1
|
Qutub M, Hussain UM, Tatode A, Premchandani T, Khan R, Umekar M, Taksande J, Singanwad P. Nano-Engineered Epigallocatechin Gallate (EGCG) Delivery Systems: Overcoming Bioavailability Barriers to Unlock Clinical Potential in Cancer Therapy. AAPS PharmSciTech 2025; 26:137. [PMID: 40379893 DOI: 10.1208/s12249-025-03145-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Accepted: 05/05/2025] [Indexed: 05/19/2025] Open
Abstract
Epigallocatechin gallate (EGCG), a bioactive polyphenol derived from Camellia sinensis, exhibits multimodal anticancer activity through mechanisms such as apoptosis induction, metastasis suppression, and chemoresistance reversal. Despite its therapeutic promise, clinical application is constrained by rapid metabolism, poor bioavailability, and inconsistent biodistribution. Recent advances in nanotechnology have enabled the development of innovative delivery systems including pH-responsive nanoparticles, lipid-polymer hybrids, and ligand-functionalized carriers that enhance EGCG stability, tumor targeting, and bioavailability by 3- to fivefold in preclinical models. These platforms also facilitate synergistic co-delivery with chemotherapeutics like doxorubicin, amplifying cytotoxicity and overcoming multidrug resistance. Mechanistically, EGCG modulates oncogenic pathways via NF-κB suppression, caspase activation, and MMP-9 downregulation, demonstrating efficacy across diverse cancer types. However, translational challenges persist, such as nanoparticle toxicity, variable tumor accumulation, and insufficient penetration in hypoxic microenvironments. Regulatory hurdles, including the lack of harmonized global standards for herbal medicinal products, further complicate clinical adoption. To bridge these gaps, future research must prioritize scalable cGMP-compliant manufacturing, rigorous preclinical toxicity profiling, and robust clinical trials to validate safety and efficacy. Addressing these issues could position nanoengineered EGCG as a paradigm-shifting therapy in precision oncology, aligning with ESCOP's mission to integrate evidence-based phytomedicines into conventional cancer care. This review underscores the necessity of interdisciplinary collaboration to standardize phytopreparations, refine regulatory frameworks, and advance biomarker-driven clinical validation, ultimately unlocking the full potential of EGCG in modern therapeutics.
Collapse
Affiliation(s)
- Mohammad Qutub
- Department of Pharmaceutics, Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra, 441002, India
| | - Ujban Md Hussain
- Department of Pharmaceutical Sciences, Rashtrasant Tukdoji Maharaj Nagpur University, Nagpur, Maharashtra, India
| | - Amol Tatode
- Department of Pharmaceutics, Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra, 441002, India.
| | - Tanvi Premchandani
- Department of Pharmaceutics, Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra, 441002, India
| | - Rahmuddin Khan
- Department of Pharmaceutics, School of Pharmaceutical Education & Research (SPER), Jamia Hamdard, New Delhi, 110062, India
| | - Milind Umekar
- Department of Pharmaceutics, Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra, 441002, India
| | - Jayshree Taksande
- Department of Pharmaceutics, Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra, 441002, India
| | - Priyanka Singanwad
- Department of Pharmaceutics, Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra, 441002, India
| |
Collapse
|
2
|
Zhou F, Deng S, Luo Y, Liu Z, Liu C. Research Progress on the Protective Effect of Green Tea Polyphenol (-)-Epigallocatechin-3-Gallate (EGCG) on the Liver. Nutrients 2025; 17:1101. [PMID: 40218859 PMCID: PMC11990830 DOI: 10.3390/nu17071101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/15/2025] [Accepted: 03/18/2025] [Indexed: 04/14/2025] Open
Abstract
The liver, as the primary metabolic organ, is susceptible to an array of factors that can harm liver cells and give rise to different liver diseases. Epigallocatechin gallate (EGCG), a natural compound found in green tea, exerts numerous beneficial effects on the human body. Notably, EGCG displays antioxidative, antibacterial, antiviral, anti-inflammatory, and anti-tumor properties. This review specifically highlights the pivotal role of EGCG in liver-related diseases, focusing on viral hepatitis, autoimmune hepatitis, fatty liver disease, and hepatocellular carcinoma. EGCG not only inhibits the entry and replication of hepatitis B and C viruses within hepatocytes, but also mitigates hepatocytic damage caused by hepatitis-induced inflammation. Furthermore, EGCG exhibits significant therapeutic potential against hepatocellular carcinoma. Combinatorial use of EGCG and anti-hepatocellular carcinoma drugs enhances the sensitivity of drug-resistant cancer cells to chemotherapeutic agents, leading to improved therapeutic outcomes. Thus, the combination of EGCG and anti-hepatocellular carcinoma drugs holds promise as an effective approach for treating drug-resistant hepatocellular carcinoma. In conclusion, EGCG possesses hepatoprotective properties against various forms of liver damage and emerges as a potential drug candidate for liver diseases.
Collapse
Affiliation(s)
- Fang Zhou
- School of Chemistry and Environmental Sciences, Xiangnan University, Chenzhou 423000, China;
| | - Sengwen Deng
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China; (S.D.); (C.L.)
| | - Yong Luo
- School of Chemistry and Environmental Sciences, Xiangnan University, Chenzhou 423000, China;
| | - Zhonghua Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China;
| | - Changwei Liu
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China; (S.D.); (C.L.)
| |
Collapse
|
3
|
Stankovic S, Mutavdzin Krneta S, Djuric D, Milosevic V, Milenkovic D. Plant Polyphenols as Heart's Best Friends: From Health Properties, to Cellular Effects, to Molecular Mechanisms of Action. Int J Mol Sci 2025; 26:915. [PMID: 39940685 PMCID: PMC11816429 DOI: 10.3390/ijms26030915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 12/22/2024] [Accepted: 01/18/2025] [Indexed: 02/16/2025] Open
Abstract
Polyphenols are micronutrients found in fruits, vegetables, tea, coffee, cocoa, medicinal herbs, fish, crustaceans, and algae. They can also be synthesized using recombinant microorganisms. Interest in plant-derived natural compounds has grown due to their potential therapeutic effects with minimal side effects. This is particularly important as the aging population faces increasing rates of chronic diseases such as cancer, diabetes, arthritis, cardiovascular, and neurological disorders. Studies have highlighted polyphenols' capacity to reduce risk factors linked to the onset of chronic illnesses. This narrative review discusses polyphenol families and their metabolism, and the cardioprotective effects of polyphenols evidenced from in vitro studies, as well as from in vivo studies, on different animal models of cardiac disease. This study also explores the molecular mechanisms underlying these benefits. Current research suggests that polyphenols may protect against ischemia, hypertension, cardiac hypertrophy, heart failure, and myocardial injury through complex mechanisms, including epigenetic and genomic modulation. However, further studies under nutritionally and physiologically relevant conditions, using untargeted multigenomic approaches, are needed to more comprehensively elucidate these mechanisms and firmly prove the cardioprotective effects of polyphenols.
Collapse
Affiliation(s)
- Sanja Stankovic
- Center for Medical Biochemistry, University Clinical Center of Serbia, 11000 Belgrade, Serbia
- Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Slavica Mutavdzin Krneta
- Institute of Medical Physiology “Richard Burian”, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (S.M.K.); (D.D.)
| | - Dragan Djuric
- Institute of Medical Physiology “Richard Burian”, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (S.M.K.); (D.D.)
| | - Verica Milosevic
- Department of Anatomy, Faculty of Medicine, University of Niš, 18000 Nis, Serbia;
| | - Dragan Milenkovic
- Department of Food, Bioprocessing and Nutrition Sciences, Plants for Human Health Institute, North Carolina State University, Kannapolis, NC 28081, USA
- Department of Nutrition, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|
4
|
Kumar S, Saha S, Pathak D, Singh T, Kumar A, Singh K, Mishra AK, Singh S, Singh S. Cholesterol Absorption Inhibition by Some Nutraceuticals. RECENT ADVANCES IN FOOD, NUTRITION & AGRICULTURE 2025; 16:2-11. [PMID: 38441025 DOI: 10.2174/012772574x285280240220065812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 03/06/2024]
Abstract
Hyperlipidemia, characterized by elevated levels of lipids in the blood, represents a major risk factor for cardiovascular diseases, a leading cause of morbidity and mortality worldwide. Conventional pharmacological interventions have been effective in managing hyperlipidemia, but concerns about side effects and long-term use have prompted interest in alternative approaches, particularly the use of nutraceuticals. This comprehensive review aims to summarize and critically evaluate the current body of knowledge surrounding the role of nutraceuticals in the management of hyperlipidemia. We provide an overview of the different classes of nutraceuticals, including plant sterols, omega-3 fatty acids, soluble fiber, antioxidants, and various herbal extracts, which have been investigated for their lipid-lowering properties. The mechanisms of action of these nutraceuticals are discussed, highlighting their ability to modulate lipid metabolism, reduce oxidative stress, and promote cardiovascular health. Furthermore, we review the results of clinical trials and epidemiological studies that have assessed the efficacy of nutraceutical interventions in lowering cholesterol levels, improving lipid profiles, and reducing the risk of cardiovascular events. In addition to their lipid-lowering effects, we examine the safety profile, dosage recommendations, and potential interactions of nutraceuticals with conventional lipid-lowering medications. We also address the importance of patient adherence to dietary and lifestyle modifications in conjunction with nutraceutical supplementation. While nutraceuticals offer a promising avenue for managing hyperlipidemia, we emphasize the need for further research to establish evidence-based guidelines for their use in clinical practice. Challenges related to standardization, quality control, and regulatory considerations are also discussed. In conclusion, this comprehensive review provides valuable insights into the potential of nutraceuticals as adjunctive or alternative therapies for managing hyperlipidemia. While further research is needed, the accumulating evidence suggests that nutraceuticals can play a valuable role in promoting cardiovascular health and reducing the burden of hyperlipidemia-related diseases.
Collapse
Affiliation(s)
- Shivendra Kumar
- Department of Pharmacology, Rajiv Academy for Pharmacy, Mathura, Uttar Pradesh, India
| | - Sunam Saha
- Department of Pharmacology, Rajiv Academy for Pharmacy, Mathura, Uttar Pradesh, India
| | - Devender Pathak
- Department of Pharmacology, Rajiv Academy for Pharmacy, Mathura, Uttar Pradesh, India
| | - Talever Singh
- Department of Pharmacology, Rajiv Academy for Pharmacy, Mathura, Uttar Pradesh, India
| | - Atul Kumar
- Department of Pharmacology, Rajiv Academy for Pharmacy, Mathura, Uttar Pradesh, India
| | - Kuldeep Singh
- Department of Pharmacology, Rajiv Academy for Pharmacy, Mathura, Uttar Pradesh, India
| | - Avinash Kumar Mishra
- Department of Pharmacology, Rajiv Academy for Pharmacy, Mathura, Uttar Pradesh, India
| | - Sakshi Singh
- Department of Pharmacy, United Institute of Technology, Prayagraj, Uttar Pradesh, India
| | - Shubham Singh
- Department of Pharmaceutics, Sainath college of Pharmacy, Sonebhadra, Uttar Pradesh, India
| |
Collapse
|
5
|
Meegaswatte H, Speer K, McKune AJ, Naumovski N. Functional Foods and Nutraceuticals for the Management of Cardiovascular Disease Risk in Postmenopausal Women. Rev Cardiovasc Med 2024; 25:460. [PMID: 39742223 PMCID: PMC11683719 DOI: 10.31083/j.rcm2512460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/23/2024] [Accepted: 09/30/2024] [Indexed: 01/03/2025] Open
Abstract
Cardiovascular disease (CVD) is a leading cause of death in women and risk of development is greatly increased following menopause. Menopause occurs over several years and is associated with hormonal changes, including a reduction in estradiol and an increase in follicle-stimulating hormone. This hormonal shift may result in an increased risk of developing abdominal adiposity, insulin resistance, dyslipidemia, vascular dysfunction, hypertension, type 2 diabetes mellitus (T2DM), metabolic dysfunction-associated fatty liver disease (MAFLD), and metabolic syndrome (MetS). Furthermore, with the onset of menopause, there is an increase in oxidative stress that is associated with impaired vascular function, inflammation, and thrombosis, further increasing the risk of CVD development. Despite the harmful consequences of the menopause transition being well known, women in premenopausal, perimenopausal, and postmenopausal stages are unlikely to be enrolled in research studies. Therefore, investigations on the prevention and treatment of cardiovascular and metabolic disease in middle-aged women are still relatively limited. Whilst lifestyle interventions are associated with reduced CVD risk in this population sample, the evidence still remains inconclusive. Therefore, it is important to explore the effectiveness of early intervention and potential therapeutic approaches to maintain cellular redox balance, preserve endothelium, and reduce inflammation. Glycine, N-acetylcysteine, and L-theanine are amino acids with potential antioxidant and anti-inflammatory activity and are identified as therapeutic interventions in the management of age-related and metabolic diseases. The benefits of the intake of these amino acids for improving factors associated with cardiovascular health are discussed in this review. Future studies using these amino acids are warranted to investigate their effect on maintaining the vascular health and cardiovascular outcomes of postmenopausal women.
Collapse
Affiliation(s)
- Harshini Meegaswatte
- Faculty of Health, University of Canberra, 2617 Bruce, Canberra, ACT, Australia
- Functional Foods and Nutrition Research (FFNR) Laboratory, University of Canberra, 2617 Bruce, Canberra, ACT, Australia
- University of Canberra Research Institute for Sport and Exercise (UCRISE), University of Canberra, 2617 Bruce, Canberra, ACT, Australia
| | - Kathryn Speer
- Faculty of Health, University of Canberra, 2617 Bruce, Canberra, ACT, Australia
- Functional Foods and Nutrition Research (FFNR) Laboratory, University of Canberra, 2617 Bruce, Canberra, ACT, Australia
- University of Canberra Research Institute for Sport and Exercise (UCRISE), University of Canberra, 2617 Bruce, Canberra, ACT, Australia
| | - Andrew J. McKune
- Faculty of Health, University of Canberra, 2617 Bruce, Canberra, ACT, Australia
- Functional Foods and Nutrition Research (FFNR) Laboratory, University of Canberra, 2617 Bruce, Canberra, ACT, Australia
- University of Canberra Research Institute for Sport and Exercise (UCRISE), University of Canberra, 2617 Bruce, Canberra, ACT, Australia
- Discipline of Biokinetics, Exercise and Leisure Sciences, School of Health Science, University of KwaZulu-Natal, 4041 Durban, Republic of South Africa
| | - Nenad Naumovski
- Faculty of Health, University of Canberra, 2617 Bruce, Canberra, ACT, Australia
- Functional Foods and Nutrition Research (FFNR) Laboratory, University of Canberra, 2617 Bruce, Canberra, ACT, Australia
- University of Canberra Research Institute for Sport and Exercise (UCRISE), University of Canberra, 2617 Bruce, Canberra, ACT, Australia
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, 17676 Athens, Greece
| |
Collapse
|
6
|
German IJS, Barbalho SM, Andreo JC, Zutin TLM, Laurindo LF, Rodrigues VD, Araújo AC, Guiguer EL, Direito R, Pomini KT, Shinohara AL. Exploring the Impact of Catechins on Bone Metabolism: A Comprehensive Review of Current Research and Future Directions. Metabolites 2024; 14:560. [PMID: 39452941 PMCID: PMC11509841 DOI: 10.3390/metabo14100560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/27/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024] Open
Abstract
Background/Objectives: Degenerative musculoskeletal diseases represent a global health problem due to the progressive deterioration of affected individuals. As a bioactive compound, catechins have shown osteoprotective properties by stimulating osteoblastic cells and inhibiting bone resorption. Thus, this review aimed to address the mechanism of action of catechins on bone tissue. Methods: The search was applied to PubMed without limitations in date, language, or article type. Fifteen articles matched the topic and objective of this review. Results: EGCG (epigallocatechin gallate) and epicatechin demonstrated action on the osteogenic markers RANKL, TRAP, and NF-κβ and expression of BMPs and ALP, thus improving the bone microarchitecture. Studies on animals showed the action of EGCG in increasing calcium and osteoprotegerin levels, in addition to regulating the transcription factor NF-ATc1 associated with osteoclastogenesis. However, it did not show any effect on osteocalcin and RANK. Regarding human studies, EGCG reduced the risk of fracture in a dose-dependent manner. In periodontal tissue, EGCG reduced IL-6, TNF, and RANKL in vitro and in vivo. Human studies showed a reduction in periodontal pockets, gingival index, and clinical attachment level. The action of EGCG on membranes and hydrogels showed biocompatible and osteoinductive properties on the microenvironment of bone tissue by stimulating the expression of osteogenic growth factors and increasing osteocalcin and alkaline phosphate levels, thus promoting new bone formation. Conclusions: EGCG stimulates cytokines related to osteogenes, increasing bone mineral density, reducing osteoclastogenesis factors, and showing great potential as a therapeutic strategy for reducing the risk of bone fractures.
Collapse
Affiliation(s)
- Iris Jasmin Santos German
- Department of Biological Sciences (Anatomy), School of Dentistry of Bauru, University of São Paulo, (FOB-USP), Alameda Doutor Octávio Pinheiro Brisolla, 9-75, Bauru 17012-901, Brazil
| | - Sandra Maria Barbalho
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marília 17525-902, Brazil (E.L.G.)
- Research Coordination, UNIMAR Charity Hospital, Universidade de Marília (UNIMAR), Marília 17525-902, Brazil
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, Brazil
| | - Jesus Carlos Andreo
- Department of Biological Sciences (Anatomy), School of Dentistry of Bauru, University of São Paulo, (FOB-USP), Alameda Doutor Octávio Pinheiro Brisolla, 9-75, Bauru 17012-901, Brazil
| | - Tereza Lais Menegucci Zutin
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marília 17525-902, Brazil (E.L.G.)
| | - Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília 17519-030, Brazil; (L.F.L.)
| | - Victória Dogani Rodrigues
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília 17519-030, Brazil; (L.F.L.)
| | - Adriano Cressoni Araújo
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marília 17525-902, Brazil (E.L.G.)
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, Brazil
| | - Elen Landgraf Guiguer
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marília 17525-902, Brazil (E.L.G.)
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, Brazil
| | - Rosa Direito
- Laboratory of Systems Integration Pharmacology, Clinical and Regulatory Science, Research Institute for Medicines, Universidade de Lisboa (iMed. ULisboa), Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal;
| | - Karina Torres Pomini
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marília 17525-902, Brazil (E.L.G.)
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, Brazil
| | - André Luis Shinohara
- Department of Biological Sciences (Anatomy), School of Dentistry of Bauru, University of São Paulo, (FOB-USP), Alameda Doutor Octávio Pinheiro Brisolla, 9-75, Bauru 17012-901, Brazil
| |
Collapse
|
7
|
Yang M, Yan R, Sha R, Wang X, Zhou S, Li B, Zheng Q, Cao Y. Epigallocatechin gallate alleviates non-alcoholic fatty liver disease through the inhibition of the expression and activity of Dipeptide kinase 4. Clin Nutr 2024; 43:1769-1780. [PMID: 38936303 DOI: 10.1016/j.clnu.2024.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/29/2024]
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) has emerged as the most prevalent glocal cause of chronic hepatic disease, with incidence rates that continue to rise steadily. Treatment options for affected patients are currently limited to dietary changes and exercise interventions, with no drugs having been licensed for the treatment of this disease. There is thus a pressing need for the development of novel therapeutic strategies. Work from our group suggests that the primary bioactive ingredient in green tea, epigallocatechin gallate (EGCG), may help reduce liver fat content and protect against hepatic injury through the inhibition of dipeptidyl peptidase 4 (DPP4) expression and activity. The study investigated the potential pathways by which EGCG may improve NAFLD, identified the sites of interaction between EGCG and DPP4, and proposed novel clinical treatment strategies. METHODS A clinical randomized controlled trial was conducted to investigate the potential efficacy of EGCG in NAFLD patients. The study compared relevant indices before and after EGCG administration. Animal models of NAFLD were constructed using male C57BL/6J mice fed a high-fat diet to observe the ameliorative effects of EGCG on the livers of the model mice and to investigate the potential pathways by which EGCG alleviates NAFLD. The interaction mechanism between EGCG and DPP4 was investigated using oleic acid and palmitic acid-treated HepG2 cell lines. Plasmids in which different sites had been disrupted were used to identify the effective interaction sites. RESULTS ECGC was found to suppress the accumulation of lipids, inhibit inflammation, remediate dysregulated lipid metabolism, and improve the pathogenesis of NAFLD via the inhibition of the expression and activity of DPP4. CONCLUSIONS The study results indicate that EGCG has a positive impact on improving NAFLD. These results highlight promising new opportunities to safely and effectively treat NAFLD in the clinic. STUDY ID NUMBER ChiCTR2300076741; https://www.chictr.org.cn/.
Collapse
Affiliation(s)
- Mingfeng Yang
- Department of Endocrinology and Metabolism, Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, The First Affiliated Hospital of China Medical University, Shenyang, PR China
| | - Ruike Yan
- Department of Endocrinology and Metabolism, Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, The First Affiliated Hospital of China Medical University, Shenyang, PR China
| | - Ruohe Sha
- Department of Endocrinology and Metabolism, Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, The First Affiliated Hospital of China Medical University, Shenyang, PR China
| | - Xinxin Wang
- Department of Endocrinology and Metabolism, Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, The First Affiliated Hospital of China Medical University, Shenyang, PR China
| | - Shiting Zhou
- Department of Endocrinology and Metabolism, Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, The First Affiliated Hospital of China Medical University, Shenyang, PR China
| | - Baifeng Li
- Department of Hepatobiliary and Pancreatic Surgery, First Hospital of China Medical University, Shenyang, Liaoning 110001, PR China.
| | - Qianqian Zheng
- Department of Pathophysiology, College of Basic Medical Sciences, China Medical University 110122, Shenyang, Liaoning Province, PR China.
| | - Yanli Cao
- Department of Endocrinology and Metabolism, Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, The First Affiliated Hospital of China Medical University, Shenyang, PR China.
| |
Collapse
|
8
|
Mohapatra S, Kumar PA, Aggarwal A, Iqubal A, Mirza MA, Iqbal Z. Phytotherapeutic approach for conquering menopausal syndrome and osteoporosis. Phytother Res 2024; 38:2728-2763. [PMID: 38522005 DOI: 10.1002/ptr.8172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 02/06/2024] [Accepted: 02/11/2024] [Indexed: 03/25/2024]
Abstract
Women face a significant change in their reproductive health as menopause sets in. It is marred with numerous physiological changes that negatively impact their quality of life. This universal, transition phase is associated with menopausal and postmenopausal syndrome, which may spread over 2-10 years. This creates a depletion of female hormones causing physical, mental, sexual and social problems and may, later on, manifest as postmenopausal osteoporosis leading to weak bones, causing fractures and ultimately morbidity and mortality. Menopausal hormone therapy generally encompasses the correction of hormone balance through various pharmacological agents, but the associated side effects often lead to cessation of therapy with poor clinical outcomes. However, it has been noticed that phytotherapeutics is trusted by women for the amelioration of symptoms related to menopause and for improving bone health. This could primarily be due to their reduced side effects and lesser costs. This review attempts to bring forth the suitability of phytotherapeutics/herbals for the management of menopausal, postmenopausal syndrome, and menopausal osteoporosis through several published research. It tries to enlist the available botanicals with their key constituents and mechanism of action for mitigating symptoms associated with menopause as well as osteoporosis. It also includes a list of a few herbal commercial products available for these complications. The article also intends to collate the findings of various clinical trials and patents available in this field and provide a window for newer research avenues in this highly important yet ignored health segment.
Collapse
Affiliation(s)
- Sradhanjali Mohapatra
- Nanotechnology Lab, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| | - P Ayash Kumar
- Sun Pharmaceutical Industries Limited, R&D Centre, Gurugram, India
| | - Akshay Aggarwal
- Sun Pharmaceutical Industries Limited, R&D Centre, Gurugram, India
| | - Ashif Iqubal
- Department of Pharmacology, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| | - Mohd Aamir Mirza
- Nanotechnology Lab, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| | - Zeenat Iqbal
- Nanotechnology Lab, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| |
Collapse
|
9
|
Harahap U, Syahputra RA, Ahmed A, Nasution A, Wisely W, Sirait ML, Dalimunthe A, Zainalabidin S, Taslim NA, Nurkolis F, Kim B. Current insights and future perspectives of flavonoids: A promising antihypertensive approach. Phytother Res 2024; 38:3146-3168. [PMID: 38616386 DOI: 10.1002/ptr.8199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/27/2024] [Accepted: 03/18/2024] [Indexed: 04/16/2024]
Abstract
Hypertension, or high blood pressure (BP), is a complex disease influenced by various risk factors. It is characterized by persistent elevation of BP levels, typically exceeding 140/90 mmHg. Endothelial dysfunction and reduced nitric oxide (NO) bioavailability play crucial roles in hypertension development. L-NG-nitro arginine methyl ester (L-NAME), an analog of L-arginine, inhibits endothelial NO synthase (eNOS) enzymes, leading to decreased NO production and increased BP. Animal models exposed to L-NAME manifest hypertension, making it a useful design for studying the hypertension condition. Natural products have gained interest as alternative approaches for managing hypertension. Flavonoids, abundant in fruits, vegetables, and other plant sources, have potential cardiovascular benefits, including antihypertensive effects. Flavonoids have been extensively studied in cell cultures, animal models, and, to lesser extent, in human trials to evaluate their effectiveness against L-NAME-induced hypertension. This comprehensive review summarizes the antihypertensive activity of specific flavonoids, including quercetin, luteolin, rutin, troxerutin, apigenin, and chrysin, in L-NAME-induced hypertension models. Flavonoids possess antioxidant properties that mitigate oxidative stress, a major contributor to endothelial dysfunction and hypertension. They enhance endothelial function by promoting NO bioavailability, vasodilation, and the preservation of vascular homeostasis. Flavonoids also modulate vasoactive factors involved in BP regulation, such as angiotensin-converting enzyme (ACE) and endothelin-1. Moreover, they exhibit anti-inflammatory effects, attenuating inflammation-mediated hypertension. This review provides compelling evidence for the antihypertensive potential of flavonoids against L-NAME-induced hypertension. Their multifaceted mechanisms of action suggest their ability to target multiple pathways involved in hypertension development. Nonetheless, the reviewed studies contribute to the evidence supporting the useful of flavonoids for hypertension prevention and treatment. In conclusion, flavonoids represent a promising class of natural compounds for combating hypertension. This comprehensive review serves as a valuable resource summarizing the current knowledge on the antihypertensive effects of specific flavonoids, facilitating further investigation and guiding the development of novel therapeutic strategies for hypertension management.
Collapse
Affiliation(s)
- Urip Harahap
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Rony Abdi Syahputra
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Amer Ahmed
- Department of Bioscience, Biotechnology and Environment, University of Bari, Bari, Italy
| | - Azhari Nasution
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Wenny Wisely
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Maureen Lazurit Sirait
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Aminah Dalimunthe
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Satirah Zainalabidin
- Biomedical Science, Centre of Toxicology and Health Risk Study, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nurpudji Astuti Taslim
- Division of Clinical Nutrition, Department of Nutrition, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Fahrul Nurkolis
- Department of Biological Sciences, State Islamic University of Sunan Kalijaga (UIN Sunan Kalijaga), Yogyakarta, Indonesia
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
10
|
Li A, Wang Q, Li P, Zhao N, Liang Z. Effects of green tea on lipid profile in overweight and obese women. INT J VITAM NUTR RES 2024; 94:239-251. [PMID: 37082776 DOI: 10.1024/0300-9831/a000783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
The effect of green tea administration on serum lipids' concentrations remains unclear as various investigations, which have explored this topic, have produced conflicting results. Gender might be one of the factors influencing the impact of green tea on the lipid profile. Hence, we conducted a systematic review and meta-analysis of randomized controlled trials (RCTs) to assess the effect of green tea intake on the lipid profile in overweight and obese women. We searched five databases (Web of Science, SCOPUS, Embase, PubMed/Medline, and Google Scholar) using a combination of MeSH and non-MeSH terms. Results were expressed as weighted mean differences (WMDs) and 95% confidence intervals (CIs) and synthesized with a random-effects model. In total, 15 eligible RCTs with 16 arms (1818 participants) were included in the meta-analysis. The combined effect size revealed a significant reduction in total cholesterol (TC) (WMD: -4.45 mg/dl, 95% CI: -6.63, -2.27, P<0.001) and low-density lipoprotein cholesterol (LDL-C) (WMD: -4.49 mg/dl, 95% CI: -7.50 to -1.47, P=0.003) concentrations following green tea supplementation in overweight and/or obese women. In addition, a more pronounced reduction of triglyceride (TG) levels occurred when the baseline TG value was ≥150 mg/dL (WMD: -24.45 mg/dL, 95% CI: -40.63 to -8.26, P=0.003). Moreover, a significant decrease in TG concentrations occurred in RCTs conducted on overweight subjects (BMI: 25-29.99 kg/m2) (WMD: -5.88 mg/dl, 95% CI: -10.76 to -0.99, P=0.01). In the subgroup analyses based on the study population, a notable increase in high-density lipoprotein cholesterol (HDL-C) values was observed in obese individuals (>30 kg/m2) (WMD: 2.63 mg/dl, 95% CI: 0.10 to 5.16, P=0.041). Consumption of green tea causes a reduction in LDL-C and TC concentrations in overweight and obese women. The decline in TG levels was notable particularly in overweight patients with hypertriglyceridemia at baseline. In addition, a significant increase in HDL-C was detected in obese subjects following intake of green tea.
Collapse
Affiliation(s)
- Aixin Li
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Jiamusi University, Jiamusi, China
| | - Qian Wang
- Cardiac Catheterization Room, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Peng Li
- Department of Neurology, Jiamusi Central Hospital, Jiamusi, China
| | - Na Zhao
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Jiamusi University, Jiamusi, China
| | - Zhaoguang Liang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
11
|
Korin A, Gouda MM, Youssef M, Elsharkawy E, Albahi A, Zhan F, Sobhy R, Li B. Whey Protein Sodium-Caseinate as a Deliverable Vector for EGCG: In Vitro Optimization of Its Bioaccessibility, Bioavailability, and Bioactivity Mode of Actions. Molecules 2024; 29:2588. [PMID: 38893466 PMCID: PMC11174060 DOI: 10.3390/molecules29112588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/26/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Epigallocatechin gallate (EGCG), the principal catechin in green tea, exhibits diverse therapeutic properties. However, its clinical efficacy is hindered by poor stability and low bioavailability. This study investigated solid particle-in-oil-in-water (S/O/W) emulsions stabilized by whey protein isolate (WPI) and sodium caseinate (NaCas) as carriers to enhance the bioavailability and intestinal absorption of EGCG. Molecular docking revealed binding interactions between EGCG and these macromolecules. The WPI- and NaCas-stabilized emulsions exhibited high encapsulation efficiencies (>80%) and significantly enhanced the bioaccessibility of EGCG by 64% compared to free EGCG after simulated gastrointestinal digestion. Notably, the NaCas emulsion facilitated higher intestinal permeability of EGCG across Caco-2 monolayers, attributed to the strong intermolecular interactions between caseins and EGCG. Furthermore, the emulsions protected Caco-2 cells against oxidative stress by suppressing intracellular reactive oxygen species generation. These findings demonstrate the potential of WPI- and NaCas-stabilized emulsions as effective delivery systems to improve the bioavailability, stability, and bioactivity of polyphenols like EGCG, enabling their applications in functional foods and nutraceuticals.
Collapse
Affiliation(s)
- Ali Korin
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Food Science and Technology Department, Faculty of Agriculture, Al-Azhar University, Cairo 11651, Egypt
| | - Mostafa M. Gouda
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
- Department of Nutrition & Food Science, National Research Centre, Dokki, Giza 12622, Egypt
| | - Mahmoud Youssef
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Food Science and Technology Department, Faculty of Agriculture, Al-Azhar University, Cairo 11651, Egypt
| | - Eman Elsharkawy
- Faculty of Science, Northern Border University, Arar 91431, Saudi Arabia
| | - Amgad Albahi
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- National Food Research Centre, Ministry of Agriculture and Natural Resources, Khartoum 113, Sudan
| | - Fuchao Zhan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Remah Sobhy
- Department of Biochemistry, Faculty of Agriculture, Benha University, Moshtohor 13736, Egypt
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
12
|
Zhang C, Zhang J, Li D, Hu X. Effects of coffee and tea on postprandial cardiometabolic risk factors in healthy individuals: a randomized crossover trial. Asia Pac J Clin Nutr 2024; 33:102-110. [PMID: 38494692 PMCID: PMC11170016 DOI: 10.6133/apjcn.202403_33(1).0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/12/2023] [Accepted: 09/06/2023] [Indexed: 03/19/2024]
Abstract
BACKGROUND AND OBJECTIVES The effect of different coffee and tea consumption on postprandial glucose and lipid metabolism has never been reported previously. The aim of the present study was to investigate the effect of different coffee or tea consumption at breakfast on postprandial cardiometabolic risk factors in healthy individuals. METHODS AND STUDY DESIGN Eighteen healthy young subjects completed the trial. After 8-hour overnight fast, volunteers either ingested water, freeze-dried coffee, spray-dried coffee, green tea, black tea or oolong tea together with a breakfast consisting of an egg and 180g deep-fried dough sticks. Blood was drawn at 0h, 0.5h, 1h, 2h, and 3h. RESULTS The differences in triglyceride (TG) values relative to the baseline levels at 2h and 3h of green tea was significantly decreased compared with black tea and oolong tea (p<0.05). Compared with black tea, green tea and oolong tea significantly reduced postprandial total cholesterol (TC) levels (p<0.05, p<0.01), respectively. Furthermore, the serum concentrations of high-density lipoprotein cholesterol (HDL-C) and low-density lipoprotein cholesterol (LDL-C) were substantially decreased after oolong tea consumption compared with black tea (p<0.05, p<0.01). CONCLUSIONS Green tea ingestion can lower the elevation of serum TG and TC levels after high-fat or high-cholesterol diets. Our findings have far-reaching implications given the widespread use of coffee and tea and the current concern over cardiometabolic risk factors.
Collapse
Affiliation(s)
- Chunmei Zhang
- Nutritional Department, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Jiayu Zhang
- Nutritional Department, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Duo Li
- Institute of Nutrition and Health, Qingdao University, Qingdao, China
| | - Xiaojie Hu
- College of Life Science, Linyi University, Linyi, China.
| |
Collapse
|
13
|
Yao D, Xie L, Du K, Yao X, Shen X. Decaffeinated green tea polyphenols supplementation had no adverse health effects in girls with obesity: a randomized controlled trial. Asia Pac J Clin Nutr 2024; 33:111-117. [PMID: 38494693 PMCID: PMC11170002 DOI: 10.6133/apjcn.202403_33(1).0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/27/2023] [Accepted: 11/13/2023] [Indexed: 03/19/2024]
Abstract
BACKGROUND AND OBJECTIVES While the health promoting effects of green tea polyphenols have been identi-fied among adult, research on children is scarce probably due to safety concerns about caffeine. This study aims to evaluate the safety of decaffeinated green tea polyphenols (DGTP) supplementation in girls with obesity and lay the foundation for its application in children population. METHODS AND STUDY DESIGN This 12-week randomized, double-blinded, parallel-controlled trial was performed among 62 girls with obesity aged 6 to 10 years old. Participants were allocated to take 400 mg/d DGTP (DGTP group, n = 31) or isodose placebo (Control group, n = 31) at random. Anthropometric measurements and biochemical parameters including hepatic and renal function indicators, serum minerals concentrations, and routine blood parameters, were measured at baseline and the end of this trial. DGTP intake diary was required for each participant to record any abnormal reactions. RESULTS After the 12-week supplementation, compared to Control group, the uric acid concentration in DGTP group showed a significant decrease (-48.0 ± 83.2 vs -0.01 ± 69.1, μmol/L), within the normal range. Regarding other biochemical indicators, there were no significant differences in changed values between the two groups. Throughout the trial, no adverse effects were reported in either group. CONCLUSIONS This study indicated that the supplementation of 400 mg/d DGTP for 12 weeks had no adverse health effects in girls with obesity, providing evidence for the DGTP adoption in children research.
Collapse
Affiliation(s)
- Die Yao
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Clinical Nutrition, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Luyao Xie
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Clinical Nutrition, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kun Du
- Department of Clinical Laboratory Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinyuan Yao
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Clinical Nutrition, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiuhua Shen
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Clinical Nutrition, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Clinical Nutrition, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Med-icine, Shanghai, China.
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| |
Collapse
|
14
|
Gál R, Halmosi R, Gallyas F, Tschida M, Mutirangura P, Tóth K, Alexy T, Czopf L. Resveratrol and beyond: The Effect of Natural Polyphenols on the Cardiovascular System: A Narrative Review. Biomedicines 2023; 11:2888. [PMID: 38001889 PMCID: PMC10669290 DOI: 10.3390/biomedicines11112888] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/11/2023] [Accepted: 10/19/2023] [Indexed: 11/26/2023] Open
Abstract
Cardiovascular diseases (CVDs) are among the leading causes of morbidity and mortality worldwide. Unhealthy dietary habits have clearly been shown to contribute to the development of CVDs. Beyond the primary nutrients, a healthy diet is also rich in plant-derived compounds. Natural polyphenols, found in fruits, vegetables, and red wine, have a clear role in improving cardiovascular health. In this review, we strive to summarize the results of the relevant pre-clinical and clinical trials that focused on some of the most important natural polyphenols, such as resveratrol and relevant flavonoids. In addition, we aim to identify their common sources, biosynthesis, and describe their mechanism of action including their regulatory effect on signal transduction pathways. Finally, we provide scientific evidence regarding the cardiovascular benefits of moderate, long-term red wine consumption.
Collapse
Affiliation(s)
- Roland Gál
- Division of Cardiology, 1st Department of Medicine, Medical School, University of Pecs, 7624 Pecs, Hungary; (R.G.); (R.H.); (K.T.)
- Szentágothai Research Centre, University of Pecs, 7624 Pecs, Hungary
| | - Róbert Halmosi
- Division of Cardiology, 1st Department of Medicine, Medical School, University of Pecs, 7624 Pecs, Hungary; (R.G.); (R.H.); (K.T.)
- Szentágothai Research Centre, University of Pecs, 7624 Pecs, Hungary
| | - Ferenc Gallyas
- Department of Biochemistry and Medical Chemistry, University of Pecs, 7624 Pecs, Hungary;
| | - Michael Tschida
- Medical School, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Pornthira Mutirangura
- Department of Medicine, University of Minnesota Medical School, Minneapolis, MN 55455, USA;
| | - Kálmán Tóth
- Division of Cardiology, 1st Department of Medicine, Medical School, University of Pecs, 7624 Pecs, Hungary; (R.G.); (R.H.); (K.T.)
- Szentágothai Research Centre, University of Pecs, 7624 Pecs, Hungary
| | - Tamás Alexy
- Department of Medicine, Division of Cardiology, University of Minnesota, Minneapolis, MN 55455, USA;
| | - László Czopf
- Division of Cardiology, 1st Department of Medicine, Medical School, University of Pecs, 7624 Pecs, Hungary; (R.G.); (R.H.); (K.T.)
| |
Collapse
|
15
|
Witte K, Wolk K, Witte-Händel E, Krause T, Kokolakis G, Sabat R. Targeting Metabolic Syndrome in Hidradenitis Suppurativa by Phytochemicals as a Potential Complementary Therapeutic Strategy. Nutrients 2023; 15:3797. [PMID: 37686829 PMCID: PMC10490062 DOI: 10.3390/nu15173797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/09/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Hidradenitis suppurativa (HS) is a chronic inflammatory disease characterized by the appearance of painful inflamed nodules, abscesses, and pus-draining sinus tracts in the intertriginous skin of the groins, buttocks, and perianal and axillary regions. Despite its high prevalence of ~0.4-1%, therapeutic options for HS are still limited. Over the past 10 years, it has become clear that HS is a systemic disease, associated with various comorbidities, including metabolic syndrome (MetS) and its sequelae. Accordingly, the life expectancy of HS patients is significantly reduced. MetS, in particular, obesity, can support sustained inflammation and thereby exacerbate skin manifestations and the chronification of HS. However, MetS actually lacks necessary attention in HS therapy, underlining the high medical need for novel therapeutic options. This review directs attention towards the relevance of MetS in HS and evaluates the potential of phytomedical drug candidates to alleviate its components. It starts by describing key facts about HS, the specifics of metabolic alterations in HS patients, and mechanisms by which obesity may exacerbate HS skin alterations. Then, the results from the preclinical studies with phytochemicals on MetS parameters are evaluated and the outcomes of respective randomized controlled clinical trials in healthy people and patients without HS are presented.
Collapse
Affiliation(s)
- Katrin Witte
- Psoriasis Research and Treatment Center, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Interdisciplinary Group of Molecular Immunopathology, Dermatology/Medical Immunology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Inflammation and Regeneration of Skin, BIH Center for Regenerative Therapies, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany
| | - Kerstin Wolk
- Psoriasis Research and Treatment Center, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Interdisciplinary Group of Molecular Immunopathology, Dermatology/Medical Immunology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Inflammation and Regeneration of Skin, BIH Center for Regenerative Therapies, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany
| | - Ellen Witte-Händel
- Psoriasis Research and Treatment Center, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Interdisciplinary Group of Molecular Immunopathology, Dermatology/Medical Immunology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Torben Krause
- Psoriasis Research and Treatment Center, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Georgios Kokolakis
- Psoriasis Research and Treatment Center, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Robert Sabat
- Psoriasis Research and Treatment Center, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Interdisciplinary Group of Molecular Immunopathology, Dermatology/Medical Immunology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| |
Collapse
|
16
|
Jing F, Zhu L, Bai J, Cai X, Zhou X, Zhang J, Zhang H, Li T. Molecular mechanisms underlying the epigallocatechin-3-gallate-mediated inhibition of oral squamous cell carcinogenesis. Arch Oral Biol 2023; 153:105740. [PMID: 37354753 DOI: 10.1016/j.archoralbio.2023.105740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/14/2023] [Accepted: 06/03/2023] [Indexed: 06/26/2023]
Abstract
OBJECTIVES To reveal the mechanisms underlying the epigallocatechin-3-gallate (EGCG)-mediated inhibition of carcinogenesis and the related regulatory signaling pathways. DESIGN The effect of EGCG on the proliferation of OSCC cells was examined. SuperPred, ChEMBL, Swiss TargetPrediction, DisGeNET, GeneCards, and National Center for Biotechnology Information databases were used to predict the EGCG target genes and oral leukoplakia (OL)-related, oral submucosal fibrosis (OSF)-related, and OSCC-related genes. The binding of EGCG to the target proteins was simulated using AutoDock and PyMOL. The Cancer Genome Atlas (TCGA) dataset was subjected to consensus clustering analysis to predict the downstream molecules associated with these targets, as well as their potential functions and pathways. RESULTS EGCG significantly inhibited OSCC cell proliferation (p < 0.001). By comparing EGCG target genes with genes linked to oral potentially malignant disorder (OPMD) and OSCC, a total of eleven potential EGCG target genes were identified. Furthermore, EGCG has the capacity to bind to eleven proteins. Based on consensus clustering and enrichment analysis, it is suggested that EGCG may hinder the progression of cancer by altering the cell cycle and invasive properties in precancerous lesions of the oral cavity. Some possible strategies for modifying the cell cycle and invasive properties may include EGCG-mediated suppression of specific genes and proteins, which are associated with cancer development. CONCLUSIONS This study investigated the molecular mechanisms and signaling pathways associated with the EGCG-induced suppression of OSCC. The identification of specific pharmacological targets of EGCG during carcinogenesis is crucial for the development of innovative combination therapies involving EGCG.
Collapse
Affiliation(s)
- Fengyang Jing
- Department of Oral Pathology, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing 100081, China; Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing 100081, China
| | - Lijing Zhu
- Department of Oral Pathology, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing 100081, China; Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing 100081, China
| | - Jiaying Bai
- Department of Oral Pathology, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing 100081, China
| | - Xinjia Cai
- Department of Oral Pathology, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing 100081, China; Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing 100081, China
| | - Xuan Zhou
- Department of Oral Pathology, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing 100081, China; Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing 100081, China
| | - Jianyun Zhang
- Department of Oral Pathology, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing 100081, China; Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing 100081, China.
| | - Heyu Zhang
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing 100081, China; Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing 100081, China.
| | - Tiejun Li
- Department of Oral Pathology, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing 100081, China; Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing 100081, China.
| |
Collapse
|
17
|
Braschi A, Lo Presti R, Abrignani MG, Abrignani V, Traina M. Effects of green tea catechins and exercise training on body composition parameters. Int J Food Sci Nutr 2023; 74:3-21. [PMID: 36446085 DOI: 10.1080/09637486.2022.2150152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 11/01/2022] [Accepted: 11/16/2022] [Indexed: 11/30/2022]
Abstract
The impact of phytochemicals, as green tea catechins, on body composition measures has become a relevant topic as ongoing epidemiological evidence suggests their potential role in weight loss. Although catechins have been shown to modulate fat and energy metabolism, clinical effects of green tea consumption still remain controversial. Given the role played by physical exercise in weight management, it is important to determine whether the association of catechins and exercise is able to improve outcomes over and above the beneficial effects of exercise alone. Considering that scientific findings on this topic are not entirely consistent, aim of the present review was to assess the current scientific literature regarding the interplay between green tea catechins and exercise in overweight and obese populations. In particular, it was evaluated whether the addition of green tea supplementation to exercise training was able to further improve the exercise-induced changes in body composition parameters.
Collapse
Affiliation(s)
- Annabella Braschi
- Department of Psychology, Educational Science and Human Movement, University of Palermo, Palermo, Italy
| | - Rosalia Lo Presti
- Department of Psychology, Educational Science and Human Movement, University of Palermo, Palermo, Italy
| | - Maurizio Giuseppe Abrignani
- Operative Unit of Cardiology, Department of Medicine, S.Antonio Abate Hospital of Trapani, ASP Trapani, Trapani, Italy
| | - Vincenzo Abrignani
- Operative Unit of Internal Medicine with Stroke Care, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE) "G. D'Alessandro", University of Palermo, Palermo, Italy
| | - Marcello Traina
- Department of Psychology, Educational Science and Human Movement, University of Palermo, Palermo, Italy
| |
Collapse
|
18
|
Zamani M, Kelishadi MR, Ashtary-Larky D, Amirani N, Goudarzi K, Torki IA, Bagheri R, Ghanavati M, Asbaghi O. The effects of green tea supplementation on cardiovascular risk factors: A systematic review and meta-analysis. Front Nutr 2023; 9:1084455. [PMID: 36704803 PMCID: PMC9871939 DOI: 10.3389/fnut.2022.1084455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 12/16/2022] [Indexed: 01/12/2023] Open
Abstract
Purpose A bulk of observational studies have revealed the protective role of green tea supplementation in cardiovascular diseases. The current systematic review and meta-analysis study aimed to establish the effects of green tea supplementation on cardiovascular risk factors including lipid profile, blood pressure, glycemic control markers and CRP. Methods A systematic literature search of randomized clinical trials (RCTs) that investigated the effects of green tea supplementation and cardiovascular risk factors was undertaken in online databases including PubMed/Medline, Scopus, Web of Science, and Embase using a combination of green tea and cardiovascular risk factors search terms. Meta-analyses were carried out using a random-effects model. The I2 index was used to assess the heterogeneity of RCTs. Results Among the initial 11,286 studies that were identified from electronic databases search, 55 eligible RCTs with 63 effect sizes were eligible. Results from the random effects meta-analysis showed that GTE supplementation significantly reduced TC (WMD = -7.62; 95% CI: -10.51, -4.73; P = < 0.001), LDL-C (WMD = -5.80; 95% CI: -8.30, -3.30; P = < 0.001), FBS (WMD = -1.67; 95% CI: -2.58, -0.75; P = < 0.001), HbA1c (WMD = -0.15; 95% CI: -0.26, -0.04; P = 0.008), DBP (WMD = -0.87; 95% CI: -1.45, -0.29; P = 0.003), while increasing HDL-C (WMD = 1.85; 95% CI: 0.87, 2.84; P = 0.010). Subgroup analyses based on the duration of supplementation (≥ 12 vs. < 12 weeks), dose of green tea extract (GTE) (≥1,000 vs. < 1,000 mg/d), sex (male, female, and both), baseline serum levels of lipid profile, and glycemic control factors demonstrated different results for some risk factors. Conclusion The current study suggests improvements in the lipid and glycemic profiles following green tea supplementation. These findings support previous evidence showing the health benefits of green tea supplementation on cardiometabolic risk factors.
Collapse
Affiliation(s)
- Mohammad Zamani
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahnaz Rezaei Kelishadi
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Damoon Ashtary-Larky
- Nutrition and Metabolic Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Niusha Amirani
- Faculty of Medicine, Alborz University of Medical Sciences, Tehran, Iran
| | - Kian Goudarzi
- Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Reza Bagheri
- Department of Exercise Physiology, University of Isfahan, Isfahan, Iran
| | - Matin Ghanavati
- National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Omid Asbaghi
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Ohishi T, Miyoshi N, Mori M, Sagara M, Yamori Y. Health Effects of Soy Isoflavones and Green Tea Catechins on Cancer and Cardiovascular Diseases Based on Urinary Biomarker Levels. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248899. [PMID: 36558031 PMCID: PMC9781513 DOI: 10.3390/molecules27248899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022]
Abstract
Plant polyphenols have various health effects. Genistein, which is abundant in soybeans, and epigallocatechin-3-gallate, which is abundant in green tea, are major flavonoids, a subclass group of polyphenols. Several epidemiological studies have shown that these flavonoids have beneficial effects against cancer and cardiovascular diseases. However, other studies did not show such effects. Several confounding factors, including recall bias, are related to these inconsistent findings, and the determination of metabolites in the urine may be useful in reducing the number of confounding factors. Equipment, which can be used by research participants to collect samples from a portion of voided urine within 24 h without the help of medical workers, has been developed for epidemiological investigations. Previous studies, in which flavonoid metabolites in these urine samples were measured, revealed that soy intake was correlated with a reduced risk of certain types of cancer and cardiovascular diseases worldwide. Although soybeans and green tea consumption may have protective effects against cancer and cardiovascular diseases, further clinical studies that consider different confounding factors are required to provide evidence for the actual impact of dietary flavonoids on human diseases, including cancer and cardiovascular diseases. One possible mechanism involved is discussed in relation to the downregulation of reactive oxygen species and the upregulation of 5'-adenosine monophosphate-activated protein kinase elicited by these flavonoids.
Collapse
Affiliation(s)
- Tomokazu Ohishi
- Institute of Microbial Chemistry (BIKAKEN), Numazu, Microbial Chemistry Research Foundation, Shizuoka 410-0301, Japan
- Laboratory of Oncology, Institute of Microbial Chemistry (BIKAKEN), Microbial Chemistry Research Foundation, Tokyo 141-0021, Japan
- Correspondence: (T.O.); (Y.Y.)
| | - Noriyuki Miyoshi
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Mari Mori
- Department of Health Management, School of Health Studies, Tokai University, Kanagawa 259-1292, Japan
- NPO World Health Frontier Institute, Nishinomiya 663-8143, Japan
- Institute for World Health Development, Mukogawa Women’s University, Nishinomiya 663-8143, Japan
| | - Miki Sagara
- Institute for World Health Development, Mukogawa Women’s University, Nishinomiya 663-8143, Japan
- Disease Model Cooperative Research Association, Kyoto 606-0805, Japan
| | - Yukio Yamori
- Institute for World Health Development, Mukogawa Women’s University, Nishinomiya 663-8143, Japan
- Correspondence: (T.O.); (Y.Y.)
| |
Collapse
|
20
|
Feng C, Lyu Y, Gong L, Wang J. Therapeutic Potential of Natural Products in the Treatment of Renal Cell Carcinoma: A Review. Nutrients 2022; 14:nu14112274. [PMID: 35684073 PMCID: PMC9182762 DOI: 10.3390/nu14112274] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 12/13/2022] Open
Abstract
Renal cell carcinoma (RCC) is a common cancer of the urinary system. The potential therapeutic effects of certain natural products against renal cell carcinoma have been reported both in vivo and in vitro, but no reviews have been published classifying and summarizing the mechanisms of action of various natural products. In this study, we used PubMed and Google Scholar to collect and screen the recent literature on natural products with anti-renal-cancer effects. The main mechanisms of action of these products include the induction of apoptosis, inhibition of angiogenesis, inhibition of metastasis and reduction of drug resistance. In total, we examined more than 30 natural products, which include kahweol acetate, honokiol, englerin A and epigallocatechin-3-gallate, among others, have demonstrated a variety of anti-renal-cancer effects. In conclusion, natural products may have a wider application in kidney cancer than previously believed and are potential candidates for treatment in RCC.
Collapse
Affiliation(s)
- Chenchen Feng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100000, China; (C.F.); (L.G.)
- Department of Urology, Huashan Hospital, Fudan University, Shanghai 200040, China;
| | - Yinfeng Lyu
- Department of Urology, Huashan Hospital, Fudan University, Shanghai 200040, China;
| | - Lingxiao Gong
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100000, China; (C.F.); (L.G.)
| | - Jing Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100000, China; (C.F.); (L.G.)
- Correspondence:
| |
Collapse
|
21
|
Aggarwal V, Tuli HS, Tania M, Srivastava S, Ritzer EE, Pandey A, Aggarwal D, Barwal TS, Jain A, Kaur G, Sak K, Varol M, Bishayee A. Molecular mechanisms of action of epigallocatechin gallate in cancer: Recent trends and advancement. Semin Cancer Biol 2022; 80:256-275. [PMID: 32461153 DOI: 10.1016/j.semcancer.2020.05.011] [Citation(s) in RCA: 118] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/08/2020] [Accepted: 05/17/2020] [Indexed: 12/22/2022]
Abstract
Epigallocatechin gallate (EGCG), also known as epigallocatechin-3-gallate, is an ester of epigallocatechin and gallic acid. EGCG, abundantly found in tea, is a polyphenolic flavonoid that has the potential to affect human health and disease. EGCG interacts with various recognized cellular targets and inhibits cancer cell proliferation by inducing apoptosis and cell cycle arrest. In addition, scientific evidence has illustrated the promising role of EGCG in inhibiting tumor cell metastasis and angiogenesis. It has also been found that EGCG may reverse drug resistance of cancer cells and could be a promising candidate for synergism studies. The prospective importance of EGCG in cancer treatment is owed to its natural origin, safety, and low cost which presents it as an attractive target for further development of novel cancer therapeutics. A major challenge with EGCG is its low bioavailability which is being targeted for improvement by encapsulating EGCG in nano-sized vehicles for further delivery. However, there are major limitations of the studies on EGCG, including study design, experimental bias, and inconsistent results and reproducibility among different study cohorts. Additionally, it is important to identify specific EGCG pharmacological targets in the tumor-specific signaling pathways for development of novel combined therapeutic treatments with EGCG. The present review highlights the ongoing development to identify cellular and molecular targets of EGCG in cancer. Furthermore, the role of nanotechnology-mediated EGCG combinations and delivery systems will also be discussed.
Collapse
Affiliation(s)
- Vaishali Aggarwal
- Department of Histopathology, Post Graduate Institute of Medical Education and Research, Chandigarh 160 012, Punjab, India
| | - Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala 133 207, Haryana, India.
| | - Mousumi Tania
- Division of Molecular Cancer, Red Green Research Center, Dhaka 1205, Bangladesh
| | - Saumya Srivastava
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211 004, Uttar Pradesh, India
| | - Erin E Ritzer
- Lake Erie College of Osteopathic Medicine, Bradenton 34211, FL, USA
| | - Anjana Pandey
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211 004, Uttar Pradesh, India
| | - Diwakar Aggarwal
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala 133 207, Haryana, India
| | - Tushar Singh Barwal
- Department of Zoology, Central University of Punjab, Bathinda 151 001, Punjab, India
| | - Aklank Jain
- Department of Zoology, Central University of Punjab, Bathinda 151 001, Punjab, India
| | - Ginpreet Kaur
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, Mumbai 400 056, Maharastra, India
| | | | - Mehmet Varol
- Department of Molecular Biology and Genetics, Faculty of Science, Mugla Sitki Kocman University, Muğla TR48000, Turkey
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton 34211, FL, USA.
| |
Collapse
|
22
|
Li Y, Karim MR, Wang B, Peng J. Effects of Green Tea (-)-Epigallocatechin-3-Gallate (EGCG) on Cardiac Function - A Review of the Therapeutic Mechanism and Potentials. Mini Rev Med Chem 2022; 22:2371-2382. [PMID: 35345998 DOI: 10.2174/1389557522666220328161826] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/10/2022] [Accepted: 02/09/2022] [Indexed: 11/22/2022]
Abstract
Heart disease, the leading cause of death globally, refers to various illnesses that affect heart structure and function. Specific abnormalities affecting cardiac muscle contractility and remodeling and common factors including oxidative stress, inflammation, and apoptosis underlie the pathogenesis of heart diseases. Epidemiology studies have associated green tea consumption with lower morbidity and mortality of cardiovascular diseases, including heart and blood vessel dysfunction. Among the various compounds found in green tea, catechins are believed to play a significant role in producing benefits to cardiovascular health. Comprehensive literature reviews have been published to summarize the tea catechins' antioxidative, anti-inflammatory, and anti-apoptosis effects in the context of various diseases, such as cardiovascular diseases, cancers, and metabolic diseases. However, recent studies on tea catechins, especially the most abundant (-)-Epigallocatechin-3-Gallate (EGCG), revealed their capabilities in regulating cardiac muscle contraction by directly altering myofilament Ca2+ sensitivity on force development and Ca2+ ion handling in cardiomyocytes under both physiological and pathological conditions. In vitro and in vivo data also demonstrated that green tea extract or EGCG protected or rescued cardiac function, independent of their well-known effects against oxidative stress and inflammation. This minireview will focus on the specific effects of tea catechins on heart muscle contractility at the molecular and cellular level, revisit their effects on oxidative stress and inflammation in a variety of heart diseases, and discuss EGCG's potential as one of the lead compounds for new drug discovery for heart diseases.
Collapse
Affiliation(s)
- Yuejin Li
- Department of Biology, Morgan State University, Baltimore
| | | | - Buheng Wang
- Department of Biology, Morgan State University, Baltimore
| | - Jiangnan Peng
- Department of Biology, Morgan State University, Baltimore
- Department of Chemistry, Morgan State University, Baltimore
| |
Collapse
|
23
|
Khutami C, Sumiwi SA, Khairul Ikram NK, Muchtaridi M. The Effects of Antioxidants from Natural Products on Obesity, Dyslipidemia, Diabetes and Their Molecular Signaling Mechanism. Int J Mol Sci 2022; 23:ijms23042056. [PMID: 35216172 PMCID: PMC8875143 DOI: 10.3390/ijms23042056] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/06/2022] [Accepted: 02/10/2022] [Indexed: 02/06/2023] Open
Abstract
Obesity is a risk factor that leads to the development of other diseases such as dyslipidemia and diabetes. These three metabolic disorders can occur simultaneously, hence, the treatment requires many drugs. Antioxidant compounds have been reported to have activities against obesity, dyslipidemia and diabetes via several mechanisms. This review aims to discuss the antioxidant compounds that have activity against obesity, dyslipidemia and diabetes together with their molecular signaling mechanism. The literature discussed in this review was obtained from the PUBMED database. Based on the collection of literature obtained, antioxidant compounds having activity against the three disorders (obesity, dyslipidemia and diabetes) were identified. The activity is supported by various molecular signaling pathways that are influenced by these antioxidant compounds, further study of which would be useful in predicting drug targets for a more optimal effect. This review provides insights on utilizing one of these antioxidant compounds as opposed to several drugs. It is hoped that in the future, the number of drugs in treating obesity, dyslipidemia and diabetes altogether can be minimized consequently reducing the risk of side effects.
Collapse
Affiliation(s)
- Chindiana Khutami
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang KM 21, Sumedang 45363, Indonesia; (C.K.); (S.A.S.)
| | - Sri Adi Sumiwi
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang KM 21, Sumedang 45363, Indonesia; (C.K.); (S.A.S.)
| | - Nur Kusaira Khairul Ikram
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia;
- Centre for Research in Biotechnology for Agriculture (CEBAR), Kuala Lumpur 50603, Malaysia
| | - Muchtaridi Muchtaridi
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang KM 21, Sumedang 45363, Indonesia
- Correspondence:
| |
Collapse
|
24
|
Kumar G, Du B, Chen J. Effects and mechanisms of dietary bioactive compounds on breast cancer prevention. Pharmacol Res 2021; 178:105974. [PMID: 34818569 DOI: 10.1016/j.phrs.2021.105974] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/05/2021] [Accepted: 11/06/2021] [Indexed: 12/17/2022]
Abstract
Breast cancer (BC) is the most often diagnosed cancer among females globally and has become an increasing global health issue over the last decades. Despite the substantial improvement in screening methods for initial diagnosis, effective therapy remains lacking. Still, there has been high recurrence and disease progression after treatment of surgery, endocrine therapy, chemotherapy, and radiotherapy. Considering this view, there is a crucial requirement to develop safe, freely accessible, and effective anticancer therapy for BC. The dietary bioactive compounds as auspicious anticancer agents have been recognized to be active and their implications in the treatment of BC with negligible side effects. Hence, this review focused on various dietary bioactive compounds as potential therapeutic agents in the prevention and treatment of BC with the mechanisms of action. Bioactive compounds have chemo-preventive properties as they inhibit the proliferation of cancer cells, downregulate the expression of estrogen receptors, and cell cycle arrest by inducing apoptotic settings in tumor cells. Therapeutic drugs or natural compounds generally incorporate engineered nanoparticles with ideal sizes, shapes, and enhance their solubility, circulatory half-life, and biodistribution. All data of in vitro, in vivo, and clinical studies of dietary bioactive compounds and their impact on BC were collected from Science Direct, PubMed, and Google Scholar. The data of chemopreventive and anticancer activity of dietary bioactive compounds were collected and orchestrated in a suitable place in the review. These shreds of data will be extremely beneficial to recognize a series of additional diet-derived bioactive compounds to treat BC with the lowest side effects.
Collapse
Affiliation(s)
- Ganesan Kumar
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Bing Du
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510640, China
| | - Jianping Chen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
25
|
Katada S, Oishi S, Yanagawa K, Ishii S, Oki M, Matsui Y, Osaki N, Takano K, Hibi M. Concomitant use of tea catechins affects absorption and serum triglyceride-lowering effects of monoglucosyl hesperidin. Food Funct 2021; 12:9339-9346. [PMID: 34606551 DOI: 10.1039/d1fo01917a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The present study investigated whether combined ingestion of green tea catechins (GTC) and monoglucosyl hesperidin (GHES) influences the pharmacokinetic parameters of polyphenols and serum triglycerides (TG). We conducted 2 randomized, controlled trials. Study 1: 8 healthy male subjects participated in a crossover study in which they ingested a test beverage containing GHES (0, 84, 168, or 336 mg GHES) with GTC, or 336 mg GHES without GTC. After ingestion, the pharmacokinetic changes in plasma hesperetin (HEP) and catechins were measured. Study 2: 36 healthy male and female subjects (mean age, 53 ± 2 years; mean BMI, 25.2 ± 0.5 kg m-2) were recruited for a double-blind, placebo-controlled study in which they ingested a test beverage containing 165 mg GHES with 387 mg GTC or a placebo beverage daily for 4 weeks. Fasting serum TG and other lipids and glucose metabolites were analyzed. Study 1 showed that the pharmacokinetics of HEP did not differ significantly between the 336 mg GHES without GTC treatment and the 168 mg GHES with GTC treatment. Study 2 showed that continuous ingestion of 165 mg GHES and 387 mg GTC for 4 weeks significantly decreased fasting serum TG levels compared with baseline values (change in TG, -30 ± 13 mg dl-1, P = 0.040) in the intention-to-treat analysis. In conclusion, our findings suggest that GTC affects the oral bioavailability of GHES, and combined ingestion of low doses of GHES with GTC effectively improves fasting TG levels.
Collapse
Affiliation(s)
- Shun Katada
- Biological Science Research Laboratories, Kao Corporation, 2-1-3 Bunka, Sumida, Tokyo, 131-8501, Japan.
| | - Sachiko Oishi
- Biological Science Research Laboratories, Kao Corporation, 2-1-3 Bunka, Sumida, Tokyo, 131-8501, Japan.
| | - Kiyotaka Yanagawa
- Analytical Science Research Laboratories, Kao Corporation, 2-1-3 Bunka, Sumida, Tokyo, 131-8501, Japan
| | - Shunsuke Ishii
- Health and Wellness Research Laboratories, Kao Corporation, 2-1-3 Bunka, Sumida, Tokyo, 131-8501, Japan
| | - Mamoru Oki
- Seishukai Medical Corporation Seishukai Clinic, 3-18-5 Matsugaya Taito, Tokyo 111-0036, Japan
| | - Yuji Matsui
- Biological Science Research Laboratories, Kao Corporation, 2-1-3 Bunka, Sumida, Tokyo, 131-8501, Japan.
| | - Noriko Osaki
- Health and Wellness Research Laboratories, Kao Corporation, 2-1-3 Bunka, Sumida, Tokyo, 131-8501, Japan
| | - Kazuhiko Takano
- Clinical Pharmacology Center, Medical Corporation Hokubukai Utsukushigaoka Hospital, 61-1, Shinei, Kiyota, Sapporo, Hokkaido, 004-0839, Japan
| | - Masanobu Hibi
- Biological Science Research Laboratories, Kao Corporation, 2-1-3 Bunka, Sumida, Tokyo, 131-8501, Japan.
| |
Collapse
|
26
|
Nutraceutical Combinations in Hypercholesterolemia: Evidence from Randomized, Placebo-Controlled Clinical Trials. Nutrients 2021; 13:nu13093128. [PMID: 34579005 PMCID: PMC8470433 DOI: 10.3390/nu13093128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/04/2021] [Accepted: 09/06/2021] [Indexed: 12/27/2022] Open
Abstract
There is an increasing number of nutraceutical combinations (NCs) on the market for hypercholesterolemia, although clinical trials to verify their safety and efficacy are scarce. We selected fourteen randomized, placebo-controlled clinical trials (RCTs) on different lipid-lowering NCs in hypercholesterolemic subjects. We described each compound's mechanism of action and efficacy in the mixtures and summarized the clinical trials settings and NCs safety and efficacy results. Almost all NCs resulted efficient against hypercholesterolemia; only one reported no changes. Interestingly, red yeast rice (RYR) was present in eleven mixtures. It is not clear whether the lipid-lowering efficacy of these combinations derives mainly from the RYR component monacolin K "natural statin" single effect. Up to now, few RCTs have verified the efficacy of every single compound vs. NCs to evaluate possible additive or synergistic effects, probably due to the complexity and the high resources request. In conclusion, to manage the arising nutraceutical tide against hypercholesterolemia, it could be helpful to increase the number and robustness of clinical studies to verify the efficacy and safety of the new NCs.
Collapse
|
27
|
Landini L, Rebelos E, Honka MJ. Green Tea from the Far East to the Drug Store: Focus on the Beneficial Cardiovascular Effects. Curr Pharm Des 2021; 27:1931-1940. [PMID: 33138757 DOI: 10.2174/1381612826666201102104902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 10/12/2020] [Indexed: 11/22/2022]
Abstract
Cardiovascular diseases (CVD) are the leading cause of death worldwide. Evidence from observational and randomized controlled studies showing the potential benefits of green tea on lowering CVD risk has been emerging rapidly during the past few decades. These benefits include reduced risk for major cardiovascular events, lowering of blood pressure, decreased LDL cholesterol levels and weight loss. At the same time, the understanding of the physiological mechanisms behind these alterations is advancing. Consumption of green tea originated from China thousands of years ago, but since then, it expanded all over the world. Recent advances in understanding the role of tea polyphenols, mainly catechins, as mediators of tea's health benefits, have caused the emergence of various types of green tea extracts (GTE) on the market. While taking green tea is generally considered safe, there are concerns about the safety of using tea extracts. The present article reviews the current evidence of green tea consumption leading to reduced CVD risk, its potential biological mechanisms and the safety of using GTE.
Collapse
Affiliation(s)
- Linda Landini
- S.S.D. Dietetics and Clinical Nutrition ASL 4 Chiavarese Liguria - Sestri Levante Hospital, Sestri Levante GEI, Italy
| | - Eleni Rebelos
- Turku PET Centre, University of Turku, Turku, Finland
| | | |
Collapse
|
28
|
Modulations of Cardiac Functions and Pathogenesis by Reactive Oxygen Species and Natural Antioxidants. Antioxidants (Basel) 2021; 10:antiox10050760. [PMID: 34064823 PMCID: PMC8150787 DOI: 10.3390/antiox10050760] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/03/2021] [Accepted: 05/08/2021] [Indexed: 01/11/2023] Open
Abstract
Homeostasis in the level of reactive oxygen species (ROS) in cardiac myocytes plays a critical role in regulating their physiological functions. Disturbance of balance between generation and removal of ROS is a major cause of cardiac myocyte remodeling, dysfunction, and failure. Cardiac myocytes possess several ROS-producing pathways, such as mitochondrial electron transport chain, NADPH oxidases, and nitric oxide synthases, and have endogenous antioxidation mechanisms. Cardiac Ca2+-signaling toolkit proteins, as well as mitochondrial functions, are largely modulated by ROS under physiological and pathological conditions, thereby producing alterations in contraction, membrane conductivity, cell metabolism and cell growth and death. Mechanical stresses under hypertension, post-myocardial infarction, heart failure, and valve diseases are the main causes for stress-induced cardiac remodeling and functional failure, which are associated with ROS-induced pathogenesis. Experimental evidence demonstrates that many cardioprotective natural antioxidants, enriched in foods or herbs, exert beneficial effects on cardiac functions (Ca2+ signal, contractility and rhythm), myocytes remodeling, inflammation and death in pathological hearts. The review may provide knowledge and insight into the modulation of cardiac pathogenesis by ROS and natural antioxidants.
Collapse
|
29
|
Du Y, Paglicawan L, Soomro S, Abunofal O, Baig S, Vanarsa K, Hicks J, Mohan C. Epigallocatechin-3-Gallate Dampens Non-Alcoholic Fatty Liver by Modulating Liver Function, Lipid Profile and Macrophage Polarization. Nutrients 2021; 13:599. [PMID: 33670347 PMCID: PMC7918805 DOI: 10.3390/nu13020599] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/06/2021] [Accepted: 02/08/2021] [Indexed: 12/17/2022] Open
Abstract
Epigallocatechin-3-gallate (EGCG) has been shown to attenuate obesity, fatty liver disease, hepatic inflammation and lipid profiles. Here, we validate the efficacy of EGCG in a murine model of non-alcoholic fatty liver disease (NAFLD) and extend the mechanistic insights. NAFLD was induced in mice by a high-fat diet (HFD) with 30% fructose. EGCG was administered at a low dose (25 mg/kg/day, EGCG-25) or high dose (50 mg/kg/day, EGCG-50) for 8 weeks. In HFD-fed mice, EGCG attenuated body and liver weight by ~22% and 47%, respectively, accompanied by ~47% reduction in hepatic triglyceride (TG) accumulation and ~38% reduction in serum cholesterol, resonating well with previous reports in the literature. In EGCG-treated mice, the hepatic steatosis score and the non-alcoholic steatohepatitis activity score were both reduced by ~50% and ~57%, respectively, accompanied by improvements in hepatic inflammation grade. Liver enzymes were improved ~2-3-fold following EGCG treatment, recapitulating previous reports. Hepatic flow cytometry demonstrated that EGCG-fed mice had lower Ly6C+, MHCII+ and higher CD206+, CD23+ hepatic macrophage infiltration, indicating that EGCG impactedM1/M2 macrophage polarization. Our study further validates the salubrious effects of EGCG on NAFLD and sheds light on a novel mechanistic contribution of EGCG, namely hepatic M1-to-M2 macrophage polarization. These findings offer further support for the use of EGCG in human NAFLD.
Collapse
Affiliation(s)
- Yong Du
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, USA; (L.P.); (S.S.); (O.A.); (S.B.); (K.V.)
| | - Laura Paglicawan
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, USA; (L.P.); (S.S.); (O.A.); (S.B.); (K.V.)
| | - Sanam Soomro
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, USA; (L.P.); (S.S.); (O.A.); (S.B.); (K.V.)
| | - Omar Abunofal
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, USA; (L.P.); (S.S.); (O.A.); (S.B.); (K.V.)
| | - Sahar Baig
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, USA; (L.P.); (S.S.); (O.A.); (S.B.); (K.V.)
| | - Kamala Vanarsa
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, USA; (L.P.); (S.S.); (O.A.); (S.B.); (K.V.)
| | - John Hicks
- Department of Pathology, Texas Children’s Hospital, Houston, TX 77030, USA;
| | - Chandra Mohan
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, USA; (L.P.); (S.S.); (O.A.); (S.B.); (K.V.)
| |
Collapse
|
30
|
Zhou DD, Luo M, Shang A, Mao QQ, Li BY, Gan RY, Li HB. Antioxidant Food Components for the Prevention and Treatment of Cardiovascular Diseases: Effects, Mechanisms, and Clinical Studies. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6627355. [PMID: 33574978 PMCID: PMC7864729 DOI: 10.1155/2021/6627355] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/09/2021] [Accepted: 01/15/2021] [Indexed: 12/12/2022]
Abstract
Cardiovascular diseases (CVDs) have gained increasing attention because of their high prevalence and mortality worldwide. Epidemiological studies revealed that intake of fruits, vegetables, nuts, and cereals could reduce the risk of CVDs, and their antioxidants are considered as the main contributors. Moreover, experimental studies showed that some antioxidant natural products and their bioactive compounds exerted beneficial effects on the cardiovascular system, such as polyphenols, polysaccharides, anthocyanins, epigallocatechin gallate, quercetin, rutin, and puerarin. The mechanisms of action mainly included reducing blood pressure, improving lipid profile, ameliorating oxidative stress, mitigating inflammation, and regulating gut microbiota. Furthermore, clinical trials confirmed the cardiovascular-protective effect of some antioxidant natural products, such as soursop, beetroot, garlic, almond, and green tea. In this review, we summarized the effects of some antioxidant natural products and their bioactive compounds on CVDs based on the epidemiological, experimental, and clinical studies, with special attention paid to the relevant mechanisms and clinical trials.
Collapse
Affiliation(s)
- Dan-Dan Zhou
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Min Luo
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Ao Shang
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Qian-Qian Mao
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Bang-Yan Li
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Ren-You Gan
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
31
|
Green tea extract for mild-to-moderate diabetic peripheral neuropathy A randomized controlled trial. Complement Ther Clin Pract 2021; 43:101317. [PMID: 33517103 DOI: 10.1016/j.ctcp.2021.101317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIM This randomized study aimed to evaluate the effect of green tea extract (GTE) intake on clinical and neurophysiological parameters in patients with mild-to-moderate diabetic peripheral neuropathy (DPN). PATIENTS AND METHODS The present study included 194 patients with DPN. Patients were randomized into two treatment arms: GTE (n = 96) and placebo (n = 98) arms who received allocated treatment for 16 weeks. Symptoms of DPN were assessed using Toronto Clinical Scoring System (TCSS). Sensorineural pain was assessed using visual analog scale (VAS). Neural dysfunction was evaluated using the vibration perception thresholds (VPT). Assessments were made at baseline and after 4, 8, and 16 weeks of starting treatment. RESULTS At baseline and after 4 weeks of treatment, VAS, TCSS and VPT were comparable in the studied groups. However, after 8 weeks of treatment, patients in GTE group expressed lower VAS scores, significantly lower TCSS scores and significantly lower VPT. As treatment continued, the differences between groups regarding the outcome parameters became more evident at 16 weeks. CONCLUSIONS GTE intake may have a beneficial value in treatment of DPN.
Collapse
|
32
|
Chatree S, Sitticharoon C, Maikaew P, Pongwattanapakin K, Keadkraichaiwat I, Churintaraphan M, Sripong C, Sririwichitchai R, Tapechum S. Epigallocatechin gallate decreases plasma triglyceride, blood pressure, and serum kisspeptin in obese human subjects. Exp Biol Med (Maywood) 2021; 246:163-176. [PMID: 33045853 PMCID: PMC7871112 DOI: 10.1177/1535370220962708] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 09/09/2020] [Indexed: 01/06/2023] Open
Abstract
Obesity is one of major risk factors increasing chronic diseases including type II diabetes, cardiovascular diseases, and hypertension. The effects of epigallocatechin gallate (EGCG), the major active compound in green tea, on reduced obesity and improved metabolic profiles are still controversial. Furthermore, the effects of EGCG on human adipocyte lipolysis and browning of white adipocytes have not been elucidated. This study aimed to investigate the effects of EGCG on obesity, lipolysis, and browning of human white adipocytes. The results showed that, when compared to the baseline values, EGCG significantly decreased fasting plasma triglyceride levels (P < 0.05), systolic blood pressure (P < 0.05), diastolic blood pressure (P < 0.05), and serum kisspeptin levels (P < 0.05) after 8 weeks of supplement. On the other hand, supplement of EGCG in obese human subjects for 4 or 8 weeks did not decrease body weight, body mass index, waist and hip circumferences, nor total body fat mass or percentage when compared to their baseline values. The study in human adipocytes showed that EGCG did not increase the glycerol release when compared to vehicle, suggesting that it had no lipolytic effect. Furthermore, treatment of EGCG did not enhance uncoupling protein 1 (UCP1) mRNA expression in human white adipocytes when compared with treatment of pioglitazone, the peroxisome proliferator-activated receptor γ (PPAR-γ) agonist, suggesting that EGCG did not augment the browning effect of PPAR-γ on white adipocytes. This study revealed that EGCG reduced 2 metabolic risk factors which are triglyceride and blood pressure in the human experiment. We also showed a novel evidence that EGCG decreased kisspeptin levels. However, EGCG had no effects on obesity reduction in humans, lipolysis, nor browning of human white adipocytes.
Collapse
Affiliation(s)
- Saimai Chatree
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Chantacha Sitticharoon
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Pailin Maikaew
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Kitchaya Pongwattanapakin
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Issarawan Keadkraichaiwat
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Malika Churintaraphan
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Chanakarn Sripong
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Rungnapa Sririwichitchai
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Sompol Tapechum
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
33
|
Câmara JS, Albuquerque BR, Aguiar J, Corrêa RCG, Gonçalves JL, Granato D, Pereira JAM, Barros L, Ferreira ICFR. Food Bioactive Compounds and Emerging Techniques for Their Extraction: Polyphenols as a Case Study. Foods 2020; 10:foods10010037. [PMID: 33374463 PMCID: PMC7823739 DOI: 10.3390/foods10010037] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 12/11/2022] Open
Abstract
Experimental studies have provided convincing evidence that food bioactive compounds (FBCs) have a positive biological impact on human health, exerting protective effects against non-communicable diseases (NCD) including cancer and cardiovascular (CVDs), metabolic, and neurodegenerative disorders (NDDs). These benefits have been associated with the presence of secondary metabolites, namely polyphenols, glucosinolates, carotenoids, terpenoids, alkaloids, saponins, vitamins, and fibres, among others, derived from their antioxidant, antiatherogenic, anti-inflammatory, antimicrobial, antithrombotic, cardioprotective, and vasodilator properties. Polyphenols as one of the most abundant classes of bioactive compounds present in plant-based foods emerge as a promising approach for the development of efficacious preventive agents against NCDs with reduced side effects. The aim of this review is to present comprehensive and deep insights into the potential of polyphenols, from their chemical structure classification and biosynthesis to preventive effects on NCDs, namely cancer, CVDs, and NDDS. The challenge of polyphenols bioavailability and bioaccessibility will be explored in addition to useful industrial and environmental applications. Advanced and emerging extraction techniques will be highlighted and the high-resolution analytical techniques used for FBCs characterization, identification, and quantification will be considered.
Collapse
Affiliation(s)
- José S. Câmara
- CQM—Centro de Química da Madeira, Campus Universitário da Penteada, Universidade da Madeira, 9020-105 Funchal, Portugal; (J.A.); (J.L.G.); (J.A.M.P.)
- Departamento de Química, Faculdade de Ciências Exatas e da Engenharia da Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
- Correspondence: (J.S.C.); (L.B.); Tel.: +351-29170-5112 (J.S.C.); +351-2-7333-0901 (L.B.)
| | - Bianca R. Albuquerque
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (B.R.A.); (R.C.G.C.); (I.C.F.R.F.)
- REQUIMTE—Science Chemical Department, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira N° 228, 4050-313 Porto, Portugal
| | - Joselin Aguiar
- CQM—Centro de Química da Madeira, Campus Universitário da Penteada, Universidade da Madeira, 9020-105 Funchal, Portugal; (J.A.); (J.L.G.); (J.A.M.P.)
| | - Rúbia C. G. Corrêa
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (B.R.A.); (R.C.G.C.); (I.C.F.R.F.)
- Program of Master in Clean Technologies, Cesumar Institute of Science Technology and Innovation (ICETI), Cesumar University—UniCesumar, Parana 87050-390, Brazil
| | - João L. Gonçalves
- CQM—Centro de Química da Madeira, Campus Universitário da Penteada, Universidade da Madeira, 9020-105 Funchal, Portugal; (J.A.); (J.L.G.); (J.A.M.P.)
| | - Daniel Granato
- Food Processing and Quality, Natural Resources Institute Finland (Luke), Tietotie 2, FI-02150 Espoo, Finland;
| | - Jorge A. M. Pereira
- CQM—Centro de Química da Madeira, Campus Universitário da Penteada, Universidade da Madeira, 9020-105 Funchal, Portugal; (J.A.); (J.L.G.); (J.A.M.P.)
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (B.R.A.); (R.C.G.C.); (I.C.F.R.F.)
- Correspondence: (J.S.C.); (L.B.); Tel.: +351-29170-5112 (J.S.C.); +351-2-7333-0901 (L.B.)
| | - Isabel C. F. R. Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (B.R.A.); (R.C.G.C.); (I.C.F.R.F.)
| |
Collapse
|
34
|
Zhang T, Li N, Chen SI, Hou Z, Saito A. Effects of green tea extract combined with brisk walking on lipid profiles and the liver function in overweight and obese men: A randomized, double-blinded, placebo-control trial. AN ACAD BRAS CIENC 2020; 92:e20191594. [PMID: 33206794 DOI: 10.1590/0001-3765202020191594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 05/21/2020] [Indexed: 11/21/2022] Open
Abstract
This study was aimed to investigate the effect of green tea extract (GTE) combined with brisk walking on lipid profiles and the liver function in overweight and obese men. Twenty-four participants were randomized to either the GTE group or the placebo group for 12 weeks with a 4-week follow-up. The walking program consisted of four 60-min-sessions/week and all participants were asked to consume two GTE (150mg) or placebo tablets daily. After 12-week intervention, GTE group resulted in a significant difference in the low-density lipoprotein cholesterol (LDL-C) and total cholesterol (TC) levels when compared to placebo group (P < 0.01). There was also a significant reduction in the aspartate aminotransferase levels (P < 0.01) in the GTE group, but no change in the placebo group (P >0.05). There was no change in the triglyceride or high-density lipoprotein cholesterol (HDL-C) levels in the placebo group, but a significant reduction was noted in the HDL-C levels in the GTE group (P < 0.05). GTE combined with brisk walking resulted in a significant change in the LDL-C and TC levels, however, a significant reduce in HDL-C in the GTE group. The study has a more positive effect on the liver function than brisk walking alone.
Collapse
Affiliation(s)
- Tengfei Zhang
- Kyushu University, Faculty of Human-Environment Studies, 744 Motooka, Nishi-ku, 8190395, Fukuoka City, Japan
| | - Ningxia Li
- Luohe Central of Hospital, The center laboratory, 56 Renmin East road, Luohe City, 462000, Henan Province, China
| | - S I Chen
- Kyushu University, Faculty of Human-Environment Studies, 744 Motooka, Nishi-ku, 8190395, Fukuoka City, Japan
| | - Zhenqing Hou
- Luohe Central of Hospital, Assistant in Post-Doctoral Research Center, 56 Renmin East road, Luohe City 462000, Henan Province, China
| | - Atsushi Saito
- Kyushu University, Faculty of Human-Environment Studies, 744 Motooka, Nishi-ku, 8190395, Fukuoka City, Japan
| |
Collapse
|
35
|
Liu W, Wan C, Huang Y, Li M. Effects of tea consumption on metabolic syndrome: A systematic review and meta-analysis of randomized clinical trials. Phytother Res 2020; 34:2857-2866. [PMID: 32578328 DOI: 10.1002/ptr.6731] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 03/02/2020] [Accepted: 03/28/2020] [Indexed: 02/05/2023]
Abstract
The metabolic syndrome (MetS) is one of the major health hazards and an epidemic worldwide. There is no known best remedy has been defined yet. In the current investigation, we designed a meta-analysis of randomized clinical trials (RCTs) to evaluate the beneficial effects of tea consumption in alleviating metabolic syndromes. Herein, we accumulated the relevant literature available on PubMed and EMBASE databases from January, 2000 to August, 2019. RCTs bearing impact factor of at least 1 or more were studied for the effect of tea consumption on MetS. This meta-analysis suggested that tea consumption has beneficial effects on diastolic blood pressure (DBP), and this finding was characterized of all types of tea in the current study and also for body mass index (BMI) value. Furthermore, this analysis also found that black tea consumption has protective effects on systolic SBP, green tea reduces the incidence of diabetes and lower the level of low-density lipoprotein (LDL) cholesterol. These functions required BMI value at least 28 or higher. The meta data led us to conclude that tea consumption have protective effects on MetS, however, different types of tea might have different protective mechanisms on MetS, but, exact mechanisms are not yet clear and needs to be explored.
Collapse
Affiliation(s)
- Wei Liu
- Key Laboratory at Universities of Education Department of Xinjiang Uygur Autonomous Region, Yili Normal University, Xinjiang, China
| | - Chunpeng Wan
- College of Agronomy, Research Center of Tea and Tea Culture, Jiangxi Agricultural University, Nanchang, China
| | - Yingjie Huang
- College of Agronomy, Research Center of Tea and Tea Culture, Jiangxi Agricultural University, Nanchang, China
| | - Mingxi Li
- College of Agronomy, Research Center of Tea and Tea Culture, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
36
|
Ottaviani JI, Britten A, Lucarelli D, Luben R, Mulligan AA, Lentjes MA, Fong R, Gray N, Grace PB, Mawson DH, Tym A, Wierzbicki A, Forouhi NG, Khaw KT, Schroeter H, Kuhnle GGC. Biomarker-estimated flavan-3-ol intake is associated with lower blood pressure in cross-sectional analysis in EPIC Norfolk. Sci Rep 2020; 10:17964. [PMID: 33087825 PMCID: PMC7578063 DOI: 10.1038/s41598-020-74863-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 10/06/2020] [Indexed: 12/18/2022] Open
Abstract
Flavan-3-ols are a group of bioactive compounds that have been shown to improve vascular function in intervention studies. They are therefore of great interest for the development of dietary recommendation for the prevention of cardio-vascular diseases. However, there are currently no reliable data from observational studies, as the high variability in the flavan-3-ol content of food makes it difficult to estimate actual intake without nutritional biomarkers. In this study, we investigated cross-sectional associations between biomarker-estimated flavan-3-ol intake and blood pressure and other CVD risk markers, as well as longitudinal associations with CVD risk in 25,618 participants of the European Prospective Investigation into Cancer (EPIC) Norfolk cohort. High flavan-3-ol intake, achievable as part of an habitual diet, was associated with a significantly lower systolic blood pressure (- 1.9 (- 2.7; - 1.1) mmHg in men and - 2.5 (- 3.3; - 1.8) mmHg in women; lowest vs highest decile of biomarker), comparable to adherence to a Mediterranean Diet or moderate salt reduction. Subgroup analyses showed that hypertensive participants had stronger inverse association between flavan-3-ol biomarker and systolic blood pressure when compared to normotensive participants. Flavanol intake could therefore have a role in the maintenance of cardiovascular health on a population scale.
Collapse
Affiliation(s)
| | - Abigail Britten
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | | | - Robert Luben
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | | | | | | | - Nicola Gray
- Department of Food and Nutritional Sciences, University of Reading, Reading, UK
| | | | | | - Amy Tym
- LGC, Newmarket Road, Fordham, UK
| | | | - Nita G Forouhi
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Kay-Tee Khaw
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | | | - Gunter G C Kuhnle
- Department of Food and Nutritional Sciences, University of Reading, Reading, UK.
| |
Collapse
|
37
|
Zhang T, Chen S, Saito A. A META-ANALYSIS OF THE EFFECTS OF GREEN TEA COMBINED WITH PHYSICAL ACTIVITY ON BLOOD LIPIDS IN HUMANS. REV BRAS MED ESPORTE 2020. [DOI: 10.1590/1517-869220202605212295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
ABSTRACT Introduction: Most studies of green tea extract (GTE) combined with physical activity have reported a preventative effect for cardiovascular disease; however, the findings regarding the effects on serum lipids are controversial. Objective: This meta-analysis aimed to examine the evidence of the effects of GTE combined with physical activity on the serum lipid content in humans. Methods: In June 2017, we conducted electronic searches of PubMed, Web of Science, and Cochrane Library to identify pertinent studies: those with an experiment period exceeding two weeks, human randomized controlled trials (RCTs), and those that only assessed GTE with physical activity were included. A random effects model meta-analysis was used in this review. Results: A total of 271 citations were retrieved in our search of the electronic literature, and 7 RCTs, which included 608 individuals, were identified. Overall, there was no significant decrease in low-density lipoprotein cholesterol (LDL-C) (SMD:-0.169; 95% confidence interval [CI]:-0.414 to 0.076; I2=22.7%; p=0.177) or total cholesterol (TC) levels between the GTE and placebo combined with the physical activity group. Similar results were also observed for high density-lipoprotein cholesterol (HDL-C) and triglycerides (TG). In the subgroup and sensitivity analyses of the five studies, the TC levels of the subjects who received a lower dose of epigallocatechin gallate (EGCG) together with performing physical activity were significantly decreased. Conclusion: Current evidence suggests that green tea combined with physical activity does not improve the lipid and lipoprotein levels in humans. Level of evidence I; Systematic review.
Collapse
|
38
|
Gong X, Li X, Xia Y, Xu J, Li Q, Zhang C, Li M. Effects of phytochemicals from plant-based functional foods on hyperlipidemia and their underpinning mechanisms. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.07.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
39
|
Menegazzi M, Campagnari R, Bertoldi M, Crupi R, Di Paola R, Cuzzocrea S. Protective Effect of Epigallocatechin-3-Gallate (EGCG) in Diseases with Uncontrolled Immune Activation: Could Such a Scenario Be Helpful to Counteract COVID-19? Int J Mol Sci 2020; 21:ijms21145171. [PMID: 32708322 PMCID: PMC7404268 DOI: 10.3390/ijms21145171] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/16/2020] [Accepted: 07/18/2020] [Indexed: 01/22/2023] Open
Abstract
Some coronavirus disease 2019 (COVID-19) patients develop acute pneumonia which can result in a cytokine storm syndrome in response to Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) infection. The most effective anti-inflammatory drugs employed so far in severe COVID-19 belong to the cytokine-directed biological agents, widely used in the management of many autoimmune diseases. In this paper we analyze the efficacy of epigallocatechin 3-gallate (EGCG), the most abundant ingredient in green tea leaves and a well-known antioxidant, in counteracting autoimmune diseases, which are dominated by a massive cytokines production. Indeed, many studies registered that EGCG inhibits signal transducer and activator of transcription (STAT)1/3 and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) transcription factors, whose activities are crucial in a multiplicity of downstream pro-inflammatory signaling pathways. Importantly, the safety of EGCG/green tea extract supplementation is well documented in many clinical trials, as discussed in this review. Since EGCG can restore the natural immunological homeostasis in many different autoimmune diseases, we propose here a supplementation therapy with EGCG in COVID-19 patients. Besides some antiviral and anti-sepsis actions, the major EGCG benefits lie in its anti-fibrotic effect and in the ability to simultaneously downregulate expression and signaling of many inflammatory mediators. In conclusion, EGCG can be considered a potential safe natural supplement to counteract hyper-inflammation growing in COVID-19.
Collapse
Affiliation(s)
- Marta Menegazzi
- Department of Neuroscience, Biomedicine and Movement Sciences, Biochemistry Section, School of Medicine, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy; (R.C.); (M.B.)
- Correspondence:
| | - Rachele Campagnari
- Department of Neuroscience, Biomedicine and Movement Sciences, Biochemistry Section, School of Medicine, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy; (R.C.); (M.B.)
| | - Mariarita Bertoldi
- Department of Neuroscience, Biomedicine and Movement Sciences, Biochemistry Section, School of Medicine, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy; (R.C.); (M.B.)
| | - Rosalia Crupi
- Department of Veterinary Science, University of Messina, Polo Universitario dell’Annunziata, I-98168 Messina, Italy;
| | - Rosanna Di Paola
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, I-98166 Messina, Italy; (R.D.P.); (S.C.)
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, I-98166 Messina, Italy; (R.D.P.); (S.C.)
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| |
Collapse
|
40
|
Effects of Cocoa-Rich Chocolate on Blood Pressure, Cardiovascular Risk Factors, and Arterial Stiffness in Postmenopausal Women: A Randomized Clinical Trial. Nutrients 2020; 12:nu12061758. [PMID: 32545478 PMCID: PMC7353386 DOI: 10.3390/nu12061758] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 01/05/2023] Open
Abstract
This study aimed to evaluate the effects of the intake of 10 g of cocoa-rich chocolate on blood pressure, other cardiovascular risk factors, and vascular structure and function in postmenopausal women. A total of 140 postmenopausal women participated in this randomized and controlled parallel clinical trial. For six months, the intervention group (IG; n = 73) consumed daily 10 g of chocolate (99% cocoa) added to their usual food intake, whereas the control group (CG; n = 67) did not receive any intervention. Blood pressure, pulse pressure (PP), cardio-ankle vascular index (CAVI), ankle-brachial index (ABI), brachial-ankle pulse wave velocity (baPWV), augmentation index, and laboratory variables were measured at baseline and six months. ANCOVA analyses adjusted for baseline values revealed no significant differences for systolic blood pressure (−1.45 mm Hg; 95% confidence interval (CI): −4.79, 1.88; p = 0.391) or baPWV (0.18 m/s; 95% CI: −0.14, 0.50; p = 0.263) between groups. A decrease in PP was observed in the IG compared to the CG (−2.05 mm Hg; 95% CI: −4.08, −0.02; p = 0.048). The rest of the vascular structure and function parameters and other measured variables remained unchanged. The daily intake of 10 g of cocoa-rich chocolate seems to provide little improvement to cardiovascular health, but neither does it cause any adverse effects on the parameters evaluated in postmenopausal women in the long term.
Collapse
|
41
|
Evans LW, Athukorala M, Martinez-Guryn K, Ferguson BS. The Role of Histone Acetylation and the Microbiome in Phytochemical Efficacy for Cardiovascular Diseases. Int J Mol Sci 2020; 21:E4006. [PMID: 32503339 PMCID: PMC7313062 DOI: 10.3390/ijms21114006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/12/2020] [Accepted: 05/27/2020] [Indexed: 12/15/2022] Open
Abstract
Cardiovascular diseases (CVD) are the main cause of death worldwide and create a substantial financial burden. Emerging studies have begun to focus on epigenetic targets and re-establishing healthy gut microbes as therapeutic options for the treatment and prevention of CVD. Phytochemicals, commonly found in fruits and vegetables, have been shown to exert a protective effect against CVD, though their mechanisms of action remain incompletely understood. Of interest, phytochemicals such as curcumin, resveratrol and epigallocatechin gallate (EGCG) have been shown to regulate both histone acetylation and microbiome re-composition. The purpose of this review is to highlight the microbiome-epigenome axis as a therapeutic target for food bioactives in the prevention and/or treatment of CVD. Specifically, we will discuss studies that highlight how the three phytochemicals above alter histone acetylation leading to global changes in gene expression and CVD protection. Then, we will expand upon these phytochemicals to discuss the impact of phytochemical-microbiome-histone acetylation interaction in CVD.
Collapse
Affiliation(s)
- Levi W. Evans
- Department of Nutrition, University of Nevada Reno, Reno, NV 89557, USA; (L.W.E.); (M.A.)
| | - Maheshi Athukorala
- Department of Nutrition, University of Nevada Reno, Reno, NV 89557, USA; (L.W.E.); (M.A.)
| | | | - Bradley S. Ferguson
- Department of Nutrition, University of Nevada Reno, Reno, NV 89557, USA; (L.W.E.); (M.A.)
- Center of Biomedical Research Excellence for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada Reno, Reno, NV 89557, USA
| |
Collapse
|
42
|
Effect of green tea consumption on blood lipids: a systematic review and meta-analysis of randomized controlled trials. Nutr J 2020; 19:48. [PMID: 32434539 PMCID: PMC7240975 DOI: 10.1186/s12937-020-00557-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 04/22/2020] [Indexed: 12/14/2022] Open
Abstract
Background Strong epidemiologic evidence indicates that green tea intake is protective against hyperlipidemia; however, randomized controlled studies have presented varying results. In the present study, we aimed to conduct a literature review and meta-analysis to assess the effect of green tea on blood lipids. Methods PubMed, Embase, and the Cochrane Library were electronically explored from inception to September 2019 for all relevant studies. Random effect models were used to estimate blood lipid changes between green tea supplementation and control groups by evaluating the weighted mean differences (WMD) with 95% confidence intervals (CIs). The risk of bias for study was assessed using the Cochrane tool. Publication bias was evaluated using funnel plots and Egger’s tests. Results Thirty-one trials with a total of 3321 subjects were included in the meta-analysis. In general, green tea intake significantly lowered the total cholesterol (TC); WMD: − 4.66 mg/dL; 95% CI: − 6.36, − 2.96 mg/dL; P < 0.0001) and low-density lipoprotein (LDL) cholesterol (WMD:− 4.55 mg/dL; 95% CI: − 6.31, − 2.80 mg/dL; P < 0.0001) levels compared with those in the control. Green tea consumption did not affect high-density lipoprotein (HDL) cholesterol; however, it reduced the triglycerides compared with that in the control (WMD: − 3.77 mg/dL; 95% CI: − 8.90, 1.37 mg/dL; P = 0.15). In addition, significant publication bias from funnel plots or Egger’s tests was not evident. Conclusions Collectively, consumption of green tea lowers LDL cholesterol and TC, but not HDL cholesterol or triglycerides in both normal weight subjects and those who were overweight/obese; however, additional well-designed studies that include more diverse populations and longer duration are warranted.
Collapse
|
43
|
Cui CJ, Jin JL, Guo LN, Sun J, Wu NQ, Guo YL, Liu G, Dong Q, Li JJ. Beneficial impact of epigallocatechingallate on LDL-C through PCSK9/LDLR pathway by blocking HNF1α and activating FoxO3a. J Transl Med 2020; 18:195. [PMID: 32398139 PMCID: PMC7216725 DOI: 10.1186/s12967-020-02362-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 05/02/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Green tea drinking has been proven to lower lipid and exert cardiovascular protection, while the potential mechanism has not been fully determined. This study was to investigate whether the beneficial impact of epigallocatechingallate (EGCG), a type of catechin in green tea on lipids is associated with proprotein convertase subtilisin/kexin type 9 (PCSK9) pathways. METHODS We studied the effects and underlying molecular mechanism of EGCG or green tea on regulating cholesterol from human, animal and in vitro. RESULTS In the age- and gender-matched case control observation, we found that individuals with frequent tea consumption (n = 224) had the lower plasma PCSK9 and low density lipoprotein cholesterol (LDL-C) levels compared with ones without tea consumption (n = 224, p < 0.05). In the high fat diet (HFD) fed rats, EGCG administration significantly lowered circulating PCSK9 concentration and liver PCSK9 expression, along with up-regulated LDL receptor (LDLR) expression but decreased level of LDL-C. In hepatic cell study, similar results were obtained regarding the impact of EGCG on LDLR and PCSK9 expression. The assay transposase-accessible chromatic with high-throughput sequencing (ATAC-seq) and subsequent results suggested that two transcription factors, hepatocyte nuclear factor-1α (HNF-1α) and forkhead box class O (FoxO) 3a involved in inhibitory action of EGCG on PCSK9 expression. CONCLUSIONS The present study demonstrates that EGCG suppresses PCSK9 production by promoting nuclear FoxO3a, and reducing nuclear HNF1α, resulting in up-regulated LDLR expression and LDL uptake in hepatocytes. Thereby inhibiting liver and circulating PCSK9 levels, and ultimately lowering LDL-C levels.
Collapse
Affiliation(s)
- Chuan-Jue Cui
- Faculty of Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100037, China
| | - Jing-Lu Jin
- Faculty of Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100037, China
| | - Lin-Na Guo
- Faculty of Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100037, China
| | - Jing Sun
- Faculty of Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100037, China
| | - Na-Qiong Wu
- Faculty of Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100037, China
| | - Yuan-Lin Guo
- Faculty of Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100037, China
| | - Geng Liu
- Faculty of Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100037, China
| | - Qian Dong
- Faculty of Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100037, China
| | - Jian-Jun Li
- Faculty of Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100037, China.
| |
Collapse
|
44
|
Farooqi AA, Pinheiro M, Granja A, Farabegoli F, Reis S, Attar R, Sabitaliyevich UY, Xu B, Ahmad A. EGCG Mediated Targeting of Deregulated Signaling Pathways and Non-Coding RNAs in Different Cancers: Focus on JAK/STAT, Wnt/β-Catenin, TGF/SMAD, NOTCH, SHH/GLI, and TRAIL Mediated Signaling Pathways. Cancers (Basel) 2020; 12:951. [PMID: 32290543 PMCID: PMC7226503 DOI: 10.3390/cancers12040951] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/02/2020] [Accepted: 04/04/2020] [Indexed: 12/12/2022] Open
Abstract
Decades of research have enabled us to develop a better and sharper understanding of multifaceted nature of cancer. Next-generation sequencing technologies have leveraged our existing knowledge related to intra- and inter-tumor heterogeneity to the next level. Functional genomics have opened new horizons to explore deregulated signaling pathways in different cancers. Therapeutic targeting of deregulated oncogenic signaling cascades by products obtained from natural sources has shown promising results. Epigallocatechin-3-gallate (EGCG) has emerged as a distinguished chemopreventive product because of its ability to regulate a myriad of oncogenic signaling pathways. Based on its scientifically approved anticancer activity and encouraging results obtained from preclinical trials, it is also being tested in various phases of clinical trials. A series of clinical trials associated with green tea extracts and EGCG are providing clues about significant potential of EGCG to mechanistically modulate wide ranging signal transduction cascades. In this review, we comprehensively analyzed regulation of JAK/STAT, Wnt/β-catenin, TGF/SMAD, SHH/GLI, NOTCH pathways by EGCG. We also discussed most recent evidence related to the ability of EGCG to modulate non-coding RNAs in different cancers. Methylation of the genome is also a widely studied mechanism and EGCG has been shown to modulate DNA methyltransferases (DNMTs) and protein enhancer of zeste-2 (EZH2) in multiple cancers. Moreover, the use of nanoformulations to increase the bioavailability and thus efficacy of EGCG will be also addressed. Better understanding of the pleiotropic abilities of EGCG to modulate intracellular pathways along with the development of effective EGCG delivery vehicles will be helpful in getting a step closer to individualized medicines.
Collapse
Affiliation(s)
- Ammad Ahmad Farooqi
- Institute of Biomedical and Genetic Engineering (IBGE), Islamabad 54000, Pakistan;
| | - Marina Pinheiro
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal; (A.G.); (S.R.)
| | - Andreia Granja
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal; (A.G.); (S.R.)
| | - Fulvia Farabegoli
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, 40126 Bologna, Italy;
| | - Salette Reis
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal; (A.G.); (S.R.)
| | - Rukset Attar
- Department of Obstetrics and Gynecology, Yeditepe University, Ataşehir/İstanbul 34755, Turkey;
| | - Uteuliyev Yerzhan Sabitaliyevich
- Department of Health Policy and Health Care Development, Kazakh Medical University of Continuing Education, Almaty 050004, Kazakhstan;
| | - Baojun Xu
- Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai 519087, China;
| | - Aamir Ahmad
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35205, USA;
| |
Collapse
|
45
|
Sauter ER. Cancer prevention and treatment using combination therapy with natural compounds. Expert Rev Clin Pharmacol 2020; 13:265-285. [PMID: 32154753 DOI: 10.1080/17512433.2020.1738218] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: Naturally occurring compounds play an essential role in the prevention and treatment of various cancers. There are more than 100 plant and animal based natural compounds currently in clinical use.Areas covered: 1) The importance of natural products combinations in the prevention and treatment of cancer, 2) the need to maximize efficacy while minimizing side effects when using natural product combinations, and 3) specifics related to plant and animal derived natural products, as well as agents derived from natural products. Therapies using natural compounds that have been investigated, their rationale, mechanism of action and findings are reviewed. When the data warrant it, combined interventions that appear to increase efficacy (compared with monotherapy) while minimizing toxicity have been highlighted. Pubmed was used to search for relevant publications.Expert opinion: Combination therapy with natural compounds has the potential to be more effective than single agent therapy. Similar to pharmacologic agents, the goal is to maximize efficacy while mimimizing potential side effects. There is an increasing research focus on the development of agents derived from natural products, with notable successes already achieved from the effort.
Collapse
Affiliation(s)
- Edward R Sauter
- Division of Cancer Prevention, National Cancer Institute, Rockville, MD, USA
| |
Collapse
|
46
|
Giacco R, Costabile G, Fatati G, Frittitta L, Maiorino MI, Marelli G, Parillo M, Pistis D, Tubili C, Vetrani C, Vitale M. Effects of polyphenols on cardio-metabolic risk factors and risk of type 2 diabetes. A joint position statement of the Diabetes and Nutrition Study Group of the Italian Society of Diabetology (SID), the Italian Association of Dietetics and Clinical Nutrition (ADI) and the Italian Association of Medical Diabetologists (AMD). Nutr Metab Cardiovasc Dis 2020; 30:355-367. [PMID: 31918979 DOI: 10.1016/j.numecd.2019.11.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/27/2019] [Accepted: 11/27/2019] [Indexed: 12/22/2022]
Abstract
AIM A large body of evidence supports a role of polyphenols in the prevention of chronic diseases, i.e. type 2 diabetes (DMT2), cardiovascular diseases and some types of cancer. In the present manuscript, the effect of polyphenol/phenolic compounds on the main cardio-metabolic risk factors (body weight, blood pressure, blood glucose concentrations, plasma lipids, inflammation and oxidative stress) in humans will be discussed. DATA SYNTHESIS Epidemiological evidence supports the beneficial effects of polyphenol-rich diets in the prevention of T2D risk. However, the available evidence from randomized controlled clinical trials did not allow the identification of specific phenolic compounds or polyphenol-rich foods that effectively improve cardio-metabolic risk factors. The most promising results in terms of the management of cardio-metabolic risk factors derive from RCTs based on a long-term intake of polyphenol-rich foods and beverages. Therefore, future studies should focus on a diet containing different classes of polyphenols rather than a specific food or phenolic compound. The hypothesis is that a polyphenol-rich diet may have a pleiotropic effect on cardiometabolic risk factors thanks to the specific action of different polyphenol subclasses. CONCLUSION The lack of conclusive evidence on the effectiveness of polyphenols in the management of cardio-metabolic risk factors does not allow recommendation of their use as supplements to reduce T2D and CVD risk. However, the daily consumption of naturally polyphenol-rich foods and beverages might be advised according to the current nutritional dietary recommendation.
Collapse
Affiliation(s)
- Rosalba Giacco
- Institute of Food Science of National Research Council, Avellino, Italy; Italian Society of Diabetology (SID), Roma, Italy
| | - Giuseppina Costabile
- Italian Society of Diabetology (SID), Roma, Italy; Dep. of Clinical Medicine and Surgery, Federico II University, Naples, Italy.
| | - Giuseppe Fatati
- Unit of Diabetology, Dietology and Clinical Nutrition, S. Maria Hospital, Terni, Italy; Italian Association of Dietetics and Clinical Nutrition (ADI), Italy
| | - Lucia Frittitta
- Italian Society of Diabetology (SID), Roma, Italy; Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi Hospital, Via Palermo 636, 95122, Catania, Italy
| | - Maria I Maiorino
- Italian Society of Diabetology (SID), Roma, Italy; Diabetes Unit, Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Giuseppe Marelli
- Unit of Endocrinology, Diabetology and Clinical Nutrition, Vimercate Hospital, Vimercate, Italy; Association of Medical Diabetologists (AMD), Rome, Italy
| | - Mario Parillo
- Italian Association of Dietetics and Clinical Nutrition (ADI), Italy; Department of Internal Medicine, St. Anna and St. Sebastian Hospital, Caserta, Italy
| | - Danila Pistis
- Association of Medical Diabetologists (AMD), Rome, Italy; ATS Sardegna U.O. Diabetologia Poliambulatorio Quartu S.E. Cagliari, Italy
| | - Claudio Tubili
- Italian Association of Dietetics and Clinical Nutrition (ADI), Italy; Diabetes Unit, "S.Camillo-Forlanini" Hospital, Rome, Italy
| | - Claudia Vetrani
- Italian Society of Diabetology (SID), Roma, Italy; Dep. of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Marilena Vitale
- Italian Society of Diabetology (SID), Roma, Italy; Dep. of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| |
Collapse
|
47
|
Gusev PA, Andrews KW, Savarala S, Tey PT, Han F, Oh L, Pehrsson PR, Dwyer JT, Betz JM, Kuszak AJ, Costello R, Saldanha LG. Disintegration and Dissolution Testing of Green Tea Dietary Supplements: Application and Evaluation of United States Pharmacopeial Standards. J Pharm Sci 2020; 109:1933-1942. [PMID: 32081719 DOI: 10.1016/j.xphs.2020.02.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 02/05/2020] [Indexed: 12/23/2022]
Abstract
Approved performance quality tests are lacking in the United States Pharmacopeia (USP) for dietary supplements (DSs) containing green tea extracts. We evaluated the applicability of USP <2040 > general chapter protocols for disintegration and dissolution testing of botanicals to GT DSs. Of 28 single-ingredient GT DSs tested in 2 to 4 lots, 9 (32.1%) always passed the disintegration test, 8 (28.6%) always failed, and 11 (39.3%) showed inconsistent results. Of 34 multi-ingredient DSs tested in 2 lots, 21 (61.8%) passed and 8 (23.5%) failed in both lots, and 5 (14.7%) exhibited inconsistent performance. When stronger destructive forces were applied (disk added), all of the capsules that had failed initially, but not the tablets, passed. In dissolution testing, for the release of epigallocatechin-3-gallate (EGCG), only 6 of 20 single-ingredient DSs passed. Unexpectedly, with the addition of pepsin (prescribed by USP), only one additional DS passed. These results raise concerns that EGCG was not released properly from GT DS dosage forms. However, the general USP protocols may be inadequate for this botanical. More biorelevant destructive forces may be needed to break down capsules and tablets strengthened by the EGCG's interaction with shell material and to overcome the inhibition of digestive enzymes by EGCG.
Collapse
Affiliation(s)
- Pavel A Gusev
- Methods and Application of Food Composition Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, Department of Agriculture, Beltsville, Maryland 20705.
| | - Karen W Andrews
- Methods and Application of Food Composition Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, Department of Agriculture, Beltsville, Maryland 20705
| | - Sushma Savarala
- Methods and Application of Food Composition Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, Department of Agriculture, Beltsville, Maryland 20705
| | - Phuong-Tan Tey
- Methods and Application of Food Composition Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, Department of Agriculture, Beltsville, Maryland 20705
| | - Fei Han
- Methods and Application of Food Composition Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, Department of Agriculture, Beltsville, Maryland 20705
| | - Laura Oh
- Methods and Application of Food Composition Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, Department of Agriculture, Beltsville, Maryland 20705
| | - Pamela R Pehrsson
- Methods and Application of Food Composition Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, Department of Agriculture, Beltsville, Maryland 20705
| | - Johanna T Dwyer
- Office of Dietary Supplements, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland 20814
| | - Joseph M Betz
- Office of Dietary Supplements, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland 20814
| | - Adam J Kuszak
- Office of Dietary Supplements, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland 20814
| | - Rebecca Costello
- Office of Dietary Supplements, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland 20814
| | - Leila G Saldanha
- Office of Dietary Supplements, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland 20814
| |
Collapse
|
48
|
Tang GY, Meng X, Gan RY, Zhao CN, Liu Q, Feng YB, Li S, Wei XL, Atanasov AG, Corke H, Li HB. Health Functions and Related Molecular Mechanisms of Tea Components: An Update Review. Int J Mol Sci 2019; 20:6196. [PMID: 31817990 PMCID: PMC6941079 DOI: 10.3390/ijms20246196] [Citation(s) in RCA: 210] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 12/02/2019] [Accepted: 12/06/2019] [Indexed: 02/07/2023] Open
Abstract
Tea is widely consumed all over the world. Generally, tea is divided into six categories: White, green, yellow, oolong, black, and dark teas, based on the fermentation degree. Tea contains abundant phytochemicals, such as polyphenols, pigments, polysaccharides, alkaloids, free amino acids, and saponins. However, the bioavailability of tea phytochemicals is relatively low. Thus, some novel technologies like nanotechnology have been developed to improve the bioavailability of tea bioactive components and consequently enhance the bioactivity. So far, many studies have demonstrated that tea shows various health functions, such as antioxidant, anti-inflammatory, immuno-regulatory, anticancer, cardiovascular-protective, anti-diabetic, anti-obesity, and hepato-protective effects. Moreover, it is also considered that drinking tea is safe to humans, since reports about the severe adverse effects of tea consumption are rare. In order to provide a better understanding of tea and its health potential, this review summarizes and discusses recent literature on the bioactive components, bioavailability, health functions, and safety issues of tea, with special attention paid to the related molecular mechanisms of tea health functions.
Collapse
Affiliation(s)
- Guo-Yi Tang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (G.-Y.T.); (X.M.); (C.-N.Z.); (Q.L.)
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, No. 10 Sassoon Road, Pokfulam, Hong Kong 999077, China; (Y.-B.F.); (S.L.)
| | - Xiao Meng
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (G.-Y.T.); (X.M.); (C.-N.Z.); (Q.L.)
| | - Ren-You Gan
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (X.-L.W.); (H.C.)
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China
| | - Cai-Ning Zhao
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (G.-Y.T.); (X.M.); (C.-N.Z.); (Q.L.)
| | - Qing Liu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (G.-Y.T.); (X.M.); (C.-N.Z.); (Q.L.)
| | - Yi-Bin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, No. 10 Sassoon Road, Pokfulam, Hong Kong 999077, China; (Y.-B.F.); (S.L.)
| | - Sha Li
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, No. 10 Sassoon Road, Pokfulam, Hong Kong 999077, China; (Y.-B.F.); (S.L.)
| | - Xin-Lin Wei
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (X.-L.W.); (H.C.)
| | - Atanas G. Atanasov
- The Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzębiec, 05-552 Magdalenka, Poland;
| | - Harold Corke
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (X.-L.W.); (H.C.)
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (G.-Y.T.); (X.M.); (C.-N.Z.); (Q.L.)
| |
Collapse
|
49
|
The Bioprotective Effects of Polyphenols on Metabolic Syndrome against Oxidative Stress: Evidences and Perspectives. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:6713194. [PMID: 31885810 PMCID: PMC6914975 DOI: 10.1155/2019/6713194] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 05/11/2019] [Accepted: 11/01/2019] [Indexed: 12/25/2022]
Abstract
Polyphenols are the general designation of various kinds of phytochemicals, mainly classified as flavonoids and nonflavonoids. Polyphenolic compounds have been confirmed to exhibit numerous bioactivities and potential health benefits both in vivo and in vitro. Dietary polyphenols have been shown to significantly alleviate several manifestations of metabolic syndrome, namely, central obesity, hypertension, dyslipidemia, and high blood sugar. This review is aimed at discussing the bioprotective effects and related molecular mechanisms of polyphenols, mainly by increasing antioxidant capacity or oxygen scavenging capacity. Polyphenols can exert their antioxidative activity by balancing the organic oxidoreductase enzyme system, regulating antioxidant responsive signaling pathways, and restoring mitochondrial function. These data are helpful for providing new insights into the potential biological effects of polyphenolic compounds and the development of future antioxidant therapeutics.
Collapse
|
50
|
Yi M, Wu X, Zhuang W, Xia L, Chen Y, Zhao R, Wan Q, Du L, Zhou Y. Tea Consumption and Health Outcomes: Umbrella Review of Meta-Analyses of Observational Studies in Humans. Mol Nutr Food Res 2019; 63:e1900389. [PMID: 31216091 DOI: 10.1002/mnfr.201900389] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/26/2019] [Indexed: 02/05/2023]
Abstract
SCOPE The aim of this article is to conduct an umbrella review to study the strength and validity of associations between tea consumption and diverse health outcomes. METHODS AND RESULTS Meta-analyses of observational studies examining associations between tea consumption and health outcomes in all human populations and settings are screened. The umbrella review identifies 96 meta-analyses with 40 unique health outcomes. Tea consumption shows greater benefits than harm to health in this review. Dose-response analyses of tea consumption indicates reduced risks of total mortality, cardiac death, coronary artery disease, stroke, and type 2 diabetes mellitus with increment of two to three cups per day. Beneficial associations are also found for several cancers, skeletal, cognitive, and maternal outcomes. Harmful associations are found for esophageal and gastric cancer when the temperature of intake is more than 55-60 °C. CONCLUSION Tea consumption, except for very hot tea, seems generally safe at usual levels of intake, with summary estimates indicating the largest reduction for diverse health outcomes at two to three cups per day. Generally, tea consumption seems more beneficial than harmful in this umbrella review. Randomized controlled trials are further needed to understand whether the observed associations are causal.
Collapse
Affiliation(s)
- Mengshi Yi
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaoting Wu
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wen Zhuang
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lin Xia
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yi Chen
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Rui Zhao
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qianyi Wan
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Liang Du
- Chinese Evidence-Based Medicine/Cochrane Center, Chengdu, 610041, China
| | - Yong Zhou
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|