1
|
Silva-Soto MÁ, Carrillo-Fernández P, Saez Lancellotti ET, Medina-Jiménez E, Mogaburo Alba JF, Catena-Granados N, López-Carmona MD, Pérez-Belmonte LM, Prieto Lain N, Gómez Hernández AI, Gómez-Huelgas R, Bernal-López MR. Extra Virgin Olive Oil Phenolic Compounds: Modulating Mitochondrial Function and Protecting Against Chronic Diseases-A Narrative Review. Nutrients 2025; 17:1443. [PMID: 40362752 PMCID: PMC12073407 DOI: 10.3390/nu17091443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2025] [Revised: 04/22/2025] [Accepted: 04/23/2025] [Indexed: 05/15/2025] Open
Abstract
BACKGROUND Extra virgin olive oil (EVOO), an essential element of the Mediterranean diet (MedDiet), has demonstrated considerable potential in improving mitochondrial health and protecting against chronic diseases. This narrative review aims to explore how the main phenolic compounds found in EVOO-hydroxytyrosol, oleuropein, and oleocanthal-contribute to mitochondrial health by reducing oxidative stress and inflammation. METHODS A search for scientific evidence was carried out between October 2024 and March 2025 in different bibliographic databases such as PubMed, Web of Science, Embase, SciSpace, and ResearchRabbit databases. The search strategy included combinations of terms such as "extra virgin olive oil", "EVOO polyphenols", "mitochondrial function", "oxidative stress", "inflammation", "mitophagy", and "chronic diseases". Preclinical, clinical, and mechanistic studies were included, giving priority to peer-reviewed publications. RESULTS This narrative review shows how some bioactive components of EVOO activate cellular pathways, such as mTOR, AMPK and sirtuins, which promote mitochondrial biogenesis, improve the efficiency of the electron transport chain, and protect mitochondrial DNA integrity. Furthermore, EVOO improves mitochondrial membrane fluidity and integrity, ensuring its functionality and efficiency. On the other hand, nutrition literacy, an important component of health, is a critical determinant of people's eating behaviors. CONCLUSIONS Although recent scientific evidence supports the metabolic benefits of EVOO components on mitochondrial metabolism and function, further nutritional intervention studies with these components are recommended to confirm their clinical relevance as a dietary tool aimed at preventing and/or delaying age-related metabolic diseases.
Collapse
Affiliation(s)
- María Ángeles Silva-Soto
- Internal Medicine Department, Regional University Hospital of Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA-Plataforma Bionand), University of Málaga, Avda. Hospital Civil s/n, 29009 Málaga, Spain; (M.Á.S.-S.); (E.T.S.L.); (E.M.-J.); (J.F.M.A.); (N.C.-G.); (M.D.L.-C.); (L.M.P.-B.); (N.P.L.); (A.I.G.H.); (R.G.-H.)
| | - Paloma Carrillo-Fernández
- UCM Digestive Diseases, Virgen del Rocío University Hospital, Instituto de Biomedicina de Sevilla (HUVR/CSIC/US), Department of Medicine, University of Seville, 41004 Seville, Spain
| | - Estefanía T. Saez Lancellotti
- Internal Medicine Department, Regional University Hospital of Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA-Plataforma Bionand), University of Málaga, Avda. Hospital Civil s/n, 29009 Málaga, Spain; (M.Á.S.-S.); (E.T.S.L.); (E.M.-J.); (J.F.M.A.); (N.C.-G.); (M.D.L.-C.); (L.M.P.-B.); (N.P.L.); (A.I.G.H.); (R.G.-H.)
| | - Elena Medina-Jiménez
- Internal Medicine Department, Regional University Hospital of Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA-Plataforma Bionand), University of Málaga, Avda. Hospital Civil s/n, 29009 Málaga, Spain; (M.Á.S.-S.); (E.T.S.L.); (E.M.-J.); (J.F.M.A.); (N.C.-G.); (M.D.L.-C.); (L.M.P.-B.); (N.P.L.); (A.I.G.H.); (R.G.-H.)
| | - Juan Francisco Mogaburo Alba
- Internal Medicine Department, Regional University Hospital of Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA-Plataforma Bionand), University of Málaga, Avda. Hospital Civil s/n, 29009 Málaga, Spain; (M.Á.S.-S.); (E.T.S.L.); (E.M.-J.); (J.F.M.A.); (N.C.-G.); (M.D.L.-C.); (L.M.P.-B.); (N.P.L.); (A.I.G.H.); (R.G.-H.)
| | - Nerea Catena-Granados
- Internal Medicine Department, Regional University Hospital of Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA-Plataforma Bionand), University of Málaga, Avda. Hospital Civil s/n, 29009 Málaga, Spain; (M.Á.S.-S.); (E.T.S.L.); (E.M.-J.); (J.F.M.A.); (N.C.-G.); (M.D.L.-C.); (L.M.P.-B.); (N.P.L.); (A.I.G.H.); (R.G.-H.)
| | - María Dolores López-Carmona
- Internal Medicine Department, Regional University Hospital of Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA-Plataforma Bionand), University of Málaga, Avda. Hospital Civil s/n, 29009 Málaga, Spain; (M.Á.S.-S.); (E.T.S.L.); (E.M.-J.); (J.F.M.A.); (N.C.-G.); (M.D.L.-C.); (L.M.P.-B.); (N.P.L.); (A.I.G.H.); (R.G.-H.)
| | - Luis Miguel Pérez-Belmonte
- Internal Medicine Department, Regional University Hospital of Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA-Plataforma Bionand), University of Málaga, Avda. Hospital Civil s/n, 29009 Málaga, Spain; (M.Á.S.-S.); (E.T.S.L.); (E.M.-J.); (J.F.M.A.); (N.C.-G.); (M.D.L.-C.); (L.M.P.-B.); (N.P.L.); (A.I.G.H.); (R.G.-H.)
| | - Nuria Prieto Lain
- Internal Medicine Department, Regional University Hospital of Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA-Plataforma Bionand), University of Málaga, Avda. Hospital Civil s/n, 29009 Málaga, Spain; (M.Á.S.-S.); (E.T.S.L.); (E.M.-J.); (J.F.M.A.); (N.C.-G.); (M.D.L.-C.); (L.M.P.-B.); (N.P.L.); (A.I.G.H.); (R.G.-H.)
| | - Ana Isabel Gómez Hernández
- Internal Medicine Department, Regional University Hospital of Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA-Plataforma Bionand), University of Málaga, Avda. Hospital Civil s/n, 29009 Málaga, Spain; (M.Á.S.-S.); (E.T.S.L.); (E.M.-J.); (J.F.M.A.); (N.C.-G.); (M.D.L.-C.); (L.M.P.-B.); (N.P.L.); (A.I.G.H.); (R.G.-H.)
| | - Ricardo Gómez-Huelgas
- Internal Medicine Department, Regional University Hospital of Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA-Plataforma Bionand), University of Málaga, Avda. Hospital Civil s/n, 29009 Málaga, Spain; (M.Á.S.-S.); (E.T.S.L.); (E.M.-J.); (J.F.M.A.); (N.C.-G.); (M.D.L.-C.); (L.M.P.-B.); (N.P.L.); (A.I.G.H.); (R.G.-H.)
- Ciber Fisiopatología de la Obesidad y la Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - María-Rosa Bernal-López
- Internal Medicine Department, Regional University Hospital of Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA-Plataforma Bionand), University of Málaga, Avda. Hospital Civil s/n, 29009 Málaga, Spain; (M.Á.S.-S.); (E.T.S.L.); (E.M.-J.); (J.F.M.A.); (N.C.-G.); (M.D.L.-C.); (L.M.P.-B.); (N.P.L.); (A.I.G.H.); (R.G.-H.)
- Ciber Fisiopatología de la Obesidad y la Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
2
|
Geng Q, Gao R, Sun Y, Chen S, Sun L, Li W, Li Z, Zhao Y, Zhao F, Zhang Y, Li A, Liu H. Mitochondrial DNA content and methylation in sperm of patients with asthenozoospermia. J Assist Reprod Genet 2024; 41:2795-2805. [PMID: 39190228 PMCID: PMC11535106 DOI: 10.1007/s10815-024-03236-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 08/20/2024] [Indexed: 08/28/2024] Open
Abstract
PURPOSE The aim of the current study was to investigate the mtDNA methylation levels and mtDNA copy numbers in the sperm of patients with asthenozoospermia and compare them to those observed in controls with normozoospermia. METHODS Pyrosequencing analysis of the methylation levels of the mitochondrial D-loop and MT-CO1/chr1:631,907-632083/chrX:26,471,887-126,472,063 (hereinafter referred to as "MT-CO1-AVG") region and quantitative PCR analysis of the mtDNA copy number were performed on sperm from 30 patients with asthenozoospermia and 30 controls with normozoospermia. RESULTS Compared with those of controls with normozoospermia, the methylation levels of D-loop and MT-CO1-AVG regions and mtDNA copy number were significantly higher in patients with asthenozoospermia. The methylation level of the D-loop region in patients with asthenozoospermia and controls with normozoospermia and that of MT-CO1-AVG region in patients with asthenozoospermia showed a decreasing tendency with increasing total sperm motility. A significant inverse correlation between the mtDNA copy number and total sperm motility was observed in patients with asthenozoospermia but not in controls with normozoospermia. In patients with asthenozoospermia, but not in controls with normozoospermia, we observed a significant inverse correlation between D-loop methylation levels and mtDNA copy number, while no significant correlation was observed between MT-CO1-AVG methylation levels and mtDNA copy number. CONCLUSION These results reveal the occurrence of mtDNA methylation in human sperm and altered D-loop and MT-CO1-AVG methylation levels in patients with asthenozoospermia. Additional research is needed to determine the function of these features in the etiology and course of asthenozoospermia.
Collapse
Affiliation(s)
- Qiang Geng
- Department of Andrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Ruifang Gao
- Department of Reproductive Medicine, Tianjin Institute of Medical and Pharmaceutical Sciences, Tianjin Medicine and Health Research Center, Tianjin, China.
| | - Yuan Sun
- Department of Andrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Shaofeng Chen
- Department of Andrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Lili Sun
- Department of Reproductive Medicine, Tianjin Institute of Medical and Pharmaceutical Sciences, Tianjin Medicine and Health Research Center, Tianjin, China
| | - Wei Li
- Department of Reproductive Medicine, Tianjin Institute of Medical and Pharmaceutical Sciences, Tianjin Medicine and Health Research Center, Tianjin, China
| | - Zhong Li
- Department of Andrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yu Zhao
- Department of Andrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Feng Zhao
- Department of Andrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Ying Zhang
- Department of Reproductive Medicine, Tianjin Institute of Medical and Pharmaceutical Sciences, Tianjin Medicine and Health Research Center, Tianjin, China
| | - Anwen Li
- Department of Andrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Hongbin Liu
- Department of Reproductive Medicine, Tianjin Institute of Medical and Pharmaceutical Sciences, Tianjin Medicine and Health Research Center, Tianjin, China.
- Health Commission of Heping District, Tianjin, China.
| |
Collapse
|
3
|
Donato L, Mordà D, Scimone C, Alibrandi S, D'Angelo R, Sidoti A. From powerhouse to regulator: The role of mitoepigenetics in mitochondrion-related cellular functions and human diseases. Free Radic Biol Med 2024; 218:105-119. [PMID: 38565400 DOI: 10.1016/j.freeradbiomed.2024.03.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/26/2024] [Accepted: 03/30/2024] [Indexed: 04/04/2024]
Abstract
Beyond their crucial role in energy production, mitochondria harbor a distinct genome subject to epigenetic regulation akin to that of nuclear DNA. This paper delves into the nascent but rapidly evolving fields of mitoepigenetics and mitoepigenomics, exploring the sophisticated regulatory mechanisms governing mitochondrial DNA (mtDNA). These mechanisms encompass mtDNA methylation, the influence of non-coding RNAs (ncRNAs), and post-translational modifications of mitochondrial proteins. Together, these epigenetic modifications meticulously coordinate mitochondrial gene transcription, replication, and metabolism, thereby calibrating mitochondrial function in response to the dynamic interplay of intracellular needs and environmental stimuli. Notably, the dysregulation of mitoepigenetic pathways is increasingly implicated in mitochondrial dysfunction and a spectrum of human pathologies, including neurodegenerative diseases, cancer, metabolic disorders, and cardiovascular conditions. This comprehensive review synthesizes the current state of knowledge, emphasizing recent breakthroughs and innovations in the field. It discusses the potential of high-resolution mitochondrial epigenome mapping, the diagnostic and prognostic utility of blood or tissue mtDNA epigenetic markers, and the promising horizon of mitochondrial epigenetic drugs. Furthermore, it explores the transformative potential of mitoepigenetics and mitoepigenomics in precision medicine. Exploiting a theragnostic approach to maintaining mitochondrial allostasis, this paper underscores the pivotal role of mitochondrial epigenetics in charting new frontiers in medical science.
Collapse
Affiliation(s)
- Luigi Donato
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98122, Messina, Italy; Department of Biomolecular Strategies, Genetics, Cutting-Edge Therapies, Euro-Mediterranean Institute of Science and Technology (I.E.ME.S.T.) 90139 Palermo, Italy.
| | - Domenico Mordà
- Department of Biomolecular Strategies, Genetics, Cutting-Edge Therapies, Euro-Mediterranean Institute of Science and Technology (I.E.ME.S.T.) 90139 Palermo, Italy; Department of Veterinary Sciences, University of Messina, 98122, Messina, Italy.
| | - Concetta Scimone
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98122, Messina, Italy; Department of Biomolecular Strategies, Genetics, Cutting-Edge Therapies, Euro-Mediterranean Institute of Science and Technology (I.E.ME.S.T.) 90139 Palermo, Italy.
| | - Simona Alibrandi
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98122, Messina, Italy; Department of Biomolecular Strategies, Genetics, Cutting-Edge Therapies, Euro-Mediterranean Institute of Science and Technology (I.E.ME.S.T.) 90139 Palermo, Italy.
| | - Rosalia D'Angelo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98122, Messina, Italy.
| | - Antonina Sidoti
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98122, Messina, Italy.
| |
Collapse
|
4
|
Zhao Z, Xiang X, Chen Q, Du J, Zhu S, Xu X, Shen Y, Wen S, Li Y, Xu W, Mai K, Ai Q. Sterol Regulatory Element Binding Protein 1: A Mediator for High-Fat Diet-Induced Hepatic Gluconeogenesis and Glucose Intolerance in Fish. J Nutr 2024; 154:1505-1516. [PMID: 38460786 DOI: 10.1016/j.tjnut.2024.02.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 02/26/2024] [Indexed: 03/11/2024] Open
Abstract
BACKGROUND Sterol regulatory element binding protein (SREBP) 1 is considered to be a crucial regulator for lipid synthesis in vertebrates. However, whether SREBP1 could regulate hepatic gluconeogenesis under high-fat diet (HFD) condition is still unknown, and the underlying mechanism is also unclear. OBJECTIVES This study aimed to determine gluconeogenesis-related gene and protein expressions in response to HFD in large yellow croaker and explore the role and mechanism of SREBP1 in regulating the related transcription and signaling. METHODS Croakers (mean weight, 15.61 ± 0.10 g) were fed with diets containing 12% crude lipid [control diet (ND)] or 18% crude lipid (HFD) for 10 weeks. The glucose tolerance, insulin tolerance, hepatic gluconeogenesis-related genes, and proteins expressions were determined. To explore the role of SREBP1 in HFD-induced gluconeogenesis, SREBP1 was inhibited by pharmacologic inhibitor (fatostatin) or genetic knockdown in croaker hepatocytes under palmitic acid (PA) condition. To explore the underlying mechanism, luciferase reporter and chromatin immunoprecipitation assays were conducted in HEK293T cells. Data were analyzed using analysis of variance or Student t test. RESULTS Compared with ND, HFD increased the mRNA expressions of gluconeogenesis genes (2.40-fold to 2.60-fold) (P < 0.05) and reduced protein kinase B (AKT) phosphorylation levels (0.28-fold to 0.34-fold) (P < 0.05) in croakers. However, inhibition of SREBP1 by fatostatin addition or SREBP1 knockdown reduced the mRNA expressions of gluconeogenesis genes (P < 0.05) and increased AKT phosphorylation levels (P < 0.05) in hepatocytes, compared with that by PA treatment. Moreover, fatostatin addition or SREBP1 knockdown also increased the mRNA expressions of irs1 (P < 0.05) and reduced serine phosphorylation of IRS1 (P < 0.05). Furthermore, SREBP1 inhibited IRS1 transcriptions by binding to its promoter and induced IRS1 serine phosphorylation by activating diacylglycerol-protein kinase Cε signaling. CONCLUSIONS This study reveals the role of SREBP1 in hepatic gluconeogenesis under HFD condition in croakers, which may provide a potential strategy for improving HFD-induced glucose intolerance.
Collapse
Affiliation(s)
- Zengqi Zhao
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, Shandong, China
| | - Xiaojun Xiang
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, Shandong, China
| | - Qiang Chen
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, Shandong, China
| | - Jianlong Du
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, Shandong, China
| | - Si Zhu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, Shandong, China
| | - Xiang Xu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, Shandong, China
| | - Yanan Shen
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, Shandong, China
| | - Shunlang Wen
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, Shandong, China
| | - Yueru Li
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, Shandong, China
| | - Wei Xu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, Shandong, China
| | - Kangsen Mai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, Shandong, China
| | - Qinghui Ai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, Shandong, China.
| |
Collapse
|
5
|
Caputo V, Tarantino G, Santini SJ, Fracassi G, Balsano C. The Role of Epigenetic Control of Mitochondrial (Dys)Function in MASLD Onset and Progression. Nutrients 2023; 15:4757. [PMID: 38004151 PMCID: PMC10675587 DOI: 10.3390/nu15224757] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/06/2023] [Accepted: 11/11/2023] [Indexed: 11/26/2023] Open
Abstract
Metabolic dysfunction-associated steatotic fatty liver disease (MASLD), a novel definition for NAFLD, represents one of the most common causes of liver disease, and its incidence is increasing worldwide. It is characterized by a complex etiopathogenesis in which mitochondrial dysfunction exerts a pivotal role together with alteration of lipid metabolism, inflammation, and oxidative stress. Nutrients and bioactive compounds can influence such mechanisms so that changes in diet and lifestyle are regarded as important treatment strategies. Notably, natural compounds can exert their influence through changes of the epigenetic landscape, overall resulting in rewiring of molecular networks involved in cell and tissue homeostasis. Considering such information, the present review aims at providing evidence of epigenetic modifications occurring at mitochondria in response to natural and bioactive compounds in the context of liver (dys)function. For this purpose, recent studies reporting effects of compounds on mitochondria in the context of NAFLD/MASLD, as well as research showing alteration of DNA methylation and non-coding RNAs-related circuits occurring at liver mitochondria, will be illustrated. Overall, the present review will highlight the importance of understanding the bioactive compounds-dependent epigenetic modulation of mitochondria for improving the knowledge of MASLD and identifying biomarkers to be employed for effective preventative strategies or treatment protocols.
Collapse
Affiliation(s)
- Valerio Caputo
- Department of Life, Health and Environmental Sciences-MESVA, School of Emergency-Urgency Medicine, University of L’Aquila, 67100 L’Aquila, Italy; (V.C.); (S.J.S.); (G.F.)
- F. Balsano Foundation, Via Giovanni Battista Martini 6, 00198 Rome, Italy
| | - Giovanni Tarantino
- Department of Clinical Medicine and Surgery, Federico II University of Naples, 80138 Naples, Italy;
| | - Silvano Junior Santini
- Department of Life, Health and Environmental Sciences-MESVA, School of Emergency-Urgency Medicine, University of L’Aquila, 67100 L’Aquila, Italy; (V.C.); (S.J.S.); (G.F.)
- F. Balsano Foundation, Via Giovanni Battista Martini 6, 00198 Rome, Italy
| | - Giovanna Fracassi
- Department of Life, Health and Environmental Sciences-MESVA, School of Emergency-Urgency Medicine, University of L’Aquila, 67100 L’Aquila, Italy; (V.C.); (S.J.S.); (G.F.)
| | - Clara Balsano
- Department of Life, Health and Environmental Sciences-MESVA, School of Emergency-Urgency Medicine, University of L’Aquila, 67100 L’Aquila, Italy; (V.C.); (S.J.S.); (G.F.)
- F. Balsano Foundation, Via Giovanni Battista Martini 6, 00198 Rome, Italy
| |
Collapse
|
6
|
Mposhi A, Cortés-Mancera F, Heegsma J, de Meijer VE, van de Sluis B, Sydor S, Bechmann LP, Theys C, de Rijk P, De Pooter T, Vanden Berghe W, İnce İA, Faber KN, Rots MG. Mitochondrial DNA methylation in metabolic associated fatty liver disease. Front Nutr 2023; 10:964337. [PMID: 37305089 PMCID: PMC10249072 DOI: 10.3389/fnut.2023.964337] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 02/07/2023] [Indexed: 06/13/2023] Open
Abstract
Introduction Hepatic lipid accumulation and mitochondrial dysfunction are hallmarks of metabolic associated fatty liver disease (MAFLD), yet molecular parameters underlying MAFLD progression are not well understood. Differential methylation within the mitochondrial DNA (mtDNA) has been suggested to be associated with dysfunctional mitochondria, also during progression to Metabolic Steatohepatitis (MeSH). This study further investigates whether mtDNA methylation is associated with hepatic lipid accumulation and MAFLD. Methods HepG2 cells were constructed to stably express mitochondria-targeted viral and prokaryotic cytosine DNA methyltransferases (mtM.CviPI or mtM.SssI for GpC or CpG methylation, respectively). A catalytically inactive variant (mtM.CviPI-Mut) was constructed as a control. Mouse and human patients' samples were also investigated. mtDNA methylation was assessed by pyro- or nanopore sequencing. Results and discussion Differentially induced mtDNA hypermethylation impaired mitochondrial gene expression and metabolic activity in HepG2-mtM.CviPI and HepG2-mtM.SssI cells and was associated with increased lipid accumulation, when compared to the controls. To test whether lipid accumulation causes mtDNA methylation, HepG2 cells were subjected to 1 or 2 weeks of fatty acid treatment, but no clear differences in mtDNA methylation were detected. In contrast, hepatic Nd6 mitochondrial gene body cytosine methylation and Nd6 gene expression were increased in mice fed a high-fat high cholesterol diet (HFC for 6 or 20 weeks), when compared to controls, while mtDNA content was unchanged. For patients with simple steatosis, a higher ND6 methylation was confirmed using Methylation Specific PCR, but no additional distinctive cytosines could be identified using pyrosequencing. This study warrants further investigation into a role for mtDNA methylation in promoting mitochondrial dysfunction and impaired lipid metabolism in MAFLD.
Collapse
Affiliation(s)
- Archibold Mposhi
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Fabian Cortés-Mancera
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Departamento de Ciencias Aplicadas, Instituto Tecnológico Metropolitano, Medellín, Colombia
| | - Janette Heegsma
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Vincent E. de Meijer
- Department of Surgery, Division of Hepato-Pancreato-Biliary Surgery and Liver Transplantation, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Bart van de Sluis
- Section of Molecular Genetics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Svenja Sydor
- Department of Internal Medicine, University Hospital Knappschaftskrankenhaus, Bochum, Germany
- Ruhr-University Bochum, Bochum, Germany
| | - Lars P. Bechmann
- Department of Internal Medicine, University Hospital Knappschaftskrankenhaus, Bochum, Germany
- Ruhr-University Bochum, Bochum, Germany
| | - Claudia Theys
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Peter de Rijk
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Neuromics Support Facility, VIB-UAntwerp Center for Molecular Neurology, University of Antwerp, Antwerp, Belgium
| | - Tim De Pooter
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Neuromics Support Facility, VIB-UAntwerp Center for Molecular Neurology, University of Antwerp, Antwerp, Belgium
| | - Wim Vanden Berghe
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - İkbal Agah İnce
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Department of Medical Microbiology, School of Medicine, Acıbadem Mehmet Ali Aydınlar University, Istanbul, Türkiye
| | - Klaas Nico Faber
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Marianne G. Rots
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
7
|
The potential role of environmental factors in modulating mitochondrial DNA epigenetic marks. VITAMINS AND HORMONES 2023; 122:107-145. [PMID: 36863791 DOI: 10.1016/bs.vh.2023.01.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Many studies implicate mitochondrial dysfunction in the development and progression of numerous chronic diseases. Mitochondria are responsible for most cellular energy production, and unlike other cytoplasmic organelles, mitochondria contain their own genome. Most research to date, through investigating mitochondrial DNA copy number, has focused on larger structural changes or alterations to the entire mitochondrial genome and their role in human disease. Using these methods, mitochondrial dysfunction has been linked to cancers, cardiovascular disease, and metabolic health. However, like the nuclear genome, the mitochondrial genome may experience epigenetic alterations, including DNA methylation that may partially explain some of the health effects of various exposures. Recently, there has been a movement to understand human health and disease within the context of the exposome, which aims to describe and quantify the entirety of all exposures people encounter throughout their lives. These include, among others, environmental pollutants, occupational exposures, heavy metals, and lifestyle and behavioral factors. In this chapter, we summarize the current research on mitochondria and human health, provide an overview of the current knowledge on mitochondrial epigenetics, and describe the experimental and epidemiologic studies that have investigated particular exposures and their relationships with mitochondrial epigenetic modifications. We conclude the chapter with suggestions for future directions in epidemiologic and experimental research that is needed to advance the growing field of mitochondrial epigenetics.
Collapse
|
8
|
Low HC, Chilian WM, Ratnam W, Karupaiah T, Md Noh MF, Mansor F, Ng ZX, Pung YF. Changes in Mitochondrial Epigenome in Type 2 Diabetes Mellitus. Br J Biomed Sci 2023; 80:10884. [PMID: 36866104 PMCID: PMC9970885 DOI: 10.3389/bjbs.2023.10884] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 01/30/2023] [Indexed: 02/16/2023]
Abstract
Type 2 Diabetes Mellitus is a major chronic metabolic disorder in public health. Due to mitochondria's indispensable role in the body, its dysfunction has been implicated in the development and progression of multiple diseases, including Type 2 Diabetes mellitus. Thus, factors that can regulate mitochondrial function, like mtDNA methylation, are of significant interest in managing T2DM. In this paper, the overview of epigenetics and the mechanism of nuclear and mitochondrial DNA methylation were briefly discussed, followed by other mitochondrial epigenetics. Subsequently, the association between mtDNA methylation with T2DM and the challenges of mtDNA methylation studies were also reviewed. This review will aid in understanding the impact of mtDNA methylation on T2DM and future advancements in T2DM treatment.
Collapse
Affiliation(s)
- Hui Ching Low
- Division of Biomedical Science, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Selangor, Malaysia
| | - William M. Chilian
- Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown Township, OH, United States
| | - Wickneswari Ratnam
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Tilakavati Karupaiah
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor’s University Lakeside Campus, Subang Jaya, Selangor, Malaysia
| | - Mohd Fairulnizal Md Noh
- Nutrition, Metabolism and Cardiovascular Research Centre, Institute for Medical Research, National Institute of Health, Setia Alam, Shah Alam, Malaysia
| | - Fazliana Mansor
- Nutrition, Metabolism and Cardiovascular Research Centre, Institute for Medical Research, National Institute of Health, Setia Alam, Shah Alam, Malaysia
| | - Zhi Xiang Ng
- School of Biosciences, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Selangor, Malaysia
| | - Yuh Fen Pung
- Division of Biomedical Science, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Selangor, Malaysia,*Correspondence: Yuh Fen Pung,
| |
Collapse
|
9
|
Li JM, Zhang Z, Kong A, Lai W, Xu W, Cao X, Zhao M, Li J, Shentu J, Guo X, Mai K, Ai Q. Dietary l-carnitine regulates liver lipid metabolism via simultaneously activating fatty acid β-oxidation and suppressing endoplasmic reticulum stress in large yellow croaker fed with high-fat diets. Br J Nutr 2023; 129:29-40. [PMID: 35473947 DOI: 10.1017/s0007114522000101] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Dietary l-carnitine (LC) is a nutritional factor that reduces liver lipid content. However, whether dietary LC can improve lipid metabolism via simultaneous activation of mitochondrial fatty acid (FA) β-oxidation and suppression of endoplasmic reticulum (ER) stress is still unknown. Large yellow croaker were fed with a high-fat diet (HFD) supplemented with dietary LC at 0, 1·2 or 2·4 ‰ for 10 weeks. The results indicated that a HFD supplemented with LC reduced the liver total lipid and TAG content and improved serum lipid profiles. LC supplementation administered to this fish increased the liver antioxidant capacity by decreasing serum and liver malondialdehyde levels and enhancing the liver antioxidant capacity, which then relieved the liver damage. Dietary LC increased the ATP dynamic process and mitochondrial number, decreased mitochondrial DNA damage and enhanced the protein expression of mitochondrial β-oxidation, biogenesis and mitophagy. Furthermore, dietary LC supplementation increased the expression of genes and proteins related to peroxisomal β-oxidation and biogenesis. Interestingly, feeding fish with LC-enriched diets decreased the protein levels indicative of ER stress, such as glucose-regulated protein 78, p-eukaryotic translational initiation factor 2a and activating transcription factor 6. Dietary LC supplementation downregulated mRNA expression relative to FA synthesis, reduced liver lipid and relieved liver damage through regulating β-oxidation and biogenesis of mitochondria and peroxisomes, as well as the ER stress pathway in fish fed with HFD. The present study provides the first evidence that dietary LC can improve lipid metabolism via simultaneously promoting FA β-oxidation capability and suppressing the ER stress pathway in fish.
Collapse
Affiliation(s)
- Jia-Min Li
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture and Rural Affairs, and The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao, Shandong266003, People's Republic of China
| | - Zhou Zhang
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture and Rural Affairs, and The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao, Shandong266003, People's Republic of China
| | - Adong Kong
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture and Rural Affairs, and The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao, Shandong266003, People's Republic of China
| | - Wencong Lai
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture and Rural Affairs, and The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao, Shandong266003, People's Republic of China
| | - Wenxuan Xu
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture and Rural Affairs, and The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao, Shandong266003, People's Republic of China
| | - Xiufei Cao
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture and Rural Affairs, and The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao, Shandong266003, People's Republic of China
| | - Manxi Zhao
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture and Rural Affairs, and The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao, Shandong266003, People's Republic of China
| | - Jinbao Li
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture and Rural Affairs, and The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao, Shandong266003, People's Republic of China
| | - Jikang Shentu
- Ningbo Academy of Ocean and Fishery, Ningbo, Zhejiang315012, People's Republic of China
| | - Xiaohua Guo
- Shandong Meijia Group Co. LTD, 1 Haibin Road, Rizhao, Shandong266003, People's Republic of China
| | - Kangsen Mai
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture and Rural Affairs, and The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao, Shandong266003, People's Republic of China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, Shandong266237, People's Republic of China
| | - Qinghui Ai
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture and Rural Affairs, and The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao, Shandong266003, People's Republic of China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, Shandong266237, People's Republic of China
| |
Collapse
|
10
|
del Saz-Lara A, López de las Hazas MC, Visioli F, Dávalos A. Nutri-Epigenetic Effects of Phenolic Compounds from Extra Virgin Olive Oil: A Systematic Review. Adv Nutr 2022; 13:2039-2060. [PMID: 35679085 PMCID: PMC9526845 DOI: 10.1093/advances/nmac067] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/14/2022] [Accepted: 06/02/2022] [Indexed: 01/28/2023] Open
Abstract
Dietary components can induce epigenetic changes through DNA methylation, histone modification, and regulation of microRNAs (miRNAs). Studies of diet-induced epigenetic regulation can inform anticipatory trials and fine-tune public health guidelines. We systematically reviewed data on the effect of extra virgin olive oil (EVOO) and its phenolic compounds (OOPCs) on the epigenetic landscape. We conducted a literature search using PubMed, Scopus, and Web of Science databases and scrutinized published evidence. After applying selection criteria (e.g., inclusion of in vitro, animal, or human studies supplemented with EVOO or its OOPCs), we thoroughly reviewed 51 articles, and the quality assessment was performed using the revised Cochrane risk of bias tool. The results show that both EVOO and its OOPCs can promote epigenetic changes capable of regulating the expression of genes and molecular targets involved in different metabolic processes. For example, oleuropein (OL) may be an epigenetic regulator in cancer, and hydroxytyrosol (HT) modulates the expression of miRNAs involved in the development of cancer, cardiovascular, and neurodegenerative diseases. We conclude that EVOO and its OOPCs can regulate gene expression by modifying epigenetic mechanisms that impact human pathophysiology. A full elucidation of the epigenetic effects of EVOO and its OOPCs may contribute to developing different pharma-nutritional strategies that exploit them as epigenetic agents. This study was registered in the International Prospective Register of Systematic Reviews (PROSPERO) as CRD42022320316.
Collapse
Affiliation(s)
- Andrea del Saz-Lara
- Laboratory of Epigenetics of Lipid Metabolism, Madrid Institute for Advanced Studies (IMDEA)-Food, Campus de Excelencia Internacional de la Universidad Autónoma de Madrid y el Consejo Superior de Investigaciones Científicas (CEI UAM + CSIC), Madrid, Spain,Laboratory of Functional Foods, Madrid Institute for Advanced Studies (IMDEA)-Food, CEI UAM + CSIC, Madrid, Spain
| | - María-Carmen López de las Hazas
- Laboratory of Epigenetics of Lipid Metabolism, Madrid Institute for Advanced Studies (IMDEA)-Food, Campus de Excelencia Internacional de la Universidad Autónoma de Madrid y el Consejo Superior de Investigaciones Científicas (CEI UAM + CSIC), Madrid, Spain
| | | | | |
Collapse
|
11
|
Cao X, Fang W, Li X, Wang X, Mai K, Ai Q. Increased LDL receptor by SREBP2 or SREBP2-induced lncRNA LDLR-AS promotes triglyceride accumulation in fish. iScience 2022; 25:104670. [PMID: 35811843 PMCID: PMC9263516 DOI: 10.1016/j.isci.2022.104670] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 05/11/2022] [Accepted: 06/21/2022] [Indexed: 11/17/2022] Open
Abstract
LDLR, as the uptake receptor of low-density lipoprotein, plays a crucial role in lipid metabolism. However, the detailed mechanism by which LDLR affects hepatic triglyceride (TG) accumulation has rarely been reported. Here, we found that knockdown of LDLR effectively mitigated PA-induced TG accumulation. Further analysis revealed that the expression of LDLR was controlled by SREBP2 directly and indirectly. On one hand, transcription factor SREBP2 activated the transcription of LDLR directly. On the other hand, SREBP2 indirectly regulated LDLR by increasing the transcription of lncRNA LDLR-AS in fish. Mechanism analysis found that LDLR-AS functioned as an RNA scaffold to recruit heterogeneous nuclear ribonucleoprotein R (hnRNPR) to the 5′ UTR region of LDLR mRNA, which stabilized LDLR mRNA at the post-transcription level. In conclusion, our study demonstrates that increased LDLR transcription and mRNA stability is regulated by SREBP2 directly or indirectly, and promotes hepatic TG accumulation by endocytosing LDL in fish. PA-mediated LDLR increases triglyceride accumulation via the uptake of LDL in fish SREBP2 activated by TNFα promotes LDLR transcription in fish LncRNA LDLR-AS increases LDLR mRNA stability by recruiting hnRNPR in fish
Collapse
Affiliation(s)
- Xiufei Cao
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, People’s Republic of China
| | - Wei Fang
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, People’s Republic of China
| | - Xueshan Li
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, People’s Republic of China
| | - Xiuneng Wang
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, People’s Republic of China
| | - Kangsen Mai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, People’s Republic of China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, Shandong 266237, People’s Republic of China
| | - Qinghui Ai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, People’s Republic of China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, Shandong 266237, People’s Republic of China
- Corresponding author
| |
Collapse
|
12
|
Environmental adaptation in fish induced changes in the regulatory region of fatty acid elongase gene, elovl5, involved in long-chain polyunsaturated fatty acid biosynthesis. Int J Biol Macromol 2022; 204:144-153. [PMID: 35120941 DOI: 10.1016/j.ijbiomac.2022.01.184] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/28/2022] [Accepted: 01/28/2022] [Indexed: 11/22/2022]
Abstract
Fish are the main source of long-chain polyunsaturated fatty acids (LC-PUFA) for human consumption. In the process of evolution via natural selection, adaptation to distinct environments has likely driven changes in the endogenous capacity for LC-PUFA biosynthesis between marine and freshwater fishes. However, the molecular mechanisms underlying adaptive changes in this metabolic pathway are poorly understood. Here, we compared the transcriptional regulation of elongation of very long chain fatty acids protein 5 (Elovl5), which is one of the critical enzymes in LC-PUFA biosynthesis pathway, in marine large yellow croaker (Larimichthys crocea) and freshwater rainbow trout (Oncorhynchus mykiss). Comparative transcriptomic and absolute mRNA quantification analyses revealed that the expression of elovl5 in rainbow trout was markedly higher than that in large yellow croaker. Correspondingly, the number of chromatin accessible areas in the regulatory region of elovl5 in rainbow trout was higher than in large yellow croaker, which revealed that chromatin accessibility in the regulatory region of elovl5 in rainbow trout was higher. Furthermore, the differences in sequence and activity of the elovl5 promoter were observed between rainbow trout and large yellow croaker, and transcription factors including CCAAT/enhancer-binding protein β (CEBPβ), GATA binding protein 3 (GATA3) and upstream stimulatory factor 2 (USF2) displayed different regulatory roles on elovl5 expression between the two species. We propose that changes in the gene regulatory region driven by natural selection likely play a key role in differences in elovl5 expression and the activity of Elovl5, which may influence the LC-PUFA biosynthesis capacities of rainbow trout and large yellow croaker. These findings may also provide opportunities to improve the quality of aquatic products and, consequently, human health.
Collapse
|
13
|
Fang W, Chen Q, Cui K, Chen Q, Li X, Xu N, Mai K, Ai Q. Lipid overload impairs hepatic VLDL secretion via oxidative stress-mediated PKCδ-HNF4α-MTP pathway in large yellow croaker (Larimichthys crocea). Free Radic Biol Med 2021; 172:213-225. [PMID: 34116177 DOI: 10.1016/j.freeradbiomed.2021.06.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 05/30/2021] [Accepted: 06/02/2021] [Indexed: 02/08/2023]
Abstract
Lipid overload-induced hepatic steatosis is a major public health problem worldwide. However, the potential molecular mechanism is not completely understood. Herein, we found that high-fat diet (HFD) or oleic acid (OA) treatment induced oxidative stress which prevented the entry of hepatocyte nuclear factor 4 alpha (HNF4α) into the nucleus by activating protein kinase C delta (PKCδ) in vivo and in vitro in large yellow croaker (Larimichthys crocea). This reduced the level of microsomal triglyceride transfer protein (MTP) transcription, resulting in the impaired secretion of very-low-density lipoprotein (VLDL) and the abnormal accumulation of triglyceride (TG) in hepatocytes. Meanwhile, the detrimental effects induced by lipid overload could be partly alleviated by pretreating hepatocytes with Go6983 (PKCδ inhibitor) or N-acetylcysteine (NAC, reactive oxygen species (ROS) scavenger). In conclusion, for the first time, we revealed that lipid overload impaired hepatic VLDL secretion via oxidative stress-mediated PKCδ-HNF4α-MTP pathway in fish. This study may provide critical insights into potential intervention strategies against lipid overload-induced hepatic steatosis of fish and human beings.
Collapse
Affiliation(s)
- Wei Fang
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, People's Republic of China
| | - Qiuchi Chen
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, People's Republic of China
| | - Kun Cui
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, People's Republic of China
| | - Qiang Chen
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, People's Republic of China
| | - Xueshan Li
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, People's Republic of China
| | - Ning Xu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, People's Republic of China
| | - Kangsen Mai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, People's Republic of China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, 266237, Qingdao, Shandong, People's Republic of China
| | - Qinghui Ai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, People's Republic of China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, 266237, Qingdao, Shandong, People's Republic of China.
| |
Collapse
|
14
|
Nutrigenomics of Dietary Lipids. Antioxidants (Basel) 2021; 10:antiox10070994. [PMID: 34206632 PMCID: PMC8300813 DOI: 10.3390/antiox10070994] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/11/2021] [Accepted: 06/16/2021] [Indexed: 12/12/2022] Open
Abstract
Dietary lipids have a major role in nutrition, not only for their fuel value, but also as essential and bioactive nutrients. This narrative review aims to describe the current evidence on nutrigenomic effects of dietary lipids. Firstly, the different chemical and biological properties of fatty acids contained both in plant- and animal-based food are illustrated. A description of lipid bioavailability, bioaccessibility, and lipotoxicity is provided, together with an overview of the modulatory role of lipids as pro- or anti-inflammatory agents. Current findings concerning the metabolic impact of lipids on gene expression, epigenome, and gut microbiome in animal and human studies are summarized. Finally, the effect of the individual’s genetic make-up on lipid metabolism is described. The main goal is to provide an overview about the interaction between dietary lipids and the genome, by identifying and discussing recent scientific evidence, recognizing strengths and weaknesses, to address future investigations and fill the gaps in the current knowledge on metabolic impact of dietary fats on health.
Collapse
|
15
|
Mitochondrial DNA Methylation and Human Diseases. Int J Mol Sci 2021; 22:ijms22094594. [PMID: 33925624 PMCID: PMC8123858 DOI: 10.3390/ijms22094594] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/23/2021] [Accepted: 04/25/2021] [Indexed: 12/12/2022] Open
Abstract
Epigenetic modifications of the nuclear genome, including DNA methylation, histone modifications and non-coding RNA post-transcriptional regulation, are increasingly being involved in the pathogenesis of several human diseases. Recent evidence suggests that also epigenetic modifications of the mitochondrial genome could contribute to the etiology of human diseases. In particular, altered methylation and hydroxymethylation levels of mitochondrial DNA (mtDNA) have been found in animal models and in human tissues from patients affected by cancer, obesity, diabetes and cardiovascular and neurodegenerative diseases. Moreover, environmental factors, as well as nuclear DNA genetic variants, have been found to impair mtDNA methylation patterns. Some authors failed to find DNA methylation marks in the mitochondrial genome, suggesting that it is unlikely that this epigenetic modification plays any role in the control of the mitochondrial function. On the other hand, several other studies successfully identified the presence of mtDNA methylation, particularly in the mitochondrial displacement loop (D-loop) region, relating it to changes in both mtDNA gene transcription and mitochondrial replication. Overall, investigations performed until now suggest that methylation and hydroxymethylation marks are present in the mtDNA genome, albeit at lower levels compared to those detectable in nuclear DNA, potentially contributing to the mitochondria impairment underlying several human diseases.
Collapse
|
16
|
Li X, Chen Q, Li Q, Li J, Cui K, Zhang Y, Kong A, Zhang Y, Wan M, Mai K, Ai Q. Effects of High Levels of Dietary Linseed Oil on the Growth Performance, Antioxidant Capacity, Hepatic Lipid Metabolism, and Expression of Inflammatory Genes in Large Yellow Croaker ( Larimichthys crocea). Front Physiol 2021; 12:631850. [PMID: 33679441 PMCID: PMC7925408 DOI: 10.3389/fphys.2021.631850] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 01/11/2021] [Indexed: 12/15/2022] Open
Abstract
A growth experiment was conducted to evaluate the effects of dietary fish oil (FO) replaced by linseed oil (LO) on the growth performance, antioxidant capacity, hepatic lipid metabolism, and expression of inflammatory genes in large yellow croaker (Larimichthys crocea). Fish (initial weight: 15.88 ± 0.14 g) were fed four experimental diets with 0% (the control), 33.3%, 66.7%, and 100% of FO replaced by LO. Each diet was randomly attributed to triplicate seawater floating cages (1.0 × 1.0 × 2.0 m) with 60 fish in each cage. Results showed that the growth performance of fish fed the diet with 100% LO was markedly decreased compared with the control group (P < 0.05), while no remarkable difference was observed in the growth performance of fish fed diets within 66.7% LO (P > 0.05). The percentage of 18:3n-3 was the highest in the liver and muscle of fish fed the diet with 100% LO among the four treatments. When dietary FO was entirely replaced by LO, fish had a markedly higher total cholesterol, total triglyceride, low-density lipoprotein cholesterol content, and alanine transaminase activity in the serum than the control group (P < 0.05). The concentration of malondialdehyde was markedly higher, while the activity of catalase was markedly lower in fish fed the diet with 100% LO than the control group (P < 0.05). When dietary FO was entirely replaced by LO, hepatic lipid content, transcriptional levels of fatp1 and cd36, and CD36 protein expression were significantly higher, while transcriptional level of cpt-1 and CPT-1 protein expression were significantly lower than the control group (P < 0.05). As for the gene expression of cytokines, fish fed the diet with 100% LO had markedly higher transcriptional levels of il-1β, tnfα, and il-6 than the control group (P < 0.05). In conclusion, the substitution of 66.7% FO with LO had no significant effects on the growth performance of fish, while 100% LO decreased the growth performance and increased the inflammation and hepatic lipid content of fish. The increase of hepatic lipid content was probably due to the increased fatty acid uptake and decreased fatty acid oxidation in fish.
Collapse
Affiliation(s)
- Xueshan Li
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture and Rural Affairs, and the Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Qiuchi Chen
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture and Rural Affairs, and the Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Qingfei Li
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture and Rural Affairs, and the Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Jiamin Li
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture and Rural Affairs, and the Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Kun Cui
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture and Rural Affairs, and the Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Yunqiang Zhang
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture and Rural Affairs, and the Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Adong Kong
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture and Rural Affairs, and the Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Yanjiao Zhang
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture and Rural Affairs, and the Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Min Wan
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture and Rural Affairs, and the Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Kangsen Mai
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture and Rural Affairs, and the Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Qinghui Ai
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture and Rural Affairs, and the Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
17
|
Acevedo N, Alashkar Alhamwe B, Caraballo L, Ding M, Ferrante A, Garn H, Garssen J, Hii CS, Irvine J, Llinás-Caballero K, López JF, Miethe S, Perveen K, Pogge von Strandmann E, Sokolowska M, Potaczek DP, van Esch BCAM. Perinatal and Early-Life Nutrition, Epigenetics, and Allergy. Nutrients 2021; 13:724. [PMID: 33668787 PMCID: PMC7996340 DOI: 10.3390/nu13030724] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/08/2021] [Accepted: 02/12/2021] [Indexed: 02/08/2023] Open
Abstract
Epidemiological studies have shown a dramatic increase in the incidence and the prevalence of allergic diseases over the last several decades. Environmental triggers including risk factors (e.g., pollution), the loss of rural living conditions (e.g., farming conditions), and nutritional status (e.g., maternal, breastfeeding) are considered major contributors to this increase. The influences of these environmental factors are thought to be mediated by epigenetic mechanisms which are heritable, reversible, and biologically relevant biochemical modifications of the chromatin carrying the genetic information without changing the nucleotide sequence of the genome. An important feature characterizing epigenetically-mediated processes is the existence of a time frame where the induced effects are the strongest and therefore most crucial. This period between conception, pregnancy, and the first years of life (e.g., first 1000 days) is considered the optimal time for environmental factors, such as nutrition, to exert their beneficial epigenetic effects. In the current review, we discussed the impact of the exposure to bacteria, viruses, parasites, fungal components, microbiome metabolites, and specific nutritional components (e.g., polyunsaturated fatty acids (PUFA), vitamins, plant- and animal-derived microRNAs, breast milk) on the epigenetic patterns related to allergic manifestations. We gave insight into the epigenetic signature of bioactive milk components and the effects of specific nutrition on neonatal T cell development. Several lines of evidence suggest that atypical metabolic reprogramming induced by extrinsic factors such as allergens, viruses, pollutants, diet, or microbiome might drive cellular metabolic dysfunctions and defective immune responses in allergic disease. Therefore, we described the current knowledge on the relationship between immunometabolism and allergy mediated by epigenetic mechanisms. The knowledge as presented will give insight into epigenetic changes and the potential of maternal and post-natal nutrition on the development of allergic disease.
Collapse
Affiliation(s)
- Nathalie Acevedo
- Institute for Immunological Research, University of Cartagena, Cartagena 130014, Colombia; (N.A.); (L.C.); (K.L.-C.); (J.F.L.)
| | - Bilal Alashkar Alhamwe
- Institute of Tumor Immunology, Clinic for Hematology, Oncology and Immunology, Center for Tumor Biology and Immunology, Philipps University Marburg, 35043 Marburg, Germany; (B.A.A.); (E.P.v.S.)
- College of Pharmacy, International University for Science and Technology (IUST), Daraa 15, Syria
| | - Luis Caraballo
- Institute for Immunological Research, University of Cartagena, Cartagena 130014, Colombia; (N.A.); (L.C.); (K.L.-C.); (J.F.L.)
| | - Mei Ding
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, 7265 Davos, Switzerland; (M.D.); (M.S.)
- Christine Kühne-Center for Allergy Research and Education, 7265 Davos, Switzerland
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Antonio Ferrante
- Department of Immunopathology, SA Pathology at the Women’s and Children’s Hospital, North Adelaide, SA 5006, Australia; (A.F.); (C.S.H.); (J.I.); (K.P.)
- Adelaide School of Medicine and the Robinson Research Institute, University of Adelaide, Adelaide, SA 5005, Australia
- School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Holger Garn
- Translational Inflammation Research Division & Core Facility for Single Cell Multiomics, Medical Faculty, Philipps University Marburg, Member of the German Center for Lung Research (DZL) and the Universities of Giessen and Marburg Lung Center, 35043 Marburg, Germany; (H.G.); (S.M.)
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands;
- Danone Nutricia Research, 3584 CT Utrecht, The Netherlands
| | - Charles S. Hii
- Department of Immunopathology, SA Pathology at the Women’s and Children’s Hospital, North Adelaide, SA 5006, Australia; (A.F.); (C.S.H.); (J.I.); (K.P.)
- Adelaide School of Medicine and the Robinson Research Institute, University of Adelaide, Adelaide, SA 5005, Australia
| | - James Irvine
- Department of Immunopathology, SA Pathology at the Women’s and Children’s Hospital, North Adelaide, SA 5006, Australia; (A.F.); (C.S.H.); (J.I.); (K.P.)
- Adelaide School of Medicine and the Robinson Research Institute, University of Adelaide, Adelaide, SA 5005, Australia
| | - Kevin Llinás-Caballero
- Institute for Immunological Research, University of Cartagena, Cartagena 130014, Colombia; (N.A.); (L.C.); (K.L.-C.); (J.F.L.)
| | - Juan Felipe López
- Institute for Immunological Research, University of Cartagena, Cartagena 130014, Colombia; (N.A.); (L.C.); (K.L.-C.); (J.F.L.)
| | - Sarah Miethe
- Translational Inflammation Research Division & Core Facility for Single Cell Multiomics, Medical Faculty, Philipps University Marburg, Member of the German Center for Lung Research (DZL) and the Universities of Giessen and Marburg Lung Center, 35043 Marburg, Germany; (H.G.); (S.M.)
| | - Khalida Perveen
- Department of Immunopathology, SA Pathology at the Women’s and Children’s Hospital, North Adelaide, SA 5006, Australia; (A.F.); (C.S.H.); (J.I.); (K.P.)
- Adelaide School of Medicine and the Robinson Research Institute, University of Adelaide, Adelaide, SA 5005, Australia
| | - Elke Pogge von Strandmann
- Institute of Tumor Immunology, Clinic for Hematology, Oncology and Immunology, Center for Tumor Biology and Immunology, Philipps University Marburg, 35043 Marburg, Germany; (B.A.A.); (E.P.v.S.)
| | - Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, 7265 Davos, Switzerland; (M.D.); (M.S.)
- Christine Kühne-Center for Allergy Research and Education, 7265 Davos, Switzerland
| | - Daniel P. Potaczek
- Translational Inflammation Research Division & Core Facility for Single Cell Multiomics, Medical Faculty, Philipps University Marburg, Member of the German Center for Lung Research (DZL) and the Universities of Giessen and Marburg Lung Center, 35043 Marburg, Germany; (H.G.); (S.M.)
| | - Betty C. A. M. van Esch
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands;
- Danone Nutricia Research, 3584 CT Utrecht, The Netherlands
| |
Collapse
|
18
|
Fabiani R, Vella N, Rosignoli P. Epigenetic Modifications Induced by Olive Oil and Its Phenolic Compounds: A Systematic Review. Molecules 2021; 26:E273. [PMID: 33430487 PMCID: PMC7826507 DOI: 10.3390/molecules26020273] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 12/30/2020] [Accepted: 01/05/2021] [Indexed: 02/06/2023] Open
Abstract
Many studies demonstrated that olive oil (especially extra virgin olive oil: EVOO) phenolic compounds are bioactive molecules with anti-cancer, anti-inflammatory, anti-aging and neuroprotective activities. These effects have been recently attributed to the ability of these compounds to induce epigenetics modifications such as miRNAs expression, DNA methylation and histone modifications. In this study, we systematically review and discuss, following the PRISMA statements, the epigenetic modifications induced by EVOO and its phenols in different experimental systems. At the end of literature search through "PubMed", "Web of Science" and "Scopus", 43 studies were selected.Among them, 22 studies reported data on miRNAs, 15 on DNA methylation and 13 on histone modification. Most of the "epigenomic" changes observed in response to olive oil phenols' exposure were mechanistically associated with the cancer preventive and anti-inflammatory effects. In many cases, the epigenetics effects regarding the DNA methylation were demonstrated for olive oil but without any indication regarding the presence or not of phenols. Overall, the findings of the present systematic review may have important implications for understanding the epigenetic mechanisms behind the health effects of olive oil. However, generally no direct evidence was provided for the causal relationships between epigenetics modification and EVOO health related effects. Further studies are necessary to demonstrate the real physiological consequences of the epigenetics modification induced by EVOO and its phenolic compounds.
Collapse
Affiliation(s)
- Roberto Fabiani
- Department of Chemistry, Biology, and Biotechnology, University of Perugia, Via del Giochetto, 06126 Perugia, Italy; (N.V.); (P.R.)
| | | | | |
Collapse
|
19
|
Saeidi M, Vieira A. Dietary Factors and the Epigenetics of Fatty Liver Disease. SYSTEMS MEDICINE 2021. [DOI: 10.1016/b978-0-12-801238-3.11645-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
20
|
Dong YZ, Li L, Espe M, Lu KL, Rahimnejad S. Hydroxytyrosol Attenuates Hepatic Fat Accumulation via Activating Mitochondrial Biogenesis and Autophagy through the AMPK Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:9377-9386. [PMID: 32786840 DOI: 10.1021/acs.jafc.0c03310] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Two experiments were carried out to examine the impacts of hydroxytyrosol (HT) on lipid metabolism and mitochondrial function in Megalobrama amblycephala. Triplicate groups of fish were fed four test diets: (1) low-fat diet (LFD, 5% fat), (2) high-fat diet (HFD, 15% fat), (3) LFD + 100 mg/kg HT (LFD + HT), and (4) HFD + 100 mg/kg HT (HFD + HT) (in vivo). Hepatocytes from the same batch were exposed to three media including L-15 medium (L15), oleic acid (OA) medium [L15 + 400 μM OA], and OA + HT medium [L15 + 400 μM OA + 10 μM HT] to explore the roles of HT in mitochondrial function (in vitro). Fish fed HFD had excessive fat deposition in the liver, and HT inclusion in the HFD decreased hepatic fat deposition. Transmission electron microscopy revealed that the HFD triggers loss of cristae and metrical density and hydropic changes in mitochondria and that HT supplementation attenuates the ultrastructural alterations of mitochondria. The in vitro test showed that HT decreases fat deposition in hepatocytes, suppresses the reactive oxygen species formation, and facilitates the expression of phospho-AMPK protein and the genes involved in mitochondria biogenesis (PGC-1, NRF-1, TFAM) and autophagy (PINK1, Mul1, Atg5). These findings suggest the lipid-lowering effect of HT mediated by activation of mitochondrial biogenesis and autophagy through the AMPK pathway.
Collapse
Affiliation(s)
- Yan-Zou Dong
- Key Laboratory for Feed Quality Testing and Safety, Fisheries College, Jimei University, Xiamen 361021, China
| | - Lei Li
- Key Laboratory for Feed Quality Testing and Safety, Fisheries College, Jimei University, Xiamen 361021, China
| | - Marit Espe
- Institute of Marine Research (IMR), Bergen NO-5817, Norway
| | - Kang-Le Lu
- Key Laboratory for Feed Quality Testing and Safety, Fisheries College, Jimei University, Xiamen 361021, China
| | - Samad Rahimnejad
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/ II, Vodnany 389 25, Czech Republic
| |
Collapse
|
21
|
Ji R, Xu X, Xiang X, Zhu S, Li Y, Mai K, Ai Q. Regulation of adiponectin on lipid metabolism in large yellow croaker (Larimichthys crocea). Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158711. [PMID: 32289502 DOI: 10.1016/j.bbalip.2020.158711] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/03/2020] [Accepted: 04/04/2020] [Indexed: 12/12/2022]
Abstract
Adiponectin (APN), an adipose tissue-derived hormone, plays a key role in regulating energy metabolism in mammals. However, its physiological roles in teleosts remain poorly understood. In the present study, the apn gene was cloned from large yellow croaker, which was mainly expressed in the adipose, muscle and liver. Further studies showed that adaptor protein phosphotyrosine interaction PH domain and leucine zipper 1 (APPL1) was localized in the cytoplasm near the cell membrane and was directly bounded to adiponectin receptors (AdipoRs). Meanwhile, APN played a crucial role in lipid metabolism of primary muscle cells by promoting the synthesis, oxidation and transport of fatty acids, and the promoting effects were blocked by knockdown of appl1 and AdipoRs. Furthermore, the activation/inhibition of peroxisome proliferators activated receptor γ (PPARγ) enhanced/suppressed the APN-mediated lipid metabolism. Overall, results showed that APN mediated lipid metabolism through AdipoRs-APPL1 activated PPARγ and further regulated the synthesis, oxidation and transport of FA. This study will facilitate the investigation of APN functions in lipid metabolism and energy homeostasis and reveal the evolution of lipids utilization and energy homeostasis in vertebrates.
Collapse
Affiliation(s)
- Renlei Ji
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, PR China
| | - Xiang Xu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, PR China
| | - Xiaojun Xiang
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, PR China
| | - Si Zhu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, PR China
| | - Yongnan Li
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, PR China
| | - Kangsen Mai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, PR China; Laboratory for Marine Fisheries and Aquaculture, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266003, PR China
| | - Qinghui Ai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, PR China; Laboratory for Marine Fisheries and Aquaculture, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266003, PR China.
| |
Collapse
|
22
|
Mu H, Wei C, Zhang Y, Zhou H, Pan Y, Chen J, Zhang W, Mai K. Impacts of replacement of dietary fish oil by vegetable oils on growth performance, anti-oxidative capacity, and inflammatory response in large yellow croaker Larimichthys crocea. FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:231-245. [PMID: 31734894 DOI: 10.1007/s10695-019-00712-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 09/25/2019] [Indexed: 06/10/2023]
Abstract
A 12-week feeding trial was conducted to evaluate the effects of replacement of dietary fish oil by palm and linseed oils on the growth performance, anti-oxidative capacity, and inflammatory responses of large yellow croaker (initial body weight: 36.82 ± 0.29 g). The control diet was designed to contain 6.5% of fish oil, and named as FO. On the basis of the control diet, the fish oil was 100% replaced by palm and linseed oils, and these two diets were named as PO and LO, respectively. Results showed that the specific growth rate significantly reduced in the PO and LO groups. Crude lipid content in liver of fish fed FO was significantly lower than that in the PO and LO groups. Fatty acid composition in liver reflected the dietary input. Compared with the FO group, palm oil inclusion significantly decreased expressions of superoxide dismutase 1, catalase, and nuclear factor erythroid 2-related factor 2 in liver, while linseed oil inclusion significantly increased expressions of above genes. However, both of the PO and LO groups had a significantly lower total anti-oxidative capacity in liver than the fish fed FO. Dietary palm and linseed oils significantly decreased expressions of arginase I and interleukin 10, and increased expressions of tumor necrosis factor α, interleukin 1β, toll-like receptor 22, and myeloid differentiation factor 88 in liver. In conclusion, total replacement of dietary fish oil by palm and linseed oils could suppress growth performance and liver anti-oxidative capacity, and induce inflammatory responses of large yellow croaker.
Collapse
Affiliation(s)
- Hua Mu
- The Key Laboratory of Mariculture, Ministry of Education; The Key Laboratory of Aquaculture Nutrition and Feeds, Ministry of Agriculture, Ocean University of China, Qingdao, 266003, China
| | - Chaoqing Wei
- The Key Laboratory of Mariculture, Ministry of Education; The Key Laboratory of Aquaculture Nutrition and Feeds, Ministry of Agriculture, Ocean University of China, Qingdao, 266003, China
| | - Yanjiao Zhang
- The Key Laboratory of Mariculture, Ministry of Education; The Key Laboratory of Aquaculture Nutrition and Feeds, Ministry of Agriculture, Ocean University of China, Qingdao, 266003, China
| | - Huihui Zhou
- The Key Laboratory of Mariculture, Ministry of Education; The Key Laboratory of Aquaculture Nutrition and Feeds, Ministry of Agriculture, Ocean University of China, Qingdao, 266003, China
| | - Ying Pan
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, 352103, Fujian, China
| | - Jia Chen
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, 352103, Fujian, China
| | - Wenbing Zhang
- The Key Laboratory of Mariculture, Ministry of Education; The Key Laboratory of Aquaculture Nutrition and Feeds, Ministry of Agriculture, Ocean University of China, Qingdao, 266003, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Wen Hai Road, Qingdao, 266237, China.
| | - Kangsen Mai
- The Key Laboratory of Mariculture, Ministry of Education; The Key Laboratory of Aquaculture Nutrition and Feeds, Ministry of Agriculture, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Wen Hai Road, Qingdao, 266237, China
| |
Collapse
|
23
|
Malodobra-Mazur M, Cierzniak A, Dobosz T. Oleic acid influences the adipogenesis of 3T3-L1 cells via DNA Methylation and may predispose to obesity and obesity-related disorders. Lipids Health Dis 2019; 18:230. [PMID: 31883537 PMCID: PMC6935146 DOI: 10.1186/s12944-019-1173-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 12/09/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Adipogenesis is the process of adipocytes formation from unspecialized progenitor cells called mesenchymal stromal cells. Numerous mechanisms including epigenetic regulation modulate the correct progress of this process. Dietary exposures occurring over a specific period of time might cause long-lasting and even permanent changes in gene expression regulated by epigenetic mechanisms. For that reason, we investigated the adipogenesis of 3 T3-L1 cells with the excess of saturated and monounsaturated fatty acids and their influence on global and site-specific DNA methylation in these cells. MATERIALS AND METHODS 3T3-L1 cells were cultured in vitro to obtain 100% of confluence, then the adipogenesis was induced by a differentiation cocktail with the addition of the excess of 0.25 mM and 0.5 mM of palmitic (16:0), stearic (18:0) and oleic (18:1n-9) acids. DNA and RNA were extracted at five-time points to assess the adipogenesis process. The phenotype of mature adipocytes (insulin sensitivity, adipokines secretion, fat content) was estimated in fully mature adipocytes. DNA methylation was investigated both during adipogenesis and in mature adipocytes. RESULTS Oleic acids stimulated expression of C/ebpα and Pparγ, which was correlated with lower methylation levels at promoters sites. Furthermore, cells cultured with an excess of oleic acid were characterized by higher lipid accumulation rate, higher leptin, and lower adiponectin secretion. Moreover, in all experimental cells, insulin signaling and glucose utilization were impaired. CONCLUSION Oleic acid affected the methylation of Pparγ and C/ebpα promoters, what correlated with higher expression. Furthermore, examined free fatty acids influenced the phenotype of mature adipocytes, especially insulin signaling pathway and adipokine secretion.
Collapse
Affiliation(s)
- Malgorzata Malodobra-Mazur
- Department of Forensic Medicine, Molecular Techniques Unit, Wroclaw Medical University, Sklodowskiej-Curie 52, 50-369, Wroclaw, Poland.
| | - Aneta Cierzniak
- Department of Forensic Medicine, Molecular Techniques Unit, Wroclaw Medical University, Sklodowskiej-Curie 52, 50-369, Wroclaw, Poland
| | - Tadeusz Dobosz
- Department of Forensic Medicine, Molecular Techniques Unit, Wroclaw Medical University, Sklodowskiej-Curie 52, 50-369, Wroclaw, Poland
| |
Collapse
|
24
|
Molecular Cloning, Characterization, and Nutritional Regulation of Elovl6 in Large Yellow Croaker ( Larimichthys crocea). Int J Mol Sci 2019; 20:ijms20071801. [PMID: 30979053 PMCID: PMC6480403 DOI: 10.3390/ijms20071801] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/02/2019] [Accepted: 04/09/2019] [Indexed: 01/17/2023] Open
Abstract
Elongation of very long chain fatty acids protein 6 (Elovl6) is a key enzyme in fatty acid synthesis, which participates in converting palmitate (C16:0) to stearate (C18:0). Although studies of Elovl6 have been carried out in mammals, the nutritional regulation of elovl6 in fish remains poorly understood. In the present study, the cloning and nutritional regulation of elovl6 were determined in large yellow croaker. Sequence and phylogenetic analysis revealed that the full-length cDNA of elovl6 was 1360 bp, including an open reading frame of 810 bp encoding a putative protein of 269 amino acid that possesses the characteristic features of Elovl proteins. The transcript level of elovl6 was significantly increased in the liver of croaker fed the diets with soybean oil (enriched with 18: 2n-6, LA) or linseed oil (enriched with 18: 3n-3, ALA) than that in croaker fed the diet with fish oil (enriched with 20: 5n-3 and 22: 6n-3). Correspondingly, the elovl6 expression in croaker’s hepatocytes treated with ALA or LA was remarkably increased compared to the controls. Furthermore, the transcription factors including hepatocyte nuclear factor 1α (HNF1α), CCAAT-enhancer-binding protein β (CEBPβ), retinoid X receptor α (RXRα), and cAMP response element-binding protein 1 (CREB1) greatly enhanced promoter activity of elovl6 in large yellow croaker, and the expression of transcription factors is consistent with the changes of elovl6 expression in response to fatty acids in vivo and in vitro. In conclusion, this study revealed that elovl6 expression in large yellow croaker could be upregulated by dietary ALA or LA via the increased transcriptional expression of transcription factors including hnf1α, cebpβ, rxrα, and creb1.
Collapse
|
25
|
Ding S, Chen J, Zeng Q, Lu J, Tan L, Guo A, Kang J, Yang S, Xiang Y, Zuo C, Huang J. Chronic sun exposure is associated with distinct histone acetylation changes in human skin. Br J Dermatol 2018; 179:110-117. [PMID: 29150847 DOI: 10.1111/bjd.16129] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2017] [Indexed: 01/24/2023]
Abstract
BACKGROUND Photoageing is attributed to continuous sunlight or artificial ultraviolet exposure and manifests as clinical and histological changes in skin. Epigenetic changes have been found to be involved in the pathogenesis of photoageing. However, the underlying mechanisms are unclear. OBJECTIVES To analyse histone modification patterns in sun-exposed and nonexposed skin, and to identify the abnormally histone-modified genes related to photoageing. METHODS Skin biopsies were collected from both the outer forearm (sun-exposed area) and the buttock (sun-protected area) in 20 healthy middle-aged female volunteers. Global histone H3/H4 acetylation and H3K4/H3K9 methylation statuses were assessed by enzyme-linked immunosorbent assay. Expression levels of histone acetyltransferases and histone deacetylases were measured by reverse-transcriptase quantitative polymerase chain reaction (qPCR) and Western blot. Chromatin immunoprecipitation combined with DNA microarray (ChIP-chip) assay with anti-acetyl-histone H3 antibody in a sun-exposed pool (combining six sun-exposed skin samples) and a nonexposed pool (combining six nonexposed skin samples) was conducted to explore the abnormally acetylated histone H3 genes related to photoageing; ChIP-qPCR was then used to verify the results of ChIP-chip. RESULTS We observed higher global histone H3 acetylation levels increased EP300 and decreased HDAC1 and SIRT1 expression in sun-exposed skin compared with matched nonexposed skin. Furthermore, the ChIP-chip assay showed that 227 genes displayed significant hyperacetylation of histone H3, and 81 genes displayed significant hypoacetylation of histone H3 between the two groups. Histone H3 acetylation levels on the promoters of PDCD5, ITIH5, MMP1 and AHR were positively correlated with the mRNA expression of the corresponding gene. CONCLUSIONS Chronic sun exposure-induced histone H3 hyperacetylation may play a critical role in the pathogenesis of skin photoageing.
Collapse
Affiliation(s)
- S Ding
- Department of Dermatology, The Third Xiangya Hospital of Central South University, 138 Tong Zipo Road, Changsha, 410013, Hunan, China
| | - J Chen
- Department of Dermatology, The Third Xiangya Hospital of Central South University, 138 Tong Zipo Road, Changsha, 410013, Hunan, China
| | - Q Zeng
- Department of Dermatology, The Third Xiangya Hospital of Central South University, 138 Tong Zipo Road, Changsha, 410013, Hunan, China
| | - J Lu
- Department of Dermatology, The Third Xiangya Hospital of Central South University, 138 Tong Zipo Road, Changsha, 410013, Hunan, China
| | - L Tan
- Department of Dermatology, The Third Xiangya Hospital of Central South University, 138 Tong Zipo Road, Changsha, 410013, Hunan, China
| | - A Guo
- Department of Dermatology, The Third Xiangya Hospital of Central South University, 138 Tong Zipo Road, Changsha, 410013, Hunan, China
| | - J Kang
- Department of Dermatology, The Third Xiangya Hospital of Central South University, 138 Tong Zipo Road, Changsha, 410013, Hunan, China
| | - S Yang
- Department of Dermatology, The Third Xiangya Hospital of Central South University, 138 Tong Zipo Road, Changsha, 410013, Hunan, China
| | - Y Xiang
- Department of Dermatology, The Third Xiangya Hospital of Central South University, 138 Tong Zipo Road, Changsha, 410013, Hunan, China
| | - C Zuo
- Department of Dermatology, The Third Xiangya Hospital of Central South University, 138 Tong Zipo Road, Changsha, 410013, Hunan, China
| | - J Huang
- Department of Dermatology, The Third Xiangya Hospital of Central South University, 138 Tong Zipo Road, Changsha, 410013, Hunan, China
| |
Collapse
|
26
|
Abstract
The rising toll of chronic and debilitating diseases brought about by the exposure to an ever expanding number of environmental pollutants and socio-economic factors is calling for action. The understanding of the molecular mechanisms behind the effects of environmental exposures can lead to the development of biomarkers that can support the public health fields of both early diagnosis and intervention to limit the burden of environmental diseases. The study of mitochondrial epigenetics carries high hopes to provide important biomarkers of exposure and disease. Mitochondria are in fact on the frontline of the cellular response to the environment. Modifications of the epigenetic factors regulating the mitochondrial activity are emerging as informative tools that can effectively report on the effects of the environment on the phenotype. Here, we will discuss the emerging field of mitochondrial epigenetics. This review describes the main epigenetic phenomena that modify the activity of the mitochondrial DNA including DNA methylation, long and short non-coding RNAs. We will discuss the unique pattern of mitochondrial DNA methylation, describe the challenges of correctly measuring it, and report on the existing studies that have analysed the correlation between environmental exposures and mitochondrial DNA methylation. Finally, we provide a brief account of the therapeutic approaches targeting mitochondria currently under consideration.
Collapse
Affiliation(s)
- Luca Lambertini
- Department of Preventive Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levi Place, Box 1057, New York, NY, 10029, USA. .,Department of Obstetrics, Gynecology and Reproductive Science, Icahn School of Medicine at Mount Sinai, One Gustave L. Levi Place, Box 1057, New York, NY, 10029, USA.
| | - Hyang-Min Byun
- Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University, Biomedical Research Building, Campus for Ageing and Vitality, Newcastle upon Tyne, UK.,Ageing Research Laboratory, Newcastle University, Campus for Ageing and Vitality, Edwardson Building, Newcastle upon Tyne, NE4 5PL, UK
| |
Collapse
|
27
|
Han X, Zhao Z, Zhang M, Li G, Yang C, Du F, Wang J, Zhang Y, Wang Y, Jia Y, Li B, Sun Y. Maternal trans-general analysis of the human mitochondrial DNA pattern. Biochem Biophys Res Commun 2017; 493:643-649. [PMID: 28865962 DOI: 10.1016/j.bbrc.2017.08.138] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Accepted: 08/29/2017] [Indexed: 02/06/2023]
Abstract
There is an intimate connection between mitochondrial DNA (mtDNA) methylation and some diseases, such as cancer. MtDNA is almost strictly maternally inherited. However, whether the aberrant mtDNA methylation involved in breast cancer progression and whether mtDNA methylation can be transmitted through maternal line are poorly understood. Here we applied bisulfite sequencing to global mitochondrial DNA and whole genomic DNA methylation array from fifteen members of five three-female-generation families with one breast cancer patient in each family. We found that mtDNA methylation was maternally inherited in D-loop region and eight aberrant mtDNA methylation sites were correlated with breast cancer. Furthermore, conjoint analysis showed that mtDNA methylation sites could be potential biomarkers combined with nuclear DNA methylation sites for breast cancer risk prediction.
Collapse
Affiliation(s)
- Xiao Han
- Key Laboratory of Genomic and Precision Medicine, China Gastrointestinal Cancer Research Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zitong Zhao
- Key Laboratory of Genomic and Precision Medicine, China Gastrointestinal Cancer Research Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Minjie Zhang
- Key Laboratory of Genomic and Precision Medicine, China Gastrointestinal Cancer Research Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guochao Li
- Key Laboratory of Genomic and Precision Medicine, China Gastrointestinal Cancer Research Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Caiyun Yang
- Key Laboratory of Genomic and Precision Medicine, China Gastrointestinal Cancer Research Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Fengxia Du
- Key Laboratory of Genomic and Precision Medicine, China Gastrointestinal Cancer Research Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Junyun Wang
- Key Laboratory of Genomic and Precision Medicine, China Gastrointestinal Cancer Research Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yan Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Yuanyuan Wang
- Laboratory of Cancer Cell Biology, Key Laboratory of Breast Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Yongsheng Jia
- Department of Breast Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University, Tianjin 300060, China
| | - Binghui Li
- Laboratory of Cancer Cell Biology, Key Laboratory of Breast Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Yingli Sun
- Key Laboratory of Genomic and Precision Medicine, China Gastrointestinal Cancer Research Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
28
|
Liao K, Yan J, Li S, Wang T, Xu W, Mai K, Ai Q. Molecular cloning and characterization of unfolded protein response genes from large yellow croaker (Larimichthys crocea) and their expression in response to dietary fatty acids. Comp Biochem Physiol B Biochem Mol Biol 2017; 203:53-64. [DOI: 10.1016/j.cbpb.2016.09.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 09/08/2016] [Accepted: 09/19/2016] [Indexed: 10/21/2022]
|