1
|
Cuisiniere T, Hajjar R, Oliero M, Calvé A, Fragoso G, Rendos HV, Gerkins C, Taleb N, Gagnon-Konamna M, Dagbert F, Loungnarath R, Sebajang H, Schwenter F, Wassef R, Ratelle R, De Broux É, Richard C, Santos MM. Initial gut microbiota composition is a determining factor in the promotion of colorectal cancer by oral iron supplementation: evidence from a murine model. MICROBIOME 2025; 13:100. [PMID: 40259408 PMCID: PMC12013013 DOI: 10.1186/s40168-025-02101-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 03/26/2025] [Indexed: 04/23/2025]
Abstract
BACKGROUND Colorectal cancer (CRC) development is influenced by both iron and gut microbiota composition. While iron supplementation is routinely used to manage anemia in CRC patients, it may also impact gut microbiota and promote tumorigenesis. In this study, we investigated the impact of initial gut microbiota composition on iron-promoted tumorigenesis. We performed fecal microbiota transplantation (FMT) in ApcMin/+ mice using samples from healthy controls, CRC patients, and mice, followed by exposure to iron sufficient or iron excess diets. RESULTS We found that iron supplementation promoted CRC and resulted in distinct gut microbiota changes in ApcMin/+ mice receiving FMT from CRC patients (FMT-CRC), but not from healthy controls or mice. Oral treatment with identified bacterial strains, namely Faecalibaculum rodentium, Holdemanella biformis, Bifidobacterium pseudolongum, and Alistipes inops, protected FMT-CRC mice against iron-promoted tumorigenesis. CONCLUSIONS Our findings suggest that microbiota-targeted interventions may mitigate tumorigenic effects of iron supplementation in anemic patients with CRC.
Collapse
Affiliation(s)
- Thibault Cuisiniere
- Nutrition and Microbiome Laboratory, Centre de Recherche du Centre hospitalier de l', Université de Montréal (CRCHUM), Montréal, Québec, Canada
- Institut du Cancer de Montréal, Montréal, Québec, Canada
| | - Roy Hajjar
- Nutrition and Microbiome Laboratory, Centre de Recherche du Centre hospitalier de l', Université de Montréal (CRCHUM), Montréal, Québec, Canada
- Institut du Cancer de Montréal, Montréal, Québec, Canada
- Digestive Surgery Service, Centre Hospitalier de L'Université de Montréal (CHUM), Montréal, Québec, Canada
- Department of Surgery, Université de Montréal, Montréal, Québec, Canada
| | - Manon Oliero
- Nutrition and Microbiome Laboratory, Centre de Recherche du Centre hospitalier de l', Université de Montréal (CRCHUM), Montréal, Québec, Canada
- Institut du Cancer de Montréal, Montréal, Québec, Canada
| | - Annie Calvé
- Nutrition and Microbiome Laboratory, Centre de Recherche du Centre hospitalier de l', Université de Montréal (CRCHUM), Montréal, Québec, Canada
- Institut du Cancer de Montréal, Montréal, Québec, Canada
| | - Gabriela Fragoso
- Nutrition and Microbiome Laboratory, Centre de Recherche du Centre hospitalier de l', Université de Montréal (CRCHUM), Montréal, Québec, Canada
- Institut du Cancer de Montréal, Montréal, Québec, Canada
| | - Hervé Vennin Rendos
- Nutrition and Microbiome Laboratory, Centre de Recherche du Centre hospitalier de l', Université de Montréal (CRCHUM), Montréal, Québec, Canada
- Institut du Cancer de Montréal, Montréal, Québec, Canada
| | - Claire Gerkins
- Nutrition and Microbiome Laboratory, Centre de Recherche du Centre hospitalier de l', Université de Montréal (CRCHUM), Montréal, Québec, Canada
- Institut du Cancer de Montréal, Montréal, Québec, Canada
| | - Nassima Taleb
- Digestive Surgery Service, Centre Hospitalier de L'Université de Montréal (CHUM), Montréal, Québec, Canada
| | - Marianne Gagnon-Konamna
- Digestive Surgery Service, Centre Hospitalier de L'Université de Montréal (CHUM), Montréal, Québec, Canada
- Division of General Surgery, Université de Montréal, Montréal, Québec, Canada
| | - François Dagbert
- Digestive Surgery Service, Centre Hospitalier de L'Université de Montréal (CHUM), Montréal, Québec, Canada
- Division of General Surgery, Université de Montréal, Montréal, Québec, Canada
| | - Rasmy Loungnarath
- Digestive Surgery Service, Centre Hospitalier de L'Université de Montréal (CHUM), Montréal, Québec, Canada
- Division of General Surgery, Université de Montréal, Montréal, Québec, Canada
| | - Herawaty Sebajang
- Digestive Surgery Service, Centre Hospitalier de L'Université de Montréal (CHUM), Montréal, Québec, Canada
- Division of General Surgery, Université de Montréal, Montréal, Québec, Canada
| | - Frank Schwenter
- Digestive Surgery Service, Centre Hospitalier de L'Université de Montréal (CHUM), Montréal, Québec, Canada
- Division of General Surgery, Université de Montréal, Montréal, Québec, Canada
| | - Ramses Wassef
- Digestive Surgery Service, Centre Hospitalier de L'Université de Montréal (CHUM), Montréal, Québec, Canada
- Division of General Surgery, Université de Montréal, Montréal, Québec, Canada
| | - Richard Ratelle
- Digestive Surgery Service, Centre Hospitalier de L'Université de Montréal (CHUM), Montréal, Québec, Canada
- Division of General Surgery, Université de Montréal, Montréal, Québec, Canada
| | - Éric De Broux
- Digestive Surgery Service, Centre Hospitalier de L'Université de Montréal (CHUM), Montréal, Québec, Canada
- Division of General Surgery, Université de Montréal, Montréal, Québec, Canada
| | - Carole Richard
- Digestive Surgery Service, Centre Hospitalier de L'Université de Montréal (CHUM), Montréal, Québec, Canada
- Division of General Surgery, Université de Montréal, Montréal, Québec, Canada
| | - Manuela M Santos
- Nutrition and Microbiome Laboratory, Centre de Recherche du Centre hospitalier de l', Université de Montréal (CRCHUM), Montréal, Québec, Canada.
- Institut du Cancer de Montréal, Montréal, Québec, Canada.
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada.
| |
Collapse
|
2
|
Ziogou A, Giannakodimos A, Giannakodimos I, Schizas D, Charalampakis N. Effect of Helicobacter Pylori infection on immunotherapy for gastrointestinal cancer: a narrative review. Immunotherapy 2025:1-14. [PMID: 40087147 DOI: 10.1080/1750743x.2025.2479410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 03/11/2025] [Indexed: 03/16/2025] Open
Abstract
Immunotherapy for gastrointestinal cancers has elicited considerable amount of attention as a viable therapeutic option for several cancer types. Gut microbiome as a whole plays a critical role in shaping immune responses and influencing cancer progression. Recent evidence suggests that Helicobacter pylori (H. pylori), may influence immunotherapy efficacy by modulating the tumor microenvironment. Infection with H. pylori is common as it affects approximately 50% of the global population and remains the leading risk factor for gastric cancer. Interestingly, recent clinical and preclinical data has associated H. pylori with colorectal cancer carcinogenesis. Gut microbiome appears to be a modulator of the relationship between the immune system, gastrointestinal cancer development and existing therapies. Infection with H. pylori may affect immunotherapy results in both gastroesophageal and colorectal cancer; favorable results were noticed in H. pylori positive patients with gastric cancer, while in colorectal cancer patients the pathogen seemed to impede immunotherapy's action. This article aims to review current data on the role of H. pylori in triggering gastric inflammation and cancer, as well as its potential involvement in colorectal cancer development. Additionally, it seeks to highlight the impact of H. pylori infection on the response to immunotherapy in gastrointestinal cancers.
Collapse
Affiliation(s)
- Afroditi Ziogou
- Department of Medical Oncology, Metaxa Cancer Hospital of Piraeus, Piraeus, Greece
| | | | - Ilias Giannakodimos
- Departement of Urology, Attikon University Hospital of Athens, Athens, Greece
| | - Dimitrios Schizas
- First Department of Surgery, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | | |
Collapse
|
3
|
Mozooni Z, Faraji F, Minaeian S, Bahadorizadeh L. The Relationship Between Serum IgE Level and IL-4 and IL-13 Cytokines in Colorectal Cancer Patients. Immunol Invest 2025; 54:34-45. [PMID: 39392309 DOI: 10.1080/08820139.2024.2414091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
BACKGROUND Colorectal cancer (CRC) is the most common malignancy of the digestive system in the world. Immune cells and molecules in tumor microenvironment are crucial.Identifying immune system components in cancer aids in biomarker discovery. This study investigated the serum IgE levels and expression of IL-4 and IL-13 in the tissue and serum of CRC patients and explored their possible association with pathological and clinical factors. MATERIALS AND METHODS Thirty-six patients with CRC and 36 healthy individuals were involved in the study. Tissues and blood samples were collected. Serum levels of IgE and IL-4 and IL-13 were analyzed using the ELISA method. The quantitative Real-Time PCR (qRT-PCR) technique was used to assess the expression levels of the cytokines in CRC tissue samples in comparison with the adjacent control tissue. RESULTS Our results revealed that the serum level of IL-4 and IL-13 and also their gene expression levels were significantly decreased in CRC patients compared to the controls. The results of this study revealed that there is no significant difference in the serum levels of IgE between CRC patients and the control group. CONCLUSION All in all, the results of the current research suggest that the expression levels of IL-13, IL-4, and IgE vary between CRC tissue.
Collapse
Affiliation(s)
- Zahra Mozooni
- Antimicrobial Resistance Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Faraji
- Antimicrobial Resistance Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Sara Minaeian
- Antimicrobial Resistance Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Leyla Bahadorizadeh
- Antimicrobial Resistance Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
- Department of Internal Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Mozooni Z, Shahmohammadi A, Golestani N, Bahadorizadeh L. The Relationship Between Serum and Tissue Levels of IL-13 and TYK2 in Colorectal Cancer Patients. Immunol Invest 2024; 53:1279-1292. [PMID: 39252194 DOI: 10.1080/08820139.2024.2399581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
INTRODUCTION Colorectal cancer (CRC) is a third cause of death worldwide. The immune system plays a significant role in the tumor microenvironment and identifying its components involved in cancer development can aid in finding new biomarkers for prognosis, treatment monitoring, and immune-based therapies. Interleukin 13 (IL-13) is a cytokine produced by immune cells that has been implicated in tumor invasion, proliferation, and metastasis. Previous studies have shown that IL-13 causes the phosphorylation of Tyrosine kinase 2 (TYK2), which may contribute to the development and progression of cancer. This study investigated the levels expression of IL-13 and TYK2 in the tissue and serum of CRC patients and explored their possible association with pathological and clinical factors. METHODS 105 patients with CRC and 105 healthy individuals were involved in the study. Tissue and blood samples were collected. The quantitative Real-Time PCR (qRT-PCR) technique was used to assess the expression levels of the IL-13 and TYK2 CRC tissue samples in comparison with the adjacent control tissue. RESULT The expression levels of IL-13 were lower and TYK2 were found to be higher in CRC tissue compared to normal tissue. Additionally, serum levels of IL-13 were decreased in CRC patients while TYK2 levels were elevated. A significant negative correlation was found between the expression levels of IL-13 in both serum and tissue and the cancer stage. CONCLUSION These results suggest that IL-13 and TYKMay 2 play essential roles in CRC development and progression and may serve as potential biomarkers for early detection and treatment.
Collapse
Affiliation(s)
- Zahra Mozooni
- Institute of Immunology and Infectious Diseases, Antimicrobial Resistance Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | | - Nafiseh Golestani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Leyla Bahadorizadeh
- Institute of Immunology and Infectious Diseases, Antimicrobial Resistance Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Internal Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Sasaki T, Ota Y, Takikawa Y, Terrooatea T, Kanaya T, Takahashi M, Taguchi-Atarashi N, Tachibana N, Yabukami H, Surh CD, Minoda A, Kim KS, Ohno H. Food antigens suppress small intestinal tumorigenesis. Front Immunol 2024; 15:1373766. [PMID: 39359724 PMCID: PMC11445177 DOI: 10.3389/fimmu.2024.1373766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 07/30/2024] [Indexed: 10/04/2024] Open
Abstract
Food components suppressing small intestinal tumorigenesis are not well-defined partly because of the rarity of this tumor type compared to colorectal tumors. Using Apcmin/+ mice, a mouse model for intestinal tumorigenesis, and antigen-free diet, we report here that food antigens serve this function in the small intestine. By depleting Peyer's patches (PPs), immune inductive sites in the small intestine, we found that PPs have a role in the suppression of small intestinal tumors and are important for the induction of small intestinal T cells by food antigens. On the follicle-associated epithelium (FAE) of PPs, microfold (M) cells pass food antigens from lumen to the dendritic cells to induce T cells. Single-cell RNA-seq (scRNA-seq) analysis of immune cells in PPs revealed a significant impact of food antigens on the induction of the PP T cells and the antigen presentation capacity of dendritic cells. These data demonstrate the role of food antigens in the suppression of small intestinal tumorigenesis by PP-mediated immune cell induction.
Collapse
Affiliation(s)
- Takaharu Sasaki
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Yuna Ota
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Yui Takikawa
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Tommy Terrooatea
- Laboratory for Cellular Epigenomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Takashi Kanaya
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Masumi Takahashi
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Naoko Taguchi-Atarashi
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Naoko Tachibana
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Haruka Yabukami
- Laboratory for Cellular Epigenomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Charles D. Surh
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Aki Minoda
- Laboratory for Cellular Epigenomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Department of Cell Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, Netherlands
| | - Kwang Soon Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Hiroshi Ohno
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
- Laboratory for Immune Regulation, Graduate School of Medical and Pharmaceutical Sciences, Chiba University, Chiba, Japan
| |
Collapse
|
6
|
Zhang Y, Lee C, Geng S, Wang J, Bohara U, Hou J, Yi Z, Li L. Immune-enhancing neutrophils reprogrammed by subclinical low-dose endotoxin in cancer treatment. EMBO Mol Med 2024; 16:1886-1900. [PMID: 39009886 PMCID: PMC11319772 DOI: 10.1038/s44321-024-00100-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 06/18/2024] [Accepted: 07/01/2024] [Indexed: 07/17/2024] Open
Abstract
Despite the re-emergence of the pioneering "Coley's toxin" concept in anti-cancer immune therapies highlighted by check-point inhibitors and CAR-T approaches, fundamental mechanisms responsible for the immune-enhancing efficacy of low-dose "Coley's toxin" remain poorly understood. This study examines the novel reprogramming of immune-enhancing neutrophils by super-low dose endotoxin conducive for anti-cancer therapies. Through integrated analyses including scRNAseq and functional characterizations, we examined the efficacy of reprogrammed neutrophils in treating experimental cancer. We observed that neutrophils trained by super-low dose endotoxin adopt a potent immune-enhancing phenotype characterized by CD177loCD11bloCD80hiCD40hiDectin2hi. Both murine and human neutrophils trained by super-low dose endotoxin exhibit relieved suppression of adaptive T cells as compared to un-trained neutrophils. Functionally, neutrophils trained by super-low dose endotoxin can potently reduce tumor burden when transfused into recipient tumor-bearing mice. Mechanistically, Super-low dose endotoxin enables the generation of immune-enhancing neutrophils through activating STAT5 and reducing innate suppressor IRAK-M. Together, our data clarify the long-held mystery of "Coley's toxin" in rejuvenating anti-tumor immune defense, and provide a proof-of-concept in developing innate neutrophil-based anti-tumor therapeutics.
Collapse
Affiliation(s)
- Yao Zhang
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061-0910, USA
| | - Christina Lee
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061-0910, USA
| | - Shuo Geng
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061-0910, USA
| | - Jing Wang
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061-0910, USA
| | - Udipta Bohara
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061-0910, USA
| | - Jacqueline Hou
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061-0910, USA
| | - Ziyue Yi
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061-0910, USA
| | - Liwu Li
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061-0910, USA.
| |
Collapse
|
7
|
Dai X, Dai Z, Fu J, Liang Z, Du P, Wu T. Prognostic significance of negative lymph node count in microsatellite instability-high colorectal cancer. World J Surg Oncol 2024; 22:186. [PMID: 39030562 PMCID: PMC11264611 DOI: 10.1186/s12957-024-03469-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 07/12/2024] [Indexed: 07/21/2024] Open
Abstract
BACKGROUND Microsatellite instability-high (MSI-H) tumors, with elevated tumor mutational burden and expression of neoantigens, represent a distinct immune-activated subpopulation in colorectal cancer (CRC), characterized by strong lymph node reaction, locally advanced tumor and higher total lymph nodes harvested (TLN), but less metastatic lymph nodes and fewer incidence of III-IV stage. Host immune response to tumor and lymph nodes may be an important prognostic factor. However, N stage and LNR (Lymph-Node Ratio) have limitations in predicting the prognosis of MSI-H patients. Negative lymph node count (NLC) provided a more precise representation of immune activation status and extent of tumor metastasis. The study aims to detect prognostic significance of NLC in MSI-H CRC patients, and compare it with N stage, TLN and LNR. METHODS Retrospective data of 190 consecutive MSI-H CRC patients who received curative resection were collected. Survival analyses were performed using the Kaplan-Meier method. Clinicopathological variables including NLC, N stage, TLN and LNR were studied in univariate and multivariate COX regression analyses. ROC (receiver operating characteristic curve) and concordance index were employed to compare the differences in predictive efficacy between NLC, N stage, TLN and LNR. RESULTS Patients with increased NLC experienced a significantly improved 5-years DFS and OS in Kaplan-Meier analysis, univariate analysis, and multivariate analysis, independent of potential confounders examined. Increased NLC corresponded to elevated 5-years DFS rate and 5-years OS rate. AUC (area under curve) and concordance index of NLC in DFS and OS predicting were both significantly higher than N stage, TLN and LNR. CONCLUSIONS Negative lymph node is an important independent prognostic factor for MSI-H patients. Reduced NLC is associated with tumor recurrence and poor survival, which is a stronger prognostic factor than N stage, TLN and LNR.
Collapse
Affiliation(s)
- Xuan Dai
- Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhujiang Dai
- Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jihong Fu
- Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhonglin Liang
- Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peng Du
- Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Tingyu Wu
- Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
8
|
Yang Z, Zhang X, Bai X, Xi X, Liu W, Zhong W. Anti-angiogenesis in colorectal cancer therapy. Cancer Sci 2024; 115:734-751. [PMID: 38233340 PMCID: PMC10921012 DOI: 10.1111/cas.16063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/16/2023] [Accepted: 12/16/2023] [Indexed: 01/19/2024] Open
Abstract
The morbidity of colorectal cancer (CRC) has risen to third place among malignant tumors worldwide. In addition, CRC is a common cancer in China whose incidence increases annually. Angiogenesis plays an important role in the development of tumors because it can bring the nutrients that cancer cells need and take away metabolic waste. Various mechanisms are involved in the formation of neovascularization, and vascular endothelial growth factor is a key mediator. Meanwhile, angiogenesis inhibitors and drug resistance (DR) are challenges to consider when formulating treatment strategies for patients with different conditions. Thus, this review will discuss the molecules, signaling pathways, microenvironment, treatment, and DR of angiogenesis in CRC.
Collapse
Affiliation(s)
- Zhenni Yang
- Department of Gastroenterology and HepatologyGeneral Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive DiseasesTianjinChina
- Department of Gastroenterology and HepatologyXing'an League People's HospitalXing'an LeagueChina
| | - Xuqian Zhang
- Department of Gastroenterology and HepatologyGeneral Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive DiseasesTianjinChina
- Department of Gastroenterology and HepatologyChina Aerospace Science and Industry CorporationBeijingChina
| | - Xiaozhe Bai
- Department of Gastroenterology and HepatologyXing'an League People's HospitalXing'an LeagueChina
| | - Xiaonan Xi
- State Key Laboratory of Medicinal Chemical Biology and College of PharmacyNankai UniversityTianjinChina
| | - Wentian Liu
- Department of Gastroenterology and HepatologyGeneral Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive DiseasesTianjinChina
| | - Weilong Zhong
- Department of Gastroenterology and HepatologyGeneral Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive DiseasesTianjinChina
| |
Collapse
|
9
|
Sinha B, Choudhury Y. Revisiting edible insects as sources of therapeutics and drug delivery systems for cancer therapy. Front Pharmacol 2024; 15:1345281. [PMID: 38370484 PMCID: PMC10869617 DOI: 10.3389/fphar.2024.1345281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/22/2024] [Indexed: 02/20/2024] Open
Abstract
Cancer has been medicine's most formidable foe for long, and the rising incidence of the disease globally has made effective cancer therapy a significant challenge. Drug discovery is targeted at identifying efficacious compounds with minimal side effects and developments in nanotechnology and immunotherapy have shown promise in the fight against this complicated illness. Since ancient times, insects and insect-derived products have played a significant role in traditional medicine across several communities worldwide. The aim of this study was to inspect the traditional use of edible insects in various cultures and to explore their modern use in cancer therapy. Edible insects are sources of nutrients and a variety of beneficial substances with anticancer and immunomodulatory potential. Recently, insect derived bioactive-components have also been used as nanoparticles either in combination with chemotherapeutics or as a nano-cargo for the enhanced delivery of chemotherapeutic drugs due to their high biocompatibility, low bio-toxicity, and their antioxidant and anticancer effects. The crude extracts of different edible insects and their active components such as sericin, cecropin, solenopsin, melittin, antimicrobial peptides and fibroin produce anti-cancer and immunomodulatory effects by various mechanisms which have been discussed in this review.
Collapse
|
10
|
Jin Q, Feng J, Yan Y, Kuang Y. Prognostic and immunological role of adaptor related protein complex 3 subunit mu2 in colon cancer. Sci Rep 2024; 14:483. [PMID: 38177168 PMCID: PMC10767120 DOI: 10.1038/s41598-023-50452-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 12/20/2023] [Indexed: 01/06/2024] Open
Abstract
The expression levels and prognostic role of AP3M2 in colorectal adenocarcinoma (CRAC) have yet to be fully unveiled. Our study comprehensively investigated the clinical significance of AP3M2 in colorectal cancer through an extensive bioinformatics data mining process (TCGA, GEO, GEPIA, Timer, Ualcan, ROCPLOT, and David), followed by experimental validation. We found AP3M2 is a cancer gene, which can be used to distinguish between colorectal cancer and colorectal adenomas, liver metastasis, lung metastasis, colorectal polyp. Higher AP3M2 expression levels were associated with longer overall survival in colon adenocarcinoma. AP3M2 might be the primary biomarker for oxaliplatin in colon cancer and an acquired resistance biomarker for oxaliplatin and 5-fu. AP3M2 was positively associated with CD274, CTLA4. AP3M2 might be associated with T-cell, NF-kappaB transcription factor activity, and response to hypoxia. AP3M2 could predict chemotherapy effectiveness and prognosis for colon cancer patients. AP3M2 might inhibit tumor growth via influencing tumor-infiltrating immune cells in the context of Tumor microenvironment. AP3M2 plays as an oncogene in CRAC and is suggested as a new potential biotarget for therapy.
Collapse
Affiliation(s)
- Qianqian Jin
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shaanxi, P. R. China
| | - Jiahao Feng
- Research Centre, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, China
| | - Yang Yan
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shaanxi, P. R. China.
| | - Yong Kuang
- Digestive Disease Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, China.
| |
Collapse
|
11
|
Li J, Liu J, Xia W, Yang H, Sha W, Chen H. Deciphering the Tumor Microenvironment of Colorectal Cancer and Guiding Clinical Treatment With Patient-Derived Organoid Technology: Progress and Challenges. Technol Cancer Res Treat 2024; 23:15330338231221856. [PMID: 38225190 PMCID: PMC10793199 DOI: 10.1177/15330338231221856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/10/2023] [Accepted: 11/30/2023] [Indexed: 01/17/2024] Open
Abstract
Colorectal cancer (CRC) is one of the most prevalent malignant tumors of the digestive tract worldwide. Despite notable advancements in CRC treatment, there is an urgent requirement for preclinical model systems capable of accurately predicting drug efficacy in CRC patients, to identify more effective therapeutic options. In recent years, substantial strides have been made in the field of organoid technology, patient-derived organoid models can phenotypically replicate the original intra-tumor and inter-tumor heterogeneity of CRC, reflecting cellular interactions of the tumor microenvironment. Patient-derived organoid models have become an indispensable tool for investigating the pathogenesis of CRC and facilitating translational research. This review focuses on the application of organoid technology in CRC modeling, tumor microenvironment, and guiding clinical treatment, particularly in drug screening and personalized medicine. It also examines the existing challenges encountered in clinical organoid research and provides a prospective outlook on the future development directions of clinical organoid research, encompassing the standardization of organoid culture technology and the application of tissue engineering technology.
Collapse
Affiliation(s)
- Jingwei Li
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Jianhua Liu
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Wuzheng Xia
- Department of Organ Transplantation, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Hongwei Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Weihong Sha
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Hao Chen
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| |
Collapse
|
12
|
Postwala H, Shah Y, Parekh PS, Chorawala MR. Unveiling the genetic and epigenetic landscape of colorectal cancer: new insights into pathogenic pathways. Med Oncol 2023; 40:334. [PMID: 37855910 DOI: 10.1007/s12032-023-02201-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/19/2023] [Indexed: 10/20/2023]
Abstract
Colorectal cancer (CRC) is a complex disease characterized by genetic and epigenetic alterations, playing a crucial role in its development and progression. This review aims to provide insights into the emerging landscape of these alterations in CRC pathogenesis to develop effective diagnostic tools and targeted therapies. Genetic alterations in signaling pathways such as Wnt/β-catenin, and PI3K/Akt/mTOR are pivotal in CRC development. Genetic profiling has identified distinct molecular subtypes, enabling personalized treatment strategies. Epigenetic modifications, including DNA methylation and histone modifications, also contribute to CRC pathogenesis by influencing critical cellular processes through gene silencing or activation. Non-coding RNAs have emerged as essential players in epigenetic regulation and CRC progression. Recent research highlights the interplay between genetic and epigenetic alterations in CRC. Genetic mutations can affect epigenetic modifications, leading to dysregulated gene expression and signaling cascades. Conversely, epigenetic changes can modulate genetic expression, amplifying or dampening the effects of genetic alterations. Advancements in understanding pathogenic pathways have potential clinical applications. Identifying genetic and epigenetic markers as diagnostic and prognostic biomarkers promises more accurate risk assessment and early detection. Challenges remain, including validating biomarkers and developing robust therapeutic strategies through extensive research and clinical trials. The dynamic nature of genetic and epigenetic alterations necessitates a comprehensive understanding of their temporal and spatial patterns during CRC progression. In conclusion, the genetic and epigenetic landscape of CRC is increasingly being unraveled, providing valuable insights into its pathogenesis. Integrating genetic and epigenetic knowledge holds great potential for improving diagnostics, prognostics, and personalized therapies in CRC. Continued research efforts are vital to translate these findings into clinical practice, ultimately improving patient outcomes.
Collapse
Affiliation(s)
- Humzah Postwala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad, 380009, Gujarat, India
| | - Yesha Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad, 380009, Gujarat, India
| | - Priyajeet S Parekh
- AV Pharma LLC, 1545 University Blvd N Ste A, Jacksonville, Florida, 32211, USA
| | - Mehul R Chorawala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad, 380009, Gujarat, India.
| |
Collapse
|
13
|
Yang Y, Liang Y, Sadeghi F, Feychting M, Hamar N, Fang F, Zhang Z, Liu Q. Risk of head and neck cancer in relation to blood inflammatory biomarkers in the Swedish AMORIS cohort. Front Immunol 2023; 14:1265406. [PMID: 37876941 PMCID: PMC10590876 DOI: 10.3389/fimmu.2023.1265406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 09/25/2023] [Indexed: 10/26/2023] Open
Abstract
Background Inflammation is critically involved in the development of human cancer, and blood inflammatory biomarkers have been proposed to indicate the risk of different cancer types. Methods Using the Swedish Apolipoprotein-Related Mortality Risk (AMORIS) Cohort (N=812,073), we first performed a time-to-event analysis to evaluate the association of the baseline level of 12 blood inflammatory biomarkers measured during 1985-1996 with the subsequent risk of head and neck cancer (HNC) identified through the nationwide Swedish Cancer Register until end of 2020. A nested case-control study was further conducted to demonstrate the longitudinal trends of the studied biomarkers during the 30-year period prior to diagnosis of HNC. Results In the time-to-event analysis, we identified a total of 2,510 newly diagnosed HNC cases. There was an increased risk of HNC per standard deviation (SD) increase of haptoglobin (hazard ratio [HR]: 1.25; 95% confidence interval [CI]: 1.21-1.30), leukocytes (HR: 1.22; 95%CI: 1.17-1.28), sedimentation rate (HR: 1.17; 95%CI: 1.07-1.29), and monocytes (HR: 1.34; 95%CI: 1.07-1.68) at baseline, after adjustment for age, sex, fasting status, occupational status, and country of birth. In contrast, there was a decreased risk of HNC per SD increase of lymphocytes in % (HR: 0.85; 95%CI: 0.73-0.99) and lymphocyte-to-monocyte ratio (LMR) (HR: 0.81; 95%CI: 0.69-0.95) at baseline. In the nested case-control study using repeatedly measured biomarker levels, we found that individuals with HNC had consistently higher levels of haptoglobin, leukocytes, sedimentation rate, and monocytes, as well as consistently lower levels of lymphocytes in % and LMR, during the 30-year period prior to diagnosis, compared to controls. Conclusion Based on a cohort of more than half a million participants with up to 35 years of follow-up, our findings provide solid evidence supporting the presence of alterations in blood inflammatory biomarkers during the decades before diagnosis of HNC.
Collapse
Affiliation(s)
- Yanping Yang
- Department of Otolaryngology-Head & Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High-Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
- Guangxi Key Laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University), Nanning, China
| | - Yushan Liang
- Department of Otolaryngology-Head & Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High-Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
- Guangxi Key Laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University), Nanning, China
| | - Fatemeh Sadeghi
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Maria Feychting
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Niklas Hamar
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Fang Fang
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Zhe Zhang
- Department of Otolaryngology-Head & Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High-Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
- Guangxi Key Laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University), Nanning, China
| | - Qianwei Liu
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
14
|
Sulit AK, Daigneault M, Allen-Vercoe E, Silander OK, Hock B, McKenzie J, Pearson J, Frizelle FA, Schmeier S, Purcell R. Bacterial lipopolysaccharide modulates immune response in the colorectal tumor microenvironment. NPJ Biofilms Microbiomes 2023; 9:59. [PMID: 37612266 PMCID: PMC10447454 DOI: 10.1038/s41522-023-00429-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 08/15/2023] [Indexed: 08/25/2023] Open
Abstract
Immune responses can have opposing effects in colorectal cancer (CRC), the balance of which may determine whether a cancer regresses, progresses, or potentially metastasizes. These effects are evident in CRC consensus molecular subtypes (CMS) where both CMS1 and CMS4 contain immune infiltrates yet have opposing prognoses. The microbiome has previously been associated with CRC and immune response in CRC but has largely been ignored in the CRC subtype discussion. We used CMS subtyping on surgical resections from patients and aimed to determine the contributions of the microbiome to the pleiotropic effects evident in immune-infiltrated subtypes. We integrated host gene-expression and meta-transcriptomic data to determine the link between immune characteristics and microbiome contributions in these subtypes and identified lipopolysaccharide (LPS) binding as a potential functional mechanism. We identified candidate bacteria with LPS properties that could affect immune response, and tested the effects of their LPS on cytokine production of peripheral blood mononuclear cells (PBMCs). We focused on Fusobacterium periodonticum and Bacteroides fragilis in CMS1, and Porphyromonas asaccharolytica in CMS4. Treatment of PBMCs with LPS isolated from these bacteria showed that F. periodonticum stimulates cytokine production in PBMCs while both B. fragilis and P. asaccharolytica had an inhibitory effect. Furthermore, LPS from the latter two species can inhibit the immunogenic properties of F. periodonticum LPS when co-incubated with PBMCs. We propose that different microbes in the CRC tumor microenvironment can alter the local immune activity, with important implications for prognosis and treatment response.
Collapse
Affiliation(s)
- A K Sulit
- School of Natural Sciences, Massey University, Auckland, New Zealand.
- Department of Surgery and Critical Care, University of Otago, Christchurch, New Zealand.
| | - M Daigneault
- Department of Molecular and Cellular Biology, University of Guelph, Ontario, Canada
| | - E Allen-Vercoe
- Department of Molecular and Cellular Biology, University of Guelph, Ontario, Canada
| | - O K Silander
- School of Natural Sciences, Massey University, Auckland, New Zealand
| | - B Hock
- Haematology Research Group, University of Otago, Christchurch, New Zealand
| | - J McKenzie
- Haematology Research Group, University of Otago, Christchurch, New Zealand
| | - J Pearson
- Biostatistics and Computational Biology Unit, University of Otago, Christchurch, New Zealand
| | - F A Frizelle
- Department of Surgery and Critical Care, University of Otago, Christchurch, New Zealand
| | - S Schmeier
- School of Natural Sciences, Massey University, Auckland, New Zealand
- Evotec SE, Hamburg, Germany
| | - R Purcell
- Department of Surgery and Critical Care, University of Otago, Christchurch, New Zealand
| |
Collapse
|
15
|
Lu C, Zhang X, Schardey J, Wirth U, Heinrich K, Massiminio L, Cavestro GM, Neumann J, Bazhin AV, Werner J, Kühn F. Molecular characteristics of microsatellite stable early-onset colorectal cancer as predictors of prognosis and immunotherapeutic response. NPJ Precis Oncol 2023; 7:63. [PMID: 37393364 DOI: 10.1038/s41698-023-00414-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 06/15/2023] [Indexed: 07/03/2023] Open
Abstract
The incidence of early-onset colorectal cancer (EO-CRC, in patients younger than 50) is increasing worldwide. The specific gene signatures in EO-CRC patients are largely unknown. Since EO-CRC with microsatellite instability is frequently associated with Lynch syndrome, we aimed to comprehensively characterize the tumor microenvironment (TME) and gene expression profiles of EO-CRC with microsatellite stable (MSS-EO-CRC). Here, we demonstrated that MSS-EO-CRC has a similar pattern of tumor-infiltrating immune cells, immunotherapeutic responses, consensus molecular subtypes, and prognosis as late-onset CRC with MSS (MSS-LO-CRC). 133 differential expressed genes were identified as unique gene signatures of MSS-EO-CRC. Moreover, we established a risk score, which was positively associated with PD-L1 expression and could reflect both the level of tumor-infiltrating immune cells and the prognosis of MSS-EO-CRC patients. Application of this score on the anti-PD-L1 treatment cohort demonstrated that the low-risk score group has significant therapeutic advantages and clinical benefits. In addition, candidate driver genes were identified in the different-sidedness of MSS-EO-CRC patients. Altogether, MSS-EO-CRC exhibits distinct molecular profiles that differ from MSS-LO-CRC even though they have a similar TME characterization and survival pattern. Our risk score appears to be robust enough to predict prognosis and immunotherapeutic response and therefore could help to optimize the treatment of MSS-EO-CRC.
Collapse
Affiliation(s)
- Can Lu
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, 81377, Munich, Germany
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention (Ministry of Education), The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for CANCER & Cancer Center of Zhejiang University, Hangzhou, China
| | - Xiaopeng Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Gastrointestinal Cancer Center, Peking University Cancer Hospital and Institute, Beijing, China
- Institute of Laboratory Medicine, University Hospital of LMU Munich, Munich, Germany
| | - Josefine Schardey
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, 81377, Munich, Germany
| | - Ulrich Wirth
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, 81377, Munich, Germany
| | - Kathrin Heinrich
- Department of Medicine III, University Hospital, Ludwig-Maximilians-University Munich, 81377, Munich, Germany
| | - Luca Massiminio
- Experimental Gastroenterology Laboratory, Gastroenterology and Endoscopy Department, San Raffaele Scientific Institute, Milano, Italy
| | - Giulia Martina Cavestro
- Experimental Gastroenterology Laboratory, Gastroenterology and Endoscopy Department, San Raffaele Scientific Institute, Milano, Italy
| | - Jens Neumann
- Institute of Pathology, Medical Faculty, Ludwig-Maximilians-University Munich, 81377, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, 81377, Munich, Germany
- Bavarian Cancer Research Center (BZKF), Partner Site Munich, Munich, Germany
| | - Alexandr V Bazhin
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, 81377, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, 81377, Munich, Germany
- Bavarian Cancer Research Center (BZKF), Partner Site Munich, Munich, Germany
| | - Jens Werner
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, 81377, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, 81377, Munich, Germany
- Bavarian Cancer Research Center (BZKF), Partner Site Munich, Munich, Germany
| | - Florian Kühn
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, 81377, Munich, Germany.
- German Cancer Consortium (DKTK), Partner Site Munich, 81377, Munich, Germany.
- Bavarian Cancer Research Center (BZKF), Partner Site Munich, Munich, Germany.
| |
Collapse
|
16
|
Li X, Chang E, Cui J, Zhao H, Hu C, O’Dea KP, Tirlapur N, Balboni G, Zhang J, Ying L, Ma D. Bv8 mediates myeloid cell migration and enhances malignancy of colorectal cancer. Front Immunol 2023; 14:1158045. [PMID: 37090721 PMCID: PMC10113555 DOI: 10.3389/fimmu.2023.1158045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/27/2023] [Indexed: 04/09/2023] Open
Abstract
Colorectal cancer (CRC) is the third most predominant malignancy in the world. Although the importance of immune system in cancer development has been well established, the underlying mechanisms remain to be investigated further. Here we studied a novel protein prokineticin 2 (Prok2, also known as Bv8) as a key pro-tumoral factor in CRC progression in in vitro and ex vivo settings. Human colorectal tumor tissues, myeloid cell lines (U937 cells and HL60 cells) and colorectal cancer cell line (Caco-2 cells) were used for various studies. Myeloid cell infiltration (especially neutrophils) and Bv8 accumulation were detected in human colorectal tumor tissue with immunostaining. The chemotactic effects of Bv8 on myeloid cells were presented in the transwell assay and chemotaxis assy. Cultured CRC cells treated with myeloid cells or Bv8 produced reactive oxygen species (ROS) and vascular endothelial growth factor (VEGF). Furthermore, ROS and VEGF acted as pro-angiogenesis buffer in myeloid cell-infiltrated CRC microenvironment. Moreover, myeloid cells or Bv8 enhanced energy consumption of glycolysis ATP and mitochondria ATP of CRC cells. Interestingly, myeloid cells increased CRC cell viability, but CRC cells decreased the viability of myeloid cells. ERK signalling pathway in CRC cells was activated in the presence of Bv8 or co-cultured myeloid cells. In conclusion, our data indicated the vital roles of Bv8 in myeloid cell infiltration and CRC development, suggesting that Bv8 may be a potential therapeutic target for colorectal cancer-related immunotherapy.
Collapse
Affiliation(s)
- Xiaomeng Li
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, United Kingdom
| | - Enqiang Chang
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, United Kingdom
- Department of Anaesthesiology and Perioperative Medicine, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China
| | - Jiang Cui
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, United Kingdom
| | - Hailin Zhao
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, United Kingdom
| | - Cong Hu
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, United Kingdom
| | - Kieran P. O’Dea
- Division of Translational Critical Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, United Kingdom
| | - Nikhil Tirlapur
- Division of Translational Critical Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, United Kingdom
| | - Gianfranco Balboni
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato, Italy
| | - Jiaqiang Zhang
- Department of Anaesthesiology and Perioperative Medicine, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Jiaqiang Zhang, ; Liming Ying, ; Daqing Ma,
| | - Liming Ying
- National Heart and Lung Institute, Imperial College London, Molecular Sciences Research Hub, London, United Kingdom
- *Correspondence: Jiaqiang Zhang, ; Liming Ying, ; Daqing Ma,
| | - Daqing Ma
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, United Kingdom
- *Correspondence: Jiaqiang Zhang, ; Liming Ying, ; Daqing Ma,
| |
Collapse
|
17
|
Marx O, Mankarious M, Yochum G. Molecular genetics of early-onset colorectal cancer. World J Biol Chem 2023; 14:13-27. [PMID: 37034132 PMCID: PMC10080548 DOI: 10.4331/wjbc.v14.i2.13] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/20/2022] [Accepted: 02/13/2023] [Indexed: 03/24/2023] Open
Abstract
Early-onset colorectal cancer (EOCRC) has been rising in global prevalence and incidence over the past several decades. Environmental influences, including generational lifestyle changes and rising obesity, contribute to these increased rates. While the rise in EOCRC is best documented in western countries, it is seen throughout the world, although EOCRC may have distinct genetic mutations in patients of different ethnic backgrounds. Pathological and molecular characterizations show that EOCRC has a distinct presentation compared with later-onset colorectal cancer (LOCRC). Recent studies have identified DNA, RNA, and protein-level alterations unique to EOCRC, revealing much-needed biomarkers and potential novel therapeutic targets. Many molecular EOCRC studies have been performed with Caucasian and Asian EOCRC cohorts, however, studies of other ethnic backgrounds are limited. In addition, certain molecular characterizations that have been conducted for LOCRC have not yet been repeated in EOCRC, including high-throughput analyses of histone modifications, mRNA splicing, and proteomics on large cohorts. We propose that the complex relationship between cancer and aging should be considered when studying the molecular underpinnings of EOCRC. In this review, we summarize current EOCRC literature, focusing on sporadic molecular alterations in tumors, and their clinical implications. We conclude by discussing current challenges and future directions of EOCRC research efforts.
Collapse
Affiliation(s)
- Olivia Marx
- Department of Biochemistry & Molecular Biology, Pennsylvania State University College of Medicine, Hershey, PA 17033, United States
| | - Marc Mankarious
- Department of Surgery, Division of Colon & Rectal Surgery, Pennsylvania State University Milton S. Hershey Medical Center, Hershey, PA 17033, United States
| | - Gregory Yochum
- Department of Biochemistry & Molecular Biology & Surgery, Pennsylvania State University College of Medicine, Hershey, PA 17033, United States
| |
Collapse
|
18
|
Al Bitar S, El-Sabban M, Doughan S, Abou-Kheir W. Molecular mechanisms targeting drug-resistance and metastasis in colorectal cancer: Updates and beyond. World J Gastroenterol 2023; 29:1395-1426. [PMID: 36998426 PMCID: PMC10044855 DOI: 10.3748/wjg.v29.i9.1395] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/12/2022] [Accepted: 11/16/2022] [Indexed: 03/07/2023] Open
Abstract
Colorectal cancer (CRC) is the third most diagnosed malignancy and a major leading cause of cancer-related deaths worldwide. Despite advances in therapeutic regimens, the number of patients presenting with metastatic CRC (mCRC) is increasing due to resistance to therapy, conferred by a small population of cancer cells, known as cancer stem cells. Targeted therapies have been highly successful in prolonging the overall survival of patients with mCRC. Agents are being developed to target key molecules involved in drug-resistance and metastasis of CRC, and these include vascular endothelial growth factor, epidermal growth factor receptor, human epidermal growth factor receptor-2, mitogen-activated extracellular signal-regulated kinase, in addition to immune checkpoints. Currently, there are several ongoing clinical trials of newly developed targeted agents, which have shown considerable clinical efficacy and have improved the prognosis of patients who do not benefit from conventional chemotherapy. In this review, we highlight recent developments in the use of existing and novel targeted agents against drug-resistant CRC and mCRC. Furthermore, we discuss limitations and challenges associated with targeted therapy and strategies to combat intrinsic and acquired resistance to these therapies, in addition to the importance of implementing better preclinical models and the application of personalized therapy based on predictive biomarkers for treatment selection.
Collapse
Affiliation(s)
- Samar Al Bitar
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Marwan El-Sabban
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Samer Doughan
- Department of Surgery, American University of Beirut Medical Center, Beirut 1107-2020, Lebanon
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut 1107-2020, Lebanon
| |
Collapse
|
19
|
Kang P, Yu H, Li Y, Wen X, Ye H, Luo Y, Yang Y, Yuan Q, Lin S. Tracking Peripheral Memory T Cell Subsets in Advanced Nonsmall Cell Lung Cancer Treated with Hypofractionated Radiotherapy and PD-1 Blockade. JOURNAL OF ONCOLOGY 2023; 2023:3221510. [PMID: 39282224 PMCID: PMC11401694 DOI: 10.1155/2023/3221510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/02/2022] [Accepted: 11/24/2022] [Indexed: 09/18/2024]
Abstract
Hypofractionated radiotherapy (HFRT) or chemotherapy combined with programmed death-1 (PD-1) blockade has achieved good clinical control in advanced nonsmall cell lung cancer (NSCLC). However, the relative influence of HFRT + PD-1 blockade and chemo-immunotherapy on peripheral memory T cell subsets in NSCLC responders has not been evaluated in clinical practice. Thirty-nine patients with advanced NSCLC were enrolled. The frequencies of naive (Tn; CD45RA+CCR7+), central memory (Tcm; CD45RA-CCR7+), effector memory (Tem; CD45RA-CCR7-), and effector memory RA (TemRA; CD45RA+CCR7-) T cell subsets and PD-1 expression were analyzed in CD4+ and CD8+ T cells using flow cytometry from peripheral blood samples. The correlations of memory T cell subsets and PD-1 expression with overall survival in HFRT + PD-1 blockade group were examined using the Kaplan-Meier method. Patients with partial response to HFRT + PD-1 blockade showed reduction in Tn and expansion in TemRA cell subpopulations among CD8+ T cells and reduced PD-1+CD4+ and PD-1+CD8+ T cells, all of which were significantly correlated with overall survival. The responders to chemo-immunotherapy showed expansion of the TemRA and decrease of Tcm in CD8+ T cell subpopulation. Our findings show that HFRT+PD-1 blockade and chemo-immunotherapy combination therapies induce differential memory T cell subset differentiation, offering predictive markers for treatment response. Clinical Trial Information: https://clinicaltrials.gov/ct2/show/ChiCTR-1900027768.
Collapse
Affiliation(s)
- Pengyuan Kang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province 646000, China
- Public Center of Experimental Technology, The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Hong Yu
- Public Center of Experimental Technology, The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Yunfei Li
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Xue Wen
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Hua Ye
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Yuhao Luo
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Yaqi Yang
- Public Center of Experimental Technology, The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Qing Yuan
- Public Center of Experimental Technology, The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan Province 646000, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province; Institute of Neclear Medicine, Southwest Medical Universty, Luzhou 646000, China
| | - Sheng Lin
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province 646000, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province; Institute of Neclear Medicine, Southwest Medical Universty, Luzhou 646000, China
- Academician (Expert) Workstation of Sichuan Province, Sichuan, Luzhou, China
| |
Collapse
|
20
|
Khan S, Miles GJ, Demetriou C, Sidat Z, Foreman N, West K, Karmokar A, Howells L, Pritchard C, Thomas AL, Brown K. Ex vivo explant model of adenoma and colorectal cancer to explore mechanisms of action and patient response to cancer prevention therapies. Mutagenesis 2022; 37:227-237. [PMID: 36426854 PMCID: PMC9730503 DOI: 10.1093/mutage/geac020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 09/22/2022] [Indexed: 11/26/2022] Open
Abstract
Colorectal cancer (CRC) is the second leading cause of cancer death in the UK. Novel therapeutic prevention strategies to inhibit the development and progression of CRC would be invaluable. Potential contenders include low toxicity agents such as dietary-derived agents or repurposed drugs. However, in vitro and in vivo models used in drug development often do not take into account the heterogeneity of tumours or the tumour microenvironment. This limits translation to a clinical setting. Our objectives were to develop an ex vivo method utilizing CRC and adenoma patient-derived explants (PDEs) which facilitates screening of drugs, assessment of toxicity, and efficacy. Our aims were to use a multiplexed immunofluorescence approach to demonstrate the viability of colorectal tissue PDEs, and the ability to assess immune cell composition and interactions. Using clinically achievable concentrations of curcumin, we show a correlation between curcumin-induced tumour and stromal apoptosis (P < .001) in adenomas and cancers; higher stromal content is associated with poorer outcomes. B cell (CD20+ve) and T cell (CD3+ve) density of immune cells within tumour regions in control samples correlated with curcumin-induced tumour apoptosis (P < .001 and P < .05, respectively), suggesting curcumin-induced apoptosis is potentially predicted by baseline measures of immune cells. A decrease in distance between T cells (CD3+ve) and cytokeratin+ve cells was observed, indicating movement of T cells (CD3+ve) towards the tumour margin (P < .001); this change is consistent with an immune environment associated with improved outcomes. Concurrently, an increase in distance between T cells (CD3+ve) and B cells (CD20+ve) was detected following curcumin treatment (P < .001), which may result in a less immunosuppressive tumour milieu. The colorectal tissue PDE model offers significant potential for simultaneously assessing multiple biomarkers in response to drug exposure allowing a greater understanding of mechanisms of action and efficacy in relevant target tissues, that maintain both their structural integrity and immune cell compartments.
Collapse
Affiliation(s)
- Sam Khan
- Leicester Cancer Research Centre, Robert Kilpatrick Clinical Sciences Building, University of Leicester, Leicester LE2 7LX, United Kingdom
| | - Gareth J Miles
- Leicester Cancer Research Centre, Robert Kilpatrick Clinical Sciences Building, University of Leicester, Leicester LE2 7LX, United Kingdom
| | - Constantinos Demetriou
- Leicester Cancer Research Centre, Robert Kilpatrick Clinical Sciences Building, University of Leicester, Leicester LE2 7LX, United Kingdom
| | - Zahirah Sidat
- Hope Clinical Trials Facility, Leicester Royal Infirmary, Leicester LE1 5WW, United Kingdom
| | - Nalini Foreman
- Leicester Cancer Research Centre, Robert Kilpatrick Clinical Sciences Building, University of Leicester, Leicester LE2 7LX, United Kingdom
| | - Kevin West
- Leicester Cancer Research Centre, Robert Kilpatrick Clinical Sciences Building, University of Leicester, Leicester LE2 7LX, United Kingdom
| | - Ankur Karmokar
- Leicester Cancer Research Centre, Robert Kilpatrick Clinical Sciences Building, University of Leicester, Leicester LE2 7LX, United Kingdom
| | - Lynne Howells
- Leicester Cancer Research Centre, Robert Kilpatrick Clinical Sciences Building, University of Leicester, Leicester LE2 7LX, United Kingdom
| | - Catrin Pritchard
- Leicester Cancer Research Centre, Robert Kilpatrick Clinical Sciences Building, University of Leicester, Leicester LE2 7LX, United Kingdom
| | - Anne L Thomas
- Leicester Cancer Research Centre, Robert Kilpatrick Clinical Sciences Building, University of Leicester, Leicester LE2 7LX, United Kingdom
| | - Karen Brown
- Leicester Cancer Research Centre, Robert Kilpatrick Clinical Sciences Building, University of Leicester, Leicester LE2 7LX, United Kingdom
| |
Collapse
|
21
|
Przygodzka P, Soboska K, Sochacka E, Pacholczyk M, Braun M, Kassassir H, Papiewska-Pająk I, Kielbik M, Boncela J. Neuromedin U secreted by colorectal cancer cells promotes a tumour-supporting microenvironment. Cell Commun Signal 2022; 20:193. [PMID: 36482448 PMCID: PMC9733105 DOI: 10.1186/s12964-022-01003-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 11/04/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Neuromedin U (NMU) was identified as one of the hub genes closely related to colorectal cancer (CRC) progression and was recently shown to be a motility inducer in CRC cells. Its autocrine signalling through specific receptors increases cancer cell migration and invasiveness. Because of insufficient knowledge concerning NMU accessibility and action in the tumour microenvironment, its role in CRC remains poorly understood and its potential as a therapeutic target is still difficult to define. METHODS NMU expression in CRC tissue was detected by IHC. Data from The Cancer Genome Atlas were used to analyse gene expression in CRC. mRNA and protein expression was detected by real-time PCR, immunoblotting or immunofluorescence staining and analysed using confocal microscopy or flow cytometry. Proteome Profiler was used to detect changes in the profiles of cytokines released by cells constituting tumour microenvironment after NMU treatment. NMU receptor activity was monitored by detecting ERK1/2 activation. Transwell cell migration, wound healing assay and microtube formation assay were used to evaluate the effects of NMU on the migration of cancer cells, human macrophages and endothelial cells. RESULTS Our current study showed increased NMU levels in human CRC when compared to normal adjacent tissue. We detected a correlation between high NMUR1 expression and shorter overall survival of patients with CRC. We identified NMUR1 expression on macrophages, endothelial cells, platelets, and NMUR1 presence in platelet microparticles. We confirmed ERK1/2 activation by treatment of macrophages and endothelial cells with NMU, which induced pro-metastatic phenotypes of analysed cells and changed their secretome. Finally, we showed that NMU-stimulated macrophages increased the migratory potential of CRC cells. CONCLUSIONS We propose that NMU is involved in the modulation and promotion of the pro-metastatic tumour microenvironment in CRC through the activation of cancer cells and other tumour niche cells, macrophages and endothelial cells. Video abstract.
Collapse
Affiliation(s)
- Patrycja Przygodzka
- grid.413454.30000 0001 1958 0162Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232 Lodz, Poland
| | - Kamila Soboska
- grid.413454.30000 0001 1958 0162Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232 Lodz, Poland ,grid.10789.370000 0000 9730 2769Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Ewelina Sochacka
- grid.413454.30000 0001 1958 0162Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232 Lodz, Poland ,grid.10789.370000 0000 9730 2769Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Marcin Pacholczyk
- grid.6979.10000 0001 2335 3149Department of Systems Biology and Engineering, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland
| | - Marcin Braun
- grid.8267.b0000 0001 2165 3025Department of Pathology, Medical University of Lodz, Pomorska 251, 92-213 Lodz, Poland
| | - Hassan Kassassir
- grid.413454.30000 0001 1958 0162Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232 Lodz, Poland
| | - Izabela Papiewska-Pająk
- grid.413454.30000 0001 1958 0162Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232 Lodz, Poland
| | - Michal Kielbik
- grid.413454.30000 0001 1958 0162Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232 Lodz, Poland
| | - Joanna Boncela
- grid.413454.30000 0001 1958 0162Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232 Lodz, Poland
| |
Collapse
|
22
|
Pal S, Saini AK, Kaushal A, Gupta S, Gaur NA, Chhillar AK, Sharma AK, Gupta VK, Saini RV. The Colloquy between Microbiota and the Immune System in Colon Cancer: Repercussions on the Cancer Therapy. Curr Pharm Des 2022; 28:3478-3485. [PMID: 36415093 DOI: 10.2174/1381612829666221122115906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 10/04/2022] [Accepted: 10/13/2022] [Indexed: 11/24/2022]
Abstract
Colorectal cancer is the second leading cause of cancer deaths worldwide and has engrossed researchers' attention toward its detection and prevention at early stages. Primarily associated with genetic and environmental risk factors, the disease has also shown its emergence due to dysbiosis in microbiota. The microbiota not only plays a role in modulating the metabolisms of metastatic tissue but also has a keen role in cancer therapy. The immune cells are responsible for secreting various chemokines and cytokines, and activating pattern recognition receptors by different microbes can lead to the trail by which these cells regulate cancer. Furthermore, mixed immune reactions involving NK cells, tumor-associated macrophages, and lymphocytes have shown their connection with the microbial counterpart of the disease. The microbes like Bacteroides fragilis, Fusobacterium nucleatum, and Enterococcus faecalis and their metabolites have engendered inflammatory reactions in the tumor microenvironment. Hence the interplay between immune cells and various microbes is utilized to study the changing metastasis stage. Targeting either immune cells or microbiota could not serve as a key to tackling this deadly disorder. However, harnessing their complementation towards the disease can be a powerful weapon for developing therapy and diagnostic/prognostic markers. In this review, we have discussed various immune reactions and microbiome interplay in CRC, intending to evaluate the effectiveness of chemotherapy and immunotherapy and their parallel relationship.
Collapse
Affiliation(s)
- Soumya Pal
- Department of Biotechnology, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, India
| | - Adesh K Saini
- Department of Biotechnology, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, India.,Central Research Cell, MMIMSR, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, India
| | - Ankur Kaushal
- Department of Biotechnology, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, India
| | - Shagun Gupta
- Department of Biotechnology, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, India
| | - Naseem A Gaur
- Department of Yeast Biofuel, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Anil K Chhillar
- Centre for Biotechnology, Maharshi Dayanand University (MDU), Rohtak, India
| | - Anil K Sharma
- Department of Biotechnology, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, India
| | - Vijai K Gupta
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, Edinburgh, EH9 3JG, UK
| | - Reena V Saini
- Department of Biotechnology, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, India.,Central Research Cell, MMIMSR, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, India
| |
Collapse
|
23
|
Pharmacogenetics Role of Genetic Variants in Immune-Related Factors: A Systematic Review Focusing on mCRC. Pharmaceutics 2022; 14:pharmaceutics14112468. [PMID: 36432658 PMCID: PMC9693433 DOI: 10.3390/pharmaceutics14112468] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 11/18/2022] Open
Abstract
Pharmacogenetics plays a key role in personalized cancer treatment. Currently, the clinically available pharmacogenetic markers for metastatic colorectal cancer (mCRC) are in genes related to drug metabolism, such as DPYD for fluoropyrimidines and UGT1A1 for irinotecan. Recently, the impact of host variability in inflammatory and immune-response genes on treatment response has gained considerable attention, opening innovative perspectives for optimizing tailored mCRC therapy. A literature review was performed on the predictive role of immune-related germline genetic biomarkers on pharmacological outcomes in patients with mCRC. Particularly, that for efficacy and toxicity was reported and the potential role for clinical management of patients was discussed. Most of the available data regard therapy effectiveness, while the impact on toxicity remains limited. Several studies focused on the effects of polymorphisms in genes related to antibody-dependent cellular cytotoxicity (FCGR2A, FCGR3A) and yielded promising but inconclusive results on cetuximab efficacy. The remaining published data are sparse and mainly hypothesis-generating but suggest potentially interesting topics for future pharmacogenetic studies, including innovative gene-drug interactions in a clinical context. Besides the tumor immune escape pathway, genetic markers belonging to cytokines/interleukins (IL-8 and its receptors) and angiogenic mediators (IGF1) seem to be the best investigated and hopefully most promising to be translated into clinical practice after validation.
Collapse
|
24
|
Mihajlović M, Ninić A, Ostojić M, Sopić M, Stefanović A, Vekić J, Antonić T, Zeljković D, Trifunović B, Spasojević-Kalimanovska V, Bogavac Stanojević N, Jančić I, Zeljković A. Association of Adiponectin Receptors with Metabolic and Immune Homeostasis Parameters in Colorectal Cancer: In Silico Analysis and Observational Findings. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:14995. [PMID: 36429712 PMCID: PMC9691131 DOI: 10.3390/ijerph192214995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/02/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
Adiponectin (ADIPOQ) as both a regulator of metabolic homeostasis and a protein involved in immune response might be of particular interest to contemporary laboratory medicine, especially in terms of minimally invasive diagnostics. The diverse roles of ADIPOQ with regard to the immune and metabolic aspects of colorectal carcinogenesis have been proposed. However, the expression of its receptors ADIPOR1 and ADIPOR2 is scarcely explored in peripheral blood mononuclear cells (PBMCs). Moreover, ADIPORs' relationships with the immune response mediator TNF-α have not been previously investigated in the PBMCs of CRC patients. This study used both in silico and observational case-control analyses with the aim of exploring the association of ADIPOR gene expression and ADIPOQ single nucleotide polymorphisms (SNPs) with the inflammatory marker TNF-α and lipid status parameters in patients with CRC. Publicly available transcriptomic datasets (GSE47756, GSE44076) obtained from analyses of monocytes and CRC tissue samples were employed for the in silico evaluation of ADIPORs' specific genetic traits. GSE47756 and GSE44076 datasets were processed with GSEA software to provide a genetic fingertip of different signaling pathways associated with ADIPORs' mRNA levels. The case-control aspect of the study included the PBMC samples of 73 patients diagnosed with CRC and 80 healthy volunteers. The PCR method was carried out for the PBMC gene expression analysis (ADIPOR1, ADIPOR2, TNF-α mRNA levels) and for the subjects' genotyping (ADIPOQ rs266729, ADIPOR1 rs7539542). GSEA showed significant associations of ADIPOR mRNA expression with gene sets related to metabolic and immune homeostasis in both datasets. The case-control study revealed the association of ADIPOR1 rs7539542 with reduced lipid status parameters in CRC. In addition, PBMC ADIPOR1 mRNA levels decreased in CRC (p < 0.001), whereas ADIPOR2 mRNA did not differ between the groups (p = 0.442). A reduction in PBMC TNF-α mRNA levels was noted in CRC (p < 0.05). Our results indicate that ADIPOR1 and ADIPOR2 play a significant role in the alteration of both metabolic and immune homeostasis during the progression of CRC. For the first time, ADIPOR1 is shown to be a specific receptor for mediating ADIPOQ's effects in the PBMCs of CRC patients.
Collapse
Affiliation(s)
- Marija Mihajlović
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia
| | - Ana Ninić
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia
| | - Marija Ostojić
- Department of Experimental Oncology, Institute for Oncology and Radiology of Serbia, 11000 Belgrade, Serbia
| | - Miron Sopić
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia
| | - Aleksandra Stefanović
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia
| | - Jelena Vekić
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia
| | - Tamara Antonić
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia
| | - Dejan Zeljković
- Clinic of General Surgery, Military Medical Academy, 11000 Belgrade, Serbia
| | - Bratislav Trifunović
- Clinic of General Surgery, Military Medical Academy, 11000 Belgrade, Serbia
- Faculty of Medicine, Military Medical Academy, University of Defense, 11000 Belgrade, Serbia
| | | | - Nataša Bogavac Stanojević
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia
| | - Ivan Jančić
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia
| | - Aleksandra Zeljković
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia
| |
Collapse
|
25
|
Adinew GM, Messeha SS, Taka E, Badisa RB, Soliman KFA. Anticancer Effects of Thymoquinone through the Antioxidant Activity, Upregulation of Nrf2, and Downregulation of PD-L1 in Triple-Negative Breast Cancer Cells. Nutrients 2022; 14:nu14224787. [PMID: 36432484 PMCID: PMC9695946 DOI: 10.3390/nu14224787] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/04/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
The variety of therapies available for treating and preventing triple-negative breast cancer (TNBC) is constrained by the absence of progesterone receptors, estrogen receptors, and human epidermal growth factor receptor 2. Nrf2 (nuclear factor-erythroid 2-related factor), and PD-L1 (program cell death ligand 1), a downstream signaling target, have a strong correlation to oxidative stress and inflammation, major factors in the development and progression of TNBC. In this study, the genetically distinct MDA-MB-231 and MDA-MB-468 TNBC cells were treated with the natural component thymoquinone (TQ). The results show that TQ exhibits considerable antioxidant activity and decreases the generation of H2O2, at the same time increasing catalase (CAT) activity, superoxide dismutase (SOD) enzyme, and glutathione (GSH). Additionally, the results show that TQ treatment increased the levels of the different genes involved in the oxidative stress-antioxidant defense system PRNP, NQO1, and GCLM in both cell lines with significant large-fold change in MDA-MB-468 cells (+157.65 vs. +1.7, +48.87 vs. +2.63 and +4.78 vs. +2.17), respectively. Nrf2 mRNA and protein expression were also significantly increased in TQ-treated TNBC cells despite being higher in MDA-MB-468 cells (6.67 vs. 4.06). Meanwhile, TQ administration increased mRNA levels while decreasing PD-L1 protein expression in both cell lines. In conclusion, TQ modifies the expression of multiple oxidative-stress-antioxidant system genes, ROS, antioxidant enzymes, Nrf2, and PD-L1 protein, pointing to the therapeutic potential and chemopreventive utilization of TQ in TNBC.
Collapse
|
26
|
Zhang C, Zeng C, Xiong S, Zhao Z, Wu G. A mitophagy-related gene signature associated with prognosis and immune microenvironment in colorectal cancer. Sci Rep 2022; 12:18688. [PMID: 36333388 PMCID: PMC9636133 DOI: 10.1038/s41598-022-23463-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
Colorectal cancer (CRC) is a heterogeneous disease and one of the most prevalent malignancies worldwide. Previous research has demonstrated that mitophagy is crucial to developing colorectal cancer. This study aims to examine the association between mitophagy-related genes and the prognosis of CRC patients. Gene expression profiles and clinical information of CRC patients were obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Univariate Cox regression and the least absolute shrinkage and selection operator (LASSO) regression analysis were applied to establish a prognostic signature using mitophagy related genes. Kaplan-Meier and receiver operating characteristic (ROC) curves were used to analyze patient survival and predictive accuracy. Meanwhile, we also used the Genomics of Drug Sensitivity in Cancer (GDSC) database and Tumor Immune Dysfunction and Exclusion (TIDE) algorithm to estimate the sensitivity of chemotherapy, targeted therapy and immunotherapy. ATG14 overexpression plasmid was used to regulate the ATG14 expression level in HCT116 and SW480 cell lines, and cell counting kit-8, colony formation and transwell migration assay were performed to validate the function of ATG14 in CRC cells. A total of 22 mitophagy-driven genes connected with CRC survival were identified, and then a novel prognostic signature was established based on 10 of them (AMBRA1, ATG14, MAP1LC3A, MAP1LC3B, OPTN, VDAC1, ATG5, CSNK2A2, MFN1, TOMM22). Patients were divided into high-risk and low-risk groups based on the median risk score, and the survival of patients in the high-risk group was significantly shorter in both the training cohort and two independent cohorts. ROC curve showed that the area under the curves (AUC) of 1-, 3- and 5-year survival were 0.66, 0.66 and 0.64, respectively. Multivariate Cox regression analysis confirmed the independent prognostic value of the signature. Then we constructed a Nomogram combining the risk score, age and M stage, which had a concordance index of survival prediction of 0.77 (95% CI 0.71-0.83) and more robust predictive accuracy. Results showed that CD8+ T cells, regulatory T cells and activated NK cells were significantly more enriched in the high-risk group. Furthermore, patients in the high-risk group are more sensitive to targeted therapy or chemotherapy, including bosutinib, elesclomol, lenalidomide, midostaurin, pazopanib and sunitinib, while the low-risk group is more likely to benefit from immunotherapy. Finally, in vitro study confirmed the oncogenic significance of ATG14 in both HCT116 and SW480 cells, whose overexpression increased CRC cell proliferation, colony formation, and migration. In conclusion, we developed a novel mitophagy-related gene signature that can be utilized not only as an independent predictive biomarker but also as a tool for tailoring personalizing treatment for CRC patients, and we confirmed ATG14 as a novel oncogene in CRC.
Collapse
Affiliation(s)
- Cong Zhang
- grid.415440.0Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072 Sichuan China
| | - Cailing Zeng
- grid.415440.0Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072 Sichuan China
| | - Shaoquan Xiong
- grid.415440.0Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072 Sichuan China
| | - Zewei Zhao
- grid.411304.30000 0001 0376 205XChengdu University of Traditional Chinese Medicine, Chengdu, 610072 Sichuan China
| | - Guoyu Wu
- grid.415440.0Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072 Sichuan China
| |
Collapse
|
27
|
Lu J, Annunziata F, Sirvinskas D, Omrani O, Li H, Rasa SMM, Krepelova A, Adam L, Neri F. Establishment and evaluation of module-based immune-associated gene signature to predict overall survival in patients of colon adenocarcinoma. J Biomed Sci 2022; 29:81. [PMID: 36229806 PMCID: PMC9563160 DOI: 10.1186/s12929-022-00867-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/04/2022] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Patients with colon adenocarcinoma (COAD) exhibit significant heterogeneity in overall survival. The current tumor-node-metastasis staging system is insufficient to provide a precise prediction for prognosis. Identification and evaluation of new risk models by using big cancer data may provide a good way to identify prognosis-related signature. METHODS We integrated different datasets and applied bioinformatic and statistical methods to construct a robust immune-associated risk model for COAD prognosis. Furthermore, a nomogram was constructed based on the gene signature and clinicopathological features to improve risk stratification and quantify risk assessment for individual patients. RESULTS The immune-associated risk model discriminated high-risk patients in our investigated and validated cohorts. Survival analyses demonstrated that our gene signature served as an independent risk factor for overall survival and the nomogram exhibited high accuracy. Functional analysis interpreted the correlation between our risk model and its role in prognosis by classifying groups with different immune activities. Remarkably, patients in the low-risk group showed higher immune activity, while those in the high-risk group displayed a lower immune activity. CONCLUSIONS Our study provides a novel tool that may contribute to the optimization of risk stratification for survival and personalized management of COAD.
Collapse
Affiliation(s)
- Jing Lu
- grid.418245.e0000 0000 9999 5706Leibniz Institute on Aging, Fritz Lipmann Institute (FLI), Jena, Germany
| | - Francesco Annunziata
- grid.418245.e0000 0000 9999 5706Leibniz Institute on Aging, Fritz Lipmann Institute (FLI), Jena, Germany
| | - Dovydas Sirvinskas
- grid.418245.e0000 0000 9999 5706Leibniz Institute on Aging, Fritz Lipmann Institute (FLI), Jena, Germany
| | - Omid Omrani
- grid.418245.e0000 0000 9999 5706Leibniz Institute on Aging, Fritz Lipmann Institute (FLI), Jena, Germany
| | - Huahui Li
- grid.418245.e0000 0000 9999 5706Leibniz Institute on Aging, Fritz Lipmann Institute (FLI), Jena, Germany
| | - Seyed Mohammad Mahdi Rasa
- grid.418245.e0000 0000 9999 5706Leibniz Institute on Aging, Fritz Lipmann Institute (FLI), Jena, Germany
| | - Anna Krepelova
- grid.418245.e0000 0000 9999 5706Leibniz Institute on Aging, Fritz Lipmann Institute (FLI), Jena, Germany
| | - Lisa Adam
- grid.418245.e0000 0000 9999 5706Leibniz Institute on Aging, Fritz Lipmann Institute (FLI), Jena, Germany
| | - Francesco Neri
- grid.418245.e0000 0000 9999 5706Leibniz Institute on Aging, Fritz Lipmann Institute (FLI), Jena, Germany ,grid.7605.40000 0001 2336 6580Present Address: Life Sciences and Systems Biology Department, University of Torino, MBC, via Nizza 52, 10126 Turin, Italy
| |
Collapse
|
28
|
Jou E, Rodriguez-Rodriguez N, McKenzie ANJ. Emerging roles for IL-25 and IL-33 in colorectal cancer tumorigenesis. Front Immunol 2022; 13:981479. [PMID: 36263033 PMCID: PMC9573978 DOI: 10.3389/fimmu.2022.981479] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/15/2022] [Indexed: 12/31/2022] Open
Abstract
Colorectal cancer (CRC) is the second leading cause of cancer-related death worldwide, and is largely refractory to current immunotherapeutic interventions. The lack of efficacy of existing cancer immunotherapies in CRC reflects the complex nature of the unique intestinal immune environment, which serves to maintain barrier integrity against pathogens and harmful environmental stimuli while sustaining host-microbe symbiosis during homeostasis. With their expression by barrier epithelial cells, the cytokines interleukin-25 (IL-25) and IL-33 play key roles in intestinal immune responses, and have been associated with inappropriate allergic reactions, autoimmune diseases and cancer pathology. Studies in the past decade have begun to uncover the important roles of IL-25 and IL-33 in shaping the CRC tumour immune microenvironment, where they may promote or inhibit tumorigenesis depending on the specific CRC subtype. Notably, both IL-25 and IL-33 have been shown to act on group 2 innate lymphoid cells (ILC2s), but can also stimulate an array of other innate and adaptive immune cell types. Though sometimes their functions can overlap they can also produce distinct phenotypes dependent on the differential distribution of their receptor expression. Furthermore, both IL-25 and IL-33 modulate pathways previously known to contribute to CRC tumorigenesis, including angiogenesis, tumour stemness, invasion and metastasis. Here, we review our current understanding of IL-25 and IL-33 in CRC tumorigenesis, with specific focus on dissecting their individual function in the context of distinct subtypes of CRC, and the potential prospects for targeting these pathways in CRC immunotherapy.
Collapse
Affiliation(s)
- Eric Jou
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | | | | |
Collapse
|
29
|
Li J, Hu X, Zhang H, Peng Y, Li S, Xiong Y, Jiang W, Wang Z. N-2-(Phenylamino) Benzamide Derivatives as Dual Inhibitors of COX-2 and Topo I Deter Gastrointestinal Cancers via Targeting Inflammation and Tumor Progression. J Med Chem 2022; 65:10481-10505. [PMID: 35868003 DOI: 10.1021/acs.jmedchem.2c00635] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Given the close association between inflammation and cancer, combining anti-inflammation therapy is prominent to improve the anticancer effect. Based on I-1, a series of agents targeting COX-2 and Topo I were designed by combining fenamates and phenols. The optimal compound 1H-30 displayed an enhanced inhibitory effect on COX-2 compared to tolfenamic acid and I-1 and showed better inhibition of Topo I than I-1. Importantly, 1H-30 showed potential anticancer effects and suppressed the activation of the NF-κB pathway in cancer cells. 1H-30 inhibited the nuclear translocation of NF-κB and suppressed the production of NO, COX-2, and IL-1β in RAW264.7. In vivo, 1H-30 showed acceptable pharmacokinetic parameters, decreased the tumor growth without affecting the body weight, down-regulated COX-2 and MMP-9, and induced apoptosis in the CT26.WT tumor-bearing mice. Accordingly, 1H-30 as a potential Topo I/COX-2 inhibitor which possessed anti-inflammatory and anticancer effects, with inhibition of the NF-κB pathway, is promising for gastrointestinal cancer therapy.
Collapse
Affiliation(s)
- Junfang Li
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China.,State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Xiaoling Hu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China.,State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Honghua Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China.,State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Yan Peng
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Shuang Li
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Yongxia Xiong
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Weifan Jiang
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Zhen Wang
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China.,School of Pharmacy, Lanzhou University, Lanzhou 730000, China.,State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
30
|
He Y, Chen Y, Dai X, Huang S. Dysregulation of Circadian Clock Genes Associated with Tumor Immunity and Prognosis in Patients with Colon Cancer. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:4957996. [PMID: 35880088 PMCID: PMC9308515 DOI: 10.1155/2022/4957996] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/06/2022] [Indexed: 11/18/2022]
Abstract
Early research shows that disrupting the circadian rhythm increases the risk of various cancers. However, the roles of circadian clock genes in colorectal cancer, which is becoming more common and lethal in China, remained to be unclear. In conclusion, the present study has demonstrated that multiple CCGs were dysregulated and frequently mutated in CRC samples by analyzing the TCGA database. The higher expression levels of REV1, ADCYAP1, CSNK1D, NR1D1, CSNK1E, and CRY2 had a strong link with shorter DFS time in CRC patients, demonstrating that CCGs had an important regulatory role in CRC development. Moreover, 513 CRC tumor samples were divided into 3 categories, namely, cluster1 (n = 428), cluster2 (n = 83), and cluster 3 (n = 109), based on the expression levels of the CCGs. Clinical significance analysis showed that the overall survival and disease-free survival of cluster 2 and cluster 3 were significantly shorter than those of cluster 1. The stemness scores in cluster 1 and cluster 2 were significantly higher than those of cluster 3 CRC samples. Clinically, we found that the C3 subtype had significantly higher percentage of T3/T4, N1/N2, and grades III and IV than groups C1 or C2. In addition, we reported that different CRC clusters had significantly different tumor-infiltrating immune cell signatures. Finally, pancancer analysis showed that higher expression of CSNK1D was correlated with shorter DFS time in multiple cancer types, such as COAD and LIHC, and was dysregulated in various cancers. In conclusion, we effectively developed a CCG-related predictive model and opened up new avenues for research into immune regulatory mechanisms and the development of immunotherapy for CRC.
Collapse
Affiliation(s)
- Yongshan He
- Department of Colorectal Surgery, School of Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University, No. 1665 Kongjiang Road, Shanghai 200092, China
| | - Yuanyuan Chen
- Department of Colorectal Surgery, School of Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University, No. 1665 Kongjiang Road, Shanghai 200092, China
| | - Xuan Dai
- Department of Colorectal Surgery, School of Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University, No. 1665 Kongjiang Road, Shanghai 200092, China
| | - Shiyong Huang
- Department of Colorectal Surgery, School of Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University, No. 1665 Kongjiang Road, Shanghai 200092, China
| |
Collapse
|
31
|
Aristin Revilla S, Kranenburg O, Coffer PJ. Colorectal Cancer-Infiltrating Regulatory T Cells: Functional Heterogeneity, Metabolic Adaptation, and Therapeutic Targeting. Front Immunol 2022; 13:903564. [PMID: 35874729 PMCID: PMC9304750 DOI: 10.3389/fimmu.2022.903564] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/06/2022] [Indexed: 11/18/2022] Open
Abstract
Colorectal cancer (CRC) is a heterogeneous disease with one of the highest rates of incidence and mortality among cancers worldwide. Understanding the CRC tumor microenvironment (TME) is essential to improve diagnosis and treatment. Within the CRC TME, tumor-infiltrating lymphocytes (TILs) consist of a heterogeneous mixture of adaptive immune cells composed of mainly anti-tumor effector T cells (CD4+ and CD8+ subpopulations), and suppressive regulatory CD4+ T (Treg) cells. The balance between these two populations is critical in anti-tumor immunity. In general, while tumor antigen-specific T cell responses are observed, tumor clearance frequently does not occur. Treg cells are considered to play an important role in tumor immune escape by hampering effective anti-tumor immune responses. Therefore, CRC-tumors with increased numbers of Treg cells have been associated with promoting tumor development, immunotherapy failure, and a poorer prognosis. Enrichment of Treg cells in CRC can have multiple causes including their differentiation, recruitment, and preferential transcriptional and metabolic adaptation to the TME. Targeting tumor-associated Treg cell may be an effective addition to current immunotherapy approaches. Strategies for depleting Treg cells, such as low-dose cyclophosphamide treatment, or targeting one or more checkpoint receptors such as CTLA-4 with PD-1 with monoclonal antibodies, have been explored. These have resulted in activation of anti-tumor immune responses in CRC-patients. Overall, it seems likely that CRC-associated Treg cells play an important role in determining the success of such therapeutic approaches. Here, we review our understanding of the role of Treg cells in CRC, the possible mechanisms that support their homeostasis in the tumor microenvironment, and current approaches for manipulating Treg cells function in cancer.
Collapse
Affiliation(s)
- Sonia Aristin Revilla
- Center Molecular Medicine, University Medical Center Utrecht, Utrecht, Netherlands
- Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, Netherlands
- Laboratory Translational Oncology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Onno Kranenburg
- Laboratory Translational Oncology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Paul J. Coffer
- Center Molecular Medicine, University Medical Center Utrecht, Utrecht, Netherlands
- Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, Netherlands
- *Correspondence: Paul J. Coffer,
| |
Collapse
|
32
|
Zhou Y, Che Y, Fu Z, Zhang H, Wu H. Triple-Negative Breast Cancer Analysis Based on Metabolic Gene Classification and Immunotherapy. Front Public Health 2022; 10:902378. [PMID: 35875026 PMCID: PMC9296841 DOI: 10.3389/fpubh.2022.902378] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/23/2022] [Indexed: 12/24/2022] Open
Abstract
Triple negative breast cancer (TNBC) has negative expression of ER, PR and HER-2. TNBC shows high histological grade and positive rate of lymph node metastasis, easy recurrence and distant metastasis. Molecular typing based on metabolic genes can reflect deeper characteristics of breast cancer and provide support for prognostic evaluation and individualized treatment. Metabolic subtypes of TNBC samples based on metabolic genes were determined by consensus clustering. CIBERSORT method was applied to evaluate the score distribution and differential expression of 22 immune cells in the TNBC samples. Linear discriminant analysis (LDA) established a subtype classification feature index. Kaplan-Meier (KM) and receiver operating characteristic (ROC) curves were generated to validate the performance of prognostic metabolic subtypes in different datasets. Finally, we used weighted correlation network analysis (WGCNA) to cluster the TCGA expression profile dataset and screen the co-expression modules of metabolic genes. Consensus clustering of the TCGA cohort/dataset obtained three metabolic subtypes (MC1, MC2, and MC3). The ROC analysis showed a high prognostic performance of the three clusters in different datasets. Specifically, MC1 had the optimal prognosis, MC3 had a poor prognosis, and the three metabolic subtypes had different prognosis. Consistently, the immune characteristic index established based on metabolic subtypes demonstrated that compared with the other two subtypes, MC1 had a higher IFNγ score, T cell lytic activity and lower angiogenesis score, T cell dysfunction and rejection score. TIDE analysis showed that MC1 patients were more likely to benefit from immunotherapy. MC1 patients were more sensitive to immune checkpoint inhibitors and traditional chemotherapy drugs Cisplatin, Paclitaxel, Embelin, and Sorafenib. Multiclass AUC based on RNASeq and GSE datasets were 0.85 and 0.85, respectively. Finally, based on co-expression network analysis, we screened 7 potential gene markers related to metabolic characteristic index, of which CLCA2, REEP6, SPDEF, and CRAT can be used to indicate breast cancer prognosis. Molecular classification related to TNBC metabolism was of great significance for comprehensive understanding of the molecular pathological characteristics of TNBC, contributing to the exploration of reliable markers for early diagnosis of TNBC and predicting metastasis and recurrence, improvement of the TNBC staging system, guiding individualized treatment.
Collapse
Affiliation(s)
- Yu Zhou
- Oncology Department, The First Affiliated Hospital of Jiamusi University, Jiamusi, China
| | - Yingqi Che
- Hematology-Oncology Department, Long Nan Hospital, Daqing, China
| | - Zhongze Fu
- Gastroenterology Department, The First Hospital of Qiqihar, Qiqihar, China
| | - Henan Zhang
- Oncology Department, The First Affiliated Hospital of Jiamusi University, Jiamusi, China
| | - Huiyu Wu
- Third Department of Oncology, People's Hospital of Daqing, Daqing, China
- *Correspondence: Huiyu Wu
| |
Collapse
|
33
|
Wang C, Tang Y, Ma H, Wei S, Hu X, Zhao L, Wang G. Identification of Hypoxia-Related Subtypes, Establishment of Prognostic Models, and Characteristics of Tumor Microenvironment Infiltration in Colon Cancer. Front Genet 2022; 13:919389. [PMID: 35783281 PMCID: PMC9247151 DOI: 10.3389/fgene.2022.919389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 04/25/2022] [Indexed: 11/24/2022] Open
Abstract
Background: Immunotherapy is a treatment that can significantly improve the prognosis of patients with colon cancer, but the response to immunotherapy is different in patients with colon cancer because of the heterogeneity of colon carcinoma and the complex nature of the tumor microenvironment (TME). In the precision therapy mode, finding predictive biomarkers that can accurately identify immunotherapy-sensitive types of colon cancer is essential. Hypoxia plays an important role in tumor proliferation, apoptosis, angiogenesis, invasion and metastasis, energy metabolism, and chemotherapy and immunotherapy resistance. Thus, understanding the mechanism of hypoxia-related genes (HRGs) in colon cancer progression and constructing hypoxia-related signatures will help enrich our treatment strategies and improve patient prognosis. Methods: We obtained the gene expression data and corresponding clinical information of 1,025 colon carcinoma patients from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) databases, respectively. We identified two distinct hypoxia subtypes (subtype A and subtype B) according to unsupervised clustering analysis and assessed the clinical parameters, prognosis, and TME cell-infiltrating characteristics of patients in the two subtypes. We identified 1,132 differentially expressed genes (DEGs) between the two hypoxia subtypes, and all patients were randomly divided into the training group (n = 513) and testing groups (n = 512). Following univariate Cox regression with DEGs, we construct the prognostic model (HRG-score) including six genes (S1PR3, ETV5, CD36, FOXC1, CXCL10, and MMP12) through the LASSO–multivariate cox method in the training group. We comprehensively evaluated the sensitivity and applicability of the HRG-score model from the training group and the testing group, respectively. We explored the correlation between HRG-score and clinical parameters, tumor microenvironment, cancer stem cells (CSCs), and MMR status. In order to evaluate the value of the risk model in clinical application, we further analyzed the sensitivity of chemotherapeutics and immunotherapy between the low-risk group and high-risk group and constructed a nomogram for improving the clinical application of the HRG-score. Result: Subtype A was significantly enriched in metabolism-related pathways, and subtype B was significantly enriched in immune activation and several tumor-associated pathways. The level of immune cell infiltration and immune checkpoint-related genes, stromal score, estimate score, and immune dysfunction and exclusion (TIDE) prediction score was significantly different in subtype A and subtype B. The level of immune checkpoint-related genes and TIDE score was significantly lower in subtype A than that in subtype B, indicating that subtype A might benefit from immune checkpoint inhibitors. Finally, an HRG-score signature for predicting prognosis was constructed through the training group, and the predictive capability was validated through the testing group. The survival analysis and correlation analysis of clinical parameters revealed that the prognosis of patients in the high-risk group was significantly worse than that in the low-risk group. There were also significant differences in immune status, mismatch repair status (MMR), and cancer stem cell index (CSC), between the two risk groups. The correlation analysis of risk scores with IC50 and IPS showed that patients in the low-risk group had a higher benefit from chemotherapy and immunotherapy than those in the high-risk group, and the external validation IMvigor210 demonstrated that patients with low risk were more sensitive to immunotherapy. Conclusion: We identified two novel molecular subgroups based on HRGs and constructed an HRG-score model consisting of six genes, which can help us to better understand the mechanisms of hypoxia-related genes in the progression of colon cancer and identify patients susceptible to chemotherapy or immunotherapy, so as to achieve precision therapy for colon cancer.
Collapse
Affiliation(s)
- Changjing Wang
- Department of Gastrointestinal Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yujie Tang
- Department of Gastrointestinal Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hongqing Ma
- The Second Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Sisi Wei
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xuhua Hu
- The Second Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Lianmei Zhao
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
- *Correspondence: Guiying Wang, ; Lianmei Zhao,
| | - Guiying Wang
- Department of Gastrointestinal Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China
- The Second Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
- *Correspondence: Guiying Wang, ; Lianmei Zhao,
| |
Collapse
|
34
|
The role of microbiota in colorectal cancer. Folia Microbiol (Praha) 2022; 67:683-691. [PMID: 35534716 DOI: 10.1007/s12223-022-00978-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 05/02/2022] [Indexed: 11/04/2022]
Abstract
Cancer is one of the most important causes of death throughout the world, and the mortality rate is increasing significantly due to the aging of the population. One of the most common types of cancer is colorectal cancer (CRC). Human microbial ecosystems use metabolism to make important impacts on the body physiology. An intensive literature review was made to investigate the correlations between human gut microbiota and the incidence of CRC. The results of these studies show that there are differences in the composition of microbiota between CRC patients and normal people and the microorganisms in CRC patients are very different from healthy individuals. Therefore, changes in the microbiome can be used as a biomarker for the early detection of CRC. On the other hand, the intestinal flora is may be act as a powerful weapon against CRC in the future.
Collapse
|
35
|
Nazarian A, Arbeev KG, Yashkin AP, Kulminski AM. Genome-wide analysis of genetic predisposition to common polygenic cancers. J Appl Genet 2022; 63:315-325. [PMID: 34981446 PMCID: PMC8983541 DOI: 10.1007/s13353-021-00679-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 12/13/2021] [Accepted: 12/23/2021] [Indexed: 12/16/2022]
Abstract
Lung, breast, prostate, and colorectal cancers are among the most common and fatal malignancies worldwide. They are mainly caused by multifactorial mechanisms and are genetically heterogeneous. We investigated the genetic architecture of these cancers through genome-wide association, pathway-based, and summary-based transcriptome-/methylome-wide association analyses using three independent cohorts. Our genome-wide association analyses identified the associations of 33 single-nucleotide polymorphisms (SNPs) at P < 5E - 06, of which 32 SNPs were not previously reported and did not have proxy variants within their ± 1 Mb flanking regions. Moreover, other polymorphisms mapped to their closest genes were not previously associated with the same cancers at P < 5E - 06. Our pathway enrichment analyses revealed associations of 32 pathways; mainly related to the immune system, DNA replication/transcription, and chromosomal organization; with the studied cancers. Also, 60 probes were associated with these cancers in our transcriptome-wide and methylome-wide analyses. The ± 1 Mb flanking regions of most probes had not attained P < 5E - 06 in genome-wide association studies. The genes corresponding to the significant probes can be considered as potential targets for further functional studies. Two genes (i.e., CDC14A and PMEL) demonstrated stronger evidence of associations with lung cancer as they had significant probes in both transcriptome-wide and methylome-wide association analyses. The novel cancer-associated SNPs and genes identified here would advance our understanding of the genetic heterogeneity of the common cancers.
Collapse
Affiliation(s)
- Alireza Nazarian
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Erwin Mill Building, 2024 W. Main St., Durham, NC, 27705, USA.
| | - Konstantin G Arbeev
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Erwin Mill Building, 2024 W. Main St., Durham, NC, 27705, USA
| | - Arseniy P Yashkin
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Erwin Mill Building, 2024 W. Main St., Durham, NC, 27705, USA
| | - Alexander M Kulminski
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Erwin Mill Building, 2024 W. Main St., Durham, NC, 27705, USA.
| |
Collapse
|
36
|
Li J, Han T, Wang X, Wang Y, Chen X, Chen W, Yang Q. Construction of a Novel Immune-Related mRNA Signature to Predict the Prognosis and Immune Characteristics of Human Colorectal Cancer. Front Genet 2022; 13:851373. [PMID: 35401707 PMCID: PMC8984163 DOI: 10.3389/fgene.2022.851373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 03/02/2022] [Indexed: 12/24/2022] Open
Abstract
Background: Anti-cancer immunotherapeutic approaches have gained significant efficacy in multiple cancer types. However, not all patients with colorectal cancer (CRC) could benefit from immunotherapy due to tumor heterogeneity. The purpose of this study was to construct an immune-related signature for predicting the immune characteristics and prognosis of CRC. Methods: RNA-sequencing data and corresponding clinical information of patients with CRC were obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO), and immune-related genes (IRGs) were downloaded from the Immunology Database and Analysis Portal (ImmPort). Then, we utilized univariate, lasso regression, and multivariate cox regression to identify prognostic IRGs and develop the immune-related signature. Subsequently, a nomogram was established based on the signature and other prognostic factors, and its predictive capacity was assessed by receiver operating characteristic (ROC) and decision curve analysis (DCA). Finally, associations between the signature and the immune characteristics of CRC were assessed. Results: In total, 472 samples downloaded from TCGA were divided into the training cohort (236 samples) and internal validation cohort (236 samples), and the GEO cohort was downloaded as an external validation cohort (122 samples). A total of 476 differently expressed IRGs were identified, 17 of which were significantly correlated to the prognosis of CRC patients. Finally, 10 IRGs were filtered out to construct the risk score signature, and patients were divided into low- and high-risk groups according to the median of risk scores in the training cohort. The high-risk score was significantly correlated with unfavorable survival outcomes and aggressive clinicopathological characteristics in CRC patients, and the results were further confirmed in the internal validation cohort, entire TCGA cohort, and external validation cohort. Immune infiltration analysis revealed that patients in the low-risk group infiltrated with high tumor-infiltrating immune cell (TIIC) abundances compared to the high-risk group. Moreover, we also found that the immune checkpoint biomarkers were significantly overexpressed in the low-risk group. Conclusion: The prognostic signature established by IRGs showed a promising clinical value for predicting the prognosis and immune characteristics of human CRC, which contribute to individualized treatment decisions.
Collapse
|
37
|
Berle M, Hestetun KE, Vethe H, Chera S, Paulo JA, Dahl O, Myklebust MP. Mapping Proteome Changes in Microsatellite Stable, Recurrent Colon Cancer Reveals a Significant Immune System Signature. Cancer Genomics Proteomics 2022; 19:130-144. [PMID: 35181583 DOI: 10.21873/cgp.20309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND/AIM Better stratification of the risk of relapse will help select the right patients for adjuvant treatment and improve targeted therapies for patients with colon cancer. MATERIALS AND METHODS To understand why a subset of tumors relapse, we compared the proteome of two groups of patients with colon cancer with similar stage, stratified based on the presence or absence of recurrence. RESULTS Using tumor biopsies from the primary operation, we identified dissimilarity between recurrent and nonrecurrent mismatch satellite stable colon cancer and found that signaling related to immune activation and inflammation was associated with relapse. CONCLUSION Immune modulation may have an effect on mismatch satellite stable colon cancer. At present, immune therapy is offered primarily to microsatellite instable colon cancer. Hopefully, immune therapy in mismatch satellite stable colon cancer beyond PD-1 and PD-L1 inhibitors can be implemented.
Collapse
Affiliation(s)
- Magnus Berle
- Department of Clinical Medicine, University of Bergen, Bergen, Norway; .,Department of Surgery, Haukeland University Hospital, Bergen, Norway.,Department of Surgery, Haraldsplass Deaconess Hospital, Bergen, Norway
| | - Kjersti E Hestetun
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | - Heidrun Vethe
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Simona Chera
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Medicine, Division of Endocrinology, Diabetes, Nutrition and Patient Education, University Hospital of Geneva, Geneva, Switzerland
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA, U.S.A
| | - Olav Dahl
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | | |
Collapse
|
38
|
Guo T, Wang Z, Liu Y. Establishment and verification of a prognostic tumor microenvironment-based and immune-related gene signature in colon cancer. J Gastrointest Oncol 2021; 12:2172-2191. [PMID: 34790383 DOI: 10.21037/jgo-21-522] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/16/2021] [Indexed: 12/24/2022] Open
Abstract
Background Gastrointestinal malignant cancers affect many sites in the intestinal tract, including the colon. In this study, we purposed to improve prognostic predictions for colon cancer (CC) patients by establishing a novel biosignature of immune-related genes (IRGs) based on the tumor microenvironment (TME). Methods Using the estimation of stromal and immune cells in malignant tumor tissues using expression data (ESTIMATE) algorithm, we calculated the stromal and immune scores of every CC patient extracted from The Cancer Genome Atlas (TCGA). We then identified 4 immune-related messenger RNA (mRNA) biosignatures through a Cox and least absolute shrinkage and selection operator (LASSO) univariate analysis, and a Cox multivariate analysis. Relationships between tumor immune infiltration and the risk score were evaluated through the CIBERSORT algorithm and Tumor Immune Estimation Resource (TIMER) database. Results Our studies showed that individuals who had a high immune score (P=0.017) and low stromal score (P=0.041) had a favorable overall survival (OS) rate. By comparing high/low scores cohort, 220 differentially expressed genes (DEGs) were determined. Then an immune-related four-mRNA biosignature, including PDIA2, NAFTC1, VEGFC, and CD1B was identified. Kaplan-Meier, calibration, and receiver operating characteristic (ROC) curves verified the model's performance. By using univariate and multivariate Cox analyses, we found each biosignature was an independent risk factor for assessing a CC patient's survival. Three external GEO cohorts validated its good efficiency in estimating OS among individuals with CC. Moreover, the signature was also related to infiltration of several cells of the immune system in the tumor microenvironment. Conclusions The resultant model in our study included 4 IRGs associated with the TME. These IRGs can be utilized as an auxiliary variable to estimate and help improve the prognosis of individuals with CC.
Collapse
Affiliation(s)
- Tianyu Guo
- Department of Hepatobiliary Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Zhe Wang
- Department of Gastrointestinal Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Yefu Liu
- Department of Hepatobiliary Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| |
Collapse
|
39
|
Histological regression in melanoma: impact on sentinel lymph node status and survival. Mod Pathol 2021; 34:1999-2008. [PMID: 34247192 DOI: 10.1038/s41379-021-00870-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 06/24/2021] [Accepted: 06/24/2021] [Indexed: 11/08/2022]
Abstract
Regression in melanoma is an immunological phenomenon that results in partial or complete replacement of the tumor with variably vascular fibrous tissue, often accompanied by pigment-laden macrophages and chronic inflammation. In some cases, tumor-infiltrating lymphocytes (TILs) may represent the earliest phase of this process. The prognostic significance of regression has long been a matter of debate, with inconsistent findings reported in the literature to date. This study sought to determine whether regression in primary cutaneous melanomas predicted sentinel lymph node (SLN) status and survival outcomes in a large cohort of patients managed at a single centre. Clinical and pathological parameters for 8,693 consecutive cases were retrieved. Associations between regression and SLN status, overall survival (OS), melanoma-specific survival (MSS) and recurrence-free survival (RFS) were investigated using logistic and Cox regression. Histological evidence of regression was present in 1958 cases (22.5%). Regression was significantly associated with lower Breslow thickness, lower mitotic rate, and absence of ulceration (p < 0.0001). Multivariable analysis showed that regression in combination with TILs independently predicted a negative SLN biopsy (OR 0.33; 95% C.I. 0.20-0.52; p < 0.0001). Patients whose tumors showed both regression and TILs had the highest 10-year OS (65%, 95% C.I. 59-71%), MSS (85%, 95% C.I. 81-89%), and RFS (60%, 95% C.I. 54-66%). On multivariable analyses, the concurrent presence of regression and TILs independently predicted the lowest risk of death from melanoma (HR 0.69; 95% C.I. 0.51-0.94; p = 0.0003) as well as the lowest rate of disease recurrence (HR 0.71; 95% C.I. 0.58-0.85; p < 0.0001). However, in contrast, in the subgroup analysis of Stage III patients, the presence of regression predicted the lowest OS and RFS, with MSS showing a similar trend. Overall, these findings indicate a prognostically favorable role of regression in primary cutaneous melanoma. However, in Stage III melanoma patients, regression may be a marker of more aggressive disease.
Collapse
|
40
|
Agapito G, Cannataro M. Using BioPAX-Parser (BiP) to enrich lists of genes or proteins with pathway data. BMC Bioinformatics 2021; 22:376. [PMID: 34592927 PMCID: PMC8482563 DOI: 10.1186/s12859-021-04297-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/06/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Pathway enrichment analysis (PEA) is a well-established methodology for interpreting a list of genes and proteins of interest related to a condition under investigation. This paper aims to extend our previous work in which we introduced a preliminary comparative analysis of pathway enrichment analysis tools. We extended the earlier work by providing more case studies, comparing BiP enrichment performance with other well-known PEA software tools. METHODS PEA uses pathway information to discover connections between a list of genes and proteins as well as biological mechanisms, helping researchers to overcome the problem of explaining biological entity lists of interest disconnected from the biological context. RESULTS We compared the results of BiP with some existing pathway enrichment analysis tools comprising Centrality-based Pathway Enrichment, pathDIP, and Signaling Pathway Impact Analysis, considering three cancer types (colorectal, endometrial, and thyroid), for a total of six datasets (that is, two datasets per cancer type) obtained from the The Cancer Genome Atlas and Gene Expression Omnibus databases. We measured the similarities between the overlap of the enrichment results obtained using each couple of cancer datasets related to the same cancer. CONCLUSION As a result, BiP identified some well-known pathways related to the investigated cancer type, validated by the available literature. We also used the Jaccard and meet-min indices to evaluate the stability and the similarity between the enrichment results obtained from each couple of cancer datasets. The obtained results show that BiP provides more stable enrichment results than other tools.
Collapse
Affiliation(s)
- Giuseppe Agapito
- Department of Legal, Economic and Social Sciences, University "Magna Graecia", Catanzaro, Italy. .,Data Analytics Research Center, University "Magna Graecia", Catanzaro, Italy.
| | - Mario Cannataro
- Department of Medical and Surgical Sciences, University "Magna Graecia", Catanzaro, Italy. .,Data Analytics Research Center, University "Magna Graecia", Catanzaro, Italy.
| |
Collapse
|
41
|
Liu H, Zhong J, Hu J, Han C, Li R, Yao X, Liu S, Chen P, Liu R, Ling F. Single-cell transcriptomics reveal DHX9 in mature B cell as a dynamic network biomarker before lymph node metastasis in CRC. Mol Ther Oncolytics 2021; 22:495-506. [PMID: 34553035 PMCID: PMC8433066 DOI: 10.1016/j.omto.2021.06.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 06/08/2021] [Indexed: 12/13/2022] Open
Abstract
Increasing evidence indicates that mature B cells in the adjacent tumor tissue, both as an intermediate state, are vital in advanced colorectal cancer (CRC), which is associated with a low survival rate. Developing predictive biomarkers that detect the tipping point of mature B cells before lymph node metastasis in CRC is critical to prevent irreversible deterioration. We analyzed B cells in the adjacent tissues of CRC samples from different stages using the dynamic network biomarker (DNB) method. Single-cell profiling of 725 CRC-derived B cells revealed the emergence of a mature B cell subtype. Using the DNB method, we identified stage II as a critical period before lymph node metastasis and that reversed difference genes triggered by DNBs were enriched in the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway involving B cell immune capability. DHX9 (DEAH-box helicase 9) was a specific para-cancerous tissue DNB key gene. The dynamic expression levels of DHX9 and its proximate network genes involved in B cell-related pathways were reversed at the network level from stage I to III. In summary, DHX9 in mature B cells of CRC-adjacent tissues may serve as a predictable biomarker and a potential immune target in CRC progression.
Collapse
Affiliation(s)
- Huisheng Liu
- School of Biology and Biological Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, Guangdong 510641, China
| | - JiaYuan Zhong
- School of Mathematics, South China University of Technology, Guangzhou, Guangdong 510641, China
| | - JiaQi Hu
- School of Biology and Biological Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, Guangdong 510641, China
| | - ChongYin Han
- School of Biology and Biological Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, Guangdong 510641, China
| | - Rui Li
- Department of Pathology, Southern Medical University Nanfang Hospital, Guangzhou, Guangdong 510515, China
| | - XueQing Yao
- Department of General Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510080, China
| | - ShiPing Liu
- Shenzhen Key Laboratory of Single-Cell Omics, BGI-Shenzhen, Shenzhen 518083, China
| | - Pei Chen
- School of Mathematics, South China University of Technology, Guangzhou, Guangdong 510641, China
| | - Rui Liu
- School of Mathematics, South China University of Technology, Guangzhou, Guangdong 510641, China
- Pazhou Lab, Guangzhou, Guangdong 510330, China
| | - Fei Ling
- School of Biology and Biological Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, Guangdong 510641, China
| |
Collapse
|
42
|
Zaiachuk M, Pryimak N, Kovalchuk O, Kovalchuk I. Cannabinoids, Medical Cannabis, and Colorectal Cancer Immunotherapy. Front Med (Lausanne) 2021; 8:713153. [PMID: 34631734 PMCID: PMC8497796 DOI: 10.3389/fmed.2021.713153] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/24/2021] [Indexed: 12/16/2022] Open
Abstract
Colorectal cancer is a major public health problem. Unfortunately, currently, no effective curative option exists for this type of malignancy. The most promising cancer treatment nowadays is immunotherapy which is also called biological or targeted therapy. This type of therapy boosts the patient's immune system ability to fight the malignant tumor. However, cancer cells may become resistant to immunotherapy and escape immune surveillance by obtaining genetic alterations. Therefore, new treatment strategies are required. In the recent decade, several reports suggest the effectiveness of cannabinoids and Cannabis sativa extracts for inhibiting cancer proliferation in vitro and in vivo, including intestinal malignancies. Cannabinoids were shown to modulate the pathways involved in cell proliferation, angiogenesis, programmed cell death and metastasis. Because of that, they are proposed as adjunct therapy for many malignancies. By far less information exists on the potential of the use of cannabis in combination with immunotherapy. Here, we explore the possibility of the use of cannabinoids for modulation of immunotherapy of colon cancer and discuss possible advantages and limitations.
Collapse
Affiliation(s)
| | | | - Olga Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, Canada
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, Canada
| |
Collapse
|
43
|
Gu H, Deng W, Zheng Z, Wu K, Sun F. CCL2 produced by pancreatic ductal adenocarcinoma is essential for the accumulation and activation of monocytic myeloid-derived suppressor cells. IMMUNITY INFLAMMATION AND DISEASE 2021; 9:1686-1695. [PMID: 34525267 PMCID: PMC8589368 DOI: 10.1002/iid3.523] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/20/2021] [Accepted: 08/24/2021] [Indexed: 12/22/2022]
Abstract
Introduction The development of pancreatic ductal adenocarcinoma (PDAC) is closely tied with the immune system. C‐C motif chemokine ligands (CCL) were proved to lead to immune recruitment and training. Thus, we reckoned CCL2 to be the kernel of immune suppression in PDAC tissues. Methods We compared normal pancreatic tissues with PDAC tissues according to The Cancer Genome Atlas (TCGA) and clinical samples. Flow cytometry was used to identify M‐MDSCs. We further demonstrated immune suppression of M‐MDSCs according to proliferation rates of CD8+ T cells/CD4+ T cells. Levels of reactive oxygen species (ROS) and Arginase were also tested by flow cytometry, enzyme‐linked immunosorbent assay, and western blot analysis. We also analyzed the specific mechanisms by cluster analysis after CCL2 stimulating M‐MDSCs. Results We found that CCL2 highly increased in PDAC tissues. CCL2 is positively related to CD33 and CD14, markers of monocytic myeloid‐derived suppressor cells (M‐MDSCs). We have demonstrated that CCL2 recruited M‐MDSCs into PDAC tissues both in vitro and in vivo. M‐MDSCs recruitment is accompanied by sustained immune suppression. Furthermore, we have found that M‐MDSCs impeded T cell proliferation and produced high levels of ROS and Arginase, which can be enhanced by CCL2. Mechanistically, CCL2 stimulated M‐MDSCs led to a significant upregulation of genes, a large part of which accumulated in the mitogen‐activated protein kinase signaling pathway. Treatment of aloesin, MAPK signaling inhibitor, relieved the associated immunosuppressive phenotype induced by CCL2. Conclusions Our study indicates that PDAC cells produced CCL2, which promoted localized M‐MDSC recruitment and immune suppression, thereby promoting tumor progression. CCL2 is significantly upregulated in colon adenocarcinoma CCL2 influences M‐MDSC recruitment and functionality in colon adenocarcinoma CCL2 stimulates immune‐suppressive functions of M‐MDSC by activating MAPK signaling
Collapse
Affiliation(s)
- Haitao Gu
- Department of General Surgery, School of Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Wensheng Deng
- Department of General Surgery, School of Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Zhong Zheng
- Department of Urology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Ke Wu
- Department of Urology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Feng Sun
- Department of Urology, School of Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
44
|
Makaremi S, Asadzadeh Z, Hemmat N, Baghbanzadeh A, Sgambato A, Ghorbaninezhad F, Safarpour H, Argentiero A, Brunetti O, Bernardini R, Silvestris N, Baradaran B. Immune Checkpoint Inhibitors in Colorectal Cancer: Challenges and Future Prospects. Biomedicines 2021; 9:1075. [PMID: 34572263 PMCID: PMC8467932 DOI: 10.3390/biomedicines9091075] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/19/2021] [Accepted: 08/19/2021] [Indexed: 12/12/2022] Open
Abstract
Immunotherapy is a new pillar of cancer therapy that provides novel opportunities to treat solid tumors. In this context, the development of new drugs targeting immune checkpoints is considered a promising approach in colorectal cancer (CRC) treatment because it can be induce specific and durable anti-cancer effects. Despite many advances in the immunotherapy of CRC, there are still limitations and obstacles to successful treatment. The immunosuppressive function of the tumor microenvironment (TME) is one of the causes of poor response to treatment in CRC patients. For this reason, checkpoint-blocking antibodies have shown promising outcomes in CRC patients by blocking inhibitory immune checkpoints and enhancing immune responses against tumors. This review summarizes recent advances in immune checkpoint inhibitors (ICIs), such as CTLA-4, PD-1, PD-L1, LAG-3, and TIM-3 in CRC, and it discusses various therapeutic strategies with ICIs, including the double blockade of ICIs, combination therapy of ICIs with other immunotherapies, and conventional treatments. This review also delineates a new hopeful path in the combination of anti-PD-1/anti-PD-L1 with other ICIs such as anti-CTLA-4, anti-LAG-3, and anti-TIM-3 for CRC treatment.
Collapse
Affiliation(s)
- Shima Makaremi
- Department of Immunology & Microbiology, School of Medicine, Arak University of Medical Sciences, Arak 3848176941, Iran;
| | - Zahra Asadzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran; (Z.A.); (N.H.); (A.B.); (F.G.)
| | - Nima Hemmat
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran; (Z.A.); (N.H.); (A.B.); (F.G.)
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran; (Z.A.); (N.H.); (A.B.); (F.G.)
| | - Alessandro Sgambato
- Istituto di Ricovero e Cura a Carattere Scientifico Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), 5972362 Rome, Italy;
- Area of Pathology, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli-IRCCS, 5972362 Rome, Italy
| | - Farid Ghorbaninezhad
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran; (Z.A.); (N.H.); (A.B.); (F.G.)
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran
| | - Hossein Safarpour
- Cellular & Molecular Research Center, Birjand University of Medical Sciences, Birjand 9717853577, Iran;
| | - Antonella Argentiero
- IRCCS Istituto Tumori “Giovanni Paolo II” of Bari, 70124 Bari, Italy; (A.A.); (O.B.)
| | - Oronzo Brunetti
- IRCCS Istituto Tumori “Giovanni Paolo II” of Bari, 70124 Bari, Italy; (A.A.); (O.B.)
| | - Renato Bernardini
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 97, 95121 Catania, Italy;
| | - Nicola Silvestris
- IRCCS Istituto Tumori “Giovanni Paolo II” of Bari, 70124 Bari, Italy; (A.A.); (O.B.)
- Department of Biomedical Sciences and Human Oncology (DIMO), University of Bari, 70124 Bari, Italy
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran; (Z.A.); (N.H.); (A.B.); (F.G.)
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran
| |
Collapse
|
45
|
Montalbán-Hernández K, Cantero-Cid R, Lozano-Rodríguez R, Pascual-Iglesias A, Avendaño-Ortiz J, Casalvilla-Dueñas JC, Bonel Pérez GC, Guevara J, Marcano C, Barragán C, Valentín J, del Fresno C, Aguirre LA, López Collazo E. Soluble SIGLEC5: A New Prognosis Marker in Colorectal Cancer Patients. Cancers (Basel) 2021; 13:3896. [PMID: 34359797 PMCID: PMC8345516 DOI: 10.3390/cancers13153896] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/27/2021] [Accepted: 07/30/2021] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is the second most deadly and third most commonly diagnosed cancer worldwide. There is significant heterogeneity among patients with CRC, which hinders the search for a standard approach for the detection of this disease. Therefore, the identification of robust prognostic markers for patients with CRC represents an urgent clinical need. In search of such biomarkers, a total of 114 patients with colorectal cancer and 67 healthy participants were studied. Soluble SIGLEC5 (sSIGLEC5) levels were higher in plasma from patients with CRC compared with healthy volunteers. Additionally, sSIGLEC5 levels were higher in exitus than in survivors, and the receiver operating characteristic curve analysis revealed sSIGLEC5 to be an exitus predictor (area under the curve 0.853; cut-off > 412.6 ng/mL) in these patients. A Kaplan-Meier analysis showed that patients with high levels of sSIGLEC5 had significantly shorter overall survival (hazard ratio 15.68; 95% CI 4.571-53.81; p ≤ 0.0001) than those with lower sSIGLEC5 levels. Our study suggests that sSIGLEC5 is a soluble prognosis marker and exitus predictor in CRC.
Collapse
Affiliation(s)
- Karla Montalbán-Hernández
- The Innate Immune Response Group, IdiPAZ, La Paz University Hospital, 28046 Madrid, Spain; (K.M.-H.); (R.C.-C.); (R.L.-R.); (A.P.-I.); (J.A.-O.); (J.C.C.-D.); (G.C.B.P.); (J.G.); (C.M.); (C.B.); (J.V.); (C.d.F.); (L.A.A.)
- Tumor Immunology Lab, IdiPAZ, La Paz University Hospital, 28046 Madrid, Spain
| | - Ramón Cantero-Cid
- The Innate Immune Response Group, IdiPAZ, La Paz University Hospital, 28046 Madrid, Spain; (K.M.-H.); (R.C.-C.); (R.L.-R.); (A.P.-I.); (J.A.-O.); (J.C.C.-D.); (G.C.B.P.); (J.G.); (C.M.); (C.B.); (J.V.); (C.d.F.); (L.A.A.)
- Tumor Immunology Lab, IdiPAZ, La Paz University Hospital, 28046 Madrid, Spain
| | - Roberto Lozano-Rodríguez
- The Innate Immune Response Group, IdiPAZ, La Paz University Hospital, 28046 Madrid, Spain; (K.M.-H.); (R.C.-C.); (R.L.-R.); (A.P.-I.); (J.A.-O.); (J.C.C.-D.); (G.C.B.P.); (J.G.); (C.M.); (C.B.); (J.V.); (C.d.F.); (L.A.A.)
- Tumor Immunology Lab, IdiPAZ, La Paz University Hospital, 28046 Madrid, Spain
| | - Alejandro Pascual-Iglesias
- The Innate Immune Response Group, IdiPAZ, La Paz University Hospital, 28046 Madrid, Spain; (K.M.-H.); (R.C.-C.); (R.L.-R.); (A.P.-I.); (J.A.-O.); (J.C.C.-D.); (G.C.B.P.); (J.G.); (C.M.); (C.B.); (J.V.); (C.d.F.); (L.A.A.)
- Tumor Immunology Lab, IdiPAZ, La Paz University Hospital, 28046 Madrid, Spain
| | - José Avendaño-Ortiz
- The Innate Immune Response Group, IdiPAZ, La Paz University Hospital, 28046 Madrid, Spain; (K.M.-H.); (R.C.-C.); (R.L.-R.); (A.P.-I.); (J.A.-O.); (J.C.C.-D.); (G.C.B.P.); (J.G.); (C.M.); (C.B.); (J.V.); (C.d.F.); (L.A.A.)
- Tumor Immunology Lab, IdiPAZ, La Paz University Hospital, 28046 Madrid, Spain
- Centre for Biomedical Research Network of Respiratory Diseases (CIBERES), 28029 Madrid, Spain
| | - José Carlos Casalvilla-Dueñas
- The Innate Immune Response Group, IdiPAZ, La Paz University Hospital, 28046 Madrid, Spain; (K.M.-H.); (R.C.-C.); (R.L.-R.); (A.P.-I.); (J.A.-O.); (J.C.C.-D.); (G.C.B.P.); (J.G.); (C.M.); (C.B.); (J.V.); (C.d.F.); (L.A.A.)
- Tumor Immunology Lab, IdiPAZ, La Paz University Hospital, 28046 Madrid, Spain
| | - Gloria Cristina Bonel Pérez
- The Innate Immune Response Group, IdiPAZ, La Paz University Hospital, 28046 Madrid, Spain; (K.M.-H.); (R.C.-C.); (R.L.-R.); (A.P.-I.); (J.A.-O.); (J.C.C.-D.); (G.C.B.P.); (J.G.); (C.M.); (C.B.); (J.V.); (C.d.F.); (L.A.A.)
- Tumor Immunology Lab, IdiPAZ, La Paz University Hospital, 28046 Madrid, Spain
| | - Jenny Guevara
- The Innate Immune Response Group, IdiPAZ, La Paz University Hospital, 28046 Madrid, Spain; (K.M.-H.); (R.C.-C.); (R.L.-R.); (A.P.-I.); (J.A.-O.); (J.C.C.-D.); (G.C.B.P.); (J.G.); (C.M.); (C.B.); (J.V.); (C.d.F.); (L.A.A.)
- Tumor Immunology Lab, IdiPAZ, La Paz University Hospital, 28046 Madrid, Spain
| | - Cristóbal Marcano
- The Innate Immune Response Group, IdiPAZ, La Paz University Hospital, 28046 Madrid, Spain; (K.M.-H.); (R.C.-C.); (R.L.-R.); (A.P.-I.); (J.A.-O.); (J.C.C.-D.); (G.C.B.P.); (J.G.); (C.M.); (C.B.); (J.V.); (C.d.F.); (L.A.A.)
- Tumor Immunology Lab, IdiPAZ, La Paz University Hospital, 28046 Madrid, Spain
| | - Cristina Barragán
- The Innate Immune Response Group, IdiPAZ, La Paz University Hospital, 28046 Madrid, Spain; (K.M.-H.); (R.C.-C.); (R.L.-R.); (A.P.-I.); (J.A.-O.); (J.C.C.-D.); (G.C.B.P.); (J.G.); (C.M.); (C.B.); (J.V.); (C.d.F.); (L.A.A.)
- Tumor Immunology Lab, IdiPAZ, La Paz University Hospital, 28046 Madrid, Spain
| | - Jaime Valentín
- The Innate Immune Response Group, IdiPAZ, La Paz University Hospital, 28046 Madrid, Spain; (K.M.-H.); (R.C.-C.); (R.L.-R.); (A.P.-I.); (J.A.-O.); (J.C.C.-D.); (G.C.B.P.); (J.G.); (C.M.); (C.B.); (J.V.); (C.d.F.); (L.A.A.)
- Tumor Immunology Lab, IdiPAZ, La Paz University Hospital, 28046 Madrid, Spain
| | - Carlos del Fresno
- The Innate Immune Response Group, IdiPAZ, La Paz University Hospital, 28046 Madrid, Spain; (K.M.-H.); (R.C.-C.); (R.L.-R.); (A.P.-I.); (J.A.-O.); (J.C.C.-D.); (G.C.B.P.); (J.G.); (C.M.); (C.B.); (J.V.); (C.d.F.); (L.A.A.)
- Tumor Immunology Lab, IdiPAZ, La Paz University Hospital, 28046 Madrid, Spain
| | - Luis Augusto Aguirre
- The Innate Immune Response Group, IdiPAZ, La Paz University Hospital, 28046 Madrid, Spain; (K.M.-H.); (R.C.-C.); (R.L.-R.); (A.P.-I.); (J.A.-O.); (J.C.C.-D.); (G.C.B.P.); (J.G.); (C.M.); (C.B.); (J.V.); (C.d.F.); (L.A.A.)
- Tumor Immunology Lab, IdiPAZ, La Paz University Hospital, 28046 Madrid, Spain
| | - Eduardo López Collazo
- The Innate Immune Response Group, IdiPAZ, La Paz University Hospital, 28046 Madrid, Spain; (K.M.-H.); (R.C.-C.); (R.L.-R.); (A.P.-I.); (J.A.-O.); (J.C.C.-D.); (G.C.B.P.); (J.G.); (C.M.); (C.B.); (J.V.); (C.d.F.); (L.A.A.)
- Tumor Immunology Lab, IdiPAZ, La Paz University Hospital, 28046 Madrid, Spain
- Centre for Biomedical Research Network of Respiratory Diseases (CIBERES), 28029 Madrid, Spain
| |
Collapse
|
46
|
Osei-Bordom DC, Kamarajah S, Christou N. Colorectal Cancer, Liver Metastases and Biotherapies. Biomedicines 2021; 9:894. [PMID: 34440099 PMCID: PMC8389538 DOI: 10.3390/biomedicines9080894] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/13/2021] [Accepted: 07/21/2021] [Indexed: 12/01/2022] Open
Abstract
(1) Background: colorectal cancer (CRC) is one of the deadliest causes of death by cancer worldwide. Its first main metastatic diffusion spreads to the liver. Different mechanisms such as the epithelial-mesenchymal transition and angiogenesis are the characteristics of this invasion. At this stage, different options are possible and still in debate, especially regarding the use of targeted therapeutics and biotherapies. (2) Methods: A review of the literature has been done focusing on the clinical management of liver metastasis of colorectal cancer and the contribution of biotherapies in this field. (3) Results: In a clinical setting, surgeons and oncologists consider liver metastasis in CRC into two groups to launch adapted therapeutics: resectable and non-resectable. Around these two entities, the combination of targeted therapies and biotherapies are of high interest and are currently tested to know in which molecular and clinical conditions they have to be applied to impact positively both on survival and quality of life of patients.
Collapse
Affiliation(s)
- Daniel-Clement Osei-Bordom
- Department of General Surgery, Queen Elizabeth Hospital, University Hospitals Birmingham, Birmingham B15 2TH, UK; (D.-C.O.-B.); (S.K.)
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
- NIHR Birmingham Biomedical Research Centre, Centre for Liver and Gastroenterology Research, University of Birmingham, Birmingham B15 2TT, UK
| | - Sivesh Kamarajah
- Department of General Surgery, Queen Elizabeth Hospital, University Hospitals Birmingham, Birmingham B15 2TH, UK; (D.-C.O.-B.); (S.K.)
| | - Niki Christou
- Department of General Surgery, Queen Elizabeth Hospital, University Hospitals Birmingham, Birmingham B15 2TH, UK; (D.-C.O.-B.); (S.K.)
- Department of General Surgery, University Hospital of Limoges, 87000 Limoges, France
- EA3842 CAPTuR Laboratory “Cell Activation Control, Tumor Progression and Therapeutic Resistance”, Faculty of Medicine, 2 Rue du Docteur Marcland, 87025 Limoges, France
| |
Collapse
|
47
|
Sun Z, Xia W, Lyu Y, Song Y, Wang M, Zhang R, Sui G, Li Z, Song L, Wu C, Liew CC, Yu L, Cheng G, Cheng C. Immune-related gene expression signatures in colorectal cancer. Oncol Lett 2021; 22:543. [PMID: 34079596 PMCID: PMC8157333 DOI: 10.3892/ol.2021.12804] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 03/11/2021] [Indexed: 12/24/2022] Open
Abstract
The immune system is crucial in regulating colorectal cancer (CRC) tumorigenesis. Identification of immune-related transcriptomic signatures derived from the peripheral blood of patients with CRC would provide insights into CRC pathogenesis, and suggest novel clues to potential immunotherapy strategies for the disease. The present study collected blood samples from 59 patients with CRC and 62 healthy control patients and performed whole blood gene expression profiling using microarray hybridization. Immune-related gene expression signatures for CRC were identified from immune gene datasets, and an algorithmic predictive model was constructed for distinguishing CRC from controls. Model performance was characterized using an area under the receiver operating characteristic curve (ROC AUC). Functional categories for CRC-specific gene expression signatures were determined using gene set enrichment analyses. A Kaplan-Meier plotter survival analysis was also performed for CRC-specific immune genes in order to characterize the association between gene expression and CRC prognosis. The present study identified five CRC-specific immune genes [protein phosphatase 3 regulatory subunit Bα (PPP3R1), amyloid β precursor protein, cathepsin H, proteasome activator subunit 4 and DEAD-Box Helicase 3 X-Linked]. A predictive model based on this five-gene panel showed good discriminatory power (independent test set sensitivity, 83.3%; specificity, 94.7%, accuracy, 89.2%; ROC AUC, 0.96). The candidate genes were involved in pathways associated with ‘adaptive immune responses’, ‘innate immune responses’ and ‘cytokine signaling’. The survival analysis found that a high level of PPP3R1 expression was associated with a poor CRC prognosis. The present study identified five CRC-specific immune genes that were potential diagnostic biomarkers for CRC. The biological function analysis indicated a close association between CRC pathogenesis and the immune system, and may reveal more information about the immunogenic and pathogenic mechanisms driving CRC in the future. Overall, the association between PPP3R1 expression and survival of patients with CRC revealed potential new targets for CRC immunotherapy.
Collapse
Affiliation(s)
- Zhenqing Sun
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Wei Xia
- Department of Nuclear Medicine, The Seventh People's Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| | - Yali Lyu
- R&D Department, Huaxia Bangfu Technology Incorporated, Beijing 100000, P.R. China
| | - Yanan Song
- Department of Nuclear Medicine, The Seventh People's Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| | - Min Wang
- R&D Department, Huaxia Bangfu Technology Incorporated, Beijing 100000, P.R. China
| | - Ruirui Zhang
- R&D Department, Huaxia Bangfu Technology Incorporated, Beijing 100000, P.R. China
| | - Guode Sui
- Department of General Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Zhenlu Li
- Department of General Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Li Song
- Department of General Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Changliang Wu
- Department of General Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Choong-Chin Liew
- Golden Health Diagnostics Inc., Yan Cheng, Jiangsu 224000, P.R. China.,Department of Clinical Pathology and Laboratory Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada.,Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Lei Yu
- R&D Department, Huaxia Bangfu Technology Incorporated, Beijing 100000, P.R. China
| | - Guang Cheng
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Changming Cheng
- R&D Department, Huaxia Bangfu Technology Incorporated, Beijing 100000, P.R. China
| |
Collapse
|
48
|
Nazarian A, Kulminski AM. Genome-Wide Analysis of Sex Disparities in the Genetic Architecture of Lung and Colorectal Cancers. Genes (Basel) 2021; 12:genes12050686. [PMID: 34062886 PMCID: PMC8147355 DOI: 10.3390/genes12050686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 12/24/2022] Open
Abstract
Almost all complex disorders have manifested epidemiological and clinical sex disparities which might partially arise from sex-specific genetic mechanisms. Addressing such differences can be important from a precision medicine perspective which aims to make medical interventions more personalized and effective. We investigated sex-specific genetic associations with colorectal (CRCa) and lung (LCa) cancers using genome-wide single-nucleotide polymorphisms (SNPs) data from three independent datasets. The genome-wide association analyses revealed that 33 SNPs were associated with CRCa/LCa at P < 5.0 × 10−6 neither males or females. Of these, 26 SNPs had sex-specific effects as their effect sizes were statistically different between the two sexes at a Bonferroni-adjusted significance level of 0.0015. None had proxy SNPs within their ±1 Mb regions and the closest genes to 32 SNPs were not previously associated with the corresponding cancers. The pathway enrichment analyses demonstrated the associations of 35 pathways with CRCa or LCa which were mostly implicated in immune system responses, cell cycle, and chromosome stability. The significant pathways were mostly enriched in either males or females. Our findings provided novel insights into the potential sex-specific genetic heterogeneity of CRCa and LCa at SNP and pathway levels.
Collapse
|
49
|
Ben S, Zhu Q, Chen S, Li S, Du M, Xin J, Chu H, Zhang Z, Wang M. Genetic variations in the CTLA-4 immune checkpoint pathway are associated with colon cancer risk, prognosis, and immune infiltration via regulation of IQCB1 expression. Arch Toxicol 2021; 95:2053-2063. [PMID: 33847778 DOI: 10.1007/s00204-021-03040-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 04/01/2021] [Indexed: 12/24/2022]
Abstract
The programmed cell death-1 (PD-1)/cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) immune checkpoint pathways serve as targets of immunotherapy for colorectal cancer. However, the associations between genetic variations in these pathways and colorectal cancer risk, prognosis, and immune status remain unclear. The associations between single-nucleotide polymorphisms (SNPs) and colorectal cancer risk and survival were evaluated in a case-control study comprising 1150 cases and 1342 controls along with 287 cases with overall survival information. We found that individuals with the A allele of B7-2 rs2681416 in CTLA-4 immune checkpoint pathway had a significantly increased risk of colorectal cancer [odds ratio (OR) = 1.37, P = 3.17 × 10-4] than those with G allele under the dominant model, which had a predominant site-specific effect in colon cancer (OR = 1.55, P = 3.11 × 10-5). In addition, rs2681416 significantly decreased the overall survival time of patients with colon cancer [hazard ratio (HR) = 1.96, P = 1.10 × 10-2], but not of patients with rectal cancer (P = 0.271). Moreover, rs2681416 had an expression quantitative trait locus effect on the B7-2 flanking gene IQCB1 in colon tissues, which contributed to colon cancer risk by regulating genome organization and influenced the expression of IQCB1 in an allele-specific manner. IQCB1 expression was upregulated in colorectal cancer tissues compared with normal tissues, accounting for various critical carcinogenic states in colon cancer and promoting immune infiltration of Th17 cells in the tumor microenvironment. Our study highlights the important roles of genetic variations in immune checkpoint pathways and provides new insight into potential site-specific independent biomarkers for colorectal cancer susceptibility, prognosis, and tumor immune status.
Collapse
Affiliation(s)
- Shuai Ben
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Qiuyuan Zhu
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Silu Chen
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Shuwei Li
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Mulong Du
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Junyi Xin
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Haiyan Chu
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Zhengdong Zhang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Meilin Wang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China. .,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China. .,The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing, China. .,Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
50
|
IL15RA and SMAD3 Genetic Variants Predict Overall Survival in Metastatic Colorectal Cancer Patients Treated with FOLFIRI Therapy: A New Paradigm. Cancers (Basel) 2021; 13:cancers13071705. [PMID: 33916844 PMCID: PMC8038482 DOI: 10.3390/cancers13071705] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/25/2021] [Accepted: 04/01/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary There is an increasing scientific interest in the study of the interaction between the immune system and drugs in cancer that can affect the efficacy of an anti-cancer treatment. This study was undertaken to better understand if the genetic characteristic of a cancer patient’s immune system can predict the tumor response to the treatment and the duration of survival. The topic was studied on 335 metastatic colorectal cancer patients treated with a first-line chemotherapy (FOLFIRI regimen, irinotecan-5-fluorouracil-leucovorin). The research highlighted two markers, IL15RA-rs7910212 and SMAD3-rs7179840, significantly associated with the patient’s survival. When considering IL15RA-rs7910212 and SMAD3-rs7179840 in combination with other two genetic markers previously investigated (NR1I2-rs1054190, VDR-rs7299460), we built up a highly predictive genetic score of survival. The herein identified markers must be further validated, but still represent good candidates to understand how much a patient with a metastatic colorectal cancer can benefit from a chemotherapy with FOLFIRI regimen. Abstract A new paradigm in cancer chemotherapy derives from the interaction between chemotherapeutics, including irinotecan and 5-fluorouracil (5-FU), and the immune system. The patient’s immune response can modulate chemotherapy effectiveness, and, on the other hand, chemotherapeutic agents can foster tumor cell immunogenicity. On these grounds, the analysis of the cancer patients’ immunogenetic characteristics and their effect on survival after chemotherapy represent a new frontier. This study aims to identify genetic determinants in the immuno-related pathways predictive of overall survival (OS) after FOLFIRI (irinotecan, 5-FU, leucovorin) therapy. Two independent cohorts comprising a total of 335 patients with metastatic colorectal cancer (mCRC) homogeneously treated with first-line FOLFIRI were included in the study. The prognostic effect of 192 tagging genetic polymorphisms in 34 immune-related genes was evaluated using the bead array technology. The IL15RA rs7910212-C allele was associated with worse OS in both discovery (HR: 1.57, p = 0.0327, Bootstrap p-value = 0.0280) and replication (HR: 1.71, p = 0.0411) cohorts. Conversely, SMAD3 rs7179840-C allele was associated with better OS in both discovery (HR: 0.65, p = 0.0202, Bootstrap p-value = 0.0203) and replication (HR: 0.61, p = 0.0216) cohorts. A genetic prognostic score was generated integrating IL15RA-rs7910212 and SMAD3-rs7179840 markers with inflammation-related prognostic polymorphisms we previously identified in the same study population (i.e., PXR [NR1I2]-rs1054190, VDR-rs7299460). The calculated genetic score successfully discriminated patients with different survival probabilities (p < 0.0001 log-rank test). These findings provide new insight on the prognostic value of genetic determinants, such as IL15RA and SMAD3 markers, and could offer a new decision tool to improve the clinical management of patients with mCRC receiving FOLFIRI.
Collapse
|