1
|
Kokiçi J, Preechanukul A, Arellano-Ballestero H, Gorou F, Peppa D. Emerging Insights into Memory Natural Killer Cells and Clinical Applications. Viruses 2024; 16:1746. [PMID: 39599860 PMCID: PMC11599065 DOI: 10.3390/v16111746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/03/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024] Open
Abstract
Natural killer (NK) cells are innate lymphocytes that can rapidly mount a response to their targets by employing diverse mechanisms. Due to their functional attributes, NK cells have been implicated in anti-viral and anti-tumour immune responses. Although traditionally known to mount non-specific, rapid immune responses, in recent years, the notion of memory NK cells with adaptive features has gained more recognition. Memory NK cells emerge in response to different stimuli, such as viral antigens and specific cytokine combinations. They form distinct populations, accompanied by transcriptional, epigenetic and metabolic reprogramming, resulting in unique phenotypic and functional attributes. Several clinical trials are testing the efficacy of memory NK cells due to their enhanced functionality, bioenergetic profile and persistence in vivo. The therapeutic potential of NK cells is being harnessed in viral infections, with wider applications in the cancer field. In this review, we summarise the current state of research on the generation of memory NK cells, along with their clinical applications in viral infection and cancer.
Collapse
Affiliation(s)
- Jonida Kokiçi
- Division of Infection and Immunity, University College London, London NW3 2PP, UK
| | - Anucha Preechanukul
- Division of Infection and Immunity, University College London, London NW3 2PP, UK
| | | | - Frances Gorou
- Division of Infection and Immunity, University College London, London NW3 2PP, UK
| | - Dimitra Peppa
- Division of Infection and Immunity, University College London, London NW3 2PP, UK
| |
Collapse
|
2
|
Mitchell RA, Macià D, Jairoce C, Mpina M, Naidu A, Chopo-Pizarro A, Vázquez-Santiago M, Campo JJ, Aide P, Aguilar R, Daubenberger C, Dobaño C, Moncunill G. Effect of RTS,S/AS01 E vaccine booster dose on cellular immune responses in African infants and children. NPJ Vaccines 2024; 9:200. [PMID: 39455625 PMCID: PMC11511852 DOI: 10.1038/s41541-024-00977-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 09/19/2024] [Indexed: 10/28/2024] Open
Abstract
RTS,S/AS01E, the first approved malaria vaccine, demonstrated moderate efficacy during the phase 3 pediatric trial. We previously investigated cell-mediated immune (CMI) responses following the primary 3-dose immunization and now report responses to the booster dose given 18 months later. Thirty CMI markers were measured by Luminex in supernatants of peripheral blood mononuclear cells from 709 children and infants after RTS,S/AS01E antigen stimulation, and their associations with malaria risk and antibodies one month post-booster and one year later were assessed. IL-2, IFN-γ, IL-17, IL-5, and IL-13 were associated with RTS,S/AS01E booster vaccination, and IL-2 responses to the circumsporozoite protein (CSP) remained higher after one year. IL-2 was associated with reduced malaria risk in one site, and IL-10 was associated with increased risk in infants. Anti-CSP IgG and IL-2 were moderately correlated one year after booster. This study highlights the moderate cell-mediated immunogenicity of the RTS,S/AS01E booster dose that aligns with partial recovery of RTS,S/AS01E vaccine efficacy.
Collapse
Affiliation(s)
- Robert A Mitchell
- ISGlobal, Barcelona, Catalonia, Spain
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain
| | - Dídac Macià
- ISGlobal, Barcelona, Catalonia, Spain
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Barcelona, Spain
| | - Chenjerai Jairoce
- ISGlobal, Barcelona, Catalonia, Spain
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Maxmillian Mpina
- Ifakara Health Institute. Bagamoyo Research and Training Centre, Bagamoyo, Tanzania
| | | | | | | | | | - Pedro Aide
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Ruth Aguilar
- ISGlobal, Barcelona, Catalonia, Spain
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain
| | - Claudia Daubenberger
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Carlota Dobaño
- ISGlobal, Barcelona, Catalonia, Spain.
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain.
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Barcelona, Spain.
| | - Gemma Moncunill
- ISGlobal, Barcelona, Catalonia, Spain.
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain.
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Barcelona, Spain.
| |
Collapse
|
3
|
Boyle MJ, Engwerda CR, Jagannathan P. The impact of Plasmodium-driven immunoregulatory networks on immunity to malaria. Nat Rev Immunol 2024; 24:637-653. [PMID: 38862638 PMCID: PMC11688169 DOI: 10.1038/s41577-024-01041-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2024] [Indexed: 06/13/2024]
Abstract
Malaria, caused by infection with Plasmodium parasites, drives multiple regulatory responses across the immune landscape. These regulatory responses help to protect against inflammatory disease but may in some situations hamper the acquisition of adaptive immune responses that clear parasites. In addition, the regulatory responses that occur during Plasmodium infection may negatively affect malaria vaccine efficacy in the most at-risk populations. Here, we discuss the specific cellular mechanisms of immunoregulatory networks that develop during malaria, with a focus on knowledge gained from human studies and studies that involve the main malaria parasite to affect humans, Plasmodium falciparum. Leveraging this knowledge may lead to the development of new therapeutic approaches to increase protective immunity to malaria during infection or after vaccination.
Collapse
Affiliation(s)
- Michelle J Boyle
- Life Sciences Division, Burnet Institute, Melbourne, Victoria, Australia.
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.
| | | | - Prasanna Jagannathan
- Department of Medicine, Stanford University, Stanford, CA, USA.
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
4
|
Jost S, Ahn J, Chen S, Yoder T, Gikundiro KE, Lee E, Gressens SB, Kroll K, Craemer M, Kaynor GC, Lifton M, Tan CS. Upregulation of the NKG2D Ligand ULBP2 by JC Polyomavirus Infection Promotes Immune Recognition by Natural Killer Cells. J Infect Dis 2024; 229:1836-1844. [PMID: 37774496 PMCID: PMC11175686 DOI: 10.1093/infdis/jiad424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/15/2023] [Accepted: 09/28/2023] [Indexed: 10/01/2023] Open
Abstract
BACKGROUND JC polyomavirus (JCPyV) causes progressive multifocal leukoencephalopathy (PML), a potentially fatal complication of severe immune suppression with no effective treatment. Natural killer (NK) cells play critical roles in defense against viral infections; however, NK-cell response to JCPyV infection remains unexplored. METHODS NK- and T-cell responses against the JCPyV VP1 were compared using intracellular cytokine staining upon stimulation with peptide pools. A novel flow cytometry-based assay was developed to determine NK-cell killing efficiency of JCPyV-infected astrocyte-derived SVG-A cells. Blocking antibodies were used to evaluate the contribution of NK-cell receptors in immune recognition of JCPyV-infected cells. RESULTS In about 40% of healthy donors, we detected robust CD107a upregulation and IFN-γ production by NK cells, extending beyond T-cell responses. Next, using the NK-cell-mediated killing assay, we showed that coculture of NK cells and JCPyV-infected SVG-A cells leads to a 60% reduction in infection, on average. JCPyV-infected cells had enhanced expression of ULBP2-a ligand for the activating NK-cell receptor NKG2D, and addition of NKG2D blocking antibodies decreased NK-cell degranulation. CONCLUSIONS NKG2D-mediated activation of NK cells plays a key role in controlling JCPyV replication and may be a promising immunotherapeutic target to boost NK-cell anti-JCPyV activity.
Collapse
Affiliation(s)
- Stephanie Jost
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Jenny Ahn
- Center for Virology and Vaccine Research, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Sarah Chen
- Center for Virology and Vaccine Research, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Taylor Yoder
- Center for Virology and Vaccine Research, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Kayitare Eunice Gikundiro
- Center for Virology and Vaccine Research, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
- Division of Infectious Diseases, Department of Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Esther Lee
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Simon B Gressens
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Kyle Kroll
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Melissa Craemer
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| | | | - Michelle Lifton
- Center for Virology and Vaccine Research, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - C Sabrina Tan
- Center for Virology and Vaccine Research, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
- Division of Infectious Diseases, Department of Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Division of Infectious Diseases, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
5
|
Mele D, Ottolini S, Lombardi A, Conteianni D, Bandera A, Oliviero B, Mantovani S, Cassaniti I, Baldanti F, Gori A, Mondelli MU, Varchetta S. Long-term dynamics of natural killer cells in response to SARS-CoV-2 vaccination: Persistently enhanced activity postvaccination. J Med Virol 2024; 96:e29585. [PMID: 38566585 DOI: 10.1002/jmv.29585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/08/2024] [Accepted: 03/24/2024] [Indexed: 04/04/2024]
Abstract
Natural Killer (NK) cells play a significant role in the early defense against virus infections and cancer. Recent studies have demonstrated the involvement of NK cells in both the induction and effector phases of vaccine-induced immunity in various contexts. However, their role in shaping immune responses following SARS-CoV-2 vaccination remains poorly understood. To address this matter, we conducted a comprehensive analysis of NK cell phenotype and function in SARS-CoV-2 unexposed individuals who received the BNT162b2 vaccine. We employed a longitudinal study design and utilized a panel of 53 15-mer overlapping peptides covering the receptor binding domain (RBD) of the SARS-CoV-2 Spike protein to assess NK cell function at 0 and 20 days following the first vaccine, and 30 and 240 days following booster. Additionally, we evaluated the levels of total IgG anti-Spike antibodies and their potential neutralizing ability. Our findings revealed an increased NK cell activity upon re-exposure to RBD when combined with IL12 and IL18 several months after booster. Concurrently, we observed that the frequencies of NKG2A + NK cells declined over the course of the follow-up period, while NKG2C increased only in CMV positive subjects. The finding that NK cell functions are inducible 9 months after vaccination upon re-exposure to RBD and cytokines, sheds light on the role of NK cells in contributing to SARS-CoV-2 vaccine-induced immune protection and pave the way to further studies in the field.
Collapse
Affiliation(s)
- Dalila Mele
- Division of Clinical Immunology - Infectious Diseases, Department of Research, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Sabrina Ottolini
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| | - Andrea Lombardi
- Department of Pathophysiology and Transplantation, University of Milano, Milano, Italy
- Infectious Diseases Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Daniela Conteianni
- Division of Clinical Immunology - Infectious Diseases, Department of Research, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Alessandra Bandera
- Department of Pathophysiology and Transplantation, University of Milano, Milano, Italy
- Infectious Diseases Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Barbara Oliviero
- Division of Clinical Immunology - Infectious Diseases, Department of Research, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Stefania Mantovani
- Division of Clinical Immunology - Infectious Diseases, Department of Research, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Irene Cassaniti
- Department of Microbiology and Virology, Molecular Virology Unit, Fondazione IRCCS, Policlinico S. Matteo, Pavia, Italy
- Department of Clinical, Surgical, Diagnostic, and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Fausto Baldanti
- Department of Microbiology and Virology, Molecular Virology Unit, Fondazione IRCCS, Policlinico S. Matteo, Pavia, Italy
- Department of Clinical, Surgical, Diagnostic, and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Andrea Gori
- Department of Clinical Sciences, Infectious Diseases and Immunopathology, L. Sacco Hospital, Università di Milano, Milan, Italy
- Centre for Multidisciplinary Research in Health Science (MACH), University of Milano, Milano, Italy
| | - Mario U Mondelli
- Division of Clinical Immunology - Infectious Diseases, Department of Research, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| | - Stefania Varchetta
- Division of Clinical Immunology - Infectious Diseases, Department of Research, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| |
Collapse
|
6
|
Rajneesh, Tiwari R, Singh VK, Kumar A, Gupta RP, Singh AK, Gautam V, Kumar R. Advancements and Challenges in Developing Malaria Vaccines: Targeting Multiple Stages of the Parasite Life Cycle. ACS Infect Dis 2023; 9:1795-1814. [PMID: 37708228 DOI: 10.1021/acsinfecdis.3c00332] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Malaria, caused by Plasmodium species, remains a major global health concern, causing millions of deaths annually. While the introduction of the RTS,S vaccine has shown promise, there is a pressing need for more effective vaccines due to the emergence of drug-resistant parasites and insecticide-resistant vectors. However, the complex life cycle and genetic diversity of the parasite, technical obstacles, limited funding, and the impact of the 2019 pandemic have hindered progress in malaria vaccine development. This review focuses on advancements in malaria vaccine development, particularly the ongoing clinical trials targeting antigens from different stages of the Plasmodium life cycle. Additionally, we discuss the rationale, strategies, and challenges associated with vaccine design, aiming to enhance the immune response and protective efficacy of vaccine candidates. A cost-effective and multistage vaccine could hold the key to controlling and eradicating malaria.
Collapse
Affiliation(s)
- Rajneesh
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Rahul Tiwari
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Vishal K Singh
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Awnish Kumar
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Rohit P Gupta
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
- Department of Applied Microbiology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Akhilesh K Singh
- Faculty of Dental Science, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Vibhav Gautam
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Rajiv Kumar
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
7
|
Beeson JG, Kurtovic L, Valim C, Asante KP, Boyle MJ, Mathanga D, Dobano C, Moncunill G. The RTS,S malaria vaccine: Current impact and foundation for the future. Sci Transl Med 2022; 14:eabo6646. [DOI: 10.1126/scitranslmed.abo6646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The RTS,S vaccine has recently been recommended for implementation as a childhood vaccine in regions with moderate-to-high malaria transmission. We discuss mechanisms of vaccine protection and longevity, implementation considerations, and future research needed to increase the vaccine’s health impact, including vaccine modifications for higher efficacy and longevity of protection.
Collapse
Affiliation(s)
- James G. Beeson
- Burnet Institute, Melbourne 3004, Victoria, Australia
- Department of Infectious Diseases, University of Melbourne, Victoria, Australia
- Monash University, Central Clinical School and Department of Microbiology, Victoria, Australia
| | - Liriye Kurtovic
- Burnet Institute, Melbourne 3004, Victoria, Australia
- Monash University, Central Clinical School and Department of Microbiology, Victoria, Australia
| | - Clarissa Valim
- Department of Global Health, Boston University School of Public Health, Boston, MA, USA
| | - Kwaku Poku Asante
- Kintampo Health Research Centre, Kintampo North Municipality, Bono East Region, Ghana
| | - Michelle J. Boyle
- QIMR Berghofer Institute, Herston, Queensland, Australia
- University of Queensland, School of Biomedical Sciences, St Lucia, Queensland, Australia
- Griffith University, Brisbane, Queensland, Australia
| | - Don Mathanga
- Malaria Alert Centre, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Carlota Dobano
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Catalonia, Spain
- CIBER Enfermedades Infecciosas (CIBERINFEC), Barcelona, Spain
| | - Gemma Moncunill
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Catalonia, Spain
- CIBER Enfermedades Infecciosas (CIBERINFEC), Barcelona, Spain
| |
Collapse
|
8
|
García-Ríos E, Rodríguez MJ, Terrón MC, Luque D, Pérez-Romero P. Identification and Characterization of Epithelial Cell-Derived Dense Bodies Produced upon Cytomegalovirus Infection. Vaccines (Basel) 2022; 10:vaccines10081308. [PMID: 36016196 PMCID: PMC9412340 DOI: 10.3390/vaccines10081308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/08/2022] [Accepted: 08/11/2022] [Indexed: 11/16/2022] Open
Abstract
Dense bodies (DB) are complex, noninfectious particles produced during CMVinfection containing envelope and tegument proteins that may be ideal candidates as vaccines. Although DB were previously described in fibroblasts, no evidence of DB formation has been shown after propagating CMV in epithelial cells. In the present study, both fibroblast MRC-5 and epithelial ARPE-19 cells were used to study DB production during CMV infection. We demonstrate the formation of epithelial cell-derived DB, mostly located as cytoplasmic inclusions in the perinuclear area of the infected cell. DB were gradient-purified, and the nature of the viral particles was confirmed using CMV-specific immunelabeling. Epithelial cell-derived DB had higher density and more homogeneous size (200-300 nm) compared to fibroblast-derived DB (100-600 nm).In agreement with previous results characterizing DB from CMV-infected fibroblasts, the pp65 tegument protein was predominant in the epithelial cell-derived DB. Our results also suggest that epithelial cells had more CMV capsids in the cytoplasm and had spherical bodies compatible with nucleus condensation (pyknosis) in cells undergoing apoptosis that were not detected in MRC-5 infected cells at the tested time post-infection. Our results demonstrate the formation of DB in CMV-infected ARPE-19 epithelial cells that may be suitable candidate to develop a multiprotein vaccine with antigenic properties similar to that of the virions while not including the viral genome.
Collapse
Affiliation(s)
- Estéfani García-Ríos
- National Center for Microbiology, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
- Department of Science, Universidad Internacional de Valencia—VIU, Pintor Sorolla 21, 46002 Valencia, Spain
| | - María Josefa Rodríguez
- Electron and Confocal Microscopy Unit, Instituto de Salud Carlos III, Unidades Centrales Científico-Técnicas, Majadahonda, 28220 Madrid, Spain
| | - María Carmen Terrón
- Electron and Confocal Microscopy Unit, Instituto de Salud Carlos III, Unidades Centrales Científico-Técnicas, Majadahonda, 28220 Madrid, Spain
| | - Daniel Luque
- Electron and Confocal Microscopy Unit, Instituto de Salud Carlos III, Unidades Centrales Científico-Técnicas, Majadahonda, 28220 Madrid, Spain
- Correspondence: (D.L.); (P.P.-R.)
| | - Pilar Pérez-Romero
- National Center for Microbiology, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
- Correspondence: (D.L.); (P.P.-R.)
| |
Collapse
|
9
|
Ranti D, Bieber C, Wang YS, Sfakianos JP, Horowitz A. Natural killer cells: unlocking new treatments for bladder cancer. Trends Cancer 2022; 8:698-710. [DOI: 10.1016/j.trecan.2022.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 10/18/2022]
|
10
|
Sharpe HR, Provine NM, Bowyer GS, Moreira Folegatti P, Belij-Rammerstorfer S, Flaxman A, Makinson R, Hill AV, Ewer KJ, Pollard AJ, Klenerman P, Gilbert S, Lambe T. CMV-associated T cell and NK cell terminal differentiation does not affect immunogenicity of ChAdOx1 vaccination. JCI Insight 2022; 7:e154187. [PMID: 35192547 PMCID: PMC8986084 DOI: 10.1172/jci.insight.154187] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 02/02/2022] [Indexed: 11/17/2022] Open
Abstract
Cytomegalovirus (CMV) is a globally ubiquitous pathogen with a seroprevalence of approximately 50% in the United Kingdom. CMV infection induces expansion of immunosenescent T cell and NK cell populations, with these cells demonstrating lower responsiveness to activation and reduced functionality upon infection and vaccination. In this study, we found that CMV+ participants had normal T cell responses after a single-dose or homologous vaccination with the viral vector chimpanzee adenovirus developed by the University of Oxford (ChAdOx1). CMV seropositivity was associated with reduced induction of IFN-γ-secreting T cells in a ChAd-Modified Vaccinia Ankara (ChAd-MVA) viral vector vaccination trial. Analysis of participants receiving a single dose of ChAdOx1 demonstrated that T cells from CMV+ donors had a more terminally differentiated profile of CD57+PD1+CD4+ T cells and CD8+ T cells expressing less IL-2Rα (CD25) and fewer polyfunctional CD4+ T cells 14 days after vaccination. NK cells from CMV-seropositive individuals also had a reduced activation profile. Overall, our data suggest that although CMV infection enhances immunosenescence of T and NK populations, it does not affect antigen-specific T cell IFN-γ secretion or antibody IgG production after vaccination with the current ChAdOx1 nCoV-19 vaccination regimen, which has important implications given the widespread use of this vaccine, particularly in low- and middle-income countries with high CMV seroprevalence.
Collapse
Affiliation(s)
| | - Nicholas M. Provine
- Translational Gastroenterology Unit, Experimental Medicine Division, Nuffield Department of Medicine, University of Oxford, United Kingdom
| | | | | | | | | | | | | | | | - Andrew J. Pollard
- Oxford Vaccine Group, Department of Paediatrics, Medical Sciences Division, University of Oxford and the National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Paul Klenerman
- Translational Gastroenterology Unit, Experimental Medicine Division, Nuffield Department of Medicine, University of Oxford, United Kingdom
| | | | - Teresa Lambe
- Jenner Institute and
- Oxford Vaccine Group, Department of Paediatrics, Medical Sciences Division, University of Oxford and the National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, Oxford, United Kingdom
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, United Kingdom
| |
Collapse
|
11
|
Woods E, Zaiatz-Bittencourt V, Bannan C, Bergin C, Finlay DK, Hoffmann M, Brown A, Turner B, Makvandi-Nejad S, Vassilev V, Capone S, Folgori A, Hanke T, Barnes E, Dorrell L, Gardiner CM. Specific human cytomegalovirus signature detected in NK cell metabolic changes post vaccination. NPJ Vaccines 2021; 6:117. [PMID: 34584101 PMCID: PMC8478984 DOI: 10.1038/s41541-021-00381-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 08/09/2021] [Indexed: 12/26/2022] Open
Abstract
Effective vaccines for human immunodeficiency virus-1 (HIV-1) and hepatitis C virus (HCV) remain a significant challenge for these infectious diseases. Given that the innate immune response is key to controlling the scale and nature of developing adaptive immune responses, targeting natural killer (NK) cells that can promote a T-helper type 1 (Th1)-type immune response through the production of interferon-γ (IFNγ) remains an untapped strategic target for improved vaccination approaches. Here, we investigate metabolic and functional responses of NK cells to simian adenovirus prime and MVA boost vaccination in a cohort of healthy volunteers receiving a dual HCV-HIV-1 vaccine. Early and late timepoints demonstrated metabolic changes that contributed to the sustained proliferation of all NK cells. However, a strong impact of human cytomegalovirus (HCMV) on some metabolic and functional responses in NK cells was observed in HCMV seropositive participants. These changes were not restricted to molecularly defined adaptive NK cells; indeed, canonical NK cells that produced most IFNγ in response to vaccination were equally impacted in individuals with latent HCMV. In summary, NK cells undergo metabolic changes in response to vaccination, and understanding these in the context of HCMV is an important step towards rational vaccine design against a range of human viral pathogens.
Collapse
Affiliation(s)
- Elena Woods
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin 2, Ireland
| | - Vanessa Zaiatz-Bittencourt
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin 2, Ireland
| | | | | | - David K Finlay
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin 2, Ireland
- School of Pharmacy, Trinity College, Dublin 2, Ireland
| | - Matthias Hoffmann
- Division of Infectious Diseases and Hospital Epidemiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
- Department of Internal Medicine, Division of Infectious Diseases and Hospital Epidemiology, Kantonsspital Olten, Olten, Switzerland
| | - Anthony Brown
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Bethany Turner
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | | | | | | | - Tomáš Hanke
- The Jenner Institute, University of Oxford, Oxford, UK
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Eleanor Barnes
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Lucy Dorrell
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Oxford NIHR Biomedical Research Centre, Oxford, UK
| | - Clair M Gardiner
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin 2, Ireland.
| |
Collapse
|
12
|
Bonam SR, Rénia L, Tadepalli G, Bayry J, Kumar HMS. Plasmodium falciparum Malaria Vaccines and Vaccine Adjuvants. Vaccines (Basel) 2021; 9:1072. [PMID: 34696180 PMCID: PMC8541031 DOI: 10.3390/vaccines9101072] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/10/2021] [Accepted: 09/22/2021] [Indexed: 12/02/2022] Open
Abstract
Malaria-a parasite vector-borne disease-is a global health problem, and Plasmodium falciparum has proven to be the deadliest among Plasmodium spp., which causes malaria in humans. Symptoms of the disease range from mild fever and shivering to hemolytic anemia and neurological dysfunctions. The spread of drug resistance and the absence of effective vaccines has made malaria disease an ever-emerging problem. Although progress has been made in understanding the host response to the parasite, various aspects of its biology in its mammalian host are still unclear. In this context, there is a pressing demand for the development of effective preventive and therapeutic strategies, including new drugs and novel adjuvanted vaccines that elicit protective immunity. The present article provides an overview of the current knowledge of anti-malarial immunity against P. falciparum and different options of vaccine candidates in development. A special emphasis has been made on the mechanism of action of clinically used vaccine adjuvants.
Collapse
Affiliation(s)
- Srinivasa Reddy Bonam
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Equipe-Immunopathologie et Immunointervention Thérapeutique, Sorbonne Université, Université de Paris, F-75006 Paris, France;
| | - Laurent Rénia
- A*STAR Infectious Diseases Labs, 8A Biomedical Grove, Singapore 138648, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore 308232, Singapore
| | - Ganesh Tadepalli
- Vaccine Immunology Laboratory, Organic Synthesis and Process Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India;
| | - Jagadeesh Bayry
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Equipe-Immunopathologie et Immunointervention Thérapeutique, Sorbonne Université, Université de Paris, F-75006 Paris, France;
- Biological Sciences & Engineering, Indian Institute of Technology Palakkad, Palakkad 678623, India
| | - Halmuthur Mahabalarao Sampath Kumar
- Vaccine Immunology Laboratory, Organic Synthesis and Process Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India;
| |
Collapse
|
13
|
Suscovich TJ, Fallon JK, Das J, Demas AR, Crain J, Linde CH, Michell A, Natarajan H, Arevalo C, Broge T, Linnekin T, Kulkarni V, Lu R, Slein MD, Luedemann C, Marquette M, March S, Weiner J, Gregory S, Coccia M, Flores-Garcia Y, Zavala F, Ackerman ME, Bergmann-Leitner E, Hendriks J, Sadoff J, Dutta S, Bhatia SN, Lauffenburger DA, Jongert E, Wille-Reece U, Alter G. Mapping functional humoral correlates of protection against malaria challenge following RTS,S/AS01 vaccination. Sci Transl Med 2021; 12:12/553/eabb4757. [PMID: 32718991 DOI: 10.1126/scitranslmed.abb4757] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 06/02/2020] [Indexed: 12/13/2022]
Abstract
Vaccine development has the potential to be accelerated by coupling tools such as systems immunology analyses and controlled human infection models to define the protective efficacy of prospective immunogens without expensive and slow phase 2b/3 vaccine studies. Among human challenge models, controlled human malaria infection trials have long been used to evaluate candidate vaccines, and RTS,S/AS01 is the most advanced malaria vaccine candidate, reproducibly demonstrating 40 to 80% protection in human challenge studies in malaria-naïve individuals. Although antibodies are critical for protection after RTS,S/AS01 vaccination, antibody concentrations are inconsistently associated with protection across studies, and the precise mechanism(s) by which vaccine-induced antibodies provide protection remains enigmatic. Using a comprehensive systems serological profiling platform, the humoral correlates of protection against malaria were identified and validated across multiple challenge studies. Rather than antibody concentration, qualitative functional humoral features robustly predicted protection from infection across vaccine regimens. Despite the functional diversity of vaccine-induced immune responses across additional RTS,S/AS01 vaccine studies, the same antibody features, antibody-mediated phagocytosis and engagement of Fc gamma receptor 3A (FCGR3A), were able to predict protection across two additional human challenge studies. Functional validation using monoclonal antibodies confirmed the protective role of Fc-mediated antibody functions in restricting parasite infection both in vitro and in vivo, suggesting that these correlates may mechanistically contribute to parasite restriction and can be used to guide the rational design of an improved vaccine against malaria.
Collapse
Affiliation(s)
- Todd J Suscovich
- Ragon Institute of MGH, Harvard, and MIT, Cambridge, MA 02139, USA
| | | | - Jishnu Das
- Ragon Institute of MGH, Harvard, and MIT, Cambridge, MA 02139, USA
| | - Allison R Demas
- Ragon Institute of MGH, Harvard, and MIT, Cambridge, MA 02139, USA.,Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jonathan Crain
- Ragon Institute of MGH, Harvard, and MIT, Cambridge, MA 02139, USA
| | - Caitlyn H Linde
- Ragon Institute of MGH, Harvard, and MIT, Cambridge, MA 02139, USA
| | - Ashlin Michell
- Ragon Institute of MGH, Harvard, and MIT, Cambridge, MA 02139, USA
| | - Harini Natarajan
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
| | - Claudia Arevalo
- Ragon Institute of MGH, Harvard, and MIT, Cambridge, MA 02139, USA
| | - Thomas Broge
- Ragon Institute of MGH, Harvard, and MIT, Cambridge, MA 02139, USA
| | - Thomas Linnekin
- Ragon Institute of MGH, Harvard, and MIT, Cambridge, MA 02139, USA
| | - Viraj Kulkarni
- Ragon Institute of MGH, Harvard, and MIT, Cambridge, MA 02139, USA
| | - Richard Lu
- Ragon Institute of MGH, Harvard, and MIT, Cambridge, MA 02139, USA
| | - Matthew D Slein
- Ragon Institute of MGH, Harvard, and MIT, Cambridge, MA 02139, USA
| | | | - Meghan Marquette
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sandra March
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Joshua Weiner
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
| | - Scott Gregory
- PATH's Malaria Vaccine Initiative, Washington, DC 20001, USA
| | | | - Yevel Flores-Garcia
- Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Fidel Zavala
- Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | | | - Elke Bergmann-Leitner
- Malaria Vaccine Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Jenny Hendriks
- Janssen Vaccines & Prevention B.V., 2333CN Leiden, Netherlands
| | - Jerald Sadoff
- Janssen Vaccines & Prevention B.V., 2333CN Leiden, Netherlands
| | - Sheetij Dutta
- Malaria Vaccine Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Sangeeta N Bhatia
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Koch Institute for Integrative Cancer Research, Cambridge, MA 02139, USA.,Broad Institute, Cambridge, MA 02139, USA.,Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.,Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Douglas A Lauffenburger
- Koch Institute for Integrative Cancer Research, Cambridge, MA 02139, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | - Galit Alter
- Ragon Institute of MGH, Harvard, and MIT, Cambridge, MA 02139, USA.
| |
Collapse
|
14
|
Abstract
Introduction: An effective vaccine against malaria forms a global health priority. Both naturally acquired immunity and sterile protection induced by irradiated sporozoite immunization were described decades ago. Still no vaccine exists that sufficiently protects children in endemic areas. Identifying immunological correlates of vaccine efficacy can inform rational vaccine design and potentially accelerate clinical development.Areas covered: We discuss recent research on immunological correlates of malaria vaccine efficacy, including: insights from state-of-the-art omics platforms and systems vaccinology analyses; functional anti-parasitic assays; pre-immunization predictors of vaccine efficacy; and comparison of correlates of vaccine efficacy against controlled human malaria infections (CHMI) and against naturally acquired infections.Expert Opinion: Effective vaccination may be achievable without necessarily understanding immunological correlates, but the relatively disappointing efficacy of malaria vaccine candidates in target populations is concerning. Hypothesis-generating omics and systems vaccinology analyses, alongside assessment of pre-immunization correlates, have the potential to bring about paradigm-shifts in malaria vaccinology. Functional assays may represent in vivo effector mechanisms, but have scarcely been formally assessed as correlates. Crucially, evidence is still meager that correlates of vaccine efficacy against CHMI correspond with those against naturally acquired infections in target populations. Finally, the diversity of immunological assays and efficacy endpoints across malaria vaccine trials remains a major confounder.
Collapse
Affiliation(s)
| | - Matthew B B McCall
- Department of Medical Microbiology, Radboud University Medical Centre, Nijmegen, The Netherlands.,Institut für Tropenmedizin, Universitätsklinikum Tübingen, Tübingen, Germany.,Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| |
Collapse
|
15
|
Wagstaffe HR, Clutterbuck EA, Bockstal V, Stoop JN, Luhn K, Douoguih M, Shukarev G, Snape MD, Pollard AJ, Riley EM, Goodier MR. Ebola virus glycoprotein stimulates IL-18-dependent natural killer cell responses. J Clin Invest 2021; 130:3936-3946. [PMID: 32315287 PMCID: PMC7324188 DOI: 10.1172/jci132438] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 04/16/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND NK cells are activated by innate cytokines and viral ligands to kill virus-infected cells. These functions are enhanced during secondary immune responses and after vaccination by synergy with effector T cells and virus-specific antibodies. In human Ebola virus infection, clinical outcome is strongly associated with the initial innate cytokine response, but the role of NK cells has not been thoroughly examined. METHODS The novel 2-dose heterologous Adenovirus type 26.ZEBOV (Ad26.ZEBOV) and modified vaccinia Ankara-BN-Filo (MVA-BN-Filo) vaccine regimen is safe and provides specific immunity against Ebola glycoprotein, and is currently in phase 2 and 3 studies. Here, we analyzed NK cell phenotype and function in response to Ad26.ZEBOV, MVA-BN-Filo vaccination regimen and in response to in vitro Ebola glycoprotein stimulation of PBMCs isolated before and after vaccination. RESULTS We show enhanced NK cell proliferation and activation after vaccination compared with baseline. Ebola glycoprotein–induced activation of NK cells was dependent on accessory cells and TLR-4–dependent innate cytokine secretion (predominantly from CD14+ monocytes) and enriched within less differentiated NK cell subsets. Optimal NK cell responses were dependent on IL-18 and IL-12, whereas IFN-γ secretion was restricted by high concentrations of IL-10. CONCLUSION This study demonstrates the induction of NK cell effector functions early after Ad26.ZEBOV, MVA-BN-Filo vaccination and provides a mechanism for the activation and regulation of NK cells by Ebola glycoprotein. TRIAL REGISTRATION ClinicalTrials.gov NCT02313077. FUNDING United Kingdom Medical Research Council Studentship in Vaccine Research, Innovative Medicines Initiative 2 Joint Undertaking, EBOVAC (grant 115861) and Crucell Holland (now Janssen Vaccines and Prevention B.V.), European Union’s Horizon 2020 research and innovation programme and European Federation of Pharmaceutical Industries and Associations (EFPIA).
Collapse
Affiliation(s)
- Helen R Wagstaffe
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Elizabeth A Clutterbuck
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom.,National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, Oxford University Hospitals and National Health Service (NHS) Foundation Trust, Oxford, United Kingdom
| | - Viki Bockstal
- Janssen Vaccines and Prevention, Leiden, Netherlands
| | | | - Kerstin Luhn
- Janssen Vaccines and Prevention, Leiden, Netherlands
| | | | | | - Matthew D Snape
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom.,National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, Oxford University Hospitals and National Health Service (NHS) Foundation Trust, Oxford, United Kingdom
| | - Andrew J Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom.,National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, Oxford University Hospitals and National Health Service (NHS) Foundation Trust, Oxford, United Kingdom
| | - Eleanor M Riley
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Martin R Goodier
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
16
|
Durable natural killer cell responses after heterologous two-dose Ebola vaccination. NPJ Vaccines 2021; 6:19. [PMID: 33514756 PMCID: PMC7846750 DOI: 10.1038/s41541-021-00280-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 01/04/2021] [Indexed: 12/24/2022] Open
Abstract
Natural killer (NK) cells are implicated among immune effectors after vaccination against viral pathogens, including Ebola virus. The two-dose heterologous Ebola virus vaccine regimen, adenovirus type 26.ZEBOV followed by modified vaccinia Ankara-BN-Filo (EBOVAC2 consortium, EU Innovative Medicines Initiative), induces NK cell activation and anti-Ebola glycoprotein (GP) antibody-dependent NK cell activation post-dose 1, which is further elevated post-dose 2. Here, in a multicentre, phase 2 clinical trial (EBL2001), we demonstrate durable ex vivo NK cell activation 180 days after dose 2, with responses enriched in CD56bright NK cells. In vitro antibody-dependent responses to immobilised Ebola GP increased after dose 1, and remained elevated compared to pre-vaccination levels in serum collected 180 days later. Peak NK cell responses were observed post-dose 2 and NK cell IFN-γ responses remained significantly elevated at 180 days post-dose 2. Individual variation in NK cell responses were influenced by both anti-Ebola GP antibody concentrations and intrinsic interindividual differences in NK cell functional capacity. In summary, this study demonstrates durable NK cell responses after Ad26.ZEBOV, MVA-BN-Filo Ebola virus vaccination and could inform the immunological evaluation of future iterations of the vaccine regimen and vaccination schedules.
Collapse
|
17
|
Barnes S, Schilizzi O, Audsley KM, Newnes HV, Foley B. Deciphering the Immunological Phenomenon of Adaptive Natural Killer (NK) Cells and Cytomegalovirus (CMV). Int J Mol Sci 2020; 21:ijms21228864. [PMID: 33238550 PMCID: PMC7700325 DOI: 10.3390/ijms21228864] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/20/2020] [Accepted: 11/20/2020] [Indexed: 12/16/2022] Open
Abstract
Natural killer (NK) cells play a significant and vital role in the first line of defense against infection through their ability to target cells without prior sensitization. They also contribute significantly to the activation and recruitment of both innate and adaptive immune cells through the production of a range of cytokines and chemokines. In the context of cytomegalovirus (CMV) infection, NK cells and CMV have co-evolved side by side to employ several mechanisms to evade one another. However, during this co-evolution the discovery of a subset of long-lived NK cells with enhanced effector potential, increased antibody-dependent responses and the potential to mediate immune memory has revolutionized the field of NK cell biology. The ability of a virus to imprint on the NK cell receptor repertoire resulting in the expansion of diverse, highly functional NK cells to this day remains a significant immunological phenomenon that only occurs in the context of CMV. Here we review our current understanding of the development of these NK cells, commonly referred to as adaptive NK cells and their current role in transplantation, infection, vaccination and cancer immunotherapy to decipher the complex role of CMV in dictating NK cell functional fate.
Collapse
Affiliation(s)
- Samantha Barnes
- Telethon Kids Institute, University of Western Australia, Perth Children’s Hospital, Nedlands, WA 6009, Australia; (S.B.); (O.S.); (K.M.A.); (H.V.N.)
- School of Biomedical Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Ophelia Schilizzi
- Telethon Kids Institute, University of Western Australia, Perth Children’s Hospital, Nedlands, WA 6009, Australia; (S.B.); (O.S.); (K.M.A.); (H.V.N.)
- School of Biomedical Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Katherine M. Audsley
- Telethon Kids Institute, University of Western Australia, Perth Children’s Hospital, Nedlands, WA 6009, Australia; (S.B.); (O.S.); (K.M.A.); (H.V.N.)
- School of Biomedical Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Hannah V. Newnes
- Telethon Kids Institute, University of Western Australia, Perth Children’s Hospital, Nedlands, WA 6009, Australia; (S.B.); (O.S.); (K.M.A.); (H.V.N.)
- School of Biomedical Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Bree Foley
- Telethon Kids Institute, University of Western Australia, Perth Children’s Hospital, Nedlands, WA 6009, Australia; (S.B.); (O.S.); (K.M.A.); (H.V.N.)
- Correspondence:
| |
Collapse
|
18
|
De Mot L, Bechtold V, Bol V, Callegaro A, Coccia M, Essaghir A, Hasdemir D, Ulloa-Montoya F, Siena E, Smilde A, van den Berg RA, Didierlaurent AM, Burny W, van der Most RG. Transcriptional profiles of adjuvanted hepatitis B vaccines display variable interindividual homogeneity but a shared core signature. Sci Transl Med 2020; 12:12/569/eaay8618. [DOI: 10.1126/scitranslmed.aay8618] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 10/23/2020] [Indexed: 12/19/2022]
Abstract
The current routine use of adjuvants in human vaccines provides a strong incentive to increase our understanding of how adjuvants differ in their ability to stimulate innate immunity and consequently enhance vaccine immunogenicity. Here, we evaluated gene expression profiles in cells from whole blood elicited in naive subjects receiving the hepatitis B surface antigen formulated with different adjuvants. We identified a core innate gene signature emerging 1 day after the second vaccination and that was shared by the recipients of vaccines formulated with adjuvant systems AS01B, AS01E, or AS03. This core signature associated with the magnitude of the hepatitis B surface-specific antibody response and was characterized by positive regulation of genes associated with interferon-related responses or the innate cell compartment and by negative regulation of natural killer cell–associated genes. Analysis at the individual subject level revealed that the higher immunogenicity of AS01B-adjuvanted vaccine was linked to its ability to induce this signature in most vaccinees even after the first vaccination. Therefore, our data suggest that adjuvanticity is not strictly defined by the nature of the receptors or signaling pathways it activates but by the ability of the adjuvant to consistently induce a core inflammatory signature across individuals.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Dicle Hasdemir
- Bioinformatics Laboratory, University of Amsterdam, 1012 WX Amsterdam, Netherlands
- Biosystems Data Analysis Group, University of Amsterdam, 1012 WX Amsterdam, Netherlands
| | | | | | - Age Smilde
- Biosystems Data Analysis Group, University of Amsterdam, 1012 WX Amsterdam, Netherlands
| | | | | | | | | |
Collapse
|
19
|
Abuga KM, Jones-Warner W, Hafalla JCR. Immune responses to malaria pre-erythrocytic stages: Implications for vaccine development. Parasite Immunol 2020; 43:e12795. [PMID: 32981095 PMCID: PMC7612353 DOI: 10.1111/pim.12795] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 08/26/2020] [Accepted: 09/14/2020] [Indexed: 12/16/2022]
Abstract
Radiation-attenuated sporozoites induce sterilizing immunity and remain the 'gold standard' for malaria vaccine development. Despite practical challenges in translating these whole sporozoite vaccines to large-scale intervention programmes, they have provided an excellent platform to dissect the immune responses to malaria pre-erythrocytic (PE) stages, comprising both sporozoites and exoerythrocytic forms. Investigations in rodent models have provided insights that led to the clinical translation of various vaccine candidates-including RTS,S/AS01, the most advanced candidate currently in a trial implementation programme in three African countries. With advances in immunology, transcriptomics and proteomics, and application of lessons from past failures, an effective, long-lasting and wide-scale malaria PE vaccine remains feasible. This review underscores the progress in PE vaccine development, focusing on our understanding of host-parasite immunological crosstalk in the tissue environments of the skin and the liver. We highlight possible gaps in the current knowledge of PE immunity that can impact future malaria vaccine development efforts.
Collapse
Affiliation(s)
- Kelvin Mokaya Abuga
- Department of Infection Biology, Faculty of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, UK.,Department of Epidemiology and Demography, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - William Jones-Warner
- Department of Infection Biology, Faculty of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Julius Clemence R Hafalla
- Department of Infection Biology, Faculty of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
20
|
Responsiveness to Influenza Vaccination Correlates with NKG2C-Expression on NK Cells. Vaccines (Basel) 2020; 8:vaccines8020281. [PMID: 32517137 PMCID: PMC7349951 DOI: 10.3390/vaccines8020281] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/24/2020] [Accepted: 06/03/2020] [Indexed: 12/24/2022] Open
Abstract
Influenza vaccination often results in a large percentage of low responders, especially in high-risk groups. As a first line of defense, natural killer (NK) cells play a crucial role in the fight against infections. However, their implication with regard to vaccine responsiveness is insufficiently assessed. Therefore, this study aimed at the validation of essential NK cell features potentially associated with differential vaccine responsiveness with a special focus on NKG2C- and/or CD57-expressing NK cells considered to harbor memory-like functions. To this end, 16 healthy volunteers were vaccinated with an adjuvanted pandemic influenza vaccine. Vaccine responders and low responders were classified according to their hemagglutination inhibition antibody titers. A majority of responders displayed enhanced frequencies of NKG2C-expressing NK cells 7- or 14-days post-vaccination as compared to low responders, whereas the expression of CD57 was not differentially modulated. The NK cell cytotoxic potential was found to be confined to CD56dimCD16+ NKG2C-expressing NK cells in the responders but not in the low responders, which was further confirmed by stochastic neighbor embedding analysis. The presented study is the first of its kind that ascribes CD56dimCD16+ NKG2C-expressing NK cells a crucial role in biasing adaptive immune responses upon influenza vaccination and suggests NKG2C as a potential biomarker in predicting pandemic influenza vaccine responsiveness.
Collapse
|
21
|
Pierce S, Geanes ES, Bradley T. Targeting Natural Killer Cells for Improved Immunity and Control of the Adaptive Immune Response. Front Cell Infect Microbiol 2020; 10:231. [PMID: 32509600 PMCID: PMC7248265 DOI: 10.3389/fcimb.2020.00231] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 04/23/2020] [Indexed: 12/13/2022] Open
Abstract
Natural killer (NK) cells are critical for targeting and killing tumor, virus-infected and stressed cells as a member of the innate immune system. Recently, NK cells have also emerged as key regulators of adaptive immunity and have become a prominent therapeutic target for cancer immunotherapy and infection control. NK cells display a diverse array of phenotypes and function. Determining how NK cells develop and are regulated is critical for understanding their role in both innate and adaptive immunity. In this review we discuss current research approaches into NK cell adaptive immunity and how these cells are being harnessed for improving cancer and vaccination outcomes.
Collapse
Affiliation(s)
- Stephen Pierce
- Center for Pediatric Genomic Medicine, Children's Mercy Kansas City, Kansas City, MO, United States
| | - Eric S Geanes
- Center for Pediatric Genomic Medicine, Children's Mercy Kansas City, Kansas City, MO, United States
| | - Todd Bradley
- Center for Pediatric Genomic Medicine, Children's Mercy Kansas City, Kansas City, MO, United States.,Departments of Pediatrics and Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States.,Department of Pediatrics, University of Missouri Kansas City Medical School, Kansas City, MO, United States
| |
Collapse
|
22
|
Moncunill G, Scholzen A, Mpina M, Nhabomba A, Hounkpatin AB, Osaba L, Valls R, Campo JJ, Sanz H, Jairoce C, Williams NA, Pasini EM, Arteta D, Maynou J, Palacios L, Duran-Frigola M, Aponte JJ, Kocken CHM, Agnandji ST, Mas JM, Mordmüller B, Daubenberger C, Sauerwein R, Dobaño C. Antigen-stimulated PBMC transcriptional protective signatures for malaria immunization. Sci Transl Med 2020; 12:eaay8924. [PMID: 32404508 DOI: 10.1126/scitranslmed.aay8924] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 11/26/2019] [Accepted: 04/15/2020] [Indexed: 01/03/2025]
Abstract
Identifying immune correlates of protection and mechanisms of immunity accelerates and streamlines the development of vaccines. RTS,S/AS01E, the most clinically advanced malaria vaccine, has moderate efficacy in African children. In contrast, immunization with sporozoites under antimalarial chemoprophylaxis (CPS immunization) can provide 100% sterile protection in naïve adults. We used systems biology approaches to identifying correlates of vaccine-induced immunity based on transcriptomes of peripheral blood mononuclear cells from individuals immunized with RTS,S/AS01E or chemoattenuated sporozoites stimulated with parasite antigens in vitro. Specifically, we used samples of individuals from two age cohorts and three African countries participating in an RTS,S/AS01E pediatric phase 3 trial and malaria-naïve individuals participating in a CPS trial. We identified both preimmunization and postimmunization transcriptomic signatures correlating with protection. Signatures were validated in independent children and infants from the RTS,S/AS01E phase 3 trial and individuals from an independent CPS trial with high accuracies (>70%). Transcription modules revealed interferon, NF-κB, Toll-like receptor (TLR), and monocyte-related signatures associated with protection. Preimmunization signatures suggest that priming the immune system before vaccination could potentially improve vaccine immunogenicity and efficacy. Last, signatures of protection could be useful to determine efficacy in clinical trials, accelerating vaccine candidate testing. Nevertheless, signatures should be tested more extensively across multiple cohorts and trials to demonstrate their universal predictive capacity.
Collapse
Affiliation(s)
- Gemma Moncunill
- ISGlobal, Hospital Clínic-Universitat de Barcelona, E-08036 Barcelona, Catalonia, Spain.
- Centro de Investigação em Saúde de Manhiça (CISM), Rua 12, Cambeve, Vila de Manhiça, CP 1929 Maputo, Mozambique
| | - Anja Scholzen
- Department of Medical Microbiology, Radboud University Medical Center, 6500 HB Nijmegen, Netherlands
| | - Maximillian Mpina
- Ifakara Health Institute, Bagamoyo Research and Training Centre. P.O. Box 74, Bagamoyo, Tanzania
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4002 Basel, Switzerland
- University of Basel, Petersplatz 1, 4001 Basel, Switzerland
| | - Augusto Nhabomba
- Centro de Investigação em Saúde de Manhiça (CISM), Rua 12, Cambeve, Vila de Manhiça, CP 1929 Maputo, Mozambique
| | - Aurore Bouyoukou Hounkpatin
- Centre de Recherches Médicales de Lambaréné (CERMEL), BP 242 Lambaréné, Gabon
- Institute of Tropical Medicine and German Center for Infection Research, University of Tübingen, Wilhelmstraße 27, D-72074 Tübingen, Germany
| | - Lourdes Osaba
- Progenika Biopharma. A Grifols Company, S.A., 48160 Derio, Vizcaya, Spain
| | | | - Joseph J Campo
- ISGlobal, Hospital Clínic-Universitat de Barcelona, E-08036 Barcelona, Catalonia, Spain
- Centro de Investigação em Saúde de Manhiça (CISM), Rua 12, Cambeve, Vila de Manhiça, CP 1929 Maputo, Mozambique
| | - Hèctor Sanz
- ISGlobal, Hospital Clínic-Universitat de Barcelona, E-08036 Barcelona, Catalonia, Spain
| | - Chenjerai Jairoce
- Centro de Investigação em Saúde de Manhiça (CISM), Rua 12, Cambeve, Vila de Manhiça, CP 1929 Maputo, Mozambique
| | - Nana Aba Williams
- ISGlobal, Hospital Clínic-Universitat de Barcelona, E-08036 Barcelona, Catalonia, Spain
| | - Erica M Pasini
- Department of Parasitology, Biomedical Primate Research Centre, Rijswijk, Netherlands
| | - David Arteta
- Progenika Biopharma. A Grifols Company, S.A., 48160 Derio, Vizcaya, Spain
| | - Joan Maynou
- Progenika Biopharma. A Grifols Company, S.A., 48160 Derio, Vizcaya, Spain
| | - Lourdes Palacios
- Progenika Biopharma. A Grifols Company, S.A., 48160 Derio, Vizcaya, Spain
| | - Miquel Duran-Frigola
- Institute for Research in Biomedicine (IRB Barcelona). The Barcelona Institute of Science and Technology, 08028 Barcelona, Catalonia, Spain
| | - John J Aponte
- ISGlobal, Hospital Clínic-Universitat de Barcelona, E-08036 Barcelona, Catalonia, Spain
| | - Clemens H M Kocken
- Department of Parasitology, Biomedical Primate Research Centre, Rijswijk, Netherlands
| | - Selidji Todagbe Agnandji
- Centre de Recherches Médicales de Lambaréné (CERMEL), BP 242 Lambaréné, Gabon
- Institute of Tropical Medicine and German Center for Infection Research, University of Tübingen, Wilhelmstraße 27, D-72074 Tübingen, Germany
| | | | - Benjamin Mordmüller
- Institute of Tropical Medicine and German Center for Infection Research, University of Tübingen, Wilhelmstraße 27, D-72074 Tübingen, Germany
| | - Claudia Daubenberger
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4002 Basel, Switzerland
- University of Basel, Petersplatz 1, 4001 Basel, Switzerland
| | - Robert Sauerwein
- Department of Medical Microbiology, Radboud University Medical Center, 6500 HB Nijmegen, Netherlands
| | - Carlota Dobaño
- ISGlobal, Hospital Clínic-Universitat de Barcelona, E-08036 Barcelona, Catalonia, Spain.
- Centro de Investigação em Saúde de Manhiça (CISM), Rua 12, Cambeve, Vila de Manhiça, CP 1929 Maputo, Mozambique
| |
Collapse
|
23
|
Judge SJ, Murphy WJ, Canter RJ. Characterizing the Dysfunctional NK Cell: Assessing the Clinical Relevance of Exhaustion, Anergy, and Senescence. Front Cell Infect Microbiol 2020; 10:49. [PMID: 32117816 PMCID: PMC7031155 DOI: 10.3389/fcimb.2020.00049] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 01/24/2020] [Indexed: 12/24/2022] Open
Abstract
There is a growing body of literature demonstrating the importance of T cell exhaustion in regulating and shaping immune responses to pathogens and cancer. Simultaneously, the parallel development of therapeutic antibodies targeting inhibitory molecules associated with immune exhaustion (such as PD-1, but also TIGIT, and LAG-3) has led to a revolution in oncology with dramatic benefits in a growing list of solid and hematologic malignancies. Given this success in reinvigorating exhausted T cells and the related anti-tumor effects, there are increasing efforts to apply immune checkpoint blockade to other exhausted immune cells beyond T cells. One approach involves the reinvigoration of “exhausted” NK cells, a non-T, non-B lymphoid cell of the innate immune system. However, in contrast to the more well-defined and established molecular, genetic, and immunophenotypic characteristics of T cell exhaustion, a consensus on the defining functional and phenotypic features of NK “exhaustion” is less clear. As is well-known from T cell biology, separate and distinct molecular and cellular processes including senescence, anergy and exhaustion can lead to diminished immune effector function with different implications for immune regulation and recovery. For NK cells, it is unclear if exhaustion, anergy, and senescence entail separate and distinct entities of dysfunction, though all are typically characterized by decreased effector function or proliferation. In this review, we seek to define these distinct spheres of NK cell dysfunction, analyzing how they have been shown to impact NK biology and clinical applications, and ultimately highlight key characteristics in NK cell function, particularly in relation to the role of “exhaustion.”
Collapse
Affiliation(s)
- Sean J Judge
- Division of Surgical Oncology, Department of Surgery, University of California, Davis, Sacramento, CA, United States
| | - William J Murphy
- Department of Dermatology, University of California, Davis, Sacramento, CA, United States.,Department of Medicine, University of California, Davis, Sacramento, CA, United States
| | - Robert J Canter
- Division of Surgical Oncology, Department of Surgery, University of California, Davis, Sacramento, CA, United States
| |
Collapse
|
24
|
Goodier MR, Wolf AS, Riley EM. Differentiation and adaptation of natural killer cells for anti-malarial immunity. Immunol Rev 2019; 293:25-37. [PMID: 31762040 DOI: 10.1111/imr.12798] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 08/07/2019] [Accepted: 08/16/2019] [Indexed: 12/12/2022]
Abstract
Natural killer cells employ a diverse arsenal of effector mechanisms to target intracellular pathogens. Differentiation of natural killer (NK) cell activation pathways occurs along a continuum from reliance on innate pro-inflammatory cytokines and stress-induced host ligands through to interaction with signals derived from acquired immune responses. Importantly, the degree of functional differentiation of the NK cell lineage influences the magnitude and specificity of interactions with host cells infected with viruses, bacteria, fungi, and parasites. Individual humans possess a vast diversity of distinct NK cell clones, each with the capacity to vary along this functional differentiation pathway, which - when combined - results in unique individual responses to different infections. Here we summarize these NK cell differentiation events, review evidence for direct interaction of malaria-infected host cells with NK cells and assess how innate inflammatory signals induced by malaria parasite-associated molecular patterns influence the indirect activation and function of NK cells. Finally, we discuss evidence that anti-malarial immunity develops in parallel with advancing NK differentiation, coincident with a loss of reliance on inflammatory signals, and a refined capacity of NK cells to target malaria parasites more precisely, particularly through antibody-dependent mechanisms.
Collapse
Affiliation(s)
- Martin R Goodier
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - Asia-Sophia Wolf
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK.,Department of Infection and Immunity, University College London, London, UK
| | - Eleanor M Riley
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK.,The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| |
Collapse
|
25
|
Plotkin SA. Updates on immunologic correlates of vaccine-induced protection. Vaccine 2019; 38:2250-2257. [PMID: 31767462 DOI: 10.1016/j.vaccine.2019.10.046] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/15/2019] [Accepted: 10/17/2019] [Indexed: 02/06/2023]
Abstract
Correlates of protection (CoPs) are increasingly important in the development and licensure of vaccines. Although the study of CoPs was initially directed at identifying a single immune function that could explain vaccine efficacy, it has become increasingly clear that there are often multiple functions responsible for efficacy. This review is meant to supplement prior articles on the subject, illustrating both simple and complex CoPs.
Collapse
Affiliation(s)
- Stanley A Plotkin
- Emeritus Professor of Pediatrics, University of Pennsylvania, Vaxconsult, 4650 Wismer Rd., Doylestown, PA 18902, United States.
| |
Collapse
|
26
|
Kumar R, Loughland JR, Ng SS, Boyle MJ, Engwerda CR. The regulation of CD4
+
T cells during malaria. Immunol Rev 2019; 293:70-87. [DOI: 10.1111/imr.12804] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 09/04/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Rajiv Kumar
- Centre of Experimental Medicine and Surgery Institute of Medical Sciences Banaras Hindu University Varanasi UP India
- Department of Medicine Institute of Medical Sciences Banaras Hindu University Varanasi UP India
| | - Jessica R. Loughland
- Human Malaria Immunology Laboratory QIMR Berghofer Medical Research Institute Brisbane Australia
| | - Susanna S. Ng
- Immunology and Infection Laboratory QIMR Berghofer Medical Research Institute Brisbane Australia
| | - Michelle J. Boyle
- Human Malaria Immunology Laboratory QIMR Berghofer Medical Research Institute Brisbane Australia
| | - Christian R. Engwerda
- Immunology and Infection Laboratory QIMR Berghofer Medical Research Institute Brisbane Australia
| |
Collapse
|
27
|
Ivanova DL, Mundhenke TM, Gigley JP. The IL-12- and IL-23-Dependent NK Cell Response Is Essential for Protective Immunity against Secondary Toxoplasma gondii Infection. THE JOURNAL OF IMMUNOLOGY 2019; 203:2944-2958. [PMID: 31604804 DOI: 10.4049/jimmunol.1801525] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 09/17/2019] [Indexed: 12/22/2022]
Abstract
NK cells can develop cell-intrinsic memory-like characteristics. Whether they develop these characteristics during Toxoplasma gondii infection is unknown. We addressed this question and dissected the mechanisms involved in secondary NK cell responses using a vaccine-challenge mouse model of T. gondii infection. NK cells were required for control of and survival after secondary T. gondii infection. NK cells increased in number at the reinfection site and produced IFN-γ. To test if these T. gondii experienced NK cells were intrinsically different from naive NK cells, we performed NK cell adoptive transfer into RAG2/cγ-chain-/- mice, NK cell fate mapping, and RAG1-/- mice vaccine-challenge experiments. Although NK cells contributed to immunity after reinfection, they did not develop cell-intrinsic memory-like characteristics after T. gondii vaccination. The mechanisms required for generating these secondary NK cell responses were investigated. Secondary NK cell responses were CD4+ or CD8+ T cell independent. Although IL-12 alone is required for NK cell IFN-γ production during primary T. gondii infection, in the absence of IL-12 using IL-12p35-/- mice or anti-IL-12p70, secondary NK cell responses were only partially reduced after reinfection. IL-23 depletion with anti-IL-23p19 in vivo also significantly reduced the secondary NK cell response. IL-12 and IL-23 blockade with anti-IL-12p40 treatment completely eliminated secondary NK cell responses. Importantly, blockade of IL-12, IL-23, or both significantly reduced control of parasite reinfection and increased parasite burden. Our results define a previously unknown protective role for NK cells during secondary T. gondii infection that is dependent on IL-12 and IL-23.
Collapse
Affiliation(s)
- Daria L Ivanova
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071
| | | | - Jason P Gigley
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071
| |
Collapse
|
28
|
Burrack KS, Hart GT, Hamilton SE. Contributions of natural killer cells to the immune response against Plasmodium. Malar J 2019; 18:321. [PMID: 31533835 PMCID: PMC6751859 DOI: 10.1186/s12936-019-2953-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 09/07/2019] [Indexed: 01/08/2023] Open
Abstract
Natural killer (NK) cells are important innate effector cells that are well described in their ability to kill virally-infected cells and tumors. However, there is increasing appreciation for the role of NK cells in the control of other pathogens, including intracellular parasites such as Plasmodium, the cause of malaria. NK cells may be beneficial during the early phase of Plasmodium infection—prior to the activation and expansion of antigen-specific T cells—through cooperation with myeloid cells to produce inflammatory cytokines like IFNγ. Recent work has defined how Plasmodium can activate NK cells to respond with natural cytotoxicity, and inhibit the growth of parasites via antibody-dependent cellular cytotoxicity mechanisms (ADCC). A specialized subset of adaptive NK cells that are negative for the Fc receptor γ chain have enhanced ADCC function and correlate with protection from malaria. Additionally, production of the regulatory cytokine IL-10 by NK cells prevents overt pathology and death during experimental cerebral malaria. Now that conditional NK cell mouse models have been developed, previous studies need to be reevaluated in the context of what is now known about other immune populations with similarity to NK cells (i.e., NKT cells and type I innate lymphoid cells). This brief review summarizes recent findings which support the potentially beneficial roles of NK cells during Plasmodium infection in mice and humans. Also highlighted are how the actions of NK cells can be explored using new experimental strategies, and the potential to harness NK cell function in vaccination regimens.
Collapse
Affiliation(s)
- Kristina S Burrack
- Department of Medicine, Hennepin Healthcare Research Institute, Minneapolis, MN, 55415, USA
| | - Geoffrey T Hart
- Center for Immunology, Department of Medicine, Division of Infectious Disease and International Medicine, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Sara E Hamilton
- Center for Immunology, Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, 55414, USA.
| |
Collapse
|
29
|
Feng X, Xu W, Li Z, Song W, Ding J, Chen X. Immunomodulatory Nanosystems. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1900101. [PMID: 31508270 PMCID: PMC6724480 DOI: 10.1002/advs.201900101] [Citation(s) in RCA: 245] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/21/2019] [Indexed: 05/15/2023]
Abstract
Immunotherapy has emerged as an effective strategy for the prevention and treatment of a variety of diseases, including cancer, infectious diseases, inflammatory diseases, and autoimmune diseases. Immunomodulatory nanosystems can readily improve the therapeutic effects and simultaneously overcome many obstacles facing the treatment method, such as inadequate immune stimulation, off-target side effects, and bioactivity loss of immune agents during circulation. In recent years, researchers have continuously developed nanomaterials with new structures, properties, and functions. This Review provides the most recent advances of nanotechnology for immunostimulation and immunosuppression. In cancer immunotherapy, nanosystems play an essential role in immune cell activation and tumor microenvironment modulation, as well as combination with other antitumor approaches. In infectious diseases, many encouraging outcomes from using nanomaterial vaccines against viral and bacterial infections have been reported. In addition, nanoparticles also potentiate the effects of immunosuppressive immune cells for the treatment of inflammatory and autoimmune diseases. Finally, the challenges and prospects of applying nanotechnology to modulate immunotherapy are discussed.
Collapse
Affiliation(s)
- Xiangru Feng
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022P. R. China
- University of Science and Technology of ChinaHefei230026P. R. China
| | - Weiguo Xu
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022P. R. China
| | - Zhongmin Li
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022P. R. China
- Department of Gastrointestinal Colorectal and Anal SurgeryChina–Japan Union Hospital of Jilin UniversityChangchun130033P. R. China
| | - Wantong Song
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022P. R. China
| | - Jianxun Ding
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022P. R. China
| | - Xuesi Chen
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022P. R. China
| |
Collapse
|
30
|
Wagstaffe HR, Pickering H, Houghton J, Mooney JP, Wolf AS, Prevatt N, Behrens RH, Holland MJ, Riley EM, Goodier MR. Influenza Vaccination Primes Human Myeloid Cell Cytokine Secretion and NK Cell Function. THE JOURNAL OF IMMUNOLOGY 2019; 203:1609-1618. [PMID: 31427444 DOI: 10.4049/jimmunol.1801648] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 07/16/2019] [Indexed: 12/14/2022]
Abstract
Cytokine-induced memory-like (CIML) NK cells generated in response to proinflammatory cytokines in vitro and in vivo can also be generated by vaccination, exhibiting heightened responses to cytokine stimulation months after their initial induction. Our previous study demonstrated that in vitro human NK cell responses to inactivated influenza virus were also indirectly augmented by very low doses of IL-15, which increased induction of myeloid cell-derived cytokine secretion. These findings led us to hypothesize that IL-15 stimulation could reveal a similar effect for active influenza vaccination and influence CIML NK cell effector functions. In this study, 51 healthy adults were vaccinated with seasonal influenza vaccine, and PBMC were collected before and up to 30 d after vaccination. Myeloid and lymphoid cell cytokine secretion was measured after in vitro PBMC restimulation with low-dose IL-15, alone or in combination with inactivated H3N2 virus; the associated NK cell response was assessed by flow cytometry. PBMC collected 30 d postvaccination showed heightened cytokine production in response to IL-15 compared with PBMC collected at baseline; these responses were further enhanced when IL-15 was combined with H3N2. NK cell activation in response to IL-15 alone (CD25) and H3N2 plus IL-15 (CD25 and IFN-γ) was enhanced postvaccination. We also observed proliferation of less-differentiated NK cells with downregulation of cytokine receptors as early as 3 d after vaccination, suggesting cytokine stimulation in vivo. We conclude that vaccination-induced "training" of accessory cells combines with the generation of CIML NK cells to enhance the overall NK cell response postvaccination.
Collapse
Affiliation(s)
- Helen R Wagstaffe
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London WC1E 7HT, United Kingdom
| | - Harry Pickering
- Department of Clinical Research, London School of Hygiene and Tropical Medicine, London WC1E 7HT, United Kingdom
| | - Joanna Houghton
- Department of Clinical Research, London School of Hygiene and Tropical Medicine, London WC1E 7HT, United Kingdom
| | - Jason P Mooney
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London WC1E 7HT, United Kingdom.,The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, United Kingdom; and
| | - Asia-Sophia Wolf
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London WC1E 7HT, United Kingdom.,Division of Infection and Immunity, University College London, London WC1E 6JF, United Kingdom
| | - Natalie Prevatt
- Department of Clinical Research, London School of Hygiene and Tropical Medicine, London WC1E 7HT, United Kingdom
| | - Ron H Behrens
- Department of Clinical Research, London School of Hygiene and Tropical Medicine, London WC1E 7HT, United Kingdom
| | - Martin J Holland
- Department of Clinical Research, London School of Hygiene and Tropical Medicine, London WC1E 7HT, United Kingdom
| | - Eleanor M Riley
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London WC1E 7HT, United Kingdom.,The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, United Kingdom; and
| | - Martin R Goodier
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London WC1E 7HT, United Kingdom;
| |
Collapse
|
31
|
Ghofrani J, Lucar O, Dugan H, Reeves RK, Jost S. Semaphorin 7A modulates cytokine-induced memory-like responses by human natural killer cells. Eur J Immunol 2019; 49:1153-1166. [PMID: 31016720 DOI: 10.1002/eji.201847931] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 03/05/2019] [Accepted: 04/04/2019] [Indexed: 12/24/2022]
Abstract
Cytokine-induced memory-like (CIML) NK cells are endowed with the capacity to mediate enhanced effector functions upon cytokine or activating receptor restimulation for several weeks following short-term preactivation with IL-12, IL-15, and IL-18. Promising results from a first-in-human clinical trial highlighted the clinical potential of CIML NK cells as adoptive immunotherapy for patients with hematologic malignancies. However, the mechanisms underlying CIML NK cell differentiation and increased functionality remain incompletely understood. Semaphorin 7A (SEMA7A) is a potent immunomodulator expressed in activated lymphocytes and myeloid cells. In this study, we show that SEMA7A is substantially upregulated on NK cells stimulated with cytokines, and specifically marks activated NK cells with a strong potential to release IFN-γ. In particular, preactivation of NK cells with IL-12+IL-15+IL-18 resulted in greater than tenfold upregulation of SEMA7A and enhanced expression of the ligand for SEMA7A, integrin-β1, on CIML NK cells. Strikingly, preactivation in the presence of antibodies targeting SEMA7A lead to significantly decreased IFN-γ production following restimulation. These results imply a novel mechanism by which cytokine-enhanced SEMA7A/integrin-β1 interaction promotes CIML NK cell differentiation and maintenance of increased functionality. Our data suggest that targeting SEMA7A/integrin-β1 signaling might provide a novel immunotherapeutic approach to potentiate antitumor activity of CIML NK cells.
Collapse
Affiliation(s)
- Joshua Ghofrani
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Olivier Lucar
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Haley Dugan
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - R Keith Reeves
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.,Ragon Institute of Massachusetts General Hospital, MIT, and Harvard, Cambridge, MA, USA
| | - Stephanie Jost
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
32
|
Sierro F, Grau GER. The Ins and Outs of Cerebral Malaria Pathogenesis: Immunopathology, Extracellular Vesicles, Immunometabolism, and Trained Immunity. Front Immunol 2019; 10:830. [PMID: 31057552 PMCID: PMC6478768 DOI: 10.3389/fimmu.2019.00830] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 03/28/2019] [Indexed: 12/16/2022] Open
Abstract
Complications from malaria parasite infections still cost the lives of close to half a million people every year. The most severe is cerebral malaria (CM). Employing murine models of CM, autopsy results, in vitro experiments, neuroimaging and microscopic techniques, decades of research activity have investigated the development of CM immunopathology in the hope of identifying steps that could be therapeutically targeted. Yet important questions remain. This review summarizes recent findings, primarily mechanistic insights on the essential cellular and molecular players involved gained within the murine experimental cerebral malaria model. It also highlights recent developments in (a) cell-cell communication events mediated through extracellular vesicles (EVs), (b) mounting evidence for innate immune memory, leading to “trained“ increased or tolerised responses, and (c) modulation of immune cell function through metabolism, that could shed light on why some patients develop this life-threatening condition whilst many do not.
Collapse
Affiliation(s)
- Frederic Sierro
- Vascular Immunology Unit, Department of Pathology, Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia.,Human Health, Nuclear Science, Technology, and Landmark Infrastructure, Australian Nuclear Science and Technology Organisation, Sydney, NSW, Australia
| | - Georges E R Grau
- Vascular Immunology Unit, Department of Pathology, Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
33
|
Prabowo SA, Zelmer A, Stockdale L, Ojha U, Smith SG, Seifert K, Fletcher HA. Historical BCG vaccination combined with drug treatment enhances inhibition of mycobacterial growth ex vivo in human peripheral blood cells. Sci Rep 2019; 9:4842. [PMID: 30890730 PMCID: PMC6425030 DOI: 10.1038/s41598-019-41008-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 02/20/2019] [Indexed: 12/24/2022] Open
Abstract
Tuberculosis (TB) is a leading infectious cause of death globally. Drug treatment and vaccination, in particular with Bacillus Calmette-Guérin (BCG), remain the main strategies to control TB. With the emergence of drug resistance, it has been proposed that a combination of TB vaccination with pharmacological treatment may provide a greater therapeutic value. We implemented an ex vivo mycobacterial growth inhibition assay (MGIA) to discriminate vaccine responses in historically BCG-vaccinated human volunteers and to assess the contribution of vaccine-mediated immune response towards the killing effect of mycobacteria in the presence of the antibiotics isoniazid (INH) and rifampicin (RIF), in an attempt to develop the assay as a screening tool for therapeutic TB vaccines. BCG vaccination significantly enhanced the ability of INH to control mycobacterial growth ex vivo. The BCG-vaccinated group displayed a higher production of IFN-γ and IP-10 when peripheral blood mononuclear cells (PBMC) were co-cultured with INH, with a similar trend during co-culture with RIF. A higher frequency of IFN-γ+ and TNF-α+ CD3- CD4- CD8- cells was observed, suggesting the contribution of Natural Killer (NK) cells in the combined effect between BCG vaccination and INH. Taken together, our data indicate the efficacy of INH can be augmented following historical BCG vaccination, which support findings from previous observational and animal studies.
Collapse
Affiliation(s)
- Satria A Prabowo
- Department of Immunology and Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
- Tuberculosis Centre, London School of Hygiene and Tropical Medicine, London, UK
| | - Andrea Zelmer
- Department of Immunology and Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
- Tuberculosis Centre, London School of Hygiene and Tropical Medicine, London, UK
| | - Lisa Stockdale
- Department of Immunology and Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
- Tuberculosis Centre, London School of Hygiene and Tropical Medicine, London, UK
| | - Utkarsh Ojha
- Faculty of Medicine, Imperial College School of Medicine, Imperial College London, London, UK
| | - Steven G Smith
- Department of Immunology and Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
- Tuberculosis Centre, London School of Hygiene and Tropical Medicine, London, UK
| | - Karin Seifert
- Department of Immunology and Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Helen A Fletcher
- Department of Immunology and Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK.
- Tuberculosis Centre, London School of Hygiene and Tropical Medicine, London, UK.
| |
Collapse
|
34
|
Ivanova DL, Denton SL, Fettel KD, Sondgeroth KS, Munoz Gutierrez J, Bangoura B, Dunay IR, Gigley JP. Innate Lymphoid Cells in Protection, Pathology, and Adaptive Immunity During Apicomplexan Infection. Front Immunol 2019; 10:196. [PMID: 30873151 PMCID: PMC6403415 DOI: 10.3389/fimmu.2019.00196] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 01/23/2019] [Indexed: 12/23/2022] Open
Abstract
Apicomplexans are a diverse and complex group of protozoan pathogens including Toxoplasma gondii, Plasmodium spp., Cryptosporidium spp., Eimeria spp., and Babesia spp. They infect a wide variety of hosts and are a major health threat to humans and other animals. Innate immunity provides early control and also regulates the development of adaptive immune responses important for controlling these pathogens. Innate immune responses also contribute to immunopathology associated with these infections. Natural killer (NK) cells have been for a long time known to be potent first line effector cells in helping control protozoan infection. They provide control by producing IL-12 dependent IFNγ and killing infected cells and parasites via their cytotoxic response. Results from more recent studies indicate that NK cells could provide additional effector functions such as IL-10 and IL-17 and might have diverse roles in immunity to these pathogens. These early studies based their conclusions on the identification of NK cells to be CD3–, CD49b+, NK1.1+, and/or NKp46+ and the common accepted paradigm at that time that NK cells were one of the only lymphoid derived innate immune cells present. New discoveries have lead to major advances in understanding that NK cells are only one of several populations of innate immune cells of lymphoid origin. Common lymphoid progenitor derived innate immune cells are now known as innate lymphoid cells (ILC) and comprise three different groups, group 1, group 2, and group 3 ILC. They are a functionally heterogeneous and plastic cell population and are important effector cells in disease and tissue homeostasis. Very little is known about each of these different types of ILCs in parasitic infection. Therefore, we will review what is known about NK cells in innate immune responses during different protozoan infections. We will discuss what immune responses attributed to NK cells might be reconsidered as ILC1, 2, or 3 population responses. We will then discuss how different ILCs may impact immunopathology and adaptive immune responses to these parasites.
Collapse
Affiliation(s)
- Daria L Ivanova
- Molecular Biology, University of Wyoming, Laramie, WY, United States
| | - Stephen L Denton
- Molecular Biology, University of Wyoming, Laramie, WY, United States
| | - Kevin D Fettel
- Molecular Biology, University of Wyoming, Laramie, WY, United States
| | | | - Juan Munoz Gutierrez
- Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Berit Bangoura
- Veterinary Sciences, University of Wyoming, Laramie, WY, United States
| | - Ildiko R Dunay
- Institute of Inflammation and Neurodegeneration, Otto-von-Guericke Universität Magdeburg, Magdeburg, Germany
| | - Jason P Gigley
- Molecular Biology, University of Wyoming, Laramie, WY, United States
| |
Collapse
|
35
|
Yang C, Cheng H, Zhang Y, Fan K, Luo G, Fan Z, Huang Q, Lu Y, Jin K, Wang Z, Yu X, Liu C. Anergic natural killer cells educated by tumor cells are associated with a poor prognosis in patients with advanced pancreatic ductal adenocarcinoma. Cancer Immunol Immunother 2018; 67:1815-1823. [PMID: 30167864 PMCID: PMC11028138 DOI: 10.1007/s00262-018-2235-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 08/18/2018] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Natural killer cells (NK) are often believed to play a positive role in the antitumor immune response. However, this is not the case for patients with advanced pancreatic cancer. This study was performed to determine the unique subtype of "educated" NK cells and their prognostic value in patients with advanced pancreatic cancer. METHODS We divided 378 eligible patients into a derivation cohort (September 2010 to December 2014, n = 239) and a validation cohort (January 2015 to April 2016, n = 139). Flow cytometry was performed to analyze NK cells. Enzyme-linked immunosorbent assay was used to detect interleukin-2 (IL-2), interferon gamma (IFN-γ) and tumor necrosis factor alpha (TNF-α) production. The Kaplan-Meier method and the Cox proportional hazards model were used. RESULTS Survival analysis showed that a high density of NK cells accompanied by a high neutrophil-to-lymphocyte ratio was associated with reduced overall survival in both the derivation and validation cohorts. Multivariable analysis also showed that high NK infiltration (HR 1.45, 95% CI 1.17 to 1.79, p = 0.001) was an independent prognostic factor. In these patients, high NK infiltration was associated with reduced levels of IL-2, IFN-γ and TNF-α, although only IFN-γ reached statistical significance, which accounted for this unique phenomenon. DISCUSSION Natural killer cells in patients with advanced pancreatic cancer are a unique subtype with anergic features. A high density of NKs predicts poor survival in these patients, possibly because an active inflammatory response and reduced secretion of IL-2, IFN-γ and TNF-α inhibit NK activation.
Collapse
Affiliation(s)
- Chao Yang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Xuhui District, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, People's Republic of China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, People's Republic of China
| | - He Cheng
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Xuhui District, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, People's Republic of China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, People's Republic of China
| | - Yiyin Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Xuhui District, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, People's Republic of China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, People's Republic of China
| | - Kun Fan
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Xuhui District, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, People's Republic of China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, People's Republic of China
| | - Guopei Luo
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Xuhui District, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, People's Republic of China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, People's Republic of China
| | - Zhiyao Fan
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Xuhui District, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, People's Republic of China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, People's Republic of China
| | - Qiuyi Huang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Xuhui District, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, People's Republic of China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, People's Republic of China
| | - Yu Lu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Xuhui District, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, People's Republic of China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, People's Republic of China
| | - Kaizhou Jin
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Xuhui District, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, People's Republic of China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, People's Republic of China
| | - Zhengshi Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Xuhui District, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, People's Republic of China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, People's Republic of China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Xuhui District, Shanghai, 200032, People's Republic of China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, People's Republic of China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, People's Republic of China.
| | - Chen Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Xuhui District, Shanghai, 200032, People's Republic of China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, People's Republic of China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
36
|
Costa AG, Ramasawmy R, Val FFA, Ibiapina HNS, Oliveira AC, Tarragô AM, Garcia NP, Heckmann MIO, Monteiro WM, Malheiro A, Lacerda MVG. Polymorphisms in TLRs influence circulating cytokines production in Plasmodium vivax malaria. Cytokine 2018; 110:374-380. [DOI: 10.1016/j.cyto.2018.04.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/22/2018] [Accepted: 04/07/2018] [Indexed: 02/08/2023]
|
37
|
Vandoolaeghe P, Schuerman L. [The RTS,S/AS01 malaria vaccine in children aged 5-17 months at first vaccination]. Pan Afr Med J 2018; 30:142. [PMID: 30374388 PMCID: PMC6201624 DOI: 10.11604/pamj.2018.30.142.13152] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 02/08/2018] [Indexed: 11/18/2022] Open
Abstract
Le vaccin antipaludique RTS,S/AS01 a reçu un avis scientifique favorable de l’Agence Européenne des Médicaments (EMA) en Juillet 2015. L’Organisation Mondiale de la Santé (OMS) a recommandé l’introduction pilote de ce vaccin chez des enfants âgés d’au moins 5 mois en utilisant un schéma de vaccination comprenant 3 doses initiales espacées d’au moins un mois et une 4ème dose administrée 15 à 18 mois après la 3ème dose. Des essais cliniques et des modèles mathématiques ont montré que la protection partielle contre le paludisme conférée par le vaccin RTS,S/AS01 pourrait avoir un impact substantiel sur la santé publique si le vaccin est utilisé en association avec d’autres mesures de lutte antipaludique, en particulier dans les zones hautement endémiques. L’impact le plus important a été observé chez les enfants âgés de 5 mois ou plus ayant reçu 4 doses de RTS,S/AS01. Le vaccin sera ensuite évalué en situation réelle afin de déterminer son impact sur la mortalité, son innocuité dans le cadre d’une vaccination de routine, et la faisabilité opérationnelle d’administrer 4 doses du vaccin dont certaines nécessitant de nouveaux contacts dans le calendrier de vaccination. En cas de succès, cela permettra une mise en œuvre à plus grande échelle.
Collapse
|
38
|
Moncunill G, Mpina M, Nhabomba AJ, Aguilar R, Ayestaran A, Sanz H, Campo JJ, Jairoce C, Barrios D, Dong Y, Díez-Padrisa N, Fernandes JF, Abdulla S, Sacarlal J, Williams NA, Harezlak J, Mordmüller B, Agnandji ST, Aponte JJ, Daubenberger C, Valim C, Dobaño C. Distinct Helper T Cell Type 1 and 2 Responses Associated With Malaria Protection and Risk in RTS,S/AS01E Vaccinees. Clin Infect Dis 2018; 65:746-755. [PMID: 28505356 DOI: 10.1093/cid/cix429] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 05/04/2017] [Indexed: 12/13/2022] Open
Abstract
Background The RTS,S/AS01E malaria vaccine has moderate efficacy, lower in infants than children. Current efforts to enhance RTS,S/AS01E efficacy would benefit from learning about the vaccine-induced immunity and identifying correlates of malaria protection, which could, for instance, inform the choice of adjuvants. Here, we sought cellular immunity-based correlates of malaria protection and risk associated with RTS,S/AS01E vaccination. Methods We performed a matched case-control study nested within the multicenter African RTS,S/AS01E phase 3 trial. Children and infant samples from 57 clinical malaria cases (32 RTS,S/25 comparator vaccinees) and 152 controls without malaria (106 RTS,S/46 comparator vaccinees) were analyzed. We measured 30 markers by Luminex following RTS,S/AS01E antigen stimulation of cells 1 month postimmunization. Crude concentrations and ratios of antigen to background control were analyzed. Results Interleukin (IL) 2 and IL-5 ratios were associated with RTS,S/AS01E vaccination (adjusted P ≤ .01). IL-5 circumsporozoite protein (CSP) ratios, a helper T cell type 2 cytokine, correlated with higher odds of malaria in RTS,S/AS01E vaccinees (odds ratio, 1.17 per 10% increases of CSP ratios; P value adjusted for multiple testing = .03). In multimarker analysis, the helper T cell type 1 (TH1)-related markers interferon-γ, IL-15, and granulocyte-macrophage colony-stimulating factor protected from subsequent malaria, in contrast to IL-5 and RANTES, which increased the odds of malaria. Conclusions RTS,S/AS01E-induced IL-5 may be a surrogate of lack of protection, whereas TH1-related responses may be involved in protective mechanisms. Efforts to develop second-generation vaccine candidates may concentrate on adjuvants that modulate the immune system to support enhanced TH1 responses and decreased IL-5 responses.
Collapse
Affiliation(s)
- Gemma Moncunill
- ISGlobal, Barcelona Centre for International Health Research, Hospital Clínic-Universitat de Barcelona, Catalonia, Spain.,Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique
| | - Maxmillian Mpina
- Ifakara Health Institute, Bagamoyo Research and Training Centre, Tanzania
| | | | - Ruth Aguilar
- ISGlobal, Barcelona Centre for International Health Research, Hospital Clínic-Universitat de Barcelona, Catalonia, Spain
| | - Aintzane Ayestaran
- ISGlobal, Barcelona Centre for International Health Research, Hospital Clínic-Universitat de Barcelona, Catalonia, Spain
| | - Héctor Sanz
- ISGlobal, Barcelona Centre for International Health Research, Hospital Clínic-Universitat de Barcelona, Catalonia, Spain
| | - Joseph J Campo
- ISGlobal, Barcelona Centre for International Health Research, Hospital Clínic-Universitat de Barcelona, Catalonia, Spain.,Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique
| | | | - Diana Barrios
- ISGlobal, Barcelona Centre for International Health Research, Hospital Clínic-Universitat de Barcelona, Catalonia, Spain
| | - Yan Dong
- Department of Epidemiology and Biostatistics, School of Public Health, Indiana University, Bloomington
| | - Núria Díez-Padrisa
- ISGlobal, Barcelona Centre for International Health Research, Hospital Clínic-Universitat de Barcelona, Catalonia, Spain
| | - José F Fernandes
- Centre de Recherches Médicales de Lambaréné, Albert Schweitzer Hospital, Gabon
| | | | - Jahit Sacarlal
- Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique.,Faculdade de Medicina da Universidade Eduardo Mondlane, Maputo, Mozambique
| | - Nana A Williams
- ISGlobal, Barcelona Centre for International Health Research, Hospital Clínic-Universitat de Barcelona, Catalonia, Spain
| | - Jaroslaw Harezlak
- Department of Epidemiology and Biostatistics, School of Public Health, Indiana University, Bloomington
| | - Benjamin Mordmüller
- Centre de Recherches Médicales de Lambaréné, Albert Schweitzer Hospital, Gabon.,Institute of Tropical Medicine, German Center for Infection Research, University of Tübingen, Germany
| | - Selidji T Agnandji
- Centre de Recherches Médicales de Lambaréné, Albert Schweitzer Hospital, Gabon
| | - John J Aponte
- ISGlobal, Barcelona Centre for International Health Research, Hospital Clínic-Universitat de Barcelona, Catalonia, Spain.,Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique
| | - Claudia Daubenberger
- Swiss Tropical and Public Health Institute, Basel.,University of Basel, Switzerland
| | - Clarissa Valim
- Department of Osteopathic Medical Specialties, Michigan State University, East Lansing.,Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Carlota Dobaño
- ISGlobal, Barcelona Centre for International Health Research, Hospital Clínic-Universitat de Barcelona, Catalonia, Spain.,Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique
| |
Collapse
|
39
|
Wagstaffe HR, Mooney JP, Riley EM, Goodier MR. Vaccinating for natural killer cell effector functions. Clin Transl Immunology 2018; 7:e1010. [PMID: 29484187 PMCID: PMC5822400 DOI: 10.1002/cti2.1010] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 12/19/2017] [Accepted: 12/29/2017] [Indexed: 12/21/2022] Open
Abstract
Vaccination has proved to be highly effective in reducing global mortality and eliminating infectious diseases. Building on this success will depend on the development of new and improved vaccines, new methods to determine efficacy and optimum dosing and new or refined adjuvant systems. NK cells are innate lymphoid cells that respond rapidly during primary infection but also have adaptive characteristics enabling them to integrate innate and acquired immune responses. NK cells are activated after vaccination against pathogens including influenza, yellow fever and tuberculosis, and their subsequent maturation, proliferation and effector function is dependent on myeloid accessory cell-derived cytokines such as IL-12, IL-18 and type I interferons. Activation of antigen-presenting cells by live attenuated or whole inactivated vaccines, or by the use of adjuvants, leads to enhanced and sustained NK cell activity, which in turn contributes to T cell recruitment and memory cell formation. This review explores the role of cytokine-activated NK cells as vaccine-induced effector cells and in recall responses and their potential contribution to vaccine and adjuvant development.
Collapse
Affiliation(s)
- Helen R Wagstaffe
- Department of Immunology and InfectionLondon School of Hygiene and Tropical MedicineLondonUK
| | - Jason P Mooney
- Department of Immunology and InfectionLondon School of Hygiene and Tropical MedicineLondonUK
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesUniversity of EdinburghMidlothianUK
| | - Eleanor M Riley
- Department of Immunology and InfectionLondon School of Hygiene and Tropical MedicineLondonUK
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesUniversity of EdinburghMidlothianUK
| | - Martin R Goodier
- Department of Immunology and InfectionLondon School of Hygiene and Tropical MedicineLondonUK
| |
Collapse
|
40
|
Moris P, Jongert E, van der Most RG. Characterization of T-cell immune responses in clinical trials of the candidate RTS,S malaria vaccine. Hum Vaccin Immunother 2017; 14:17-27. [PMID: 28934066 PMCID: PMC5791571 DOI: 10.1080/21645515.2017.1381809] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The candidate malaria vaccine RTS,S has demonstrated 45.7% efficacy over 18 months against all clinical disease in a phase-III field study of African children. RTS,S targets the circumsporozoite protein (CSP), which is expressed on the Plasmodium sporozoite during the pre-erythrocyte stage of its life-cycle; the stage between mosquito bite and liver infection. Early in the development of RTS,S, it was recognized that CSP-specific cell-mediated immunity (CMI) was required to complement CSP-specific antibody-mediated immunity. In reviewing RTS,S clinical studies, associations between protection and various types of CMI (CSP-specific CD4+ T cells and INF-γ ELISPOTs) have been identified, but not consistently. It is plausible that certain CD4+ T cells support antibody responses or co-operate with other immune-cell types to potentially elicit protection. However, the identities of vaccine correlates of protection, implicating either CSP-specific antibodies or T cells remain elusive, suggesting that RTS,S clinical trials may benefit from additional immunogenicity analyses that can be informed by the results of controlled human malaria infection studies.
Collapse
|
41
|
Goodier MR, Jonjić S, Riley EM, Juranić Lisnić V. CMV and natural killer cells: shaping the response to vaccination. Eur J Immunol 2017; 48:50-65. [PMID: 28960320 DOI: 10.1002/eji.201646762] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/14/2017] [Accepted: 09/22/2017] [Indexed: 12/14/2022]
Abstract
Cytomegaloviruses (CMVs) are highly prevalent, persistent human pathogens that not only evade but also shape our immune responses. Natural killer (NK) cells play an important role in the control of CMV and CMVs have in turn developed a plethora of immunoevasion mechanisms targeting NK cells. This complex interplay can leave a long-lasting imprint on the immune system in general and affect responses toward other pathogens and vaccines. This review aims to provide an overview of NK cell biology and development, the manipulation of NK cells by CMVs and the potential impact of these evasion strategies on responses to vaccination.
Collapse
Affiliation(s)
- Martin R Goodier
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, UK
| | - Stipan Jonjić
- Department for Histology and Embryology and Center for Proteomics, Faculty of Medicine, University of Rijeka, Croatia
| | - Eleanor M Riley
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, UK
| | - Vanda Juranić Lisnić
- Department for Histology and Embryology and Center for Proteomics, Faculty of Medicine, University of Rijeka, Croatia
| |
Collapse
|
42
|
Moncunill G, De Rosa SC, Ayestaran A, Nhabomba AJ, Mpina M, Cohen KW, Jairoce C, Rutishauser T, Campo JJ, Harezlak J, Sanz H, Díez-Padrisa N, Williams NA, Morris D, Aponte JJ, Valim C, Daubenberger C, Dobaño C, McElrath MJ. RTS,S/AS01E Malaria Vaccine Induces Memory and Polyfunctional T Cell Responses in a Pediatric African Phase III Trial. Front Immunol 2017; 8:1008. [PMID: 28878775 PMCID: PMC5572329 DOI: 10.3389/fimmu.2017.01008] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 08/07/2017] [Indexed: 12/30/2022] Open
Abstract
Comprehensive assessment of cellular responses to the RTS,S/AS01E vaccine is needed to understand potential correlates and ultimately mechanisms of protection against malaria disease. Cellular responses recognizing the RTS,S/AS01E-containing circumsporozoite protein (CSP) and Hepatitis B surface antigen (HBsAg) were assessed before and 1 month after primary vaccination by intracellular cytokine staining and 16-color flow cytometry in 105 RTS,S/AS01-vaccinated and 74 rabies-vaccinated participants (controls) in a pediatric phase III trial in Africa. RTS,S/AS01E-vaccinated children had significantly higher frequencies of CSP- and HBsAg-specific CD4+ T cells producing IL-2, TNF-α, and CD40L and HBsAg-specific CD4+ T producing IFN-γ and IL-17 than baseline and the control group. Vaccine-induced responses were identified in both central and effector memory (EM) compartments. EM CD4+ T cells expressing IL-4 and IL-21 were detected recognizing both vaccine antigens. Consistently higher response rates to both antigens in RTS,S/AS01E-vaccinated than comparator-vaccinated children were observed. RTS,S/AS01E induced polyfunctional CSP- and HBsAg-specific CD4+ T cells, with a greater degree of polyfunctionality in HBsAg responses. In conclusion, RTS,S/AS01E vaccine induces T cells of higher functional heterogeneity and polyfunctionality than previously characterized. Responses detected in memory CD4+ T cell compartments may provide correlates of RTS,S/AS01-induced immunity and duration of protection in future correlates of immunity studies.
Collapse
Affiliation(s)
- Gemma Moncunill
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic – Universitat de Barcelona, Barcelona, Spain,Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States,Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique,*Correspondence: Gemma Moncunill,
| | - Stephen C. De Rosa
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States,Department of Laboratory Medicine, University of Washington, Seattle, WA, United States
| | - Aintzane Ayestaran
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic – Universitat de Barcelona, Barcelona, Spain
| | | | - Maximillian Mpina
- Ifakara Health Institute, Bagamoyo Research and Training Centre, Bagamoyo, Tanzania
| | - Kristen W. Cohen
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Chenjerai Jairoce
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Tobias Rutishauser
- Swiss Tropical and Public Health Institute, Basel, Switzerland,University of Basel, Basel, Switzerland
| | - Joseph J. Campo
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic – Universitat de Barcelona, Barcelona, Spain,Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Jaroslaw Harezlak
- Department of Epidemiology and Biostatistics, School of Public Health-Bloomington, Indiana University, Bloomington, IN, United States
| | - Héctor Sanz
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic – Universitat de Barcelona, Barcelona, Spain
| | - Núria Díez-Padrisa
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic – Universitat de Barcelona, Barcelona, Spain
| | - Nana Aba Williams
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic – Universitat de Barcelona, Barcelona, Spain
| | - Daryl Morris
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - John J. Aponte
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic – Universitat de Barcelona, Barcelona, Spain
| | - Clarissa Valim
- Department of Osteopathic Medical Specialties, Michigan State University, East Lansing, MI, United States,Department of Immunology and Infectious Diseases, Harvard T.H. Chen School of Public Health, Boston, MA, United States
| | - Claudia Daubenberger
- Swiss Tropical and Public Health Institute, Basel, Switzerland,University of Basel, Basel, Switzerland
| | - Carlota Dobaño
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic – Universitat de Barcelona, Barcelona, Spain,Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - M. Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States,Department of Medicine, University of Washington, Seattle, WA, United States
| |
Collapse
|
43
|
Burny W, Callegaro A, Bechtold V, Clement F, Delhaye S, Fissette L, Janssens M, Leroux-Roels G, Marchant A, van den Berg RA, Garçon N, van der Most R, Didierlaurent AM. Different Adjuvants Induce Common Innate Pathways That Are Associated with Enhanced Adaptive Responses against a Model Antigen in Humans. Front Immunol 2017; 8:943. [PMID: 28855902 PMCID: PMC5557780 DOI: 10.3389/fimmu.2017.00943] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 07/24/2017] [Indexed: 12/20/2022] Open
Abstract
To elucidate the role of innate responses in vaccine immunogenicity, we compared early responses to hepatitis B virus (HBV) surface antigen (HBsAg) combined with different Adjuvant Systems (AS) in healthy HBV-naïve adults, and included these parameters in multi-parametric models of adaptive responses. A total of 291 participants aged 18–45 years were randomized 1:1:1:1:1 to receive HBsAg with AS01B, AS01E, AS03, AS04, or Alum/Al(OH)3 at days 0 and 30 (ClinicalTrials.gov: NCT00805389). Blood protein, cellular, and mRNA innate responses were assessed at early time-points and up to 7 days after vaccination, and used with reactogenicity symptoms in linear regression analyses evaluating their correlation with HBs-specific CD4+ T-cell and antibody responses at day 44. All AS induced transient innate responses, including interleukin (IL)-6 and C-reactive protein (CRP), mostly peaking at 24 h post-vaccination and subsiding to baseline within 1–3 days. After the second but not the first injection, median interferon (IFN)-γ levels were increased in the AS01B group, and IFN-γ-inducible protein-10 levels and IFN-inducible genes upregulated in the AS01 and AS03 groups. No distinct marker or signature was specific to one particular AS. Innate profiles were comparable between AS01B, AS01E, and AS03 groups, and between AS04 and Alum groups. AS group rankings within adaptive and innate response levels and reactogenicity prevalence were similar (AS01B ≥ AS01E > AS03 > AS04 > Alum), suggesting an association between magnitudes of inflammatory and vaccine responses. Modeling revealed associations between adaptive responses and specific traits of the innate response post-dose 2 (activation of the IFN-signaling pathway, CRP and IL-6 responses). In conclusion, the ability of AS01 and AS03 to enhance adaptive responses to co-administered HBsAg is likely linked to their capacity to activate innate immunity, particularly the IFN-signaling pathway.
Collapse
Affiliation(s)
| | | | | | - Frédéric Clement
- Center for Vaccinology, Ghent University, Ghent University Hospital, Ghent, Belgium
| | | | | | | | - Geert Leroux-Roels
- Center for Vaccinology, Ghent University, Ghent University Hospital, Ghent, Belgium
| | - Arnaud Marchant
- Institute for Medical Immunology, Université Libre de Bruxelles, Gosselies, Belgium
| | | | | | | | | | | |
Collapse
|
44
|
van den Berg RA, Coccia M, Ballou WR, Kester KE, Ockenhouse CF, Vekemans J, Jongert E, Didierlaurent AM, van der Most RG. Predicting RTS,S Vaccine-Mediated Protection from Transcriptomes in a Malaria-Challenge Clinical Trial. Front Immunol 2017; 8:557. [PMID: 28588574 PMCID: PMC5440508 DOI: 10.3389/fimmu.2017.00557] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 04/25/2017] [Indexed: 12/24/2022] Open
Abstract
The RTS,S candidate malaria vaccine can protect against controlled human malaria infection (CHMI), but how protection is achieved remains unclear. Here, we have analyzed longitudinal peripheral blood transcriptome and immunogenicity data from a clinical efficacy trial in which healthy adults received three RTS,S doses 4 weeks apart followed by CHMI 2 weeks later. Multiway partial least squares discriminant analysis (N-PLS-DA) of transcriptome data identified 110 genes that could be used in predictive models of protection. Among the 110 genes, 42 had known immune-related functions, including 29 that were related to the NF-κB-signaling pathway and 14 to the IFN-γ-signaling pathway. Post-dose 3 serum IFN-γ concentrations were also correlated with protection; and N-PLS-DA of IFN-γ-signaling pathway transcriptome data selected almost all (44/45) of the representative genes for predictive models of protection. Hence, the identification of the NF-κB and IFN-γ pathways provides further insight into how vaccine-mediated protection may be achieved.
Collapse
Affiliation(s)
| | | | | | - Kent E Kester
- Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | | | | | - Erik Jongert
- GSK Vaccines, Rue de l'Institut, Rixensart, Belgium
| | | | | |
Collapse
|
45
|
Darboe A, Danso E, Clarke E, Umesi A, Touray E, Wegmuller R, Moore SE, Riley EM, Goodier MR. Enhancement of cytokine-driven NK cell IFN-γ production after vaccination of HCMV infected Africans. Eur J Immunol 2017; 47:1040-1050. [PMID: 28383105 PMCID: PMC5888140 DOI: 10.1002/eji.201746974] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/01/2017] [Accepted: 03/30/2017] [Indexed: 12/24/2022]
Abstract
Human cytomegalovirus (HCMV) infection drives the phenotypic and functional differentiation of NK cells, thereby influencing the responses of these cells after vaccination. NK cell functional differentiation is particularly advanced in African populations with universal exposure to HCMV. To investigate the impact of advanced differentiation on vaccine‐induced responses, we studied NK‐cell function before and after vaccination with Trivalent Influenza Vaccine (TIV) or diphtheria, tetanus, pertussis, inactivated poliovirus vaccine (DTPiP) in Africans with universal, lifelong HCMV exposure. In contrast to populations with lower prevalence of HCMV infection, no significant enhancement of NK‐cell responses (IFN‐γ, CD107a, CD25) occurred after in vitro re‐stimulation of post‐vaccination NK cells with TIV or DTPiP antigens compared to pre‐vaccination baseline cells. However, both vaccinations resulted in higher frequencies of NK cells producing IFN‐γ in response to exogenous IL‐12 with IL‐18, which persisted for up to 6 months. Enhanced cytokine responsiveness was restricted to less differentiated NK cells, with increased frequencies of IFN‐γ+ cells observed within CD56brightCD57−, CD56dimCD57−NKG2C− and CD56dimCD57−NKG2C+ NK‐cell subsets. These data suggest a common mechanism whereby different vaccines enhance NK cell IFN‐γ function in HCMV infected donors and raise the potential for further exploitation of NK cell “pre‐activation” to improve vaccine effectiveness.
Collapse
Affiliation(s)
- Alansana Darboe
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, UK.,MRC International Nutrition Group, Nutrition Theme, MRC Keneba, Cambridge, UK
| | - Ebrima Danso
- MRC International Nutrition Group, Nutrition Theme, MRC Keneba, Cambridge, UK
| | - Ed Clarke
- Vaccine and Immunity Theme, Infant Immunology, Medical Research Council Unit The Gambia, Cambridge, UK
| | - Ama Umesi
- Vaccine and Immunity Theme, Infant Immunology, Medical Research Council Unit The Gambia, Cambridge, UK
| | - Ebrima Touray
- Vaccine and Immunity Theme, Infant Immunology, Medical Research Council Unit The Gambia, Cambridge, UK
| | - Rita Wegmuller
- MRC International Nutrition Group, Nutrition Theme, MRC Keneba, Cambridge, UK
| | - Sophie E Moore
- MRC International Nutrition Group, Nutrition Theme, MRC Keneba, Cambridge, UK.,MRC Human Nutrition Research, Cambridge, UK
| | - Eleanor M Riley
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, UK
| | - Martin R Goodier
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
46
|
Wolf AS, Sherratt S, Riley EM. NK Cells: Uncertain Allies against Malaria. Front Immunol 2017; 8:212. [PMID: 28337195 PMCID: PMC5343013 DOI: 10.3389/fimmu.2017.00212] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Accepted: 02/15/2017] [Indexed: 12/24/2022] Open
Abstract
Until recently, studies of natural killer (NK) cells in infection have focused almost entirely on their role in viral infections. However, there is an increasing awareness of the potential for NK cells to contribute to the control of a wider range of pathogens, including intracellular parasites such as Plasmodium spp. Given the high prevalence of parasitic diseases in the developing world and the devastating effects these pathogens have on large numbers of vulnerable people, investigating interactions between NK cells and parasitized host cells presents the opportunity to reveal novel immunological mechanisms with the potential to aid efforts to eradicate these diseases. The capacity of NK cells to produce inflammatory cytokines early after malaria infection, as well as a possible role in direct cytotoxic killing of malaria-infected cells, suggests a beneficial impact of NK cells in this disease. However, NK cells may also contribute to overproduction of pro-inflammatory cytokines and the consequent immunopathology. As comparatively little is known about the role of NK cells later in the course of infection, and growing evidence suggests that heterogeneity in NK cell responses to malaria may be influenced by KIR/HLA interactions, a better understanding of the mechanisms by which NK cells might directly interact with parasitized cells may reveal a new role for these cells in the course of malaria infection.
Collapse
Affiliation(s)
- Asia-Sophia Wolf
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine , London , UK
| | - Samuel Sherratt
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine , London , UK
| | - Eleanor M Riley
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine , London , UK
| |
Collapse
|
47
|
Dinga JN, Njimoh DL, Kiawa B, Djikeng A, Nyasa RB, Nkuo-Akenji T, Pellé R, Titanji VPK. Differential T-cell responses to a chimeric Plasmodium falciparum antigen; UB05-09, correlates with acquired immunity to malaria. Parasite Immunol 2017; 38:303-16. [PMID: 27012849 DOI: 10.1111/pim.12318] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Accepted: 03/22/2016] [Indexed: 12/29/2022]
Abstract
The development of a sterilizing and cost-effective vaccine against malaria remains a major problem despite recent advances. In this study, it is demonstrated that two antigens of P. falciparum UB05, UB09 and their chimera UB05-09 can serve as protective immunity markers by eliciting higher T-cell responses in malaria semi-immune subjects (SIS) than in frequently sick subjects (FSS) and could be used to distinguish these two groups. UB05, UB09 and UB05-09 were cloned, expressed in E. coli, purified and used to stimulate PBMCs isolated from 63 subjects in a malaria endemic area, for IFN-γ production, which was measured by the ELISpot assay. The polymorphism of UB09 gene in the malaria infected population was also studied by PCR/sequencing of the gene in P. falciparum field isolates. All three antigens were preferentially recognized by PBMCs from SIS. IFN-γ production induced by these antigens correlated with the absence of fever and parasitaemia. UB09 was shown to be relatively well-conserved in nature. It is concluded that UB05, UB09 and the chimera UB05-09 posses T-cell epitopes that are associated with protection against malaria and could thus be used to distinguish SIS from FSS eventhough acute infection with malaria has been shown to reduce cytokine production in some studies. Further investigations of these antigens as potential diagnostic and/or vaccine candidates for malaria are indicated.
Collapse
Affiliation(s)
- J N Dinga
- Biotechnology Unit, Faculty of Science, University of Buea, Buea, Cameroon
| | - D L Njimoh
- Biotechnology Unit, Faculty of Science, University of Buea, Buea, Cameroon
| | - B Kiawa
- Biosciences Eastern and Central Africa -International Livestock Research Institute-Hub, Nairobi, Kenya
| | - A Djikeng
- Biosciences Eastern and Central Africa -International Livestock Research Institute-Hub, Nairobi, Kenya
| | - R B Nyasa
- Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
| | - T Nkuo-Akenji
- Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
| | - R Pellé
- Biosciences Eastern and Central Africa -International Livestock Research Institute-Hub, Nairobi, Kenya
| | - V P K Titanji
- Biotechnology Unit, Faculty of Science, University of Buea, Buea, Cameroon.,Cameroon Christian University Institute, Bali, Cameroon
| |
Collapse
|
48
|
Vandoolaeghe P, Schuerman L. The RTS,S/AS01 malaria vaccine in children 5 to 17 months of age at first vaccination. Expert Rev Vaccines 2016; 15:1481-1493. [DOI: 10.1080/14760584.2016.1236689] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
49
|
Gardiner CM, Mills KHG. The cells that mediate innate immune memory and their functional significance in inflammatory and infectious diseases. Semin Immunol 2016; 28:343-50. [PMID: 26979658 DOI: 10.1016/j.smim.2016.03.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 03/01/2016] [Accepted: 03/02/2016] [Indexed: 12/26/2022]
Abstract
Immunological memory mediated by antigen-specific T and B cells is the foundation of adaptive immunity and is fundamental to the heightened and rapid protective immune response induced by vaccination or following re-infection with the same pathogen. While the innate immune system has classically been considered to be non-specific and devoid of memory, it now appears that it can be trained following exposure to microbes or their products and that this may confer a form of memory on innate immune cells. The evidence for immunological memory outside of T and B cells has been best established for natural killer (NK) cells, where it has been known for decades that NK cells have heighten responses following immunological re-challenge. Furthermore, recent studies have demonstrated that monocyte/macrophages, and probably dendritic cells, can be re-programmed through epigenetic modification, following exposure to pathogens or their products, resulting in heighted responses following a second stimulation. Unlike antigen-specific memory of the adaptive immune system, the second stimulation does not have to be with the same pathogen or antigen. Indirect evidence for this comes from reports on the non-specific beneficial effect of certain live vaccines, such as Bacillus Calmette Guerin (BCG) against unrelated childhood infectious diseases. It also appears that certain pathogen or pathogen-derived molecules can prime immune cells, especially macrophages, to secrete more anti-inflammatory and less pro-inflammatory cyokines, thus opening up the possibility of exploiting innate immune training as a new therapeutic approach for inflammatory diseases.
Collapse
Affiliation(s)
- Clair M Gardiner
- NK Cell Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Kingston H G Mills
- Immune Regulation Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|
50
|
Han WGH, Emmelot ME, Jaadar H, Ten Hulscher HI, van Els CACM, Kaaijk P. Development of an IFNγ ELISPOT for the analysis of the human T cell response against mumps virus. J Immunol Methods 2016; 431:52-9. [PMID: 26872407 DOI: 10.1016/j.jim.2016.02.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 02/07/2016] [Accepted: 02/08/2016] [Indexed: 11/30/2022]
Abstract
In the last decade, mumps virus (MuV) causes outbreaks in highly vaccinated populations. Sub-optimal T cell immunity may play a role in the susceptibility to mumps in vaccinated individuals. T cell responses to mumps virus have been demonstrated, yet the quality of the MuV-specific T cell response has not been analyzed using single cell immunological techniques. Here we developed an IFNγ ELISPOT assay to assess MuV-specific T cell responses in peripheral blood mononuclear cells (PBMC) of healthy (vaccinated) donors and mumps patients. Various in vitro MuV-specific stimulation methods of PBMC were compared, using either live or inactivated MuV alone or MuV-infected autologous antigen presenting cells, i.e. Epstein Barr Virus-transformed B lymphoblastoid cell lines (EBV-BLCL) or (mitogen pre-activated) PBMC, for their ability to recall IFNγ-producing responder cells measured by ELISPOT. For the detection of MuV-specific T cell responses, direct exposure (24h) to live MuV was the preferred stimulation method when assay sensitivity and practical reasons were considered. Notably, flowcytometric confirmation of data revealed that primarily T cells and NK cells produce IFNγ upon live MuV stimulation. Depleting PBMC from CD56(+) NK cells prior to stimulation with live MuV led to the enumeration of MuV-specific T cell responses by ELISPOT. Our assay constitutes a tool to evaluate memory MuV-specific T cell responses in MuV vaccinated or infected persons. Furthermore, this study provides evidence that live MuV not only induces IFNγ production by T cells, but also by NK cells.
Collapse
Affiliation(s)
- Wanda G H Han
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands.
| | - Maarten E Emmelot
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Haziz Jaadar
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Hinke I Ten Hulscher
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Cécile A C M van Els
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Patricia Kaaijk
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| |
Collapse
|