1
|
Cheng ZL, Ma TT, Gao ZS, Ming WH, Yang MR, Wang XY. Global Ragweed Allergy: Molecular Allergens and Integrated Control Strategies. J Asthma Allergy 2025; 18:403-416. [PMID: 40099306 PMCID: PMC11911648 DOI: 10.2147/jaa.s506897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 02/25/2025] [Indexed: 03/19/2025] Open
Abstract
Originally native to North America, ragweed has become a pervasive invasive species worldwide over the past century, posing a substantial public health risk as a potent allergen. This review explores the key allergens found in common ragweed, assesses global trends in ragweed sensitization, particularly in China, and examines various therapeutic and biological control methods. There are currently 11 identified ragweed allergens, with Amb a 1 and 11 recognized as the primary triggers. Epidemiological data indicate higher rates of sensitization in North America and Europe, with a growing trend observed in China. Ragweed-induced type I hypersensitivity typically presents as seasonal allergic rhinitis, conjunctivitis, and asthma symptoms. Strategies for managing ragweed allergy include allergen avoidance, pharmacotherapy, and allergen immunotherapy (AIT). Biological control using Ophraella communa and Epiblema strenuana effectively limits ragweed proliferation. Accurate allergen identification and personalized treatment can significantly reduce the health burden associated with ragweed. An in-depth understanding of ragweed sensitization patterns and biological control measures is essential for the long-term prevention of ragweed allergies.
Collapse
Affiliation(s)
- Zi-Lu Cheng
- Department of Allergy, Beijing Shijitan Hospital, Capital Medical University, Beijing, People's Republic of China
- Allergy Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Ting-Ting Ma
- Department of Allergy, Beijing Shijitan Hospital, Capital Medical University, Beijing, People's Republic of China
- Allergy Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Zhong-Shan Gao
- Allergy Research Center, Zhejiang University, Hangzhou, People's Republic of China
- Institute of Immunology, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Wen-Hua Ming
- Department of Allergy, Beijing Shijitan Hospital, Capital Medical University, Beijing, People's Republic of China
- Allergy Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Mei-Rong Yang
- Allergy Department, The Second People's Hospital Ordos, Ordos, People's Republic of China
| | - Xue-Yan Wang
- Department of Allergy, Beijing Shijitan Hospital, Capital Medical University, Beijing, People's Republic of China
- Allergy Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
2
|
Augustin S, Eichhorn T, Wald M, Fischer F, Jutel M, Pfaar O, Willers C. Improved quality control of allergen products: Assessing the molecular allergen composition by mass spectrometry. Allergy 2024; 79:3489-3500. [PMID: 39445581 DOI: 10.1111/all.16339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 08/15/2024] [Accepted: 09/09/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND Natural allergen sources contain a variety of allergens, against which allergic subjects have developed individual sensitization profiles. Ideal allergen products for skin prick testing (SPT) and allergen immunotherapy (AIT) should contain the complete set of allergens of the respective allergen sources to cover all sensitization profiles. However, commercially available allergen products were shown to vary regarding their allergen composition. METHODS The qualitative allergen composition of different SPT and AIT products produced from pollen of grasses, birch, mugwort and from house dust mites was assessed by a consistent high-resolution liquid chromatography-coupled tandem mass spectrometry method (LC-MS/MS). RESULTS All major, mid-tier and most minor allergens were detected in each of the investigated three batches of SPT and AIT products, demonstrating the completeness of the allergen composition and a high degree of batch-to-batch consistency. CONCLUSION This is the first study using a single consistent high-resolution LC-MS/MS method to provide solid data on the qualitative allergen composition of SPT and AIT products manufactured from various common allergen sources. The applied method showed high reliability in qualitative batch-to-batch consistency testing and can be performed fast and with high throughput. High-resolution LC-MS/MS is applicable for process development and quality control to ensure market availability of allergen products corresponding to the composition of the respective natural allergen sources.
Collapse
Affiliation(s)
| | | | | | | | - Marek Jutel
- ALL-MED Medical Research Institute, Wroclaw, Poland
- Department of Clinical Immunology, Wroclaw Medical University, Wroclaw, Poland
| | - Oliver Pfaar
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Rhinology and Allergy, University Hospital Marburg, Philipps-Universität Marburg, Marburg, Germany
| | | |
Collapse
|
3
|
Öztemiz Topcu E, Gadermaier G. To stay or not to stay intact as an allergen: the endolysosomal degradation assay used as tool to analyze protein immunogenicity and T cell epitopes. FRONTIERS IN ALLERGY 2024; 5:1440360. [PMID: 39071040 PMCID: PMC11272489 DOI: 10.3389/falgy.2024.1440360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 06/25/2024] [Indexed: 07/30/2024] Open
Abstract
Antigen uptake and processing of exogenous proteins is critical for adaptive immunity, particularly for T helper cell activation. Proteins undergo distinct proteolytic processing in endolysosomal compartments of antigen-presenting cells. The resulting peptides are presented on MHC class II molecules and specifically recognized by T cells. The in vitro endolysosomal degradation assay mimics antigen processing by incubating a protein of interest with a protease cocktail derived from the endolysosomal compartments of antigen presenting cells. The kinetics of protein degradation is monitored by gel electrophoresis and allows calculation of a protein's half-life and thus endolysosomal stability. Processed peptides are analyzed by mass spectrometry and abundant peptide clusters are shown to harbor T cell epitopes. The endolysosomal degradation assay has been widely used to study allergens, which are IgE-binding proteins involved in type I hypersensitivity. In this review article, we provide the first comprehensive overview of the endolysosomal degradation of 29 isoallergens and variants originating from the PR-10, Ole e 1-like, pectate lyase, defensin polyproline-linked, non-specific lipid transfer, mite group 1, 2, and 5, and tropomyosin protein families. The assay method is described in detail and suggestions for improved standardization and reproducibility are provided. The current hypothesis implies that proteins with high endolysosomal stability can induce an efficient immune response, whereas highly unstable proteins are degraded early during antigen processing and therefore not efficient for MHC II peptide presentation. To validate this concept, systematic analyses of high and low allergenic representatives of protein families should be investigated. In addition to purified molecules, allergen extracts should be degraded to analyze potential matrix effects and gastrointestinal proteolysis of food allergens. In conclusion, individual protein susceptibility and peptides obtained from the endolysosomal degradation assay are powerful tools for understanding protein immunogenicity and T cell reactivity. Systematic studies and linkage with in vivo sensitization data will allow the establishment of (machine-learning) tools to aid prediction of immunogenicity and allergenicity. The orthogonal method could in the future be used for risk assessment of novel foods and in the generation of protein-based immunotherapeutics.
Collapse
|
4
|
Yang DZ, Tang J, Cheng YL, Yang YS, Wei JF, Sun JL, Xu ZQ. Identification and Characterization of Pectate Lyase as a Novel Allergen in Artemisia sieversiana Pollen. Int Arch Allergy Immunol 2024; 185:1019-1032. [PMID: 38897183 DOI: 10.1159/000539375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 05/14/2024] [Indexed: 06/21/2024] Open
Abstract
INTRODUCTION Artemisia species are widely spread in north hemisphere. Artemisia sieversiana pollen is one of the common pollen allergens in the north of China. At present, seven allergens were identified and had been listed officially from A. sieversiana pollen, but the remaining allergens are still insufficiently studied, which need to be found. METHODS Pectate lyase was purified from the extracts of A. sieversiana pollen by anion exchange, size exclusion, and HPLC-hydrophobic interaction chromatography. The gene of A. sieversiana pectate lyase (Art si pectate lyase) was cloned and expressed in Escherichia coli. The enzyme activity and circular dichroism (CD) spectrum of natural and recombinant proteins were analyzed. The allergenicity of Art si pectate lyase was characterized by enzyme-linked immunosorbent assay (ELISA), Western blot, inhibition ELISA, and basophil activation test. The allergen's physicochemical properties, three-dimensional structure, sequence profiles with homologous allergens and phylogenetic tree were analyzed by in silico methods. RESULTS Natural Art si pectate lyase (nArt si pectate lyase) was purified from A. sieversiana pollen extracts by three chromatographic strategies. The cDNA sequence of Art si pectate lyase had a 1191-bp open reading frame encoding 396 amino acids. Both natural and recombinant pectate lyase (rArt si pectate lyase) exhibited similar CD spectrum, and nArt si pectate lyase had higher enzymatic activity. Moreover, the specific immunoglobulin E (IgE) binding rate against nArt si pectate lyase and rArt si pectate lyase was determined as 40% (6/15) in patients' serum with Artemisia species pollen allergy by ELISA. The nArt si pectate lyase and rArt si pectate lyase could inhibit 76.11% and 47.26% of IgE binding activities to the pollen extracts, respectively. Art si pectate lyase was also confirmed to activate patients' basophils. Its structure contains a predominant motif of classic parallel helical core, consisting of three parallel β-sheets, and two highly conserved features (vWiDH, RxPxxR) which may contribute to pectate lyase activity. Moreover, Art si pectate lyase shared the highest sequence identity of 73.0% with Art v 6 among currently recognized pectate lyase allergen, both were clustered into the same branch in the phylogenetic tree. CONCLUSION In this study, pectate lyase was identified and comprehensively characterized as a novel allergen in A. sieversiana pollen. The findings enriched the allergen information for this pollen and promoted the development of component-resolved diagnosis and molecular therapy of A. sieversiana pollen allergy.
Collapse
Affiliation(s)
- De-Zheng Yang
- Department of Pharmacy, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Jian Tang
- Department of Pharmacy, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Ya-Li Cheng
- Department of Allergy, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yong-Shi Yang
- Department of Allergy, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Ji-Fu Wei
- Department of Pharmacy, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
- Research Division of Clinical Pharmacology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- National Vaccine Innovation Platform, Nanjing Medical University, Nanjing, China
| | - Jin-Lyu Sun
- Department of Allergy, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Zhi-Qiang Xu
- Research Division of Clinical Pharmacology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- National Vaccine Innovation Platform, Nanjing Medical University, Nanjing, China
| |
Collapse
|
5
|
Dramburg S, Hilger C, Santos AF, de Las Vecillas L, Aalberse RC, Acevedo N, Aglas L, Altmann F, Arruda KL, Asero R, Ballmer-Weber B, Barber D, Beyer K, Biedermann T, Bilo MB, Blank S, Bosshard PP, Breiteneder H, Brough HA, Bublin M, Campbell D, Caraballo L, Caubet JC, Celi G, Chapman MD, Chruszcz M, Custovic A, Czolk R, Davies J, Douladiris N, Eberlein B, Ebisawa M, Ehlers A, Eigenmann P, Gadermaier G, Giovannini M, Gomez F, Grohman R, Guillet C, Hafner C, Hamilton RG, Hauser M, Hawranek T, Hoffmann HJ, Holzhauser T, Iizuka T, Jacquet A, Jakob T, Janssen-Weets B, Jappe U, Jutel M, Kalic T, Kamath S, Kespohl S, Kleine-Tebbe J, Knol E, Knulst A, Konradsen JR, Korošec P, Kuehn A, Lack G, Le TM, Lopata A, Luengo O, Mäkelä M, Marra AM, Mills C, Morisset M, Muraro A, Nowak-Wegrzyn A, Nugraha R, Ollert M, Palosuo K, Pastorello EA, Patil SU, Platts-Mills T, Pomés A, Poncet P, Potapova E, Poulsen LK, Radauer C, Radulovic S, Raulf M, Rougé P, Sastre J, Sato S, Scala E, Schmid JM, Schmid-Grendelmeier P, Schrama D, Sénéchal H, Traidl-Hoffmann C, Valverde-Monge M, van Hage M, van Ree R, Verhoeckx K, Vieths S, Wickman M, Zakzuk J, Matricardi PM, et alDramburg S, Hilger C, Santos AF, de Las Vecillas L, Aalberse RC, Acevedo N, Aglas L, Altmann F, Arruda KL, Asero R, Ballmer-Weber B, Barber D, Beyer K, Biedermann T, Bilo MB, Blank S, Bosshard PP, Breiteneder H, Brough HA, Bublin M, Campbell D, Caraballo L, Caubet JC, Celi G, Chapman MD, Chruszcz M, Custovic A, Czolk R, Davies J, Douladiris N, Eberlein B, Ebisawa M, Ehlers A, Eigenmann P, Gadermaier G, Giovannini M, Gomez F, Grohman R, Guillet C, Hafner C, Hamilton RG, Hauser M, Hawranek T, Hoffmann HJ, Holzhauser T, Iizuka T, Jacquet A, Jakob T, Janssen-Weets B, Jappe U, Jutel M, Kalic T, Kamath S, Kespohl S, Kleine-Tebbe J, Knol E, Knulst A, Konradsen JR, Korošec P, Kuehn A, Lack G, Le TM, Lopata A, Luengo O, Mäkelä M, Marra AM, Mills C, Morisset M, Muraro A, Nowak-Wegrzyn A, Nugraha R, Ollert M, Palosuo K, Pastorello EA, Patil SU, Platts-Mills T, Pomés A, Poncet P, Potapova E, Poulsen LK, Radauer C, Radulovic S, Raulf M, Rougé P, Sastre J, Sato S, Scala E, Schmid JM, Schmid-Grendelmeier P, Schrama D, Sénéchal H, Traidl-Hoffmann C, Valverde-Monge M, van Hage M, van Ree R, Verhoeckx K, Vieths S, Wickman M, Zakzuk J, Matricardi PM, Hoffmann-Sommergruber K. EAACI Molecular Allergology User's Guide 2.0. Pediatr Allergy Immunol 2023; 34 Suppl 28:e13854. [PMID: 37186333 DOI: 10.1111/pai.13854] [Show More Authors] [Citation(s) in RCA: 96] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/05/2022] [Indexed: 05/17/2023]
Abstract
Since the discovery of immunoglobulin E (IgE) as a mediator of allergic diseases in 1967, our knowledge about the immunological mechanisms of IgE-mediated allergies has remarkably increased. In addition to understanding the immune response and clinical symptoms, allergy diagnosis and management depend strongly on the precise identification of the elicitors of the IgE-mediated allergic reaction. In the past four decades, innovations in bioscience and technology have facilitated the identification and production of well-defined, highly pure molecules for component-resolved diagnosis (CRD), allowing a personalized diagnosis and management of the allergic disease for individual patients. The first edition of the "EAACI Molecular Allergology User's Guide" (MAUG) in 2016 rapidly became a key reference for clinicians, scientists, and interested readers with a background in allergology, immunology, biology, and medicine. Nevertheless, the field of molecular allergology is moving fast, and after 6 years, a new EAACI Taskforce was established to provide an updated document. The Molecular Allergology User's Guide 2.0 summarizes state-of-the-art information on allergen molecules, their clinical relevance, and their application in diagnostic algorithms for clinical practice. It is designed for both, clinicians and scientists, guiding health care professionals through the overwhelming list of different allergen molecules available for testing. Further, it provides diagnostic algorithms on the clinical relevance of allergenic molecules and gives an overview of their biology, the basic mechanisms of test formats, and the application of tests to measure allergen exposure.
Collapse
Affiliation(s)
- Stephanie Dramburg
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Christiane Hilger
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Alexandra F Santos
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
- Children's Allergy Service, Evelina London, Guy's and St Thomas' Hospital, London, United Kingdom
| | | | - Rob C Aalberse
- Sanquin Research, Dept Immunopathology, University of Amsterdam, Amsterdam, The Netherlands
- Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Nathalie Acevedo
- Institute for Immunological Research, University of Cartagena, Cartagena de Indias, Colombia, Colombia
| | - Lorenz Aglas
- Department of Biosciences and Medical Biology, Paris Lodron University Salzburg, Salzburg, Austria
| | - Friedrich Altmann
- Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Karla L Arruda
- Department of Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Sao Paulo, Brasil, Brazil
| | - Riccardo Asero
- Ambulatorio di Allergologia, Clinica San Carlo, Paderno Dugnano, Italy
| | - Barbara Ballmer-Weber
- Klinik für Dermatologie und Allergologie, Kantonsspital St. Gallen, St. Gallen, Switzerland
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Domingo Barber
- Institute of Applied Molecular Medicine Nemesio Diez (IMMAND), Department of Basic Medical Sciences, Facultad de Medicina, Universidad San Pablo CEU, CEU Universities, Madrid, Spain
- RETIC ARADyAL and RICORS Enfermedades Inflamatorias (REI), Madrid, Spain
| | - Kirsten Beyer
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Tilo Biedermann
- Department of Dermatology and Allergy Biederstein, School of Medicine, Technical University Munich, Munich, Germany
| | - Maria Beatrice Bilo
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
- Allergy Unit Department of Internal Medicine, University Hospital Ospedali Riuniti di Ancona, Torrette, Italy
| | - Simon Blank
- Center of Allergy and Environment (ZAUM), Technical University of Munich, School of Medicine and Helmholtz Center Munich, German Research Center for Environmental Health, Munich, Germany
| | - Philipp P Bosshard
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Heimo Breiteneder
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Helen A Brough
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- Children's Allergy Service, Evelina London, Guy's and St Thomas' Hospital, London, United Kingdom
| | - Merima Bublin
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Dianne Campbell
- Department of Allergy and Immunology, Children's Hospital at Westmead, Sydney Children's Hospitals Network, Sydney, New South Wales, Australia
- Child and Adolescent Health, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Luis Caraballo
- Institute for Immunological Research, University of Cartagena, Cartagena de Indias, Colombia, Colombia
| | - Jean Christoph Caubet
- Pediatric Allergy Unit, Department of Child and Adolescent, University Hospitals of Geneva, Geneva, Switzerland
| | - Giorgio Celi
- Centro DH Allergologia e Immunologia Clinica ASST- MANTOVA (MN), Mantova, Italy
| | | | - Maksymilian Chruszcz
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, USA
| | - Adnan Custovic
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Rebecca Czolk
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Janet Davies
- Queensland University of Technology, Centre for Immunology and Infection Control, School of Biomedical Sciences, Herston, Queensland, Australia
- Metro North Hospital and Health Service, Emergency Operations Centre, Herston, Queensland, Australia
| | - Nikolaos Douladiris
- Allergy Department, 2nd Paediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| | - Bernadette Eberlein
- Department of Dermatology and Allergy Biederstein, School of Medicine, Technical University Munich, Munich, Germany
| | - Motohiro Ebisawa
- Clinical Research Center for Allergy and Rheumatology, National Hospital Organization, Sagamihara National Hospital, Kanagawa, Japan
| | - Anna Ehlers
- Chemical Biology and Drug Discovery, Utrecht University, Utrecht, The Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Immunology and Dermatology/ Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Philippe Eigenmann
- Pediatric Allergy Unit, Department of Child and Adolescent, University Hospitals of Geneva, Geneva, Switzerland
| | - Gabriele Gadermaier
- Department of Biosciences and Medical Biology, Paris Lodron University Salzburg, Salzburg, Austria
| | - Mattia Giovannini
- Allergy Unit, Department of Pediatrics, Meyer Children's University Hospital, Florence, Italy
| | - Francisca Gomez
- Allergy Unit IBIMA-Hospital Regional Universitario de Malaga, Malaga, Spain
- Spanish Network for Allergy research RETIC ARADyAL, Malaga, Spain
| | - Rebecca Grohman
- NYU Langone Health, Department of Internal Medicine, New York, New York, USA
| | - Carole Guillet
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Christine Hafner
- Department of Dermatology, University Hospital St. Poelten, Karl Landsteiner University of Health Sciences, St. Poelten, Austria
| | - Robert G Hamilton
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Michael Hauser
- Department of Biosciences and Medical Biology, Paris Lodron University Salzburg, Salzburg, Austria
| | - Thomas Hawranek
- Department of Dermatology and Allergology, Paracelsus Private Medical University, Salzburg, Austria
| | - Hans Jürgen Hoffmann
- Institute for Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
- Department of Respiratory Diseases and Allergy, Aarhus University Hospital, Aarhus, Denmark
| | | | - Tomona Iizuka
- Laboratory of Protein Science, Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Alain Jacquet
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Thilo Jakob
- Department of Dermatology and Allergology, University Medical Center, Justus Liebig University Gießen, Gießen, Germany
| | - Bente Janssen-Weets
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Odense Research Center for Anaphylaxis, University of Southern Denmark, Odense, Denmark
| | - Uta Jappe
- Division of Clinical and Molecular Allergology, Priority Research Area Asthma and Allergy, Research Center Borstel, Borstel, Germany
- Leibniz Lung Center, Airway Research Center North (ARCN), Member of the German Center for Lung Research, Germany
- Interdisciplinary Allergy Outpatient Clinic, Dept. of Pneumology, University of Lübeck, Lübeck, Germany
| | - Marek Jutel
- Department of Clinical Immunology, Wroclaw Medical University, Wroclaw, Poland
| | - Tanja Kalic
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
- Department of Dermatology, University Hospital St. Poelten, Karl Landsteiner University of Health Sciences, St. Poelten, Austria
| | - Sandip Kamath
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, Australia
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
| | - Sabine Kespohl
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr- Universität Bochum, Bochum, Germany
| | - Jörg Kleine-Tebbe
- Allergy & Asthma Center Westend, Outpatient Clinic and Clinical Research Center, Berlin, Germany
| | - Edward Knol
- Department of Immunology and Dermatology/ Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - André Knulst
- Department of Immunology and Dermatology/ Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Jon R Konradsen
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
- Pediatric Allergy and Pulmonology Unit at Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Peter Korošec
- University Clinic of Respiratory and Allergic Diseases Golnik, Golnik, Slovenia
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Annette Kuehn
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Gideon Lack
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
- Children's Allergy Service, Evelina London, Guy's and St Thomas' Hospital, London, United Kingdom
| | - Thuy-My Le
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Immunology and Dermatology/ Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Andreas Lopata
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, Australia
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
| | - Olga Luengo
- RETIC ARADyAL and RICORS Enfermedades Inflamatorias (REI), Madrid, Spain
- Allergy Section, Internal Medicine Department, Vall d'Hebron University Hospital, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Mika Mäkelä
- Division of Allergy, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
- Pediatric Department, Skin and Allergy Hospital, Helsinki University Central Hospital, Helsinki, Finland
| | | | - Clare Mills
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK
| | | | - Antonella Muraro
- Food Allergy Referral Centre, Department of Woman and Child Health, Padua University Hospital, Padua, Italy
| | - Anna Nowak-Wegrzyn
- Division of Pediatric Allergy and Immunology, NYU Grossman School of Medicine, Hassenfeld Children's Hospital, New York, New York, USA
- Department of Pediatrics, Gastroenterology and Nutrition, Collegium Medicum, University of Warmia and Mazury, Olsztyn, Poland
| | - Roni Nugraha
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
- Department of Aquatic Product Technology, Faculty of Fisheries and Marine Science, IPB University, Bogor, Indonesia
| | - Markus Ollert
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Odense Research Center for Anaphylaxis, University of Southern Denmark, Odense, Denmark
| | - Kati Palosuo
- Department of Allergology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | | | - Sarita Ulhas Patil
- Division of Rheumatology, Allergy and Immunology, Departments of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Division of Allergy and Immunology, Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Thomas Platts-Mills
- Division of Allergy and Clinical Immunology, University of Virginia, Charlottesville, Virginia, USA
| | | | - Pascal Poncet
- Institut Pasteur, Immunology Department, Paris, France
- Allergy & Environment Research Team Armand Trousseau Children Hospital, APHP, Paris, France
| | - Ekaterina Potapova
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Lars K Poulsen
- Allergy Clinic, Department of Dermatology and Allergy, Copenhagen University Hospital-Herlev and Gentofte, Copenhagen, Denmark
| | - Christian Radauer
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Suzana Radulovic
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- Children's Allergy Service, Evelina London, Guy's and St Thomas' Hospital, London, United Kingdom
| | - Monika Raulf
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr- Universität Bochum, Bochum, Germany
| | - Pierre Rougé
- UMR 152 PharmaDev, IRD, Université Paul Sabatier, Faculté de Pharmacie, Toulouse, France
| | - Joaquin Sastre
- Allergy Service, Fundación Jiménez Díaz; CIBER de Enfermedades Respiratorias (CIBERES); Faculty of Medicine, Universidad Autonoma de Madrid, Madrid, Spain
| | - Sakura Sato
- Allergy Department, 2nd Paediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| | - Enrico Scala
- Clinical and Laboratory Molecular Allergy Unit - IDI- IRCCS, Fondazione L M Monti Rome, Rome, Italy
| | - Johannes M Schmid
- Department of Respiratory Diseases and Allergy, Aarhus University Hospital, Aarhus, Denmark
| | - Peter Schmid-Grendelmeier
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
- Christine Kühne Center for Allergy Research and Education CK-CARE, Davos, Switzerland
| | - Denise Schrama
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, Faro, Portugal
| | - Hélène Sénéchal
- Allergy & Environment Research Team Armand Trousseau Children Hospital, APHP, Paris, France
| | - Claudia Traidl-Hoffmann
- Christine Kühne Center for Allergy Research and Education CK-CARE, Davos, Switzerland
- Department of Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Marcela Valverde-Monge
- Allergy Service, Fundación Jiménez Díaz; CIBER de Enfermedades Respiratorias (CIBERES); Faculty of Medicine, Universidad Autonoma de Madrid, Madrid, Spain
| | - Marianne van Hage
- Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Ronald van Ree
- Department of Experimental Immunology and Department of Otorhinolaryngology, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Kitty Verhoeckx
- Department of Immunology and Dermatology/ Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Stefan Vieths
- Division of Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | - Magnus Wickman
- Department of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Josefina Zakzuk
- Institute for Immunological Research, University of Cartagena, Cartagena de Indias, Colombia, Colombia
| | - Paolo M Matricardi
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | | |
Collapse
|
6
|
Ragweed pollen concentration predicts seasonal rhino-conjunctivitis and asthma severity in patients allergic to ragweed. Sci Rep 2022; 12:15921. [PMID: 36151263 PMCID: PMC9508093 DOI: 10.1038/s41598-022-20069-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
In this work, we investigate the correlation between ragweed pollen concentration and conjunctival, nasal, and asthma symptom severity in patients allergic to ragweed pollen using ambient pollen exposure in the Milan area during the 2014 ragweed season We calculate the pollen/symptom thresholds and we assess the effectiveness of ragweed allergen immunotherapy (AIT). A total of 66 participants allergic to ragweed (Amb a 1) were enrolled in the study and divided into two groups: AIT treated (24) and no AIT treated (42). Pollen counts and daily symptom/medication patient diaries were kept. Autoregressive distributed lag models were used to develop predictive models of daily symptoms and evaluate the short-term effects of temporal variations in pollen concentration on the onset of symptoms. We found significant correlations between ragweed pollen load and the intensity of symptoms for all three symptom categories, both in no AIT treated (τ = 0.341, 0.352, and 0.721; and ρ = 0.48, 0.432, and 0.881; p-value < 0.001) and in AIT treated patients (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\tau$$\end{document}τ= 0.46, 0.610, and 0.66; and ρ = 0.692, 0.805, and 0.824; p-value < 0.001). In both groups, we observed a positive correlation between the number of symptoms reported and drug use. Mean symptom levels were significantly higher in no AIT treated than in AIT treated patients (p-value < 0.001) for all symptom categories. Pollen concentration thresholds for the four symptom severity levels (low, medium–low, medium–high and high) were calculated. Ragweed pollen concentration is predictive of symptom severity in patients with a ragweed (Amb a 1) allergy. Patients treated with AIT had significantly reduced mean symptom levels compared to those without AIT.
Collapse
|
7
|
Liu SH, Kazemi S, Karrer G, Bellaire A, Weckwerth W, Damkjaer J, Hoffmann O, Epstein MM. Influence of the environment on ragweed pollen and their sensitizing capacity in a mouse model of allergic lung inflammation. FRONTIERS IN ALLERGY 2022; 3:854038. [PMID: 35991309 PMCID: PMC9390857 DOI: 10.3389/falgy.2022.854038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 07/01/2022] [Indexed: 11/23/2022] Open
Abstract
Common ragweed (Ambrosia artemisiifolia) is an invasive plant with allergenic pollen. Due to environmental changes, ragweed pollen (RWP) airborne concentrations are predicted to quadruple in Europe by 2050 and more than double allergic sensitization of Europeans by 2060. We developed an experimental RWP model of allergy in BALB/c mice to evaluate how the number of RWP and how RWP collected from different geographical environments influence disease. We administered RWP six times over 3 weeks intranasally to the mice and then evaluated disease parameters 72 h later or allowed the mice to recover for at least 90 days before rechallenging them with RWP to elicit a disease relapse. Doses over 300 pollen grains induced lung eosinophilia. Higher doses of 3,000 and 30,000 pollen grains increased both eosinophils and neutrophils and induced disease relapses. RWP harvested from diverse geographical regions induced a spectrum of allergic lung disease from mild inflammation to moderate eosinophilic and severe mixed eosinophilic-neutrophilic lung infiltrates. After a recovery period, mice rechallenged with pollen developed a robust disease relapse. We found no correlation between Amb a 1 content, the major immunodominant allergen, endotoxin content, or RWP structure with disease severity. These results demonstrate that there is an environmental impact on RWP with clinical consequences that may underlie the increasing sensitization rates and the severity of pollen-induced disease exacerbation in patients. The multitude of diverse environmental factors governing distinctive patterns of disease induced by RWP remains unclear. Further studies are necessary to elucidate how the environment influences the complex interaction between RWP and human health.
Collapse
Affiliation(s)
- Shu-Hua Liu
- Laboratory of Experimental Allergy, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Sahar Kazemi
- Laboratory of Experimental Allergy, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Gerhard Karrer
- Institute of Botany, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Anke Bellaire
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Wolfram Weckwerth
- Department of Functional and Evolutionary Ecology, Molecular Systems Biology, University of Vienna, Vienna, Austria
- Vienna Metabolomics Center (VIME), University of Vienna, Vienna, Austria
| | | | - Oskar Hoffmann
- Division of Pharmacology & Toxicology, Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Michelle M. Epstein
- Laboratory of Experimental Allergy, Department of Dermatology, Medical University of Vienna, Vienna, Austria
- *Correspondence: Michelle M. Epstein
| |
Collapse
|
8
|
Comprehensive Study on Key Pollen Allergens. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2022. [DOI: 10.22207/jpam.16.1.26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pollens are typically the primary reason for seasonal hypersensitivity caused in many people that are released by a hundred different species of plants for fertilization. Not all pollens are the same or have the same effect on human beings, there are those worse than others. The human body works out on a defence mechanism by creating certain reactions against those offensive pollens as a response by the immune system. The allergic reactions include sneezing, coughing, wheezing, itching, red-watery swelled eyes, runny nose, inflammation in the nasal passage frequently leading to rhinitis, asthma, skin irritation, and other respiratory disorders. This study is intended to acquire knowledge about a few plants with high allergenic properties along with their major allergens. It is evident that the pollination of the plants varies from season to season as it depends on various factors such as species, weather, and geographical location. Understanding these high allergenic plants with respect to their varying factors and cross-reacting properties is the purpose of this study. It is an effort to obtain deeper insights into these common pollen offenders.
Collapse
|
9
|
Gu C, Upchurch K, Horton J, Wiest M, Zurawski S, Millard M, Kane RR, Joo H, Miller LA, Oh S. Dectin-1 Controls TSLP-Induced Th2 Response by Regulating STAT3, STAT6, and p50-RelB Activities in Dendritic Cells. Front Immunol 2021; 12:678036. [PMID: 34305908 PMCID: PMC8293820 DOI: 10.3389/fimmu.2021.678036] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/16/2021] [Indexed: 12/12/2022] Open
Abstract
The epithelium-associated cytokine thymic stromal lymphopoietin (TSLP) can induce OX40L and CCL17 expression by myeloid dendritic cells (mDCs), which contributes to aberrant Th2-type immune responses. Herein, we report that such TSLP-induced Th2-type immune response can be effectively controlled by Dectin-1, a C-type lectin receptor expressed by mDCs. Dectin-1 stimulation induced STAT3 activation and decreased the transcriptional activity of p50-RelB, both of which resulted in reduced OX40L expression on TSLP-activated mDCs. Dectin-1 stimulation also suppressed TSLP-induced STAT6 activation, resulting in decreased expression of the Th2 chemoattractant CCL17. We further demonstrated that Dectin-1 activation was capable of suppressing ragweed allergen (Amb a 1)-specific Th2-type T cell response in allergy patients ex vivo and house dust mite allergen (Der p 1)-specific IgE response in non-human primates in vivo. Collectively, this study provides a molecular explanation of Dectin-1-mediated suppression of Th2-type inflammatory responses and suggests Dectin-1 as a target for controlling Th2-type inflammation.
Collapse
Affiliation(s)
- Chao Gu
- Department of Immunology, Mayo Clinic, Scottsdale, AZ, United States
| | - Katherine Upchurch
- Institute of Biomedical Studies, Baylor University, Waco, TX, United States
| | - Joshua Horton
- Institute of Biomedical Studies, Baylor University, Waco, TX, United States
| | - Mathew Wiest
- Department of Immunology, Mayo Clinic, Scottsdale, AZ, United States.,Institute of Biomedical Studies, Baylor University, Waco, TX, United States
| | | | - Mark Millard
- Department of Pulmonology, Baylor University Medical Center, Dallas, TX, United States
| | - Robert R Kane
- Institute of Biomedical Studies, Baylor University, Waco, TX, United States.,Department of Chemistry and Biochemistry, Baylor University, Waco, TX, United States
| | - HyeMee Joo
- Department of Immunology, Mayo Clinic, Scottsdale, AZ, United States.,Institute of Biomedical Studies, Baylor University, Waco, TX, United States
| | - Lisa A Miller
- California National Primate Research Center, University of California, Davis, Davis, CA, United States
| | - SangKon Oh
- Department of Immunology, Mayo Clinic, Scottsdale, AZ, United States.,Institute of Biomedical Studies, Baylor University, Waco, TX, United States
| |
Collapse
|
10
|
Ghosh N, Sircar G, Asam C, Wolf M, Hauser M, Saha S, Ferreira F, Bhattacharya SG. Purification and biochemical characterization of Hel a 6, a cross-reactive pectate lyase allergen from Sunflower (Helianthus annuus L.) pollen. Sci Rep 2020; 10:20177. [PMID: 33214682 PMCID: PMC7677321 DOI: 10.1038/s41598-020-77247-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 11/06/2020] [Indexed: 11/09/2022] Open
Abstract
Sunflower pollen was reported to contain respiratory allergens responsible for occupational allergy and pollinosis. The present study describes the comprehensive characterization of a major sunflower allergen Hel a 6. Natural Hel a 6 was purified from sunflower pollen by anion exchange and gel filtration chromatography. Hel a 6 reacted with IgE-antibodies from 57% of 39 sunflower-sensitized patient sera suggesting it to be a major allergen. The patients were of Indian origin and suffering from pollinosis and allergic rhinitis. Hel a 6 exhibited allergenic activity by stimulating mediator release from basophils. Monomeric Hel a 6 displayed pectate lyase activity. The effect of various physicochemical parameters such as temperature, pH, and calcium ion on the functional activity of Hel a 6 revealed a stable nature of the protein. Hel a 6 was folded, and its melting curve showed reversible denaturation in which it refolded back to its native conformation from a denatured state. Hel a 6 displayed a high degree of sequence conservation with the pectate lyase allergens from related taxonomic families such as Amb a 1 (67%) and Art v 6 (57%). The IgE-cross reactivity was observed between Hel a 6 and its ragweed and mugwort homologs. The cross-reactivity was further substantiated by the mediator release when Hel a 6-sensitized effector cells were cross-stimulated with Art v 6 and Amb a 1. Several putative B cell epitopes were predicted and mapped on these 3 allergens. Two antigenic regions were found to be commonly shared by these 3 allergens, which could be crucial for cross-reactivity. In conclusion, Hel a 6 serves as a candidate molecule for diagnosis and immunotherapy for weed allergy.
Collapse
Affiliation(s)
- Nandini Ghosh
- Department of Microbiology, Vidyasagar University, Paschim Medinipur, India.
- Division of Plant Biology, Bose Institute, Kolkata, India.
| | - Gaurab Sircar
- Department of Botany, Institute of Sciences, Visva-Bharati, Santiniketan, India
| | - Claudia Asam
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Martin Wolf
- Department of Biosciences, University of Salzburg, Salzburg, Austria
- Cell Therapy Institute, (SCI-TReCS), Paracelsus Medical University (PMU), Salzburg, Austria
| | - Michael Hauser
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Sudipto Saha
- Division of Bioinformatics, Bose Institute, Kolkata, India
| | - Fatima Ferreira
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| | | |
Collapse
|
11
|
Würtzen PA, Hoof I, Christensen LH, Váczy Z, Henmar H, Salamanca G, Lundegaard C, Lund L, Kráľova T, Brooks EG, Andersen PS. Diverse and highly cross-reactive T-cell responses in ragweed allergic patients independent of geographical region. Allergy 2020; 75:137-147. [PMID: 31325327 DOI: 10.1111/all.13992] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 06/12/2019] [Accepted: 06/17/2019] [Indexed: 01/05/2023]
Abstract
BACKGROUND Ragweed frequently causes seasonal allergies in North America and Europe. In the United States, several related ragweed species with diverse geographical distribution cause allergic symptoms. Cross-reactivity towards related ragweed species of IgE and treatment-induced IgG4 has been demonstrated previously. However, less is known about the underlying T-cell cross-reactivity. METHODS The allergen content of ragweed extracts was determined by mass spectrometry and related to T-cell epitopes of Amb a allergens (group 1, 3, 4, 5, 8 and 11) in 20 American ragweed allergic patients determined by FluoroSpot and proliferation assays. T-cell responses to 50 frequently recognized Amb a-derived T-cell epitopes and homologous peptides from western ragweed (Amb p), giant ragweed (Amb t) and mugwort (Art v) were investigated in an additional 11 American and 14 Slovakian ragweed allergic donors. RESULTS Ragweed extracts contained all known allergens and isoallergens thereof. Donor T-cell responses were diverse and directed against all Amb a 1 isoallergens and to most minor allergens investigated. Similar response patterns were seen in American and Slovakia donors. Several epitopes were cross-reactive between isoallergens and ragweed species, some even including mugwort. T-cell cross-reactivity generally correlated with allergen sequence homology. CONCLUSION T-cell epitopes of multiple allergens/isoallergens are involved in the diverse T-cell responses in ragweed allergic individuals. T-cell lines were highly cross-reactive to epitopes of related ragweed species without any apparent geographical response bias. These data support that different ragweed species can be considered an allergen homology group with Amb a as the representative species regarding diagnosis as well as allergy immunotherapy.
Collapse
Affiliation(s)
| | - Ilka Hoof
- Global Research ALK Hørsholm Denmark
| | | | - Zuzana Váczy
- Louis Pasteur University Hospital Košice Slovak Republic
| | | | | | | | - Lise Lund
- Global Research ALK Hørsholm Denmark
| | | | | | | |
Collapse
|
12
|
Pablos I, Egger M, Vejvar E, Reichl V, Briza P, Zennaro D, Rafaiani C, Pickl W, Bohle B, Mari A, Ferreira F, Gadermaier G. Similar Allergenicity to Different Artemisia Species Is a Consequence of Highly Cross-Reactive Art v 1-Like Molecules. ACTA ACUST UNITED AC 2019; 55:medicina55080504. [PMID: 31434264 PMCID: PMC6723817 DOI: 10.3390/medicina55080504] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/12/2019] [Accepted: 08/13/2019] [Indexed: 11/16/2022]
Abstract
Background and objectives: Pollens of weeds are relevant elicitors of type I allergies. While many Artemisia species occur worldwide, allergy research so far has only focused on Artemisia vulgaris. We aimed to characterize other prevalent Artemisia species regarding their allergen profiles. Materials and Methods: Aqueous extracts of pollen from seven Artemisia species were characterized by gel electrophoresis and ELISA using sera from mugwort pollen-allergic patients (n = 11). The cDNA sequences of defensin–proline-linked proteins (DPLPs) were obtained, and purified proteins were tested in a competition ELISA, in rat basophil mediator release assays, and for activation of Jurkat T cells transduced with an Art v 1-specific TCR. IgE cross-reactivity to other allergens was evaluated using ImmunoCAP and ISAC. Results: The protein patterns of Artemisia spp. pollen extracts were similar in gel electrophoresis, with a major band at 24 kDa corresponding to DPLPs, like the previously identified Art v 1. Natural Art v 1 potently inhibited IgE binding to immobilized pollen extracts. Six novel Art v 1 homologs with high sequence identity and equivalent IgE reactivity were identified and termed Art ab 1, Art an 1, Art c 1, Art f 1, Art l 1, and Art t 1. All proteins triggered mediator release and cross-reacted at the T cell level. The Artemisia extracts contained additional IgE cross-reactive molecules from the nonspecific lipid transfer protein, pectate lyase, profilin, and polcalcin family. Conclusions: Our findings demonstrate that DPLPs in various Artemisia species have high allergenic potential. Therefore, related Artemisia species need to be considered to be allergen elicitors, especially due to the consideration of potential geographic expansion due to climatic changes.
Collapse
Affiliation(s)
- Isabel Pablos
- Department of Biosciences, University of Salzburg, 5020 Salzburg, Austria
| | - Matthias Egger
- Department of Biosciences, University of Salzburg, 5020 Salzburg, Austria
| | - Eva Vejvar
- Department of Biosciences, University of Salzburg, 5020 Salzburg, Austria
| | - Victoria Reichl
- Institute of Immunology, Center for Pathophysiology, Infection and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Peter Briza
- Department of Biosciences, University of Salzburg, 5020 Salzburg, Austria
| | - Danila Zennaro
- Associated Centers for Molecular Allergology, 04100 Rome, Italy
- Center for Molecular Allergology, IDI-IRCCS, 00167 Rome, Italy
| | - Chiara Rafaiani
- Associated Centers for Molecular Allergology, 04100 Rome, Italy
- Center for Molecular Allergology, IDI-IRCCS, 00167 Rome, Italy
| | - Winfried Pickl
- Institute of Immunology, Center for Pathophysiology, Infection and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Barbara Bohle
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Adriano Mari
- Associated Centers for Molecular Allergology, 04100 Rome, Italy
- Center for Molecular Allergology, IDI-IRCCS, 00167 Rome, Italy
| | - Fatima Ferreira
- Department of Biosciences, University of Salzburg, 5020 Salzburg, Austria
| | | |
Collapse
|
13
|
Chruszcz M, Kapingidza AB, Dolamore C, Kowal K. A robust method for the estimation and visualization of IgE cross-reactivity likelihood between allergens belonging to the same protein family. PLoS One 2018; 13:e0208276. [PMID: 30496313 PMCID: PMC6264518 DOI: 10.1371/journal.pone.0208276] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 11/14/2018] [Indexed: 12/11/2022] Open
Abstract
Among the vast number of identified protein families, allergens emanate from relatively few families which translates to only a small fraction of identified protein families. In allergy diagnostics and immunotherapy, interactions between immunoglobulin E and allergens are crucial because the formation of an allergen-antibody complex is necessary for triggering an allergic reaction. In allergic diseases, there is a phenomenon known as cross-reactivity. Cross-reactivity describes a situation where an individual has produced antibodies against a particular allergenic protein, but said antibodies fail to discriminate between the original sensitizer and other similar proteins that usually belong to the same family. To expound the concept of cross-reactivity, this study examines ten protein families that include allergens selected specifically for the analysis of cross-reactivity. The selected allergen families had at least 13 representative proteins, overall folds that differ significantly between families, and include relevant allergens with various potencies. The selected allergens were analyzed using information on sequence similarities and identities between members of the families as well as reports on clinically relevant cross-reactivities. Based on our analysis, we propose to introduce a new A-RISC index (Allergens’–Relative Identity, Similarity and Cross-reactivity) which describes homology between two allergens belonging to the same protein family and is used to predict the likelihood of cross-reactivity between them. Information on sequence similarities and identities, as well as on the values of the proposed A-RISC index is used to introduce four categories describing a risk of a cross-reactive reaction, namely: high, medium-high, medium-low and low. The proposed approach can facilitate analysis in component-resolved allergy diagnostics, generation of avoidance guidelines for allergic individuals, and help with the design of immunotherapy.
Collapse
Affiliation(s)
- Maksymilian Chruszcz
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, United States of America
- * E-mail:
| | - A. Brenda Kapingidza
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, United States of America
| | - Coleman Dolamore
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, United States of America
| | - Krzysztof Kowal
- Department of Allergology and Internal Medicine, Medical University of Bialystok, Bialystok, Poland
- Department of Experimental Allergology and Immunology, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
14
|
Valenta R, Karaulov A, Niederberger V, Zhernov Y, Elisyutina O, Campana R, Focke-Tejkl M, Curin M, Namazova-Baranova L, Wang JY, Pawankar R, Khaitov M. Allergen Extracts for In Vivo Diagnosis and Treatment of Allergy: Is There a Future? THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2018; 6:1845-1855.e2. [PMID: 30297269 PMCID: PMC6390933 DOI: 10.1016/j.jaip.2018.08.032] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 08/27/2018] [Accepted: 08/31/2018] [Indexed: 02/07/2023]
Abstract
Today, in vivo allergy diagnosis and allergen-specific immunotherapy (AIT) are still based on allergen extracts obtained from natural allergen sources. Several studies analyzing the composition of natural allergen extracts have shown severe problems regarding their quality such as the presence of undefined nonallergenic materials, contaminants as well as high variabilities regarding contents and biological activity of individual allergens. Despite the increasing availability of sophisticated analytical technologies, these problems cannot be overcome because they are inherent to allergen sources and methods of extract production. For in vitro allergy diagnosis problems related to natural allergen extracts have been largely overcome by the implementation of recombinant allergen molecules that are defined regarding purity and biological activity. However, no such advances have been made for allergen preparations to be used in vivo for diagnosis and therapy. No clinical studies have been performed for allergen extracts available for in vivo allergy diagnosis that document safety, sensitivity, and specificity of the products. Only for very few therapeutic allergen extracts state-of-the-art clinical studies have been performed that provide evidence for safety and efficacy. In this article, we discuss problems related to the inconsistent quality of products based on natural allergen extracts and share our observations that most of the products available for in vivo diagnosis and AIT do not meet the international standards for medicinal products. We argue that a replacement of natural allergen extracts by defined recombinantly produced allergen molecules and/or mixtures thereof may be the only way to guarantee the supply of clinicians with state-of-the-art medicinal products for in vivo diagnosis and treatment of allergic patients in the future.
Collapse
Affiliation(s)
- Rudolf Valenta
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria; NRC Institute of Immunology FMBA of Russia, Moscow, Russia; Laboratory for Immunopathology, Department of Clinical Immunology and Allergy, Sechenov First Moscow State Medical University, Moscow, Russia.
| | - Alexander Karaulov
- Laboratory for Immunopathology, Department of Clinical Immunology and Allergy, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Verena Niederberger
- Department of Otorhinolaryngology, Medical University of Vienna, Vienna, Austria
| | - Yury Zhernov
- NRC Institute of Immunology FMBA of Russia, Moscow, Russia
| | | | - Raffaela Campana
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Margarete Focke-Tejkl
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Mirela Curin
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Leyla Namazova-Baranova
- Department of Pediatrics, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Jiu-Yao Wang
- Center for Allergy and Immunology Research (ACIR), College of Medicine, National Cheng Kung University (Hospital), Tainan, Taiwan
| | - Ruby Pawankar
- Division of Allergy, Department of Pediatrics, Nippon Medical School, Tokyo, Japan
| | - Musa Khaitov
- NRC Institute of Immunology FMBA of Russia, Moscow, Russia
| |
Collapse
|
15
|
Chen KW, Marusciac L, Tamas PT, Valenta R, Panaitescu C. Ragweed Pollen Allergy: Burden, Characteristics, and Management of an Imported Allergen Source in Europe. Int Arch Allergy Immunol 2018; 176:163-180. [PMID: 29788026 DOI: 10.1159/000487997] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 02/22/2018] [Indexed: 12/30/2022] Open
Abstract
Ambrosia artemisiifolia, also known as common or short ragweed, is an invasive annual flowering herbaceous plant that has its origin in North America. Nowadays, ragweed can be found in many areas worldwide. Ragweed pollen is known for its high potential to cause type I allergic reactions in late summer and autumn and represents a major health problem in America and several countries in Europe. Climate change and urbanization, as well as long distance transport capacity, enhance the spread of ragweed pollen. Therefore ragweed is becoming domestic in non-invaded areas which in turn will increase the sensitization rate. So far 11 ragweed allergens have been described and, according to IgE reactivity, Amb a 1 and Amb a 11 seem to be major allergens. Sensitization rates of the other allergens vary between 10 and 50%. Most of the allergens have already been recombinantly produced, but most of them have not been characterized regarding their allergenic activity, therefore no conclusion on the clinical relevance of all the allergens can be made, which is important and necessary for an accurate diagnosis. Pharmacotherapy is the most common treatment for ragweed pollen allergy but fails to impact on the course of allergy. Allergen-specific immunotherapy (AIT) is the only causative and disease-modifying treatment of allergy with long-lasting effects, but currently it is based on the administration of ragweed pollen extract or Amb a 1 only. In order to improve ragweed pollen AIT, new strategies are required with higher efficacy and safety.
Collapse
Affiliation(s)
- Kuan-Wei Chen
- OncoGen Center, Pius Brinzeu County Clinical Emergency Hospital, Timisoara, Romania.,Division of Immunopathology, Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Laura Marusciac
- OncoGen Center, Pius Brinzeu County Clinical Emergency Hospital, Timisoara, Romania.,Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| | - Paul Tudor Tamas
- OncoGen Center, Pius Brinzeu County Clinical Emergency Hospital, Timisoara, Romania.,Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| | - Rudolf Valenta
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Carmen Panaitescu
- OncoGen Center, Pius Brinzeu County Clinical Emergency Hospital, Timisoara, Romania.,Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| |
Collapse
|
16
|
Cross-sensitization to Artemisia and Ambrosia pollen allergens in an area located outside of the current distribution range of Ambrosia. Postepy Dermatol Alergol 2018; 35:83-89. [PMID: 29599676 PMCID: PMC5872248 DOI: 10.5114/ada.2018.73167] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 11/23/2016] [Indexed: 11/18/2022] Open
Abstract
Introduction The role of long-distance transported (LDT) Ambrosia pollen in inducing new sensitization and affecting sensitization rates in Artemisia-sensitized patients is unclear. Aim The aim of this study was to estimate the degree of cross-sensitization to Ambrosia/Artemisia allergens in citizens of Poznan (Western Poland). This area is covered by extensive Artemisia populations but does not currently have local Ambrosia populations. Material and methods Sera of 119 patients were tested by fluoroenzyme immunoassay (CAP-FEIA system) against pollen allergen extracts of Artemisia vulgaris and Ambrosia artemisiifolia, an allergenic component of A. vulgaris (nArt v 1), and an allergenic component of A. artemisiifolia (nAmb a 1). Skin prick tests (SPTs, n = 86) were performed with pollen allergen extracts of A. vulgaris and A. artemisiifolia. Artemisia and Ambrosia pollen in ambient air was collected (1996–2013) by a Hirst type volumetric trap sited at roof level (33 m). Results The SPT showed that the prevalence of sensitization to Ambrosia and Artemisia pollen exceeded 3.5%, and 10.5%, respectively. The measurements of IgE in blood serum (CAP-FEIA) revealed that among Ambrosia-sensitized patients 90.1% (20/22 patients) were concomitantly sensitized to Artemisia. 59.1% (13/22) of these patients reacted to nArt v 1, suggesting primary sensitization to Artemisia pollen. Only 2 (9.1%) patients were mono-sensitized to Ambrosia pollen extract, but surprisingly not to nAmb a 1. Conclusions The LDT Ambrosia pollen had a negligible effect on the rate of sensitization to Ambrosia allergens in Poznan and did not increase the prevalence of sensitization to Artemisia pollen in this region. However, the majority of patients showing hypersensitization to Artemisia pollen might also present symptoms during elevated episodes of LDT of Ambrosia pollen.
Collapse
|
17
|
Pablos I, Eichhorn S, Machado Y, Briza P, Neunkirchner A, Jahn-Schmid B, Wildner S, Soh WT, Ebner C, Park JW, Pickl WF, Arora N, Vieths S, Ferreira F, Gadermaier G. Distinct epitope structures of defensin-like proteins linked to proline-rich regions give rise to differences in their allergenic activity. Allergy 2018; 73:431-441. [PMID: 28960341 PMCID: PMC5771466 DOI: 10.1111/all.13298] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2017] [Indexed: 01/17/2023]
Abstract
Background Art v 1, Amb a 4, and Par h 1 are allergenic defensin‐polyproline–linked proteins present in mugwort, ragweed, and feverfew pollen, respectively. We aimed to investigate the physicochemical and immunological features underlying the different allergenic capacities of those allergens. Methods Recombinant defensin‐polyproline–linked proteins were expressed in E. coli and physicochemically characterized in detail regarding identity, secondary structure, and aggregation status. Allergenic activity was assessed by mediator releases assay, serum IgE reactivity, and IgE inhibition ELISA using sera of patients from Austria, Canada, and Korea. Endolysosomal protein degradation and T‐cell cross‐reactivity were studied in vitro. Results Despite variations in the proline‐rich region, similar secondary structure elements were observed in the defensin‐like domains. Seventy‐four percent and 52% of the Austrian and Canadian patients reacted to all three allergens, while Korean patients were almost exclusively sensitized to Art v 1. This was reflected by IgE inhibition assays demonstrating high cross‐reactivity for Austrian, medium for Canadian, and low for Korean sera. In a subgroup of patients, IgE reactivity toward structurally altered Amb a 4 and Par h 1 was not changed suggesting involvement of linear epitopes. Immunologically relevant endolysosomal stability of the defensin‐like domain was limited to Art v 1 and no T‐cell cross‐reactivity with Art v 125‐36 was observed. Conclusions Despite structural similarity, different IgE‐binding profiles and proteolytic processing impacted the allergenic capacity of defensin‐polyproline–linked molecules. Based on the fact that Amb a 4 demonstrated distinct IgE‐binding epitopes, we suggest inclusion in molecule‐based allergy diagnosis.
Collapse
Affiliation(s)
- I. Pablos
- Division of Allergy and Immunology; Department of Molecular Biology; University of Salzburg; Salzburg Austria
| | - S. Eichhorn
- Division of Allergy and Immunology; Department of Molecular Biology; University of Salzburg; Salzburg Austria
| | - Y. Machado
- Division of Allergy and Immunology; Department of Molecular Biology; University of Salzburg; Salzburg Austria
| | - P. Briza
- Division of Allergy and Immunology; Department of Molecular Biology; University of Salzburg; Salzburg Austria
| | - A. Neunkirchner
- Center for Pathophysiology, Infectiology and Immunology; Institute of Immunology; Medical University of Vienna; Vienna Austria
| | - B. Jahn-Schmid
- Department of Pathophysiology and Allergy Research; Medical University of Vienna; Vienna Austria
| | - S. Wildner
- Division of Allergy and Immunology; Department of Molecular Biology; University of Salzburg; Salzburg Austria
- Christian Doppler Laboratory for Biosimilar Characterization; University of Salzburg; Salzburg Austria
| | - W. T. Soh
- Division of Allergy and Immunology; Department of Molecular Biology; University of Salzburg; Salzburg Austria
| | - C. Ebner
- Allergy Clinic Reumannplatz; Vienna Austria
| | - J.-W. Park
- Department of Internal Medicine and Institute of Allergy; Yonsei University College of Medicine; Seoul Korea
| | - W. F. Pickl
- Center for Pathophysiology, Infectiology and Immunology; Institute of Immunology; Medical University of Vienna; Vienna Austria
| | - N. Arora
- Allergy and Immunology Section; CSIR-Institute of Genomic and Integrative Biology; Delhi India
| | - S. Vieths
- Division of Allergology; Paul-Ehrlich-Institut; Langen Germany
| | - F. Ferreira
- Division of Allergy and Immunology; Department of Molecular Biology; University of Salzburg; Salzburg Austria
| | - G. Gadermaier
- Division of Allergy and Immunology; Department of Molecular Biology; University of Salzburg; Salzburg Austria
| |
Collapse
|
18
|
Wolf M, Twaroch TE, Huber S, Reithofer M, Steiner M, Aglas L, Hauser M, Aloisi I, Asam C, Hofer H, Parigiani MA, Ebner C, Bohle B, Briza P, Neubauer A, Stolz F, Jahn-Schmid B, Wallner M, Ferreira F. Amb a 1 isoforms: Unequal siblings with distinct immunological features. Allergy 2017; 72:1874-1882. [PMID: 28464293 PMCID: PMC5700413 DOI: 10.1111/all.13196] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2017] [Indexed: 12/24/2022]
Abstract
Background Ragweed pollen represents a major allergy risk factor. Ragweed extracts contain five different isoforms of the major allergen Amb a 1. However, the immunological characteristics of Amb a 1 isoforms are not fully investigated. Here, we compared the physicochemical and immunological properties of three most important Amb a 1 isoforms. Methods After purification, the isoforms were physicochemically characterized, tested for antibody binding and induction of human T‐cell proliferative responses. Their immunological properties were further evaluated in vitro and in vivo in a mouse model. Results Amb a 1 isoforms exhibited distinct patterns of IgE binding and immunogenicity. Compared to Amb a 1.02 or 03 isoforms, Amb a 1.01 showed higher IgE‐binding activity. Isoforms 01 and 03 were the most potent stimulators of patients’ T cells. In a mouse model of immunization, Amb a 1.01 induced higher levels of IgG and IgE antibodies when compared to isoforms 02 and 03. Interestingly, ragweed‐sensitized patients also displayed an IgG response to Amb a 1 isoforms. However, unlike therapy‐induced antibodies, sensitization‐induced IgG did not show IgE‐blocking activity. Conclusion The present study showed that naturally occurring isoforms of Amb a 1 possess different immunogenic and sensitizing properties. These findings should be considered when selecting sequences for molecule‐based diagnosis and therapy for ragweed allergy. Due to its high IgE‐binding activity, isoform Amb a 1.01 should be included in diagnostic tests. In contrast, due to their limited B‐ and T‐cell cross‐reactivity patterns, a combination of different isoforms might be a more attractive strategy for ragweed immunotherapy.
Collapse
Affiliation(s)
- M. Wolf
- Department of Molecular Biology; University of Salzburg; Salzburg Austria
| | | | - S. Huber
- Department of Molecular Biology; University of Salzburg; Salzburg Austria
| | - M. Reithofer
- Department of Pathophysiology and Allergy Research; Medical University of Vienna; Vienna Austria
| | - M. Steiner
- Department of Molecular Biology; University of Salzburg; Salzburg Austria
- Laboratory for Immunological and
Molecular Cancer Research; Paracelsus Medical University; Salzburg Austria
| | - L. Aglas
- Department of Molecular Biology; University of Salzburg; Salzburg Austria
| | - M. Hauser
- Department of Molecular Biology; University of Salzburg; Salzburg Austria
| | - I. Aloisi
- Department of Biological, Geological, and Environmental Sciences; University of Bologna; Bologna Italy
| | - C. Asam
- Department of Molecular Biology; University of Salzburg; Salzburg Austria
| | - H. Hofer
- Department of Molecular Biology; University of Salzburg; Salzburg Austria
| | - M. A. Parigiani
- Department of Molecular Biology; University of Salzburg; Salzburg Austria
| | - C. Ebner
- Allergy Clinic Reumannplatz; Vienna Austria
| | - B. Bohle
- Department of Pathophysiology and Allergy Research; Medical University of Vienna; Vienna Austria
| | - P. Briza
- Department of Molecular Biology; University of Salzburg; Salzburg Austria
| | - A. Neubauer
- Biomay AG; Vienna Competence Center; Vienna Austria
| | - F. Stolz
- Biomay AG; Vienna Competence Center; Vienna Austria
| | - B. Jahn-Schmid
- Department of Pathophysiology and Allergy Research; Medical University of Vienna; Vienna Austria
| | - M. Wallner
- Department of Molecular Biology; University of Salzburg; Salzburg Austria
| | - F. Ferreira
- Department of Molecular Biology; University of Salzburg; Salzburg Austria
| |
Collapse
|
19
|
Pablos I, Eichhorn S, Briza P, Asam C, Gartner U, Wolf M, Ebner C, Bohle B, Arora N, Vieths S, Ferreira F, Gadermaier G. Proteomic profiling of the weed feverfew, a neglected pollen allergen source. Sci Rep 2017; 7:6049. [PMID: 28729676 PMCID: PMC5519751 DOI: 10.1038/s41598-017-06213-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 06/08/2017] [Indexed: 11/10/2022] Open
Abstract
Feverfew (Parthenium hysterophorus), an invasive weed from the Asteraceae family, has been reported as allergen source. Despite its relevance, knowledge of allergens is restricted to a partial sequence of a hydroxyproline-rich glycoprotein. We aimed to obtain the entire sequence for recombinant production and characterize feverfew pollen using proteomics and immunological assays. Par h 1, a defensin-proline fusion allergen was obtained by cDNA cloning and recombinantly produced in E. coli. Using two complementary proteomic strategies, a total of 258 proteins were identified in feverfew pollen among those 47 proteins belonging to allergenic families. Feverfew sensitized patients’ sera from India revealed IgE reactivity with a pectate lyase, PR-1 protein and thioredoxin in immonoblot. In ELISA, recombinant Par h 1 was recognized by 60 and 40% of Austrian and Indian sera, respectively. Inhibition assays demonstrated the presence of IgE cross-reactive Par h 1, pectate lyase, lipid-transfer protein, profilin and polcalcin in feverfew pollen. This study reveals significant data on the allergenic composition of feverfew pollen and makes recombinant Par h 1 available for cross-reactivity studies. Feverfew might become a global player in weed pollen allergy and inclusion of standardized extracts in routine allergy diagnosis is suggested in exposed populations.
Collapse
Affiliation(s)
- Isabel Pablos
- University of Salzburg, Department of Molecular Biology, Division of Allergy and Immunology, Salzburg, Austria
| | - Stephanie Eichhorn
- University of Salzburg, Department of Molecular Biology, Division of Allergy and Immunology, Salzburg, Austria
| | - Peter Briza
- University of Salzburg, Department of Molecular Biology, Division of Allergy and Immunology, Salzburg, Austria
| | - Claudia Asam
- University of Salzburg, Department of Molecular Biology, Division of Allergy and Immunology, Salzburg, Austria
| | - Ulrike Gartner
- University of Salzburg, Department of Ecology and Evolution, Salzburg, Austria
| | - Martin Wolf
- University of Salzburg, Department of Molecular Biology, Division of Allergy and Immunology, Salzburg, Austria
| | | | - Barbara Bohle
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Naveen Arora
- CSIR-Institute of Genomic and Integrative Biology, Allergy and Immunology Section, Delhi, India
| | - Stefan Vieths
- Paul-Ehrlich-Institut, Federal Institute for Vaccines and Biomedicines, Langen, Germany
| | - Fatima Ferreira
- University of Salzburg, Department of Molecular Biology, Division of Allergy and Immunology, Salzburg, Austria
| | - Gabriele Gadermaier
- University of Salzburg, Department of Molecular Biology, Division of Allergy and Immunology, Salzburg, Austria.
| |
Collapse
|
20
|
Sancho AI, Wallner M, Hauser M, Nagl B, Himly M, Asam C, Ebner C, Jahn-Schmid B, Bohle B, Ferreira F. T Cell Epitope-Containing Domains of Ragweed Amb a 1 and Mugwort Art v 6 Modulate Immunologic Responses in Humans and Mice. PLoS One 2017; 12:e0169784. [PMID: 28081194 PMCID: PMC5231356 DOI: 10.1371/journal.pone.0169784] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 12/21/2016] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Ragweed (Ambrosia artemisiifolia) and mugwort (Artemisia vulgaris) are the major cause of pollen allergy in late summer. Allergen-specific lymphocytes are crucial for immune modulation during immunotherapy. We sought to generate and pre-clinically characterise highly immunogenic domains of the homologous pectate lyases in ragweed (Amb a 1) and mugwort pollen (Art v 6) for immunotherapy. METHODS Domains of Amb a 1 (Amb a 1α) and Art v 6 (Art v 6α) and a hybrid molecule, consisting of both domains, were designed, expressed in E. coli and purified. Human IgE reactivity and allergenicity were assessed by ELISA and mediator release experiments using ragweed and mugwort allergic patients. Moreover, T cell proliferation was determined. Blocking IgG antibodies and cytokine production in BALB/c mice were studied by ELISA and ELISPOT. RESULTS The IgE binding capacity and in vitro allergenic activity of the Amb a 1 and Art v 6 domains and the hybrid were either greatly reduced or abolished. The recombinant proteins induced T cell proliferative responses comparable to those of the natural allergens, indicative of retained allergen-specific T cell response. Mice immunisation with the hypoallergens induced IL-4, IL-5, IL-13 and IFN-γ production after antigen-specific in vitro re-stimulation of splenocytes. Moreover, murine IgG antibodies that inhibited specific IgE binding of ragweed and mugwort pollen allergic patients were detected. CONCLUSION Accumulation of T cell epitopes and deletion of IgE reactive areas of Amb a 1 and Art v 6, modulated the immunologic properties of the allergen immuno-domains, leading to promising novel candidates for therapeutic approach.
Collapse
Affiliation(s)
- Ana I. Sancho
- Christian Doppler Laboratory for Allergy Diagnosis and Therapy, Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Michael Wallner
- Christian Doppler Laboratory for Allergy Diagnosis and Therapy, Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Michael Hauser
- Christian Doppler Laboratory for Allergy Diagnosis and Therapy, Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Birgit Nagl
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Martin Himly
- Christian Doppler Laboratory for Allergy Diagnosis and Therapy, Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Claudia Asam
- Christian Doppler Laboratory for Allergy Diagnosis and Therapy, Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | | | - Beatrice Jahn-Schmid
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Barbara Bohle
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory for Immunomodulation, Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Fatima Ferreira
- Christian Doppler Laboratory for Allergy Diagnosis and Therapy, Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| |
Collapse
|
21
|
Pham J, Oseroff C, Hinz D, Sidney J, Paul S, Greenbaum J, Vita R, Phillips E, Mallal S, Peters B, Sette A. Sequence conservation predicts T cell reactivity against ragweed allergens. Clin Exp Allergy 2016; 46:1194-205. [PMID: 27359111 DOI: 10.1111/cea.12772] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 06/01/2016] [Accepted: 06/01/2016] [Indexed: 01/03/2023]
Abstract
BACKGROUND Ragweed is a major cause of seasonal allergy, affecting millions of people worldwide. Several allergens have been defined based on IgE reactivity, but their relative immunogenicity in terms of T cell responses has not been studied. OBJECTIVE We comprehensively characterized T cell responses from atopic, ragweed-allergic subjects to Amb a 1, Amb a 3, Amb a 4, Amb a 5, Amb a 6, Amb a 8, Amb a 9, Amb a 10, Amb a 11, and Amb p 5 and examined their correlation with serological reactivity and sequence conservation in other allergens. METHODS Peripheral blood mononuclear cells (PBMCs) from donors positive for IgE towards ragweed extracts after in vitro expansion for secretion of IL-5 (a representative Th2 cytokine) and IFN-γ (Th1) in response to a panel of overlapping peptides spanning the above-listed allergens were assessed. RESULTS Three previously identified dominant T cell epitopes (Amb a 1 176-191, 200-215, and 344-359) were confirmed, and three novel dominant epitopes (Amb a 1 280-295, 304-319, and 320-335) were identified. Amb a 1, the dominant IgE allergen, was also the dominant T cell allergen, but dominance patterns for T cell and IgE responses for the other ragweed allergens did not correlate. Dominance for T cell responses correlated with conservation of ragweed epitopes with sequences of other well-known allergens. CONCLUSIONS AND CLINICAL RELEVANCE These results provide the first assessment of the hierarchy of T cell reactivity in ragweed allergens, which is distinct from that observed for IgE reactivity and influenced by T cell epitope sequence conservation. The results suggest that ragweed allergens associated with lesser IgE reactivity and significant T cell reactivity may be targeted for T cell immunotherapy, and further support the development of immunotherapies against epitopes conserved across species to generate broad reactivity against many common allergens.
Collapse
Affiliation(s)
- J Pham
- La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - C Oseroff
- La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - D Hinz
- La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - J Sidney
- La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - S Paul
- La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - J Greenbaum
- La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - R Vita
- La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - E Phillips
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, WA, Australia.,Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - S Mallal
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, WA, Australia.,Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - B Peters
- La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - A Sette
- La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| |
Collapse
|
22
|
Abstract
Pollen allergens are one of the main causes of type I allergies affecting up to 30% of the population in industrialized countries. Climatic changes affect the duration and intensity of pollen seasons and may together with pollution contribute to increased incidences of respiratory allergy and asthma. Allergenic grasses, trees, and weeds often present similar habitats and flowering periods compromising clinical anamnesis. Molecule-based approaches enable distinction between genuine sensitization and clinically mostly irrelevant IgE cross-reactivity due to, e. g., panallergens or carbohydrate determinants. In addition, sensitivity as well as specificity can be improved and lead to identification of the primary sensitizing source which is particularly beneficial regarding polysensitized patients. This review gives an overview on relevant pollen allergens and their usefulness in daily practice. Appropriate allergy diagnosis is directly influencing decisions for therapeutic interventions, and thus, reliable biomarkers are pivotal when considering allergen immunotherapy in the context of precision medicine.
Collapse
Affiliation(s)
- Isabel Pablos
- />Department of Molecular Biology, University of Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria
| | - Sabrina Wildner
- />Christian Doppler Laboratory for Biosimilar Characterization, University of Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria
| | - Claudia Asam
- />Department of Molecular Biology, University of Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria
| | - Michael Wallner
- />Department of Molecular Biology, University of Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria
| | - Gabriele Gadermaier
- />Department of Molecular Biology, University of Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria
- />Christian Doppler Laboratory for Biosimilar Characterization, University of Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria
| |
Collapse
|
23
|
Use of Component-Resolved Diagnosis (CRD) for Allergen Immunotherapy (AIT). CURRENT TREATMENT OPTIONS IN ALLERGY 2016. [DOI: 10.1007/s40521-016-0069-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
24
|
Abstract
Pollen allergens from short ragweed (Ambrosia artemisiifolia) cause severe respiratory allergies in North America and Europe. To date, ten short ragweed pollen allergens belonging to eight protein families, including the recently discovered novel major allergen Amb a 11, have been recorded in the International Union of Immunological Societies (IUIS) allergen database. With evidence that other components may further contribute to short ragweed pollen allergenicity, a better understanding of the allergen repertoire is a requisite for the design of proper diagnostic tools and efficient immunotherapies. This review provides an update on both known as well as novel candidate allergens from short ragweed pollen, identified through a comprehensive characterization of the ragweed pollen transcriptome and proteome.
Collapse
|
25
|
Identification of Novel Short Ragweed Pollen Allergens Using Combined Transcriptomic and Immunoproteomic Approaches. PLoS One 2015; 10:e0136258. [PMID: 26317427 PMCID: PMC4552831 DOI: 10.1371/journal.pone.0136258] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 07/31/2015] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Allergy to short ragweed (Ambrosia artemisiifolia) pollen is a serious and expanding health problem in North America and Europe. Whereas only 10 short ragweed pollen allergens are officially recorded, patterns of IgE reactivity observed in ragweed allergic patients suggest that other allergens contribute to allergenicity. The objective of the present study was to identify novel allergens following extensive characterization of the transcriptome and proteome of short ragweed pollen. METHODS Following a Proteomics-Informed-by-Transcriptomics approach, a comprehensive transcriptomic data set was built up from RNA-seq analysis of short ragweed pollen. Mass spectrometry-based proteomic analyses and IgE reactivity profiling after high resolution 2D-gel electrophoresis were then combined to identify novel allergens. RESULTS Short ragweed pollen transcripts were assembled after deep RNA sequencing and used to inform proteomic analyses, thus leading to the identification of 573 proteins in the short ragweed pollen. Patterns of IgE reactivity of individual sera from 22 allergic patients were assessed using an aqueous short ragweed pollen extract resolved over 2D-gels. Combined with information derived from the annotated pollen proteome, those analyses revealed the presence of multiple unreported IgE reactive proteins, including new Amb a 1 and Amb a 3 isoallergens as well as 7 novel candidate allergens reacting with IgEs from 20-70% of patients. The latter encompass members of the carbonic anhydrase, enolase, galactose oxidase, GDP dissociation inhibitor, pathogenesis related-17, polygalacturonase and UDP-glucose pyrophosphorylase families. CONCLUSIONS We extended the list of allergens identified in short ragweed pollen. These findings have implications for both diagnosis and allergen immunotherapy purposes.
Collapse
|
26
|
Weber RW. Allergen of the month--white bursage. Ann Allergy Asthma Immunol 2015; 114:A17. [PMID: 25952640 DOI: 10.1016/j.anai.2015.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
27
|
Ambrosia artemisiifolia (ragweed) in Germany - current presence, allergological relevance and containment procedures. ACTA ACUST UNITED AC 2015; 24:108-120. [PMID: 27226949 PMCID: PMC4861741 DOI: 10.1007/s40629-015-0060-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 04/14/2015] [Indexed: 11/01/2022]
Abstract
Ambrosia artemisiifolia (ragweed) is a neophyte in Europe and Germany, which originated from the United States of America. In the USA the rate of sensitization against ragweed equals that of grass pollen, and without containment the rate of allergic sensitizations against ragweed pollen will clearly increase. Currently, the most frequent sensitizations in Germany are against grass pollen, followed by sensitizations against house dust mite and birch pollen. Ragweed pollen evokes symptoms at about 10 pollen/m3, grass pollen at about 15 pollen/m3. These concentrations of ragweed pollen are only reached on limited occasions in Germany. Ragweed cross-reacts with mugwort (Artemisia vulgaris) and a correct diagnosis is only feasible with the ragweed specific allergen Amb a 1. Due to cross reactivity with mugwort, new sensitizations against ragweed pollen are not needed to evoke allergic symptoms. The neophyte encounters an already mugwort-sensitized population, extends the pollen season and may provoke new sensitizations. Ragweed sensitizations are characterized by an increased tendency to also affect the lower airways, which is less with mugwort sensitizations. Thus containment of ragweed is needed. Ragweed seeds are imported or spread by contaminated bird feed, the transport of ragweed contaminated soil (also in tyre treads) and agricultural products from infested areas. States bordering on ragweed positive areas, like Brandenburg and Bavaria, are especially at risk and invasion is already underway. Ragweed seeds survive up to 40 years in soil, and so extended timescales for eradication and observations are needed. Germany is, compared to other countries like France (Rhone-Valley), Italy (Po-Valley), Ukraine and Hungary, limited in respect to ragweed infestation. Conditions in Germany are therefore favourable for the containment of ragweed. Switzerland implemented legislation against birdseed contamination by ragweed early during the plants expansion, and obligatory ragweed registration- and eradication showed that ragweed containment is possible. Without counter measures ragweed expansion in Germany will take place, resulting in more allergic disease. Considering the increasing number of allergic individuals, even without ragweed invasion, containment of the neophyte should be actively persued. Unfortunately, time is running out.
Collapse
|
28
|
Weber RW. Allergen of the month-annual wormwood. Ann Allergy Asthma Immunol 2015; 114:A23. [PMID: 25841331 DOI: 10.1016/j.anai.2015.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
29
|
Ambrosia artemisiifolia (Traubenkraut) in Deutschland – aktuelles Vorkommen, allergologische Bedeutung und Maßnahmen zur Eingrenzung. ALLERGO JOURNAL 2015. [DOI: 10.1007/s15007-015-0850-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
30
|
Pectate lyase pollen allergens: sensitization profiles and cross-reactivity pattern. PLoS One 2015; 10:e0120038. [PMID: 25978036 PMCID: PMC4433284 DOI: 10.1371/journal.pone.0120038] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 01/18/2015] [Indexed: 11/23/2022] Open
Abstract
Background Pollen released by allergenic members of the botanically unrelated families of Asteraceae and Cupressaceae represent potent elicitors of respiratory allergies in regions where these plants are present. As main allergen sources the Asteraceae species ragweed and mugwort, as well as the Cupressaceae species, cypress, mountain cedar, and Japanese cedar have been identified. The major allergens of all species belong to the pectate lyase enzyme family. Thus, we thought to investigate cross-reactivity pattern as well as sensitization capacities of pectate lyase pollen allergens in cohorts from distinct geographic regions. Methods The clinically relevant pectate lyase pollen allergens Amb a 1, Art v 6, Cup a 1, Jun a 1, and Cry j 1 were purified from aqueous pollen extracts, and patients´ sensitization pattern of cohorts from Austria, Canada, Italy, and Japan were determined by IgE ELISA and cross-inhibition experiments. Moreover, we performed microarray experiments and established a mouse model of sensitization. Results In ELISA and ELISA inhibition experiments specific sensitization pattern were discovered for each geographic region, which reflected the natural allergen exposure of the patients. We found significant cross-reactivity within Asteraceae and Cupressaceae pectate lyase pollen allergens, which was however limited between the orders. Animal experiments showed that immunization with Asteraceae allergens mainly induced antibodies reactive within the order, the same was observed for the Cupressaceae allergens. Cross-reactivity between orders was minimal. Moreover, Amb a 1, Art v 6, and Cry j 1 showed in general higher immunogenicity. Conclusion We could cluster pectate lyase allergens in four categories, Amb a 1, Art v 6, Cup a 1/Jun a 1, and Cry j 1, respectively, at which each category has the potential to sensitize predisposed individuals. The sensitization pattern of different cohorts correlated with pollen exposure, which should be considered for future allergy diagnosis and therapy.
Collapse
|
31
|
El-Qutob D. Vaccine development and new attempts of treatment for ragweed allergy. THERAPEUTIC ADVANCES IN VACCINES 2015; 3:41-7. [PMID: 25922684 DOI: 10.1177/2051013614565354] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Ragweeds are flowering plants in the genus Ambrosia in the aster family, Asteraceae. They are distributed in the tropical and subtropical regions of the New World, especially North America. Short ragweed is the most important weed. The ragweed flowering occurs late in the summer and the pollination period extends from the beginning of August to mid-October. Sensitization to ragweed pollen has risen in United States in the past decade and probably worldwide. The major allergenic compound in the pollen has been identified as Amb a 1. Ragweed allergies usually cause allergic rhinitis and asthma. Ragweed allergic patients may show signs of oral allergy syndrome caused by crossreactivity between ragweed allergens and food allergens. In the present article, an update about vaccine development and new knowledge for ragweed allergy is exhaustively revised.
Collapse
Affiliation(s)
- David El-Qutob
- University Hospital La Plana, Carretera Vila-Real to Burriana km 0.5, Vila-Real, 12540, Spain
| |
Collapse
|
32
|
Bouley J, Groeme R, Le Mignon M, Jain K, Chabre H, Bordas-Le Floch V, Couret MN, Bussières L, Lautrette A, Naveau M, Baron-Bodo V, Lombardi V, Mascarell L, Batard T, Nony E, Moingeon P. Identification of the cysteine protease Amb a 11 as a novel major allergen from short ragweed. J Allergy Clin Immunol 2015; 136:1055-64. [PMID: 25865353 DOI: 10.1016/j.jaci.2015.03.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 02/16/2015] [Accepted: 03/02/2015] [Indexed: 11/26/2022]
Abstract
BACKGROUND Allergy to pollen from short ragweed (Ambrosia artemisiifolia) is a serious and expanding health problem in the United States and in Europe. OBJECTIVE We sought to investigate the presence of undescribed allergens in ragweed pollen. METHODS Ragweed pollen proteins were submitted to high-resolution gel electrophoresis and tested for IgE reactivity by using sera from 92 American or European donors with ragweed allergy. Pollen transcriptome sequencing, mass spectrometry (MS), and recombinant DNA technologies were applied to characterize new IgE-binding proteins. RESULTS High-resolution IgE immunoblotting experiments revealed that 50 (54%) of 92 patients with ragweed allergy were sensitized to a 37-kDa allergen distinct from Amb a 1. The full-length cDNA sequence for this molecule was obtained by means of PCR cloning after MS sequencing of the protein combined with ragweed pollen RNA sequencing. The purified allergen, termed Amb a 11, was fully characterized by MS and confirmed to react with IgEs from 66% of patients. This molecule is a 262-amino-acid thiol protease of the papain family expressed as a combination of isoforms and glycoforms after proteolytic removal of N- and C-terminal propeptides from a proform. Three-dimensional modeling revealed a high structural homology with known cysteine proteases, including the mite Der p 1 allergen. The protease activity of Amb a 11, as well as its capacity to activate basophils from patients with ragweed allergy, were confirmed. The production of a nonglycosylated recombinant form of Amb a 11 in Escherichia coli established that glycosylation is not required for IgE binding. CONCLUSION We identified the cysteine protease Amb a 11 as a new major allergen from ragweed pollen. Given the similar physicochemical properties shared by the 2 major allergens, we hypothesize that part of the allergenic activity previously ascribed to Amb a 1 is rather borne by Amb a 11.
Collapse
Affiliation(s)
- Julien Bouley
- Research & Pharmaceutical Development, Stallergenes, Antony, France
| | - Rachel Groeme
- Research & Pharmaceutical Development, Stallergenes, Antony, France
| | - Maxime Le Mignon
- Research & Pharmaceutical Development, Stallergenes, Antony, France
| | - Karine Jain
- Research & Pharmaceutical Development, Stallergenes, Antony, France
| | - Henri Chabre
- Research & Pharmaceutical Development, Stallergenes, Antony, France
| | | | | | | | | | - Marie Naveau
- Research & Pharmaceutical Development, Stallergenes, Antony, France
| | | | - Vincent Lombardi
- Research & Pharmaceutical Development, Stallergenes, Antony, France
| | | | - Thierry Batard
- Research & Pharmaceutical Development, Stallergenes, Antony, France
| | - Emmanuel Nony
- Research & Pharmaceutical Development, Stallergenes, Antony, France
| | - Philippe Moingeon
- Research & Pharmaceutical Development, Stallergenes, Antony, France.
| |
Collapse
|
33
|
Kim JH, Yoon MK, Kim MA, Shin YS, Ye YM, Park HS. Cross-allergenicity between dandelion and major weed pollens. ALLERGY ASTHMA & RESPIRATORY DISEASE 2015. [DOI: 10.4168/aard.2015.3.5.358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Ji Hye Kim
- Department of Allergy and Clinical Immunology, Ajou University Hospital, Suwon, Korea
| | - Moon-Kyung Yoon
- Department of Allergy and Clinical Immunology, Ajou University Hospital, Suwon, Korea
| | - Mi-Ae Kim
- Department of Pulmonology-Allergy, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | - Yoo-Seob Shin
- Department of Allergy and Clinical Immunology, Ajou University Hospital, Suwon, Korea
| | - Young Min Ye
- Department of Allergy and Clinical Immunology, Ajou University Hospital, Suwon, Korea
| | - Hae-Sim Park
- Department of Allergy and Clinical Immunology, Ajou University Hospital, Suwon, Korea
| |
Collapse
|
34
|
Stemeseder T, Hemmer W, Hawranek T, Gadermaier G. Marker allergens of weed pollen - basic considerations and diagnostic benefits in the clinical routine: Part 16 of the Series Molecular Allergology. ALLERGO JOURNAL INTERNATIONAL 2014; 23:274-280. [PMID: 26120538 PMCID: PMC4479474 DOI: 10.1007/s40629-014-0033-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 08/25/2014] [Indexed: 10/28/2022]
Abstract
The term weed is referring to plants used as culinary herbs and medicinal plants as well as ecologically adaptive and invasive segetal plants. In Europe, pollen of ragweed, mugwort, English plantain and pellitory are the main elicitors of weed pollen allergies. Presently, 35 weed pollen allergens have been identified. The most relevant belong to the protein families of pectate lyases, defensin-like proteins, non-specific lipid transfer proteins, and Ole e 1-like proteins. The sensitization frequency depends on geographic regions and might affect more than 50 % of pollen allergic patients in distinct regions. Due to overlapping flowering seasons, similar habitats, polysensitizations and cross-reactive (pan)-allergens, it is difficult to diagnose genuine weed pollen sensitization using pollen extracts. Marker allergens for component-resolved diagnostics are available for the important weed pollen. These are Amb a 1 (ragweed), Art v 1 (mugwort), Pla l 1 (English plantain) and Par j 2 (pellitory). Molecule-based approaches can be used to identify the primary sensitizer and thus enable selection of the appropriate weed pollen extracts for allergen immunotherapy.
Collapse
Affiliation(s)
- Teresa Stemeseder
- />Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | | | - Thomas Hawranek
- />Department of Dermatology, Paracelsus Private Medical University Salzburg, Salzburg, Österreich
| | - Gabriele Gadermaier
- />Department of Molecular Biology, University of Salzburg, Salzburg, Austria
- />Christian Doppler Laboratory for Biosimilar Characterization, University of Salzburg, Salzburg, Austria
- />Christian Doppler Laboratory for Biosimilar Characterization Department of Molecular Biology, University of Salzburg, Hellbrunnerstraße 34, 5020 Salzburg, Austria
| |
Collapse
|
35
|
Stemeseder T, Hemmer W, Hawranek T, Gadermaier G. Markerallergene von Kräuterpollen — Grundlagen und diagnostischer Nutzen im klinischen Alltag. ALLERGO JOURNAL 2014. [DOI: 10.1007/s15007-014-0718-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
36
|
|
37
|
Wallner M, Pichler U, Ferreira F. Recombinant allergens for pollen immunotherapy. Immunotherapy 2014; 5:1323-38. [PMID: 24283843 DOI: 10.2217/imt.13.114] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Specific immunotherapy (IT) represents the only potentially curative therapeutic intervention of allergic diseases capable of suppressing allergy-associated symptoms not only during treatment, but also after its cessation. Presently, IT is performed with allergen extracts, which represent a heterogeneous mixture of allergenic, as well as nonallergenic, compounds of a given allergen source. To overcome many of the problems associated with extract-based IT, strategies based on the use of recombinant allergens or derivatives thereof have been developed. This review focuses on recombinant technologies to produce allergy therapeuticals, especially for allergies caused by tree, grass and weed pollen, as they are among the most prevalent allergic disorders affecting the population of industrialized societies. The reduction of IgE-binding of recombinant allergen derivatives appears to be mandatory to increase the safety profile of vaccine candidates. Moreover, increased immunogenicity is expected to reduce the dosage regimes of the presently cumbersome treatment. In this regard, it has been convincingly demonstrated in animal models that hypoallergenic molecules can be engineered to harbor inherent antiallergenic immunologic properties. Thus, strategies to modulate the allergenic and immunogenic properties of recombinant allergens will be discussed in detail. In recent years, several successful clinical studies using recombinant wild-type or hypoallergens as active ingredients have been published and, currently, novel treatment forms with higher safety and efficacy profiles are under investigation in clinical trials. These recent developments are summarized and discussed.
Collapse
Affiliation(s)
- Michael Wallner
- Christian Doppler Laboratory for Allergy Diagnosis & Therapy, Department of Molecular Biology, University of Salzburg, Hellbrunnerstr. 34, A-5020 Salzburg, Austria
| | | | | |
Collapse
|
38
|
Asero R, Bellotto E, Ghiani A, Aina R, Villalta D, Citterio S. Concomitant sensitization to ragweed and mugwort pollen: who is who in clinical allergy? Ann Allergy Asthma Immunol 2014; 113:307-13. [PMID: 25053399 DOI: 10.1016/j.anai.2014.06.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 06/05/2014] [Accepted: 06/17/2014] [Indexed: 12/16/2022]
Abstract
BACKGROUND In many areas of Europe, double sensitization to ragweed and mugwort is common, and because of the overlapping flowering periods of the 2 plants, it is not possible to diagnose the primary sensitizing allergen source and hence to determine the proper immunotherapy. OBJECTIVES To elucidate whether double-sensitized patients are cosensitized or cross-sensitized and, in the latter case, to define the primary sensitizer. METHODS Serum samples from 34 patients with late summer respiratory allergy underwent skin prick testing with whole ragweed, and mugwort extracts were analyzed for their reactivity to recombinant Art v 1 and Amb a 1 by ImmunoCAP and then to Amb a 1, Art v 6, and Art v 1 isoforms by a proteomic approach. In double reactors, the primary sensitizing sources were detected by inhibition experiments. RESULTS Serum samples from patients monosensitized to ragweed contained IgE to epitopes specific of all Amb a 1 isoforms. In contrast, serum samples from double reactors found to be primarily sensitized to mugwort reacted to Art v 1 and Art v 6 and cross-reacted to a few Amb a 1 isoforms. Finally, serum samples from double reactors found to be primarily sensitized to ragweed contained IgE reacting to all Amb a 1 isoforms, part of which cross-reacted to Art v 6. We did not find cosensitized patients. CONCLUSION This study found that Art v 6 plays an important role in mugwort allergy and that the cross-reactivity between Art v 6 and Amb a 1 is frequent, bidirectional, and clinically relevant in the area of Milan.
Collapse
Affiliation(s)
- Riccardo Asero
- Ambulatorio di Allergologia, Clinica San Carlo, Paderno Dugnano, Milan, Italy
| | - Emanuele Bellotto
- Dipartimento di Science Ambientali, Università di Milano-Bicocca, Milan, Italy
| | - Alessandra Ghiani
- Dipartimento di Science Ambientali, Università di Milano-Bicocca, Milan, Italy
| | - Roberta Aina
- Dipartimento di Science Ambientali, Università di Milano-Bicocca, Milan, Italy
| | - Danilo Villalta
- Allergologia e Immunologia Clinica, Azienda Ospedaliera, S Maria degli Angeli, Pordenone, Italy
| | - Sandra Citterio
- Dipartimento di Science Ambientali, Università di Milano-Bicocca, Milan, Italy.
| |
Collapse
|
39
|
Yoon MG, Kim MA, Jin HJ, Shin YS, Park HS. Identification of IgE binding components of two major weed pollens, ragweed and mugwort. ALLERGY ASTHMA & RESPIRATORY DISEASE 2014. [DOI: 10.4168/aard.2014.2.5.337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Moon-Gyung Yoon
- Department of Allergy & Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - Mi-Ae Kim
- Department of Allergy and Clinical Immunology, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | - Hyun-Jung Jin
- Department of Internal Medicine, Yeungnam University College of Medicine, Daegu, Korea
| | - Yoo-Seob Shin
- Department of Allergy & Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - Hae-Sim Park
- Department of Allergy & Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
- Department of Biomedical Science, Ajou University Graduate School, Suwon, Korea
| |
Collapse
|
40
|
Smith M, Cecchi L, Skjøth CA, Karrer G, Šikoparija B. Common ragweed: a threat to environmental health in Europe. ENVIRONMENT INTERNATIONAL 2013; 61:115-26. [PMID: 24140540 DOI: 10.1016/j.envint.2013.08.005] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 08/10/2013] [Accepted: 08/13/2013] [Indexed: 05/07/2023]
Abstract
Common or short ragweed (Ambrosia artemisiifolia L.) is an annual herb belonging to the Asteraceae family that was described by Carl Linnaeus in the 18th century. It is a noxious invasive species that is an important weed in agriculture and a source of highly allergenic pollen. The importance placed on A. artemisiifolia is reflected by the number of international projects that have now been launched by the European Commission and the increasing number of publications being produced on this topic. This review paper examines existing knowledge about ragweed ecology, distribution and flowering phenology and the environmental health risk that this noxious plant poses in Europe. The paper also examines control measures used in the fight against it and state of the art methods for modelling atmospheric concentrations of this important aeroallergen. Common ragweed is an environmental health threat, not only in its native North America but also in many parts of the world where it has been introduced. In Europe, where the plant has now become naturalised and frequently forms part of the flora, the threat posed by ragweed has been identified and steps are being taken to reduce further geographical expansion and limit increases in population densities of the plant in order to protect the allergic population. This is particularly important when one considers possible range shifts, changes in flowering phenology and increases in the amount of pollen and allergenic potency that could be brought about by changes in climate.
Collapse
Affiliation(s)
- M Smith
- Research Group Aerobiology and Pollen Information, Department of Oto-Rhino-Laryngology, Medical University of Vienna, Austria
| | | | | | | | | |
Collapse
|
41
|
Jimenez-Lopez JC, Kotchoni SO, Hernandez-Soriano MC, Gachomo EW, Alché JD. Structural functionality, catalytic mechanism modeling and molecular allergenicity of phenylcoumaran benzylic ether reductase, an olive pollen (Ole e 12) allergen. J Comput Aided Mol Des 2013; 27:873-95. [PMID: 24154826 DOI: 10.1007/s10822-013-9686-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Accepted: 10/16/2013] [Indexed: 01/22/2023]
Abstract
Isoflavone reductase-like proteins (IRLs) are enzymes with key roles in the metabolism of diverse flavonoids. Last identified olive pollen allergen (Ole e 12) is an IRL relevant for allergy amelioration, since it exhibits high prevalence among atopic patients. The goals of this study are the characterization of (A) the structural-functionality of Ole e 12 with a focus in its catalytic mechanism, and (B) its molecular allergenicity by extensive analysis using different molecular computer-aided approaches covering (1) physicochemical properties and functional-regulatory motifs, (2) sequence analysis, 2-D and 3D structural homology modeling comparative study and molecular docking, (3) conservational and evolutionary analysis, (4) catalytic mechanism modeling, and (5) sequence, structure-docking based B-cell epitopes prediction, while T-cell epitopes were predicted by inhibitory concentration and binding score methods. Structural-based detailed features, phylogenetic and sequences analysis have identified Ole e 12 as phenylcoumaran benzylic ether reductase. A catalytic mechanism has been proposed for Ole e 12 which display Lys133 as one of the conserved residues of the IRLs catalytic tetrad (Asn-Ser-Tyr-Lys). Structure characterization revealed a conserved protein folding among plants IRLs. However, sequence polymorphism significantly affected residues involved in the catalytic pocket structure and environment (cofactor and substrate interaction-recognition). It might also be responsible for IRLs isoforms functionality and regulation, since micro-heterogeneities affected physicochemical and posttranslational motifs. This polymorphism might have large implications for molecular differences in B- and T-cells epitopes of Ole e 12, and its identification may help designing strategies to improve the component-resolving diagnosis and immunotherapy of pollen and food allergy through development of molecular tools.
Collapse
Affiliation(s)
- Jose C Jimenez-Lopez
- Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), Profesor Albareda 1, 18008, Granada, Spain,
| | | | | | | | | |
Collapse
|
42
|
Gadermaier G, Hauser M, Ferreira F. Allergens of weed pollen: an overview on recombinant and natural molecules. Methods 2013; 66:55-66. [PMID: 23806644 DOI: 10.1016/j.ymeth.2013.06.014] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 06/13/2013] [Indexed: 12/16/2022] Open
Abstract
Weeds represent a botanically unrelated group of plants that usually lack commercial or aesthetical value. Pollen of allergenic weeds are able to trigger type I reactions in allergic patients and can be found in the plant families of Asteraceae, Amaranthaceae, Plantaginaceae, Urticaceae, and Euphorbiaceae. To date, 34 weed pollen allergens are listed in the IUIS allergen nomenclature database, which were physicochemically and immunologically characterized to varying degrees. Relevant allergens of weeds belong to the pectate lyase family, defensin-like family, Ole e 1-like family, non-specific lipid transfer protein 1 family and the pan-allergens profilin and polcalcins. This review provides an overview on weed pollen allergens primarily focusing on the molecular level. In particular, the characteristics and properties of purified recombinant allergens and hypoallergenic derivatives are described and their potential use in diagnosis and therapy of weed pollen allergy is discussed.
Collapse
Affiliation(s)
- Gabriele Gadermaier
- Christian Doppler Laboratory for Allergy Diagnosis and Therapy, Department of Molecular Biology, University of Salzburg, Salzburg, Austria.
| | - Michael Hauser
- Christian Doppler Laboratory for Allergy Diagnosis and Therapy, Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Fatima Ferreira
- Christian Doppler Laboratory for Allergy Diagnosis and Therapy, Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| |
Collapse
|