiology and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Przemyslaw Decewicz
- Institute of Microbiology, Department of Environmental Microbiology and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Bartosz Rewerski
- Institute of Microbiology, Department of Geomicrobiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Klaudia Debiec-Andrzejewska
- Institute of Microbiology, Department of Environmental Microbiology and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Lukasz Dziewit
- Institute of Microbiology, Department of Environmental Microbiology and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
- *Correspondence: Lukasz Dziewit,
| |
Collapse
|
43
|
Azeem S, Agha SI, Jamil N, Tabassum B, Ahmed S, Raheem A, Jahan N, Ali N, Khan A. Characterization and survival of broad-spectrum biocontrol agents against phytopathogenic fungi. Rev Argent Microbiol 2022; 54:233-242. [PMID: 35039210 DOI: 10.1016/j.ram.2021.10.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 07/12/2021] [Accepted: 10/03/2021] [Indexed: 10/19/2022] Open
Abstract
The current study intended to isolate, characterize and identify biocontrol bacteria possessing broad-spectrum antifungal activity from the phyllosphere of different crops including maize, wheat and potato and to assess their growth-promoting activity. In this study 14/113 biocontrol bacteria showed antifungal activity. Bacterial isolates M11 and M33 from maize out of 113 were re-selected on the basis of their strong (more than 50%) broad spectrum antifungal activity after their assessment against four economically important phytopathogenic fungi including Alternaria alternata, Rhizoctonia solani, Fusarium oxysporum and Fusarium verticillioides. The isolates were further assessed for plant growth promoting traits, i.e., indole-3-acetic acid production, phosphate solubilization, production of cellulase, microbial volatile compounds, hydrogen cyanide and siderophores. All fourteen isolates showed positive results for the production of indole-3-acetic acid hormone and cellulase enzyme, 10 isolates were positive for hydrogen cyanide production; siderophores production was observed in 7 isolates while 5 isolates showed ability to solubilize inorganic phosphate. Microbial volatile compounds were only synthesized by M11 and M33, which were identified as Bacillus amyloliquefaciens and Bacillus subtilis respectively by 16S rRNA gene sequencing. The survival study revealed that biocontrol bacteria B. amyloliquefaciens and B. subtilis have the ability to survive in cost effective molasses containing carrier material up to a three-month period.
Collapse
Affiliation(s)
- Saba Azeem
- Department of Biotechnology and Informatics, BUITEMS, Quetta, Pakistan
| | | | - Neelam Jamil
- Department of Microbiology, BUITEMS, Quetta, Pakistan
| | - Bushra Tabassum
- Center of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan; School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | - Shan Ahmed
- Department of Biotechnology and Informatics, BUITEMS, Quetta, Pakistan
| | - Asif Raheem
- Department of Microbiology, BUITEMS, Quetta, Pakistan
| | - Nusrat Jahan
- Department of Biotechnology and Informatics, BUITEMS, Quetta, Pakistan
| | - Niaz Ali
- Department of Botany, Hazara University, Mansehra, Pakistan
| | - Anwar Khan
- Department of Microbiology, BUITEMS, Quetta, Pakistan.
| |
Collapse
|
44
|
Sherpa MT, Bag N, Das S, Haokip P, Sharma L. Isolation and characterization of plant growth promoting rhizobacteria isolated from organically grown high yielding pole type native pea ( Pisum sativum L.) variety Dentami of Sikkim, India. CURRENT RESEARCH IN MICROBIAL SCIENCES 2021; 2:100068. [PMID: 34841358 PMCID: PMC8610319 DOI: 10.1016/j.crmicr.2021.100068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 08/22/2021] [Accepted: 08/25/2021] [Indexed: 11/30/2022] Open
Abstract
The present research showcases the significant findings pertaining to the assessment and report of the first ever study on the isolation and identification of plant growth promoting rhizobacterial diversity of organic farming pea variety (Dentami) of Sikkim. Proteobacteria dominated the rhizospheric soil whereas the bulk soil was governed by Actinobacteria. Bacillus cereus P8 (66.5 µg ml−1) and Bacillus mycoides PP1 (45.1 µg ml−1) were the highest IAA producer and also showed other plant growth promoting and biocontrol traits, such as phosphorous and potassium solubilization, nitrogen-fixing activity and siderophore production. As, Sikkim is the first state in India to practice organic agriculture farming, hence, such study on the soil microbiology is of immense significance. In these rhizospheric soil, it was dominated by the Proteobacteria and similar bacterial isolates, suggesting that these soil flora might be playing significant roles to enhancing the crop production and soil fertility. Culture-dependent technique was used to assess plant growth promoting rhizobacterial diversity of pole type pea variety (Dentami) of Sikkim. The dominant phylum was Proteobacteria (56%) from rhizosphere soil and Actinobacteria (58%) from bulk soil. PCA analysis showed that Firmicutes (bulk soil) were positively correlated to SOC, and available K, whereas, Proteobacteria (rhizosphere soil) exhibited a high correlation to pH, and available P. Bacillus cereus P8, Arthrobacter woluwensis DP2, Paenarthrobacter nitroguajacolicus UP1, and Bacillus mycoides PP1 showed plant growth promotion and bio-control traits. Bacillus cereus P8 (66.5 µg mL−1) and Bacillus mycoides PP1 (45.1 µg mL−1) was thehighest IAA producer. Pot experiment confirmed that these isolates can be potential plant growth promoter under the agro-climatic conditions of Sikkim, India.
Organic farming is an eco-friendly and sustainable farming practice that enhances soil fertility and helps in improving soil quality. But with the commencement of more sophisticated advances in agricultural techniques, organic farming has gradually become limited in the world. Culture-dependent plant growth-promoting bacterial isolates were isolated from the bulk and rhizospheric soil, of the native high yielding pole type organic pea (Pisum sativum L.) cultivar Dentami of Dentam, West Sikkim, India. Based on the 16S rRNA gene sequencing identification of these isolates, it was found that from the bulk soil, Actinobacteria (58%) was the dominant phyla followed by Firmicutes (28%), and Proteobacteria (14%). In the rhizospheric soil it was dominated by Proteobacteria (56%), followed by Firmicutes (33%), and Bacteriodetes (11%). A total of 40 bacterial isolates were initially screened for the plant growth-promoting (PGP) activity and out of them only four bacterial isolates i.e., Bacillus cereus P8, Arthrobacter woluwensis DP2, Paenarthrobacter nitroguajacolicus PP3, and Bacillus mycoides PP10 with accession numbers MN589697, MN559516, MN519462 and MN589696 respectively were found to possess higher PGP activity (i.e. phosphorous, potassium solubilization and nitrogen-fixing activity) as compared to the other bacteria present in the soil. Based on the indole-3-acetic acid (IAA) quantitative assay and siderophore production assay, it was found that Bacillus cereus (MN589697) produced the highest IAA (65.5 µg mL−1) and siderophore (71%) when compared with the other isolates. The statistical correlation suggests that pH and available phosphorus were the strongest influencing factors for the distribution of Proteobacteria in the rhizospheric soil. The results indicate that these isolates can be potential plant growth promoter under the agro-climatic conditions of Sikkim, India. To the best of our knowledge the present study is the first report of its kind and showcases significant findings pertaining to the assessment of diversity, isolation and identification of plant growth-promoting rhizobacteria of organic pea grown in Sikkim.
Collapse
Affiliation(s)
- Mingma Thundu Sherpa
- Department of Horticulture, School of Life Sciences, Sikkim University, 6th Mile, Gangtok, Sikkim 737102, India
| | - Niladri Bag
- Department of Horticulture, School of Life Sciences, Sikkim University, 6th Mile, Gangtok, Sikkim 737102, India
| | - Sayak Das
- Department of Microbiology, School of Life Sciences, Sikkim University, 6th Mile, Gangtok, Sikkim 737102, India
| | - Paolenmang Haokip
- Department of Geology, School of Physical Sciences, Sikkim University, 6th Mile, Gangtok, Sikkim 737102, India
| | - Laxuman Sharma
- Department of Horticulture, School of Life Sciences, Sikkim University, 6th Mile, Gangtok, Sikkim 737102, India
| |
Collapse
|
45
|
Cardoso AF, Alves EC, da Costa SDA, de Moraes AJG, da Silva Júnior DD, Lins PMP, da Silva GB. Bacillus cereus Improves Performance of Brazilian Green Dwarf Coconut Palms Seedlings With Reduced Chemical Fertilization. FRONTIERS IN PLANT SCIENCE 2021; 12:649487. [PMID: 34721445 PMCID: PMC8553962 DOI: 10.3389/fpls.2021.649487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 04/26/2021] [Indexed: 06/13/2023]
Abstract
Coconut production in the Amazon requires the knowledge and development of sustainable technologies to alleviate the detrimental effects of inorganic chemical fertilizers and intensive farming practices. In this study, we investigated the effects of plant growth-promoting rhizobacteria (PGPR) isolated from coconut seedlings on nutrient use efficiency (NUE) and physiological mechanisms related to biomass accumulation of seedlings grown with reduced inorganic fertilizer levels. Of the 96 PGPR isolates tested on rice plants, the isolate Bacillus cereus (UFRABC40) was selected, as it resulted in the most significant gain in growth variables. In a commercial coconut tree nursery, we subjected seedlings to two treatments, both with seven replications: control 100% NPK chemical fertilizer (CF) and B. cereus + 50% NPK CF. The results indicated that the inoculation increased phytohormone levels [190% indole acetic acid (IAA), 31% gibberellic acid GA3, and 17% gibberellic acid GA4] and leaf gas exchange [48% by assimilation of CO2 (A), 35% stomatal conductance to water vapor (gs), 33% transpiration, and 57% instantaneous carboxylation efficiency] in leaves. Furthermore, growth parameters (shoot, root, and total dry weight, height, and diameter) and macro- and micronutrient levels (95% N, 44% P, 92% K, 103 Ca, 46% Fe, 84% B) were improved. Our results show the potential ability of strain Bacillus cereus UFRABC40 to promote the growth performance of coconut seedlings under decreased application of inorganic fertilizers. The application of microbial-based products in coconut seedling production systems improves plants' physiological performance and the efficiency of nutrient use.
Collapse
Affiliation(s)
- Aline Figueiredo Cardoso
- Plant Protection Laboratory, Institute of Agrarian Sciences, Federal Rural University of Amazon (UFRA), Belém, Brazil
| | - Ediane Conceição Alves
- Plant Protection Laboratory, Institute of Agrarian Sciences, Federal Rural University of Amazon (UFRA), Belém, Brazil
| | - Sidney D. Araújo da Costa
- Plant Protection Laboratory, Institute of Agrarian Sciences, Federal Rural University of Amazon (UFRA), Belém, Brazil
| | | | | | | | - Gisele Barata da Silva
- Plant Protection Laboratory, Institute of Agrarian Sciences, Federal Rural University of Amazon (UFRA), Belém, Brazil
| |
Collapse
|
46
|
Dumigan CR, Muileboom J, Gregory J, Shrestha A, Hewedy OA, Raizada MN. Ancient Relatives of Modern Maize From the Center of Maize Domestication and Diversification Host Endophytic Bacteria That Confer Tolerance to Nitrogen Starvation. FRONTIERS IN PLANT SCIENCE 2021; 12:660673. [PMID: 34603345 PMCID: PMC8485183 DOI: 10.3389/fpls.2021.660673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 08/12/2021] [Indexed: 06/13/2023]
Abstract
Plants can adapt to their surroundings by hosting beneficial bacteria that confer a selective advantage in stressful conditions. Endophytes are a class of beneficial bacteria that exist within the internal spaces of plants and many species can improve plant nitrogen use efficiency. Nitrogen is an essential plant macronutrient, and is often a limiting factor to plant growth, especially in cereal crops such as maize. Every year farmers apply over 100 million metric tonnes of synthetic nitrogen fertilizer to meet the growing demand for stable food crops. Breeding efforts in maize over the past several decades has focused heavily on yield in response to nitrogen inputs, and so may have selected against adaptations that allow plants to survive in nitrogen stressed conditions. Data suggests that our heavy dependence on synthetic nitrogen fertilizer is not sustainable in the long term, and so there is on-going research efforts to reduce and replace this currently essential part of modern agriculture. Bacteria that improve plant tolerance to nitrogen stressed environments would allow farmers to reduce the amount of fertilizer they apply. The selection of maize under high nitrogen conditions to create modern varieties may have caused the plant to lose these beneficial bacteria that allowed wild maize ancestors to thrive in low nitrogen soil. Here in this study, we examine the root and shoot microbiomes of the wild ancestor of all maize, Parviglumis, and an ancient Mexican landrace (Mixteco) from Oaxaca, the area of early maize diversification. Both of these maize genotypes have thrived for thousands of years with little to no nitrogen inputs and so we hypothesized that they host beneficial bacteria that allow them to thrive in nitrogen stressed conditions. We identified multiple root endophyte species from each ancient maize relative that increased the growth of annual ryegrass (model maize relative) under nitrogen starvation. Furthermore, research infers these strains were vertically transmitted to new generations of plants, potentially through seed, indicating selection pressure for Parviglumis and Mixteco to maintain them in their microbiome.
Collapse
Affiliation(s)
| | | | | | | | | | - Manish N. Raizada
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
47
|
Selection of Endophytic Strains for Enhanced Bacteria-Assisted Phytoremediation of Organic Pollutants Posing a Public Health Hazard. Int J Mol Sci 2021; 22:ijms22179557. [PMID: 34502466 PMCID: PMC8431480 DOI: 10.3390/ijms22179557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 08/31/2021] [Accepted: 08/31/2021] [Indexed: 01/01/2023] Open
Abstract
Anthropogenic activities generate a high quantity of organic pollutants, which have an impact on human health and cause adverse environmental effects. Monitoring of many hazardous contaminations is subject to legal regulations, but some substances such as therapeutic agents, personal care products, hormones, and derivatives of common organic compounds are currently not included in these regulations. Classical methods of removal of organic pollutants involve economically challenging processes. In this regard, remediation with biological agents can be an alternative. For in situ decontamination, the plant-based approach called phytoremediation can be used. However, the main disadvantages of this method are the limited accumulation capacity of plants, sensitivity to the action of high concentrations of hazardous pollutants, and no possibility of using pollutants for growth. To overcome these drawbacks and additionally increase the efficiency of the process, an integrated technology of bacteria-assisted phytoremediation is being used recently. For the system to work, it is necessary to properly select partners, especially endophytes for specific plants, based on the knowledge of their metabolic abilities and plant colonization capacity. The best approach that allows broad recognition of all relationships occurring in a complex community of endophytic bacteria and its variability under the influence of various factors can be obtained using culture-independent techniques. However, for practical application, culture-based techniques have priority.
Collapse
|
48
|
Lastochkina O, Aliniaeifard S, Garshina D, Garipova S, Pusenkova L, Allagulova C, Fedorova K, Baymiev A, Koryakov I, Sobhani M. Seed priming with endophytic Bacillus subtilis strain-specifically improves growth of Phaseolus vulgaris plants under normal and salinity conditions and exerts anti-stress effect through induced lignin deposition in roots and decreased oxidative and osmotic damages. JOURNAL OF PLANT PHYSIOLOGY 2021; 263:153462. [PMID: 34225178 DOI: 10.1016/j.jplph.2021.153462] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 05/23/2023]
Abstract
Bacillus subtilis is one of the non-pathogenic beneficial bacteria that promote plant growth and stress tolerance. In the present study, we revealed that seed priming with endophytic B. subtilis (strains 10-4, 26D) improved Phaseolus vulgaris L. (common bean) seed germination and plant growth under both saline and non-saline conditions. 10-4 and 26D decreased oxidative and osmotic damage to the plant cells since bacterial inoculations reduced lipid peroxidation and proline accumulation in plants under salinity. 26D and especially 10-4 preserved different elevated levels of chlorophyll (Chl) a and Chl b in bean leaves under salinity, while carotenoids (Car) increased only by 10-4 and slightly decreased by 26D. Under normal conditions, 10-4 and 26D did not affect Chl a and Car concentrations, while Chl b decreased in the same plants. Under non-saline and especially saline conditions, 10-4 and 26D significantly increased lignin accumulation in plant roots and the highest lignin content along with better growth and oxidative damages reduction was observed after 10-4 inoculation under salinity, indicating a major role of B. subtilis-induced strengthening the root cell walls in the implementation protective effect of studied bacteria on plants. Therefore, B. subtilis 10-4 and 26D exerts protective effects on the growth of common bean plants under salinity by regulating plant defense mechanisms and the major role in tolerance development may contribute through the activation by B. subtilis lignin deposition in roots. The obtained data also indicates a strain-dependent efficiency of endophytic B. subtilis since strains 10-4 and 26D differently improved growth attributes and modulates cellular response reactions of the same common bean plants both under normal and salinity conditions, that generates interest for further investigations in this direction.
Collapse
Affiliation(s)
- Oksana Lastochkina
- Institute of Biochemistry and Genetics - Subdivision of the Ufa Federal Research Center of the Russian Academy of Sciences, Pr. Oktyabrya, 71, 450054, Ufa, Russia.
| | - Sasan Aliniaeifard
- Photosynthesis Laboratory, Aburaihan Campus, University of Tehran, PC 3391653775 Pakdasht, Tehran, Iran.
| | - Darya Garshina
- Bashkir Research Institute of Agriculture - Subdivision of the Ufa Federal Research Center of the Russian Academy of Sciences, R. Zorge Str., 19, 450059, Ufa, Russia.
| | - Svetlana Garipova
- Bashkir Research Institute of Agriculture - Subdivision of the Ufa Federal Research Center of the Russian Academy of Sciences, R. Zorge Str., 19, 450059, Ufa, Russia; Bashkir State University, Z. Validi Str., 32, 450076, Ufa, Russia.
| | - Liudmila Pusenkova
- Bashkir Research Institute of Agriculture - Subdivision of the Ufa Federal Research Center of the Russian Academy of Sciences, R. Zorge Str., 19, 450059, Ufa, Russia.
| | - Chulpan Allagulova
- Institute of Biochemistry and Genetics - Subdivision of the Ufa Federal Research Center of the Russian Academy of Sciences, Pr. Oktyabrya, 71, 450054, Ufa, Russia.
| | - Kristina Fedorova
- Institute of Biochemistry and Genetics - Subdivision of the Ufa Federal Research Center of the Russian Academy of Sciences, Pr. Oktyabrya, 71, 450054, Ufa, Russia.
| | - Andrey Baymiev
- Institute of Biochemistry and Genetics - Subdivision of the Ufa Federal Research Center of the Russian Academy of Sciences, Pr. Oktyabrya, 71, 450054, Ufa, Russia; Bashkir State University, Z. Validi Str., 32, 450076, Ufa, Russia.
| | - Igor Koryakov
- Institute of Biochemistry and Genetics - Subdivision of the Ufa Federal Research Center of the Russian Academy of Sciences, Pr. Oktyabrya, 71, 450054, Ufa, Russia.
| | - Mohammadhadi Sobhani
- Photosynthesis Laboratory, Aburaihan Campus, University of Tehran, PC 3391653775 Pakdasht, Tehran, Iran.
| |
Collapse
|
49
|
Efficiency of plant growth promoting bacteria for growth and yield enhancement of maize ( Zea mays) isolated from rock phosphate reserve area Hazara Khyber Pakhtunkhwa, Pakistan. Saudi J Biol Sci 2021; 28:2316-2322. [PMID: 33911946 PMCID: PMC8071923 DOI: 10.1016/j.sjbs.2021.01.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/12/2020] [Accepted: 01/12/2021] [Indexed: 01/19/2023] Open
Abstract
The usage of novel Plant Growth-Promoting Rhizobacteria (PGPR) as bioinoculant is a good opportunity for ecological farming practices to improve soil condition, quality of grain, crops’ yield and biodiversity conservation. The purpose of recent research was focused to examine, isolate and characterize PGP bacteria that colonize the rhizosphere for the duration of the maize plant's seedling. For this purpose, 14 samples of soils and roots in the maize rhizosphere were collected from rock phosphate area of Hazara, Pakistan. Forty morphologically natural bacterial colonies have been extracted and tested for their PGP innovations and biocontrol residences and further recognized as plant production advancing rhizobacteria. To find the effective PGPR strains with numerous activities, an aggregate of 150 bacterial colonies were sequestered from different rhizospheric soils of the Hazara Pakistan rock phosphate area. These tested bacterial strains were subjected to biochemical description and in vitro screening for their plant growth-promoting qualities like generation of indole acetic acid (IAA), alkali (NH3), hydrogen cyanide (HCN), siderophores, catalases, proteases and pectinases. All the isolates of rhizobacteria showed IAA producing capacity, as well as found positive for catalase and HCN. The above results suggested that, in addition to biocontrol marketers, PGPR could be used as biofertilizers to substitute agro-chemicals in order to increase crop production. These microorganisms can therefore be further developed and used for greenhouse and discipline packages.
Collapse
|
50
|
Gang S, Sharma S, Saraf M, Buck M, Schumacher J. Bacterial Indole-3-Acetic Acid Influences Soil Nitrogen Acquisition in Barley and Chickpea. PLANTS (BASEL, SWITZERLAND) 2021; 10:780. [PMID: 33923376 PMCID: PMC8071533 DOI: 10.3390/plants10040780] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 12/19/2022]
Abstract
Farming of barley and chickpea is nitrogen (N) fertilizer dependent. Using strategies that increase the nitrogen use efficiency (NUE) and its components, nitrogen uptake efficiency (NUpE) and nitrogen utilization efficiency (NUtE) would reduce the N fertilizer application in the soil and its adverse environmental effects. We evaluated the effects of three different strains of diazotroph Klebsiella (K.p. SSN1, K.q. SGM81, and K.o. M5a1) to understand the role of biological nitrogen fixation (BNF) and bacterial indole-3-acetic acid (IAA) on NUE of the plants. A field study revealed that K.p. SSN1 results in profound increment of root surface area by eightfold and threefold compared to uninoculated (control) in barley and chickpea, respectively. We measured significant increase in the plant tissue nitrogen, chlorophyll content, protein content, nitrate reductase activity, and nitrate concentration in the inoculated plants (p ≤ 0.05). Treated barley and chickpea exhibited higher NUE and the components compared to the control plants (K.p. SSN1 ≥ K.q. SGM81> K.o. M5a1). Specifically, K.q. SGM81 treatment in barley increased NUpE by 72%, while in chickpea, K.p. SSN1 increased it by 187%. The substantial improvement in the NUpE and NUE by the auxin producers K.p. SSN1 and K.q. SGM81 compared with non-auxin producer K.o. M5a1 was accompanied by an augmented root architecture suggesting larger contribution of IAA over marginal contribution of BNF in nitrogen acquisition from the soil.
Collapse
Affiliation(s)
- Shraddha Gang
- Department of Life Science, Faculty of Natural Sciences, Imperial College, London SW7 2AZ, UK; (S.G.); (M.B.)
| | - Sheetal Sharma
- Department of Microbiology and Biotechnology, School of Sciences, Gujarat University, Ahmedabad 380009, India;
| | - Meenu Saraf
- Department of Microbiology and Biotechnology, School of Sciences, Gujarat University, Ahmedabad 380009, India;
| | - Martin Buck
- Department of Life Science, Faculty of Natural Sciences, Imperial College, London SW7 2AZ, UK; (S.G.); (M.B.)
| | - Jorg Schumacher
- Department of Life Science, Faculty of Natural Sciences, Imperial College, London SW7 2AZ, UK; (S.G.); (M.B.)
| |
Collapse
|