1
|
Cao R, Lin B, He H, Wang D, Wang X, Huang Y, Zhou R. CRM1 mediates ASC nuclear export and inflammasome activation. Int Immunopharmacol 2025; 153:114503. [PMID: 40139094 DOI: 10.1016/j.intimp.2025.114503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 03/11/2025] [Accepted: 03/14/2025] [Indexed: 03/29/2025]
Abstract
Inflammasomes are multiprotein complexes of the innate immune system that sense different pathogens or danger signals, and have been implicated in the pathogenesis of multiple human inflammatory diseases. The translocation of adaptor protein ASC from the nucleus to the cytosol is important for inflammasome assembly and activation, but the mechanism remains unclear. Here we show that pharmacological inhibition or genetic deletion of chromosome region maintenance 1 (CRM1) in macrophages significantly inhibits the activation of NLRP3, AIM2, NLRC4 and pyrin inflammasomes. Mechanistically, CRM1 directly binds to the PYD domain of ASC to promote its nuclear-cytosolic transport. More importantly, treatment with CRM1 inhibitor KPT-330 or deletion of CRM1 in myeloid cells attenuates the pathological symptoms of experimental autoimmune encephalomyelitis (EAE) in mice. Thus, our findings reveal that CRM1 is an essential mediator for ASC nuclear export to promote inflammasome assembly and activation, which provides a potential target for inflammasome-related diseases.
Collapse
Affiliation(s)
- Rui Cao
- National Key Laboratory of immune response and immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Bolong Lin
- National Key Laboratory of immune response and immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Hongbin He
- National Key Laboratory of immune response and immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Di Wang
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Xiaqiong Wang
- National Key Laboratory of immune response and immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China.
| | - Yi Huang
- Insitute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei 230601, China.
| | - Rongbin Zhou
- National Key Laboratory of immune response and immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China.
| |
Collapse
|
2
|
Williams DM, Peden AA. Greasing the wheels of inflammasome formation: regulation of NLRP3 function by S-linked fatty acids. Biochem Soc Trans 2025:BST20241738. [PMID: 39838868 DOI: 10.1042/bst20241738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/05/2024] [Accepted: 12/10/2024] [Indexed: 01/23/2025]
Abstract
NLRP3 is an inflammasome seeding pattern recognition receptor that initiates a pro-inflammatory signalling cascade in response to changes in intracellular homeostasis that are indicative of bacterial infection or tissue damage. Several types of post-translational modification (PTM) have been identified that are added to NLRP3 to regulate its activity. Recent progress has revealed that NLRP3 is subject to a further type of PTM, S-acylation (or palmitoylation), which involves the reversible addition of long-chain fatty acids to target cysteine residues by opposing sets of enzymes. This review provides an overview of recent studies that have identified S-acylation as an important modifier of NLRP3 function. The essential role of S-acylation in the recruitment of NLRP3 to intracellular membranes and the consequences of S-acylation-dependent membrane recruitment on NLRP3 localisation and activation are discussed in detail.
Collapse
Affiliation(s)
- Daniel M Williams
- School of Biosciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, United Kingdom
| | - Andrew A Peden
- School of Biosciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, United Kingdom
| |
Collapse
|
3
|
Li Y, Wang X, Ren Y, Han BZ, Xue Y. Exploring the health benefits of food bioactive compounds from a perspective of NLRP3 inflammasome activation: an insight review. Crit Rev Food Sci Nutr 2025:1-26. [PMID: 39757837 DOI: 10.1080/10408398.2024.2448768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
The food industry has been focusing on food bioactive compounds with multiple physiological and immunological properties that benefit human health. These bioactive compounds, including polyphenols, flavonoids, and terpenoids, have great potential to limit inflammatory responses especially NLRP3 inflammasome activation, which is a key innate immune platform for inflammation. Current studies have revealed numerous food bioactive compounds with promising activities for unraveling immune metabolic disorders and excessive inflammatory responses by directly and indirectly regulating the NLRP3 inflammasome activation. This review explores the food hazards, including microbial and abiotic factors, that may trigger NLRP3-mediated illnesses and inflammation. It also highlights bioactive compounds in food that can suppress NLRP3 inflammasome activation through various mechanisms, linking its activation and inhibition to different pathways. Especially, this review provided further insight into NLRP3-related targets where food bioactive compounds can interact to block the NLRP3 inflammasome activation process, as well as mechanisms on how these compounds facilitate inactivation processes.
Collapse
Affiliation(s)
- Yabo Li
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Xinyi Wang
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Ying Ren
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Bei-Zhong Han
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Yansong Xue
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
4
|
Li L, Xu T, Qi X. Balanced regulation of ROS production and inflammasome activation in preventing early development of colorectal cancer. Immunol Rev 2025; 329:e13417. [PMID: 39523732 DOI: 10.1111/imr.13417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Reactive oxygen species (ROS) production and inflammasome activation are the key components of the innate immune response to microbial infection and sterile insults. ROS are at the intersection of inflammation and immunity during cancer development. Balanced regulation of ROS production and inflammasome activation serves as the central hub of innate immunity, determining whether a cell will survive or undergo cell death. However, the mechanisms underlying this balanced regulation remain unclear. Mitochondria and NADPH oxidases are the two major sources of ROS production. Recently, NCF4, a component of the NADPH oxidase complex that primarily contributes to ROS generation in phagocytes, was reported to balance ROS production and inflammasome activation in macrophages. The phosphorylation and puncta distribution of NCF4 shifts from the membrane-bound NADPH complex to the perinuclear region, promoting ASC speck formation and inflammasome activation, which triggers downstream IL-18-IFN-γ signaling to prevent the progression of colorectal cancer (CRC). Here, we review ROS signaling and inflammasome activation studies in colitis-associated CRC and propose that NCF4 acts as a ROS sensor that balances ROS production and inflammasome activation. In addition, NCF4 is a susceptibility gene for Crohn's disease (CD) and CRC. We discuss the evidence demonstrating NCF4's crucial role in facilitating cell-cell contact between immune cells and intestinal cells, and mediating the paracrine effects of inflammatory cytokines and ROS. This coordination of the signaling network helps create a robust immune microenvironment that effectively prevents epithelial cell mutagenesis and tumorigenesis during the early stage of colitis-associated CRC.
Collapse
Affiliation(s)
- Longjun Li
- Key Laboratory for Experimental Teratology of the Ministry of Education, Advanced Medical Research Institute, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Tao Xu
- Key Laboratory for Experimental Teratology of the Ministry of Education, Advanced Medical Research Institute, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xiaopeng Qi
- Key Laboratory for Experimental Teratology of the Ministry of Education, Advanced Medical Research Institute, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- State Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Jinan, Shandong, China
| |
Collapse
|
5
|
Zhang L, Gao Y, Zhou H, Liang X, Jiang X, Gong W, Sun Y, Zhang D, Wang X, Nauwynck H, Bai J, Jiang P. PRRSV-2 nsp2 Ignites NLRP3 inflammasome through IKKβ-dependent dispersed trans-Golgi network translocation. PLoS Pathog 2025; 21:e1012915. [PMID: 39869629 PMCID: PMC11801707 DOI: 10.1371/journal.ppat.1012915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/06/2025] [Accepted: 01/17/2025] [Indexed: 01/29/2025] Open
Abstract
The NLRP3 inflammasome is a fundamental component of the innate immune system, yet its excessive activation is intricately associated with viral pathogenesis. Porcine reproductive and respiratory syndrome virus type 2 (PRRSV-2), belonging to the family Arteriviridae, triggers dysregulated cytokine release and interstitial pneumonia, which can quickly escalate to acute respiratory distress and death. However, a mechanistic understanding of PRRSV-2 progression remains unclear. Here, we screen that PRRSV-2 nsp2 activates the NLRP3 inflammasome, thereby instigating a state of hyperinflammation. Mechanistically, PRRSV-2 nsp2 interacts with the nucleotide-binding and oligomerization (NACHT) domain of NLRP3, augmenting IKKβ recruitment to driving NLRP3 translocation to the dispersed trans-Golgi network (dTGN) for oligomerization. This process facilitates ASC polymerization, culminating in the activation of the NLRP3 inflammasome. In addition, the IKKβ-dependent NLRP3 translocation to the dTGN is pivotal for pseudorabies virus (PRV) and encephalomyocarditis virus (EMCV)-induced inflammatory responses. Collectively, these results elucidate a novel mechanism of NLRP3 inflammasome activation during PRRSV-2 infection, providing valuable insights into PRRSV-2 pathogenesis.
Collapse
Affiliation(s)
- Lujie Zhang
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yanni Gao
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Haoran Zhou
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xiao Liang
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xiaolin Jiang
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Wenqin Gong
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yangyang Sun
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Desheng Zhang
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xianwei Wang
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Hans Nauwynck
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan Merelbeke, Belgium
| | - Juan Bai
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, PR China
| | - Ping Jiang
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, PR China
| |
Collapse
|
6
|
Brettner FEB, Gier S, Haessler A, Schreiner J, Vogel-Kindgen S, Windbergs M. Anti-inflammatory effects of cyclodextrin nanoparticles enable macrophage repolarization and reduce inflammation. DISCOVER NANO 2024; 19:211. [PMID: 39707045 DOI: 10.1186/s11671-024-04175-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024]
Abstract
Inflammation plays a critical role in the pathophysiology of many diseases, and dysregulation of the involved signaling cascades often culminates in uncontrollable disease progression and, ultimately, chronic manifestation. Addressing these disorders requires balancing inflammation control while preserving essential immune functions. Cyclodextrins (CDs), particularly β-CD, have gained attention as biocompatible biomaterials with intrinsic anti-inflammatory properties, and chemical modification of their backbone offers a promising strategy to enhance their physicochemical properties, adaptability, and therapeutic potential. This study evaluated and characterized the immunomodulatory effects of amphiphilic CD derivatives, which self-assemble into nanoparticles, compared to soluble parent β-CD. In a human macrophage model, CD nanoparticles demonstrated superior anti-inflammatory activity, with derivative-specific effects tied to their physicochemical properties, surpassing the soluble β-CD control. Alongside the downregulation of key pro-inflammatory markers, significant reductions in inflammasome activation and changes in lipid profiles were observed. The findings of this study underscore the potential of cyclodextrin-based nanoparticles as versatile biomaterials for treating the complex pathophysiology of various acute and chronic inflammation-associated disorders.
Collapse
Affiliation(s)
- Felix E B Brettner
- Institute of Pharmaceutical Technology, Goethe-University Frankfurt, Max-von-Laue-Straße 9, 60438, Frankfurt am Main, Germany
| | - Stefanie Gier
- Institute of Pharmaceutical Technology, Goethe-University Frankfurt, Max-von-Laue-Straße 9, 60438, Frankfurt am Main, Germany
| | - Annika Haessler
- Institute of Pharmaceutical Technology, Goethe-University Frankfurt, Max-von-Laue-Straße 9, 60438, Frankfurt am Main, Germany
| | - Jonas Schreiner
- Institute of Pharmaceutical Technology, Goethe-University Frankfurt, Max-von-Laue-Straße 9, 60438, Frankfurt am Main, Germany
| | - Sarah Vogel-Kindgen
- Institute of Pharmaceutical Technology, Goethe-University Frankfurt, Max-von-Laue-Straße 9, 60438, Frankfurt am Main, Germany
| | - Maike Windbergs
- Institute of Pharmaceutical Technology, Goethe-University Frankfurt, Max-von-Laue-Straße 9, 60438, Frankfurt am Main, Germany.
| |
Collapse
|
7
|
Gong X, Gu W, Fu S, Zou G, Jiang Z. Zinc homeostasis regulates caspase activity and inflammasome activation. PLoS Pathog 2024; 20:e1012805. [PMID: 39689159 DOI: 10.1371/journal.ppat.1012805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/31/2024] [Accepted: 12/03/2024] [Indexed: 12/19/2024] Open
Abstract
Inflammasome activation drives pyroptotic cell death and the release of inflammatory cytokines, and many diseases involve its overactivation. Zinc is essential for all organisms as a trace element, but its functions in innate immunity remain undefined. Here, we reported that Zn2+ inhibits caspase-1 to hinder inflammasome activation. We first identified the zinc exporter solute carrier family 30 member 1 (SLC30A1) as an inflammasome regulator, using a genome-wide CRISPR-Cas9-mediated screen. SLC30A1 deficiency suppressed multiple inflammasomes by increasing intracellular levels of Zn2+, which bound and inhibited caspase-1 at its active site residues H237, C244 and C285. Mutation of these residues almost completely blocked zinc binding. Similarly, Zn2+ also inhibited caspase-4/5/11-mediated noncanonical inflammasome activation. Importantly, zinc supplementation significantly relieved cecal ligation and puncture (CLP)-induced sepsis, Imiquimod (IMQ)-induced psoriasis and Alzheimer's disease. Thus, zinc might be used to treat inflammasome-related diseases as a broad-spectrum inflammasome inhibitor.
Collapse
Affiliation(s)
- Xiao Gong
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Weidi Gu
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Shuo Fu
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Gonglu Zou
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Zhengfan Jiang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| |
Collapse
|
8
|
Lee J, Sasaki F, Koike E, Cho M, Lee Y, Dho SH, Lee J, Lee E, Toyohara E, Sunakawa M, Ishibashi M, Hung HH, Nishioka S, Komine R, Okura C, Shimizu M, Ikawa M, Yoshimura A, Morita R, Kim LK. Gelsolin alleviates rheumatoid arthritis by negatively regulating NLRP3 inflammasome activation. Cell Death Differ 2024; 31:1679-1694. [PMID: 39179640 PMCID: PMC11618363 DOI: 10.1038/s41418-024-01367-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/15/2024] [Accepted: 08/21/2024] [Indexed: 08/26/2024] Open
Abstract
Despite numerous biomarkers being proposed for rheumatoid arthritis (RA), a gap remains in our understanding of their mechanisms of action. In this study, we discovered a novel role for gelsolin (GSN), an actin-binding protein whose levels are notably reduced in the plasma of RA patients. We elucidated that GSN is a key regulator of NLRP3 inflammasome activation in macrophages, providing a plausible explanation for the decreased secretion of GSN in RA patients. We found that GSN interacts with NLRP3 in LPS-primed macrophages, hence modulating the formation of the NLRP3 inflammasome complex. Reducing GSN expression significantly enhanced NLRP3 inflammasome activation. GSN impeded NLRP3 translocation to the mitochondria; it contributed to the maintenance of intracellular calcium equilibrium and mitochondrial stability. This maintenance is crucial for controlling the inflammatory response associated with RA. Furthermore, the exacerbation of arthritic symptoms in GSN-deficient mice indicates the potential of GSN as both a diagnostic biomarker and a therapeutic target. Moreover, not limited to RA models, GSN has demonstrated a protective function in diverse disease models associated with the NLRP3 inflammasome. Myeloid cell-specific GSN-knockout mice exhibited aggravated inflammatory responses in models of MSU-induced peritonitis, folic acid-induced acute tubular necrosis, and LPS-induced sepsis. These findings suggest novel therapeutic approaches that modulate GSN activity, offering promise for more effective management of RA and a broader spectrum of inflammatory conditions.
Collapse
Affiliation(s)
- Jiyeon Lee
- Department of Biomedical Sciences, Graduate School of Medical Science, Brain Korea 21 Project, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Fumiyuki Sasaki
- Department of Microbiology and Immunology, Nippon Medical School, Tokyo, Japan
| | - Eri Koike
- Department of Microbiology and Immunology, Nippon Medical School, Tokyo, Japan
| | - Minjeong Cho
- Department of Biomedical Sciences, Graduate School of Medical Science, Brain Korea 21 Project, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yeongun Lee
- Department of Biomedical Sciences, Graduate School of Medical Science, Brain Korea 21 Project, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - So Hee Dho
- Department of Biomedical Sciences, Graduate School of Medical Science, Brain Korea 21 Project, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jina Lee
- Department of Biomedical Sciences, Graduate School of Medical Science, Brain Korea 21 Project, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Eunji Lee
- Department of Biomedical Sciences, Graduate School of Medical Science, Brain Korea 21 Project, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Eri Toyohara
- Department of Microbiology and Immunology, Nippon Medical School, Tokyo, Japan
| | - Mika Sunakawa
- Department of Microbiology and Immunology, Nippon Medical School, Tokyo, Japan
| | - Mariko Ishibashi
- Department of Microbiology and Immunology, Nippon Medical School, Tokyo, Japan
| | - Huynh Hiep Hung
- Department of Microbiology and Immunology, Nippon Medical School, Tokyo, Japan
| | - Saki Nishioka
- Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Ritsuko Komine
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Chiaki Okura
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Masumi Shimizu
- Department of Microbiology and Immunology, Nippon Medical School, Tokyo, Japan
| | - Masahito Ikawa
- Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Akihiko Yoshimura
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Rimpei Morita
- Department of Microbiology and Immunology, Nippon Medical School, Tokyo, Japan.
| | - Lark Kyun Kim
- Department of Biomedical Sciences, Graduate School of Medical Science, Brain Korea 21 Project, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
9
|
Huang J, Wang Y, Jia X, Zhao C, Zhang M, Bao M, Fu P, Cheng C, Shi R, Zhang X, Cui J, Wan G, Xu A. The human disease-associated gene ZNFX1 controls inflammation through inhibition of the NLRP3 inflammasome. EMBO J 2024; 43:5469-5493. [PMID: 39333773 PMCID: PMC11574294 DOI: 10.1038/s44318-024-00236-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 08/13/2024] [Accepted: 08/20/2024] [Indexed: 09/30/2024] Open
Abstract
Inherited deficiency of zinc finger NFX1-type containing 1 (ZNFX1), a dsRNA virus sensor, is associated with severe familial immunodeficiency, multisystem inflammatory disease, increased susceptibility to viruses, and early mortality. However, limited treatments for patients with pathological variants of ZNFX1 exist due to an incomplete understanding of the diseases resulting from ZNFX1 mutations. Here, we demonstrate that ZNFX1 specifically inhibits the activation of the NLR family pyrin domain-containing protein 3 (NLRP3) inflammasome in response to NLRP3 activators both in vitro and in vivo. ZNFX1 retains NLRP3 in the cytoplasm and prevents its accumulation in the TGN38 + /TGN46+ vesicles in the resting state. Upon NLRP3 inflammasome activation, ZNFX1 is cleaved by caspase-1, establishing a feed-forward loop that promotes NLRP3 accumulation in the trans-Golgi network (TGN) and amplifies the activity of the downstream cascade. Expression of wild-type ZNFX1, but not of ZNFX1 with human pathogenic mutations, rescues the impairment of NLRP3 inflammasome inhibition. Our findings reveal a dual role of ZNFX1 in virus sensing and suppression of inflammation, which may become valuable for the development of treatments for ZNFX1 mutation-related diseases.
Collapse
Affiliation(s)
- Jing Huang
- Guangdong Provincial Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 510275, China
| | - Yao Wang
- Beijing Research Institute of Chinese Medicine, School of Life Science, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Xin Jia
- Beijing Research Institute of Chinese Medicine, School of Life Science, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Changfeng Zhao
- Guangdong Provincial Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 510275, China
| | - Meiqi Zhang
- Beijing Research Institute of Chinese Medicine, School of Life Science, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Mi Bao
- Guangdong Provincial Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 510275, China
| | - Pan Fu
- Guangdong Provincial Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 510275, China
| | - Cuiqin Cheng
- Beijing Research Institute of Chinese Medicine, School of Life Science, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Ruona Shi
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, 510530, China
- Center for Cell Lineage and Atlas, BioLand Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, Guangdong, 510530, China
| | - Xiaofei Zhang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, 510530, China
- Center for Cell Lineage and Atlas, BioLand Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, Guangdong, 510530, China
| | - Jun Cui
- Guangdong Provincial Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 510275, China
| | - Gang Wan
- Guangdong Provincial Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 510275, China.
| | - Anlong Xu
- Guangdong Provincial Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 510275, China.
- Beijing Research Institute of Chinese Medicine, School of Life Science, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
10
|
Castell NJ, Abreu CM, Shirk EN, Queen SE, Mankowski JL, Clements JE, Veenhuis RT. SIV-specific antibodies protect against inflammasome-driven encephalitis in untreated macaques. Cell Rep 2024; 43:114833. [PMID: 39383041 PMCID: PMC11552693 DOI: 10.1016/j.celrep.2024.114833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/26/2024] [Accepted: 09/19/2024] [Indexed: 10/11/2024] Open
Abstract
Viral encephalitis is a growing public health threat with limited diagnostic and treatment options. Simian immunodeficiency virus (SIV)-infected macaques are an established model for human immunodeficiency virus (HIV), and approximately 60% of untreated pigtail macaques rapidly progress to characteristic SIV encephalitis (SIVE). The immune responses of SIV-infected macaques are investigated in plasma, cerebrospinal fluid (CSF), and brain tissue to determine correlates with SIVE pathology. Macaques with SIVE show myeloid-dominant brain lesions with inflammasome activation in infected and bystander cells, as assessed by interleukin (IL)-1β, IL-18, and apoptosis-associated speck-like protein containing a caspase activation and recruitment domain (ASC), and elevations in monocyte chemoattractant protein (MCP)-1, macrophage inflammatory protein (MIP)-1α, and tumor necrosis factor alpha (TNF-α). SIV-specific immunoglobulin (Ig)G in plasma and CSF is predictive of SIVE as early as 21 days post-inoculation; animals with SIVE continue to show negligible seroconversion 3 months after infection. This dichotomy in immune responses, wherein some macaques fail to initiate robust IgG responses and subsequently develop SIVE, provides insight into the pathogenesis and heterogeneous outcomes in viral encephalitis.
Collapse
Affiliation(s)
- Natalie J Castell
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Celina M Abreu
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Erin N Shirk
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Suzanne E Queen
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Joseph L Mankowski
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Janice E Clements
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Rebecca T Veenhuis
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
11
|
Verlinden SF. The genetic advantage of healthy centenarians: unraveling the central role of NLRP3 in exceptional healthspan. FRONTIERS IN AGING 2024; 5:1452453. [PMID: 39301197 PMCID: PMC11410711 DOI: 10.3389/fragi.2024.1452453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/19/2024] [Indexed: 09/22/2024]
Abstract
Despite extensive research into extending human healthspan (HS) and compressing morbidity, the mechanisms underlying aging remain elusive. However, a better understanding of the genetic advantages responsible for the exceptional HS of healthy centenarians (HC), who live in good physical and mental health for one hundred or more years, could lead to innovative health-extending strategies. This review explores the role of NLRP3, a critical component of innate immunity that significantly impacts aging. It is activated by pathogen-associated signals and self-derived signals that increase with age, leading to low-grade inflammation implicated in age-related diseases. Furthermore, NLRP3 functions upstream in several molecular aging pathways, regulates cellular senescence, and may underlie the robust health observed in HC. By targeting NLRP3, mice exhibit a phenotype akin to that of HC, the HS of monkeys is extended, and aging symptoms are reversed in humans. Thus, targeting NLRP3 could offer a promising approach to extend HS. Additionally, a paradigm shift is proposed. Given that the HS of the broader population is 30 years shorter than that of HC, it is postulated that they suffer from a form of accelerated aging. The term 'auto-aging' is suggested to describe accelerated aging driven by NLRP3.
Collapse
|
12
|
Yu T, Hou D, Zhao J, Lu X, Greentree WK, Zhao Q, Yang M, Conde DG, Linder ME, Lin H. NLRP3 Cys126 palmitoylation by ZDHHC7 promotes inflammasome activation. Cell Rep 2024; 43:114070. [PMID: 38583156 PMCID: PMC11130711 DOI: 10.1016/j.celrep.2024.114070] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/14/2024] [Accepted: 03/20/2024] [Indexed: 04/09/2024] Open
Abstract
Nucleotide oligomerization domain (NOD)-like receptor protein 3 (NLRP3) inflammasome hyperactivation contributes to many human chronic inflammatory diseases, and understanding how NLRP3 inflammasome is regulated can provide strategies to treat inflammatory diseases. Here, we demonstrate that NLRP3 Cys126 is palmitoylated by zinc finger DHHC-type palmitoyl transferase 7 (ZDHHC7), which is critical for NLRP3-mediated inflammasome activation. Perturbing NLRP3 Cys126 palmitoylation by ZDHHC7 knockout, pharmacological inhibition, or modification site mutation diminishes NLRP3 activation in macrophages. Furthermore, Cys126 palmitoylation is vital for inflammasome activation in vivo. Mechanistically, ZDHHC7-mediated NLRP3 Cys126 palmitoylation promotes resting NLRP3 localizing on the trans-Golgi network (TGN) and activated NLRP3 on the dispersed TGN, which is indispensable for recruitment and oligomerization of the adaptor ASC (apoptosis-associated speck-like protein containing a CARD). The activation of NLRP3 by ZDHHC7 is different from the termination effect mediated by ZDHHC12, highlighting versatile regulatory roles of S-palmitoylation. Our study identifies an important regulatory mechanism of NLRP3 activation that suggests targeting ZDHHC7 or the NLRP3 Cys126 residue as a potential therapeutic strategy to treat NLRP3-related human disorders.
Collapse
Affiliation(s)
- Tao Yu
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Dan Hou
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Jiaqi Zhao
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Xuan Lu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Wendy K Greentree
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Qian Zhao
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Min Yang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Don-Gerard Conde
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Maurine E Linder
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Hening Lin
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
13
|
Montero-Vega MT, Matilla J, Bazán E, Reimers D, De Andrés-Martín A, Gonzalo-Gobernado R, Correa C, Urbano F, Gómez-Coronado D. Fluvastatin Converts Human Macrophages into Foam Cells with Increased Inflammatory Response to Inactivated Mycobacterium tuberculosis H37Ra. Cells 2024; 13:536. [PMID: 38534380 PMCID: PMC10969755 DOI: 10.3390/cells13060536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/07/2024] [Accepted: 03/11/2024] [Indexed: 03/28/2024] Open
Abstract
Cholesterol biosynthesis inhibitors (statins) protect hypercholesterolemic patients against developing active tuberculosis, suggesting that these drugs could help the host to control the pathogen at the initial stages of the disease. This work studies the effect of fluvastatin on the early response of healthy peripheral blood mononuclear cells (PBMCs) to inactivated Mycobacterium tuberculosis (Mtb) H37Ra. We found that in fluvastatin-treated PBMCs, most monocytes/macrophages became foamy cells that overproduced NLRP3 inflammasome components in the absence of immune stimulation, evidencing important cholesterol metabolism/immunity connections. When both fluvastatin-treated and untreated PBMCs were exposed to Mtb H37Ra, a small subset of macrophages captured large amounts of bacilli and died, concentrating the bacteria in necrotic areas. In fluvastatin-untreated cultures, most of the remaining macrophages became epithelioid cells that isolated these areas of cell death in granulomatous structures that barely produced IFNγ. By contrast, in fluvastatin-treated cultures, foamy macrophages surrounded the accumulated bacteria, degraded them, markedly activated caspase-1 and elicited a potent IFNγ/cytotoxic response. In rabbits immunized with the same bacteria, fluvastatin increased the tuberculin test response. We conclude that statins may enhance macrophage efficacy to control Mtb, with the help of adaptive immunity, offering a promising tool in the design of alternative therapies to fight tuberculosis.
Collapse
Affiliation(s)
- María Teresa Montero-Vega
- Servicio de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain; (J.M.); (D.G.-C.)
| | - Joaquín Matilla
- Servicio de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain; (J.M.); (D.G.-C.)
| | - Eulalia Bazán
- Servicio de Neurobiología-Investigación, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain; (E.B.); (D.R.)
| | - Diana Reimers
- Servicio de Neurobiología-Investigación, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain; (E.B.); (D.R.)
| | - Ana De Andrés-Martín
- Servicio de Inmunología, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain;
| | - Rafael Gonzalo-Gobernado
- Departamento de Biología Molecular y Celular, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain;
| | - Carlos Correa
- Unidad de Cirugía Experimental y Animalario, Investigación, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain;
| | - Francisco Urbano
- Servicio Interdepartamental de Investigación (SIdI), Facultad de Medicina, Universidad Autónoma, 28029 Madrid, Spain;
| | - Diego Gómez-Coronado
- Servicio de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain; (J.M.); (D.G.-C.)
| |
Collapse
|
14
|
Lee KG, Hong BK, Lee S, Lee N, Kim SW, Kim D, Kim WU. Nuclear receptor coactivator 6 is a critical regulator of NLRP3 inflammasome activation and gouty arthritis. Cell Mol Immunol 2024; 21:227-244. [PMID: 38195836 PMCID: PMC10902316 DOI: 10.1038/s41423-023-01121-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 11/30/2023] [Indexed: 01/11/2024] Open
Abstract
Transcriptional coactivators regulate the rate of gene expression in the nucleus. Nuclear receptor coactivator 6 (NCOA6), a coactivator, has been implicated in embryonic development, metabolism, and cancer pathogenesis, but its role in innate immunity and inflammatory diseases remains unclear. Here, we demonstrated that NCOA6 was expressed in monocytes and macrophages and that its level was increased under proinflammatory conditions. Unexpectedly, nuclear NCOA6 was found to translocate to the cytoplasm in activated monocytes and then become incorporated into the inflammasome with NLRP3 and ASC, forming cytoplasmic specks. Mechanistically, NCOA6 associated with the ATP hydrolysis motifs in the NACHT domain of NLRP3, promoting the oligomerization of NLRP3 and ASC and thereby instigating the production of IL-1β and active caspase-1. Of note, Ncoa6 deficiency markedly inhibited NLRP3 hyperactivation caused by the Nlrp3R258W gain-of-function mutation in macrophages. Genetic ablation of Ncoa6 substantially attenuated the severity of two NLRP3-dependent diseases, folic-induced acute tubular necrosis and crystal-induced arthritis, in mice. Consistent with these findings, NCOA6 was highly expressed in macrophages derived from gout patients, and NCOA6-positive macrophages were significantly enriched in gout macrophages according to the transcriptome profiling results. Conclusively, NCOA6 is a critical regulator of NLRP3 inflammasome activation and is therefore a promising target for NLRP3-dependent diseases, including gout.
Collapse
Affiliation(s)
- Kang-Gu Lee
- Center for Integrative Rheumatoid Transcriptomics and Dynamics, The Catholic University of Korea, Seoul, 06591, Republic of Korea
- Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Bong-Ki Hong
- Center for Integrative Rheumatoid Transcriptomics and Dynamics, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Saseong Lee
- Center for Integrative Rheumatoid Transcriptomics and Dynamics, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Naeun Lee
- Center for Integrative Rheumatoid Transcriptomics and Dynamics, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Seung-Whan Kim
- Department of Pharmacology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
- Bio-Medical Institute of Technology, University of Ulsan, Seoul, 05505, Republic of Korea
| | - Donghyun Kim
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Institute of Infectious Diseases, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Wan-Uk Kim
- Center for Integrative Rheumatoid Transcriptomics and Dynamics, The Catholic University of Korea, Seoul, 06591, Republic of Korea.
- Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, 06591, Republic of Korea.
- Division of Rheumatology, Department of Internal Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea.
| |
Collapse
|
15
|
He W, Tang M, Gu R, Wu X, Mu X, Nie X. The Role of p53 in Regulating Chronic Inflammation and PANoptosis in Diabetic Wounds. Aging Dis 2024; 16:AD.2024.0212. [PMID: 38377027 PMCID: PMC11745441 DOI: 10.14336/ad.2024.0212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 02/12/2024] [Indexed: 02/22/2024] Open
Abstract
Diabetic wounds represent a formidable challenge in the clinical management of diabetes mellitus, markedly diminishing the patient's quality of life. These wounds arise from a multifaceted etiology, with the pathophysiological underpinnings remaining elusive and complex. Diabetes precipitates neuropathies and vasculopathies in the lower extremities, culminating in infections, ulcerations, and extensive tissue damage. The hallmarks of non-healing diabetic wounds include senescence, persistent inflammation, heightened apoptosis, and attenuated cellular proliferation. The TP53 gene, a pivotal tumor suppressor frequently silenced in human malignancies, orchestrates cellular proliferation, senescence, DNA repair, and apoptosis. While p53 is integral in cell cycle regulation, its role in initial tissue repair appears to be deleterious. In typical cutaneous wounds, p53 levels transiently dip, swiftly reverting to baseline. Yet in diabetic wounds, protracted p53 activation impedes healing via two distinct pathways: i) activating the p53-p21-Retinoblastoma (RB) axis, which halts the cell cycle, and ii) upregulating the cGAS-STING and nuclear factor-kappaB (NF-κB) cascades, instigating ferroptosis and pyroptosis. Furthermore, p53 intersects with various metabolic pathways, including glycolysis, gluconeogenesis, oxidative phosphorylation, and autophagy. In diabetic wounds, p53 may drive metabolic reprogramming, thus potentially derailing macrophage polarization. This review synthesizes case studies investigating the therapeutic modulation of p53 in diabetic wounds care. In summation, p53 modulates chronic inflammation and cellular aging within diabetic cutaneous wounds and is implicated in a novel cell death modality, encompassing ferroptosis and pyroptosis, which hinders the reparative process.
Collapse
Affiliation(s)
- Wenjie He
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, China.
- Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China.
| | - Ming Tang
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis 38105, USA.
| | - Rifang Gu
- School Medical Office, Zunyi Medical University, Zunyi 563006, China.
| | - Xingqian Wu
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, China.
- Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China.
| | - Xinrui Mu
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, China.
- Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China.
| | - Xuqiang Nie
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, China.
- Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China.
| |
Collapse
|
16
|
Kim HJ, Park W. Alleviative Effect of Geniposide on Lipopolysaccharide-Stimulated Macrophages via Calcium Pathway. Int J Mol Sci 2024; 25:1728. [PMID: 38339007 PMCID: PMC10855527 DOI: 10.3390/ijms25031728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
In this study, we investigated how geniposide (a bioactive ingredient of gardenia fruit) acts on lipopolysaccharide (LPS)-stimulated macrophages. Griess reagent assay, Fluo-4 calcium assay, dihydrorhodamine 123 assay, multiplex cytokine assay, quantitative RT-PCR, and flow cytometry assay were used for this study. Data showed that geniposide at concentrations of 10, 25, and 50 μM reduced significantly the levels of nitric oxide, intracellular Ca2+, and hydrogen peroxide in LPS-activated RAW 264.7. Multiplex cytokine assay showed that geniposide at concentrations of 10, 25, and 50 μM meaningfully suppressed levels of IL-6, G-CSF, MCP-1, and MIP-1α in RAW 264.7 provoked by LPS; additionally, geniposide at concentrations of 25 and 50 μM meaningfully suppressed the levels of TNF-α, IP-10, GM-CSF, and MIP-1β. Flow cytometry assay showed that geniposide reduces significantly the level of activated P38 MAPK in RAW 264.7 provoked by LPS. Geniposide meaningfully suppressed LPS-induced transcription of inflammatory target genes, such as Chop, Jak2, Fas, c-Jun, c-Fos, Stat3, Nos2, Ptgs2, Gadd34, Asc, Xbp1, Nlrp3, and Par-2. Taken together, geniposide exerts alleviative effects in LPS-stimulated macrophages via the calcium pathway.
Collapse
Affiliation(s)
| | - Wansu Park
- Department of Pathology, College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea
| |
Collapse
|
17
|
Mazzarda F, Chittams-Miles AE, Pittaluga J, Sözer EB, Vernier PT, Muratori C. Inflammasome Activation and IL-1β Release Triggered by Nanosecond Pulsed Electric Fields in Murine Innate Immune Cells and Skin. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:335-345. [PMID: 38047899 PMCID: PMC10752860 DOI: 10.4049/jimmunol.2200881] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 11/08/2023] [Indexed: 12/05/2023]
Abstract
Although electric field-induced cell membrane permeabilization (electroporation) is used in a wide range of clinical applications from cancer therapy to cardiac ablation, the cellular- and molecular-level details of the processes that determine the success or failure of these treatments are poorly understood. Nanosecond pulsed electric field (nsPEF)-based tumor therapies are known to have an immune component, but whether and how immune cells sense the electroporative damage and respond to it have not been demonstrated. Damage- and pathogen-associated stresses drive inflammation via activation of cytosolic multiprotein platforms known as inflammasomes. The assembly of inflammasome complexes triggers caspase-1-dependent secretion of IL-1β and in many settings a form of cell death called pyroptosis. In this study we tested the hypothesis that the nsPEF damage is sensed intracellularly by the NLRP3 inflammasome. We found that 200-ns PEFs induced aggregation of the inflammasome adaptor protein ASC, activation of caspase-1, and triggered IL-1β release in multiple innate immune cell types (J774A.1 macrophages, bone marrow-derived macrophages, and dendritic cells) and in vivo in mouse skin. Efflux of potassium from the permeabilized cell plasma membrane was partially responsible for nsPEF-induced inflammasome activation. Based on results from experiments using both the NRLP3-specific inhibitor MCC950 and NLRP3 knockout cells, we propose that the damage created by nsPEFs generates a set of stimuli for the inflammasome and that more than one sensor can drive IL-1β release in response to electrical pulse stimulation. This study shows, to our knowledge, for the first time, that PEFs activate the inflammasome, suggesting that this pathway alarms the immune system after treatment.
Collapse
Affiliation(s)
- Flavia Mazzarda
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA
| | | | - Julia Pittaluga
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA
| | - Esin B. Sözer
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA
| | - P. Thomas Vernier
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA
| | - Claudia Muratori
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA
- Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, VA
| |
Collapse
|
18
|
Dong D, Du Y, Fei X, Yang H, Li X, Yang X, Ma J, Huang S, Ma Z, Zheng J, Chan DW, Shi L, Li Y, Irving AT, Yuan X, Liu X, Ni P, Hu Y, Meng G, Peng Y, Sadler A, Xu D. Inflammasome activity is controlled by ZBTB16-dependent SUMOylation of ASC. Nat Commun 2023; 14:8465. [PMID: 38123560 PMCID: PMC10733316 DOI: 10.1038/s41467-023-43945-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/24/2023] [Indexed: 12/23/2023] Open
Abstract
Inflammasome activity is important for the immune response and is instrumental in numerous clinical conditions. Here we identify a mechanism that modulates the central Caspase-1 and NLR (Nod-like receptor) adaptor protein ASC (apoptosis-associated speck-like protein containing a CARD). We show that the function of ASC in assembling the inflammasome is controlled by its modification with SUMO (small ubiquitin-like modifier) and identify that the nuclear ZBTB16 (zinc-finger and BTB domain-containing protein 16) promotes this SUMOylation. The physiological significance of this activity is demonstrated through the reduction of acute inflammatory pathogenesis caused by a constitutive hyperactive inflammasome by ablating ZBTB16 in a mouse model of Muckle-Wells syndrome. Together our findings identify an further mechanism by which ZBTB16-dependent control of ASC SUMOylation assembles the inflammasome to promote this pro-inflammatory response.
Collapse
Affiliation(s)
- Danfeng Dong
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- College of Health Sciences and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuzhang Du
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- College of Health Sciences and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuefeng Fei
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- College of Health Sciences and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hao Yang
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- College of Health Sciences and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaofang Li
- Assisted Reproduction Center, Northwest Women's and Children's Hospital, Xi'an, Shaanxi Province, 710003, China
| | - Xiaobao Yang
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- College of Health Sciences and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junrui Ma
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- College of Health Sciences and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shu Huang
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- College of Health Sciences and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhihui Ma
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- College of Health Sciences and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Juanjuan Zheng
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- College of Health Sciences and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - David W Chan
- School of Medicine, The Chinese University of Hong Kong-Shenzhen, Shenzhen, China
| | - Liyun Shi
- Department of Microbiology and Immunology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yunqi Li
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Aaron T Irving
- Department of Clinical Laboratory Studies, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Centre for Infection, Immunity &Cancer, Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, China
| | - Xiangliang Yuan
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- College of Health Sciences and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiangfan Liu
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- College of Health Sciences and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peihua Ni
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- College of Health Sciences and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiqun Hu
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- College of Health Sciences and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guangxun Meng
- The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology & Immunology, Shanghai Institute of Immunity and Infection, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yibing Peng
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- College of Health Sciences and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Anthony Sadler
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, VIC, 3168, Australia.
- Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia.
| | - Dakang Xu
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- College of Health Sciences and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
19
|
Dehghan S, Kheshtchin N, Hassannezhad S, Soleimani M. Cell death classification: A new insight based on molecular mechanisms. Exp Cell Res 2023; 433:113860. [PMID: 38013091 DOI: 10.1016/j.yexcr.2023.113860] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/17/2023] [Accepted: 11/18/2023] [Indexed: 11/29/2023]
Abstract
Cells tend to disintegrate themselves or are forced to undergo such destructive processes in critical circumstances. This complex cellular function necessitates various mechanisms and molecular pathways in order to be executed. The very nature of cell death is essentially important and vital for maintaining homeostasis, thus any type of disturbing occurrence might lead to different sorts of diseases and dysfunctions. Cell death has various modalities and yet, every now and then, a new type of this elegant procedure gets to be discovered. The diversity of cell death compels the need for a universal organizing system in order to facilitate further studies, therapeutic strategies and the invention of new methods of research. Considering all that, we attempted to review most of the known cell death mechanisms and sort them all into one arranging system that operates under a simple but subtle decision-making (If \ Else) order as a sorting algorithm, in which it decides to place and sort an input data (a type of cell death) into its proper set, then a subset and finally a group of cell death. By proposing this algorithm, the authors hope it may solve the problems regarding newer and/or undiscovered types of cell death and facilitate research and therapeutic applications of cell death.
Collapse
Affiliation(s)
- Sepehr Dehghan
- Department of Medical Basic Sciences, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Nasim Kheshtchin
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Maryam Soleimani
- Department of Medical Basic Sciences, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran.
| |
Collapse
|
20
|
Glück IM, Mathias GP, Strauss S, Rat V, Gialdini I, Ebert TS, Stafford C, Agam G, Manley S, Hornung V, Jungmann R, Sieben C, Lamb DC. Nanoscale organization of the endogenous ASC speck. iScience 2023; 26:108382. [PMID: 38047065 PMCID: PMC10690566 DOI: 10.1016/j.isci.2023.108382] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 06/15/2023] [Accepted: 10/31/2023] [Indexed: 12/05/2023] Open
Abstract
The NLRP3 inflammasome is a central component of the innate immune system. Its activation leads to formation of the ASC speck, a supramolecular assembly of the inflammasome adaptor protein ASC. Different models, based on ASC overexpression, have been proposed for the structure of the ASC speck. Using dual-color 3D super-resolution imaging (dSTORM and DNA-PAINT), we visualized the ASC speck structure following NLRP3 inflammasome activation using endogenous ASC expression. A complete structure was only obtainable by labeling with both anti-ASC antibodies and nanobodies. The complex varies in diameter between ∼800 and 1000 nm, and is composed of a dense core with emerging filaments. Dual-color confocal fluorescence microscopy indicated that the ASC speck does not colocalize with the microtubule-organizing center at late time points after Nigericin stimulation. From super-resolution images of whole cells, the ASC specks were sorted into a pseudo-time sequence indicating that they become denser but not larger during formation.
Collapse
Affiliation(s)
- Ivo M. Glück
- Department of Chemistry, Ludwig Maximilians-Universität München, Butenandtstraße 5-13, 81377 München, Germany
- Center for Nano Science (CENS), Ludwig Maximilians-Universität München, Butenandtstraße 5-13, 81377 München, Germany
| | - Grusha Primal Mathias
- Department of Chemistry, Ludwig Maximilians-Universität München, Butenandtstraße 5-13, 81377 München, Germany
| | - Sebastian Strauss
- Faculty of Physics and Center for Nanoscience, Ludwig Maximilian University, Munich, Germany
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Virgile Rat
- Department of Chemistry, Ludwig Maximilians-Universität München, Butenandtstraße 5-13, 81377 München, Germany
- Center for Nano Science (CENS), Ludwig Maximilians-Universität München, Butenandtstraße 5-13, 81377 München, Germany
| | - Irene Gialdini
- Department of Chemistry, Ludwig Maximilians-Universität München, Butenandtstraße 5-13, 81377 München, Germany
- Center for Nano Science (CENS), Ludwig Maximilians-Universität München, Butenandtstraße 5-13, 81377 München, Germany
| | - Thomas Sebastian Ebert
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität, Munich, Germany
| | - Che Stafford
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität, Munich, Germany
| | - Ganesh Agam
- Department of Chemistry, Ludwig Maximilians-Universität München, Butenandtstraße 5-13, 81377 München, Germany
- Center for Nano Science (CENS), Ludwig Maximilians-Universität München, Butenandtstraße 5-13, 81377 München, Germany
| | - Suliana Manley
- Laboratory of Experimental Biophysics, École Polytechnique Fédérale de Lausanne, BSP 427 (Cubotron UNIL), Rte de la Sorge, CH-1015 Lausanne, Switzerland
| | - Veit Hornung
- Max Planck Institute of Biochemistry, Martinsried, Germany
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität, Munich, Germany
| | - Ralf Jungmann
- Faculty of Physics and Center for Nanoscience, Ludwig Maximilian University, Munich, Germany
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Christian Sieben
- Laboratory of Experimental Biophysics, École Polytechnique Fédérale de Lausanne, BSP 427 (Cubotron UNIL), Rte de la Sorge, CH-1015 Lausanne, Switzerland
| | - Don C. Lamb
- Department of Chemistry, Ludwig Maximilians-Universität München, Butenandtstraße 5-13, 81377 München, Germany
- Center for Nano Science (CENS), Ludwig Maximilians-Universität München, Butenandtstraße 5-13, 81377 München, Germany
| |
Collapse
|
21
|
Sun J, Zhu Q, Yu X, Liang X, Guan H, Zhao H, Yao W. RhoGDI3 at the trans-Golgi network participates in NLRP3 inflammasome activation, VSMC phenotypic modulation, and neointima formation. Atherosclerosis 2023; 387:117391. [PMID: 38029612 DOI: 10.1016/j.atherosclerosis.2023.117391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 11/03/2023] [Accepted: 11/15/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND AND AIMS The pathological roles and mechanisms of Rho-specific guanine nucleotide dissociation inhibitor 3 (RhoGDI3) in vascular smooth muscle cell (VSMC) phenotypic modulation and neointima formation are currently unknown. This study aimed to investigate how RhoGDI3 regulates the Nod-like receptor protein 3 (NLRP3) inflammasome in platelet-derived growth factor-BB (PDGF-BB)-induced neointima formation. METHODS For in vitro assays, human aortic VSMCs (HA-VSMCs) were transfected with pcDNA3.1-GDI3 and RhoGDI3 siRNA to overexpress and knockdown RhoGDI3, respectively. HA-VSMCs were also treated with an NLRP3 inhibitor (CY-09) or agonist (NSS). Protein transcription and expression, cell proliferation and migration, Golgi morphology, and protein binding and colocalization were measured. For the in vivo assays, balloon injury (BI) rats were injected with recombinant adenovirus carrying RhoGDI3 shRNA. Carotid arterial morphology, protein expression and colocalization, and activation of the NLRP3 inflammasome were measured. RESULTS PDGF-BB treatment induced transcription and expression of RhoGDI3 through PDGF receptor αβ (PDGFRαβ) rather than PDGFRαα or PDGFRββ in HA-VSMCs. RhoGDI3 suppression blocked PDGF-BB-induced VSMC phenotypic transformation. In contrast, RhoGDI3 overexpression further promoted PDGF-BB-induced VSMC dedifferentiation. The in vivo results also confirmed that RhoGDI3 expressed in VSMCs participated in neointima formation and muscle fiber and collagen deposition caused by balloon injury. In addition, PDGF-BB increased binding of RhoGDI3 to NLRP3 and apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) at the trans-Golgi membrane, which depended on the normal Golgi network. However, recruitment of NLRP3 and ASC to the trans-Golgi network after PDGF-BB treatment was independent of RhoGDI3. Moreover, RhoGDI3 knockdown significantly inhibited ASC expression and NLRP3 inflammasome assembly and activation and reduced NLRP3 protein stability in PDGF-BB-treated HA-VSMCs. Inhibiting NLRP3 effectively prevented PDGF-BB-induced VSMC phenotypic modulation, and an NLRP3 agonist reversed the decline in VSMC phenotypic transformation caused by RhoGDI3 knockdown. Furthermore, RhoGDI3 suppression reduced the protein levels and assembly of NLRP3 and ASC, and the activation of the NLRP3 inflammasome in VSMCs in a rat balloon injury model. CONCLUSIONS The results of this study reveal a novel mechanism through which RhoGDI3 regulates VSMC phenotypic modulation and neointima formation by activating the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Jingwen Sun
- School of Pharmacy, Nantong University, 19 QiXiu Road, Nantong, 226001, China
| | - Qingyu Zhu
- School of Pharmacy, Nantong University, 19 QiXiu Road, Nantong, 226001, China
| | - Xiaoqiang Yu
- Department of Vascular Surgery, The First People's Hospital of Nantong, Nantong, 226001, China
| | - Xiuying Liang
- School of Pharmacy, Nantong University, 19 QiXiu Road, Nantong, 226001, China
| | - Haijing Guan
- School of Pharmacy, Nantong University, 19 QiXiu Road, Nantong, 226001, China
| | - Heyan Zhao
- Medical School, Nantong University, 19 QiXiu Road, Nantong, 226001, China.
| | - Wenjuan Yao
- School of Pharmacy, Nantong University, 19 QiXiu Road, Nantong, 226001, China.
| |
Collapse
|
22
|
Umino M, Okuda M, Ohkubo T, Fujii T, Matsubara K. Long-term intake of α-glycerophosphocholine (GPC) suppresses microglial inflammation and blood-brain barrier (BBB) disruption and promotes neurogenesis in senescence-accelerated mice prone 8 (SAMP8). Biosci Biotechnol Biochem 2023; 87:1537-1542. [PMID: 37723613 DOI: 10.1093/bbb/zbad135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 09/11/2023] [Indexed: 09/20/2023]
Abstract
We evaluated the effects of long-term glycerophosphocholine (GPC) intake on microglia, the blood-brain barrier (BBB), and neurogenesis in senescence-accelerated mice prone 8 (SAMP8). The GPC intake suppressed microglial activation and BBB disruption and sustained doublecortin-positive cells in the hippocampus. The results indicate that GPC intake exerts anti-inflammatory and neuroprotective effects in the brain of aged mice.
Collapse
Affiliation(s)
- Mitsuki Umino
- Department of Human Life Science Education, Graduate School of Humanities and Social Sciences, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Mayumi Okuda
- Department of Human Life Science Education, Graduate School of Education, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Takeshi Ohkubo
- Department of Health Nutrition, Sendai Shirayuri Women's College, Sehndai, Miyagi, Japan
| | - Tsutomu Fujii
- Faculty of Food and Agricultural Sciences, Fukushima University, Fukushima, Japan
| | - Kiminori Matsubara
- Department of Human Life Science Education, Graduate School of Humanities and Social Sciences, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
- Department of Human Life Science Education, Graduate School of Education, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| |
Collapse
|
23
|
Wu L, Zhao H, Zhang M, Sun Q, Chang E, Li X, Ouyang W, Le Y, Ma D. Regulated cell death and inflammasome activation in gut injury following traumatic surgery in vitro and in vivo: implication for postoperative death due to multiorgan dysfunction. Cell Death Discov 2023; 9:409. [PMID: 37935670 PMCID: PMC10630406 DOI: 10.1038/s41420-023-01647-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 08/29/2023] [Accepted: 09/12/2023] [Indexed: 11/09/2023] Open
Abstract
Postoperative multi-organ dysfunction (MOD) is associated with significant mortality and morbidity. Necroptosis has been implicated in different types of solid organ injury; however, the mechanisms linking necroptosis to inflammation require further elucidation. The present study examines the involvement of necroptosis and NLR family pyrin domain containing 3 (NLRP3) inflammasome in small intestine injury following traumatic surgery. Kidney transplantation in rats and renal ischaemia-reperfusion (I/R) in mice were used as traumatic and laparotomic surgery models to study necroptosis and inflammasome activation in the small intestinal post-surgery; additional groups also received receptor-interacting protein kinase 1 (RIPK1) inhibitor necrostatin-1s (Nec-1s). To investigate whether necroptosis regulates inflammasome activity in vitro, necroptosis was induced in human colonic epithelial cancer cells (Caco-2) by a combination of tumour necrosis factor-alpha (TNFα), SMAC mimetic LCL-161 and pan-caspase inhibitor Q-VD-Oph (together, TLQ), and necroptosis was blocked by Nec-1s or mixed lineage kinase-domain like (MLKL) inhibitor necrosulfonamide (NSA). Renal transplantation and renal ischaemia-reperfusion (I/R) upregulated the expression of necroptosis mediators (RIPK1; RIPK3; phosphorylated-MLKL) and inflammasome components (P2X purinoceptor subfamily 7, P2X7R; NLRP3; caspase-1) in the small intestines at 24 h, and Nec-1s suppressed the expression of inflammasome components. TLQ treatment induced NLRP3 inflammasome, promoted cleavage of caspase-1 and interleukin-1 beta (IL-1β), and stimulated extracellular ATP release from Caco-2 cells, and MLKL inhibitor NSA prevented TLQ-induced inflammasome activity and ATP release from Caco-2 cells. Our work suggested that necroptosis and inflammasome interactively promote remote postoperative small intestinal injury, at least in part, through ATP purinergic signalling. Necroptosis-inflammasome axis may be considered as novel therapeutic target for tackling postoperative MOD in the critical care settings.
Collapse
Affiliation(s)
- Lingzhi Wu
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, UK
| | - Hailin Zhao
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, UK
| | - Mengxu Zhang
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, UK
| | - Qizhe Sun
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, UK
| | - Enqiang Chang
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, UK
| | - Xinyi Li
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, UK
| | - Wen Ouyang
- Department of Anesthesiology, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, PR China
- Hunan Province Key Laboratory of Brain Homeostasis, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, PR China
| | - Yuan Le
- Department of Anesthesiology, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, PR China.
- Hunan Province Key Laboratory of Brain Homeostasis, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, PR China.
| | - Daqing Ma
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, UK.
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.
| |
Collapse
|
24
|
Dai Y, Zhou J, Shi C. Inflammasome: structure, biological functions, and therapeutic targets. MedComm (Beijing) 2023; 4:e391. [PMID: 37817895 PMCID: PMC10560975 DOI: 10.1002/mco2.391] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 08/25/2023] [Accepted: 08/29/2023] [Indexed: 10/12/2023] Open
Abstract
Inflammasomes are a group of protein complex located in cytoplasm and assemble in response to a wide variety of pathogen-associated molecule patterns, damage-associated molecule patterns, and cellular stress. Generally, the activation of inflammasomes will lead to maturation of proinflammatory cytokines and pyroptotic cell death, both associated with inflammatory cascade amplification. A sensor protein, an adaptor, and a procaspase protein interact through their functional domains and compose one subunit of inflammasome complex. Under physiological conditions, inflammasome functions against pathogen infection and endogenous dangers including mtROS, mtDNA, and so on, while dysregulation of its activation can lead to unwanted results. In recent years, advances have been made to clarify the mechanisms of inflammasome activation, the structural details of them and their functions (negative/positive) in multiple disease models in both animal models and human. The wide range of the stimuli makes the function of inflammasome diverse and complex. Here, we review the structure, biological functions, and therapeutic targets of inflammasomes, while highlight NLRP3, NLRC4, and AIM2 inflammasomes, which are the most well studied. In conclusion, this review focuses on the activation process, biological functions, and structure of the most well-studied inflammasomes, summarizing and predicting approaches for disease treatment and prevention with inflammasome as a target. We aim to provide fresh insight into new solutions to the challenges in this field.
Collapse
Affiliation(s)
- Yali Dai
- Institute of Rocket Force MedicineState Key Laboratory of Trauma and Chemical PoisoningArmy Medical UniversityChongqingChina
| | - Jing Zhou
- Institute of Rocket Force MedicineState Key Laboratory of Trauma and Chemical PoisoningArmy Medical UniversityChongqingChina
- Institute of ImmunologyArmy Medical UniversityChongqingChina
| | - Chunmeng Shi
- Institute of Rocket Force MedicineState Key Laboratory of Trauma and Chemical PoisoningArmy Medical UniversityChongqingChina
| |
Collapse
|
25
|
Boccaccio GL, Thomas MG, García CC. Membraneless Organelles and Condensates Orchestrate Innate Immunity Against Viruses. J Mol Biol 2023; 435:167976. [PMID: 36702393 DOI: 10.1016/j.jmb.2023.167976] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/10/2023] [Accepted: 01/17/2023] [Indexed: 01/24/2023]
Abstract
The cellular defense against viruses involves the assembly of oligomers, granules and membraneless organelles (MLOs) that govern the activation of several arms of the innate immune response. Upon interaction with specific pathogen-derived ligands, a number of pattern recognition receptors (PRRs) undergo phase-separation thus triggering downstream signaling pathways. Among other relevant condensates, inflammasomes, apoptosis-associated speck-like protein containing a caspase-recruitment domain (ASC) specks, cyclic GMP-AMP synthase (cGAS) foci, protein kinase R (PKR) clusters, ribonuclease L-induced bodies (RLBs), stress granules (SGs), processing bodies (PBs) and promyelocytic leukemia protein nuclear bodies (PML NBs) play different roles in the immune response. In turn, viruses have evolved diverse strategies to evade the host defense. Viral DNA or RNA, as well as viral proteases or proteins carrying intrinsically disordered regions may interfere with condensate formation and function in multiple ways. In this review we discuss current and hypothetical mechanisms of viral escape that involve the disassembly, repurposing, or inactivation of membraneless condensates that govern innate immunity. We summarize emerging interconnections between these diverse condensates that ultimately determine the cellular outcome.
Collapse
Affiliation(s)
- Graciela Lidia Boccaccio
- Laboratorio de Biología Celular del ARN, Instituto Leloir (FIL) and Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA) - Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires, Argentina; Departamento de Fisiología y Biología Molecular y Celular (FBMyC), Facultad de Ciencias Exactas y Naturales (FCEN), Universidad de Buenos Aires, Buenos Aires, Argentina.
| | - María Gabriela Thomas
- Laboratorio de Biología Celular del ARN, Instituto Leloir (FIL) and Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA) - Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires, Argentina. https://www.twitter.com/_gabithomas
| | - Cybele Carina García
- Departamento de Química Biológica (QB), Facultad de Ciencias Exactas y Naturales (FCEN), and IQUIBICEN, Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET) and Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
26
|
Nagar A, Bharadwaj R, Shaikh MOF, Roy A. What are NLRP3-ASC specks? an experimental progress of 22 years of inflammasome research. Front Immunol 2023; 14:1188864. [PMID: 37564644 PMCID: PMC10411722 DOI: 10.3389/fimmu.2023.1188864] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 07/12/2023] [Indexed: 08/12/2023] Open
Abstract
Speck assembly is the hallmark of NLRP3 inflammasome activation. The 1µm structure comprising of NLRP3 and ASC is the first observable phenotype of NLRP3 activation. While the common consensus is that the specks are the site of inflammasome activity, no direct experimental evidence exists to support this notion. In these 22 years, since the inflammasome discovery, several research studies have been published which directly or indirectly support or refute the idea of speck being the inflammasome. This review compiles the data from two decades of research to answer a long-standing question: "What are NLRP3-ASC specks?"
Collapse
Affiliation(s)
- Abhinit Nagar
- Department of Flow Cytometry, Cytek Biosciences, Fremont, CA, United States
| | - Ravi Bharadwaj
- MassBiologics of the University of Massachusetts Medical School, Boston, MA, United States
| | - Mohammad Omar Faruk Shaikh
- Division of Critical Care Medicine, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Boston, MA, United States
- Department of Anesthesia, Harvard Medical School, Boston, MA, United States
| | - Abhishek Roy
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
27
|
Viil J, Somelar-Duracz K, Jaako K, Anier K, Zharkovsky A. Characterization of IMG Microglial Cell Line as a Valuable In Vitro Tool for NLRP3 Inflammasome Studies. Cell Mol Neurobiol 2023; 43:2053-2069. [PMID: 36163404 PMCID: PMC11412188 DOI: 10.1007/s10571-022-01285-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 09/14/2022] [Indexed: 11/03/2022]
Abstract
Microglial cells constantly surveil the cerebral microenvironment and become activated following injury and disease to mediate inflammatory responses. The nucleotide-binding oligomerization domain-, leucine-rich repeat-, and pyrin domain-containing 3 (NLRP3) inflammasome, which is abundantly expressed in microglial cells, plays a key role in these responses as well as in the development of many neurological disorders. Microglial cell lines are a valuable tool to study the causes and possible treatments for neurological diseases which are linked to inflammation. Here, we investigated whether the mouse microglial cell line IMG is suitable to study NLRP3 inflammasome by incubating cells with different concentrations of NLRP3 inflammasome priming and activating agents lipopolysaccharide (LPS) and ATP, respectively, and applying short (4 h) or long (24 h) LPS incubation times. After short LPS incubation, the mRNA levels of most pro-inflammatory and NLRP3 inflammasome-associated genes were more upregulated than after long incubation. Moreover, the combination of higher LPS and ATP concentrations with short incubation time resulted in greater levels of active forms of caspase-1 and interleukin-1 beta (IL-1β) proteins than low LPS and ATP concentrations or long incubation time. We also demonstrated that treatment with NLRP3 inflammasome inhibitor glibenclamide suppressed NLRP3 inflammasome activation in IMG cells, as illustrated by the downregulation of gasdermin D N-fragment and mature caspase-1 and IL-1β protein levels. In addition, we conducted similar experiments with primary microglial cells and BV-2 cell line to determine the similarities and differences in their responses. Overall, our results indicate that IMG cell line could be a valuable tool for NLRP3 inflammasome studies. In IMG cells, 4-h incubation with lipopolysaccharide (LPS) induces a stronger upregulation of NLRP3 inflammasome-associated pro-inflammatory genes compared to 24-h incubation. NLRP3 inflammasome is robustly activated only after the addition of 3 mM of ATP following short LPS incubation time.
Collapse
Affiliation(s)
- Janeli Viil
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia.
| | - Kelli Somelar-Duracz
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia
| | - Külli Jaako
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia
| | - Kaili Anier
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia
| | - Alexander Zharkovsky
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia
| |
Collapse
|
28
|
Ghaderpour A, Jeong JY, Kim YH, Zou Y, Park KS, Hong EJ, Koh YJ, Seong SY. Taurodeoxycholate, a GPCR19 agonist, ameliorates atopic dermatitis in Balb/c mice. Eur J Immunol 2023; 53:e2250048. [PMID: 36815313 DOI: 10.1002/eji.202250048] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 02/02/2023] [Accepted: 02/21/2023] [Indexed: 02/24/2023]
Abstract
Keratinocytes are pivotal cells in the pathogenesis of atopic dermatitis (AD) as much as Th2 cells. In this sense, regulation of pro-inflammatory features of keratinocytes might be useful for AD patients. P2X7R-mediated activation of NLRP3 inflammasome (N3I) in keratinocytes and myeloid cells plays crucial roles in AD. Nonetheless, inhibition of P2X7R has not been feasible because of polymorphisms and ubiquitous expression of P2X7R. Here, we report that GPCR19 colocalizes with P2X7R, and a GPCR19 agonist (taurodeoxycholate [TDCA]) inhibits the activation of P2X7R. Noncistronically, TDCA inhibits NF-kB activation via the adenylate cyclase-PKA pathway and BzATP-mediated Ca++ mobilization. Cistronically, TDCA suppresses the expression of P2X7R and N3I components in keratinocytes. NLRP3 oligomerization and the production of mature IL-1β and IL-18 was suppressed by TDCA treatment in keratinocytes. Topical TDCA treatment ameliorates proinflammatory features of AD in mice induced by DNCB, MC903, or oxazolone. Taken together, a GPCR19 agonist such as TDCA might inhibit P2X7R-mediated N3I activation of keratinocytes, which is crucial for the pathogenesis of AD.
Collapse
Affiliation(s)
- Aziz Ghaderpour
- Wide River Institute of Immunology, Seoul National University College of Medicine, Hongchon, South Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
- Shaperon Inc., Seoul, South Korea
| | | | - Youn-Hee Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
| | - Yunyun Zou
- Wide River Institute of Immunology, Seoul National University College of Medicine, Hongchon, South Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
- Shaperon Inc., Seoul, South Korea
| | - Kyung-Sun Park
- Wide River Institute of Immunology, Seoul National University College of Medicine, Hongchon, South Korea
| | | | | | - Seung-Yong Seong
- Wide River Institute of Immunology, Seoul National University College of Medicine, Hongchon, South Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
- Shaperon Inc., Seoul, South Korea
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
29
|
Mousset A, Lecorgne E, Bourget I, Lopez P, Jenovai K, Cherfils-Vicini J, Dominici C, Rios G, Girard-Riboulleau C, Liu B, Spector DL, Ehmsen S, Renault S, Hego C, Mechta-Grigoriou F, Bidard FC, Terp MG, Egeblad M, Gaggioli C, Albrengues J. Neutrophil extracellular traps formed during chemotherapy confer treatment resistance via TGF-β activation. Cancer Cell 2023; 41:757-775.e10. [PMID: 37037615 PMCID: PMC10228050 DOI: 10.1016/j.ccell.2023.03.008] [Citation(s) in RCA: 105] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 12/13/2022] [Accepted: 03/07/2023] [Indexed: 04/12/2023]
Abstract
Metastasis is the major cause of cancer death, and the development of therapy resistance is common. The tumor microenvironment can confer chemotherapy resistance (chemoresistance), but little is known about how specific host cells influence therapy outcome. We show that chemotherapy induces neutrophil recruitment and neutrophil extracellular trap (NET) formation, which reduces therapy response in mouse models of breast cancer lung metastasis. We reveal that chemotherapy-treated cancer cells secrete IL-1β, which in turn triggers NET formation. Two NET-associated proteins are required to induce chemoresistance: integrin-αvβ1, which traps latent TGF-β, and matrix metalloproteinase 9, which cleaves and activates the trapped latent TGF-β. TGF-β activation causes cancer cells to undergo epithelial-to-mesenchymal transition and correlates with chemoresistance. Our work demonstrates that NETs regulate the activities of neighboring cells by trapping and activating cytokines and suggests that chemoresistance in the metastatic setting can be reduced or prevented by targeting the IL-1β-NET-TGF-β axis.
Collapse
Affiliation(s)
- Alexandra Mousset
- University Côte d'Azur, CNRS UMR7284, INSERM U1081, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice, France
| | - Enora Lecorgne
- University Côte d'Azur, CNRS UMR7284, INSERM U1081, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice, France; University Côte d'Azur, CNRS UMR7284, INSERM U1081, Institute for Research on Cancer and Aging, Nice (IRCAN), 3D-Hub-S Facility, Nice, France
| | - Isabelle Bourget
- University Côte d'Azur, CNRS UMR7284, INSERM U1081, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice, France; University Côte d'Azur, CNRS UMR7284, INSERM U1081, Institute for Research on Cancer and Aging, Nice (IRCAN), 3D-Hub-S Facility, Nice, France
| | - Pascal Lopez
- University Côte d'Azur, CNRS UMR7284, INSERM U1081, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice, France
| | - Kitti Jenovai
- University Côte d'Azur, CNRS UMR7284, INSERM U1081, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice, France
| | - Julien Cherfils-Vicini
- University Côte d'Azur, CNRS UMR7284, INSERM U1081, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice, France
| | - Chloé Dominici
- University Côte d'Azur, CNRS UMR7284, INSERM U1081, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice, France
| | - Géraldine Rios
- University Côte d'Azur, CNRS UMR7275, Institute of Molecular and Cellular Pharmacology (IPMC), Sophia Antipolis, France
| | - Cédric Girard-Riboulleau
- University Côte d'Azur, CNRS UMR7275, Institute of Molecular and Cellular Pharmacology (IPMC), Sophia Antipolis, France
| | - Bodu Liu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - David L Spector
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Sidse Ehmsen
- Department of Oncology, Odense University Hospital, Odense, Denmark; Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Shufang Renault
- Circulating Tumor Biomarkers Laboratory, INSERM CIC-BT 1428, Department of Translational Research, Institut Curie, Paris, France
| | - Caroline Hego
- Circulating Tumor Biomarkers Laboratory, INSERM CIC-BT 1428, Department of Translational Research, Institut Curie, Paris, France
| | - Fatima Mechta-Grigoriou
- Stress and Cancer Laboratory, Institut Curie, INSERM, U830, PSL Research University, Ligue Nationale Contre le Cancer labeled Team, 26, Rue d'Ulm, 75005, Paris, France
| | - François-Clément Bidard
- Circulating Tumor Biomarkers Laboratory, INSERM CIC-BT 1428, Department of Translational Research, Institut Curie, Paris, France; Department of Medical Oncology, Institut Curie, Saint Cloud, Paris, France; University of Versailles Saint-Quentin-en-Yvelines (UVSQ), Paris-Saclay University, Saint Cloud, France
| | - Mikkel Green Terp
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Mikala Egeblad
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Cédric Gaggioli
- University Côte d'Azur, CNRS UMR7284, INSERM U1081, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice, France; University Côte d'Azur, CNRS UMR7284, INSERM U1081, Institute for Research on Cancer and Aging, Nice (IRCAN), 3D-Hub-S Facility, Nice, France.
| | - Jean Albrengues
- University Côte d'Azur, CNRS UMR7284, INSERM U1081, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice, France.
| |
Collapse
|
30
|
Devi S, Indramohan M, Jäger E, Carriere J, Chu LH, de Almeida L, Greaves DR, Stehlik C, Dorfleutner A. CARD-only proteins regulate in vivo inflammasome responses and ameliorate gout. Cell Rep 2023; 42:112265. [PMID: 36930645 PMCID: PMC10151391 DOI: 10.1016/j.celrep.2023.112265] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 01/10/2023] [Accepted: 02/28/2023] [Indexed: 03/18/2023] Open
Abstract
Inflammatory responses are crucial for controlling infections and initiating tissue repair. However, excessive and uncontrolled inflammation causes inflammatory disease. Processing and release of the pro-inflammatory cytokines interleukin-1β (IL-1β) and IL-18 depend on caspase-1 activation within inflammasomes. Assembly of inflammasomes is initiated upon activation of cytosolic pattern recognition receptors (PRRs), followed by sequential polymerization of pyrin domain (PYD)-containing and caspase recruitment domain (CARD)-containing proteins mediated by homotypic PYD and CARD interactions. Small PYD- or CARD-only proteins (POPs and COPs, respectively) evolved in higher primates to target these crucial interactions to limit inflammation. Here, we show the ability of COPs to regulate inflammasome activation by modulating homotypic CARD-CARD interactions in vitro and in vivo. CARD16, CARD17, and CARD18 displace crucial CARD interactions between caspase-1 proteins through competitive binding and ameliorate uric acid crystal-mediated NLRP3 inflammasome activation and inflammatory disease. COPs therefore represent an important family of inflammasome regulators and ameliorate inflammatory disease.
Collapse
Affiliation(s)
- Savita Devi
- Department of Academic Pathology, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Mohanalaxmi Indramohan
- Department of Academic Pathology, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Elisabeth Jäger
- Department of Academic Pathology, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jessica Carriere
- Department of Academic Pathology, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Lan H Chu
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Driskill Graduate Program in Life Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Lucia de Almeida
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - David R Greaves
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Christian Stehlik
- Department of Academic Pathology, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA; Department of Biomedical Sciences, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA; Samuel Oschin Comprehensive Cancer Institute, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA; The Kao Autoimmunity Institute, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA.
| | - Andrea Dorfleutner
- Department of Academic Pathology, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA; Department of Biomedical Sciences, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA; The Kao Autoimmunity Institute, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA.
| |
Collapse
|
31
|
Dobrev D, Heijman J, Hiram R, Li N, Nattel S. Inflammatory signalling in atrial cardiomyocytes: a novel unifying principle in atrial fibrillation pathophysiology. Nat Rev Cardiol 2023; 20:145-167. [PMID: 36109633 PMCID: PMC9477170 DOI: 10.1038/s41569-022-00759-w] [Citation(s) in RCA: 122] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/26/2022] [Indexed: 02/08/2023]
Abstract
Inflammation has been implicated in atrial fibrillation (AF), a very common and clinically significant cardiac rhythm disturbance, but its precise role remains poorly understood. Work performed over the past 5 years suggests that atrial cardiomyocytes have inflammatory signalling machinery - in particular, components of the NLRP3 (NACHT-, LRR- and pyrin domain-containing 3) inflammasome - that is activated in animal models and patients with AF. Furthermore, work in animal models suggests that NLRP3 inflammasome activation in atrial cardiomyocytes might be a sufficient and necessary condition for AF occurrence. In this Review, we evaluate the evidence for the role and pathophysiological significance of cardiomyocyte NLRP3 signalling in AF. We first summarize the evidence for a role of inflammation in AF and review the biochemical properties of the NLRP3 inflammasome, as defined primarily in studies of classic inflammation. We then briefly consider the broader evidence for a role of inflammatory signalling in heart disease, particularly conditions that predispose individuals to develop AF. We provide a detailed discussion of the available information about atrial cardiomyocyte NLRP3 inflammasome signalling in AF and related conditions and evaluate the possibility that similar signalling might be important in non-myocyte cardiac cells. We then review the evidence on the role of active resolution of inflammation and its potential importance in suppressing AF-related inflammatory signalling. Finally, we consider the therapeutic potential and broader implications of this new knowledge and highlight crucial questions to be addressed in future research.
Collapse
Affiliation(s)
- Dobromir Dobrev
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Duisburg, Germany
- Department of Medicine and Research Center, Montreal Heart Institute and Université de Montréal, Montréal, Canada
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Jordi Heijman
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Faculty of Health, Medicine, and Life Sciences, Maastricht University, Maastricht, Netherlands
| | - Roddy Hiram
- Department of Medicine and Research Center, Montreal Heart Institute and Université de Montréal, Montréal, Canada
| | - Na Li
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Section of Cardiovascular Research, Baylor College of Medicine, Houston, TX, USA
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Stanley Nattel
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Duisburg, Germany.
- Department of Medicine and Research Center, Montreal Heart Institute and Université de Montréal, Montréal, Canada.
- IHU LIRYC and Fondation Bordeaux Université, Bordeaux, France.
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
32
|
Wikan N, Tocharus J, Oka C, Sivasinprasasn S, Chaichompoo W, Suksamrarn A, Tocharus C. The capsaicinoid nonivamide suppresses the inflammatory response and attenuates the progression of steatosis in a NAFLD-rat model. J Biochem Mol Toxicol 2023; 37:e23279. [PMID: 36541345 DOI: 10.1002/jbt.23279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 04/28/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is relatively associated with comorbidities in obesity and metabolic inflammation. Low-grade inflammation following the high-fat diet (HFD)-induced NAFLD can promote the development of nonalcoholic steatohepatitis (NASH) through particularly liver-resident immune cell recruitment and hepatic nuclear factor kappa B (NF-κB) pathway. Therefore, inflammatory intervention may contribute to NASH reduction. Pelargonic acid vanillylamide (PAVA) or nonivamide is one of the pungent capsaicinoids of Capsicum species and has been found in chili peppers. Our previous study demonstrated that PAVA improved hepatic function, decreased oxidative stress and reduced apoptotic cell death but the insight role of PAVA on NAFLD is still unclear. Thus, this study aimed to investigate the underlying anti-inflammatory mechanism of PAVA in an NAFLD-rat model. Male Sprague Dawley rats were fed with normal diet or HFD for 16 weeks. Then high-fat rats were given vehicle or PAVA (1 mg/kg/day) for another 4 weeks. We found that PAVA alleviated hepatic inflammation associated with the reducing toll-like receptor 4/NF-κB pathway, showing significantly lower recruitment of cluster of differentiation 44. PAVA also maintained activity of insulin signaling pathway, and attenuated NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome formation. NAFLD progresses to NASH through transforming growth factor (TGF-β1), and also recovery to simple stage followed by PAVA suppresses pro-inflammatory cytokines such as tumor necrosis factor-α, interleukin-1β, interleukin-6, and Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) pathway. Therefore, our findings suggest that PAVA provides a novel therapeutic approach for NAFLD and slows the progression to NASH.
Collapse
Affiliation(s)
- Naruemon Wikan
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Jiraporn Tocharus
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Chio Oka
- Functional Genomics and Medicine, Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | | | - Waraluck Chaichompoo
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, Thailand
| | - Apichart Suksamrarn
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, Thailand
| | - Chainarong Tocharus
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center for Research and Development of Natural Products for Health, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
33
|
Jang AR, Lee HN, Hong JJ, Kim YM, Park JH. Ethanol extract of Chrysanthemum zawadskii inhibits the NLRP3 inflammasome by suppressing ASC oligomerization in macrophages. Exp Ther Med 2023; 25:128. [PMID: 36845948 PMCID: PMC9947581 DOI: 10.3892/etm.2023.11827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 01/10/2023] [Indexed: 02/10/2023] Open
Abstract
Chrysanthemum zawadskii (C. zawadskii) is used in traditional East Asian medicine for the treatment of various diseases, including inflammatory disease. However, it has remained unclear whether extracts of C. zawadskii inhibit inflammasome activation in macrophages. The present study assessed the inhibitory effect of an ethanol extract of C. zawadskii (CZE) on the activation of the inflammasome in macrophages and the underlying mechanism. Bone marrow-derived macrophages were obtained from wild-type C57BL/6 mice. The release of IL-1β and lactate dehydrogenase in response to nucleotide-binding oligomerization domain-like receptor (NLR) family pyrin domain containing 3 (NLRP3) inflammasome activators, such as ATP, nigericin and monosodium urate (MSU) crystals, was significantly decreased by CZE in lipopolysaccharide (LPS)-primed BMDMs. Western blotting revealed that CZE inhibited ATP-induced caspase-1 cleavage and IL-1β maturation. To investigate whether CZE inhibits the priming step of the NLRP3 inflammasome, we confirmed the role of CZE at the gene level using RT-qPCR. CZE also downregulated the gene expression of NLRP3 and pro-IL-1β as well as NF-κB activation in BMDMs in response to LPS. Apoptosis-associated speck-like protein containing a caspase-recruitment domain (CARD) oligomerization and speck formation by NLRP3 inflammasome activators were suppressed by CZE. By contrast, CZE did not affect NLR family CARD domain-containing protein 4 or absent in melanoma 2 inflammasome activation in response to Salmonella typhimurium and poly(dA:dT) in LPS-primed BMDMs, respectively. The results revealed that three key components of CZE, namely linarin, 3,5-dicaffeoylquinic acid and chlorogenic acid, decreased IL-1β secretion in response to ATP, nigericin and MSU. These findings suggest that CZE effectively inhibited activation of the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Ah-Ra Jang
- Laboratory of Animal Medicine, College of Veterinary Medicine and Animal Medical Institute, Chonnam National University, Gwangju 61186, Republic of Korea,NodCure, Inc., Gwangju 61186, Republic of Korea
| | - Ha-Nul Lee
- Department of Food Science & Technology and Brain Korea 21 Plus Program, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jung Joo Hong
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungcheongbuk 28116, Republic of Korea
| | - Young-Min Kim
- Department of Food Science & Technology and Brain Korea 21 Plus Program, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jong-Hwan Park
- Laboratory of Animal Medicine, College of Veterinary Medicine and Animal Medical Institute, Chonnam National University, Gwangju 61186, Republic of Korea,NodCure, Inc., Gwangju 61186, Republic of Korea,Correspondence to: Professor Jong-Hwan Park, Laboratory Animal Medicine, College of Veterinary Medicine and Animal Medical Institute, Chonnam National University, 77 Yongbong-ro, Buk, Gwangju, Gyeonggi 61186, Republic of Korea
| |
Collapse
|
34
|
Paidimuddala B, Cao J, Nash G, Xie Q, Wu H, Zhang L. Mechanism of NAIP-NLRC4 inflammasome activation revealed by cryo-EM structure of unliganded NAIP5. Nat Struct Mol Biol 2023; 30:159-166. [PMID: 36604500 PMCID: PMC10576962 DOI: 10.1038/s41594-022-00889-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 11/03/2022] [Indexed: 01/07/2023]
Abstract
The nucleotide-binding domain (NBD), leucine rich repeat (LRR) domain containing protein family (NLR family) apoptosis inhibitory proteins (NAIPs) are cytosolic receptors that play critical roles in the host defense against bacterial infection. NAIPs interact with conserved bacterial ligands and activate the NLR family caspase recruitment domain containing protein 4 (NLRC4) to initiate the NAIP-NLRC4 inflammasome pathway. Here we found the process of NAIP activation is completely different from NLRC4. Our cryo-EM structure of unliganded mouse NAIP5 adopts an unprecedented wide-open conformation, with the nucleating surface fully exposed and accessible to recruit inactive NLRC4. Upon ligand binding, the winged helix domain (WHD) of NAIP5 undergoes roughly 20° rotation to form a steric clash with the inactive NLRC4, which triggers the conformational change of NLRC4 from inactive to active state. We also show the rotation of WHD places the 17-18 loop at a position that directly bind the active NLRC4 and stabilize the NAIP5-NLRC4 complex. Overall, these data provide structural mechanisms of inactive NAIP5, the process of NAIP5 activation and NAIP-dependent NLRC4 activation.
Collapse
Affiliation(s)
- Bhaskar Paidimuddala
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University (OHSU), Portland, OR, USA
| | - Jianhao Cao
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University (OHSU), Portland, OR, USA
| | - Grady Nash
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University (OHSU), Portland, OR, USA
| | - Qing Xie
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University (OHSU), Portland, OR, USA
| | - Hao Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Liman Zhang
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University (OHSU), Portland, OR, USA.
| |
Collapse
|
35
|
Nagar A, Harton JA. Flow Imaging of the Inflammasome: Evaluating ASC Speck Characteristics and Caspase-1 Activity. Methods Mol Biol 2023; 2635:185-202. [PMID: 37074664 DOI: 10.1007/978-1-0716-3020-4_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
Examining inflammasome-associated speck structures is one of the most preferred and easiest ways to evaluate inflammasome activation. Microscopy-based evaluation of specks is preferable, but this approach is time-consuming and limited to small sample sizes. Speck-containing cells can also be quantitated by a flow cytometric method, time of flight inflammasome evaluation (TOFIE). However, TOFIE cannot perform single-cell analysis such as simultaneously visualizing ASC specks and caspase-1 activity, their location, and physical characteristics. Here we describe the application of an imaging flow cytometry-based approach that overcomes these limitations. Inflammasome and Caspase-1 Activity Characterization and Evaluation (ICCE) is a high-throughput, single-cell, rapid image analysis utilizing the Amnis ImageStream X instrument with over 99.5% accuracy. ICCE quantitatively and qualitatively characterizes the frequency, area, and cellular distribution of ASC specks and caspase-1 activity in mouse and human cells.
Collapse
Affiliation(s)
- Abhinit Nagar
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, School of Medicine, University of Massachusetts, Worcester, MA, USA
| | - Jonathan A Harton
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, USA.
| |
Collapse
|
36
|
Li Y, Jiang Q. Uncoupled pyroptosis and IL-1β secretion downstream of inflammasome signaling. Front Immunol 2023; 14:1128358. [PMID: 37090724 PMCID: PMC10117957 DOI: 10.3389/fimmu.2023.1128358] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/24/2023] [Indexed: 04/25/2023] Open
Abstract
Inflammasomes are supramolecular platforms that organize in response to various damage-associated molecular patterns and pathogen-associated molecular patterns. Upon activation, inflammasome sensors (with or without the help of ASC) activate caspase-1 and other inflammatory caspases that cleave gasdermin D and pro-IL-1β/pro-IL-18, leading to pyroptosis and mature cytokine secretion. Pyroptosis enables intracellular pathogen niche disruption and intracellular content release at the cost of cell death, inducing pro-inflammatory responses in the neighboring cells. IL-1β is a potent pro-inflammatory regulator for neutrophil recruitment, macrophage activation, and T-cell expansion. Thus, pyroptosis and cytokine secretion are the two main mechanisms that occur downstream of inflammasome signaling; they maintain homeostasis, drive the innate immune response, and shape adaptive immunity. This review aims to discuss the possible mechanisms, timing, consequences, and significance of the two uncoupling preferences downstream of inflammasome signaling. While pyroptosis and cytokine secretion may be usually coupled, pyroptosis-predominant and cytokine-predominant uncoupling are also observed in a stimulus-, cell type-, or context-dependent manner, contributing to the pathogenesis and development of numerous pathological conditions such as cryopyrin-associated periodic syndromes, LPS-induced sepsis, and Salmonella enterica serovar Typhimurium infection. Hyperactive cells consistently release IL-1β without LDH leakage and pyroptotic death, thereby leading to prolonged inflammation, expanding the lifespans of pyroptosis-resistant neutrophils, and hyperactivating stimuli-challenged macrophages, dendritic cells, monocytes, and specific nonimmune cells. Death inflammasome activation also induces GSDMD-mediated pyroptosis with no IL-1β secretion, which may increase lethality in vivo. The sublytic GSDMD pore formation associated with lower expressions of pyroptotic components, GSDMD-mediated extracellular vesicles, or other GSDMD-independent pathways that involve unconventional secretion could contribute to the cytokine-predominant uncoupling; the regulation of caspase-1 dynamics, which may generate various active species with different activities in terms of GSDMD or pro-IL-1β, could lead to pyroptosis-predominant uncoupling. These uncoupling preferences enable precise reactions to different stimuli of different intensities under specific conditions at the single-cell level, promoting cooperative cell and host fate decisions and participating in the pathogen "game". Appropriate decisions in terms of coupling and uncoupling are required to heal tissues and eliminate threats, and further studies exploring the inflammasome tilt toward pyroptosis or cytokine secretion may be helpful.
Collapse
|
37
|
Jang JH, Yang G, Seok JK, Kang HC, Cho YY, Lee HS, Lee JY. Loganin Prevents Hepatic Steatosis by Blocking NLRP3 Inflammasome Activation. Biomol Ther (Seoul) 2023; 31:40-47. [PMID: 36111592 PMCID: PMC9810450 DOI: 10.4062/biomolther.2022.077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 01/13/2023] Open
Abstract
Activation of the NLRP3 inflammasome is a necessary process to induce fibrosis in nonalcoholic fatty liver disease (NAFLD). Nonalcoholic steatohepatitis (NASH) is a kind of NAFLD that encompasses the spectrum of liver disease. It is characterized by inflammation and ballooning of hepatocytes during steatosis. We tested whether inhibiting the NLRP3 inflammasome could prevent the development and pathology of NASH. We identified loganin as an inhibitor of the NLRP3 inflammasome and investigated whether in vivo administration of loganin prevented NASH symptoms using a methionine-choline deficient (MCD) diet model in mice. We found that loganin inhibited the NLRP3 inflammasome activation triggered by ATP or nigericin, as shown by suppression of the production of interleukin (IL)-1β and caspase-1 (p10) in mouse primary macrophages. The speck formation of apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) was blocked by loganin, showing that the assembly of the NLRP3 inflammasome complex was impaired by loganin. Administration of loganin reduced the clinical signs of NASH in mice fed the MCD diet, including hepatic inflammation, fat accumulation, and fibrosis. In addition, loganin reduced the expression of NLRP3 inflammasome components in the liver. Our findings indicate that loganin alleviates the inflammatory symptoms associated with NASH, presumably by inhibiting NLRP3 inflammasome activation. In summary, these findings imply that loganin may be a novel nutritional and therapeutic treatment for NASH-related inflammation.
Collapse
Affiliation(s)
- Joo Hyeon Jang
- College of Pharmacy, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Gabsik Yang
- Department of Pharmacology, College of Korean Medicine, Woosuk University, Jeonju 54986, Republic of Korea
| | - Jin Kyung Seok
- College of Pharmacy, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Han Chang Kang
- College of Pharmacy, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Yong-Yeon Cho
- College of Pharmacy, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Hye Suk Lee
- College of Pharmacy, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Joo Young Lee
- College of Pharmacy, The Catholic University of Korea, Bucheon 14662, Republic of Korea,Corresponding Author E-mail: , Tel: +82-2-2164-4095, Fax: +82-2-2164-4059
| |
Collapse
|
38
|
Chen C, Zhou Y, Ning X, Li S, Xue D, Wei C, Zhu Z, Sheng L, Lu B, Li Y, Ye X, Fu Y, Bai C, Cai W, Ding Y, Lin S, Yan G, Huang Y, Yin W. Directly targeting ASC by lonidamine alleviates inflammasome-driven diseases. J Neuroinflammation 2022; 19:315. [PMID: 36577999 PMCID: PMC9798610 DOI: 10.1186/s12974-022-02682-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Dysregulated activation of the inflammasome is involved in various human diseases including acute cerebral ischemia, multiple sclerosis and sepsis. Though many inflammasome inhibitors targeting NOD-like receptor protein 3 (NLRP3) have been designed and developed, none of the inhibitors are clinically available. Growing evidence suggests that targeting apoptosis-associated speck-like protein containing a CARD (ASC), the oligomerization of which is the key event for the assembly of inflammasome, may be another promising therapeutic strategy. Lonidamine (LND), a small-molecule inhibitor of glycolysis used as an antineoplastic drug, has been evidenced to have anti-inflammation effects. However, its anti-inflammatory mechanism is still largely unknown. METHODS Middle cerebral artery occlusion (MCAO), experimental autoimmune encephalomyelitis (EAE) and LPS-induced sepsis mice models were constructed to investigate the therapeutic and anti-inflammasome effects of LND. The inhibition of inflammasome activation and ASC oligomerization by LND was evaluated using western blot (WB), immunofluorescence (IF), quantitative polymerase chain reaction (qPCR) and enzyme-linked immunosorbent assay (ELISA) in murine bone marrow-derived macrophages (BMDMs). Direct binding of LND with ASC was assessed using molecular mock docking, surface plasmon resonance (SPR), and drug affinity responsive target stability (DARTS). RESULTS Here, we find that LND strongly attenuates the inflammatory injury in experimental models of inflammasome-associated diseases including autoimmune disease-multiple sclerosis (MS), ischemic stroke and sepsis. Moreover, LND blocks diverse types of inflammasome activation independent of its known targets including hexokinase 2 (HK2). We further reveal that LND directly binds to the inflammasome ligand ASC and inhibits its oligomerization. CONCLUSIONS Taken together, our results identify LND as a broad-spectrum inflammasome inhibitor by directly targeting ASC, providing a novel candidate drug for the treatment of inflammasome-driven diseases in clinic.
Collapse
Affiliation(s)
- Chen Chen
- grid.12981.330000 0001 2360 039XDepartment of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
| | - YuWei Zhou
- grid.12981.330000 0001 2360 039XDepartment of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
| | - XinPeng Ning
- grid.12981.330000 0001 2360 039XDepartment of Molecular Biology and Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
| | - ShengLong Li
- grid.12981.330000 0001 2360 039XDepartment of Molecular Biology and Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
| | - DongDong Xue
- grid.12981.330000 0001 2360 039XDepartment of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
| | - CaiLv Wei
- grid.12981.330000 0001 2360 039XDepartment of Molecular Biology and Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
| | - Zhu Zhu
- grid.12981.330000 0001 2360 039XDepartment of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
| | - LongXiang Sheng
- grid.12981.330000 0001 2360 039XDepartment of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
| | - BingZheng Lu
- grid.12981.330000 0001 2360 039XDepartment of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
| | - Yuan Li
- grid.12981.330000 0001 2360 039XDepartment of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
| | - XiaoYuan Ye
- grid.12981.330000 0001 2360 039XState Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060 China
| | - YunZhao Fu
- grid.12981.330000 0001 2360 039XState Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060 China
| | - Chuan Bai
- grid.12981.330000 0001 2360 039XInstitute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
| | - Wei Cai
- grid.12981.330000 0001 2360 039XDepartment of Molecular Biology and Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
| | - YuXuan Ding
- grid.12981.330000 0001 2360 039XDepartment of Molecular Biology and Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
| | - SuiZhen Lin
- Guangzhou Cellprotek Pharmaceutical Co., Ltd., Guangzhou, 510663 China
| | - GuangMei Yan
- grid.12981.330000 0001 2360 039XDepartment of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
| | - YiJun Huang
- grid.12981.330000 0001 2360 039XDepartment of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
| | - Wei Yin
- grid.12981.330000 0001 2360 039XDepartment of Molecular Biology and Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
| |
Collapse
|
39
|
Mourmoura E, Papathanasiou I, Trachana V, Konteles V, Tsoumpou A, Goutas A, Papageorgiou AA, Stefanou N, Tsezou A. Leptin-depended NLRP3 inflammasome activation in osteoarthritic chondrocytes is mediated by ROS. Mech Ageing Dev 2022; 208:111730. [PMID: 36087742 DOI: 10.1016/j.mad.2022.111730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 12/30/2022]
Abstract
Leptin and ROS are implicated in the regulation of inflammatory pathways including NLRP3-inflammasome. We investigated the functional link between leptin, ROS and NLRP3-inflammasome formation/activation in osteoarthritis (OA), an age-related disease. We found that inflammasome components' (NLRP3, ASC, Caspase-1 and cleaved Caspase-1) protein expression were increased in OA cartilage biopsies and chondrocytes compared to healthy cartilage and chondrocytes. Immunofluorescence showed increased co-localization of NLRP3/ASC and NLRP3/Caspase-1, ASC-specks formation and ROS levels in OA compared to normal chondrocytes. NOX4 mRNA expression and IL-1β/IL-18 secretion levels were also elevated in OA chondrocytes. Furthermore, NLRP3-siRNA in OA chondrocytes revealed significant MMP-9/MMP-13 downregulation. To elucidate leptin/ROS/NLRP3-inflammasome interactions, OA chondrocytes were treated with ROS-inhibitor NAC, NOXs-inhibitor DPI, NOX4-inhibitor GLX351322 and leptin-siRNA, while normal chondrocytes were incubated with leptin with or without DPI or GLX351322. We observed attenuated ROS levels and NLRP3-inflammasome formation/activation in NAC-, DPI- or GLX351322-treated OA chondrocytes, while the same effect was shown after transfection with leptin-siRNA. Furthermore, incubation of normal chondrocytes with leptin enhanced ROS production and inflammasome formation/activation, while pretreatment with DPI or GLX351322 abolished leptin's stimulatory effects confirming leptin-NOX4-ROS-inflammasome regulatory axis. Overall, our findings provide novel evidence indicating that leptin-induced NLRP3-inflammasome formation/activation in OA chondrocytes is mediated by NOX4-dependent ROS production.
Collapse
Affiliation(s)
- Evanthia Mourmoura
- Laboratory of Cytogenetics and Molecular Genetics, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - Ioanna Papathanasiou
- Department of Biology, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - Varvara Trachana
- Department of Biology, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - Vasilis Konteles
- Laboratory of Cytogenetics and Molecular Genetics, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - Alexandra Tsoumpou
- Laboratory of Cytogenetics and Molecular Genetics, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - Andreas Goutas
- Department of Biology, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | | | - Nikolaos Stefanou
- Department of Orthopaedics, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - Aspasia Tsezou
- Laboratory of Cytogenetics and Molecular Genetics, Faculty of Medicine, University of Thessaly, Larissa, Greece.
| |
Collapse
|
40
|
Guo L, Wang Z, Zhu C, Li J, Cui L, Dong J, Meng X, Zhu G, Li J, Wang H. MCC950 inhibits the inflammatory response and excessive proliferation of canine corneal stromal cells induced by Staphylococcus pseudintermedius. Mol Immunol 2022; 152:162-171. [DOI: 10.1016/j.molimm.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/18/2022] [Accepted: 11/02/2022] [Indexed: 11/11/2022]
|
41
|
Liu W, Yang J, Fang S, Jiao C, Gao J, Zhang A, Wu T, Tan R, Xu Q, Guo W. Spirodalesol analog 8A inhibits NLRP3 inflammasome activation and attenuates inflammatory disease by directly targeting adaptor protein ASC. J Biol Chem 2022; 298:102696. [PMID: 36379253 PMCID: PMC9730227 DOI: 10.1016/j.jbc.2022.102696] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/01/2022] [Accepted: 11/07/2022] [Indexed: 11/15/2022] Open
Abstract
Pharmacological inhibition of the Nod-like receptor family protein 3 (NLRP3) inflammasome contributes to the treatment of numerous inflammation-related diseases, making it a desirable drug target. Spirodalesol, derived from the ascomycete fungus Daldinia eschscholzii, has been reported to inhibit NLRP3 inflammasome activation. Based on the structure of spirodalesol, we synthesized and screened a series of analogs to find a more potent inhibitor. Analog compound 8A was identified as the most potent selective inhibitor for NLRP3 inflammasome assembly, but 8A did not inhibit the priming phase of the inflammasome. Specifically, while 8A did not reduce NLRP3 oligomerization, we found that it inhibited the oligomerization of adaptor protein apoptosis-associated speck-like protein containing a caspase activation and recruitment domain (ASC), as ASC speck formation was significantly reduced. Also, 8A interrupted the assembly of the NLRP3 inflammasome complex and inhibited the activation of caspase-1. Subsequently, we used a cellular thermal shift assay and microscale thermophoresis assay to demonstrate that 8A interacts directly with ASC, both in vitro and ex vivo. Further, 8A alleviated lipopolysaccharide-induced endotoxemia, as well as monosodium urate-induced peritonitis and gouty arthritis in mice by suppressing NLRP3 inflammasome activation. Thus, 8A was identified as a promising ASC inhibitor to treat inflammasome-driven diseases.
Collapse
Affiliation(s)
- Wen Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China,Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, China
| | - Jiashu Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Shihao Fang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China,Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing, China
| | - Chenyang Jiao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Jianhua Gao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Aihua Zhang
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing, China,For correspondence: Wenjie Guo; Aihua Zhang; Tiancong Wu
| | - Tiancong Wu
- Department of Radiation Oncology, Jinling Hospital, Nanjing University, School Medicine, Nanjing, China,For correspondence: Wenjie Guo; Aihua Zhang; Tiancong Wu
| | - Renxiang Tan
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Wenjie Guo
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China,For correspondence: Wenjie Guo; Aihua Zhang; Tiancong Wu
| |
Collapse
|
42
|
Yoon C, Ham YS, Gil WJ, Yang CS. The strategies of NLRP3 inflammasome to combat Toxoplasma gondii. Front Immunol 2022; 13:1002387. [PMID: 36341349 PMCID: PMC9626524 DOI: 10.3389/fimmu.2022.1002387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/05/2022] [Indexed: 07/30/2023] Open
Abstract
Infection with the protozoan parasite Toxoplasma gondii (T. gondii) results in the activation of nucleotide-binding domain leucine-rich repeat containing receptors (NLRs), which in turn leads to inflammasome assembly and the subsequent activation of caspase-1, secretion of proinflammatory cytokines, and pyroptotic cell death. Several recent studies have addressed the role of the NLRP3 inflammasome in T. gondii infection without reaching a consensus on its roles. Moreover, the mechanisms of NLRP3 inflammasome activation in different cell types remain unknown. Here we review current research on the activation and specific role of the NLRP3 inflammasome in T. gondii infection.
Collapse
Affiliation(s)
- Chanjin Yoon
- Department of Molecular and Life Science, Hanyang University, Ansan, South Korea
| | - Yu Seong Ham
- Department of Molecular and Life Science, Hanyang University, Ansan, South Korea
| | - Woo Jin Gil
- Department of Molecular and Life Science, Hanyang University, Ansan, South Korea
| | - Chul-Su Yang
- Department of Molecular and Life Science, Hanyang University, Ansan, South Korea
- Center for Bionano Intelligence Education and Research, Ansan, South Korea
| |
Collapse
|
43
|
Ferrara F, Cordone V, Pecorelli A, Benedusi M, Pambianchi E, Guiotto A, Vallese A, Cervellati F, Valacchi G. Ubiquitination as a key regulatory mechanism for O 3-induced cutaneous redox inflammasome activation. Redox Biol 2022; 56:102440. [PMID: 36027676 PMCID: PMC9425076 DOI: 10.1016/j.redox.2022.102440] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 10/26/2022] Open
Abstract
NLRP1 is one of the major inflammasomes modulating the cutaneous inflammatory responses and therefore linked to a variety of cutaneous conditions. Although NLRP1 has been the first inflammasome to be discovered, only in the past years a significant progress was achieved in understanding the molecular mechanism and the stimuli behind its activation. In the past decades a crescent number of studies have highlighted the role of air pollutants as Particulate Matter (PM), Cigarette Smoke (CS) and Ozone (O3) as trigger stimuli for inflammasomes activation, especially via Reactive Oxygen Species (ROS) mediators. However, whether NLRP1 can be modulated by air pollutants via oxidative stress and the mechanism behind its activation is still poorly understood. Here we report for the first time that O3, one of the most toxic pollutants, activates the NLRP1 inflammasome in human keratinocytes via oxidative stress mediators as hydrogen peroxide (H2O2) and 4-hydroxy-nonenal (4HNE). Our data suggest that NLRP1 represents a target protein for 4HNE adduction that possibly leads to its proteasomal degradation and activation via the possible involvement of E3 ubiquitin ligase UBR2. Of note, Catalase (Cat) treatment prevented inflammasome assemble and inflammatory cytokines release as well as NLRP1 ubiquitination in human keratinocytes upon O3 exposure. The present work is a mechanistic study that follows our previous work where we have showed the ability of O3 to induce cutaneous inflammasome activation in humans exposed to this pollutant. In conclusion, our results suggest that O3 triggers the cutaneous NLRP1 inflammasome activation by ubiquitination and redox mechanism.
Collapse
Affiliation(s)
- Francesca Ferrara
- Dept. of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Valeria Cordone
- Dept. of Environmental Sciences and Prevention, University of Ferrara, Ferrara, Italy
| | - Alessandra Pecorelli
- Plants for Human Health Institute, Animal Sciences Dept., NC Research Campus, NC State University, Kannapolis, NC, USA
| | - Mascia Benedusi
- Dept. of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Erika Pambianchi
- Plants for Human Health Institute, Animal Sciences Dept., NC Research Campus, NC State University, Kannapolis, NC, USA.
| | - Anna Guiotto
- Dept. of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy; Plants for Human Health Institute, Animal Sciences Dept., NC Research Campus, NC State University, Kannapolis, NC, USA
| | - Andrea Vallese
- Dept. of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Franco Cervellati
- Dept. of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Giuseppe Valacchi
- Plants for Human Health Institute, Animal Sciences Dept., NC Research Campus, NC State University, Kannapolis, NC, USA; Dept. of Environmental Sciences and Prevention, University of Ferrara, Ferrara, Italy; Dept. of Food and Nutrition, Kyung Hee University, Seoul, Republic of Korea.
| |
Collapse
|
44
|
de Almeida L, Devi S, Indramohan M, Huang QQ, Ratsimandresy RA, Pope RM, Dorfleutner A, Stehlik C. POP1 inhibits MSU-induced inflammasome activation and ameliorates gout. Front Immunol 2022; 13:912069. [PMID: 36225929 PMCID: PMC9550078 DOI: 10.3389/fimmu.2022.912069] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 09/06/2022] [Indexed: 01/13/2023] Open
Abstract
Canonical inflammasomes are innate immune protein scaffolds that enable the activation of inflammatory caspase-1, and subsequently the processing and release of interleukin (IL)-1β, IL-18, and danger signals, as well as the induction of pyroptotic cell death. Inflammasome assembly and activation occurs in response to sensing of infectious, sterile and self-derived molecular patterns by cytosolic pattern recognition receptors, including the Nod-like receptor NLRP3. While these responses are essential for host defense, excessive and uncontrolled NLRP3 inflammasome responses cause and contribute to a wide spectrum of inflammatory diseases, including gout. A key step in NLRP3 inflammasome assembly is the sequentially nucleated polymerization of Pyrin domain (PYD)- and caspase recruitment domain (CARD)-containing inflammasome components. NLRP3 triggers polymerization of the adaptor protein ASC through PYD-PYD interactions, but ASC polymerization then proceeds in a self-perpetuating manner and represents a point of no return, which culminates in the activation of caspase-1 by induced proximity. In humans, small PYD-only proteins (POPs) lacking an effector domain regulate this key process through competitive binding, but limited information exists on their physiological role during health and disease. Here we demonstrate that POP1 expression in macrophages is sufficient to dampen MSU crystal-mediated inflammatory responses in animal models of gout. Whether MSU crystals are administered into a subcutaneous airpouch or into the ankle joint, the presence of POP1 significantly reduces neutrophil infiltration. Also, airpouch exudates have much reduced IL-1β and ASC, which are typical pro-inflammatory indicators that can also be detected in synovial fluids of gout patients. Exogenous expression of POP1 in mouse and human macrophages also blocks MSU crystal-induced NLRP3 inflammasome assembly, resulting in reduced IL-1β and IL-18 secretion. Conversely, reduced POP1 expression in human macrophages enhances IL-1β secretion. We further determined that the mechanism for the POP1-mediated inhibition of NLRP3 inflammasome activation is through its interference with the crucial NLRP3 and ASC interaction within the inflammasome complex. Strikingly, administration of an engineered cell permeable version of POP1 was able to ameliorate MSU crystal-mediated inflammation in vivo, as measured by neutrophil infiltration. Overall, we demonstrate that POP1 may play a crucial role in regulating inflammatory responses in gout.
Collapse
Affiliation(s)
- Lucia de Almeida
- 1Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Savita Devi
- 2Department of Academic Pathology, Cedars Sinai Medical Center, Los Angeles, CA, United States
| | - Mohanalaxmi Indramohan
- 2Department of Academic Pathology, Cedars Sinai Medical Center, Los Angeles, CA, United States
| | - Qi-Quan Huang
- 1Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Rojo A. Ratsimandresy
- 2Department of Academic Pathology, Cedars Sinai Medical Center, Los Angeles, CA, United States
| | - Richard M. Pope
- 1Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Andrea Dorfleutner
- 2Department of Academic Pathology, Cedars Sinai Medical Center, Los Angeles, CA, United States,3Department of Biomedical Sciences, Cedars Sinai Medical Center, Los Angeles, CA, United States,4The Kao Autoimmunity Institute, Cedars Sinai Medical Center, Los Angeles, CA, United States,*Correspondence: Andrea Dorfleutner, ; Christian Stehlik,
| | - Christian Stehlik
- 2Department of Academic Pathology, Cedars Sinai Medical Center, Los Angeles, CA, United States,3Department of Biomedical Sciences, Cedars Sinai Medical Center, Los Angeles, CA, United States,4The Kao Autoimmunity Institute, Cedars Sinai Medical Center, Los Angeles, CA, United States,5Samuel Oschin Comprehensive Cancer Institute, Cedars Sinai Medical Center, Los Angeles, CA, United States,*Correspondence: Andrea Dorfleutner, ; Christian Stehlik,
| |
Collapse
|
45
|
Day-Walsh PE, Keeble B, Pirabagar G, Fountain SJ, Kroon PA. Transcriptional and Post-Translational Regulation of Junctional Adhesion Molecule-B (JAM-B) in Leukocytes under Inflammatory Stimuli. Int J Mol Sci 2022; 23:ijms23158646. [PMID: 35955781 PMCID: PMC9369439 DOI: 10.3390/ijms23158646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 11/16/2022] Open
Abstract
Junctional adhesion molecules (JAMs; comprising JAM-A, -B and -C) act as receptors for viruses, mediate cell permeability, facilitate leukocyte migration during sterile and non-sterile inflammation and are important for the maintenance of epithelial barrier integrity. As such, they are implicated in the development of both communicable and non-communicable chronic diseases. Here, we investigated the expression and regulation of JAM-B in leukocytes under pathogen- and host-derived inflammatory stimuli using immunoassays, qPCR and pharmacological inhibitors of inflammatory signalling pathways. We show that JAM-B is expressed at both the mRNA and protein level in leukocytes. JAM-B protein is localised to the cytoplasm, Golgi apparatus and in the nucleus around ring-shaped structures. We also provide evidence that JAM-B nuclear localisation occurs via the classical importin-α/β pathway, which is likely mediated through JAM-B protein nuclear localisation signals (NLS) and export signals (NES). In addition, we provide evidence that under both pathogen- and host-derived inflammatory stimuli, JAM-B transcription is regulated via the NF-κB-dependent pathways, whereas at the post-translational level JAM-B is regulated by ubiquitin-proteosome pathways. Anaphase-promoting ubiquitin ligase complex (APC/C) and herpes simplex virus-associated ubiquitin-specific protease (HAUSP/USP) were identified as candidates for JAM-B ubiquitination and de-ubiquitination, respectively. The expression and regulation of JAM-B in leukocytes reported here is a novel observation and contrasts with previous reports. The data reported here suggest that JAM-B expression in leukocytes is under the control of common inflammatory pathways.
Collapse
Affiliation(s)
- Priscilla E. Day-Walsh
- Quadram Institute Bioscience, Food Innovation & Health Programme, Norwich Research Park, Rosalind Franklin Road, Norwich NR4 7UQ, UK; (P.E.D.-W.); (B.K.); (G.P.)
| | - Bryony Keeble
- Quadram Institute Bioscience, Food Innovation & Health Programme, Norwich Research Park, Rosalind Franklin Road, Norwich NR4 7UQ, UK; (P.E.D.-W.); (B.K.); (G.P.)
| | - Gothai Pirabagar
- Quadram Institute Bioscience, Food Innovation & Health Programme, Norwich Research Park, Rosalind Franklin Road, Norwich NR4 7UQ, UK; (P.E.D.-W.); (B.K.); (G.P.)
| | - Samuel J. Fountain
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK;
| | - Paul A. Kroon
- Quadram Institute Bioscience, Food Innovation & Health Programme, Norwich Research Park, Rosalind Franklin Road, Norwich NR4 7UQ, UK; (P.E.D.-W.); (B.K.); (G.P.)
- Correspondence:
| |
Collapse
|
46
|
Espitia-Corredor JA, Boza P, Espinoza-Pérez C, Lillo JM, Rimassa-Taré C, Machuca V, Osorio-Sandoval JM, Vivar R, Bolivar S, Pardo-Jiménez V, Sánchez-Ferrer CF, Peiró C, Díaz-Araya G. Angiotensin II Triggers NLRP3 Inflammasome Activation by a Ca 2+ Signaling-Dependent Pathway in Rat Cardiac Fibroblast Ang-II by a Ca 2+-Dependent Mechanism Triggers NLRP3 Inflammasome in CF. Inflammation 2022; 45:2498-2512. [PMID: 35867264 DOI: 10.1007/s10753-022-01707-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/13/2022] [Accepted: 06/09/2022] [Indexed: 11/05/2022]
Abstract
Angiotensin II (Ang-II) is a widely studied hypertensive, profibrotic, and pro-inflammatory peptide. In the heart, cardiac fibroblasts (CF) express type 1 angiotensin II receptors (AT1R), Toll-like receptor-4 (TLR4), and the NLRP3 inflammasome complex, which play important roles in pro-inflammatory processes. When activated, the NLRP3 inflammasome triggers proteolytic cleavage of pro-IL-1, resulting in its activation. However, in CF the mechanism by which Ang-II assembles and activates the NLRP3 inflammasome remains not fully known. To elucidate this important point, we stimulated TLR4 receptors in CF and evaluated the signaling pathways by which Ang-II triggers the assembly and activity. In cultured rat CF, pro-IL-1β levels, NLRP3, ASC, and caspase-1 expression levels were determined by Western blot. NLRP3 inflammasome complex assembly was analyzed by immunocytochemistry, whereas by ELISA, we analyzed NLRP3 inflammasome activity and [Formula: see text] release. In CF, Ang-II triggered NLRP3 inflammasome assembly and caspase-1 activity; and in LPS-pretreated CF, Ang-II also triggered [Formula: see text] secretion. These effects were blocked by losartan (AT1R antagonist), U73221 (PLC inhibitor), 2-APB (IP3R antagonist), and BAPTA-AM (Ca2+ chelator) indicating that the AT1R/PLC/IP3R/Ca2+ pathway is involved. Finally, bafilomycin A1 prevented Ang-II-induced [Formula: see text] secretion, indicating that a non-classical protein secretion mechanism is involved. These findings suggest that in CF, Ang-II by a Ca2+-dependent mechanism triggers NLRP3 inflammasome assembly and activation leading to [Formula: see text] secretion through a non-conventional protein secretion mechanism.
Collapse
Affiliation(s)
- Jenaro Antonio Espitia-Corredor
- Laboratory of Molecular Pharmacology, Faculty of Chemical and Pharmaceutical Sciences, Department of Pharmacological & Toxicological Chemistry, University of Chile, Santiago, Chile.,Faculty of Medicine, Department of Pharmacology, Universidad Autónoma de Madrid, Madrid, Spain.,PhD Programme in Pharmacology and Physiology, Doctoral School, Universidad Autónoma de Madrid, Madrid, Spain.,Faculty of Chemical and Pharmaceutical Sciences, Advanced Center of Chronic Diseases (ACCDiS), University of Chile, Santiago, Chile
| | - Pía Boza
- Laboratory of Molecular Pharmacology, Faculty of Chemical and Pharmaceutical Sciences, Department of Pharmacological & Toxicological Chemistry, University of Chile, Santiago, Chile
| | - Claudio Espinoza-Pérez
- Laboratory of Molecular Pharmacology, Faculty of Chemical and Pharmaceutical Sciences, Department of Pharmacological & Toxicological Chemistry, University of Chile, Santiago, Chile
| | - José Miguel Lillo
- Laboratory of Molecular Pharmacology, Faculty of Chemical and Pharmaceutical Sciences, Department of Pharmacological & Toxicological Chemistry, University of Chile, Santiago, Chile
| | - Constanza Rimassa-Taré
- Laboratory of Molecular Pharmacology, Faculty of Chemical and Pharmaceutical Sciences, Department of Pharmacological & Toxicological Chemistry, University of Chile, Santiago, Chile
| | - Víctor Machuca
- Laboratory of Molecular Pharmacology, Faculty of Chemical and Pharmaceutical Sciences, Department of Pharmacological & Toxicological Chemistry, University of Chile, Santiago, Chile
| | - José Miguel Osorio-Sandoval
- Laboratory of Molecular Pharmacology, Faculty of Chemical and Pharmaceutical Sciences, Department of Pharmacological & Toxicological Chemistry, University of Chile, Santiago, Chile
| | - Raúl Vivar
- Molecular and Clinical Pharmacology Program, Faculty of Medicine, Institute of Biomedical Sciences (ICBM), University of Chile, Santiago, Chile
| | - Samir Bolivar
- Faculty of Chemistry and Pharmacy, Universidad del Atlántico, Barranquilla, Colombia
| | - Viviana Pardo-Jiménez
- Laboratory of Molecular Pharmacology, Faculty of Chemical and Pharmaceutical Sciences, Department of Pharmacological & Toxicological Chemistry, University of Chile, Santiago, Chile
| | - Carlos Félix Sánchez-Ferrer
- Faculty of Medicine, Department of Pharmacology, Universidad Autónoma de Madrid, Madrid, Spain.,Instituto de Investigaciones Sanitarias (IdiPAZ), Madrid, Spain
| | - Concepción Peiró
- Faculty of Medicine, Department of Pharmacology, Universidad Autónoma de Madrid, Madrid, Spain.,Instituto de Investigaciones Sanitarias (IdiPAZ), Madrid, Spain
| | - Guillermo Díaz-Araya
- Laboratory of Molecular Pharmacology, Faculty of Chemical and Pharmaceutical Sciences, Department of Pharmacological & Toxicological Chemistry, University of Chile, Santiago, Chile. .,Faculty of Chemical and Pharmaceutical Sciences, Advanced Center of Chronic Diseases (ACCDiS), University of Chile, Santiago, Chile.
| |
Collapse
|
47
|
Gangopadhyay A, Devi S, Tenguria S, Carriere J, Nguyen H, Jäger E, Khatri H, Chu LH, Ratsimandresy RA, Dorfleutner A, Stehlik C. NLRP3 licenses NLRP11 for inflammasome activation in human macrophages. Nat Immunol 2022; 23:892-903. [PMID: 35624206 PMCID: PMC9174058 DOI: 10.1038/s41590-022-01220-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 04/19/2022] [Indexed: 01/08/2023]
Abstract
Intracellular sensing of stress and danger signals initiates inflammatory innate immune responses by triggering inflammasome assembly, caspase-1 activation and pyroptotic cell death as well as the release of interleukin 1β (IL-1β), IL-18 and danger signals. NLRP3 broadly senses infectious patterns and sterile danger signals, resulting in the tightly coordinated and regulated assembly of the NLRP3 inflammasome, but the precise mechanisms are incompletely understood. Here, we identified NLRP11 as an essential component of the NLRP3 inflammasome in human macrophages. NLRP11 interacted with NLRP3 and ASC, and deletion of NLRP11 specifically prevented NLRP3 inflammasome activation by preventing inflammasome assembly, NLRP3 and ASC polymerization, caspase-1 activation, pyroptosis and cytokine release but did not affect other inflammasomes. Restored expression of NLRP11, but not NLRP11 lacking the PYRIN domain (PYD), restored inflammasome activation. NLRP11 was also necessary for inflammasome responses driven by NLRP3 mutations that cause cryopyrin-associated periodic syndrome (CAPS). Because NLRP11 is not expressed in mice, our observations emphasize the specific complexity of inflammasome regulation in humans.
Collapse
Affiliation(s)
- Anu Gangopadhyay
- Department of Academic Pathology, Cedars Sinai Medical Center, Los Angeles, CA, USA
- Driskill Graduate Program in Life Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Synthekine, Menlo Park, CA, USA
| | - Savita Devi
- Department of Academic Pathology, Cedars Sinai Medical Center, Los Angeles, CA, USA
| | - Shivendra Tenguria
- Department of Academic Pathology, Cedars Sinai Medical Center, Los Angeles, CA, USA
| | - Jessica Carriere
- Department of Academic Pathology, Cedars Sinai Medical Center, Los Angeles, CA, USA
| | - Huyen Nguyen
- Department of Academic Pathology, Cedars Sinai Medical Center, Los Angeles, CA, USA
| | - Elisabeth Jäger
- Department of Academic Pathology, Cedars Sinai Medical Center, Los Angeles, CA, USA
| | - Hemisha Khatri
- Department of Academic Pathology, Cedars Sinai Medical Center, Los Angeles, CA, USA
| | - Lan H Chu
- Driskill Graduate Program in Life Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Immunology, University of Washington, Seattle, WA, USA
| | - Rojo A Ratsimandresy
- Department of Academic Pathology, Cedars Sinai Medical Center, Los Angeles, CA, USA
- Department of Immunology, Genentech, South San Francisco, CA, USA
| | - Andrea Dorfleutner
- Department of Academic Pathology, Cedars Sinai Medical Center, Los Angeles, CA, USA.
- Department of Biomedical Sciences, Cedars Sinai Medical Center, Los Angeles, CA, USA.
| | - Christian Stehlik
- Department of Academic Pathology, Cedars Sinai Medical Center, Los Angeles, CA, USA.
- Department of Biomedical Sciences, Cedars Sinai Medical Center, Los Angeles, CA, USA.
- Samuel Oschin Comprehensive Cancer Institute, Cedars Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
48
|
Moretti J, Jia B, Hutchins Z, Roy S, Yip H, Wu J, Shan M, Jaffrey SR, Coers J, Blander JM. Caspase-11 interaction with NLRP3 potentiates the noncanonical activation of the NLRP3 inflammasome. Nat Immunol 2022; 23:705-717. [PMID: 35487985 PMCID: PMC9106893 DOI: 10.1038/s41590-022-01192-4] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 03/18/2022] [Indexed: 11/08/2022]
Abstract
Caspase-11 detection of intracellular lipopolysaccharide (LPS) from invasive Gram-negative bacteria mediates noncanonical activation of the NLRP3 inflammasome. While avirulent bacteria do not invade the cytosol, their presence in tissues necessitates clearance and immune system mobilization. Despite sharing LPS, only live avirulent Gram-negative bacteria activate the NLRP3 inflammasome. Here, we found that bacterial mRNA, which signals bacterial viability, was required alongside LPS for noncanonical activation of the NLRP3 inflammasome in macrophages. Concurrent detection of bacterial RNA by NLRP3 and binding of LPS by pro-caspase-11 mediated a pro-caspase-11-NLRP3 interaction before caspase-11 activation and inflammasome assembly. LPS binding to pro-caspase-11 augmented bacterial mRNA-dependent assembly of the NLRP3 inflammasome, while bacterial viability and an assembled NLRP3 inflammasome were necessary for activation of LPS-bound pro-caspase-11. Thus, the pro-caspase-11-NLRP3 interaction nucleated a scaffold for their interdependent activation explaining their functional reciprocal exclusivity. Our findings inform new vaccine adjuvant combinations and sepsis therapy.
Collapse
Affiliation(s)
- Julien Moretti
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Baosen Jia
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Zachary Hutchins
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Soumit Roy
- Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- 182 E 95th St., New York, NY, USA
| | - Hilary Yip
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Jiahui Wu
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Meimei Shan
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Patch Biosciences, New York, NY, USA
| | - Samie R Jaffrey
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Jörn Coers
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
- Department of Immunology, Duke University Medical Center, Durham, NC, USA
| | - J Magarian Blander
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA.
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA.
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA.
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, Cornell University, New York, NY, USA.
- Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine Graduate School of Medical Sciences, New York, NY, USA.
| |
Collapse
|
49
|
Evolutionary Diversity and Function of Metacaspases in Plants: Similar to but Not Caspases. Int J Mol Sci 2022; 23:ijms23094588. [PMID: 35562978 PMCID: PMC9104976 DOI: 10.3390/ijms23094588] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 02/04/2023] Open
Abstract
Caspase is a well-studied metazoan protease involved in programmed cell death and immunity in animals. Obviously, homologues of caspases with evolutionarily similar sequences and functions should exist in plants, and yet, they do not exist in plants. Plants contain structural homologues of caspases called metacaspases, which differ from animal caspases in a rather distinct way. Metacaspases, a family of cysteine proteases, play critical roles in programmed cell death during plant development and defense responses. Plant metacaspases are further subdivided into types I, II, and III. In the type I Arabidopsis MCs, AtMC1 and AtMC2 have similar structures, but antagonistically regulate hypersensitive response cell death upon immune receptor activation. This regulatory action is similar to caspase-1 inhibition by caspase-12 in animals. However, so far very little is known about the biological function of the other plant metacaspases. From the increased availability of genomic data, the number of metacaspases in the genomes of various plant species varies from 1 in green algae to 15 in Glycine max. It is implied that the functions of plant metacaspases will vary due to these diverse evolutions. This review is presented to comparatively analyze the evolution and function of plant metacaspases compared to caspases.
Collapse
|
50
|
Huang Y, Yong P, Dickey D, Vora SM, Wu H, Bernlohr DA. Inflammasome Activation and Pyroptosis via a Lipid-regulated SIRT1-p53-ASC Axis in Macrophages From Male Mice and Humans. Endocrinology 2022; 163:6523230. [PMID: 35136993 PMCID: PMC8896164 DOI: 10.1210/endocr/bqac014] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Indexed: 02/07/2023]
Abstract
Obesity-linked diabetes is associated with accumulation of proinflammatory macrophages into adipose tissue leading to inflammasome activation and pyroptotic secretion of interleukin (IL)-1β and IL-18. Targeting fatty acid binding protein 4 (FABP4) uncouples obesity from inflammation, attenuates characteristics of type 2 diabetes and is mechanistically linked to the cellular accumulation of monounsaturated fatty acids in macrophages. Herein we show that pharmacologic inhibition or genetic deletion of FABP4 activates silent mating type information regulation 2 homolog 1 (SIRT1) and deacetylates its downstream targets p53 and signal transducer and activator of transcription 3 (STAT3). Pharmacologic inhibition of fatty acid synthase or stearoyl-coenzyme A desaturase inhibits, whereas exogenous addition of C16:1 or C18:1 but not their saturated acyl chain counterparts, activates SIRT1 and p53/STAT3 signaling and IL-1β/IL-18 release. Expression of the p53 target gene ASC [apoptosis-associated speck-like protein containing a C-terminal caspase recruitment domain (CARD)] required for assembly of the NLR family pyrin domain containing 3 (NLRP3) inflammasome is downregulated in FABP4 null mice and macrophage cell lines leading to loss of procaspase 1 activation and pyroptosis. Concomitant with loss of ASC expression in FABP4-/- macrophages, inflammasome activation, gasdermin D processing, and functional activation of pyroptosis are all diminished in FABP4 null macrophages but can be rescued by silencing SIRT1 or exogenous expression of ASC. Taken together, these results reveal a novel lipid-regulated pathway linking to SIRT1-p53-ASC signaling and activation of inflammasome action and pyroptosis.
Collapse
Affiliation(s)
- Yimao Huang
- Departments of Biochemistry, Molecular Biology and Biophysics
| | - Peter Yong
- Departments of Biochemistry, Molecular Biology and Biophysics
| | - Deborah Dickey
- Departments of Biochemistry, Molecular Biology and Biophysics
| | - Setu M Vora
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, and Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA, USA
| | - Hao Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, and Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA, USA
| | - David A Bernlohr
- Departments of Biochemistry, Molecular Biology and Biophysics
- Institute for Diabetes, Obesity and Metabolism University of Minnesota-Twin Cities, Minneapolis, MN, USA
- Correspondence: David A. Bernlohr, Department of Biochemistry, Molecular Biology and Biophysics, The University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA.
| |
Collapse
|