1
|
Hu L, Cheng Z, Chu H, Wang W, Jin Y, Yang L. TRIF-dependent signaling and its role in liver diseases. Front Cell Dev Biol 2024; 12:1370042. [PMID: 38694821 PMCID: PMC11061444 DOI: 10.3389/fcell.2024.1370042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 04/08/2024] [Indexed: 05/04/2024] Open
Abstract
TIR domain-containing adaptor inducing IFN-β (TRIF) is a crucial adaptor molecule downstream of toll-like receptors 3 (TLR3) and 4 (TLR4). TRIF directly binds to TLR3 through its TIR domain, while it associates with TLR4 indirectly through the bridge adaptor molecule TRIF-related adaptor molecule (TRAM). TRIF plays a pivotal role in regulating interferon beta 1 (IFN-β) response, nuclear factor kappa B (NF-κB) signaling, apoptosis, and necroptosis signaling mediated by TLR3 and TLR4. It accomplishes these by recruiting and activating various kinases or transcription factors via its distinct domains. In this review, we comprehensively summarize the TRIF-dependent signaling pathways mediated by TLR3 and TLR4, elucidating key target molecules and downstream pathways. Furthermore, we provide an overview of TRIF's impact on several liver disorders, including drug-induced liver injury, ischemia-reperfusion liver injury, autoimmune hepatitis, viral hepatitis, alcohol-associated liver disease (ALD), metabolic dysfunction-associated steatotic liver disease (MASLD) and metabolic dysfunction-associated steatohepatitis (MASH). We also explore its effects on liver steatosis, inflammation, fibrosis, and carcinogenesis. A comprehensive understanding of the TRIF-dependent signaling pathways, as well as the intricate relationship between TRIF and liver diseases, can facilitate the identification of potential drug targets and the development of novel and effective therapeutics against hepatic disorders.
Collapse
Affiliation(s)
| | | | | | | | - Yu Jin
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ling Yang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Berman R, Rose CS, Downey GP, Day BJ, Chu HW. Role of Particulate Matter from Afghanistan and Iraq in Deployment-Related Lung Disease. Chem Res Toxicol 2021; 34:2408-2423. [PMID: 34808040 DOI: 10.1021/acs.chemrestox.1c00090] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Approximately 3 million United States military personnel and contractors were deployed to Southwest Asia and Afghanistan over the past two decades. After returning to the United States, many developed persistent respiratory symptoms, including those due to asthma, rhinosinusitis, bronchiolitis, and others, which we collectively refer to as deployment-related lung diseases (DRLD). The mechanisms of different DRLD have not been well defined. Limited studies from us and others suggest that multiple factors and biological signaling pathways contribute to the onset of DRLD. These include, but are not limited to, exposures to high levels of particulate matter (PM) from sandstorms, burn pit combustion products, improvised explosive devices, and diesel exhaust particles. Once inhaled, these hazardous substances can activate lung immune and structural cells to initiate numerous cell-signaling pathways such as oxidative stress, Toll-like receptors, and cytokine-driven cell injury (e.g., interleukin-33). These biological events may lead to a pro-inflammatory response and airway hyperresponsiveness. Additionally, exposures to PM and other environmental hazards may predispose military personnel and contractors to more severe disease due to the interactions of those hazardous materials with subsequent exposures to allergens and cigarette smoke. Understanding how airborne exposures during deployment contribute to DRLD may identify effective targets to alleviate respiratory diseases and improve quality of life in veterans and active duty military personnel.
Collapse
Affiliation(s)
- Reena Berman
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Denver, Colorado 80206, United States
| | - Cecile S Rose
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Denver, Colorado 80206, United States
| | - Gregory P Downey
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Denver, Colorado 80206, United States
| | - Brian J Day
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Denver, Colorado 80206, United States
| | - Hong Wei Chu
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Denver, Colorado 80206, United States
| |
Collapse
|
3
|
Cabron AS, El Azzouzi K, Boss M, Arnold P, Schwarz J, Rosas M, Dobert JP, Pavlenko E, Schumacher N, Renné T, Taylor PR, Linder S, Rose-John S, Zunke F. Structural and Functional Analyses of the Shedding Protease ADAM17 in HoxB8-Immortalized Macrophages and Dendritic-like Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2018; 201:3106-3118. [PMID: 30355783 PMCID: PMC6215251 DOI: 10.4049/jimmunol.1701556] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 09/16/2018] [Indexed: 01/19/2023]
Abstract
A disintegrin and metalloproteinase (ADAM) 17 has been implicated in many shedding processes. Major substrates of ADAM17 are TNF-α, IL-6R, and ligands of the epidermal growth factor receptor. The essential role of the protease is emphasized by the fact that ADAM17 deficiency is lethal in mice. To study ADAM17 function in vivo, we generated viable hypomorphic ADAM17 mice called ADAM17ex/ex mice. Recent studies indicated regulation of proteolytic ADAM17 activity by cellular processes such as cytoplasmic phosphorylation and removal of the prodomain by furin cleavage. Maturation and thus activation of ADAM17 is not fully understood. So far, studies of ADAM17 maturation have been mainly limited to mouse embryonic fibroblasts or transfected cell lines relying on nonphysiologic stimuli such as phorbol esters, thus making interpretation of the results difficult in a physiologic context. In this article, we present a robust cell system to study ADAM17 maturation and function in primary cells of the immune system. To this end, HoxB8 conditionally immortalized macrophage precursor cell lines were derived from bone marrow of wild-type and hypomorphic ADAM17ex/ex mice, which are devoid of measurable ADAM17 activity. ADAM17 mutants were stably expressed in macrophage precursor cells, differentiated to macrophages under different growth factor conditions (M-CSF versus GM-CSF), and analyzed for cellular localization, proteolytic activity, and podosome disassembly. Our study reveals maturation and activity of ADAM17 in a more physiological-immune cell system. We show that this cell system can be further exploited for genetic modifications of ADAM17 and for studying its function in immune cells.
Collapse
Affiliation(s)
- Anne-Sophie Cabron
- Institute of Biochemistry, Christian-Albrechts-University of Kiel, 24118 Kiel, Germany
| | - Karim El Azzouzi
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Eppendorf, 20246 Hamburg, Germany
| | - Melanie Boss
- Institute of Biochemistry, Christian-Albrechts-University of Kiel, 24118 Kiel, Germany
| | - Philipp Arnold
- Institute of Anatomy, Christian-Albrechts-University of Kiel, 24118 Kiel, Germany
| | - Jeanette Schwarz
- Institute of Biochemistry, Christian-Albrechts-University of Kiel, 24118 Kiel, Germany
| | - Marcela Rosas
- Division of Infection and Immunity, Systems Immunity Research Institute, Cardiff University School of Medicine, Cardiff CF10 3AT, United Kingdom
| | - Jan Philipp Dobert
- Institute of Biochemistry, Christian-Albrechts-University of Kiel, 24118 Kiel, Germany
| | - Egor Pavlenko
- Institute of Biochemistry, Christian-Albrechts-University of Kiel, 24118 Kiel, Germany
| | - Neele Schumacher
- Institute of Biochemistry, Christian-Albrechts-University of Kiel, 24118 Kiel, Germany
| | - Thomas Renné
- Department of Molecular Medicine and Surgery, Karolinska Institutet and University Hospital, Solna, SE-171 76 Stockholm, Sweden; and
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Philip R Taylor
- Division of Infection and Immunity, Systems Immunity Research Institute, Cardiff University School of Medicine, Cardiff CF10 3AT, United Kingdom
| | - Stefan Linder
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Eppendorf, 20246 Hamburg, Germany
| | - Stefan Rose-John
- Institute of Biochemistry, Christian-Albrechts-University of Kiel, 24118 Kiel, Germany;
| | - Friederike Zunke
- Institute of Biochemistry, Christian-Albrechts-University of Kiel, 24118 Kiel, Germany;
| |
Collapse
|
4
|
van der Vliet A, Danyal K, Heppner DE. Dual oxidase: a novel therapeutic target in allergic disease. Br J Pharmacol 2018; 175:1401-1418. [PMID: 29405261 DOI: 10.1111/bph.14158] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/17/2018] [Accepted: 01/22/2018] [Indexed: 12/11/2022] Open
Abstract
NADPH oxidases (NOXs) represent a family of enzymes that mediate regulated cellular production of reactive oxygen species (ROS) and play various functional roles in physiology. Among the NOX family, the dual oxidases DUOX1 and DUOX2 are prominently expressed in epithelial cell types at mucosal surfaces and have therefore been considered to have important roles in innate host defence pathways. Recent studies have revealed important insights into the host defence mechanisms of DUOX enzymes, which control innate immune response pathways in response to either microbial or allergic triggers. In this review, we discuss the current level of understanding with respect to the biological role(s) of DUOX enzymes and the unique role of DUOX1 in mediating innate immune responses to epithelial injury and allergens and in the development of allergic disease. These novel findings highlight DUOX1 as an attractive therapeutic target, and opportunities for the development of selective inhibitor strategies will be discussed.
Collapse
Affiliation(s)
- Albert van der Vliet
- Department of Pathology and Laboratory Medicine, The Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT, USA.,Vermont Lung Center, University of Vermont, Burlington, VT, USA
| | - Karamatullah Danyal
- Department of Pathology and Laboratory Medicine, The Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT, USA.,Vermont Lung Center, University of Vermont, Burlington, VT, USA
| | - David E Heppner
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
Zou H, Su R, Ruan J, Shao H, Qian K, Ye J, Yao Y, Nair V, Qin A. Double-stranded RNA induces chicken T-cell lymphoma apoptosis by TRIF and NF-κB. Sci Rep 2017; 7:7547. [PMID: 28790362 PMCID: PMC5548913 DOI: 10.1038/s41598-017-07919-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 05/10/2017] [Indexed: 12/20/2022] Open
Abstract
Toll-like receptor-3 (TLR3), a member of the pathogen recognition receptor family, has been reported to activate immune response and to exhibit pro-apoptotic activity against some tumor cells. However it is unclear whether TLR3 has same function against chicken lymphoma. In this paper we investigated the effect of TLR3 activation on a Marek’s disease lymphoma-derived chicken cell line, MDCC-MSB1. The TLR3 agonist poly (I:C) activated TLR3 pathway and inhibited tumor cells proliferation through caspase-dependent apoptosis. Using pharmacological approaches, we found that an interferon-independent mechanism involving Toll-IL-1-receptor domain-containing adapter-inducing IFN-α (TRIF) and nuclear factor κB (NF-κB) causes the apoptosis of MDCC-MSB1 cells. This is the first report about the function of TLR3 in chicken T-cell lymphoma, especially in signal pathway. The mechanisms underlying TLR3-mediated apoptosis may contribute to the development of new drug to treat lymphomas and oncovirus infections.
Collapse
Affiliation(s)
- Haitao Zou
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, No. 12 East Wenhui Road, Yangzhou, Jiangsu, 225009, P. R. China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, No. 12 East Wenhui Road, Yangzhou, Jiangsu, 225009, P. R. China
| | - Ruixue Su
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, No. 12 East Wenhui Road, Yangzhou, Jiangsu, 225009, P. R. China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, No. 12 East Wenhui Road, Yangzhou, Jiangsu, 225009, P. R. China
| | - Jing Ruan
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, No. 12 East Wenhui Road, Yangzhou, Jiangsu, 225009, P. R. China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, No. 12 East Wenhui Road, Yangzhou, Jiangsu, 225009, P. R. China
| | - Hongxia Shao
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, No. 12 East Wenhui Road, Yangzhou, Jiangsu, 225009, P. R. China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, No. 12 East Wenhui Road, Yangzhou, Jiangsu, 225009, P. R. China.,Jiangsu Key Lab of Zoonosis, No. 12 East Wenhui Road, Yangzhou, Jiangsu, 225009, P. R. China
| | - Kun Qian
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, No. 12 East Wenhui Road, Yangzhou, Jiangsu, 225009, P. R. China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, No. 12 East Wenhui Road, Yangzhou, Jiangsu, 225009, P. R. China.,Jiangsu Key Lab of Zoonosis, No. 12 East Wenhui Road, Yangzhou, Jiangsu, 225009, P. R. China.,UK-China Centre of Excellence for Research on Avian Diseases, 169 Huanghe 2nd Road, Binzhou, Shandong, P. R. China
| | - Jianqiang Ye
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, No. 12 East Wenhui Road, Yangzhou, Jiangsu, 225009, P. R. China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, No. 12 East Wenhui Road, Yangzhou, Jiangsu, 225009, P. R. China.,Jiangsu Key Lab of Zoonosis, No. 12 East Wenhui Road, Yangzhou, Jiangsu, 225009, P. R. China
| | - Yongxiu Yao
- The Pirbright Institute, Ash road, Pirbright, Working, Surrey, GU24 0NF, United Kingdom.,UK-China Centre of Excellence for Research on Avian Diseases, 169 Huanghe 2nd Road, Binzhou, Shandong, P. R. China
| | - Venugopal Nair
- The Pirbright Institute, Ash road, Pirbright, Working, Surrey, GU24 0NF, United Kingdom.,UK-China Centre of Excellence for Research on Avian Diseases, 169 Huanghe 2nd Road, Binzhou, Shandong, P. R. China
| | - Aijian Qin
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, No. 12 East Wenhui Road, Yangzhou, Jiangsu, 225009, P. R. China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, No. 12 East Wenhui Road, Yangzhou, Jiangsu, 225009, P. R. China. .,Jiangsu Key Lab of Zoonosis, No. 12 East Wenhui Road, Yangzhou, Jiangsu, 225009, P. R. China. .,UK-China Centre of Excellence for Research on Avian Diseases, 169 Huanghe 2nd Road, Binzhou, Shandong, P. R. China.
| |
Collapse
|
6
|
Delivering safer immunotherapies for cancer. Adv Drug Deliv Rev 2017; 114:79-101. [PMID: 28545888 DOI: 10.1016/j.addr.2017.05.011] [Citation(s) in RCA: 221] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 05/05/2017] [Accepted: 05/17/2017] [Indexed: 12/14/2022]
Abstract
Cancer immunotherapy is now a powerful clinical reality, with a steady progression of new drug approvals and a massive pipeline of additional treatments in clinical and preclinical development. However, modulation of the immune system can be a double-edged sword: Drugs that activate immune effectors are prone to serious non-specific systemic inflammation and autoimmune side effects. Drug delivery technologies have an important role to play in harnessing the power of immune therapeutics while avoiding on-target/off-tumor toxicities. Here we review mechanisms of toxicity for clinically-relevant immunotherapeutics, and discuss approaches based in drug delivery technology to enhance the safety and potency of these treatments. These include strategies to merge drug delivery with adoptive cellular therapies, targeting immunotherapies to tumors or select immune cells, and localizing therapeutics intratumorally. Rational design employing lessons learned from the drug delivery and nanomedicine fields has the potential to facilitate immunotherapy reaching its full potential.
Collapse
|
7
|
Abstract
The epithelium is part of an integrated immune system where cytokines, toll-like receptors and their ligands, and extracellular vesicles play a crucial role in initiating an innate immune response. IL-36γ is a pro-inflammatory member of the IL-1 family that is mainly expressed by epithelial cells, but regulation of its expression and release are only beginning to be understood. Previous studies reported that IL-36γ is abundant in recurrent respiratory papillomatosis, a rare but devastating disease caused by human papillomaviruses (HPV) types 6 and 11, in which papillomas recurrently grow in and block the airway. Despite the overexpression of IL-36γ, papilloma tissues show no evidence of inflammation, possibly due to suppression of its release by HPVs. We have used primary human foreskin keratinocytes as a model to study IL-36γ regulation in normal epithelial cells. Low doses of poly(I:C) mediate expression and release of IL-36γ without inducing the cell death reported by those using high doses. PKR, an enzyme required for inflammasome activation, does not contribute to controlled release of IL36γ. The keratinocytes secrete IL-36γ in two forms, soluble and in extracellular vesicles. We conclude that there are two separately regulated pathways for the controlled secretion of IL-36γ from keratinocytes, which could contribute to the modulation of both local and systemic immune responses to viruses and other pathogens.
Collapse
|
8
|
Zigler M, Shir A, Joubran S, Sagalov A, Klein S, Edinger N, Lau J, Yu SF, Mizraji G, Globerson Levin A, Sliwkowski MX, Levitzki A. HER2-Targeted Polyinosine/Polycytosine Therapy Inhibits Tumor Growth and Modulates the Tumor Immune Microenvironment. Cancer Immunol Res 2016; 4:688-97. [PMID: 27241844 DOI: 10.1158/2326-6066.cir-15-0203] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 04/13/2016] [Indexed: 11/16/2022]
Abstract
The development of targeted therapies that affect multiple signaling pathways and stimulate antitumor immunity is greatly needed. About 20% of patients with breast cancer overexpress HER2. Small molecules and antibodies targeting HER2 convey some survival benefits; however, patients with advanced disease succumb to the disease under these treatment regimens, possibly because HER2 is not completely necessary for the survival of the targeted cancer cells. In the present study, we show that a polyinosine/polycytosine (pIC) HER2-homing chemical vector induced the demise of HER2-overexpressing breast cancer cells, including trastuzumab-resistant cells. Targeting pIC to the tumor evoked a number of cell-killing mechanisms, as well as strong bystander effects. These bystander mechanisms included type I IFN induction, immune cell recruitment, and activation. The HER2-targeted pIC strongly inhibited the growth of HER2-overexpressing tumors in immunocompetent mice. The data presented here could open additional avenues in the treatment of HER2-positive breast cancer. Cancer Immunol Res; 4(8); 688-97. ©2016 AACR.
Collapse
Affiliation(s)
- Maya Zigler
- Unit of Cellular Signaling, Department of Biological Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Alexei Shir
- Unit of Cellular Signaling, Department of Biological Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Salim Joubran
- Unit of Cellular Signaling, Department of Biological Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Anna Sagalov
- Unit of Cellular Signaling, Department of Biological Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shoshana Klein
- Unit of Cellular Signaling, Department of Biological Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nufar Edinger
- Unit of Cellular Signaling, Department of Biological Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Jeffrey Lau
- Translational Oncology Department, Genentech Inc., South San Francisco, California
| | - Shang-Fan Yu
- Translational Oncology Department, Genentech Inc., South San Francisco, California
| | - Gabriel Mizraji
- Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| | | | - Mark X Sliwkowski
- Molecular Oncology Department, Genentech, Inc. South San Francisco, California
| | - Alexander Levitzki
- Unit of Cellular Signaling, Department of Biological Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
9
|
Hakimizadeh E, Kazemi Arababadi M, Shamsizadeh A, Roohbakhsh A, Allahtavakoli M. The Possible Role of Toll-Like Receptor 4 in the Pathology of Stroke. Neuroimmunomodulation 2016; 23:131-136. [PMID: 27287756 DOI: 10.1159/000446481] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 04/18/2016] [Indexed: 11/19/2022] Open
Abstract
Stroke is a prevalent and dangerous health problem, which triggers an intense inflammatory response to Toll-like receptor (TLR) activation. TLRs are the essential components of the response of the innate immunity system, and, therefore, they are one of the key factors involved in recognizing pathogens and internal ligands. Among TLRs, TLR4 significantly participates in the induction of inflammation and brain functions; hence, it has been hypothesized that this molecule is associated with several immune-related brain diseases such as stroke. It has also been proved that animals with TLR4 deficiency have higher protection against ischemia and that the absence of TLR4 reduces neuroinflammation and injuries associated with brain trauma. TLR4 deficiency may play a neuroprotective role in the occurrence of stroke. This article reviews recent information regarding the impact of TLR4 on the pathogenicity of stroke.
Collapse
Affiliation(s)
- Elham Hakimizadeh
- Physiology-Pharmacology Research Center, Rafsanjan University of Medical Sciences,Rafsanjan, Iran
| | | | | | | | | |
Collapse
|
10
|
Nadeem A, Alharbi NO, Vliagoftis H, Tyagi M, Ahmad SF, Sayed-Ahmed MM. Proteinase activated receptor-2-mediated dual oxidase-2 up-regulation is involved in enhanced airway reactivity and inflammation in a mouse model of allergic asthma. Immunology 2015; 145:391-403. [PMID: 25684443 DOI: 10.1111/imm.12453] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 01/27/2015] [Accepted: 02/09/2015] [Indexed: 12/31/2022] Open
Abstract
Airway epithelial cells (AECs) express a variety of receptors, which sense danger signals from various aeroallergens/pathogens being inhaled constantly. Proteinase-activated receptor 2 (PAR-2) is one such receptor and is activated by cockroach allergens, which have intrinsic serine proteinase activity. Recently, dual oxidases (DUOX), especially DUOX-2, have been shown to be involved in airway inflammation in response to Toll-like receptor activation. However, the association between PAR-2 and DUOX-2 has not been explored in airways of allergic mice. Therefore, this study investigated the contribution of DUOX-2/reactive oxygen species (ROS) signalling in airway reactivity and inflammation after PAR-2 activation. Mice were sensitized intraperitoneally with intact cockroach allergen extract (CE) in the presence of aluminium hydroxide followed by intranasal challenge with CE. Mice were then assessed for airway reactivity, inflammation, oxidative stress (DUOX-2, ROS, inducible nitric oxide synthase, nitrite, nitrotyrosine and protein carbonyls) and apoptosis (Bax, Bcl-2, caspase-3). Challenge with CE led to up-regulation of DUOX-2 and ROS in AECs with concomitant increases in airway reactivity/inflammation and parameters of oxidative stress, and apoptosis. All of these changes were significantly inhibited by intranasal administration of ENMD-1068, a small molecule antagonist of PAR-2 in allergic mice. Administration of diphenyliodonium to allergic mice also led to improvement of allergic airway responses via inhibition of the DUOX-2/ROS pathway; however, these effects were less pronounced than PAR-2 antagonism. The current study suggests that PAR-2 activation leads to up-regulation of the DUOX-2/ROS pathway in AECs, which is involved in regulation of airway reactivity and inflammation via oxidative stress and apoptosis.
Collapse
Affiliation(s)
- Ahmed Nadeem
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Naif O Alharbi
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Harissios Vliagoftis
- Pulmonary Research Group, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Manoj Tyagi
- Pulmonary Medicine and Critical Care, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Sheikh F Ahmad
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed M Sayed-Ahmed
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
11
|
Kanai K, Koarai A, Shishikura Y, Sugiura H, Ichikawa T, Kikuchi T, Akamatsu K, Hirano T, Nakanishi M, Matsunaga K, Minakata Y, Ichinose M. Cigarette smoke augments MUC5AC production via the TLR3-EGFR pathway in airway epithelial cells. Respir Investig 2015; 53:137-48. [PMID: 26100173 DOI: 10.1016/j.resinv.2015.01.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 01/05/2015] [Accepted: 01/21/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND Viral infections are a major cause of chronic obstructive pulmonary disease (COPD) exacerbations. Toll-like receptor 3 (TLR3) reacts with double-stranded RNA (dsRNA) and participates in the immune response after viral infection. In the present study, we examined whether cigarette smoke, which is involved in the pathogenesis of COPD, enhances mucin production via the TLR3-epidermal growth factor receptor (EGFR) pathway in airway epithelial cells. METHODS We studied the effects of cigarette smoke extract (CSE) on signal transduction and the production of mucin 5AC (MUC5AC) in NCI-H292 cells and differentiated primary human bronchial epithelial cells stimulated with a synthetic dsRNA analogue, polyinosinic-polycytidylic acid [poly(I:C)], used as a TLR3 ligand. RESULTS CSE significantly potentiated the production of MUC5AC in epithelial cells stimulated with poly(I:C). Antibodies to EGFR or EGFR ligands inhibited CSE-augmented MUC5AC release in poly(I:C)-treated cells. Treatment with poly(I:C) or CSE alone increased the phosphorylation of EGFR and extracellular signal-regulated kinase (ERK). However, after poly(I:C) stimulation, CSE did not enhance EGFR phosphorylation, but did augment ERK phosphorylation. EGFR inhibitors and an ERK inhibitor inhibited the augmented release of MUC5AC. In addition, treatment with N-acetylcysteine, an antioxidant, inhibited the CSE-augmented phosphorylation of ERK and MUC5AC. CONCLUSIONS These data show that cigarette smoke increases TLR3-stimulated MUC5AC production in airway epithelial cells, mainly via ERK signaling. The effect might be mediated in part by oxidative stress. Modulation of this pathway might be a therapeutic target for viral-induced mucin overproduction in COPD exacerbation.
Collapse
Affiliation(s)
- Kuninobu Kanai
- Third Department of Internal Medicine, Wakayama Medical University, Wakayama, Japan.
| | - Akira Koarai
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan.
| | - Yutaka Shishikura
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan.
| | - Hisatoshi Sugiura
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan.
| | - Tomohiro Ichikawa
- Third Department of Internal Medicine, Wakayama Medical University, Wakayama, Japan.
| | - Takashi Kikuchi
- Third Department of Internal Medicine, Wakayama Medical University, Wakayama, Japan.
| | - Keiichiro Akamatsu
- Third Department of Internal Medicine, Wakayama Medical University, Wakayama, Japan.
| | - Tsunahiko Hirano
- Third Department of Internal Medicine, Wakayama Medical University, Wakayama, Japan.
| | - Masanori Nakanishi
- Third Department of Internal Medicine, Wakayama Medical University, Wakayama, Japan.
| | - Kazuto Matsunaga
- Third Department of Internal Medicine, Wakayama Medical University, Wakayama, Japan.
| | - Yoshiaki Minakata
- Third Department of Internal Medicine, Wakayama Medical University, Wakayama, Japan.
| | - Masakazu Ichinose
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan.
| |
Collapse
|
12
|
Abstract
Determining the role of NADPH oxidases in the context of virus infection is an emerging area of research and our knowledge is still sparse. The expression of various isoforms of NOX/DUOX (NADPH oxidase/dual oxidase) in the epithelial cells (ECs) lining the respiratory tract renders them primary sites from which to orchestrate the host defence against respiratory viruses. Accumulating evidence reveals distinct facets of the involvement of NOX/DUOX in host antiviral and pro-inflammatory responses and in the control of the epithelial barrier integrity, with individual isoforms mediating co-operative, but surprisingly also opposing, functions. Although in vivo studies in mice are in line with some of these observations, a complete understanding of the specific functions of epithelial NOX/DUOX awaits lung epithelial-specific conditional knockout mice. The goal of the present review is to summarize our current knowledge of the role of individual NOX/DUOX isoforms expressed in the lung epithelium in the context of respiratory virus infections so as to highlight potential opportunities for therapeutic intervention.
Collapse
|
13
|
Dendritic cells induce Th2-mediated airway inflammatory responses to house dust mite via DNA-dependent protein kinase. Nat Commun 2015; 6:6224. [PMID: 25692509 PMCID: PMC4333735 DOI: 10.1038/ncomms7224] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 01/07/2015] [Indexed: 11/09/2022] Open
Abstract
DNA-dependent protein kinase (DNA-PK) mediates double-stranded DNA break repair, V(D)J recombination and immunoglobulin class switch recombination, as well as innate immune and pro-inflammatory responses. However, there is limited information regarding the role of DNA-PK in adaptive immunity mediated by dendritic cells (DCs), which are the primary antigen-presenting cells in allergic asthma. Here we show that house dust mite induces DNA-PK phosphorylation, which is a marker of DNA-PK activation, in DCs via the generation of intracellular reactive oxygen species. We also demonstrate that pharmacological inhibition of DNA-PK, as well as the specific deletion of DNA-PK in DCs, attenuates the induction of allergic sensitization and Th2 immunity via a mechanism that involves the impaired presentation of mite antigens. Furthermore, pharmacological inhibition of DNA-PK following antigen priming similarly reduces the manifestations of mite-induced airway disease. Collectively, these findings suggest that DNA-PK may be a potential target for treatment of allergic asthma.
Collapse
|
14
|
Deng M, Loughran PA, Zhang L, Scott MJ, Billiar TR. Shedding of the tumor necrosis factor (TNF) receptor from the surface of hepatocytes during sepsis limits inflammation through cGMP signaling. Sci Signal 2015; 8:ra11. [PMID: 25628461 DOI: 10.1126/scisignal.2005548] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Proteolytic cleavage of the tumor necrosis factor (TNF) receptor (TNFR) from the cell surface contributes to anti-inflammatory responses and may be beneficial in reducing the excessive inflammation associated with multiple organ failure and mortality during sepsis. Using a clinically relevant mouse model of polymicrobial abdominal sepsis, we found that the production of inducible nitric oxide synthase (iNOS) in hepatocytes led to the cyclic guanosine monophosphate (cGMP)-dependent activation of the protease TACE (TNF-converting enzyme) and the shedding of TNFR. Furthermore, treating mice with a cGMP analog after the induction of sepsis increased TNFR shedding and decreased systemic inflammation. Similarly, increasing the abundance of cGMP with a clinically approved phosphodiesterase 5 inhibitor (sildenafil) also decreased markers of systemic inflammation, protected against organ injury, and increased circulating amounts of TNFR1 in mice with sepsis. We further confirmed that a similar iNOS-cGMP-TACE pathway was required for TNFR1 shedding by human hepatocytes in response to the bacterial product lipopolysaccharide. Our data suggest that increasing the bioavailability of cGMP might be beneficial in ameliorating the inflammation associated with sepsis.
Collapse
Affiliation(s)
- Meihong Deng
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Patricia A Loughran
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA. Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Liyong Zhang
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Melanie J Scott
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| |
Collapse
|
15
|
Dreymueller D, Uhlig S, Ludwig A. ADAM-family metalloproteinases in lung inflammation: potential therapeutic targets. Am J Physiol Lung Cell Mol Physiol 2014; 308:L325-43. [PMID: 25480335 DOI: 10.1152/ajplung.00294.2014] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Acute and chronic lung inflammation is driven and controlled by several endogenous mediators that undergo proteolytic conversion from surface-expressed proteins to soluble variants by a disintegrin and metalloproteinase (ADAM)-family members. TNF and epidermal growth factor receptor ligands are just some of the many substrates by which these proteases regulate inflammatory or regenerative processes in the lung. ADAM10 and ADAM17 are the most prominent members of this protease family. They are constitutively expressed in most lung cells and, as recent research has shown, are the pivotal shedding enzymes mediating acute lung inflammation in a cell-specific manner. ADAM17 promotes endothelial and epithelial permeability, transendothelial leukocyte migration, and inflammatory mediator production by smooth muscle and epithelial cells. ADAM10 is critical for leukocyte migration and alveolar leukocyte recruitment. ADAM10 also promotes allergic asthma by driving B cell responses. Additionally, ADAM10 acts as a receptor for Staphylococcus aureus (S. aureus) α-toxin and is crucial for bacterial virulence. ADAM8, ADAM9, ADAM15, and ADAM33 are upregulated during acute or chronic lung inflammation, and recent functional or genetic analyses have linked them to disease development. Pharmacological inhibitors that allow us to locally or systemically target and differentiate ADAM-family members in the lung suppress acute and asthmatic inflammatory responses and S. aureus virulence. These promising results encourage further research to develop therapeutic strategies based on selected ADAMs. These studies need also to address the role of the ADAMs in repair and regeneration in the lung to identify further therapeutic opportunities and possible side effects.
Collapse
Affiliation(s)
- Daniela Dreymueller
- Institute of Pharmacology and Toxicology, Rheinisch-Westfälische Technische Hochschule Aachen University, Aachen, Germany
| | - Stefan Uhlig
- Institute of Pharmacology and Toxicology, Rheinisch-Westfälische Technische Hochschule Aachen University, Aachen, Germany
| | - Andreas Ludwig
- Institute of Pharmacology and Toxicology, Rheinisch-Westfälische Technische Hochschule Aachen University, Aachen, Germany
| |
Collapse
|
16
|
Donkó Á, Morand S, Korzeniowska A, Boudreau HE, Zana M, Hunyady L, Geiszt M, Leto TL. Hypothyroidism-associated missense mutation impairs NADPH oxidase activity and intracellular trafficking of Duox2. Free Radic Biol Med 2014; 73:190-200. [PMID: 24853759 PMCID: PMC4111973 DOI: 10.1016/j.freeradbiomed.2014.05.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 04/10/2014] [Accepted: 05/12/2014] [Indexed: 01/06/2023]
Abstract
In the thyroid gland Duox2-derived H2O2 is essential for thyroid hormone biosynthesis. Several patients were identified with partial or severe iodide organification defects caused by mutation in the gene for Duox2 or its maturation factor, DuoxA2. A Duox2-deficient (Duox2(thyd)) mouse model enabled in vivo investigation of its critical function in thyroid tissues, but its roles proposed in host defense or other innate responses in nonthyroid tissues remain less certain. These mice carry a spontaneous DUOX2 missense mutation, a T→G transversion, in exon 16 that changes the highly conserved valine 674 to glycine and results in severe congenital hypothyroidism. The exact mechanism underlying the effects of the V674G mutation has not been elucidated at the molecular or cellular level. To determine how the V674G mutation leads to congenital hypothyroidism, we introduced the same mutation into human Duox2 or Duox1 cDNAs and expressed them in HEK-293 cells stably expressing the corresponding DuoxA proteins. We found that the valine→glycine mutant Duox proteins fail to produce H2O2, lose their plasma membrane localization pattern, and are retained within the endoplasmic reticulum. The Duox2 mutant binds to DuoxA2, but appears to be unstable owing to this retention. Immunohistochemical staining of Duox2 in murine salivary gland ducts showed that Duox2 in mutant mice loses its condensed apical plasma membrane localization pattern characteristic of wild-type Duox2 and accumulates in punctate vesicular structures within cells. Our findings demonstrate that changing the highly conserved valine 674 in Duox2 leads to impaired subcellular targeting and reactive oxygen species release required for hormonogenesis, resulting in congenital hypothyroidism.
Collapse
Affiliation(s)
- Ágnes Donkó
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA; Department of Physiology, Semmelweis University, Budapest, Hungary; "Lendület" Peroxidase Enzyme Research Group of the Semmelweis University and the Hungarian Academy of Sciences, Budapest, Hungary
| | - Stanislas Morand
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Agnieszka Korzeniowska
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Howard E Boudreau
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Melinda Zana
- Department of Physiology, Semmelweis University, Budapest, Hungary; "Lendület" Peroxidase Enzyme Research Group of the Semmelweis University and the Hungarian Academy of Sciences, Budapest, Hungary
| | - László Hunyady
- Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Miklós Geiszt
- Department of Physiology, Semmelweis University, Budapest, Hungary; "Lendület" Peroxidase Enzyme Research Group of the Semmelweis University and the Hungarian Academy of Sciences, Budapest, Hungary
| | - Thomas L Leto
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA.
| |
Collapse
|
17
|
De Deken X, Corvilain B, Dumont JE, Miot F. Roles of DUOX-mediated hydrogen peroxide in metabolism, host defense, and signaling. Antioxid Redox Signal 2014; 20:2776-93. [PMID: 24161126 DOI: 10.1089/ars.2013.5602] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
SIGNIFICANCE Among the NADPH oxidases, the dual oxidases, DUOX1 and DUOX2, constitute a distinct subfamily initially called thyroid oxidases, based on their high level of expression in thyroid tissue. Genetic alterations causing inherited hypothyroidism clearly demonstrate their physiological implication in thyroid hormonogenesis. However, a growing list of biological functions triggered by DUOX-dependent reactive oxygen species (ROS) in highly differentiated mucosae have recently emerged. RECENT ADVANCES A role of DUOX enzymes as ROS providers for lactoperoxidase-mediated killing of invading pathogens has been well established and a role in bacteria chemorepulsion has been proposed. Control of DUOX expression and activity by inflammatory molecules and immune receptor activation consolidates their contributions to innate immune defense of mucosal surfaces. Recent studies conducted in ancestral organisms have identified effectors of DUOX redox signaling involved in wound healing including epithelium regeneration and leukocyte recruitment. Moreover, local generation of hydrogen peroxide (H2O2) by DUOX has also been suggested to constitute a positive feedback loop to promote receptor signaling activation. CRITICAL ISSUES A correct balance between H2O2 generation and detoxification mechanisms must be properly maintained to avoid oxidative damages. Overexpression of DUOX genes has been associated with an increasing number of chronic inflammatory diseases. Furthermore, H2O2-mediated DNA damage supports a mutagenic function promoting tumor development. FUTURE DIRECTIONS Despite the high sequence similarity shared between DUOX1 and DUOX2, the two isoforms present distinct regulations, tissue expression and catalytic functions. The phenotypic characterization of novel DUOX/DUOXA invalidated animal models will be very useful for defining their medical importance in pathological conditions.
Collapse
Affiliation(s)
- Xavier De Deken
- Faculté de Médecine, Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB) , Brussels, Belgium
| | | | | | | |
Collapse
|
18
|
TLR3 plays significant roles against hepatitis B virus. Mol Biol Rep 2014; 41:3279-86. [DOI: 10.1007/s11033-014-3190-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 01/21/2014] [Indexed: 01/30/2023]
|
19
|
Chang S, Linderholm A, Franzi L, Kenyon N, Grasberger H, Harper R. Dual oxidase regulates neutrophil recruitment in allergic airways. Free Radic Biol Med 2013; 65:38-46. [PMID: 23770197 PMCID: PMC3859817 DOI: 10.1016/j.freeradbiomed.2013.06.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 05/27/2013] [Accepted: 06/05/2013] [Indexed: 01/16/2023]
Abstract
Enhanced reactive oxygen species production in allergic airways is well described and correlates with increased airway contractions, inflammatory cell infiltration, goblet cell metaplasia, and mucus hypersecretion. There is also an abundance of interleukin-4/interleukin-13 (IL-4/IL-13)- or interleukin-5-secreting cells that are thought to be central to the pathogenesis of allergic asthma. We postulated that the dual oxidases (DUOX1 and DUOX2), members of the nicotinamide adenine dinucleotide phosphate oxidase family that release hydrogen peroxide (H2O2) in the respiratory tract, are critical proteins in the pathogenesis of allergic airways. DUOX activity is regulated by cytokines, including IL-4 and IL-13, and DUOX-mediated H2O2 influences several important features of allergic asthma: mucin production, IL-8 secretion, and wound healing. The objective of this study was to establish the contribution of DUOXs to the development of allergic asthma in a murine model. To accomplish this goal, we utilized a DUOXA-deficient mouse model (Duoxa(-/-)) that lacked maturation factors for both DUOX1 and DUOX2. Our results are the first to demonstrate evidence of DUOX protein and DUOX functional activity in murine airway epithelium. We also demonstrate that DUOXA maturation factors are required for airway-specific H2O2 production and localization of DUOX to cilia of fully differentiated airway epithelial cells. We compared wild-type and Duoxa(-/-) mice in an ovalbumin exposure model to determine the role of DUOX in allergic asthma. In comparison to DUOX-intact mice, Duoxa(-/-) mice had reduced mucous cell metaplasia and lower levels of TH2 cytokine levels in bronchoalveolar fluid. In addition, increased airway resistance in response to methacholine was observed in Duoxa(+/+) mice, as expected, but was absent in Duoxa(-/-) mice. Surprisingly, Duoxa(-/-) mice had decreased influx of neutrophils in bronchoalveolar fluid and lung tissue sections associated with a lower level of the chemotactic cytokine IL-6. These findings suggest that DUOX-derived H2O2 has an important role in signaling neutrophils into allergic airways.
Collapse
Affiliation(s)
- Sandra Chang
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, School of Medicine, University of California at Davis, Davis, CA 95616, USA
| | - Angela Linderholm
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, School of Medicine, University of California at Davis, Davis, CA 95616, USA
| | - Lisa Franzi
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, School of Medicine, University of California at Davis, Davis, CA 95616, USA
| | - Nicholas Kenyon
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, School of Medicine, University of California at Davis, Davis, CA 95616, USA
| | - Helmut Grasberger
- Department of Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Richart Harper
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, School of Medicine, University of California at Davis, Davis, CA 95616, USA.
| |
Collapse
|
20
|
Schwarz J, Broder C, Helmstetter A, Schmidt S, Yan I, Müller M, Schmidt-Arras D, Becker-Pauly C, Koch-Nolte F, Mittrücker HW, Rabe B, Rose-John S, Chalaris A. Short-term TNFα shedding is independent of cytoplasmic phosphorylation or furin cleavage of ADAM17. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:3355-3367. [DOI: 10.1016/j.bbamcr.2013.10.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 09/23/2013] [Accepted: 10/05/2013] [Indexed: 01/06/2023]
|
21
|
Steven Esworthy R, Kim BW, Wang Y, Gao Q, Doroshow JH, Leto TL, Chu FF. The Gdac1 locus modifies spontaneous and Salmonella-induced colitis in mice deficient in either Gpx2 or Gpx1 gene. Free Radic Biol Med 2013; 65:1273-1283. [PMID: 24090658 PMCID: PMC3875339 DOI: 10.1016/j.freeradbiomed.2013.09.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 09/06/2013] [Accepted: 09/19/2013] [Indexed: 02/06/2023]
Abstract
We previously identified the Gdac1 (Gpx-deficiency-associated colitis 1) locus, which influences the severity of spontaneous colitis in Gpx1- and Gpx2-double-knockout (Gpx1/2-DKO) mice. Congenic Gpx1/2-DKO mice in the 129S1/SvImJ (129) background but carrying the Gdac1(B6) allele have milder spontaneous colitis than 129 Gpx1/2-DKO mice carrying the Gdac1(129) allele. Here, we evaluated the effect of the Gdac1(B6) allele on 129 strain non-DKO mice that had a wild-type (WT) Gpx1 or Gpx2 allele and WT mice. We found that the congenic Gdac1(B6) Gpx2-KO, Gpx1-KO, and WT mice also had better health than the corresponding 129 mice measured by at least one of the parameters including disease signs, colon length, or weight gain. The Gdac1(B6) allele prevented loss of goblet cells and crypt epithelium exfoliation in the Gpx1/2-DKO mice, but did not affect epithelial cell apoptosis or proliferation. Because Gdac1(B6) affects gut dysbiosis in the DKO mice, we then tested its impact on bacteria-induced colitis in non-DKO mice. First, we found both Gpx1-KO and Gpx2-KO mice were susceptible to Salmonella enterica serotype typhimurium (S. Tm)-induced colitis under conditions where WT B6 and 129 mice were resistant. Second, the S. Tm-infected Gdac1(B6) Gpx1-KO mice had stronger inflammatory responses than 129 Gpx1-KO or 129 Gpx2-KO with both Gdac1 alleles and WT mice by having higher mRNA levels of Nod2, Nox2, Tnf, and Cox2. We conclude that the Gdac1 locus affects both spontaneous and S. Tm-induced colitis in 129 non-DKO mice, although in opposite directions.
Collapse
Affiliation(s)
- R Steven Esworthy
- Department of Radiation Biology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Byung-Wook Kim
- Department of Radiation Biology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Yufeng Wang
- Department of Gastroenterology and Hepatology, First Affiliated Hospital, Henan University of Science and Technology, Luoyang, Henan 471000, China
| | - Qiang Gao
- Department of Gastroenterology and Hepatology, First Affiliated Hospital, Henan University of Science and Technology, Luoyang, Henan 471000, China
| | | | - Thomas L Leto
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Fong-Fong Chu
- Department of Radiation Biology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA.
| |
Collapse
|
22
|
Savva A, Roger T. Targeting toll-like receptors: promising therapeutic strategies for the management of sepsis-associated pathology and infectious diseases. Front Immunol 2013; 4:387. [PMID: 24302927 PMCID: PMC3831162 DOI: 10.3389/fimmu.2013.00387] [Citation(s) in RCA: 205] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 11/05/2013] [Indexed: 01/04/2023] Open
Abstract
Toll-like receptors (TLRs) are pattern recognition receptors playing a fundamental role in sensing microbial invasion and initiating innate and adaptive immune responses. TLRs are also triggered by danger signals released by injured or stressed cells during sepsis. Here we focus on studies developing TLR agonists and antagonists for the treatment of infectious diseases and sepsis. Positioned at the cell surface, TLR4 is essential for sensing lipopolysaccharide of Gram-negative bacteria, TLR2 is involved in the recognition of a large panel of microbial ligands, while TLR5 recognizes flagellin. Endosomal TLR3, TLR7, TLR8, TLR9 are specialized in the sensing of nucleic acids produced notably during viral infections. TLR4 and TLR2 are favorite targets for developing anti-sepsis drugs, and antagonistic compounds have shown efficient protection from septic shock in pre-clinical models. Results from clinical trials evaluating anti-TLR4 and anti-TLR2 approaches are presented, discussing the challenges of study design in sepsis and future exploitation of these agents in infectious diseases. We also report results from studies suggesting that the TLR5 agonist flagellin may protect from infections of the gastrointestinal tract and that agonists of endosomal TLRs are very promising for treating chronic viral infections. Altogether, TLR-targeted therapies have a strong potential for prevention and intervention in infectious diseases, notably sepsis.
Collapse
Affiliation(s)
- Athina Savva
- Infectious Diseases Service, Department of Medicine, Centre Hospitalier Universitaire Vaudois, University of Lausanne , Lausanne , Switzerland
| | | |
Collapse
|
23
|
Morrison BL, Mullendore ME, Stockwin LH, Borgel S, Hollingshead MG, Newton DL. Oxyphenisatin acetate (NSC 59687) triggers a cell starvation response leading to autophagy, mitochondrial dysfunction, and autocrine TNFα-mediated apoptosis. Cancer Med 2013; 2:687-700. [PMID: 24403234 PMCID: PMC3892800 DOI: 10.1002/cam4.107] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 06/11/2013] [Accepted: 06/12/2013] [Indexed: 12/17/2022] Open
Abstract
Oxyphenisatin (3,3-bis(4-hydroxyphenyl)-1H-indol-2-one) and several structurally related molecules have been shown to have in vitro and in vivo antiproliferative activity. This study aims to confirm and extend mechanistic studies by focusing on oxyphenisatin acetate (OXY, NSC 59687), the pro-drug of oxyphenisatin. Results confirm that OXY inhibits the growth of the breast cancer cell lines MCF7, T47D, HS578T, and MDA-MB-468. This effect is associated with selective inhibition of translation accompanied by rapid phosphorylation of the nutrient sensing eukaryotic translation initiation factor 2α (eIF2α) kinases, GCN2 and PERK. This effect was paralleled by activation of AMP-activated protein kinase (AMPK) combined with reduced phosphorylation of the mammalian target of rapamycin (mTOR) substrates p70S6K and 4E-BP1. Microarray analysis highlighted activation of pathways involved in apoptosis induction, autophagy, RNA/protein metabolism, starvation responses, and solute transport. Pathway inhibitor combination studies suggested a role for AMPK/mTOR signaling, de novo transcription and translation, reactive oxygen species (ROS)/glutathione metabolism, calcium homeostasis and plasma membrane Na(+) /K(+) /Ca(2+) transport in activity. Further examination confirmed that OXY treatment was associated with autophagy, mitochondrial dysfunction, and ROS generation. Additionally, treatment was associated with activation of both intrinsic and extrinsic apoptotic pathways. In the estrogen receptor (ER) positive MCF7 and T47D cells, OXY induced TNFα expression and TNFR1 degradation, indicating autocrine receptor-mediated apoptosis in these lines. Lastly, in an MCF7 xenograft model, OXY delivered intraperitoneally inhibited tumor growth, accompanied by phosphorylation of eIF2α and degradation of TNFR1. These data suggest that OXY induces a multifaceted cell starvation response, which ultimately induces programmed cell death.
Collapse
Affiliation(s)
- Bethanie L Morrison
- Drug Mechanism Group, Biological Testing Branch, Developmental Therapeutics Program, SAIC-Frederick Inc., Frederick National Laboratory for Cancer ResearchFrederick, Maryland, 21702
| | - Michael E Mullendore
- Drug Mechanism Group, Biological Testing Branch, Developmental Therapeutics Program, SAIC-Frederick Inc., Frederick National Laboratory for Cancer ResearchFrederick, Maryland, 21702
| | - Luke H Stockwin
- Drug Mechanism Group, Biological Testing Branch, Developmental Therapeutics Program, SAIC-Frederick Inc., Frederick National Laboratory for Cancer ResearchFrederick, Maryland, 21702
| | - Suzanne Borgel
- In Vivo Preclinical Support Group, Biological Testing Branch, Developmental Therapeutics Program, SAIC-Frederick Inc., Frederick National Laboratory for Cancer ResearchFrederick, Maryland, 21702
| | - Melinda G Hollingshead
- Biological Testing Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, Frederick National Laboratory for Cancer ResearchFrederick, Maryland, 21702
| | - Dianne L Newton
- Drug Mechanism Group, Biological Testing Branch, Developmental Therapeutics Program, SAIC-Frederick Inc., Frederick National Laboratory for Cancer ResearchFrederick, Maryland, 21702
| |
Collapse
|
24
|
Wu Y, Antony S, Meitzler JL, Doroshow JH. Molecular mechanisms underlying chronic inflammation-associated cancers. Cancer Lett 2013; 345:164-73. [PMID: 23988267 DOI: 10.1016/j.canlet.2013.08.014] [Citation(s) in RCA: 197] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 08/08/2013] [Accepted: 08/13/2013] [Indexed: 12/17/2022]
Abstract
Although it is now accepted that chronic inflammation plays an essential role in tumorigenesis, the underlying molecular mechanisms linking inflammation and cancer remain to be fully explored. Inflammatory mediators present in the tumor microenvironment, including cytokines and growth factors, as well as reactive oxygen species (ROS) and reactive nitrogen species (RNS), have been implicated in the etiology of inflammation-associated cancers. Epithelial NADPH oxidase (Nox) family proteins, which generate ROS regulated by cytokines, are upregulated during chronic inflammation and cancer. ROS serve as effector molecules participating in host defense or as chemo-attractants recruiting leukocytes to wounds, thereby influencing the inflammatory reaction in damaged tissues. ROS can alter chromosomal DNA, leading to genomic instability, and may serve as signaling molecules that affect tumor cell proliferation, survival, metabolism, angiogenesis, and metastasis. Targeting Noxs and their downstream signaling components may be a promising approach to pre-empting inflammation-related malignancies.
Collapse
Affiliation(s)
- Yongzhong Wu
- Laboratory of Molecular Pharmacology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Smitha Antony
- Laboratory of Molecular Pharmacology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jennifer L Meitzler
- Laboratory of Molecular Pharmacology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - James H Doroshow
- Laboratory of Molecular Pharmacology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
25
|
Luna JM, Moon Y, Liu K, Spitalnik S, Paik M, Sacco R, Elkind MSV. Tumour necrosis factor receptor 1 and mortality in a multi-ethnic cohort: the Northern Manhattan Study. Age Ageing 2013; 42:385-90. [PMID: 23321203 DOI: 10.1093/ageing/afs175] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE to study the association between soluble tumour necrosis factor receptor 1 (sTNFR1) levels and mortality in the population-based Northern Manhattan Study (NOMAS). METHODS NOMAS is a multi-ethnic, community-based cohort study with mean 8.4 years of follow-up. sTNFR1 was measured using ELISA. Cox proportional hazards models were used to calculate hazard ratios and 95% confidence intervals (HR, 95% CI) for the association of sTNFR1 with risk of all-cause mortality after adjusting for relevant confounders. RESULTS sTNFR1 measurements were available in 1,862 participants (mean age 69.2 ± 10.2 years) with 512 all-cause deaths. Median sTNFR1 was 2.28 ng/ml. Those with sTNFR1 levels in the highest quartile (Q4), compared with those with sTNFR1 in the lowest quartile (Q1), were at an increased risk of all-cause mortality (adjusted HR: 1.8, 95% CI: 1.4-2.4) and non-vascular mortality (adjusted HR: 2.5, 95% CI: 1.5-3.6), but not vascular mortality (adjusted HR: 1.3, 95% CI: 0.9-1.9). There were interactions between sTNFR1 quartiles and medical insurance-status [likelihood ratio test (LRT) with 3 degrees of freedom, Pinteraction = 0.02] and alcohol consumption (LRT with 3 degrees of freedom, Pinteraction < 0.01) for all-cause mortality. In participants with no insurance or Medicaid, those with sTNFR1 in the top quartile had nearly a threefold increased risk of total mortality than the lowest quartile (adjusted HR: 2.9, 95% CI: 1.9-4.4). CONCLUSION in this multi-ethnic cohort, sTNFR1 was associated with all-cause and non-vascular mortality, particularly among those of a lower socioeconomic status.
Collapse
Affiliation(s)
- Jorge M Luna
- Department of Neurology, Columbia University, New York, NY, USA.
| | | | | | | | | | | | | |
Collapse
|
26
|
Fink K, Martin L, Mukawera E, Chartier S, De Deken X, Brochiero E, Miot F, Grandvaux N. IFNβ/TNFα synergism induces a non-canonical STAT2/IRF9-dependent pathway triggering a novel DUOX2 NADPH oxidase-mediated airway antiviral response. Cell Res 2013; 23:673-90. [PMID: 23545780 DOI: 10.1038/cr.2013.47] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Airway epithelial cells are key initial innate immune responders in the fight against respiratory viruses, primarily via the secretion of antiviral and proinflammatory cytokines that act in an autocrine/paracrine fashion to trigger the establishment of an antiviral state. It is currently thought that the early antiviral state in airway epithelial cells primarily relies on IFNβ secretion and the subsequent activation of the interferon-stimulated gene factor 3 (ISGF3) transcription factor complex, composed of STAT1, STAT2 and IRF9, which regulates the expression of a panoply of interferon-stimulated genes encoding proteins with antiviral activities. However, the specific pathways engaged by the synergistic action of different cytokines during viral infections, and the resulting physiological outcomes are still ill-defined. Here, we unveil a novel delayed antiviral response in the airways, which is initiated by the synergistic autocrine/paracrine action of IFNβ and TNFα, and signals through a non-canonical STAT2- and IRF9-dependent, but STAT1-independent cascade. This pathway ultimately leads to the late induction of the DUOX2 NADPH oxidase expression. Importantly, our study uncovers that the development of the antiviral state relies on DUOX2-dependent H2O2 production. Key antiviral pathways are often targeted by evasion strategies evolved by various pathogenic viruses. In this regard, the importance of the novel DUOX2-dependent antiviral pathway is further underlined by the observation that the human respiratory syncytial virus is able to subvert DUOX2 induction.
Collapse
Affiliation(s)
- Karin Fink
- Centre de Recherche du CHUM (CRCHUM), Montréal, Québec, Canada
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Wu Y, Lu J, Antony S, Juhasz A, Liu H, Jiang G, Meitzler JL, Hollingshead M, Haines DC, Butcher D, Roy K, Doroshow JH. Activation of TLR4 is required for the synergistic induction of dual oxidase 2 and dual oxidase A2 by IFN-γ and lipopolysaccharide in human pancreatic cancer cell lines. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2013; 190:1859-72. [PMID: 23296709 PMCID: PMC3563939 DOI: 10.4049/jimmunol.1201725] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Pancreatitis is associated with release of proinflammatory cytokines and reactive oxygen species and plays an important role in the development of pancreatic cancer. We recently demonstrated that dual oxidase (Duox)2, an NADPH oxidase essential for reactive oxygen species-related, gastrointestinal host defense, is regulated by IFN-γ-mediated Stat1 binding to the Duox2 promoter in pancreatic tumor lines. Because LPS enhances the development and invasiveness of pancreatic cancer in vivo following TLR4-related activation of NF-κB, we examined whether LPS, alone or combined with IFN-γ, regulated Duox2. We found that upregulation of TLR4 by IFN-γ in BxPC-3 and CFPAC-1 pancreatic cancer cells was augmented by LPS, resulting in activation of NF-κB, accumulation of NF-κB (p65) in the nucleus, and increased binding of p65 to the Duox2 promoter. TLR4 silencing with small interfering RNAs, as well as two independent NF-κB inhibitors, attenuated LPS- and IFN-γ-mediated Duox2 upregulation in BxPC-3 cells. Induction of Duox2 expression by IFN-γ and LPS may result from IFN-γ-related activation of Stat1 acting in concert with NF-κB-related upregulation of Duox2. Sustained extracellular accumulation of H(2)O(2) generated by exposure to both LPS and IFN-γ was responsible for an ∼50% decrease in BxPC-3 cell proliferation associated with a G(1) cell cycle block, apoptosis, and DNA damage. We also demonstrated upregulation of Duox expression in vivo in pancreatic cancer xenografts and in patients with chronic pancreatitis. These results suggest that inflammatory cytokines can interact to produce a Duox-dependent pro-oxidant milieu that could increase the pathologic potential of pancreatic inflammation and pancreatic cancer cells.
Collapse
Affiliation(s)
- Yongzhong Wu
- Laboratory of Molecular Pharmacology of the Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Jiamo Lu
- Laboratory of Molecular Pharmacology of the Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Smitha Antony
- Laboratory of Molecular Pharmacology of the Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Agnes Juhasz
- Laboratory of Molecular Pharmacology of the Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Han Liu
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Guojian Jiang
- Laboratory of Molecular Pharmacology of the Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Jennifer L. Meitzler
- Laboratory of Molecular Pharmacology of the Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Melinda Hollingshead
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Diana C. Haines
- Pathology/Histotechnology Laboratory, SAIC Frederick, Inc./Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD 21702
| | - Donna Butcher
- Pathology/Histotechnology Laboratory, SAIC Frederick, Inc./Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD 21702
| | - Krishnendu Roy
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - James H. Doroshow
- Laboratory of Molecular Pharmacology of the Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
28
|
Sham D, Wesley UV, Hristova M, van der Vliet A. ATP-mediated transactivation of the epidermal growth factor receptor in airway epithelial cells involves DUOX1-dependent oxidation of Src and ADAM17. PLoS One 2013; 8:e54391. [PMID: 23349873 PMCID: PMC3548788 DOI: 10.1371/journal.pone.0054391] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 12/11/2012] [Indexed: 11/26/2022] Open
Abstract
The respiratory epithelium is subject to continuous environmental stress and its responses to injury or infection are largely mediated by transactivation of the epidermal growth factor receptor (EGFR) and downstream signaling cascades. Based on previous studies indicating involvement of ATP-dependent activation of the NADPH oxidase homolog DUOX1 in epithelial wound responses, the present studies were performed to elucidate the mechanisms by which DUOX1-derived H2O2 participates in ATP-dependent redox signaling and EGFR transactivation. ATP-mediated EGFR transactivation in airway epithelial cells was found to involve purinergic P2Y2 receptor stimulation, and both ligand-dependent mechanisms as well as ligand-independent EGFR activation by the non-receptor tyrosine kinase Src. Activation of Src was also essential for ATP-dependent activation of the sheddase ADAM17, which is responsible for liberation and activation of EGFR ligands. Activation of P2Y2R results in recruitment of Src and DUOX1 into a signaling complex, and transient siRNA silencing or stable shRNA transfection established a critical role for DUOX1 in ATP-dependent activation of Src, ADAM17, EGFR, and downstream wound responses. Using thiol-specific biotin labeling strategies, we determined that ATP-dependent EGFR transactivation was associated with DUOX1-dependent oxidation of cysteine residues within Src as well as ADAM17. In aggregate, our findings demonstrate that DUOX1 plays a central role in overall epithelial defense responses to infection or injury, by mediating oxidative activation of Src and ADAM17 in response to ATP-dependent P2Y2R activation as a proximal step in EGFR transactivation and downstream signaling.
Collapse
Affiliation(s)
- Derek Sham
- Department of Pathology, College of Medicine, University of Vermont, Burlington, Vermont, United States of America
| | - Umadevi V. Wesley
- Department of Microbiology and Molecular Genetics, College of Medicine, University of Vermont, Burlington, Vermont, United States of America
- Vermont Lung Center, University of Vermont, Burlington, Vermont, United States of America
| | - Milena Hristova
- Department of Pathology, College of Medicine, University of Vermont, Burlington, Vermont, United States of America
| | - Albert van der Vliet
- Department of Pathology, College of Medicine, University of Vermont, Burlington, Vermont, United States of America
- * E-mail:
| |
Collapse
|
29
|
Zhou H, Liao J, Aloor J, Nie H, Wilson BC, Fessler MB, Gao HM, Hong JS. CD11b/CD18 (Mac-1) is a novel surface receptor for extracellular double-stranded RNA to mediate cellular inflammatory responses. THE JOURNAL OF IMMUNOLOGY 2012; 190:115-25. [PMID: 23209319 DOI: 10.4049/jimmunol.1202136] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
During viral infection, extracellular dsRNA is a potent signaling molecule that activates many innate immune cells, including macrophages. TLR3 is a well-known receptor for extracellular dsRNA, and internalization of extracellular dsRNA is required for endosomal TLR3 activation. Preserved inflammatory responses of TLR3-deficient macrophages to extracellular dsRNA strongly support a TLR3-independent mechanism in dsRNA-mediated immune responses. The present study demonstrated that CD11b/CD18 (Mac-1 [macrophage-1 Ag]), a surface integrin receptor, recognized extracellular dsRNA and induced macrophage immune responses. CD11b deficiency reduced inflammatory cytokine induction elicited by polyinosinic:polycytidylic acid (poly I:C; a synthetic dsRNA) in mouse sera and livers, as well as in cultured peritoneal macrophages. dsRNA-binding assay and confocal immunofluorescence showed that Mac-1, especially the CD11b subunit, interacted and colocalized with poly I:C on the surface of macrophages. Further mechanistic studies revealed two distinct signaling events following dsRNA recognition by Mac-1. First, Mac-1 facilitated poly I:C internalization through the activation of PI3K signaling and enhanced TLR3-dependent activation of IRF3 in macrophages. Second, poly I:C induced activation of phagocyte NADPH oxidase in a TLR3-independent, but Mac-1-dependent, manner. Subsequently, phagocyte NADPH oxidase-derived intracellular reactive oxygen species activated MAPK and NF-κB pathways. Our results indicate that extracellular dsRNA activates Mac-1 to enhance TLR3-dependent signaling and to trigger TLR3-independent, but Mac-1-dependent, inflammatory oxidative signaling, identifying a novel mechanistic basis for macrophages to recognize extracellular dsRNA to regulate innate immune responses. This study identifies Mac-1 as a novel surface receptor for extracellular dsRNA and implicates it as a potential therapeutic target for virus-related inflammatory diseases.
Collapse
Affiliation(s)
- Hui Zhou
- Laboratory of Toxicology and Pharmacology, National Institutes of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Xu C, Linderholm A, Grasberger H, Harper RW. Dual oxidase 2 bidirectional promoter polymorphisms confer differential immune responses in airway epithelia. Am J Respir Cell Mol Biol 2012; 47:484-90. [PMID: 22592922 DOI: 10.1165/rcmb.2012-0037oc] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The dual oxidase enzymes, DUOX, localized to the respiratory tract epithelium, are important components of innate host defense against bacteria and virus. However, little is known regarding the regulation of DUOX transcription. To better understand DUOX2-mediated mechanisms of antiviral host defense in the airway epithelium, we designed a bidirectional promoter luciferase reporter system to identify important cis-regulatory regions in the human DUOX2/DUOXA2 promoter. In this report, we demonstrate that the genomic region between the translation start sites of DUOX2 and DUOXA2 functions as a bidirectional promoter in human airway tissue. We also identified key regulatory regions on the DUOX2/DUOXA2 promoter that were necessary for both bidirectional and unidirectional transcriptional activity. Importantly, we discovered two functionally important single-nucleotide polymorphisms (SNPs) within the promoter that differentially regulated DUOX2/DUOXA2 transcription in response to exogenous double-stranded DNA. One of these SNPs, rs269855 (enriched in people of African descent), conferred the highest level of DUOX2 promoter activity. The clinical sequelae for individuals who carry this polymorphism remain to be determined.
Collapse
Affiliation(s)
- Changhong Xu
- Center for Comparative Respiratory Biology and Medicine, Division of Pulmonary and Critical Care Medicine, University of California at Davis, Davis, CA 95616, USA
| | | | | | | |
Collapse
|
31
|
Goutagny N, Estornes Y, Hasan U, Lebecque S, Caux C. Targeting pattern recognition receptors in cancer immunotherapy. Target Oncol 2012; 7:29-54. [PMID: 22399234 DOI: 10.1007/s11523-012-0213-1] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Accepted: 01/13/2012] [Indexed: 12/20/2022]
Abstract
Pattern recognition receptors (PRRs) are known for many years for their role in the recognition of microbial products and the subsequent activation of the immune system. The 2011 Nobel Prize for medicine indeed rewarded J. Hoffmann/B. Beutler and R. Steinman for their revolutionary findings concerning the activation of the immune system, thus stressing the significance of understanding the mechanisms of activation of the innate immunity. Such immunostimulatory activities are of major interest in the context of cancer to induce long-term antitumoral responses. Ligands for the toll-like receptors (TLRs), a well-known family of PRR, have been shown to have antitumoral activities in several cancers. Those ligands are now undergoing extensive clinical investigations both as immunostimulant molecules and as adjuvant along with vaccines. However, when considering the use of these ligands in tumor therapy, one shall consider the potential effect on the tumor cells themselves as well as on the entire organism. Recent data indeed demonstrate that TLR activation in tumor cells could trigger both pro- or antitumoral effect depending on the context. This review discusses this balance between the intrinsic activation of PRR in tumor cells and the extrinsic microenvironment activation in term of overall effect of PRR ligands on tumor development. We review recent advances in the field and underline appealing prospects for clinical development of PRR agonists in the light of our current knowledge on their expression and activation.
Collapse
Affiliation(s)
- Nadège Goutagny
- Université de Lyon, Université Lyon I, UMR INSERM 1052 CNRS 5286, Centre de Recherche en Cancérologie de Lyon, Centre Léon Bérard, Lyon, France.
| | | | | | | | | |
Collapse
|
32
|
Lin S, Liang Y, Zhang J, Bian C, Zhou H, Guo Q, Xiong Y, Li S, Su B. Microglial TIR-domain-containing adapter-inducing interferon-β (TRIF) deficiency promotes retinal ganglion cell survival and axon regeneration via nuclear factor-κB. J Neuroinflammation 2012; 9:39. [PMID: 22361049 PMCID: PMC3471332 DOI: 10.1186/1742-2094-9-39] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2011] [Accepted: 02/24/2012] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND TIR-domain-containing adapter-inducing interferon-β (TRIF) is the sole downstream adaptor of Toll-like receptor (TLR)3, which is one of the major signaling pathways in immune cells leading to neuroinflammation in the central nervous system. Overexpression of TRIF may lead to activation of inflammatory responses, and contribute to pathophysiological progression in both acute and chronic neurodegenerative retinal diseases. In the present study, was aimed to elucidate the contributions of TRIF to optic nerve (ON) regeneration and retinal ganglion cell (RGC) survival following injury to the ON, a widely studied model of central nervous system injury and of degenerative diseases such as glaucoma. METHODS We used retrograde labeling with a fluorochrome, hydroxystilbamidine (Fluorogold) to evaluate RGC survival, and immunostaining with growth-associated protein-43 to evaluate axon regeneration in an ON crush model. Changes in microglial cytokines following RGC injury was examined with ELISA and real-time PCR. In vivo studies were carried out in wild-type and trif-/- mice. A Transwell co-culture system and migration test were used to mimic the crosstalk between microglia and RGCs. TRIF-associated downstream adaptors were determined by western blotting. RESULTS Compared with wild-type (WT) mice, TRIF knockout (KO) mice displayed a robust ability to regenerate axons 3 or 7 days after nerve injury. In addition, RGC survival was considerably higher in trif-/- than in WT mice. ON lesion induced less microglial activation in trif-/- than in WT mice. and more WT microglia distorted and migrated toward the foramen opticum. In the transwell system, few trif-/- microglia migrated through the membrane when stimulated by the performed lesion on RGC axons in a transwell system. Inactivation of microglial cells in trif-/- mice was associated with reduced production of inflammatory cytokines, as detected with real-time RT-PCR and ELISA. Furthermore western blot analysis showed that activation of known downstream effectors of TRIF, including TBK1, IKKε and NF-κB, were significantly inhibited by TRIF deficiency. CONCLUSION Our results indicate that TRIF deficiency promotes ON axon regeneration by attenuating microglial activation and consequently reducing the release of harmful cytokines via NF-κB inactivation.
Collapse
Affiliation(s)
- Sen Lin
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing 400038, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Kleinman ME, Kaneko H, Cho WG, Dridi S, Fowler BJ, Blandford AD, Albuquerque RJC, Hirano Y, Terasaki H, Kondo M, Fujita T, Ambati BK, Tarallo V, Gelfand BD, Bogdanovich S, Baffi JZ, Ambati J. Short-interfering RNAs induce retinal degeneration via TLR3 and IRF3. Mol Ther 2011; 20:101-8. [PMID: 21988875 DOI: 10.1038/mt.2011.212] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The discovery of sequence-specific gene silencing by endogenous double-stranded RNAs (dsRNA) has propelled synthetic short-interfering RNAs (siRNAs) to the forefront of targeted pharmaceutical engineering. The first clinical trials utilized 21-nucleotide (nt) siRNAs for the treatment of neovascular age-related macular degeneration (AMD). Surprisingly, these compounds were not formulated for cell permeation, which is required for bona fide RNA interference (RNAi). We showed that these "naked" siRNAs suppress neovascularization in mice not via RNAi but via sequence-independent activation of cell surface Toll-like receptor-3 (TLR3). Here, we demonstrate that noninternalized siRNAs induce retinal degeneration in mice by activating surface TLR3 on retinal pigmented epithelial cells. Cholesterol conjugated siRNAs capable of cell permeation and triggering RNAi also induce the same phenotype. Retinal degeneration was not observed after treatment with siRNAs shorter than 21-nts. Other cytosolic dsRNA sensors are not critical to this response. TLR3 activation triggers caspase-3-mediated apoptotic death of the retinal pigment epithelium (RPE) via nuclear translocation of interferon regulatory factor-3. While this unexpected adverse effect of siRNAs has implications for future clinical trials, these findings also introduce a new preclinical model of geographic atrophy (GA), a late stage of dry AMD that causes blindness in millions worldwide.
Collapse
Affiliation(s)
- Mark E Kleinman
- Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, Kentucky 40536-0284, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Biology and signal transduction pathways of the Lymphotoxin-αβ/LTβR system. Cytokine Growth Factor Rev 2011; 22:301-10. [DOI: 10.1016/j.cytogfr.2011.11.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
35
|
Scheller J, Chalaris A, Garbers C, Rose-John S. ADAM17: a molecular switch to control inflammation and tissue regeneration. Trends Immunol 2011; 32:380-7. [PMID: 21752713 DOI: 10.1016/j.it.2011.05.005] [Citation(s) in RCA: 408] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 03/30/2011] [Accepted: 05/04/2011] [Indexed: 11/29/2022]
Abstract
A disintegrin and metalloproteinase 17 (ADAM17), also known as tumor necrosis factor-α converting enzyme (TACE), is a membrane-bound enzyme that cleaves cell surface proteins, such as cytokines (e.g. TNFα), cytokine receptors (e.g. IL-6R and TNF-R), ligands of ErbB (e.g. TGFα and amphiregulin) and adhesion proteins (e.g. L-selectin and ICAM-1). Here we examine how ectodomain shedding of these molecules can alter their biology and impact on immune and inflammatory responses and cancer development. Gene targeting of Adam17 is embryonic lethal, highlighting the importance of ectodomain shedding during development. Tissue-specific deletion, or hypomorphic knock-in, of Adam17 demonstrates an in vivo role for ADAM17 in controlling inflammation and tissue regeneration. The potential of ADAM17 as therapeutic target is also discussed.
Collapse
Affiliation(s)
- Jürgen Scheller
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | | | | | | |
Collapse
|
36
|
Yu M, Levine SJ. Toll-like receptor, RIG-I-like receptors and the NLRP3 inflammasome: key modulators of innate immune responses to double-stranded RNA viruses. Cytokine Growth Factor Rev 2011; 22:63-72. [PMID: 21466970 PMCID: PMC3109132 DOI: 10.1016/j.cytogfr.2011.02.001] [Citation(s) in RCA: 144] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Double-stranded RNA (dsRNA), the genetic material for many RNA viruses, induces robust host immune responses via pattern recognition receptors, which include Toll-like receptor 3 (TLR3), retinoic acid-inducible gene-I-like receptors (RLRs) and the multi-protein NLRP3 inflammasome complex. The engagement of dsRNA receptors or inflammasome activation by viral dsRNA initiates complex intracellular signaling cascades that play essential roles in inflammation and innate immune responses, as well as the resultant development of adaptive immunity. This review focuses on signaling pathways mediated by TLR3, RLRs and the NLRP3 inflammasome, as well as the potential use of agonists and antagonists that target these pathways to treat disease.
Collapse
Affiliation(s)
- Man Yu
- Cardiovascular and Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | | |
Collapse
|
37
|
van der Vliet A. Nox enzymes in allergic airway inflammation. Biochim Biophys Acta Gen Subj 2011; 1810:1035-44. [PMID: 21397663 DOI: 10.1016/j.bbagen.2011.03.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 02/28/2011] [Accepted: 03/03/2011] [Indexed: 12/30/2022]
Abstract
Chronic airway diseases such as asthma are linked to oxidative environmental factors and are associated with increased production of reactive oxygen species (ROS). Therefore, it is commonly assumed that oxidative stress is an important contributing factor to asthma disease pathogenesis and that antioxidant strategies may be useful in the treatment of asthma. A primary source of ROS production in biological systems is NADPH oxidase (NOX), originally associated primarily with inflammatory cells but currently widely appreciated as an important enzyme system in many cell types, with a wide array of functional properties ranging from antimicrobial host defense to immune regulation and cell proliferation, differentiation and apoptosis. Given the complex nature of asthma disease pathology, involving many lung cell types that all express NOX homologs, it is not surprising that the contributions of NOX-derived ROS to various aspects of asthma development and progression are highly diverse and multifactorial. It is the purpose of the present review to summarize the current knowledge with respect to the functional aspects of NOX enzymes in various pulmonary cell types, and to discuss their potential importance in asthma pathogenesis. This article is part of a Special Issue entitled: Biochemistry of Asthma.
Collapse
Affiliation(s)
- Albert van der Vliet
- Department of Pathology, Vermont Lung Cancer, College of Medicine, Universitu of Vermont, Burlington, VT 05405, USA.
| |
Collapse
|