1
|
Juul-Madsen K, Parbo P, Ismail R, Ovesen PL, Schmidt V, Madsen LS, Thyrsted J, Gierl S, Breum M, Larsen A, Andersen MN, Romero-Ramos M, Holm CK, Andersen GR, Zhao H, Schuck P, Nygaard JV, Sutherland DS, Eskildsen SF, Willnow TE, Brooks DJ, Vorup-Jensen T. Amyloid-β aggregates activate peripheral monocytes in mild cognitive impairment. Nat Commun 2024; 15:1224. [PMID: 38336934 PMCID: PMC10858199 DOI: 10.1038/s41467-024-45627-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
The peripheral immune system is important in neurodegenerative diseases, both in protecting and inflaming the brain, but the underlying mechanisms remain elusive. Alzheimer's Disease is commonly preceded by a prodromal period. Here, we report the presence of large Aβ aggregates in plasma from patients with mild cognitive impairment (n = 38). The aggregates are associated with low level Alzheimer's Disease-like brain pathology as observed by 11C-PiB PET and 18F-FTP PET and lowered CD18-rich monocytes. We characterize complement receptor 4 as a strong binder of amyloids and show Aβ aggregates are preferentially phagocytosed and stimulate lysosomal activity through this receptor in stem cell-derived microglia. KIM127 integrin activation in monocytes promotes size selective phagocytosis of Aβ. Hydrodynamic calculations suggest Aβ aggregates associate with vessel walls of the cortical capillaries. In turn, we hypothesize aggregates may provide an adhesion substrate for recruiting CD18-rich monocytes into the cortex. Our results support a role for complement receptor 4 in regulating amyloid homeostasis.
Collapse
Affiliation(s)
- Kristian Juul-Madsen
- Department of Biomedicine, Aarhus University, The Skou Building, Høegh-Guldbergs Gade 10, DK-8000, Aarhus C, Denmark
- Max-Delbrueck-Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Peter Parbo
- Department of Nuclear Medicine, Odense University Hospital, J. B. Winsløws Vej 4, DK-5000, Odense C, Denmark
| | - Rola Ismail
- Department of Nuclear medicine and PET, Vejle Hospital, Beriderbakken 4, DK-7100, Vejle, Denmark
| | - Peter L Ovesen
- Max-Delbrueck-Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Vanessa Schmidt
- Max-Delbrueck-Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Lasse S Madsen
- Department of Nuclear Medicine & PET Centre, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, DK-8200, Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 11, DK-8200, Aarhus N, Denmark
- Center of Functionally Integrative Neuroscience, Aarhus University and Aarhus University Hospital, Building 1710, Universitetsbyen 3, DK-8200, Aarhus C, Denmark
| | - Jacob Thyrsted
- Department of Biomedicine, Aarhus University, The Skou Building, Høegh-Guldbergs Gade 10, DK-8000, Aarhus C, Denmark
| | - Sarah Gierl
- Department of Biomedicine, Aarhus University, The Skou Building, Høegh-Guldbergs Gade 10, DK-8000, Aarhus C, Denmark
| | - Mihaela Breum
- Department of Biomedicine, Aarhus University, The Skou Building, Høegh-Guldbergs Gade 10, DK-8000, Aarhus C, Denmark
| | - Agnete Larsen
- Department of Biomedicine, Aarhus University, The Skou Building, Høegh-Guldbergs Gade 10, DK-8000, Aarhus C, Denmark
| | - Morten N Andersen
- Department of Biomedicine, Aarhus University, The Skou Building, Høegh-Guldbergs Gade 10, DK-8000, Aarhus C, Denmark
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 11, DK-8200, Aarhus N, Denmark
- Department of Hematology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, DK-8200, Aarhus N, Denmark
| | - Marina Romero-Ramos
- Department of Biomedicine, Aarhus University, The Skou Building, Høegh-Guldbergs Gade 10, DK-8000, Aarhus C, Denmark
- NEURODIN AU IDEAS Center, Department of Biomedicine, Aarhus University, The Skou Building, Høegh-Guldbergs Gade 10, DK-8200, Aarhus C, Denmark
| | - Christian K Holm
- Department of Biomedicine, Aarhus University, The Skou Building, Høegh-Guldbergs Gade 10, DK-8000, Aarhus C, Denmark
| | - Gregers R Andersen
- Department of Molecular Biology and Genetics, Aarhus University, Universitetsbyen 81, DK-8000, Aarhus C, Denmark
| | - Huaying Zhao
- Laboratory of Dynamics and Macromolecular Assembly, National Institute of Biomedical Imaging and Bioengineering, Building 31, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Peter Schuck
- Laboratory of Dynamics and Macromolecular Assembly, National Institute of Biomedical Imaging and Bioengineering, Building 31, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Jens V Nygaard
- Department of Biological and Chemical Engineering, Aarhus University, Gustav Wieds vej 10 D, DK-8200, Aarhus C, Denmark
| | - Duncan S Sutherland
- Interdisiciplinary Nanoscience Center, Aarhus University, The iNANO House, Gustav Wieds Vej 14, DK-8200, Aarhus C, Denmark
- Center for Cellular Signal Patterns, Aarhus University, The iNANO House, Gustav Wieds Vej 14, DK-8200, Aarhus C, Denmark
| | - Simon F Eskildsen
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 11, DK-8200, Aarhus N, Denmark
- Center of Functionally Integrative Neuroscience, Aarhus University and Aarhus University Hospital, Building 1710, Universitetsbyen 3, DK-8200, Aarhus C, Denmark
| | - Thomas E Willnow
- Department of Biomedicine, Aarhus University, The Skou Building, Høegh-Guldbergs Gade 10, DK-8000, Aarhus C, Denmark
- Max-Delbrueck-Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - David J Brooks
- Department of Nuclear Medicine & PET Centre, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, DK-8200, Aarhus N, Denmark
- Department of Brain Sciences, Imperial College London, Burlington Danes, The Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
- Institute of Translational and Clinical Research, University of Newcastle, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Thomas Vorup-Jensen
- Department of Biomedicine, Aarhus University, The Skou Building, Høegh-Guldbergs Gade 10, DK-8000, Aarhus C, Denmark.
- NEURODIN AU IDEAS Center, Department of Biomedicine, Aarhus University, The Skou Building, Høegh-Guldbergs Gade 10, DK-8200, Aarhus C, Denmark.
- Interdisiciplinary Nanoscience Center, Aarhus University, The iNANO House, Gustav Wieds Vej 14, DK-8200, Aarhus C, Denmark.
| |
Collapse
|
2
|
Haroon HB, Dhillon E, Farhangrazi ZS, Trohopoulos PN, Simberg D, Moghimi SM. Activation of the complement system by nanoparticles and strategies for complement inhibition. Eur J Pharm Biopharm 2023; 193:227-240. [PMID: 37949325 DOI: 10.1016/j.ejpb.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/31/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
The complement system is a multicomponent and multifunctional arm of the innate immune system. Complement contributes to non-specific host defence and maintains homeostasis through multifaceted processes and pathways, including crosstalk with the adaptive immune system, the contact (coagulation) and the kinin systems, and alarmin high-mobility group box 1. Complement is also present intracellularly, orchestrating a wide range of housekeeping and physiological processes in both immune and nonimmune cells, thus showing its more sophisticated roles beyond innate immunity, but its roles are still controversial. Particulate drug carriers and nanopharmaceuticals typically present architectures and surface patterns that trigger complement system in different ways, resulting in both beneficial and adverse responses depending on the extent of complement activation and regulation as well as pathophysiological circumstances. Here we consider the role of complement system and complement regulations in host defence and evaluate the mechanisms by which nanoparticles trigger and modulate complement responses. Effective strategies for the prevention of nanoparticle-mediated complement activation are introduced and discussed.
Collapse
Affiliation(s)
- Hajira B Haroon
- School of Pharmacy, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; Translational and Clinical Research Institute, Faculty of Health and Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Elisha Dhillon
- School of Pharmacy, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | | | | | - Dmitri Simberg
- Translational Bio-Nanosciences Laboratory, Department of Pharmaceutical Sciences, Skaggs School of Pharmacy, University of Colorado Anschutz Medical Center, Aurora, CO, USA; Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Center, Aurora, CO, USA
| | - S Moein Moghimi
- School of Pharmacy, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; Translational and Clinical Research Institute, Faculty of Health and Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Center, Aurora, CO, USA.
| |
Collapse
|
3
|
Seiler T, Lennartz A, Klein K, Hommel K, Figueroa Bietti A, Hadrovic I, Kollenda S, Sager J, Beuck C, Chlosta E, Bayer P, Juul-Madsen K, Vorup-Jensen T, Schrader T, Epple M, Knauer SK, Hartmann L. Potentiating Tweezer Affinity to a Protein Interface with Sequence-Defined Macromolecules on Nanoparticles. Biomacromolecules 2023; 24:3666-3679. [PMID: 37507377 DOI: 10.1021/acs.biomac.3c00393] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Survivin, a well-known member of the inhibitor of apoptosis protein family, is upregulated in many cancer cells, which is associated with resistance to chemotherapy. To circumvent this, inhibitors are currently being developed to interfere with the nuclear export of survivin by targeting its protein-protein interaction (PPI) with the export receptor CRM1. Here, we combine for the first time a supramolecular tweezer motif, sequence-defined macromolecular scaffolds, and ultrasmall Au nanoparticles (us-AuNPs) to tailor a high avidity inhibitor targeting the survivin-CRM1 interaction. A series of biophysical and biochemical experiments, including surface plasmon resonance measurements and their multivalent evaluation by EVILFIT, reveal that for divalent macromolecular constructs with increasing linker distance, the longest linkers show superior affinity, slower dissociation, as well as more efficient PPI inhibition. As a drawback, these macromolecular tweezer conjugates do not enter cells, a critical feature for potential applications. The problem is solved by immobilizing the tweezer conjugates onto us-AuNPs, which enables efficient transport into HeLa cells. On the nanoparticles, the tweezer valency rises from 2 to 16 and produces a 100-fold avidity increase. The hierarchical combination of different scaffolds and controlled multivalent presentation of supramolecular binders was the key to the development of highly efficient survivin-CRM1 competitors. This concept may also be useful for other PPIs.
Collapse
Affiliation(s)
- Theresa Seiler
- Department for Organic Chemistry and Macromolecular Chemistry, Heinrich Heine University Duesseldorf, Universitaetsstraße 1, Duesseldorf 40225, Germany
| | - Annika Lennartz
- Department for Molecular Biology II, Center of Medical Biotechnology (ZMB), University Duisburg-Essen, Universitaetsstrasse 5, Essen 45117, Germany
| | - Kai Klein
- Inorganic Chemistry and Centre for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitaetsstrasse 5-7, Essen 45117, Germany
| | - Katrin Hommel
- Department for Molecular Biology II, Center of Medical Biotechnology (ZMB), University Duisburg-Essen, Universitaetsstrasse 5, Essen 45117, Germany
| | - Antonio Figueroa Bietti
- Institute of Organic Chemistry I, Faculty of Chemistry, University of Duisburg-Essen, Universitätsstrasse 7, 45141 Essen, Germany
| | - Inesa Hadrovic
- Institute of Organic Chemistry I, Faculty of Chemistry, University of Duisburg-Essen, Universitätsstrasse 7, 45141 Essen, Germany
| | - Sebastian Kollenda
- Inorganic Chemistry and Centre for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitaetsstrasse 5-7, Essen 45117, Germany
| | - Jonas Sager
- Inorganic Chemistry and Centre for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitaetsstrasse 5-7, Essen 45117, Germany
| | - Christine Beuck
- Structural and Medicinal Biochemistry, Center of Medical Biotechnology (ZMB), University of Duisburg-Essen, Universitätsstrasse 5, 45141 Essen, Germany
| | - Emilia Chlosta
- Department for Molecular Biology II, Center of Medical Biotechnology (ZMB), University Duisburg-Essen, Universitaetsstrasse 5, Essen 45117, Germany
| | - Peter Bayer
- Structural and Medicinal Biochemistry, Center of Medical Biotechnology (ZMB), University of Duisburg-Essen, Universitätsstrasse 5, 45141 Essen, Germany
| | - Kristian Juul-Madsen
- Department of Biomedicine, Aarhus University, Skou Building (1115), Høegh-Guldbergs Gade 10, DK-8000 Aarhus C, Denmark
- Max-Delbrueck-Center for Molecular Medicine, 13125 Berlin, Germany
| | - Thomas Vorup-Jensen
- Department of Biomedicine, Aarhus University, Skou Building (1115), Høegh-Guldbergs Gade 10, DK-8000 Aarhus C, Denmark
| | - Thomas Schrader
- Institute of Organic Chemistry I, Faculty of Chemistry, University of Duisburg-Essen, Universitätsstrasse 7, 45141 Essen, Germany
| | - Matthias Epple
- Inorganic Chemistry and Centre for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitaetsstrasse 5-7, Essen 45117, Germany
| | - Shirley K Knauer
- Department for Molecular Biology II, Center of Medical Biotechnology (ZMB), University Duisburg-Essen, Universitaetsstrasse 5, Essen 45117, Germany
| | - Laura Hartmann
- Department for Organic Chemistry and Macromolecular Chemistry, Heinrich Heine University Duesseldorf, Universitaetsstraße 1, Duesseldorf 40225, Germany
| |
Collapse
|
4
|
Moghimi SM, Haroon HB, Yaghmur A, Hunter AC, Papini E, Farhangrazi ZS, Simberg D, Trohopoulos PN. Perspectives on complement and phagocytic cell responses to nanoparticles: From fundamentals to adverse reactions. J Control Release 2023; 356:115-129. [PMID: 36841287 PMCID: PMC11000211 DOI: 10.1016/j.jconrel.2023.02.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/08/2023] [Accepted: 02/15/2023] [Indexed: 02/27/2023]
Abstract
The complement system, professional phagocytes and other cells such as Natural killer cells and mast cells are among the important components of the innate arm of the immune system. These constituents provide an orchestrated array of defences and responses against tissue injury and foreign particles, including nanopharmaceuticals. While interception of nanopharmaceuticals by the immune system is beneficial for immunomodulation and treatment of phagocytic cell disorders, it is imperative to understand the multifaceted mechanisms by which nanopharmaceuticals interacts with the immune system and evaluate the subsequent balance of beneficial versus adverse reactions. An example of the latter is adverse infusion reactions to regulatory-approved nanopharmaceuticals seen in human subjects. Here, we discuss collective opinions and findings from our laboratories in mapping nanoparticle-mediated complement and leucocyte/macrophage responses.
Collapse
Affiliation(s)
- S Moein Moghimi
- School of Pharmacy, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; Translational and Clinical Research Institute, Faculty of Health and Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Center, Aurora, CO, USA.
| | - Hajira B Haroon
- School of Pharmacy, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; Translational and Clinical Research Institute, Faculty of Health and Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Anan Yaghmur
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | - A Christy Hunter
- School of Pharmacy, College of Science, University of Lincoln, Lincoln LN6 7TS, UK
| | - Emanuele Papini
- Department of Biomedical Sciences, University of Padua, Padua 35121, Italy
| | - Z Shadi Farhangrazi
- S. M. Discovery Group Inc., Centennial, CO, USA; S. M. Discovery Group Ltd., Durham, UK
| | - Dmitri Simberg
- Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Center, Aurora, CO, USA; Translational Bio-Nanosciences Laboratory, Department of Pharmaceutical Sciences, Skaggs School of Pharmacy, University of Colorado Anschutz Medical Center, Aurora, CO, USA
| | | |
Collapse
|
5
|
Ferapontov A, Omer M, Baudrexel I, Nielsen JS, Dupont DM, Juul-Madsen K, Steen P, Eklund AS, Thiel S, Vorup-Jensen T, Jungmann R, Kjems J, Degn SE. Antigen footprint governs activation of the B cell receptor. Nat Commun 2023; 14:976. [PMID: 36813795 PMCID: PMC9947222 DOI: 10.1038/s41467-023-36672-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 02/10/2023] [Indexed: 02/24/2023] Open
Abstract
Antigen binding by B cell receptors (BCR) on cognate B cells elicits a response that eventually leads to production of antibodies. However, it is unclear what the distribution of BCRs is on the naïve B cell and how antigen binding triggers the first step in BCR signaling. Using DNA-PAINT super-resolution microscopy, we find that most BCRs are present as monomers, dimers, or loosely associated clusters on resting B cells, with a nearest-neighbor inter-Fab distance of 20-30 nm. We leverage a Holliday junction nanoscaffold to engineer monodisperse model antigens with precision-controlled affinity and valency, and find that the antigen exerts agonistic effects on the BCR as a function of increasing affinity and avidity. Monovalent macromolecular antigens can activate the BCR at high concentrations, whereas micromolecular antigens cannot, demonstrating that antigen binding does not directly drive activation. Based on this, we propose a BCR activation model determined by the antigen footprint.
Collapse
Affiliation(s)
- Alexey Ferapontov
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark.,Center for Cellular Signal Patterns (CellPAT), Aarhus University, Aarhus C, Denmark
| | - Marjan Omer
- Center for Cellular Signal Patterns (CellPAT), Aarhus University, Aarhus C, Denmark.,Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C, Denmark
| | - Isabelle Baudrexel
- Center for Cellular Signal Patterns (CellPAT), Aarhus University, Aarhus C, Denmark.,Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Jesper Sejrup Nielsen
- Center for Cellular Signal Patterns (CellPAT), Aarhus University, Aarhus C, Denmark.,Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C, Denmark
| | - Daniel Miotto Dupont
- Center for Cellular Signal Patterns (CellPAT), Aarhus University, Aarhus C, Denmark.,Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C, Denmark
| | | | - Philipp Steen
- Max Planck Institute of Biochemistry, Martinsried, Germany.,Faculty of Physics and Center for Nanoscience, Ludwig Maximilian University, Munich, Munich, Germany
| | - Alexandra S Eklund
- Center for Cellular Signal Patterns (CellPAT), Aarhus University, Aarhus C, Denmark.,Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Steffen Thiel
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark.,Center for Cellular Signal Patterns (CellPAT), Aarhus University, Aarhus C, Denmark
| | | | - Ralf Jungmann
- Center for Cellular Signal Patterns (CellPAT), Aarhus University, Aarhus C, Denmark.,Max Planck Institute of Biochemistry, Martinsried, Germany.,Faculty of Physics and Center for Nanoscience, Ludwig Maximilian University, Munich, Munich, Germany
| | - Jørgen Kjems
- Center for Cellular Signal Patterns (CellPAT), Aarhus University, Aarhus C, Denmark.,Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C, Denmark
| | - Søren Egedal Degn
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark. .,Center for Cellular Signal Patterns (CellPAT), Aarhus University, Aarhus C, Denmark.
| |
Collapse
|
6
|
Moghimi SM, Haroon HB, Yaghmur A, Simberg D, Trohopoulos PN. Nanometer- and angstrom-scale characteristics that modulate complement responses to nanoparticles. J Control Release 2022; 351:432-443. [PMID: 36152807 PMCID: PMC10200249 DOI: 10.1016/j.jconrel.2022.09.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/15/2022] [Accepted: 09/18/2022] [Indexed: 11/26/2022]
Abstract
The contribution of the complement system to non-specific host defence and maintenance of homeostasis is well appreciated. Many particulate systems trigger complement activation but the underlying mechanisms are still poorly understood. Activation of the complement cascade could lead to particle opsonisation by the cleavage products of the third complement protein and might promote inflammatory reactions. Antibody binding in a controlled manner and/or sensing of particles by the complement pattern-recognition molecules such as C1q and mannose-binding lectin can trigger complement activation. Particle curvature and spacing arrangement/periodicity of surface functional groups/ligands are two important parameters that modulate complement responses through multivalent engagement with and conformational regulation of surface-bound antibodies and complement pattern-recognition molecules. Thus, a better fundamental understanding of nanometer- and angstrom-scale parameters that modulate particle interaction with antibodies and complement proteins could portend new possibilities for engineering of particulate drug carriers and biomedical platforms with tuneable complement responses and is discussed here.
Collapse
Affiliation(s)
- S Moein Moghimi
- School of Pharmacy, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; Translational and Clinical Research Institute, Faculty of Health and Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Center, Aurora, CO, USA.
| | - Hajira B Haroon
- School of Pharmacy, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; Translational and Clinical Research Institute, Faculty of Health and Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Anan Yaghmur
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | - Dmitri Simberg
- Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Center, Aurora, CO, USA; Translational Bio-Nanosciences Laboratory, Department of Pharmaceutical Sciences, Skaggs School of Pharmacy, University of Colorado Anschutz Medical Center, Aurora, CO, USA
| | | |
Collapse
|
7
|
Nielsen MA, Juul-Madsen K, Stegmayr J, Gao C, Mehta AY, Greisen SR, Kragstrup TW, Hvid M, Vorup-Jensen T, Cummings RD, Leffler H, Deleuran BW. Galectin-3 Decreases 4-1BBL Bioactivity by Crosslinking Soluble and Membrane Expressed 4-1BB. Front Immunol 2022; 13:915890. [PMID: 35812455 PMCID: PMC9263355 DOI: 10.3389/fimmu.2022.915890] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/30/2022] [Indexed: 01/22/2023] Open
Abstract
4-1BB is a T cell costimulatory receptor and a member of the tumor necrosis factor receptor superfamily. Here, we show that Galectin-3 (Gal-3) decreases the cellular response to its ligand (4-1BBL). Gal-3 binds to both soluble 4-1BB (s4-1BB) and membrane-bound 4-1BB (mem4-1BB), without blocking co-binding of 4-1BBL. In plasma, we detected complexes composed of 4-1BB and Gal-3 larger than 100 nm in size; these complexes were reduced in synovial fluid from rheumatoid arthritis. Both activated 4-1BB+ T cells and 4-1BB-transfected HEK293 cells depleted these complexes from plasma, followed by increased expression of 4-1BB and Gal-3 on the cell surface. The increase was accompanied by a 4-fold decrease in TNFα production by the 4-1BBhighGal-3+ T cells, after exposure to 4-1BB/Gal-3 complexes. In RA patients, complexes containing 4-1BB/Gal-3 were dramatically reduced in both plasma and SF compared with healthy plasma. These results support that Gal-3 binds to 4-1BB without blocking the co-binding of 4-1BBL. Instead, Gal-3 leads to formation of large soluble 4-1BB/Gal-3 complexes that attach to mem4-1BB on the cell surfaces, resulting in suppression of 4-1BBL’s bioactivity.
Collapse
Affiliation(s)
- Morten Aagaard Nielsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Rheumatology, Aarhus University Hospital, Aarhus, Denmark
| | | | - John Stegmayr
- Department of Experimental Medical Sciences, Faculty of Medicine, Lund University, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Faculty of Medicine, Lund University, Lund, Sweden
- Stem Cell Center, Faculty of Medicine, Lund University, Lund, Sweden
- Division for Microbiology, Immunology and Glycobiology (MIG), Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Chao Gao
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, National Center for Functional Glycomics, Boston, MA, United States
| | - Akul Y. Mehta
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, National Center for Functional Glycomics, Boston, MA, United States
| | - Stinne Ravn Greisen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Rheumatology, Aarhus University Hospital, Aarhus, Denmark
| | - Tue Wenzel Kragstrup
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Rheumatology, Aarhus University Hospital, Aarhus, Denmark
| | - Malene Hvid
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | - Richard D. Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, National Center for Functional Glycomics, Boston, MA, United States
| | - Hakon Leffler
- Division for Microbiology, Immunology and Glycobiology (MIG), Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Bent Winding Deleuran
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Rheumatology, Aarhus University Hospital, Aarhus, Denmark
- *Correspondence: Bent Winding Deleuran,
| |
Collapse
|
8
|
Immunoassay for detection of oligomeric proteins. J Immunol Methods 2022; 505:113277. [PMID: 35489403 DOI: 10.1016/j.jim.2022.113277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/01/2022] [Accepted: 04/24/2022] [Indexed: 11/23/2022]
Abstract
The mass concentration of specific proteins is often used as a biomarker and play an important part in diagnostics of inflammatory diseases. Monodisperse proteins are robustly measured in immunoassays, but it is considerably more complicated to measure polydisperse oligomeric proteins. The degree of protein oligomerization is critical for functional aspects. For such proteins, information on both the mass concentration as well as the degree of oligomerization is important. Here, a time-resolved immunofluorometric assay (TRIFMA) with sensitivity for protein structure to detect homo-oligomeric and polydisperse proteins is presented. An established TRIFMA for mannan-binding lectin (MBL) was modified by implementing an additional blocking step prior to coating with capture antibodies, leading to a decrease in coating density. Recombinant human MBL was sorted into small, intermediate, and large complexes, using gel permeation chromatography. Small MBL complexes were poorly detectable by TRIFMA with a sparse antibody coating, while larger complexes produced a strong response. From comparison of molecular dimensions, this difference can be related to the size of oligomers. In conclusion, it is possible to design oligomer-size-sensitive immunoassays by regulating the inter-molecular distance of capture antibodies on a scale comparable to the size of the oligomers.
Collapse
|
9
|
Lima CN, Oliveira WF, Silva PMM, Filho PEC, Juul-Madsen K, Moura P, Vorup-Jensen T, Fontes A. Mannose-binding lectin conjugated to quantum dots as fluorescent nanotools for carbohydrate tracing. Methods Appl Fluoresc 2022; 10. [PMID: 35145049 DOI: 10.1088/2050-6120/ac4e72] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 01/24/2022] [Indexed: 11/11/2022]
Abstract
Quantum dots (QDs) have stood out as nanotools for glycobiology due to their photostability and ability to be combined with lectins. Mannose-binding lectin (MBL) is involved in the innate immune system and plays important roles in the activation of the complement cascade, opsonization, and elimination of apoptotic and microbial cells. Herein, adsorption and covalent coupling strategies were evaluated to conjugate QDs to a recombinant human MBL (rhMBL). The most efficient nanoprobe was selected by evaluating the conjugate ability to labelCandida albicansyeasts by flow cytometry. The QDs-rhMBL conjugate obtained by adsorption at pH 6.0 was the most efficient, labelingca.100% of cells with the highest median fluorescence intensity. The conjugation was also supported by Fourier transform infrared spectroscopy, zeta potential, and size analyses.C. albicanslabeling was calcium-dependent; 12% and <1% of cells were labeled in buffers without calcium and containing EDTA, respectively. The conjugate promoted specific labeling (based on cluster effect) since, after inhibition with mannan, there was a reduction of 80% in cell labeling, which did not occur with methyl-α-D-mannopyranoside monosaccharide. Conjugates maintained colloidal stability, bright fluorescence, and biological activity for at least 8 months. Therefore, QDs-rhMBL conjugates are promising nanotools to elucidate the roles of MBL in biological processes.
Collapse
Affiliation(s)
- Carinna N Lima
- Department of Biophysics and Radiobiology, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Weslley F Oliveira
- Departament of Biochemistry, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Paloma M M Silva
- Department of Biophysics and Radiobiology, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Paulo E Cabral Filho
- Department of Biophysics and Radiobiology, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Kristian Juul-Madsen
- Biophysical Immunology Laboratory, Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Patrícia Moura
- Biological Science Institute, University of Pernambuco, Recife, Pernambuco, Brazil
| | - Thomas Vorup-Jensen
- Biophysical Immunology Laboratory, Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Adriana Fontes
- Department of Biophysics and Radiobiology, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| |
Collapse
|
10
|
Dendrimer end-terminal motif-dependent evasion of human complement and complement activation through IgM hitchhiking. Nat Commun 2021; 12:4858. [PMID: 34381048 PMCID: PMC8357934 DOI: 10.1038/s41467-021-24960-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 07/06/2021] [Indexed: 12/18/2022] Open
Abstract
Complement is an enzymatic humoral pattern-recognition defence system of the body. Non-specific deposition of blood biomolecules on nanomedicines triggers complement activation through the alternative pathway, but complement-triggering mechanisms of nanomaterials with dimensions comparable to or smaller than many globular blood proteins are unknown. Here we study this using a library of <6 nm poly(amido amine) dendrimers bearing different end-terminal functional groups. Dendrimers are not sensed by C1q and mannan-binding lectin, and hence do not trigger complement activation through these pattern-recognition molecules. While, pyrrolidone- and carboxylic acid-terminated dendrimers fully evade complement response, and independent of factor H modulation, binding of amine-terminated dendrimers to a subset of natural IgM glycoforms triggers complement activation through lectin pathway-IgM axis. These findings contribute to mechanistic understanding of complement surveillance of dendrimeric materials, and provide opportunities for dendrimer-driven engineering of complement-safe nanomedicines and medical devices. Understanding nanomaterials interactions with complement is important for a number of applications. Here, the authors study the interaction of sub 6 nm dendrimers with complement and show the small dendrimers escape complement activation but do interact with IgM to trigger lectin-pathway complement activation.
Collapse
|
11
|
Characterization of DNA-protein complexes by nanoparticle tracking analysis and their association with systemic lupus erythematosus. Proc Natl Acad Sci U S A 2021; 118:2106647118. [PMID: 34301873 DOI: 10.1073/pnas.2106647118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nanotechnology enables investigations of single biomacromolecules, but technical challenges have limited the application in liquid biopsies, for example, blood plasma. Nonetheless, tools to characterize single molecular species in such samples represent a significant unmet need with the increasing appreciation of the physiological importance of protein structural changes at nanometer scale. Mannose-binding lectin (MBL) is an oligomeric plasma protein and part of the innate immune system through its ability to activate complement. MBL also serves a role as a scavenger for cellular debris, especially DNA. This may link functions of MBL with several inflammatory diseases in which cell-free DNA now appears to play a role, but mechanistic insight has been lacking. By making nanoparticle tracking analysis possible in human plasma, we now show that superoligomeric structures of MBL form nanoparticles with DNA. These oligomers correlate with disease activity in systemic lupus erythematosus patients. With the direct quantification of the hydrodynamic radius, calculations following the principles of Taylor dispersion in the blood stream connect the size of these complexes to endothelial inflammation, which is among the most important morbidities in lupus. Mechanistic insight from an animal model of lupus supported that DNA-stabilized superoligomers stimulate the formation of germinal center B cells and drive loss of immunological tolerance. The formation involves an inverse relationship between the concentration of MBL superoligomers and antibodies to double-stranded DNA. Our approach implicates the structure of DNA-protein nanoparticulates in the pathobiology of autoimmune diseases.
Collapse
|
12
|
Thielens NM, Gout E, Lacroix M, Reiser JB, Gaboriaud C. Analysis of the Ligand Recognition Specificities of Human Ficolins Using Surface Plasmon Resonance. Methods Mol Biol 2021; 2227:205-226. [PMID: 33847944 DOI: 10.1007/978-1-0716-1016-9_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Ficolins are innate immune recognition proteins involved in activation of the lectin complement pathway. These oligomeric lectin-like proteins are assembled from subunits consisting of a collagen-like triple helix and a trimeric fibrinogen-like recognition domain. In humans, three ficolins coexist: they differ in their ligand binding specificities, but share the capacity to associate with proteases through their collagen-like stalks and trigger complement activation. We describe methods to decipher the recognition specificities of ficolins, based on surface plasmon resonance, an optical technique allowing real-time and label-free monitoring of biomolecular interactions. This technique was mainly used to characterize and compare binding of the three recombinant full-length ficolins and of their isolated recognition domains to various immobilized BSA-glycoconjugates, acetylated BSA or biotinylated heparin. The avidity phenomenon that enhances the apparent affinity of interactions between oligomeric lectin-like proteins and the multivalent ligands is also discussed.
Collapse
Affiliation(s)
| | - Evelyne Gout
- Univ. Grenoble Alpes, CNRS, CEA, IBS, Grenoble, France
| | | | | | | |
Collapse
|
13
|
Direct Blood Culturing of Candida spp. on Solid Medium by a Rapid Enrichment Method with Magnetic Beads Coated with Recombinant Human Mannan-Binding Lectin. J Clin Microbiol 2020; 58:JCM.00057-20. [PMID: 32051260 PMCID: PMC7098737 DOI: 10.1128/jcm.00057-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 02/02/2020] [Indexed: 12/23/2022] Open
Abstract
A rapid and accurate method to identify the species and antibiotic resistance of Candida spp. in blood is vital to increase the survival rates of patients with bloodstream infections. However, the extremely low levels of Candida spp. in blood make rapid diagnosis by standard blood culture difficult. In this study, we constructed a direct blood culturing method (i.e., the M1 method) by a rapid enrichment method with magnetic beads coated with a recombined human mannan-binding lectin (rhMBL; i. A rapid and accurate method to identify the species and antibiotic resistance of Candida spp. in blood is vital to increase the survival rates of patients with bloodstream infections. However, the extremely low levels of Candida spp. in blood make rapid diagnosis by standard blood culture difficult. In this study, we constructed a direct blood culturing method (i.e., the M1 method) by a rapid enrichment method with magnetic beads coated with a recombined human mannan-binding lectin (rhMBL; i.e., M1 protein), which demonstrated much higher Candida sp.-binding capacity than that of full-length MBL expressed in vitro (i.e., M2). With the M1 method, individual colonies were obtained before the standard blood culture method for each species of Candida spp. tested at <1 CFU/ml (an average of 29 h earlier). Additionally, the clinical sensitivity of the M1 method was 90.5% compared with that of the standard blood culture method when detecting frozen plasma from patients. More significantly, the turnaround time of the M1 method for blood culture could be reduced by approximately 37 to 43 h compared with that of the standard blood culture method in clinical sample identification.
Collapse
|
14
|
Moghimi SM, Simberg D, Skotland T, Yaghmur A, Hunter AC. The Interplay Between Blood Proteins, Complement, and Macrophages on Nanomedicine Performance and Responses. J Pharmacol Exp Ther 2019; 370:581-592. [PMID: 30940695 PMCID: PMC11047092 DOI: 10.1124/jpet.119.258012] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 03/28/2019] [Indexed: 12/17/2022] Open
Abstract
In the blood, depending on their physicochemical characteristics, nanoparticles attract a wide range of plasma biomolecules. The majority of blood biomolecules bind nonspecifically to nanoparticles. On the other hand, biomolecules such as pattern-recognition complement-sensing proteins may recognize some structural determinants of the pristine surface, causing complement activation. Adsorption of nonspecific blood proteins could also recruit natural antibodies and initiate complement activation, and this seems to be a global process with many preclinical and clinical nanomedicines. We discuss these issues, since complement activation has ramifications in nanomedicine stability and pharmacokinetics, as well as in inflammation and disease progression. Some studies have also predicted a role for complement systems in infusion-related reactions, whereas others show a direct role for macrophages and other immune cells independent of complement activation. We comment on these discrepancies and suggest directions for exploring the underlying mechanisms.
Collapse
Affiliation(s)
- S Moein Moghimi
- School of Pharmacy and Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom (S.M.M.); Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Campus (S.M.M., D.S.), and Translational Bio-Nanosciences Laboratory, Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences (D.S.), University of Colorado Anschutz Medical Campus, Aurora, Colorado; Department of Molecular Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway (T.S.); Department of Pharmacy, University of Copenhagen, Copenhagen Ø, Denmark (A.Y.); and Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester, United Kingdom (A.C.H.)
| | - Dmitri Simberg
- School of Pharmacy and Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom (S.M.M.); Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Campus (S.M.M., D.S.), and Translational Bio-Nanosciences Laboratory, Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences (D.S.), University of Colorado Anschutz Medical Campus, Aurora, Colorado; Department of Molecular Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway (T.S.); Department of Pharmacy, University of Copenhagen, Copenhagen Ø, Denmark (A.Y.); and Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester, United Kingdom (A.C.H.)
| | - Tore Skotland
- School of Pharmacy and Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom (S.M.M.); Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Campus (S.M.M., D.S.), and Translational Bio-Nanosciences Laboratory, Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences (D.S.), University of Colorado Anschutz Medical Campus, Aurora, Colorado; Department of Molecular Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway (T.S.); Department of Pharmacy, University of Copenhagen, Copenhagen Ø, Denmark (A.Y.); and Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester, United Kingdom (A.C.H.)
| | - Anan Yaghmur
- School of Pharmacy and Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom (S.M.M.); Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Campus (S.M.M., D.S.), and Translational Bio-Nanosciences Laboratory, Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences (D.S.), University of Colorado Anschutz Medical Campus, Aurora, Colorado; Department of Molecular Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway (T.S.); Department of Pharmacy, University of Copenhagen, Copenhagen Ø, Denmark (A.Y.); and Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester, United Kingdom (A.C.H.)
| | - A Christy Hunter
- School of Pharmacy and Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom (S.M.M.); Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Campus (S.M.M., D.S.), and Translational Bio-Nanosciences Laboratory, Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences (D.S.), University of Colorado Anschutz Medical Campus, Aurora, Colorado; Department of Molecular Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway (T.S.); Department of Pharmacy, University of Copenhagen, Copenhagen Ø, Denmark (A.Y.); and Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester, United Kingdom (A.C.H.)
| |
Collapse
|
15
|
Lima CN, Cabral Filho PE, Santos BS, Moura P, Fontes A. Interactions of mannose binding-lectin with red blood cells by employing cationic quantum dots. Int J Biol Macromol 2019; 125:1168-1174. [DOI: 10.1016/j.ijbiomac.2018.12.098] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 12/03/2018] [Accepted: 12/11/2018] [Indexed: 11/15/2022]
|
16
|
Albuquerque DAP, Cavalcanti IT, Vasconcelos LRS, Montenegro F, Pereira LMMB, Cavalcanti MSM, Moura P, Júnior LBC, de Almeida SMV, Beltrão EIC. Molecular profile of mannan-binding lectin in hepatitis C patients with MBL gene polymorphisms by a modified mannan-coated nitrocellulose assay. J Immunol Methods 2018; 460:101-106. [PMID: 30056939 DOI: 10.1016/j.jim.2018.06.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 06/25/2018] [Accepted: 06/25/2018] [Indexed: 02/08/2023]
Abstract
The aim of this study was to develop an assay to analyze the serum profile of Mannose-binding lectin (MBL) through a simple and "in-house" method (called "dot-N-man"). Furthermore, the study attempted to associate molecular masses of MBL to the profile of MBL gene polymorphisms in patients with hepatitis C. Heterogeneity in molecular masses of MBL is due to the impairment of oligomers formation, which is linked to genetic polymorphisms in the MBL gene. Individuals with AA genotype (wild-type) produce high-molecular-mass proteins, whereas AO and OO individuals produce intermediate and low-molecular-mass proteins, respectively. Sera of thirty patients carrying the hepatitis C virus (HCV) were investigated using MBL binding assay with mannan-coated nitrocellulose (dot-N-man). Purified MBL was evaluated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and Western blotting. Dot-N-Man assay yielded MBL with molecular masses ranging between 55 and 320 kDa, comparable to low and high molecular mass forms of MBL. Nonreducing SDS-PAGE showed high molecular mass bands in all AA individuals while bands of 270 and 205 kDa were observed in sera for a number of patients with AO and OO genotypes, respectively. Immunoblotting confirmed the MBL samples obtained from the dot-N-man. These results provide new insights to understand the MBL molecular forms profile in patients infected with HCV- which could be useful in future investigations on the influence of the MBL structure/genotype on both the progression of infection and the response to hepatitis C therapy.
Collapse
Affiliation(s)
- Diego A P Albuquerque
- Laboratório de Imunopatologia Keizo Asami (LIKA), Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Igor T Cavalcanti
- Laboratório de Imunopatologia Keizo Asami (LIKA), Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Luydson R S Vasconcelos
- Instituto do Fígado e Transplantes de Pernambuco - IFP, Recife, PE, Brazil; Faculdade de Ciências Médicas, Universidade de Pernambuco (UPE), Recife, PE, Brazil; Instituto de Pesquisas Aggeu Magalhães - FIOCRUZ, Recife, PE, Brazil
| | - Francisco Montenegro
- Laboratório de Biologia Molecular de Vírus, Instituto de Ciências Biológicas, Universidade de Pernambuco, Recife, PE, Brazil
| | - Leila M M B Pereira
- Instituto do Fígado e Transplantes de Pernambuco - IFP, Recife, PE, Brazil; Faculdade de Ciências Médicas, Universidade de Pernambuco (UPE), Recife, PE, Brazil
| | - Maria S M Cavalcanti
- Laboratório de Biologia Molecular de Vírus, Instituto de Ciências Biológicas, Universidade de Pernambuco, Recife, PE, Brazil; Faculdade de Ciências Médicas, Universidade de Pernambuco (UPE), Recife, PE, Brazil
| | - Patrícia Moura
- Laboratório de Biologia Molecular de Vírus, Instituto de Ciências Biológicas, Universidade de Pernambuco, Recife, PE, Brazil; Faculdade de Ciências Médicas, Universidade de Pernambuco (UPE), Recife, PE, Brazil
| | - Luiz B C Júnior
- Laboratório de Imunopatologia Keizo Asami (LIKA), Universidade Federal de Pernambuco, Recife, PE, Brazil; Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Sinara Mônica Vitalino de Almeida
- Laboratório de Imunopatologia Keizo Asami (LIKA), Universidade Federal de Pernambuco, Recife, PE, Brazil; Universidade de Pernambuco (UPE), Faculdade de Ciências, Educação e Tecnologia de Garanhuns (FACETEG), Garanhuns, PE, Brazil.
| | - Eduardo I C Beltrão
- Laboratório de Imunopatologia Keizo Asami (LIKA), Universidade Federal de Pernambuco, Recife, PE, Brazil; Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Pernambuco, Recife, PE, Brazil
| |
Collapse
|
17
|
Lacroix M, Tessier A, Dumestre-Pérard C, Vadon-Le Goff S, Gout E, Bruckner-Tuderman L, Kiritsi D, Nyström A, Ricard-Blum S, Moali C, Hulmes DJS, Thielens NM. Interaction of Complement Defence Collagens C1q and Mannose-Binding Lectin with BMP-1/Tolloid-like Proteinases. Sci Rep 2017; 7:16958. [PMID: 29209066 PMCID: PMC5717261 DOI: 10.1038/s41598-017-17318-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 11/19/2017] [Indexed: 12/26/2022] Open
Abstract
The defence collagens C1q and mannose-binding lectin (MBL) are immune recognition proteins that associate with the serine proteinases C1r/C1s and MBL-associated serine proteases (MASPs) to trigger activation of complement, a major innate immune system. Bone morphogenetic protein-1 (BMP-1)/tolloid-like proteinases (BTPs) are metalloproteinases with major roles in extracellular matrix assembly and growth factor signalling. Despite their different functions, C1r/C1s/MASPs and BTPs share structural similarities, including a specific CUB-EGF-CUB domain arrangement found only in these enzymes that mediates interactions with collagen-like proteins, suggesting a possible functional relationship. Here we investigated the potential interactions between the defence collagens C1q and MBL and the BTPs BMP-1 and mammalian tolloid-like-1 (mTLL-1). C1q and MBL bound to immobilized BMP-1 and mTLL-1 with nanomolar affinities. These interactions involved the collagen-like regions of the defence collagens and were inhibited by pre-incubation of C1q or MBL with their cognate complement proteinases. Soluble BMP-1 and mTLL-1 did not inhibit complement activation and the defence collagens were neither substrates nor inhibitors of BMP-1. Finally, C1q co-localized with BMP-1 in skin biopsies following melanoma excision and from patients with recessive dystrophic epidermolysis bullosa. The observed interactions provide support for a functional link between complement and BTPs during inflammation and tissue repair.
Collapse
Affiliation(s)
- Monique Lacroix
- Univ. Grenoble Alpes, CNRS, CEA, IBS, F-38000, Grenoble, France
| | - Agnès Tessier
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, Tissue Biology and Therapeutic Engineering Unit, LBTI, UMR 5305, F-69367, Lyon, France
| | - Chantal Dumestre-Pérard
- Laboratoire d'Immunologie, Pôle de Biologie, CHU Grenoble Alpes, 38700, La Tronche, France.,BNI group, TIMC-IMAG UMR5525 Université Grenoble Alpes, 38706, La Tronche, France
| | - Sandrine Vadon-Le Goff
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, Tissue Biology and Therapeutic Engineering Unit, LBTI, UMR 5305, F-69367, Lyon, France
| | - Evelyne Gout
- Univ. Grenoble Alpes, CNRS, CEA, IBS, F-38000, Grenoble, France
| | - Leena Bruckner-Tuderman
- Department of Dermatology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dimitra Kiritsi
- Department of Dermatology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Alexander Nyström
- Department of Dermatology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sylvie Ricard-Blum
- Univ. Lyon, University Claude Bernard Lyon 1, INSA Lyon, CPE, Institute of Molecular and Supramolecular Chemistry and Biochemistry (ICBMS), UMR 5246, F-69622, Villeurbanne, France
| | - Catherine Moali
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, Tissue Biology and Therapeutic Engineering Unit, LBTI, UMR 5305, F-69367, Lyon, France
| | - David J S Hulmes
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, Tissue Biology and Therapeutic Engineering Unit, LBTI, UMR 5305, F-69367, Lyon, France.
| | | |
Collapse
|
18
|
Kjaer TR, Jensen L, Hansen A, Dani R, Jensenius JC, Dobó J, Gál P, Thiel S. Oligomerization of Mannan-binding Lectin Dictates Binding Properties and Complement Activation. Scand J Immunol 2017; 84:12-9. [PMID: 27104295 DOI: 10.1111/sji.12441] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 04/13/2016] [Indexed: 01/13/2023]
Abstract
The complement system is a part of the innate immune system and is involved in recognition and clearance of pathogens and altered-self structures. The lectin pathway of the complement system is initiated when soluble pattern recognition molecules (PRMs) with collagen-like regions bind to foreign or altered self-surfaces. Associated with the collagen-like stems of these PRMs are three mannan-binding lectin (MBL)-associated serine proteases (MASPs) and two MBL-associated proteins (MAps). The most studied of the PRMs, MBL, is present in serum mainly as trimeric and tetrameric oligomers of the structural subunit. We hypothesized that oligomerization of MBL may influence both the potential to bind to micro organisms and the interaction with the MASPs and MAps, thus influencing the ability to initiate complement activation. When testing binding at 37 °C, we found higher binding of tetrameric MBL to Staphylococcus aureus (S. aureus) than trimeric and dimeric MBL. In serum, we found that tetrameric MBL was the main oligomeric form present in complexes with the MASPs and MAp44. Such preference was confirmed using purified forms of recombinant MBL (rMBL) oligomers, where tetrameric rMBL interacted stronger with all of the MASPs and MAp44, compared to trimeric MBL. As a direct consequence of the weaker interaction with the MASPs, we found that trimeric rMBL was inferior to tetrameric rMBL in activating the complement system. Our data suggest that the oligomeric state of MBL is crucial both for the binding properties and the effector function of MBL.
Collapse
Affiliation(s)
- T R Kjaer
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - L Jensen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - A Hansen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - R Dani
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - J C Jensenius
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - J Dobó
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - P Gál
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - S Thiel
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
19
|
Favier AL, Gout E, Reynard O, Ferraris O, Kleman JP, Volchkov V, Peyrefitte C, Thielens NM. Enhancement of Ebola Virus Infection via Ficolin-1 Interaction with the Mucin Domain of GP Glycoprotein. J Virol 2016; 90:5256-5269. [PMID: 26984723 PMCID: PMC4934759 DOI: 10.1128/jvi.00232-16] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 03/10/2016] [Indexed: 02/05/2023] Open
Abstract
UNLABELLED Ebola virus infection requires the surface viral glycoprotein to initiate entry into the target cells. The trimeric glycoprotein is a highly glycosylated viral protein which has been shown to interact with host C-type lectin receptors and the soluble complement recognition protein mannose-binding lectin, thereby enhancing viral infection. Similarly to mannose-binding lectin, ficolins are soluble effectors of the innate immune system that recognize particular glycans at the pathogen surface. In this study, we demonstrate that ficolin-1 interacts with the Zaire Ebola virus (EBOV) glycoprotein, and we characterized this interaction by surface plasmon resonance spectroscopy. Ficolin-1 was shown to bind to the viral glycoprotein with a high affinity. This interaction was mediated by the fibrinogen-like recognition domain of ficolin-1 and the mucin-like domain of the viral glycoprotein. Using a ficolin-1 control mutant devoid of sialic acid-binding capacity, we identified sialylated moieties of the mucin domain to be potential ligands on the glycoprotein. In cell culture, using both pseudotyped viruses and EBOV, ficolin-1 was shown to enhance EBOV infection independently of the serum complement. We also observed that ficolin-1 enhanced EBOV infection on human monocyte-derived macrophages, described to be major viral target cells,. Competition experiments suggested that although ficolin-1 and mannose-binding lectin recognized different carbohydrate moieties on the EBOV glycoprotein, the observed enhancement of the infection likely depended on a common cellular receptor/partner. In conclusion, ficolin-1 could provide an alternative receptor-mediated mechanism for enhancing EBOV infection, thereby contributing to viral subversion of the host innate immune system. IMPORTANCE A specific interaction involving ficolin-1 (M-ficolin), a soluble effector of the innate immune response, and the glycoprotein (GP) of EBOV was identified. Ficolin-1 enhanced virus infection instead of tipping the balance toward its elimination. An interaction between the fibrinogen-like recognition domain of ficolin-1 and the mucin-like domain of Ebola virus GP occurred. In this model, the enhancement of infection was shown to be independent of the serum complement. The facilitation of EBOV entry into target host cells by the interaction with ficolin-1 and other host lectins shunts virus elimination, which likely facilitates the survival of the virus in infected host cells and contributes to the virus strategy to subvert the innate immune response.
Collapse
Affiliation(s)
- Anne-Laure Favier
- Unité de Virologie, Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France
| | - Evelyne Gout
- Université Grenoble Alpes, Grenoble, France
- CNRS, IBS, Grenoble, France
- CEA, IBS, Grenoble, France
| | - Olivier Reynard
- Molecular Basis of Viral Pathogenicity, Centre International de Recherche en Infectiologie (CIRI), INSERM U1111-CNRS UMR5308, Université Lyon 1, ENS de Lyon, Lyon, France
| | - Olivier Ferraris
- Unité de Virologie, Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France
| | - Jean-Philippe Kleman
- Université Grenoble Alpes, Grenoble, France
- CNRS, IBS, Grenoble, France
- CEA, IBS, Grenoble, France
| | - Viktor Volchkov
- Molecular Basis of Viral Pathogenicity, Centre International de Recherche en Infectiologie (CIRI), INSERM U1111-CNRS UMR5308, Université Lyon 1, ENS de Lyon, Lyon, France
| | - Christophe Peyrefitte
- Unité de Virologie, Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France
| | - Nicole M Thielens
- Université Grenoble Alpes, Grenoble, France
- CNRS, IBS, Grenoble, France
- CEA, IBS, Grenoble, France
| |
Collapse
|
20
|
Stravalaci M, De Blasio D, Orsini F, Perego C, Palmioli A, Goti G, Bernardi A, De Simoni MG, Gobbi M. A New Surface Plasmon Resonance Assay for In Vitro Screening of Mannose-Binding Lectin Inhibitors. ACTA ACUST UNITED AC 2016; 21:749-57. [PMID: 26969323 DOI: 10.1177/1087057116637563] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 02/15/2016] [Indexed: 12/12/2022]
Abstract
Mannose-binding lectin (MBL) is a circulating protein that acts as a soluble pattern recognition molecule of the innate immunity. It binds to carbohydrate patterns on the surface of pathogens or of altered self-cells, with activation of the lectin pathway of the complement system. Recent evidence indicates that MBL contributes to the pathophysiology of ischemia-reperfusion injury and other conditions. Thus, MBL inhibitors offer promising therapeutic strategies, since they prevent the interaction of MBL with its target sugar arrays. We developed and characterized a novel assay based on surface plasmon resonance for in vitro screening of these compounds, which may be useful before the more expensive and time-consuming in vivo studies. The assay measures the inhibitor's ability to interfere with the binding of murine MBL-A or MBL-C, or of human recombinant MBL, to mannose residues immobilized on the sensor chip surface. We have applied the assay to measure the IC50 of synthetic glycodendrimers, two of them with neuroprotective properties in animal models of MBL-mediated injuries.
Collapse
Affiliation(s)
- Matteo Stravalaci
- Department of Molecular Biochemistry and Pharmacology, IRCSS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Daiana De Blasio
- Department of Neuroscience, IRCSS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy Department of Anesthesia and Critical Care Medicine, Fondazione IRCCS Ca'Granda-Ospedale Maggiore Policlinico, Milan, Italy
| | - Franca Orsini
- Department of Neuroscience, IRCSS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Carlo Perego
- Department of Neuroscience, IRCSS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | | | - Giulio Goti
- Department of Chemistry, University of Milan, Milan, Italy
| | - Anna Bernardi
- Department of Chemistry, University of Milan, Milan, Italy
| | - Maria-Grazia De Simoni
- Department of Neuroscience, IRCSS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Marco Gobbi
- Department of Molecular Biochemistry and Pharmacology, IRCSS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| |
Collapse
|
21
|
Zhang X, Bajic G, Andersen GR, Christiansen SH, Vorup-Jensen T. The cationic peptide LL-37 binds Mac-1 (CD11b/CD18) with a low dissociation rate and promotes phagocytosis. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:471-8. [PMID: 26876535 DOI: 10.1016/j.bbapap.2016.02.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 02/03/2016] [Accepted: 02/10/2016] [Indexed: 12/16/2022]
Abstract
As a broad-spectrum anti-microbial peptide, LL-37 plays an important role in the innate immune system. A series of previous reports implicates LL-37 as an activator of various cell surface receptor-mediated functions, including chemotaxis in integrin CD11b/CD18 (Mac-1)-expressing cells. However, evidence is scarce concerning the direct binding of LL-37 to these receptors and investigations on the associated binding kinetics is lacking. Mac-1, a member of the β2 integrin family, is mainly expressed in myeloid leukocytes. Its critical functions include phagocytosis of complement-opsonized pathogens. Here, we report on interactions of LL-37 and its fragment FK-13 with the ligand-binding domain of Mac-1, the α-chain I domain. LL-37 bound the I-domain with an affinity comparable to the complement fragment C3d, one of the strongest known ligands for Mac-1. In cell adhesion assays both LL-37 and FK-13 supported binding by Mac-1 expressing cells, however, with LL-37-coupled surfaces supporting stronger cell adhesion than FK-13. Likewise, in phagocytosis assays with primary human monocytes both LL-37 and FK-13 enhanced uptake of particles coupled with these ligands but with a tendency towards a stronger uptake by LL-37.
Collapse
Affiliation(s)
- Xianwei Zhang
- Department of Biomedicine, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Goran Bajic
- Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Gregers R Andersen
- Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus C, Denmark
| | | | - Thomas Vorup-Jensen
- Department of Biomedicine, Aarhus University, DK-8000 Aarhus C, Denmark; MEMBRANES Research Center, Aarhus University, DK-8000 Aarhus C, Denmark.
| |
Collapse
|
22
|
Goti G, Palmioli A, Stravalaci M, Sattin S, De Simoni MG, Gobbi M, Bernardi A. Scaffold Optimisation of Tetravalent Antagonists of the Mannose Binding Lectin. Chemistry 2016; 22:3686-91. [DOI: 10.1002/chem.201504388] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Giulio Goti
- Department of Chemistry; Universita' degli Studi di Milano; via Golgi 19 20133 Milano Italy
| | - Alessandro Palmioli
- Department of Chemistry; Universita' degli Studi di Milano; via Golgi 19 20133 Milano Italy
| | - Matteo Stravalaci
- Department of Molecular Biochemistry and Pharmacology; IRCCS - Istituto di Ricerche Farmacologiche Mario Negri; Via La Masa 19 20156 Milano Italy
| | - Sara Sattin
- Department of Chemistry; Universita' degli Studi di Milano; via Golgi 19 20133 Milano Italy
| | - Maria-Grazia De Simoni
- Department of Neuroscience; IRCCS - Istituto di Ricerche Farmacologiche Mario Negri; Via La Masa 19 20156 Milano Italy
| | - Marco Gobbi
- Department of Molecular Biochemistry and Pharmacology; IRCCS - Istituto di Ricerche Farmacologiche Mario Negri; Via La Masa 19 20156 Milano Italy
| | - Anna Bernardi
- Department of Chemistry; Universita' degli Studi di Milano; via Golgi 19 20133 Milano Italy
| |
Collapse
|
23
|
Nanomedicine: Working Towards Defining the Field. ADVANCES IN DELIVERY SCIENCE AND TECHNOLOGY 2016. [DOI: 10.1007/978-1-4939-3634-2_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
24
|
Stevenson L, Laursen E, Cowan GJ, Bandoh B, Barfod L, Cavanagh DR, Andersen GR, Hviid L. α2-Macroglobulin Can Crosslink Multiple Plasmodium falciparum Erythrocyte Membrane Protein 1 (PfEMP1) Molecules and May Facilitate Adhesion of Parasitized Erythrocytes. PLoS Pathog 2015; 11:e1005022. [PMID: 26134405 PMCID: PMC4489720 DOI: 10.1371/journal.ppat.1005022] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 06/12/2015] [Indexed: 11/19/2022] Open
Abstract
Rosetting, the adhesion of Plasmodium falciparum-infected erythrocytes to uninfected erythrocytes, involves clonal variants of the parasite protein P. falciparum erythrocyte membrane protein 1 (PfEMP1) and soluble serum factors. While rosetting is a well-known phenotypic marker of parasites associated with severe malaria, the reason for this association remains unclear, as do the molecular details of the interaction between the infected erythrocyte (IE) and the adhering erythrocytes. Here, we identify for the first time a single serum factor, the abundant serum protease inhibitor α2-macroglobulin (α2M), which is both required and sufficient for rosetting mediated by the PfEMP1 protein HB3VAR06 and some other rosette-mediating PfEMP1 proteins. We map the α2M binding site to the C terminal end of HB3VAR06, and demonstrate that α2M can bind at least four HB3VAR06 proteins, plausibly augmenting their combined avidity for host receptors. IgM has previously been identified as a rosette-facilitating soluble factor that acts in a similar way, but it cannot induce rosetting on its own. This is in contrast to α2M and probably due to the more limited cross-linking potential of IgM. Nevertheless, we show that IgM works synergistically with α2M and markedly lowers the concentration of α2M required for rosetting. Finally, HB3VAR06+ IEs share the capacity to bind α2M with subsets of genotypically distinct P. falciparum isolates forming rosettes in vitro and of patient parasite isolates ex vivo. Together, our results are evidence that P. falciparum parasites exploit α2M (and IgM) to expand the repertoire of host receptors available for PfEMP1-mediated IE adhesion, such as the erythrocyte carbohydrate moieties that lead to formation of rosettes. It is likely that this mechanism also affects IE adhesion to receptors on vascular endothelium. The study opens opportunities for broad-ranging immunological interventions targeting the α2M--(and IgM-) binding domains of PfEMP1, which would be independent of the host receptor specificity of clinically important PfEMP1 antigens.
Collapse
Affiliation(s)
- Liz Stevenson
- Centre for Medical Parasitology, Department of Immunology and Microbiology (ISIM), Faculty of Health and Medical Sciences, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Erik Laursen
- Centre for Medical Parasitology, Department of Immunology and Microbiology (ISIM), Faculty of Health and Medical Sciences, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Graeme J. Cowan
- Institute of Immunology and Infection Research, Center for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, United Kingdom
| | - Betty Bandoh
- Centre for Medical Parasitology, Department of Immunology and Microbiology (ISIM), Faculty of Health and Medical Sciences, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Lea Barfod
- Centre for Medical Parasitology, Department of Immunology and Microbiology (ISIM), Faculty of Health and Medical Sciences, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - David R. Cavanagh
- Institute of Immunology and Infection Research, Center for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, United Kingdom
| | - Gregers R. Andersen
- Department of Molecular Biology and Genetics, University of Aarhus, Aarhus, Denmark
| | - Lars Hviid
- Centre for Medical Parasitology, Department of Immunology and Microbiology (ISIM), Faculty of Health and Medical Sciences, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
- * E-mail:
| |
Collapse
|
25
|
Kjaer TR, Le LTM, Pedersen JS, Sander B, Golas MM, Jensenius JC, Andersen GR, Thiel S. Structural insights into the initiating complex of the lectin pathway of complement activation. Structure 2015; 23:342-51. [PMID: 25579818 DOI: 10.1016/j.str.2014.10.024] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 10/18/2014] [Accepted: 10/21/2014] [Indexed: 10/24/2022]
Abstract
The proteolytic cascade of the complement system is initiated when pattern-recognition molecules (PRMs) bind to ligands, resulting in the activation of associated proteases. In the lectin pathway of complement, the complex of mannan-binding lectin (MBL) and MBL-associated serine protease-1 (MASP-1) initiates the pathway by activating a second protease, MASP-2. Here we present a structural study of a PRM/MASP complex and derive the overall architecture of the 450 kDa MBL/MASP-1 complex using small-angle X-ray scattering and electron microscopy. The serine protease (SP) domains from the zymogen MASP-1 dimer protrude from the cone-like MBL tetramer and are separated by at least 20 nm. This suggests that intracomplex activation within a single MASP-1 dimer is unlikely and instead supports intercomplex activation, whereby the MASP SP domains are accessible to nearby PRM-bound MASPs. This activation mechanism differs fundamentally from the intracomplex initiation models previously proposed for both the lectin and the classical pathway.
Collapse
Affiliation(s)
- Troels R Kjaer
- Department of Biomedicine, Aarhus University, Bartholins Allé 6 and Wilhelm Meyers Allé 3, 8000 Aarhus, Denmark
| | - Le T M Le
- Department of Clinical Medicine, Aarhus University, Wilhelm Meyers Allé 3, 8000 Aarhus, Denmark
| | - Jan Skov Pedersen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark; Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus, Denmark
| | - Bjoern Sander
- Department of Clinical Medicine, Aarhus University, Wilhelm Meyers Allé 3, 8000 Aarhus, Denmark; Center for Stochastic Geometry and Advanced Bioimaging (CSGB), Aarhus University, Wilhelm Meyers Allé 3, 8000 Aarhus, Denmark
| | - Monika M Golas
- Department of Biomedicine, Aarhus University, Bartholins Allé 6 and Wilhelm Meyers Allé 3, 8000 Aarhus, Denmark; Center for Stochastic Geometry and Advanced Bioimaging (CSGB), Aarhus University, Wilhelm Meyers Allé 3, 8000 Aarhus, Denmark
| | - Jens Christian Jensenius
- Department of Biomedicine, Aarhus University, Bartholins Allé 6 and Wilhelm Meyers Allé 3, 8000 Aarhus, Denmark
| | - Gregers R Andersen
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus, Denmark
| | - Steffen Thiel
- Department of Biomedicine, Aarhus University, Bartholins Allé 6 and Wilhelm Meyers Allé 3, 8000 Aarhus, Denmark.
| |
Collapse
|
26
|
Kapinos LE, Schoch RL, Wagner RS, Schleicher KD, Lim RYH. Karyopherin-centric control of nuclear pores based on molecular occupancy and kinetic analysis of multivalent binding with FG nucleoporins. Biophys J 2014; 106:1751-62. [PMID: 24739174 DOI: 10.1016/j.bpj.2014.02.021] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 02/07/2014] [Accepted: 02/12/2014] [Indexed: 01/03/2023] Open
Abstract
Intrinsically disordered Phe-Gly nucleoporins (FG Nups) within nuclear pore complexes exert multivalent interactions with transport receptors (Karyopherins (Kaps)) that orchestrate nucleocytoplasmic transport. Current FG-centric views reason that selective Kap translocation is promoted by alterations in the barrier-like FG Nup conformations. However, the strong binding of Kaps with the FG Nups due to avidity contradicts rapid Kap translocation in vivo. Here, using surface plasmon resonance, we innovate a means to correlate in situ mechanistic (molecular occupancy and conformational changes) with equilibrium (binding affinity) and kinetic (multivalent binding kinetics) aspects of Karyopherinβ1 (Kapβ1) binding to four different FG Nups. A general feature of the FxFG domains of Nup214, Nup62, and Nup153 is their capacity to extend and accommodate large numbers of Kapβ1 molecules at physiological Kapβ1 concentrations. A notable exception is the GLFG domain of Nup98, which forms a partially penetrable cohesive layer. Interestingly, we find that a slowly exchanging Kapβ1 phase forms an integral constituent within the FG Nups that coexists with a fast phase, which dominates transport kinetics due to limited binding with the pre-occupied FG Nups at physiological Kapβ1 concentrations. Altogether, our data reveal an emergent Kap-centric barrier mechanism that may underlie mechanistic and kinetic control in the nuclear pore complex.
Collapse
Affiliation(s)
- Larisa E Kapinos
- Biozentrum and the Swiss Nanoscience Institute, University of Basel, Basel, Switzerland
| | - Rafael L Schoch
- Biozentrum and the Swiss Nanoscience Institute, University of Basel, Basel, Switzerland
| | - Raphael S Wagner
- Biozentrum and the Swiss Nanoscience Institute, University of Basel, Basel, Switzerland
| | - Kai D Schleicher
- Biozentrum and the Swiss Nanoscience Institute, University of Basel, Basel, Switzerland
| | - Roderick Y H Lim
- Biozentrum and the Swiss Nanoscience Institute, University of Basel, Basel, Switzerland.
| |
Collapse
|
27
|
Jalilian B, Christiansen SH, Einarsson HB, Pirozyan MR, Petersen E, Vorup-Jensen T. Properties and prospects of adjuvants in influenza vaccination - messy precipitates or blessed opportunities? MOLECULAR AND CELLULAR THERAPIES 2013; 1:2. [PMID: 26056568 PMCID: PMC4448954 DOI: 10.1186/2052-8426-1-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 09/10/2013] [Indexed: 01/09/2023]
Abstract
Influenza is a major challenge to healthcare systems world-wide. While prophylactic vaccination is largely efficient, long-lasting immunity has not been achieved in immunized populations, at least in part due to the challenges arising from the antigen variation between strains of influenza A virus as a consequence of genetic drift and shift. From progress in our understanding of the immune system, the mode-of-action of vaccines can be divided into the stimulation of the adaptive system through inclusion of appropriate vaccine antigens and of the innate immune system by the addition of adjuvant to the vaccine formulation. A shared property of many vaccine adjuvants is found in their nature of water-insoluble precipitates, for instance the particulate material made from aluminum salts. Previously, it was thought that embedding of vaccine antigens in these materials provided a "depot" of antigens enabling a long exposure of the immune system to the antigen. However, more recent work points to a role of particulate adjuvants in stimulating cellular parts of the innate immune system. Here, we briefly outline the infectious medicine and immune biology of influenza virus infection and procedures to provide sufficient and stably available amounts of vaccine antigen. This is followed by presentation of the many roles of adjuvants, which involve humoral factors of innate immunity, notably complement. In a perspective of the ultrastructural properties of these humoral factors, it becomes possible to rationalize why these insoluble precipitates or emulsions are such a provocation of the immune system. We propose that the biophysics of particulate material may hold opportunities that could aid the development of more efficient influenza vaccines.
Collapse
Affiliation(s)
- Babak Jalilian
- Biophysical Immunology Laboratory, Department of Biomedicine, Aarhus University, DK-8000 Aarhus, Denmark
| | - Stig Hill Christiansen
- Biophysical Immunology Laboratory, Department of Biomedicine, Aarhus University, DK-8000 Aarhus, Denmark
| | - Halldór Bjarki Einarsson
- Biophysical Immunology Laboratory, Department of Biomedicine, Aarhus University, DK-8000 Aarhus, Denmark ; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Mehdi Rasoli Pirozyan
- Inflammation and Infection Research Centre, School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Eskild Petersen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark ; Department of Infectious Medicine (Q), Aarhus University Hospital, Aarhus, Denmark
| | - Thomas Vorup-Jensen
- Biophysical Immunology Laboratory, Department of Biomedicine, Aarhus University, DK-8000 Aarhus, Denmark
| |
Collapse
|
28
|
Jacquet M, Lacroix M, Ancelet S, Gout E, Gaboriaud C, Thielens NM, Rossi V. Deciphering complement receptor type 1 interactions with recognition proteins of the lectin complement pathway. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2013; 190:3721-31. [PMID: 23460739 DOI: 10.4049/jimmunol.1202451] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Complement receptor type 1 (CR1) is a membrane receptor expressed on a wide range of cells. It is involved in immune complex clearance, phagocytosis, and complement regulation. Its ectodomain is composed of 30 complement control protein (CCP) modules, organized into four long homologous repeats (A-D). In addition to its main ligands C3b and C4b, CR1 was reported to interact with C1q and mannan-binding lectin (MBL) likely through its C-terminal region (CCP22-30). To decipher the interaction of human CR1 with the recognition proteins of the lectin complement pathway, a recombinant fragment encompassing CCP22-30 was expressed in eukaryotic cells, and its interaction with human MBL and ficolins was investigated using surface plasmon resonance spectroscopy. MBL and L-ficolin were shown to interact with immobilized soluble CR1 and CR1 CCP22-30 with apparent dissociation constants in the nanomolar range, indicative of high affinity. The binding site for CR1 was located at or near the MBL-associated serine protease (MASP) binding site in the collagen stalks of MBL and L-ficolin, as shown by competition experiments with MASP-3. Accordingly, the mutation of an MBL conserved lysine residue essential for MASP binding (K55) abolished binding to soluble CR1 and CCP22-30. The CR1 binding site for MBL/ficolins was mapped to CCP24-25 of long homologous repeat D using deletion mutants. In conclusion, we show that ficolins are new CR1 ligands and propose that MBL/L-ficolin binding involves major ionic interactions between conserved lysine residues of their collagen stalks and surface exposed acidic residues located in CR1 CCP24 and/or CCP25.
Collapse
Affiliation(s)
- Mickaël Jacquet
- Commissariat à l'Energie Atomique, Institut de Biologie Structurale Jean-Pierre Ebel, 38027 Grenoble Cedex 1, France
| | | | | | | | | | | | | |
Collapse
|
29
|
Zhao H, Gorshkova II, Fu GL, Schuck P. A comparison of binding surfaces for SPR biosensing using an antibody-antigen system and affinity distribution analysis. Methods 2013; 59:328-35. [PMID: 23270815 PMCID: PMC3840496 DOI: 10.1016/j.ymeth.2012.12.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 12/14/2012] [Accepted: 12/15/2012] [Indexed: 12/18/2022] Open
Abstract
The application of optical biosensors in the study of macromolecular interactions requires immobilization of one binding partner to the surface. It is often highly desirable that the immobilization is uniform and does not affect the thermodynamic and kinetic binding parameters to soluble ligands. To achieve this goal, a variety of sensor surfaces, coupling strategies and surface chemistries are available. Previously, we have introduced a technique for determining the distribution of affinities and kinetic rate constants from families of binding and dissociation traces acquired at different concentrations of soluble ligand. In the present work, we explore how this affinity distribution analysis can be useful in the assessment and optimization of surface immobilization. With this goal, using an antibody-antigen interaction as a model system, we study the activity, thermodynamic and kinetic binding parameters, and heterogeneity of surface sites produced with different commonly used sensor surfaces, at different total surface densities and with direct immobilization or affinity capture.
Collapse
Affiliation(s)
- Huaying Zhao
- Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, U.S.A
| | - Inna I. Gorshkova
- Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, U.S.A
| | - Gregory L. Fu
- Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, U.S.A
| | - Peter Schuck
- Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, U.S.A
| |
Collapse
|
30
|
Vorup-Jensen T. On the roles of polyvalent binding in immune recognition: perspectives in the nanoscience of immunology and the immune response to nanomedicines. Adv Drug Deliv Rev 2012; 64:1759-81. [PMID: 22705545 DOI: 10.1016/j.addr.2012.06.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2012] [Revised: 06/06/2012] [Accepted: 06/08/2012] [Indexed: 12/31/2022]
Abstract
Immunology often conveys the image of large molecules, either in the soluble state or in the membrane of leukocytes, forming multiple contacts with a target for actions of the immune system. Avidity names the ability of a polyvalent molecule to form multiple connections of the same kind with ligands tethered to the same surface. Polyvalent interactions are vastly stronger than their monovalent equivalent. In the present review, the functional consequences of polyvalent interactions are explored in a perspective of recent theoretical advances in understanding the thermodynamics of such binding. From insights on the structural biology of soluble pattern recognition molecules as well as adhesion molecules in the cell membranes or in their proteolytically shed form, this review documents the prominent role of polyvalent interactions in making the immune system a formidable barrier to microbial infection as well as constituting a significant challenge to the application of nanomedicines.
Collapse
|
31
|
Geiss-Liebisch S, Rooijakkers SHM, Beczala A, Sanchez-Carballo P, Kruszynska K, Repp C, Sakinc T, Vinogradov E, Holst O, Huebner J, Theilacker C. Secondary cell wall polymers of Enterococcus faecalis are critical for resistance to complement activation via mannose-binding lectin. J Biol Chem 2012; 287:37769-77. [PMID: 22908219 DOI: 10.1074/jbc.m112.358283] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The complement system is part of our first line of defense against invading pathogens. The strategies used by Enterococcus faecalis to evade recognition by human complement are incompletely understood. In this study, we identified an insertional mutant of the wall teichoic acid (WTA) synthesis gene tagB in E. faecalis V583 that exhibited an increased susceptibility to complement-mediated killing by neutrophils. Further analysis revealed that increased killing of the mutant was due to a higher rate of phagocytosis by neutrophils, which correlated with higher C3b deposition on the bacterial surface. Our studies indicated that complement activation via the lectin pathway was much stronger on the tagB mutant compared with wild type. In concordance, we found an increased binding of the key lectin pathway components mannose-binding lectin and mannose-binding lectin-associated serine protease-2 (MASP-2) on the mutant. To understand the mechanism of lectin pathway inhibition by E. faecalis, we purified and characterized cell wall carbohydrates of E. faecalis wild type and V583ΔtagB. NMR analysis revealed that the mutant strain lacked two WTAs with a repeating unit of →6)[α-l-Rhap-(1→3)]β-D-GalpNAc-(1→5)-Rbo-1-P and →6) β-D-Glcp-(1→3) [α-D-Glcp-(1→4)]-β-D-GalpNAc-(1→5)-Rbo-1-P→, respectively (Rbo, ribitol). In addition, compositional changes in the enterococcal rhamnopolysaccharide were noticed. Our study indicates that in E. faecalis, modification of peptidoglycan by secondary cell wall polymers is critical to evade recognition by the complement system.
Collapse
Affiliation(s)
- Stefan Geiss-Liebisch
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Breisacher Strasse 117, 79106 Freiburg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|