1
|
Li Z, Sun Y, Wang Y, Liu F, Pan S, Li S, Guo Z, Gao D, Yang J, Liu Z, Liu D. Proteomics uncovers ICAM2 (CD102) as a novel serum biomarker of proliferative lupus nephritis. Lupus Sci Med 2025; 12:e001446. [PMID: 40274316 PMCID: PMC12020755 DOI: 10.1136/lupus-2024-001446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 04/10/2025] [Indexed: 04/26/2025]
Abstract
OBJECTIVES This study aimed to identify novel, non-invasive biomarkers for lupus nephritis (LN) through serum proteomics. METHODS Serum proteins were detected in patients with LN and healthy control (HC) groups through liquid chromatography-tandem mass spectrometry. The key networks associated with LN were screened out using Cytoscape software, followed by pathway enrichment analysis. The best candidate biomarkers were selected by machine learning models, further validated in a larger independent cohort. Finally, the expression of these candidate markers was verified in kidney tissue samples, and the mechanism was explored by knocking down the expression of intercellular adhesion molecule 2 (ICAM2) through in vitro cell transfection with siRNA. RESULTS Following the serum proteomic screening of LN, a key network of 20 proteins was identified. Machine learning models were used to select ICAM2 (CD102), metalloproteinase inhibitor 1 (TIMP1) and thrombospondin 1 (THSB1) for validation in independent cohorts. ICAM2 exhibited the highest area under the curve (AUC) value in distinguishing LN from HC (AUC=0.92) and was significantly correlated with activity index, proteinuria, albumin and anti-dsDNA antibody levels. Particularly, ICAM2 was significantly elevated in proliferative LN and was associated with specific pathological attributes, outperforming conventional parameters in distinguishing proliferative LN from non-proliferative LN. ICAM2 expression was also elevated in renal tissue samples from patients with proliferative LN. In vitro, knockdown of ICAM2 expression can inhibit the activation of the PI3K/Akt pathway and alleviate the injury of glomerular endothelial cells. CONCLUSION ICAM2 (CD102) may serve as a potential serum biomarker for proliferative LN that reflects renal pathology activity, potentially contributing to the progression of LN through the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Zhengyong Li
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yifang Sun
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yixue Wang
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fengxun Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shaokang Pan
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Songwei Li
- The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Zuishuang Guo
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dan Gao
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jinghua Yang
- Clinical Systems Biology Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhangsuo Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dongwei Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
2
|
Okabe M, Okabayashi Y, Sasaki T, Koike K, Tsuboi N, Matsusaka T, Yokoo T. Podocyte Injury and Long-Term Kidney Prognosis in Patients with Lupus Nephritis. KIDNEY360 2025; 6:606-615. [PMID: 39714942 DOI: 10.34067/kid.0000000688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 12/18/2024] [Indexed: 12/25/2024]
Abstract
Key Points
Podocyte injury, as indicated by early growth response 1 expression, was correlated with the clinical and histopathological activities of lupus nephritis (LN).Podocyte injury was associated with poor long-term kidney prognosis in patients with active LN.To improve the prognosis of patients with LN, treatment strategies on the basis of the degree of podocyte injury may be considered.
Background
Lupus nephritis (LN) is a major complication of SLE. Like other types of GN, podocyte injury has been observed in patients with LN. However, the association between podocyte injury and kidney prognosis in patients with LN has not been well elucidated. The aim of this study was to explore the association between podocyte injury and clinical and histological status and kidney prognosis in patients with LN.
Methods
Seventy-five patients histopathologically diagnosed with LN were enrolled in this study. Early growth response 1 (EGR1) expression in podocytes, representing podocyte injury, was detected through immunohistochemistry. The correlation between the proportion of glomeruli with podocytes expressing EGR1 (%EGR1glo) and the clinical and histological features of LN were evaluated. Subsequently, the association between %EGR1glo and kidney prognosis was examined in a group of patients with LN class 3, 4, or 5 who showed ≥0.5 g/g of urinary protein–creatinine ratio and received immunosuppressive therapy. Hazard ratio was calculated using univariate Cox proportional hazards regression.
Results
%EGR1glo was highest in patients with LN class 4, significantly correlated with the SLE Disease Activity Index score, urinary protein level, and prevalence of glomeruli showing cellular/fibrocellular crescents, endocapillary hypercellularity, and fibrinoid necrosis and inversely correlated with eGFR. Higher %EGR1glo was significantly associated with sustained ≥30% eGFR decline over 10 years in patients with LN class 3, 4, or 5 (n=42; hazard ratio, 1.58 [95% confidence interval, 1.07 to 2.36] per 10% increase in %EGR1glo). There was no significant interaction between patients grouped by kidney function, urinary protein level, presence of cellular/fibrocellular crescents, degree of tubulointerstitial fibrosis, and LN classification.
Conclusions
Podocyte damage, as indicated by EGR1 expression, was associated with poor long-term kidney prognosis in patients with active LN. Treatment strategies on the basis of the extent of podocyte injury may be necessary.
Collapse
Affiliation(s)
- Masahiro Okabe
- Division of Nephrology and Hypertension, Department of Internal Medicine, Jikei University School of Medicine, Tokyo, Japan
| | - Yusuke Okabayashi
- Division of Nephrology and Hypertension, Department of Internal Medicine, Jikei University School of Medicine, Tokyo, Japan
| | - Takaya Sasaki
- Division of Nephrology and Hypertension, Department of Internal Medicine, Jikei University School of Medicine, Tokyo, Japan
| | - Kentaro Koike
- Division of Nephrology and Hypertension, Department of Internal Medicine, Jikei University School of Medicine, Tokyo, Japan
| | - Nobuo Tsuboi
- Division of Nephrology and Hypertension, Department of Internal Medicine, Jikei University School of Medicine, Tokyo, Japan
| | - Taiji Matsusaka
- Department of Basic Medicine, Tokai University School of Medicine, Isehara, Japan
| | - Takashi Yokoo
- Division of Nephrology and Hypertension, Department of Internal Medicine, Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
3
|
Zou M, Qian D, Luo R, Cheng Y, Xu G, Ge S. Identifying potential mechanism and targets for treatment of tertiary lymphoid structure in lupus nephritis based on bioinformatics analysis. Int Immunopharmacol 2025; 148:114084. [PMID: 39854874 DOI: 10.1016/j.intimp.2025.114084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 01/09/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025]
Abstract
BACKGROUND Tertiary lymphoid structure (TLS) is an ectopic lymphoid structure that develops in non-lymphoid structures. Some studies have shown that the TLS formed in autoimmune diseases, such as lupus nephropathy (LN), can cause damage to normal tissues and continuous disease progression. Nevertheless, there is still a lack of efficient treatments for TLS in LN. Thus, the study aims to identify potential targets for therapy of TLS in LN. METHODS Mice datasets relative to TLS were obtained from Gene Expression Omnibus (GEO). The differentially expressed genes (DEGs) were identified from mice datasets. Then, the Genetic Ontological (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were performed. The Protein-Protein Interaction (PPI) network was constructed. Additionally, the hub genes were selected by Cytoscape and verified by human databases from GEO. The relationships between the immune cells with hub genes were explored. Finally, the two genes PSMB9 and STAT1 were validated in the kidney tissues of LN patients and mice. RESULTS 443 DEGs and 178 DEGs relative to TLS were filtered from GSE160488 and GSE155405, respectively. The enrichment results of these genes mostly focused on inflammatory response, cytokine-cytokine receptor interaction, and immune system process. Six genes were recognized by Cytoscape. According to the validation of six genes in human databases, the two hub genes (PSMB9 and STAT1) were also significantly expressed in LN patients. Immune infiltration analysis of hub genes shows immune cells are significantly crucial in LN patients with TLS. CONCLUSION PSMB9 and STAT1 may be identified as possible targets for the treatment of TLS in LN. According to the analysis of the interaction between these genes and immune cells, the immune process mediated by these signature targets takes part in the advancement and formation of TLS.
Collapse
Affiliation(s)
- Mengxiao Zou
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Duo Qian
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Ran Luo
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Yichun Cheng
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Gang Xu
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| | - Shuwang Ge
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| |
Collapse
|
4
|
Zhang S, Hu W, Tang Y, Chen X. Identification and validation of key autophagy-related genes in lupus nephritis by bioinformatics and machine learning. PLoS One 2025; 20:e0318280. [PMID: 39869603 PMCID: PMC11771862 DOI: 10.1371/journal.pone.0318280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 01/13/2025] [Indexed: 01/29/2025] Open
Abstract
INTRODUCTION Lupus nephritis (LN) is one of the most frequent and serious organic manifestations of systemic lupus erythematosus (SLE). Autophagy, a new form of programmed cell death, has been implicated in a variety of renal diseases, but the relationship between autophagy and LN remains unelucidated. METHODS We analyzed differentially expressed genes (DEGs) in kidney tissues from 14 LN patients and 7 normal controls using the GSE112943 dataset. Key modules and their contained genes were identified utilizing weighted gene co-expression network analysis (WGCNA). Differentially expressed autophagy-related genes (DE-ARGs) among DEGs, key module genes and autophagy-related genes (ARGs) were obtained by venn plot, and subjected to protein-protein interaction network construction. Two machine learning methods were applied to identify signature genes. The area under the receiver operating characteristic (ROC) curves was used to assess the accuracy of the signature genes. We also analyzed immune cell infiltration in LN. Additionally, the association between key genes and kidney diseases was predicted. Finally, key genes expression in kidney was verified by clinical samples and animal experiments. RESULTS A total of 10304 DEGs were identified in GSE1129943 and 29 modules were identified in WGCNA. Among them, the brown module and coral 2 module exhibited significant correlation with LN (cor = 0.86, -0.84, p<0.001). Machine learning techniques identified 5 signature genes, but only 2 were validated in the external dataset GSE32591, namely MAP1LC3B (AUC = 0.920) and TNFSF10 (AUC = 0.937), which are involved in autophagy and apoptosis. Immune infiltration analysis suggested that these key genes may be associated with immune cell infiltration in LN. In addition, these genes have been linked to a variety of renal diseases, and their expression was verified in kidney tissues in LN patients and lupus mice. CONCLUSION MAP1LC3B and TNFSF10 may be key autophagy-related genes in LN. These key genes have the potential to provide new insights into the molecular diagnosis and treatment of LN.
Collapse
Affiliation(s)
- Su Zhang
- Department of Rheumatology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, P.R. China
| | - Weitao Hu
- Department of Rheumatology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, P.R. China
| | - Yelin Tang
- General Hospital of Ningxia Medical University, Yinchuan, P.R. China
| | - Xiaoqing Chen
- Department of Rheumatology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, P.R. China
| |
Collapse
|
5
|
Fernandez-Prado R, Valiño L, Pintor-Chocano A, Sanz AB, Ortiz A, Sanchez-Niño MD. Cefadroxil Targeting of SLC15A2/PEPT2 Protects From Colistin Nephrotoxicity. J Transl Med 2025; 105:102182. [PMID: 39522761 DOI: 10.1016/j.labinv.2024.102182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 10/07/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024] Open
Abstract
Acute kidney injury (AKI) and chronic kidney disease (CKD) are considered interconnected syndromes, as AKI episodes may accelerate CKD progression, and CKD increases the risk of AKI. Genome-wide association studies (GWAS) may identify novel actionable therapeutic targets. Human GWAS for AKI or CKD were combined with murine AKI transcriptomics data sets to identify 13 (ACACB, ACSM5, CNDP1, DPEP1, GATM, SLC6A12, AGXT2L1, SLC15A2, CTSS, ICAM1, ITGAX, ITGAM, and PPM1J) potentially actionable therapeutic targets to modulate kidney disease severity across species and the AKI-CKD spectrum. Among them, SLC15A2, encoding the cell membrane proton-coupled peptide transporter 2, was prioritized for data mining and functional intervention studies in vitro and in vivo because of its known function to transport nephrotoxic drugs such as colistin and the possibility for targeting with small molecules already in clinical use, such as cefadroxil. Data mining disclosed that SLC15A2 was upregulated in the tubulointerstitium of human CKD, including diabetic nephropathy, and the upregulation was localized to proximal tubular cells. Colistin elicited cytotoxicity and proinflammatory response in cultured human and murine proximal tubular cells that was decreased by concomitant exposure to cefadroxil. In proof-of-concept in vivo studies, cefadroxil protected from colistin nephrotoxicity in mice. The GWAS association of SLC15A2 with human kidney disease may be actionable and related to the modifiable transport of nephrotoxins causing repeated subclinical episodes of AKI and/or chronic nephrotoxicity.
Collapse
Affiliation(s)
- Raul Fernandez-Prado
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, Madrid, Spain; RICORS2040, Madrid, Spain
| | - Lara Valiño
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, Madrid, Spain; RICORS2040, Madrid, Spain
| | | | - Ana B Sanz
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, Madrid, Spain; RICORS2040, Madrid, Spain
| | - Alberto Ortiz
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, Madrid, Spain; RICORS2040, Madrid, Spain; Departamento de Medicina, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Maria Dolores Sanchez-Niño
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, Madrid, Spain; RICORS2040, Madrid, Spain; Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain.
| |
Collapse
|
6
|
Tang C, Teymur A, Wu T. Urinary Immune Complexes Reflect Renal Pathology in Lupus Nephritis. Diagnostics (Basel) 2024; 14:2787. [PMID: 39767148 PMCID: PMC11727095 DOI: 10.3390/diagnostics14242787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/07/2024] [Accepted: 12/10/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND/OBJECTIVES Lupus nephritis (LN) is a serious complication of systemic lupus erythematosus (SLE), involving immune complex deposition in the kidneys. While renal biopsy is the diagnostic gold standard, its invasiveness limits frequent use, driving the need for non-invasive urinary biomarkers to monitor disease progression and response to treatment. This study aimed to identify and validate urinary biomarkers for LN. METHODS Data from 10 LN-related omics databases, including urine, PBMCs, and kidney tissue, were analyzed. Differentially expressed proteins (DEPs) and genes (DEGs) were identified, and candidate biomarkers were validated via ELISA in an independent cohort of 87 urine samples. RESULTS We identified 78 biomarkers, with 14 overlapping across transcriptomic categories. Novel urinary biomarkers, including SERPING1, SLPI, and CD48, were validated. Urinary CD163, VCAM1, and ALCAM levels showed significant differences between LN and healthy controls, while urinary immune complexes (ICx) demonstrated superior diagnostic performance, with urinary ALCAM-ICx and CCL21-ICx achieving the highest AUC values. CONCLUSIONS Our findings highlight the potential of urinary immune complexes and antigens as non-invasive biomarkers for LN. ALCAM, CD163, and SERPING1-ICx, in particular, were found as promising candidates for a urinary biomarker panel to aid in the diagnosis and monitoring of LN.
Collapse
Affiliation(s)
| | | | - Tianfu Wu
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, USA; (C.T.); (A.T.)
| |
Collapse
|
7
|
Wei Q, Wu X, Chen Z, Lin H, Xiong L, Wang N. Overproduction of Mitochondrial Fission Proteins and Mitochondrial Fission in Podocytes of Lupus Nephritis Patients. J Inflamm Res 2024; 17:10807-10818. [PMID: 39677288 PMCID: PMC11645915 DOI: 10.2147/jir.s497813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 11/21/2024] [Indexed: 12/17/2024] Open
Abstract
Background The glomerular injury is associated with different pathogeneses, and podocyte damage is common in various ISN/RPS class lupus nephritis (LN). In podocyte, mitochondrial morphological changes are observed in lupus nephritis (LN) in our previous study. This study aimed to explore mitochondrial fission proteins expression in podocytes using bioinformatics analysis and further to investigate the associations between mitochondrial fission proteins and laboratory features in LN. Methods To determine the differentially expressed genes (DEGs) between LN and normal controls, we downloaded and analyzed microarray datasets. Then download the mitochondrial genes list from the MitoMiner 4.0 database, then take the genes that are common with the DEGs. Functional enrichment analyses were then performed. Then mitochondrial fission was observed through electron microscope. We performed immunofluorescence staining to explore the expression of mitochondrial fission proteins in LN patients. Results Among these 658 DEGs, 5 DEGs related to mitochondrial dynamics were identified. Mitochondrial dynamics proteins were involved in mitophagy. Mitochondrial fission proteins Drp1 and Fis1 staining were significantly enhanced compared to that in the controls. 24h-UTP are positively correlated with mitochondrial fission proteins expression. Conclusion Mitochondrial fission was observed in LN patients' podocytes. Mitochondrial fission proteins Drp1 and Fis1 were overproduced in podocytes, and then they can lead to mitochondrial fission, which may aggravate podocyte damage and proteinuria. While the mechanism still needs to be explored.
Collapse
Affiliation(s)
- Qijiao Wei
- Department of Rheumatology, Children’s Hospital of Fudan University, Shanghai, 201102, People’s Republic of China
| | - Xinchen Wu
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, 650500, People’s Republic of China
| | - Zhihan Chen
- Department of Rheumatology, Fujian Provincial Hospital, Fuzhou, 355000, People’s Republic of China
| | - He Lin
- Department of Rheumatology, Fujian Provincial Hospital, Fuzhou, 355000, People’s Republic of China
| | - Lei Xiong
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, 650500, People’s Republic of China
| | - Na Wang
- Department of Traditional Chinese Medicine, Children’s Hospital of Fudan University, Shanghai, 201102, People’s Republic of China
| |
Collapse
|
8
|
Wang FQ, Dang X, Yang W. Transcriptomic studies unravel the molecular and cellular complexity of systemic lupus erythematosus: A review. Clin Immunol 2024; 268:110367. [PMID: 39293718 DOI: 10.1016/j.clim.2024.110367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/03/2024] [Accepted: 09/14/2024] [Indexed: 09/20/2024]
Abstract
Transcriptomic analysis plays a vital role in investigating Systemic Lupus Erythematosus (SLE), a complex autoimmune disease characterized by diverse clinical manifestations. This approach has yielded valuable insights into gene expression patterns and molecular regulatory mechanisms involved in SLE pathogenesis. Notably, interferon-stimulated gene (ISG) signatures are significantly upregulated in immune cells, skin, and kidney. Although a correlation with serological parameters and clinical symptoms has been proposed, the association with global disease activities remains controversial. Key findings in the field include an upregulated plasmablast signature, which positively correlates with disease activity; a neutrophil signature associated with lupus nephritis; and a decreased lymphocyte signature, reflecting lymphopenia. Tissue-level studies highlight the critical role of infiltrating immune cells in organ damage. Future research should leverage advanced technologies and integrate multi-omics data to deepen our understanding of SLE's molecular underpinnings, facilitating the development of targeted therapies.
Collapse
Affiliation(s)
- Frank Qingyun Wang
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China
| | - Xiao Dang
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China
| | - Wanling Yang
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
9
|
Mou L, Lu Y, Wu Z, Pu Z, Wang M. Integrating genomics and AI to uncover molecular targets for mRNA vaccine development in lupus nephritis. Front Immunol 2024; 15:1381445. [PMID: 39430760 PMCID: PMC11486652 DOI: 10.3389/fimmu.2024.1381445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 09/02/2024] [Indexed: 10/22/2024] Open
Abstract
Lupus nephritis (LN), a complex complication of systemic lupus erythematosus, requires in-depth cellular and molecular analysis for advanced treatment strategies, including mRNA vaccine development. In this study, we analyzed single-cell RNA sequencing data from 24 LN patients and 10 healthy controls, supplemented by bulk RNA-seq data from additional LN patients and controls. By applying non-negative matrix factorization (NMF), we identified four distinct leukocyte meta-programs in LN, highlighting diverse immune functions and potential mRNA vaccine targets. Utilizing 12 machine learning algorithms, we developed 417 predictive models incorporating gene sets linked to key biological pathways, such as MTOR signaling, autophagy, Toll-like receptor, and adaptive immunity pathways. These models were instrumental in identifying potential targets for mRNA vaccine development. Our functional network analysis further revealed intricate gene interactions, providing novel insights into the molecular basis of LN. Additionally, we validated the mRNA expression levels of potential vaccine targets across multiple cohorts and correlated them with clinical parameters such as the glomerular filtration rate (GFR) and pathological stage. This study represents a significant advance in LN research by merging single-cell genomics with the precision of NMF and machine learning, broadening our understanding of LN at the cellular and molecular levels. More importantly, our findings shed light on the development of targeted mRNA vaccines, offering new possibilities for diagnostics and therapeutics for this complex autoimmune disease.
Collapse
Affiliation(s)
- Lisha Mou
- Department of Rheumatology and Immunology, Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, Guangdong, China
- MetaLife Center, Shenzhen Institute of Translational Medicine, Shenzhen, Guangdong, China
| | - Ying Lu
- MetaLife Center, Shenzhen Institute of Translational Medicine, Shenzhen, Guangdong, China
| | - Zijing Wu
- MetaLife Center, Shenzhen Institute of Translational Medicine, Shenzhen, Guangdong, China
| | - Zuhui Pu
- MetaLife Center, Shenzhen Institute of Translational Medicine, Shenzhen, Guangdong, China
- Imaging Department, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, Guangdong, China
| | - Meiying Wang
- Department of Rheumatology and Immunology, Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
10
|
Wong CC, Gao LY, Xu Y, Chau MK, Zhang D, Yap DY, Ying SK, Lee CK, Yung S, Chan TM. Cluster of differentiation-44 as a novel biomarker of lupus nephritis and its role in kidney inflammation and fibrosis. Front Immunol 2024; 15:1443153. [PMID: 39411720 PMCID: PMC11473352 DOI: 10.3389/fimmu.2024.1443153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/03/2024] [Indexed: 10/19/2024] Open
Abstract
Introduction CD44 is a transmembrane glycoprotein implicated in tissue inflammation and fibrosis. We investigated its role in kidney inflammation and fibrosis in a murine model of lupus nephritis (LN), and the clinico-pathological association of serum CD44 level in patients with biopsy-proven Class III/IV ± V LN. Methods NZB/W F1 mice were treated with control IgG or anti-CD44 monoclonal antibody for 4 weeks and disease parameters assessed. Serum CD44 level in LN patients was determined by ELISA. Control groups included healthy subjects and patients with non-renal SLE or non-lupus renal disease. Results CD44 expression was absent in the normal kidney, but it was expressed in proximal and distal tubular epithelial cells and infiltrating cells in renal biopsies from patients with active proliferative LN. ScRNA-Seq datasets confirmed that CD44 was predominantly expressed in tubular cells and all immune cells identified in LN patients including tissue resident, inflammatory and phagocytic macrophages, Treg cells, effector and central memory CD4+ T cells, resident memory CD8+ T cells and naïve and activated B cells. Treatment of NZB/W F1 mice with anti-CD44 antibody preserved kidney histology and reduced proteinuria, tubulo-interstitial infiltration of CD3+, CD4+ and CD19+ immune cells, and mediators of kidney fibrosis compared to Control mice. Longitudinal studies showed that serum CD44 level increased prior to clinical renal flare by 4.5 months and the level decreased after treatment. ROC curve analysis showed that CD44 level distinguished patients with active LN from healthy subjects and patients with quiescent LN, active non-renal lupus, and non-lupus CKD (ROC AUC of 0.99, 0.96, 0.99 and 0.99 respectively). CD44 level correlated with leukocyte infiltration and interstitial inflammation scores in active LN kidney biopsies. Discussion Our findings suggest that CD44 plays a pathogenic role in renal parenchymal inflammation and fibrosis in active LN and monitoring CD44 may facilitate early diagnosis of flare.
Collapse
Affiliation(s)
- Caleb C.Y. Wong
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Lucy Y. Gao
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Yuesong Xu
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Mel K.M. Chau
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Danting Zhang
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Desmond Y.H. Yap
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Shirley K.Y. Ying
- Department of Medicine and Geriatrics, Princess Margaret Hospital, Hong Kong, Hong Kong SAR, China
| | - Cheuk Kwong Lee
- Hong Kong Red Cross Blood Transfusion Service, Hong Kong, Hong Kong SAR, China
| | - Susan Yung
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Tak Mao Chan
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
11
|
Chandler JC, Jafree DJ, Malik S, Pomeranz G, Ball M, Kolatsi-Joannou M, Piapi A, Mason WJ, Benest AV, Bates DO, Letunovska A, Al-Saadi R, Rabant M, Boyer O, Pritchard-Jones K, Winyard PJ, Mason AS, Woolf AS, Waters AM, Long DA. Single-cell transcriptomics identifies aberrant glomerular angiogenic signalling in the early stages of WT1 kidney disease. J Pathol 2024; 264:212-227. [PMID: 39177649 DOI: 10.1002/path.6339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/17/2024] [Accepted: 06/28/2024] [Indexed: 08/24/2024]
Abstract
WT1 encodes a podocyte transcription factor whose variants can cause an untreatable glomerular disease in early childhood. Although WT1 regulates many podocyte genes, it is poorly understood which of them are initiators in disease and how they subsequently influence other cell-types in the glomerulus. We hypothesised that this could be resolved using single-cell RNA sequencing (scRNA-seq) and ligand-receptor analysis to profile glomerular cell-cell communication during the early stages of disease in mice harbouring an orthologous human mutation in WT1 (Wt1R394W/+). Podocytes were the most dysregulated cell-type in the early stages of Wt1R394W/+ disease, with disrupted angiogenic signalling between podocytes and the endothelium, including the significant downregulation of transcripts for the vascular factors Vegfa and Nrp1. These signalling changes preceded glomerular endothelial cell loss in advancing disease, a feature also observed in biopsy samples from human WT1 glomerulopathies. Addition of conditioned medium from murine Wt1R394W/+ primary podocytes to wild-type glomerular endothelial cells resulted in impaired endothelial looping and reduced vascular complexity. Despite the loss of key angiogenic molecules in Wt1R394W/+ podocytes, the pro-vascular molecule adrenomedullin was upregulated in Wt1R394W/+ podocytes and plasma and its further administration was able to rescue the impaired looping observed when glomerular endothelium was exposed to Wt1R394W/+ podocyte medium. In comparative analyses, adrenomedullin upregulation was part of a common injury signature across multiple murine and human glomerular disease datasets, whilst other gene changes were unique to WT1 disease. Collectively, our study describes a novel role for altered angiogenic signalling in the initiation of WT1 glomerulopathy. We also identify adrenomedullin as a proangiogenic factor, which despite being upregulated in early injury, offers an insufficient protective response due to the wider milieu of dampened vascular signalling that results in endothelial cell loss in later disease. © 2024 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Jennifer C Chandler
- Developmental Biology and Cancer Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, UK
- UCL Centre for Kidney and Bladder Health, London, UK
| | - Daniyal J Jafree
- Developmental Biology and Cancer Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, UK
- UCL Centre for Kidney and Bladder Health, London, UK
- UCL MB/PhD Programme, Faculty of Medical Sciences, University College London, London, UK
| | - Saif Malik
- Developmental Biology and Cancer Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, UK
- UCL Centre for Kidney and Bladder Health, London, UK
| | - Gideon Pomeranz
- Developmental Biology and Cancer Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, UK
- UCL Centre for Kidney and Bladder Health, London, UK
| | - Mary Ball
- Developmental Biology and Cancer Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, UK
- UCL Centre for Kidney and Bladder Health, London, UK
| | - Maria Kolatsi-Joannou
- Developmental Biology and Cancer Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, UK
- UCL Centre for Kidney and Bladder Health, London, UK
| | - Alice Piapi
- Developmental Biology and Cancer Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, UK
| | - William J Mason
- Developmental Biology and Cancer Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, UK
- UCL Centre for Kidney and Bladder Health, London, UK
| | - Andrew V Benest
- Endothelial Quiescence Group and Tumour and Vascular Biology Laboratories, Division of Cancer and Stem Cells, Centre for Cancer Sciences, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, UK
| | - David O Bates
- Endothelial Quiescence Group and Tumour and Vascular Biology Laboratories, Division of Cancer and Stem Cells, Centre for Cancer Sciences, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, UK
- Pan-African Cancer Research Institute, University of Pretoria, Hatfield, South Africa
| | - Aleksandra Letunovska
- Developmental Biology and Cancer Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, UK
- Department of Histopathology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Reem Al-Saadi
- Developmental Biology and Cancer Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, UK
- Department of Histopathology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Marion Rabant
- Pathology department, Hôpital Universitaire Necker-Enfants Malades, Institut Imagine, Université Paris Cité, Paris, France
| | - Olivia Boyer
- APHP, Service de Néphrologie Pédiatrique, Hôpital Universitaire Necker-Enfants Malades, Institut Imagine, Université Paris Cité, Paris, France
| | - Kathy Pritchard-Jones
- Developmental Biology and Cancer Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, UK
| | - Paul J Winyard
- Developmental Biology and Cancer Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, UK
- UCL Centre for Kidney and Bladder Health, London, UK
| | - Andrew S Mason
- Department of Biology and York Biomedical Research Institute, University of York, UK
| | - Adrian S Woolf
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Royal Manchester Children's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Aoife M Waters
- Developmental Biology and Cancer Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, UK
| | - David A Long
- Developmental Biology and Cancer Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, UK
- UCL Centre for Kidney and Bladder Health, London, UK
| |
Collapse
|
12
|
Jin Y, Wang Y, Ma X, Li H, Zhang M. Identification of NET formation and the renoprotective effect of degraded NETs in lupus nephritis. Am J Physiol Renal Physiol 2024; 327:F637-F654. [PMID: 39205658 PMCID: PMC11483074 DOI: 10.1152/ajprenal.00122.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024] Open
Abstract
To explore molecular biomarkers associated with the pathophysiology and therapy of lupus nephritis (LN), we conducted a joint analysis of transcriptomic data from 40 peripheral blood mononuclear cells (PBMCs) (GSE81622) and 21 kidney samples (GSE112943) from the Gene Expression Omnibus database using bioinformatics. A total of 976 and 2,427 differentially expressed genes (DEGs) were identified in PBMCs and renal tissues. Seven and two functional modules closely related to LN were identified. Further enrichment analysis revealed that the neutrophil activation pathway was highly active in both PBMCs and the kidney. Subsequently, 16 core genes closely associated with LN were verified by protein-protein interaction screening and quantitative PCR. In vitro cell models and MRL/lpr mouse models confirmed that the abnormal expression of these core genes was closely linked to neutrophil extracellular traps (NETs) generated by neutrophil activation, while degradation of NETs led to downregulation of core gene expression, thereby improving pathological symptoms of LN. Therefore, identification of patients with systemic lupus erythematosus exhibiting abnormal expression patterns for these core genes may serve as a useful indicator for kidney involvement. In addition, targeting neutrophils to modulate their activation levels and inhibit aberrant expression of these genes represents a potential therapeutic strategy for treating LN. NEW & NOTEWORTHY The mechanisms by which immune cells cause kidney injury in lupus nephritis are poorly understood. We integrated and analyzed the transcriptomic features of PBMCs and renal tissues from the GEO database to identify key molecular markers associated with neutrophil activation. We confirmed that neutrophil extracellular traps (NETs) formed by neutrophil activation promoted the upregulation of key genes in cell and animal models. Targeted degradation of NETs significantly ameliorated kidney injury in MRL/lpr mice.
Collapse
Affiliation(s)
- Yong Jin
- Department of Rheumatology and Immunology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
- Inner Mongolia Key Laboratory for Pathogenesis and Diagnosis of Rheumatic and Autoimmune Diseases, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Yutong Wang
- Department of Rheumatology and Immunology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Xu Ma
- Department of Rheumatology and Immunology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Hongbin Li
- Department of Rheumatology and Immunology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
- Inner Mongolia Key Laboratory for Pathogenesis and Diagnosis of Rheumatic and Autoimmune Diseases, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Manling Zhang
- Department of Rheumatology and Immunology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
- Inner Mongolia Key Laboratory for Pathogenesis and Diagnosis of Rheumatic and Autoimmune Diseases, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| |
Collapse
|
13
|
Wen M, Hun M, Zhao M, He Q. MME and PTPRC: key renal biomarkers in lupus nephritis. PeerJ 2024; 12:e18070. [PMID: 39301055 PMCID: PMC11412223 DOI: 10.7717/peerj.18070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/19/2024] [Indexed: 09/22/2024] Open
Abstract
Background Lupus nephritis (LN) is an autoimmune-related kidney disease with a poor prognosis, however the potential pathogenic mechanism remains unclear and there is a lack of precise biomarkers. Therefore, a thorough screening and identification of renal markers in LN are immensely beneficial to the research on its pathogenic mechanisms and treatment strategies. Methods We utilized bioinformatics to analyze the differentially expressed genes (DEGs) at the transcriptome level of three clusters: total renal, glomeruli, and renal tubulointerstitium in the GEO database to discover potential renal biomarkers of LN. We utilized NephroSeq datasets and measured mRNA and protein levels in the kidneys of MRL/lpr mice to confirm the expression of key DEGs. Results Seven significantly differential genes (EGR1, MME, PTPRC, RORC, MX1, ZBTB16, FKBP5) were revealed from the transcriptome database of GSE200306, which were mostly enriched in the pathway of the hematopoietic cell lineage and T cell differentiation respectively by KEGG and GO analysis. The seven hot differential genes were verified to have consistent change trends using three datasets from NephroSeq database. The receiver operating characteristic (ROC) curve indicated that five DEGs (PTPRC, MX1, EGR1, MME and RORC) exhibited a higher diagnostic ROC value in both the glomerulus and tubulointerstitium group. Validation of core genes using MRL/lpr mice showed that MME and PTPRC exhibit significantly differential mRNA and protein expression patterns in mouse kidneys like the datasets. Conclusions This study identified seven key renal biomarkers through bioinformatics analysis using the GEO and NephroSeq databases. It was identified that MME and PTPRC may have a high predictive value as renal biomarkers in the pathogenesis of LN, as confirmed by animal validation.
Collapse
Affiliation(s)
- Min Wen
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Marady Hun
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Mingyi Zhao
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qingnan He
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
14
|
Mou L, Lu Y, Wu Z, Pu Z, Huang X, Wang M. Applying 12 machine learning algorithms and Non-negative Matrix Factorization for robust prediction of lupus nephritis. Front Immunol 2024; 15:1391218. [PMID: 39224582 PMCID: PMC11366613 DOI: 10.3389/fimmu.2024.1391218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024] Open
Abstract
Lupus nephritis (LN) is a challenging condition with limited diagnostic and treatment options. In this study, we applied 12 distinct machine learning algorithms along with Non-negative Matrix Factorization (NMF) to analyze single-cell datasets from kidney biopsies, aiming to provide a comprehensive profile of LN. Through this analysis, we identified various immune cell populations and their roles in LN progression and constructed 102 machine learning-based immune-related gene (IRG) predictive models. The most effective models demonstrated high predictive accuracy, evidenced by Area Under the Curve (AUC) values, and were further validated in external cohorts. These models highlight six hub IRGs (CD14, CYBB, IFNGR1, IL1B, MSR1, and PLAUR) as key diagnostic markers for LN, showing remarkable diagnostic performance in both renal and peripheral blood cohorts, thus offering a novel approach for noninvasive LN diagnosis. Further clinical correlation analysis revealed that expressions of IFNGR1, PLAUR, and CYBB were negatively correlated with the glomerular filtration rate (GFR), while CYBB also positively correlated with proteinuria and serum creatinine levels, highlighting their roles in LN pathophysiology. Additionally, protein-protein interaction (PPI) analysis revealed significant networks involving hub IRGs, emphasizing the importance of the interleukin family and chemokines in LN pathogenesis. This study highlights the potential of integrating advanced genomic tools and machine learning algorithms to improve diagnosis and personalize management of complex autoimmune diseases like LN.
Collapse
Affiliation(s)
- Lisha Mou
- Department of Rheumatology and Immunology, Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
- MetaLife Lab, Shenzhen Institute of Translational Medicine, Shenzhen, Guangdong, China
| | - Ying Lu
- Department of Rheumatology and Immunology, Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
- MetaLife Lab, Shenzhen Institute of Translational Medicine, Shenzhen, Guangdong, China
| | - Zijing Wu
- Department of Rheumatology and Immunology, Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
- MetaLife Lab, Shenzhen Institute of Translational Medicine, Shenzhen, Guangdong, China
| | - Zuhui Pu
- Imaging Department, Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Xiaoyan Huang
- Department of Nephrology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Meiying Wang
- Department of Rheumatology and Immunology, Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| |
Collapse
|
15
|
Mendapara K. Development and evaluation of a chronic kidney disease risk prediction model using random forest. Front Genet 2024; 15:1409755. [PMID: 38993480 PMCID: PMC11236722 DOI: 10.3389/fgene.2024.1409755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/29/2024] [Indexed: 07/13/2024] Open
Abstract
This research aims to advance the detection of Chronic Kidney Disease (CKD) through a novel gene-based predictive model, leveraging recent breakthroughs in gene sequencing. We sourced and merged gene expression profiles of CKD-affected renal tissues from the Gene Expression Omnibus (GEO) database, classifying them into two sets for training and validation in a 7:3 ratio. The training set included 141 CKD and 33 non-CKD specimens, while the validation set had 60 and 14, respectively. The disease risk prediction model was constructed using the training dataset, while the validation dataset confirmed the model's identification capabilities. The development of our predictive model began with evaluating differentially expressed genes (DEGs) between the two groups. We isolated six genes using Lasso and random forest (RF) methods-DUSP1, GADD45B, IFI44L, IFI30, ATF3, and LYZ-which are critical in differentiating CKD from non-CKD tissues. We refined our random forest (RF) model through 10-fold cross-validation, repeated five times, to optimize the mtry parameter. The performance of our model was robust, with an average AUC of 0.979 across the folds, translating to a 91.18% accuracy. Validation tests further confirmed its efficacy, with a 94.59% accuracy and an AUC of 0.990. External validation using dataset GSE180394 yielded an AUC of 0.913, 89.83% accuracy, and a sensitivity rate of 0.889, underscoring the model's reliability. In summary, the study identified critical genetic biomarkers and successfully developed a novel disease risk prediction model for CKD. This model can serve as a valuable tool for CKD disease risk assessment and contribute significantly to CKD identification.
Collapse
Affiliation(s)
- Krish Mendapara
- Faculty of Health Sciences, Queen's University, Kingston, ON, Canada
| |
Collapse
|
16
|
Ye B, Chen B, Guo C, Xiong N, Huang Y, Li M, Lai Y, Li J, Zhou M, Wang S, Wang S, Yang N, Zhang H. C5a-C5aR1 axis controls mitochondrial fission to promote podocyte injury in lupus nephritis. Mol Ther 2024; 32:1540-1560. [PMID: 38449312 PMCID: PMC11081871 DOI: 10.1016/j.ymthe.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/05/2024] [Accepted: 03/04/2024] [Indexed: 03/08/2024] Open
Abstract
Podocytes are essential to maintaining the integrity of the glomerular filtration barrier, but they are frequently affected in lupus nephritis (LN). Here, we show that the significant upregulation of Drp1S616 phosphorylation in podocytes promotes mitochondrial fission, leading to mitochondrial dysfunction and podocyte injury in LN. Inhibition or knockdown of Drp1 promotes mitochondrial fusion and protects podocytes from injury induced by LN serum. In vivo, pharmacological inhibition of Drp1 reduces the phosphorylation of Drp1S616 in podocytes in lupus-prone mice. Podocyte injury is reversed when Drp1 is inhibited, resulting in the alleviation of proteinuria. Mechanistically, complement component C5a (C5a) upregulates the phosphorylation of Drp1S616 and promotes mitochondrial fission in podocytes. Moreover, the expression of C5a receptor 1 (C5aR1) is notably upregulated in podocytes in LN. C5a-C5aR1 axis-controlled phosphorylation of Drp1S616 and mitochondrial fission are substantially suppressed when C5aR1 is knocked down by siRNA. Moreover, lupus-prone mice treated with C5aR inhibitor show reduced phosphorylation of Drp1S616 in podocytes, resulting in significantly less podocyte damage. Together, this study uncovers a novel mechanism by which the C5a-C5aR1 axis promotes podocyte injury by enhancing Drp1-mediated mitochondrial fission, which could have significant implications for the treatment of LN.
Collapse
Affiliation(s)
- Baokui Ye
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Binfeng Chen
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Chaohuan Guo
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Ningjing Xiong
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Yuefang Huang
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Mengyuan Li
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Yimei Lai
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Jin Li
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Mianjing Zhou
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Shuang Wang
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Shuyi Wang
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Niansheng Yang
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China.
| | - Hui Zhang
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
17
|
Reily C, Moldoveanu Z, Pramparo T, Hall S, Huang ZQ, Rice T, Novak L, Komers R, Jenkinson CP, Novak J. Sparsentan ameliorates glomerular hypercellularity and inflammatory-gene networks induced by IgA1-IgG immune complexes in a mouse model of IgA nephropathy. Am J Physiol Renal Physiol 2024; 326:F862-F875. [PMID: 38511222 PMCID: PMC11381021 DOI: 10.1152/ajprenal.00253.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 02/07/2024] [Accepted: 03/02/2024] [Indexed: 03/22/2024] Open
Abstract
IgA nephropathy (IgAN) is characterized by glomerular deposition of immune complexes (ICs) consisting of IgA1 with O-glycans deficient in galactose (Gd-IgA1) and Gd-IgA1-specific IgG autoantibodies. These ICs induce kidney injury, and in the absence of disease-specific therapy, up to 40% of patients with IgAN progress to kidney failure. IgA1 with its clustered O-glycans is unique to humans, which hampered development of small-animal models of IgAN. Here, we used a model wherein engineered ICs (EICs) formed from human Gd-IgA1 and recombinant human IgG autoantibody are injected into nude mice to induce glomerular injury mimicking human IgAN. In this model, we assessed the protective effects of sparsentan, a single-molecule dual endothelin angiotensin receptor antagonist (DEARA) versus vehicle on EIC-induced glomerular proliferation and dysregulation of gene expression in the kidney. Oral administration of sparsentan (60 or 120 mg/kg daily) to mice intravenously injected with EIC attenuated the EIC-induced glomerular hypercellularity. Furthermore, analysis of changes in the whole kidney transcriptome revealed that key inflammatory and proliferative biological genes and pathways that are upregulated in this EIC model of IgAN were markedly reduced by sparsentan, including complement genes, integrin components, members of the mitogen-activated protein kinase family, and Fc receptor elements. Partial overlap between mouse and human differentially expressed genes in IgAN further supported the translational aspect of the immune and inflammatory components from our transcriptional findings. In conclusion, our data indicate that in the mouse model of IgAN, sparsentan targets immune and inflammatory processes leading to protection from mesangial hypercellularity.NEW & NOTEWORTHY The mechanisms by which deposited IgA1 immune complexes cause kidney injury during early phases of IgA nephropathy are poorly understood. We used an animal model we recently developed that involves IgA1-IgG immune complex injections and determined pathways related to the induced mesangioproliferative changes. Treatment with sparsentan, a dual inhibitor of endothelin type A and angiotensin II type 1 receptors, ameliorated the induced mesangioproliferative changes and the associated alterations in the expression of inflammatory genes and networks.
Collapse
Affiliation(s)
- Colin Reily
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Zina Moldoveanu
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Tiziano Pramparo
- Travere Therapeutics Incorporated, San Diego, California, United States
| | - Stacy Hall
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Zhi-Qiang Huang
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Terri Rice
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Lea Novak
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Radko Komers
- Travere Therapeutics Incorporated, San Diego, California, United States
| | - Celia P Jenkinson
- Travere Therapeutics Incorporated, San Diego, California, United States
| | - Jan Novak
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States
| |
Collapse
|
18
|
Barsotti GC, Luciano R, Kumar A, Meliambro K, Kakade V, Tokita J, Naik A, Fu J, Peck E, Pell J, Reghuvaran A, Tanvir E, Patel P, Zhang W, Li F, Moeckel G, Perincheri S, Cantley L, Moledina DG, Wilson FP, He JC, Menon MC. Rationale and Design of a Phase 2, Double-blind, Placebo-Controlled, Randomized Trial Evaluating AMP Kinase-Activation by Metformin in Focal Segmental Glomerulosclerosis. Kidney Int Rep 2024; 9:1354-1368. [PMID: 38707807 PMCID: PMC11068976 DOI: 10.1016/j.ekir.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/30/2024] [Accepted: 02/05/2024] [Indexed: 05/07/2024] Open
Abstract
Introduction Focal segmental glomerulosclerosis (FSGS), the most common primary glomerular disease leading to end-stage kidney disease (ESKD), is characterized by podocyte injury and depletion, whereas minimal change disease (MCD) has better outcomes despite podocyte injury. Identifying mechanisms capable of preventing podocytopenia during injury could transform FSGS to an "MCD-like" state. Preclinical data have reported conversion of an MCD-like injury to one with podocytopenia and FSGS by inhibition of AMP-kinase (AMPK) in podocytes. Conversely, in FSGS, AMPK-activation using metformin (MF) mitigated podocytopenia and azotemia. Observational studies also support beneficial effects of MF on proteinuria and chronic kidney disease (CKD) outcomes in diabetes. A randomized controlled trial (RCT) to test MF in podocyte injury with FSGS has not yet been conducted. Methods We report the rationale and design of phase 2, double-blind, placebo-controlled RCT evaluating the efficacy and safety of MF as adjunctive therapy in FSGS. By randomizing 30 patients with biopsy-confirmed FSGS to MF or placebo (along with standard immunosuppression), we will study mechanistic biomarkers that correlate with podocyte injury or depletion and evaluate outcomes after 6 months. We specifically integrate novel urine, blood, and tissue markers as surrogates for FSGS progression along with unbiased profiling strategies. Results and Conclusion Our phase 2 trial will provide insight into the potential efficacy and safety of MF as adjunctive therapy in FSGS-a crucial step to developing a larger phase 3 study. The mechanistic assays here will guide the design of other FSGS trials and contribute to understanding AMPK activation as a potential therapeutic target in FSGS. By repurposing an inexpensive agent, our results will have implications for FSGS treatment in resource-poor settings.
Collapse
Affiliation(s)
- Gabriel C. Barsotti
- Section of Nephrology, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Randy Luciano
- Section of Nephrology, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Ashwani Kumar
- Section of Nephrology, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Kristin Meliambro
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Vijayakumar Kakade
- Section of Nephrology, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Joji Tokita
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Abhijit Naik
- Division of Nephrology, Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | - Jia Fu
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Elizabeth Peck
- Clinical Research Coordinator, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - John Pell
- Section of Nephrology, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Anand Reghuvaran
- Section of Nephrology, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - E.M. Tanvir
- Section of Nephrology, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Prashant Patel
- Investigational Drug Service, Department of Pharmacy Services, Yale New Haven Hospital, Connecticut, USA
| | - Weijia Zhang
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Fan Li
- Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut, USA
| | - Gilbert Moeckel
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Sudhir Perincheri
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Lloyd Cantley
- Section of Nephrology, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Dennis G. Moledina
- Section of Nephrology, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - F. Perry Wilson
- Section of Nephrology, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - John C. He
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Madhav C. Menon
- Section of Nephrology, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
19
|
Zeng H, Zhuang Y, Yan X, He X, Qiu Q, Liu W, Zhang Y. Machine learning-based identification of novel hub genes associated with oxidative stress in lupus nephritis: implications for diagnosis and therapeutic targets. Lupus Sci Med 2024; 11:e001126. [PMID: 38637124 PMCID: PMC11029281 DOI: 10.1136/lupus-2023-001126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/28/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND Lupus nephritis (LN) is a complication of SLE characterised by immune dysfunction and oxidative stress (OS). Limited options exist for LN. We aimed to identify LN-related OS, highlighting the need for non-invasive diagnostic and therapeutic approaches. METHODS LN-differentially expressed genes (DEGs) were extracted from Gene Expression Omnibus datasets (GSE32591, GSE112943 and GSE104948) and Molecular Signatures Database for OS-associated DEGs (OSEGs). Functional enrichment analysis was performed for OSEGs related to LN. Weighted gene co-expression network analysis identified hub genes related to OS-LN. These hub OSEGs were refined as biomarker candidates via least absolute shrinkage and selection operator. The predictive value was validated using receiver operating characteristic (ROC) curves and nomogram for LN prognosis. We evaluated LN immune cell infiltration using single-sample gene set enrichment analysis and CIBERSORT. Additionally, gene set enrichment analysis explored the functional enrichment of hub OSEGs in LN. RESULTS The study identified four hub genes, namely STAT1, PRODH, TXN2 and SETX, associated with OS related to LN. These genes were validated for their diagnostic potential, and their involvement in LN pathogenesis was elucidated through ROC and nomogram. Additionally, alterations in immune cell composition in LN correlated with hub OSEG expression were observed. Immunohistochemical analysis reveals that the hub gene is most correlated with activated B cells and CD8 T cells. Finally, we uncovered that the enriched pathways of OSEGs were mainly involved in the PI3K-Akt pathway and the Janus kinase-signal transducer and activator of transcription pathway. CONCLUSION These findings contribute to advancing our understanding of the complex interplay between OS, immune dysregulation and molecular pathways in LN, laying a foundation for the identification of potential diagnostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Huiqiong Zeng
- Traditional Chinese Medicine Department of Immunology, Women & Children Health Institute Futian Shenzhen, Shenzhen, China
| | - Yu Zhuang
- Department of Rheumatology and Immunology, Huizhou Central People's Hospital, Huizhou, China
| | - Xiaodong Yan
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Xiaoyan He
- Department of Fu Xin Community Health Service Center, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Qianwen Qiu
- Traditional Chinese Medicine Department of Immunology, Women & Children Health Institute Futian Shenzhen, Shenzhen, China
| | - Wei Liu
- Department of Rheumatology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Ye Zhang
- Traditional Chinese Medicine Department of Immunology, Women & Children Health Institute Futian Shenzhen, Shenzhen, China
| |
Collapse
|
20
|
Wei S, Shen H, Zhang Y, Liu C, Li S, Yao J, Jin Z, Yu H. Integrative analysis of single-cell and bulk transcriptome data reveal the significant role of macrophages in lupus nephritis. Arthritis Res Ther 2024; 26:84. [PMID: 38610007 PMCID: PMC11010324 DOI: 10.1186/s13075-024-03311-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/18/2024] [Indexed: 04/14/2024] Open
Abstract
OBJECTIVE We attempted to identify abnormal immune cell components and signaling pathways in lupus nephritis (LN) and to identify potential therapeutic targets. METHODS Differentially expressed genes (DEGs) between LN and normal kidney tissues were identified from bulk transcriptome data, and functional annotation was performed. The phenotypic changes in macrophages and aberrant intercellular signaling communications within immune cells were imputed from LN scRNA-seq data using trajectory analysis and verified using immunofluorescence staining. Finally, lentivirus-mediated overexpression of LGALS9, the gene encoding Galectin 9, in THP-1 cells was used to study the functional effect of this gene on monocytic cells. RESULTS From bulk transcriptome data, a significant activation of interferon (IFN) signaling was observed, and its intensity showed a significantly positive correlation with the abundance of infiltrating macrophages in LN. Analysis of scRNA-seq data revealed 17 immune cell clusters, with macrophages showing the highest enrichment of intercellular signal communication in LN. Trajectory analysis revealed macrophages in LN undergo a phenotypic change from inflammatory patrolling macrophages to phagocytic and then to antigen-presenting macrophages, and secrete various pro-inflammatory factors and complement components. LGALS9 was found significantly upregulated in macrophages in LN, which was confirmed by the immunofluorescence assay. Gene functional study showed that LGALS9 overexpression in THP-1 cells significantly elicited pro-inflammatory activation, releasing multiple immune cell chemoattractants. CONCLUSION Our results present an important pathophysiological role for macrophages in LN, and our preliminary results demonstrate significant pro-inflammatory effects of LGALS9 gene in LN macrophages.
Collapse
Affiliation(s)
- Shuping Wei
- Department of Ultrasound, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
| | - Haiyun Shen
- Department of Ultrasound, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
| | - Yidan Zhang
- Department of Ultrasound, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
| | - Chunrui Liu
- Department of Ultrasound, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
| | - Shoushan Li
- Department of oncology, The Siyang Hospital of Chinese Traditional Medicine, 15 Jiefangbei Road, Zhongxing district, Siyang country, Suqian, 223798, Jiangsu, PR China
| | - Jing Yao
- Department of Ultrasound, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
| | - Zhibin Jin
- Department of Ultrasound, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China.
| | - Hongliang Yu
- Department of oncology, The Siyang Hospital of Chinese Traditional Medicine, 15 Jiefangbei Road, Zhongxing district, Siyang country, Suqian, 223798, Jiangsu, PR China.
- Department of radiation oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, 42 Baiziting Road, Nanjing, 210007, Jiangsu, PR China.
| |
Collapse
|
21
|
Rivedal M, Mikkelsen H, Marti HP, Liu L, Kiryluk K, Knoop T, Bjørneklett R, Haaskjold YL, Furriol J, Leh S, Paunas F, Bábíčková J, Scherer A, Serre C, Eikrem O, Strauss P. Glomerular transcriptomics predicts long term outcome and identifies therapeutic strategies for patients with assumed benign IgA nephropathy. Kidney Int 2024; 105:717-730. [PMID: 38154557 DOI: 10.1016/j.kint.2023.12.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/17/2023] [Accepted: 12/08/2023] [Indexed: 12/30/2023]
Abstract
Some patients diagnosed with benign IgA nephropathy (IgAN) develop a progressive clinical course, not predictable by known clinical or histopathological parameters. To assess if gene expression can differentiate between progressors and non-progressors with assumed benign IgAN, we tested microdissected glomeruli from archival kidney biopsy sections from adult patients with stable clinical remission (21 non-progressors) or from 15 patients that had undergone clinical progression within a 25-year time frame. Based on 1 240 differentially expressed genes from patients with suitable sequencing results, we identified eight IgAN progressor and nine non-progressor genes using a two-component classifier. These genes, including APOL5 and ZXDC, predicted disease progression with 88% accuracy, 75% sensitivity and 100% specificity on average 21.6 years before progressive disease was clinically documented. APOL lipoproteins are associated with inflammation, autophagy and kidney disease while ZXDC is a zinc-finger transcription factor modulating adaptive immunity. Ten genes from our transcriptomics data overlapped with an external genome wide association study dataset, although the gene set enrichment test was not statistically significant. We also identified 45 drug targets in the DrugBank database, including angiotensinogen, a target of sparsentan (dual antagonist of the endothelin type A receptor and the angiotensin II type 1 receptor) currently investigated for IgAN treatment. Two validation cohorts were used for substantiating key results, one by immunohistochemistry and the other by nCounter technology. Thus, glomerular mRNA sequencing from diagnostic kidney biopsies from patients with assumed benign IgAN can differentiate between future progressors and non-progressors at the time of diagnosis.
Collapse
Affiliation(s)
- Mariell Rivedal
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Håvard Mikkelsen
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Hans-Peter Marti
- Department of Clinical Medicine, University of Bergen, Bergen, Norway; Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Lili Liu
- Department of Medicine, Vagelos College of Physicians & Surgeons, Columbia University, New York, New York, USA
| | - Krzysztof Kiryluk
- Department of Medicine, Vagelos College of Physicians & Surgeons, Columbia University, New York, New York, USA; Institute for Genomic Medicine, Columbia University, New York, New York, USA
| | - Thomas Knoop
- Department of Clinical Medicine, University of Bergen, Bergen, Norway; Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Rune Bjørneklett
- Department of Clinical Medicine, University of Bergen, Bergen, Norway; Emergency Care Clinic, Haukeland University Hospital, Bergen, Norway
| | - Yngvar Lunde Haaskjold
- Department of Clinical Medicine, University of Bergen, Bergen, Norway; Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Jessica Furriol
- Department of Clinical Medicine, University of Bergen, Bergen, Norway; Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Sabine Leh
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Flavia Paunas
- Department of Medicine, Haugesund Hospital, Haugesund, Norway
| | - Janka Bábíčková
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Andreas Scherer
- Spheromics, Kontiolahti, Finland; Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Camille Serre
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Oystein Eikrem
- Department of Clinical Medicine, University of Bergen, Bergen, Norway; Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Philipp Strauss
- Department of Clinical Medicine, University of Bergen, Bergen, Norway.
| |
Collapse
|
22
|
Okuma K, Oku T, Sasaki C, Kitagori K, Mimori T, Aramori I, Hirayama Y, Yoshifuji H. Similarity and difference between systemic lupus erythematosus and NZB/W F1 mice by multi-omics analysis. Mod Rheumatol 2024; 34:359-368. [PMID: 36869711 DOI: 10.1093/mr/road024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/15/2023] [Accepted: 02/21/2023] [Indexed: 03/05/2023]
Abstract
OBJECTIVES Several animal disease models have been used to understand the mechanisms of systemic lupus erythematosus (SLE); however, the translation of findings from animals to humans has not been sufficiently examined in drug development. To confirm the validity of New Zealand black x New Zealand white (NZB/W) F1 mice as an SLE model, we extensively characterized SLE patients and NZB/W F1 mice by omics analysis. METHODS Peripheral blood from patients and mice and spleen and lymph node tissue from mice were analysed using cell subset analysis, cytokine panel assays, and transcriptome analysis. RESULTS CD4+ effector memory T cells, plasmablasts, and plasma cells were increased in both SLE patients and NZB/W F1 mice. Levels of tumor necrosis factor-α, interferon gamma induced protein-10, and B cell activating factor in plasma were significantly higher in SLE patients and NZB/W F1 mice than in their corresponding controls. Transcriptome analysis revealed an upregulation of genes involved in the interferon signalling pathway and T-cell exhaustion signalling pathway in both SLE patients and the mouse model. In contrast, death receptor signalling genes showed changes in the opposite direction between patients and mice. CONCLUSION NZB/W F1 mice are a generally suitable model of SLE for analysing the pathophysiology and treatment response of T/B cells and monocytes/macrophages and their secreted cytokines.
Collapse
Affiliation(s)
- Kenji Okuma
- Center for Innovation in Immunoregulation Technology and Therapeutics, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Drug Discovery Research, Astellas Pharma Inc., Tsukuba, Ibaraki, Japan
| | - Takuma Oku
- Center for Innovation in Immunoregulation Technology and Therapeutics, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Drug Discovery Research, Astellas Pharma Inc., Tsukuba, Ibaraki, Japan
| | - Chiyomi Sasaki
- Center for Innovation in Immunoregulation Technology and Therapeutics, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Drug Discovery Research, Astellas Pharma Inc., Tsukuba, Ibaraki, Japan
| | - Koji Kitagori
- Center for Innovation in Immunoregulation Technology and Therapeutics, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tsuneyo Mimori
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Takeda General Hospital, Kyoto, Japan
| | - Ichiro Aramori
- Center for Innovation in Immunoregulation Technology and Therapeutics, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Drug Discovery Research, Astellas Pharma Inc., Tsukuba, Ibaraki, Japan
| | - Yoshitaka Hirayama
- Center for Innovation in Immunoregulation Technology and Therapeutics, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Drug Discovery Research, Astellas Pharma Inc., Tsukuba, Ibaraki, Japan
| | - Hajime Yoshifuji
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
23
|
Sun Z, Gao Z, Xiang M, Feng Y, Wang J, Xu J, Wang Y, Liang J. Comprehensive analysis of lactate-related gene profiles and immune characteristics in lupus nephritis. Front Immunol 2024; 15:1329009. [PMID: 38455045 PMCID: PMC10917958 DOI: 10.3389/fimmu.2024.1329009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/12/2024] [Indexed: 03/09/2024] Open
Abstract
Objectives The most frequent cause of kidney damage in systemic lupus erythematosus (SLE) is lupus nephritis (LN), which is also a significant risk factor for morbidity and mortality. Lactate metabolism and protein lactylation might be related to the development of LN. However, there is still a lack of relative research to prove the hypothesis. Hence, this study was conducted to screen the lactate-related biomarkers for LN and analyze the underlying mechanism. Methods To identify differentially expressed genes (DEGs) in the training set (GSE32591, GSE127797), we conducted a differential expression analysis (LN samples versus normal samples). Then, module genes were mined using WGCNA concerning LN. The overlapping of DEGs, critical module genes, and lactate-related genes (LRGs) was used to create the lactate-related differentially expressed genes (LR-DEGs). By using a machine-learning algorithm, ROC, and expression levels, biomarkers were discovered. We also carried out an immune infiltration study based on biomarkers and GSEA. Results A sum of 1259 DEGs was obtained between LN and normal groups. Then, 3800 module genes in reference to LN were procured. 19 LR-DEGs were screened out by the intersection of DEGs, key module genes, and LRGs. Moreover, 8 pivotal genes were acquired via two machine-learning algorithms. Subsequently, 3 biomarkers related to lactate metabolism were obtained, including COQ2, COQ4, and NDUFV1. And these three biomarkers were enriched in pathways 'antigen processing and presentation' and 'NOD-like receptor signaling pathway'. We found that Macrophages M0 and T cells regulatory (Tregs) were associated with these three biomarkers as well. Conclusion Overall, the results indicated that lactate-related biomarkers COQ2, COQ4, and NDUFV1 were associated with LN, which laid a theoretical foundation for the diagnosis and treatment of LN.
Collapse
Affiliation(s)
- Zhan Sun
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhanyan Gao
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Mengmeng Xiang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yang Feng
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jie Wang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jinhua Xu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai Institute of Dermatology, Shanghai, China
| | - Yilun Wang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jun Liang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
24
|
Zou X, Yang M, Ye Z, Li T, Jiang Z, Xia Y, Tan S, Long Y, Wang X. Uncovering lupus nephritis-specific genes and the potential of TNFRSF17-targeted immunotherapy: a high-throughput sequencing study. Front Immunol 2024; 15:1303611. [PMID: 38440734 PMCID: PMC10909935 DOI: 10.3389/fimmu.2024.1303611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 02/05/2024] [Indexed: 03/06/2024] Open
Abstract
Introduction Lupus nephritis (LN) is a severe manifestation of systemic lupus erythematosus (SLE). This study aimed to identify LN specific-genes and potential therapeutic targets. Methods We performed high-throughput transcriptome sequencing on peripheral blood mononuclear cells (PBMCs) from LN patients. Healthy individuals and SLE patients without LN were used as controls. To validate the sequencing results, qRT-PCR was performed for 5 upregulated and 5 downregulated genes. Furthermore, the effect of the TNFRSF17-targeting drug IBI379 on patient plasma cells and B cells was evaluated by flow cytometry. Results Our analysis identified 1493 and 205 differential genes in the LN group compared to the control and SLE without LN groups respectively, with 70 genes common to both sets, marking them as LN-specific. These LN-specific genes were significantly enriched in the 'regulation of biological quality' GO term and the cell cycle pathway. Notably, several genes including TNFRSF17 were significantly overexpressed in the kidneys of both LN patients and NZB/W mice. TNFRSF17 levels correlated positively with urinary protein levels, and negatively with complement C3 and C4 levels in LN patients. The TNFRSF17-targeting drug IBI379 effectively induced apoptosis in patient plasma cells without significantly affecting B cells. Discussion Our findings suggest that TNFRSF17 could serve as a potential therapeutic target for LN. Moreover, IBI379 is presented as a promising treatment option for LN.
Collapse
Affiliation(s)
- Xiaojuan Zou
- Department of Rheumatology and Immunology, The First Hospital of Jilin University, Changchun, China
| | - Mingyue Yang
- Laboratory for Tumor Immunology, The First Hospital of Jilin University, Changchun, China
| | - Zhuang Ye
- Department of Rheumatology and Immunology, The First Hospital of Jilin University, Changchun, China
| | - Tie Li
- Department of Rheumatology and Immunology, The First Hospital of Jilin University, Changchun, China
| | - Zhenyu Jiang
- Department of Rheumatology and Immunology, The First Hospital of Jilin University, Changchun, China
| | - Ying Xia
- Laboratory for Tumor Immunology, The First Hospital of Jilin University, Changchun, China
| | - Shenghai Tan
- Department of Surgical Intensive Care Unit (SICU), The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yu Long
- Department of Rheumatology and Immunology, The First Hospital of Jilin University, Changchun, China
| | - Xiaosong Wang
- Laboratory for Tumor Immunology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
25
|
Li Y, Tang C, Vanarsa K, Thai N, Castillo J, Lea GAB, Lee KH, Kim S, Pedroza C, Wu T, Saxena R, Mok CC, Mohan C. Proximity extension assay proteomics and renal single cell transcriptomics uncover novel urinary biomarkers for active lupus nephritis. J Autoimmun 2024; 143:103165. [PMID: 38194790 DOI: 10.1016/j.jaut.2023.103165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/11/2024]
Abstract
OBJECTIVE To identify urinary biomarkers that can distinguish active renal involvement in Lupus Nephritis (LN), a severe manifestation of systemic lupus erythematosus (SLE). METHODS Urine from 117 subjects, comprised of inactive SLE, active non-renal lupus, active LN, and healthy controls, were subjected to Proximity Extension Assay (PEA) based comprehensive proteomics followed by ELISA validation in an independent, ethnically diverse cohort. Proteomic data is also cross-referenced to renal transcriptomic data to elucidate cellular origins of biomarkers. RESULTS Systems biology analyses revealed progressive activation of cytokine signaling, chemokine activity and coagulation pathways, with worsening renal disease. In addition to validating 30 previously reported biomarkers, this study uncovers several novel candidates. Following ELISA validation in an independent cohort of different ethnicity, the six most discriminatory biomarkers for active LN were urinary ICAM-2, FABP4, FASLG, IGFBP-2, SELE and TNFSF13B/BAFF, with ROC AUC ≥80%, with most correlating strongly with clinical disease activity. Transcriptomic analyses of LN kidneys mapped the likely origin of these proteins to intra-renal myeloid cells (CXCL16, IL-1RT2, TNFSF13B/BAFF), T/NK cells (FASLG), leukocytes (ICAM2) and endothelial cells (SELE). CONCLUSION In addition to confirming the diagnostic potential of urine ALCAM, CD163, MCP1, SELL, ICAM1, VCAM1, NGAL and TWEAK for active LN, this study adds urine ICAM-2, FABP4, FASLG, IGFBP-2, SELE, and TNFSF13B/BAFF as additional markers that warrant systematic validation in larger cross-sectional and longitudinal cohorts.
Collapse
Affiliation(s)
- Yaxi Li
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA
| | - Chenling Tang
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA
| | - Kamala Vanarsa
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA
| | - Nga Thai
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA
| | - Jessica Castillo
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA
| | | | - Kyung Hyun Lee
- Center for Clinical Research and Evidence-Based Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Soojin Kim
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA
| | - Claudia Pedroza
- Center for Clinical Research and Evidence-Based Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Tianfu Wu
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA
| | - Ramesh Saxena
- Department of Internal Medicine, Division of Nephrology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Chi Chiu Mok
- Department of Medicine, Tuen Mun Hospital, New Territories, Hong Kong, China
| | - Chandra Mohan
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA.
| |
Collapse
|
26
|
Manoharan J, Rana R, Kuenze G, Gupta D, Elwakiel A, Ambreen S, Wang H, Banerjee K, Zimmermann S, Singh K, Gupta A, Fatima S, Kretschmer S, Schaefer L, Zeng-Brouwers J, Schwab C, Al-Dabet MM, Gadi I, Altmann H, Koch T, Poitz DM, Baber R, Kohli S, Shahzad K, Geffers R, Lee-Kirsch MA, Kalinke U, Meiler J, Mackman N, Isermann B. Tissue factor binds to and inhibits interferon-α receptor 1 signaling. Immunity 2024; 57:68-85.e11. [PMID: 38141610 DOI: 10.1016/j.immuni.2023.11.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 08/02/2023] [Accepted: 11/28/2023] [Indexed: 12/25/2023]
Abstract
Tissue factor (TF), which is a member of the cytokine receptor family, promotes coagulation and coagulation-dependent inflammation. TF also exerts protective effects through unknown mechanisms. Here, we showed that TF bound to interferon-α receptor 1 (IFNAR1) and antagonized its signaling, preventing spontaneous sterile inflammation and maintaining immune homeostasis. Structural modeling and direct binding studies revealed binding of the TF C-terminal fibronectin III domain to IFNAR1, which restricted the expression of interferon-stimulated genes (ISGs). Podocyte-specific loss of TF in mice (PodΔF3) resulted in sterile renal inflammation, characterized by JAK/STAT signaling, proinflammatory cytokine expression, disrupted immune homeostasis, and glomerulopathy. Inhibiting IFNAR1 signaling or loss of Ifnar1 expression in podocytes attenuated these effects in PodΔF3 mice. As a heteromer, TF and IFNAR1 were both inactive, while dissociation of the TF-IFNAR1 heteromer promoted TF activity and IFNAR1 signaling. These data suggest that the TF-IFNAR1 heteromer is a molecular switch that controls thrombo-inflammation.
Collapse
Affiliation(s)
- Jayakumar Manoharan
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, Leipzig, Germany
| | - Rajiv Rana
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, Leipzig, Germany
| | - Georg Kuenze
- Institute for Drug Discovery, Leipzig University Medical School, Leipzig, Germany
| | - Dheerendra Gupta
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, Leipzig, Germany
| | - Ahmed Elwakiel
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, Leipzig, Germany
| | - Saira Ambreen
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, Leipzig, Germany
| | - Hongjie Wang
- Department of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kuheli Banerjee
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, Leipzig, Germany
| | - Silke Zimmermann
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, Leipzig, Germany
| | - Kunal Singh
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, Leipzig, Germany
| | - Anubhuti Gupta
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, Leipzig, Germany
| | - Sameen Fatima
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, Leipzig, Germany
| | - Stefanie Kretschmer
- Department of Pediatrics, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Liliana Schaefer
- Institute of Pharmacology and Toxicology, Goethe University, Frankfurt am Main, Germany
| | - Jinyang Zeng-Brouwers
- Institute of Pharmacology and Toxicology, Goethe University, Frankfurt am Main, Germany
| | - Constantin Schwab
- Tissue Bank of the National Center for Tumor Diseases, Heidelberg, Germany
| | - Moh'd Mohanad Al-Dabet
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, Leipzig, Germany
| | - Ihsan Gadi
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, Leipzig, Germany
| | - Heidi Altmann
- Dresden Integrated Liquid Biobank, Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany; Medical Department I, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Thea Koch
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - David M Poitz
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Ronny Baber
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, Leipzig, Germany; Leipzig Medical Biobank, Leipzig University, Leipzig, Germany
| | - Shrey Kohli
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, Leipzig, Germany
| | - Khurrum Shahzad
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, Leipzig, Germany
| | - Robert Geffers
- Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Min Ae Lee-Kirsch
- Department of Pediatrics, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Ulrich Kalinke
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, 30625 Hannover, Germany
| | - Jens Meiler
- Institute for Drug Discovery, Leipzig University Medical School, Leipzig, Germany
| | - Nigel Mackman
- Division of Hematology, Department of Medicine, UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Berend Isermann
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, Leipzig, Germany.
| |
Collapse
|
27
|
Korsten P, Tampe B. A Transcriptome Array-Based Approach to Link SGLT-2 and Intrarenal Complement C5 Synthesis in Diabetic Nephropathy. Int J Mol Sci 2023; 24:17066. [PMID: 38069385 PMCID: PMC10707485 DOI: 10.3390/ijms242317066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/26/2023] [Accepted: 12/01/2023] [Indexed: 12/18/2023] Open
Abstract
Diabetic nephropathy is a common microvascular complication of diabetes mellitus. It is characterized by progressive chronic kidney disease (CKD) with decline of kidney function by hyperfiltration. On a mechanistic level, activation of the complement system has been implicated in the pathogenesis of diabetic nephropathy. Therefore, here we pursued a transcriptome array-based approach to link intrarenal SGLT-2 and the synthesis of distinct complement components in diabetic nephropathy. Publicly available datasets for SLC5A2 (encoding SGLT-2) and complement system components were extracted specifically from microdissected tubulointerstitial (healthy controls: n = 31, diabetic nephropathy: n = 17) and glomerular compartments (healthy controls: n = 21, diabetic nephropathy: n = 12). First, we compared tubulointerstitial and glomerular log2SLC5A2 mRNA expression levels and confirmed a predominant synthesis within the tubulointerstitial compartment. Among various complement components and receptors, the only significant finding was a positive association between SLC5A2 and the tubulointerstitial synthesis of the complement component C5 in diabetic nephropathy (p = 0.0109). Finally, intrarenal expression of SLC5A2 was associated predominantly with pathways involved in metabolic processes. Interestingly, intrarenal complement C5 synthesis was also associated with enrichment of metabolic signaling pathways, overlapping with SLC5A2 for "metabolism" and "biological oxidations". These observations could be of relevance in the pathogenesis of diabetic nephropathy and implicate a mechanistic link between SGLT-2 and intrarenal complement synthesis.
Collapse
Affiliation(s)
| | - Björn Tampe
- Department of Nephrology and Rheumatology, University Medical Center Göttingen, 37075 Göttingen, Germany;
| |
Collapse
|
28
|
Carriazo S, Abasheva D, Duarte D, Ortiz A, Sanchez-Niño MD. SCARF Genes in COVID-19 and Kidney Disease: A Path to Comorbidity-Specific Therapies. Int J Mol Sci 2023; 24:16078. [PMID: 38003268 PMCID: PMC10671056 DOI: 10.3390/ijms242216078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/29/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19), which has killed ~7 million persons worldwide. Chronic kidney disease (CKD) is the most common risk factor for severe COVID-19 and one that most increases the risk of COVID-19-related death. Moreover, CKD increases the risk of acute kidney injury (AKI), and COVID-19 patients with AKI are at an increased risk of death. However, the molecular basis underlying this risk has not been well characterized. CKD patients are at increased risk of death from multiple infections, to which immune deficiency in non-specific host defenses may contribute. However, COVID-19-associated AKI has specific molecular features and CKD modulates the local (kidney) and systemic (lung, aorta) expression of host genes encoding coronavirus-associated receptors and factors (SCARFs), which SARS-CoV-2 hijacks to enter cells and replicate. We review the interaction between kidney disease and COVID-19, including the over 200 host genes that may influence the severity of COVID-19, and provide evidence suggesting that kidney disease may modulate the expression of SCARF genes and other key host genes involved in an effective adaptive defense against coronaviruses. Given the poor response of certain CKD populations (e.g., kidney transplant recipients) to SARS-CoV-2 vaccines and their suboptimal outcomes when infected, we propose a research agenda focusing on CKD to develop the concept of comorbidity-specific targeted therapeutic approaches to SARS-CoV-2 infection or to future coronavirus infections.
Collapse
Affiliation(s)
- Sol Carriazo
- Division of Nephrology, Department of Medicine, University Health Network, University of Toronto, Toronto, ON M5G 2C4, Canada;
- RICORS2040, 28049 Madrid, Spain;
| | - Daria Abasheva
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, 28049 Madrid, Spain; (D.A.); (D.D.)
| | - Deborah Duarte
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, 28049 Madrid, Spain; (D.A.); (D.D.)
| | - Alberto Ortiz
- RICORS2040, 28049 Madrid, Spain;
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, 28049 Madrid, Spain; (D.A.); (D.D.)
- Departamento de Medicina, Facultad de Medicina, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Maria Dolores Sanchez-Niño
- RICORS2040, 28049 Madrid, Spain;
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, 28049 Madrid, Spain; (D.A.); (D.D.)
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
29
|
Pellerin A, Tan Y, Lu S, Bonegio RG, Rifkin IR. Genetic Reduction of IRF5 Expression after Disease Initiation Reduces Disease in a Mouse Lupus Model by Impacting Systemic and End-Organ Pathogenic Pathways. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1308-1319. [PMID: 37721418 PMCID: PMC11681929 DOI: 10.4049/jimmunol.2300298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 08/28/2023] [Indexed: 09/19/2023]
Abstract
Gain-of-function polymorphisms in the transcription factor IFN regulatory factor 5 (IRF5) are associated with an increased risk of developing systemic lupus erythematosus. Global homozygous or heterozygous deficiency of IRF5 from birth confers protection in many lupus mouse models. However, less is known about the effects of IRF5 targeting after autoimmunity has already developed. This is an important point to clarify when considering IRF5 as a potential therapeutic target in lupus. In this study, we demonstrate that genetic reduction of IRF5 expression after disease initiation reduces disease severity in the FcγRIIB-/- Y-linked autoimmune accelerating mouse lupus model. Reduction of IRF5 expression resulted in a decrease in splenomegaly and lymphadenopathy and a reduction in splenic B cell activation and plasmablast numbers. Splenic T cell activation and differentiation were also impacted as demonstrated by an increase in the number of naive CD4+ and CD8+ T cells and a reduction in the number of memory/effector CD4+ and CD8+ T cells. Although serum antinuclear autoantibody levels were not altered, reduction in IRF5 expression led to decreased immune complex deposition and complement activation, diminished glomerular and interstitial disease, and a reduction in immune cell infiltrate in the kidney. Mechanistically, myeloid cells in the kidney produced less inflammatory cytokines after TLR7 and TLR9 activation. Overall, we demonstrate that genetic reduction of IRF5 expression during an active autoimmune process is sufficient to reduce disease severity. Our data support consideration of IRF5 as a therapeutic target and suggest that approaches targeting IRF5 in systemic lupus erythematosus may need to impact IRF5 activity both systemically and in target organs.
Collapse
Affiliation(s)
- Alex Pellerin
- Renal Section, Department of Medicine, Boston Medical Center, Boston, MA 02118, USA
| | - Ying Tan
- Renal Section, Department of Medicine, Boston Medical Center, Boston, MA 02118, USA
| | - Simon Lu
- Renal Section, Department of Medicine, Boston Medical Center, Boston, MA 02118, USA
| | - Ramon G. Bonegio
- Renal Section, Department of Medicine, Boston Medical Center, Boston, MA 02118, USA
- Renal Section, Department of Medicine, VA Boston Healthcare System, Boston, MA 02130, USA
| | - Ian R. Rifkin
- Renal Section, Department of Medicine, Boston Medical Center, Boston, MA 02118, USA
- Renal Section, Department of Medicine, VA Boston Healthcare System, Boston, MA 02130, USA
| |
Collapse
|
30
|
Pandey R, Bakay M, Hakonarson H. SOCS-JAK-STAT inhibitors and SOCS mimetics as treatment options for autoimmune uveitis, psoriasis, lupus, and autoimmune encephalitis. Front Immunol 2023; 14:1271102. [PMID: 38022642 PMCID: PMC10643230 DOI: 10.3389/fimmu.2023.1271102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/02/2023] [Indexed: 12/01/2023] Open
Abstract
Autoimmune diseases arise from atypical immune responses that attack self-tissue epitopes, and their development is intricately connected to the disruption of the JAK-STAT signaling pathway, where SOCS proteins play crucial roles. Conditions such as autoimmune uveitis, psoriasis, lupus, and autoimmune encephalitis exhibit immune system dysfunctions associated with JAK-STAT signaling dysregulation. Emerging therapeutic strategies utilize JAK-STAT inhibitors and SOCS mimetics to modulate immune responses and alleviate autoimmune manifestations. Although more research and clinical studies are required to assess their effectiveness, safety profiles, and potential for personalized therapeutic approaches in autoimmune conditions, JAK-STAT inhibitors and SOCS mimetics show promise as potential treatment options. This review explores the action, effectiveness, safety profiles, and future prospects of JAK inhibitors and SOCS mimetics as therapeutic agents for psoriasis, autoimmune uveitis, systemic lupus erythematosus, and autoimmune encephalitis. The findings underscore the importance of investigating these targeted therapies to advance treatment options for individuals suffering from autoimmune diseases.
Collapse
Affiliation(s)
- Rahul Pandey
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Marina Bakay
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Hakon Hakonarson
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Pediatrics, The University of Pennsylvania School of Medicine, Philadelphia, PA, United States
| |
Collapse
|
31
|
Sharygin D, Koniaris LG, Wells C, Zimmers TA, Hamidi T. Role of CD14 in human disease. Immunology 2023; 169:260-270. [PMID: 36840585 PMCID: PMC10591340 DOI: 10.1111/imm.13634] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 02/21/2023] [Indexed: 02/26/2023] Open
Abstract
The cell surface antigen CD14 is primarily understood to act as a co-receptor for toll-like receptors (TLRs) to activate innate immunity responses to pathogens and tissue injury in macrophages and monocytes. However, roles for CD14 are increasingly being uncovered in disease responses in epithelial and endothelial cells. Consistent with these broader functions, CD14 expression is altered in a variety of non-immune cell types in response to a several of disease states. Moreover, soluble CD14 activated by factors from both pathogens and tissue damage may initiate signalling in a variety of non-immune cells. This review examined the current understanding CD14 in innate immunity as well as its potential functions in nonimmune cells and associated human diseases.
Collapse
Affiliation(s)
- Daniel Sharygin
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Chemistry, Massachusetts institute of technology, Cambridge, MA, USA
| | - Leonidas G. Koniaris
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana University Simon Comprehensive Cancer Center, Indianapolis, IN, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Clark Wells
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana University Simon Comprehensive Cancer Center, Indianapolis, IN, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Teresa A. Zimmers
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana University Simon Comprehensive Cancer Center, Indianapolis, IN, USA
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA
- Richard L. Roudebush Veterans Administration Medical Center, Indianapolis, IN, USA
| | - Tewfik Hamidi
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana University Simon Comprehensive Cancer Center, Indianapolis, IN, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
32
|
Korsten P, Tampe B. A Transcriptome Array-Based Approach Links Proteinuria and Distinct Molecular Signatures to Intrarenal Expression of Type I Interferon IFNA5 in Lupus Nephritis. Int J Mol Sci 2023; 24:10636. [PMID: 37445814 DOI: 10.3390/ijms241310636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/15/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
In systemic lupus erythematosus (SLE), the relevance of non-hematopoietic sources of type I interferon in human autoimmunity has recently been recognized. Particularly, type I interferon production precedes autoimmunity in early skin lesions related to SLE. However, the relevance of intrarenal type I interferon expression has not been shown in lupus nephritis. From transcriptome array datasets, median-centered log2 mRNA expression levels of IFNα (IFNA1, IFNA2, IFNA4, IFNA5, IFNA6, IFNA7, IFNA8, IFNA10, IFNA13, IFNA14, IFNA16, IFNA17, and IFNA21), IFNω (IFNW1), and IFNβ (IFNB1) in lupus nephritis were extracted specifically from microdissected tubulointerstitial (n = 32) and glomerular compartments (n = 32). We found an association between proteinuria and tubulointerstitial expression of type I interferon IFNA5 (p = 0.0142), while all others were not significantly associated. By contrast, no such correlation was observed between proteinuria and any type I interferon expression in the glomerular compartment in lupus nephritis. Interestingly, there was no difference between female and male patients (p = 0.8237) and no association between type I interferon IFNA5 expression and kidney function or lupus nephritis progression. Finally, we identified distinct molecular signatures involved in transcriptional regulation (GLI protein-regulated transcription, IRF7 activation, and HSF1-dependent transactivation) and receptor signaling (BMP signaling and GPCR ligand binding) in association with tubulointerstitial expression of type I interferon IFNA5 in the kidney. In summary, this transcriptome array-based approach links proteinuria to the tubulointerstitial expression of type I interferon IFNA5 in lupus nephritis. Because type I interferon receptor subunit I antagonism has recently been investigated in active SLE, the current study further emphasizes the role of type I interferons in lupus nephritis and might also be of relevance for mechanistic studies.
Collapse
Affiliation(s)
- Peter Korsten
- Department of Nephrology and Rheumatology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Björn Tampe
- Department of Nephrology and Rheumatology, University Medical Center Göttingen, 37075 Göttingen, Germany
| |
Collapse
|
33
|
Cai B, Lu H, Ye Q, Xiao Q, Wu X, Xu H. Identification of potent target and its mechanism of action of Tripterygium wilfordii Hook F in the treatment of lupus nephritis. Int J Rheum Dis 2023. [PMID: 37317623 DOI: 10.1111/1756-185x.14780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/11/2023] [Accepted: 05/28/2023] [Indexed: 06/16/2023]
Abstract
AIM The Chinese anti-rheumatic herbal remedy Tripterygium wilfordii Hook F (TWHF) has been widely shown to be effective in treating lupus nephritis (LN), but the therapeutic targets and mechanisms of action are still unclear. In this study, we aimed to combine mRNA expression profile analysis and network pharmacology analysis to screen the pathogenic genes and pathways involved in LN and to explore the potential targets of TWHF in the treatment of LN. METHODS The mRNA expression profiles of LN patients were used to screen differentially expressed genes (DEGs) and to predict associated pathogenic pathways and networks via the Ingenuity Pathway Analysis database. Through molecular docking, we predicted the mechanism by which TWHF interacts with candidate targets. RESULTS A total of 351 DEGs were screened from the glomeruli of LN patients and were mainly concentrated in the role of pattern recognition receptors in the recognition of bacteria and viruses and interferon signaling pathways. A total of 130 DEGs were screened from the tubulointerstitium of LN patients, which were concentrated in the interferon signaling pathway. TWHF might be effective in treating LN by hydrogen bonding to regulate the functions of 24 DEGs (including HMOX1, ALB, and CASP1), which are mainly concentrated in the B-cell signaling pathway. CONCLUSION The mRNA expression profile of renal tissue from LN patients revealed a large number of DEGs. TWHF has been shown to interact with the DEGs (including HMOX1, ALB and CASP1) through hydrogen bonding to treat LN.
Collapse
Affiliation(s)
- Bin Cai
- Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Hongjuan Lu
- Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Qianyi Ye
- Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Qingqing Xiao
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xin Wu
- Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Huji Xu
- Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
- School of Medicine, Tsinghua University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
34
|
Loftus SN, Liu J, Berthier CC, Gudjonsson JE, Gharaee-Kermani M, Tsoi LC, Kahlenberg JM. Loss of interleukin-1 beta is not protective in the lupus-prone NZM2328 mouse model. Front Immunol 2023; 14:1162799. [PMID: 37261358 PMCID: PMC10227599 DOI: 10.3389/fimmu.2023.1162799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/21/2023] [Indexed: 06/02/2023] Open
Abstract
Aberrant activation of the innate immune system is a known driver of lupus pathogenesis. Inhibition of the inflammasome and its downstream signaling components in murine models of lupus has been shown to reduce the severity of disease. Interleukin-1 beta (IL-1β) is a proinflammatory cytokine released from cells following inflammasome activation. Here, we examine how loss of IL-1β affects disease severity in the lupus-prone NZM2328 mouse model. We observed a sex-biased increase in immune complex deposition in the kidneys of female mice in the absence of IL-1β that corresponds to worsened proteinuria. Loss of IL-1β did not result in changes in overall survival, anti-dsDNA autoantibody production, or renal immune cell infiltration. RNA-sequencing analysis identified upregulation of TNF and IL-17 signaling pathways specifically in females lacking IL-1β. Increases in these signaling pathways were also found in female patients with lupus nephritis, suggesting clinical relevance for upregulation of these pathways. Together, these data suggest that inhibition of the inflammasome or its downstream elements that block IL-1β signaling may need to be approached with caution in SLE, especially in patients with renal involvement to prevent potential disease exacerbation.
Collapse
Affiliation(s)
- Shannon N. Loftus
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
- Graduate Program in Immunology, University of Michigan, Ann Arbor, MI, United States
| | - Jianhua Liu
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Celine C. Berthier
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | | | - Mehrnaz Gharaee-Kermani
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
- Department of Dermatology, University of Michigan, Ann Arbor, MI, United States
| | - Lam C. Tsoi
- Department of Dermatology, University of Michigan, Ann Arbor, MI, United States
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, United States
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, United States
| | - J. Michelle Kahlenberg
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
- Department of Dermatology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
35
|
Pandey AK, Loscalzo J. Network medicine: an approach to complex kidney disease phenotypes. Nat Rev Nephrol 2023:10.1038/s41581-023-00705-0. [PMID: 37041415 DOI: 10.1038/s41581-023-00705-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2023] [Indexed: 04/13/2023]
Abstract
Scientific reductionism has been the basis of disease classification and understanding for more than a century. However, the reductionist approach of characterizing diseases from a limited set of clinical observations and laboratory evaluations has proven insufficient in the face of an exponential growth in data generated from transcriptomics, proteomics, metabolomics and deep phenotyping. A new systematic method is necessary to organize these datasets and build new definitions of what constitutes a disease that incorporates both biological and environmental factors to more precisely describe the ever-growing complexity of phenotypes and their underlying molecular determinants. Network medicine provides such a conceptual framework to bridge these vast quantities of data while providing an individualized understanding of disease. The modern application of network medicine principles is yielding new insights into the pathobiology of chronic kidney diseases and renovascular disorders by expanding the understanding of pathogenic mediators, novel biomarkers and new options for renal therapeutics. These efforts affirm network medicine as a robust paradigm for elucidating new advances in the diagnosis and treatment of kidney disorders.
Collapse
Affiliation(s)
- Arvind K Pandey
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, USA
| | - Joseph Loscalzo
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
36
|
Li X, Zeng M, Liu J, Zhang S, Liu Y, Zhao Y, Wei C, Yang K, Huang Y, Zhang L, Xiao L. Identifying potential biomarkers for the diagnosis and treatment of IgA nephropathy based on bioinformatics analysis. BMC Med Genomics 2023; 16:63. [PMID: 36978098 PMCID: PMC10044383 DOI: 10.1186/s12920-023-01494-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND IgA nephropathy (IgAN) has become the leading cause of end-stage renal disease in young adults. Nevertheless, the current diagnosis exclusively relies on invasive renal biopsy, and specific treatment is deficient. Thus, our study aims to identify potential crucial genes, thereby providing novel biomarkers for the diagnosis and therapy of IgAN. METHODS Three microarray datasets were downloaded from GEO official website. Differentially expressed genes (DEGs) were identified by limma package. GO and KEGG analysis were conducted. Tissue/organ-specific DEGs were distinguished via BioGPS. GSEA was utilized to elucidate the predominant enrichment pathways. The PPI network of DEGs was established, and hub genes were mined through Cytoscape. The CTD database was employed to determine the association between hub genes and IgAN. Infiltrating immune cells and their relationship to hub genes were evaluated based on CIBERSORT. Furthermore, the diagnostic effectiveness of hub markers was subsequently predicted using the ROC curves. The CMap database was applied to investigate potential therapeutic drugs. The expression level and diagnostic accuracy of TYROBP was validated in the cell model of IgAN and different renal pathologies. RESULTS A total of 113 DEGs were screened, which were mostly enriched in peptidase regulator activity, regulation of cytokine production, and collagen-containing extracellular matrix. Among these DEGs, 67 genes manifested pronounced tissue and organ specificity. GSEA analysis revealed that the most significant enriched gene sets were involved in proteasome pathway. Ten hub genes (KNG1, FN1, ALB, PLG, IGF1, EGF, HRG, TYROBP, CSF1R, and ITGB2) were recognized. CTD showed a close connection between ALB, IGF, FN1 and IgAN. Immune infiltration analysis elucidated that IGF1, EGF, HRG, FN1, ITGB2, and TYROBP were closely associated with infiltrating immune cells. ROC curves reflected that all hub genes, especially TYROBP, exhibited a good diagnostic value for IgAN. Verteporfin, moxonidine, and procaine were the most significant three therapeutic drugs. Further exploration proved that TYROBP was not only highly expressed in IgAN, but exhibited high specificity for the diagnosis of IgAN. CONCLUSIONS This study may offer novel insights into the mechanisms involved in IgAN occurrence and progression and the selection of diagnostic markers and therapeutic targets for IgAN.
Collapse
Affiliation(s)
- Xiaohui Li
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Mengru Zeng
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Jialu Liu
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Shumin Zhang
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Yifei Liu
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Yuee Zhao
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Cong Wei
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Kexin Yang
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Ying Huang
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Lei Zhang
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Li Xiao
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University, Changsha, 410011, China.
| |
Collapse
|
37
|
Lilja S, Li X, Smelik M, Lee EJ, Loscalzo J, Marthanda PB, Hu L, Magnusson M, Sysoev O, Zhang H, Zhao Y, Sjöwall C, Gawel D, Wang H, Benson M. Multi-organ single-cell analysis reveals an on/off switch system with potential for personalized treatment of immunological diseases. Cell Rep Med 2023; 4:100956. [PMID: 36858042 PMCID: PMC10040389 DOI: 10.1016/j.xcrm.2023.100956] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/30/2022] [Accepted: 02/03/2023] [Indexed: 03/03/2023]
Abstract
Prioritization of disease mechanisms, biomarkers, and drug targets in immune-mediated inflammatory diseases (IMIDs) is complicated by altered interactions between thousands of genes. Our multi-organ single-cell RNA sequencing of a mouse IMID model, namely collagen-induced arthritis, shows highly complex and heterogeneous expression changes in all analyzed organs, even though only joints showed signs of inflammation. We organized those into a multi-organ multicellular disease model, which shows predicted molecular interactions within and between organs. That model supports that inflammation is switched on or off by altered balance between pro- and anti-inflammatory upstream regulators (URs) and downstream pathways. Meta-analyses of human IMIDs show a similar, but graded, on/off switch system. This system has the potential to prioritize, diagnose, and treat optimal combinations of URs on the levels of IMIDs, subgroups, and individual patients. That potential is supported by UR analyses in more than 600 sera from patients with systemic lupus erythematosus.
Collapse
Affiliation(s)
- Sandra Lilja
- Department of Pediatrics, Biomedical and Clinical Sciences, Linköping University, 58183 Linköping, Sweden; Mavatar, Inc, Vasagatan, 11120 Stockholm, Sweden
| | - Xinxiu Li
- Department of Pediatrics, Biomedical and Clinical Sciences, Linköping University, 58183 Linköping, Sweden; Medical Digital Twin Research Group, Division of Ear, Nose and Throat Diseases, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, 17165 Stockholm, Sweden
| | - Martin Smelik
- Department of Pediatrics, Biomedical and Clinical Sciences, Linköping University, 58183 Linköping, Sweden; Medical Digital Twin Research Group, Division of Ear, Nose and Throat Diseases, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, 17165 Stockholm, Sweden
| | - Eun Jung Lee
- Department of Otorhinolaryngology, Yonsei University Wonju College of Medicine, Wonju, Ganwong 26460, Korea
| | - Joseph Loscalzo
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Pratheek Bellur Marthanda
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA
| | - Lang Hu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
| | - Mattias Magnusson
- The National Board of Health and Welfare, Socialstyrelsen, 11259 Stockholm, Sweden
| | - Oleg Sysoev
- Department of Computer and Information Science, Linköping University, 58183 Linköping, Sweden
| | - Huan Zhang
- Department of Pediatrics, Biomedical and Clinical Sciences, Linköping University, 58183 Linköping, Sweden
| | - Yelin Zhao
- Department of Pediatrics, Biomedical and Clinical Sciences, Linköping University, 58183 Linköping, Sweden; Medical Digital Twin Research Group, Division of Ear, Nose and Throat Diseases, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, 17165 Stockholm, Sweden
| | - Christopher Sjöwall
- Biomedical and Clinical Sciences, Division of Inflammation and Infection/Rheumatology, Linköping University, 58183 Linköping, Sweden
| | - Danuta Gawel
- Mavatar, Inc, Vasagatan, 11120 Stockholm, Sweden
| | - Hui Wang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
| | - Mikael Benson
- Department of Pediatrics, Biomedical and Clinical Sciences, Linköping University, 58183 Linköping, Sweden; Medical Digital Twin Research Group, Division of Ear, Nose and Throat Diseases, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, 17165 Stockholm, Sweden.
| |
Collapse
|
38
|
Muchamuel T, Fan RA, Anderl JL, Bomba DJ, Johnson HWB, Lowe E, Tuch BB, McMinn DL, Millare B, Kirk CJ. Zetomipzomib (KZR-616) attenuates lupus in mice via modulation of innate and adaptive immune responses. Front Immunol 2023; 14:1043680. [PMID: 36969170 PMCID: PMC10036830 DOI: 10.3389/fimmu.2023.1043680] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 02/14/2023] [Indexed: 03/12/2023] Open
Abstract
Zetomipzomib (KZR-616) is a selective inhibitor of the immunoproteasome currently undergoing clinical investigation in autoimmune disorders. Here, we characterized KZR-616 in vitro and in vivo using multiplexed cytokine analysis, lymphocyte activation and differentiation, and differential gene expression analysis. KZR-616 blocked production of >30 pro-inflammatory cytokines in human peripheral blood mononuclear cells (PBMCs), polarization of T helper (Th) cells, and formation of plasmablasts. In the NZB/W F1 mouse model of lupus nephritis (LN), KZR-616 treatment resulted in complete resolution of proteinuria that was maintained at least 8 weeks after the cessation of dosing and was mediated in part by alterations in T and B cell activation, including reduced numbers of short and long-lived plasma cells. Gene expression analysis of human PBMCs and tissues from diseased mice revealed a consistent and broad response focused on inhibition of T, B, and plasma cell function and the Type I interferon pathway and promotion of hematopoietic cell lineages and tissue remodeling. In healthy volunteers, KZR-616 administration resulted in selective inhibition of the immunoproteasome and blockade of cytokine production following ex vivo stimulation. These data support the ongoing development of KZR-616 in autoimmune disorders such as systemic lupus erythematosus (SLE)/LN.
Collapse
|
39
|
Reduced Renal CSE/CBS/H2S Contributes to the Progress of Lupus Nephritis. BIOLOGY 2023; 12:biology12020318. [PMID: 36829595 PMCID: PMC9953544 DOI: 10.3390/biology12020318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 02/19/2023]
Abstract
The molecular mechanisms underlying lupus nephritis (LN) pathogenesis are not fully understood. Hydrogen sulfide (H2S) is involved in many pathological and physiological processes. We sought to investigate the roles of H2S in LN pathogenesis. H2S synthase cystathionine-lyase (CSE) and cystathionine-synthetase (CBS) expression was downregulated in renal tissues of patients with LN and their levels were associated with LN's prognosis using the Nephroseq database. Reduced CSE and CBS protein expression in kidney tissues of LN patients and MRL/lpr mice were confirmed by immunohistochemistry. CSE and CBS mRNA levels were reduced in MRL/lpr and pristine- and R848-induced lupus mice. Given that H2S exerts an anti-inflammatory role partly via regulating inflammatory transcription factors (TFs), we analyzed hub TFs by using a bioinformatics approach. It showed that STAT1, RELA, and T-cell-related signaling pathways were enriched in LN. Increased STAT1 and RELA expression were confirmed in renal tissues of LN patients. Treatment of MRL/lpr and pristine mice with H2S donors alleviated systemic lupus erythematosus (SLE) phenotypes and renal injury. H2S donors inhibited RELA level and T-cell infiltration in the kidneys of MRL/lpr and pristine mice. Our data indicated that CSE/CBS/H2S contributes to LN pathogenesis. Supplementation of H2S would be a potential therapeutic strategy for LN.
Collapse
|
40
|
Lee DJ, Tsai PH, Chen CC, Dai YH. Incorporating knowledge of disease-defining hub genes and regulatory network into a machine learning-based model for predicting treatment response in lupus nephritis after the first renal flare. J Transl Med 2023; 21:76. [PMID: 36737814 PMCID: PMC9898995 DOI: 10.1186/s12967-023-03931-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/25/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Identifying candidates responsive to treatment is important in lupus nephritis (LN) at the renal flare (RF) because an effective treatment can lower the risk of progression to end-stage kidney disease. However, machine learning (ML)-based models that address this issue are lacking. METHODS Transcriptomic profiles based on DNA microarray data were extracted from the GSE32591 and GSE112943 datasets. Comprehensive bioinformatics analyses were performed to identify disease-defining genes (DDGs). Peripheral blood samples (GSE81622, GSE99967, and GSE72326) were used to evaluate the effect of DDGs. Single-sample gene set enrichment analysis (ssGSEA) scores of the DDGs were calculated and correlated with specific immunology genes listed in the nCounter panel. GSE60681 and GSE69438 were used to examine the ability of the DDGs to discriminate LN from other renal diseases. K-means clustering was used to obtain the separate gene sets. The clustering results were extended to data derived using the nCounter technique. The least absolute shrinkage and selection operator (LASSO) algorithm was used to identify genes with high predictive value for treatment response after the first RF in each cluster. LASSO models with tenfold validation were built in GSE200306 and assessed by receiver operating characteristic (ROC) analysis with area under curve (AUC). The models were validated by using an independent dataset (GSE113342). RESULTS Forty-five hub genes specific to LN were identified. Eight optimal disease-defining clusters (DDCs) were identified in this study. Th1 and Th2 cell differentiation pathway was significantly enriched in DDC-6. LCK in DDC-6, whose expression positively correlated with various subsets of T cell infiltrations, was found to be differentially expressed between responders and non-responders and was ranked high in regulatory network analysis. Based on DDC-6, the prediction model had the best performance (AUC: 0.75; 95% confidence interval: 0.44-1 in the testing set) and high precision (0.83), recall (0.71), and F1 score (0.77) in the validation dataset. CONCLUSIONS Our study demonstrates that incorporating knowledge of biological phenotypes into the ML model is feasible for evaluating treatment response after the first RF in LN. This knowledge-based incorporation improves the model's transparency and performance. In addition, LCK may serve as a biomarker for T-cell infiltration and a therapeutic target in LN.
Collapse
Affiliation(s)
- Ding-Jie Lee
- grid.260565.20000 0004 0634 0356Division of Nephrology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Ping-Huang Tsai
- grid.260565.20000 0004 0634 0356Division of Nephrology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chien-Chou Chen
- grid.260565.20000 0004 0634 0356Division of Nephrology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan ,grid.260565.20000 0004 0634 0356Department of Internal Medicine, Tri-Service General Hospital Songshan Branch, National Defense Medical Center, Taipei, Taiwan
| | - Yang-Hong Dai
- Department of Radiation Oncology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
41
|
Liu S, Zhao Y, Lu S, Zhang T, Lindenmeyer MT, Nair V, Gies SE, Wu G, Nelson RG, Czogalla J, Aypek H, Zielinski S, Liao Z, Schaper M, Fermin D, Cohen CD, Delic D, Krebs CF, Grahammer F, Wiech T, Kretzler M, Meyer-Schwesinger C, Bonn S, Huber TB. Single-cell transcriptomics reveals a mechanosensitive injury signaling pathway in early diabetic nephropathy. Genome Med 2023; 15:2. [PMID: 36627643 PMCID: PMC9830686 DOI: 10.1186/s13073-022-01145-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/24/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Diabetic nephropathy (DN) is the leading cause of end-stage renal disease, and histopathologic glomerular lesions are among the earliest structural alterations of DN. However, the signaling pathways that initiate these glomerular alterations are incompletely understood. METHODS To delineate the cellular and molecular basis for DN initiation, we performed single-cell and bulk RNA sequencing of renal cells from type 2 diabetes mice (BTBR ob/ob) at the early stage of DN. RESULTS Analysis of differentially expressed genes revealed glucose-independent responses in glomerular cell types. The gene regulatory network upstream of glomerular cell programs suggested the activation of mechanosensitive transcriptional pathway MRTF-SRF predominantly taking place in mesangial cells. Importantly, activation of MRTF-SRF transcriptional pathway was also identified in DN glomeruli in independent patient cohort datasets. Furthermore, ex vivo kidney perfusion suggested that the regulation of MRTF-SRF is a common mechanism in response to glomerular hyperfiltration. CONCLUSIONS Overall, our study presents a comprehensive single-cell transcriptomic landscape of early DN, highlighting mechanosensitive signaling pathways as novel targets of diabetic glomerulopathy.
Collapse
Affiliation(s)
- Shuya Liu
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Yu Zhao
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Shun Lu
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tianran Zhang
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maja T Lindenmeyer
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Viji Nair
- Department of Internal Medicine, Division of Nephrology, University of Michigan, Ann Arbor, MI, USA
| | - Sydney E Gies
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Guochao Wu
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Robert G Nelson
- Chronic Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ, USA
| | - Jan Czogalla
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hande Aypek
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stephanie Zielinski
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Cellular and Integrative Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Zhouning Liao
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Melanie Schaper
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Damian Fermin
- Department of Internal Medicine, Division of Nephrology, University of Michigan, Ann Arbor, MI, USA
| | - Clemens D Cohen
- Nephrological Center, Medical Clinic and Policlinic IV, University of Munich, Munich, Germany
| | - Denis Delic
- Boehringer Ingelheim Pharma GmbH & Co. KG, Translational Medicine & Clinical Pharmacology, Birkendorferstr. 65, 88397, Biberach, Germany
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Christian F Krebs
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Division of Translational Immunology, III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Florian Grahammer
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Wiech
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Pathology, Nephropathology Section, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Matthias Kretzler
- Department of Internal Medicine, Division of Nephrology, University of Michigan, Ann Arbor, MI, USA
| | - Catherine Meyer-Schwesinger
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Cellular and Integrative Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Bonn
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias B Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
42
|
Durand A, Winkler CA, Vince N, Douillard V, Geffard E, Binns-Roemer E, Ng DK, Gourraud PA, Reidy K, Warady B, Furth S, Kopp JB, Kaskel FJ, Limou S. Identification of Novel Genetic Risk Factors for Focal Segmental Glomerulosclerosis in Children: Results From the Chronic Kidney Disease in Children (CKiD) Cohort. Am J Kidney Dis 2023; 81:635-646.e1. [PMID: 36623684 DOI: 10.1053/j.ajkd.2022.11.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 11/02/2022] [Indexed: 01/09/2023]
Abstract
RATIONALE & OBJECTIVE Focal segmental glomerulosclerosis (FSGS) is a major cause of pediatric nephrotic syndrome, and African Americans exhibit an increased risk for developing FSGS compared with other populations. Predisposing genetic factors have previously been described in adults. Here we performed genomic screening of primary FSGS in a pediatric African American population. STUDY DESIGN Prospective cohort with case-control genetic association study design. SETTING & PARTICIPANTS 140 African American children with chronic kidney disease from the Chronic Kidney Disease in Children (CKiD) cohort, including 32 cases with FSGS. PREDICTORS Over 680,000 common single-nucleotide polymorphisms (SNPs) were tested for association. We also ran a pathway enrichment analysis and a human leucocyte antigen (HLA)-focused association study. OUTCOME Primary biopsy-proven pediatric FSGS. ANALYTICAL APPROACH Multivariate logistic regression models. RESULTS The genome-wide association study revealed 169 SNPs from 14 independent loci significantly associated with FSGS (false discovery rate [FDR]<5%). We observed notable signals for genetic variants within the APOL1 (P=8.6×10-7; OR, 25.8 [95% CI, 7.1-94.0]), ALMS1 (P=1.3×10-7; 13.0% in FSGS cases vs 0% in controls), and FGFR4 (P=4.3×10-6; OR, 24.8 [95% CI, 6.3-97.7]) genes, all of which had previously been associated with adult FSGS, kidney function, or chronic kidney disease. We also highlighted novel, functionally relevant genes, including GRB2 (which encodes a slit diaphragm protein promoting podocyte structure through actin polymerization) and ITGB1 (which is linked to renal injuries). Our results suggest a major role for immune responses and antigen presentation in pediatric FSGS through (1) associations with SNPs in PTPRJ (or CD148, P=3.5×10-7), which plays a role in T-cell receptor signaling, (2) HLA-DRB1∗11:01 association (P=6.1×10-3; OR, 4.5 [95% CI, 1.5-13.0]), and (3) signaling pathway enrichment (P=1.3×10-6). LIMITATIONS Sample size and no independent replication cohort with genomic data readily available. CONCLUSIONS Our genetic study has identified functionally relevant risk factors and the importance of immune regulation for pediatric primary FSGS, which contributes to a better description of its molecular pathophysiological mechanisms.
Collapse
Affiliation(s)
- Axelle Durand
- Center for Research in Transplantation and Translational Immunology (UMR 1064), Nantes Université, Ecole Centrale Nantes, CHU Nantes, INSERM, F-44000 Nantes, France
| | - Cheryl A Winkler
- Basic Research Laboratory, Center for Cancer Research, Frederick National Laboratory, National Cancer Institute, Frederick, Maryland
| | - Nicolas Vince
- Center for Research in Transplantation and Translational Immunology (UMR 1064), Nantes Université, Ecole Centrale Nantes, CHU Nantes, INSERM, F-44000 Nantes, France
| | - Venceslas Douillard
- Center for Research in Transplantation and Translational Immunology (UMR 1064), Nantes Université, Ecole Centrale Nantes, CHU Nantes, INSERM, F-44000 Nantes, France
| | - Estelle Geffard
- Center for Research in Transplantation and Translational Immunology (UMR 1064), Nantes Université, Ecole Centrale Nantes, CHU Nantes, INSERM, F-44000 Nantes, France
| | - Elizabeth Binns-Roemer
- Basic Research Laboratory, Center for Cancer Research, Frederick National Laboratory, National Cancer Institute, Frederick, Maryland
| | - Derek K Ng
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - Pierre-Antoine Gourraud
- Center for Research in Transplantation and Translational Immunology (UMR 1064), Nantes Université, Ecole Centrale Nantes, CHU Nantes, INSERM, F-44000 Nantes, France
| | - Kimberley Reidy
- Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, New York
| | | | - Susan Furth
- Children's Hospital of Pennsylvania, Philadelphia, Pennsylvania
| | - Jeffrey B Kopp
- Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Frederick J Kaskel
- Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, New York
| | - Sophie Limou
- Center for Research in Transplantation and Translational Immunology (UMR 1064), Nantes Université, Ecole Centrale Nantes, CHU Nantes, INSERM, F-44000 Nantes, France.
| |
Collapse
|
43
|
Cao Y, Du Y, Jia W, Ding J, Yuan J, Zhang H, Zhang X, Tao K, Yang Z. Identification of biomarkers for the diagnosis of chronic kidney disease (CKD) with non-alcoholic fatty liver disease (NAFLD) by bioinformatics analysis and machine learning. Front Endocrinol (Lausanne) 2023; 14:1125829. [PMID: 36923221 PMCID: PMC10009268 DOI: 10.3389/fendo.2023.1125829] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/09/2023] [Indexed: 03/03/2023] Open
Abstract
BACKGROUND Chronic kidney disease (CKD) and non-alcoholic fatty liver disease (NAFLD) are closely related to immune and inflammatory pathways. This study aimed to explore the diagnostic markers for CKD patients with NAFLD. METHODS CKD and NAFLD microarray data sets were screened from the GEO database and analyzed the differentially expressed genes (DEGs) in GSE10495 of CKD date set. Weighted Gene Co-Expression Network Analysis (WGCNA) method was used to construct gene coexpression networks and identify functional modules of NAFLD in GSE89632 date set. Then obtaining NAFLD-related share genes by intersecting DEGs of CKD and modular genes of NAFLD. Then functional enrichment analysis of NAFLD-related share genes was performed. The NAFLD-related hub genes come from intersection of cytoscape software and machine learning. ROC curves were used to examine the diagnostic value of NAFLD related hub genes in the CKD data sets and GSE89632 date set of NAFLD. CIBERSORTx was also used to explore the immune landscape in GSE104954, and the correlation between immune infiltration and hub genes expression was investigated. RESULTS A total of 45 NAFLD-related share genes were obtained, and 4 were NAFLD-related hub genes. Enrichment analysis showed that the NAFLD-related share genes were significantly enriched in immune-related pathways, programmed cell death, and inflammatory response. ROC curve confirmed 4 NAFLD-related hub genes in CKD training set GSE104954 and other validation sets. Then they were used as diagnostic markers for CKD. Interestingly, these 4 diagnostic markers of CKD also showed good diagnostic value in the NAFLD date set GSE89632, so these genes may be important targets of NAFLD in the development of CKD. The expression levels of the 4 diagnostic markers for CKD were significantly correlated with the infiltration of immune cells. CONCLUSION 4 NAFLD-related genes (DUSP1, NR4A1, FOSB, ZFP36) were identified as diagnostic markers in CKD patients with NAFLD. Our study may provide diagnostic markers and therapeutic targets for CKD patients with NAFLD.
Collapse
Affiliation(s)
- Yang Cao
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Yiwei Du
- Department of Nephrology, Tangdu Hospital, The Fourth Military Medical University, Xi’an, China
| | - Weili Jia
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Jian Ding
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Juzheng Yuan
- Department of General Surgery, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Hong Zhang
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Xuan Zhang
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
- *Correspondence: Xuan Zhang, ; Kaishan Tao, ; Zhaoxu Yang,
| | - Kaishan Tao
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
- *Correspondence: Xuan Zhang, ; Kaishan Tao, ; Zhaoxu Yang,
| | - Zhaoxu Yang
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
- *Correspondence: Xuan Zhang, ; Kaishan Tao, ; Zhaoxu Yang,
| |
Collapse
|
44
|
Denicolò S, Nair V, Leierer J, Rudnicki M, Kretzler M, Mayer G, Ju W, Perco P. Assessment of Fibrinogen-like 2 (FGL2) in Human Chronic Kidney Disease through Transcriptomics Data Analysis. Biomolecules 2022; 13:89. [PMID: 36671474 PMCID: PMC9855364 DOI: 10.3390/biom13010089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/23/2022] [Accepted: 12/25/2022] [Indexed: 01/03/2023] Open
Abstract
Fibrinogen-like 2 (FGL2) was recently found to be associated with fibrosis in a mouse model of kidney damage and was proposed as a potential therapeutic target in chronic kidney disease (CKD). We assessed the association of renal FGL2 mRNA expression with the disease outcome in two independent CKD cohorts (NEPTUNE and Innsbruck CKD cohort) using Kaplan Meier survival analysis. The regulation of FGL2 in kidney biopsies of CKD patients as compared to healthy controls was further assessed in 13 human CKD transcriptomics datasets. The FGL2 protein expression in human renal tissue sections was determined via immunohistochemistry. The regulators of FGL2 mRNA expression in renal tissue were identified in the co-expression and upstream regulator analysis of FGL2-positive renal cells via the use of single-cell RNA sequencing data from the kidney precision medicine project (KPMP). Higher renal FGL2 mRNA expression was positively associated with kidney fibrosis and negatively associated with eGFR. Renal FGL2 mRNA expression was upregulated in CKD as compared with healthy controls and associated with CKD progression in the Innsbruck CKD cohort (p-value = 0.0036) and NEPTUNE cohort (p-value = 0.0048). The highest abundance of FGL2 protein in renal tissue was detected in the thick ascending limb of the loop of Henle and macula densa, proximal tubular cells, as well as in glomerular endothelial cells. The upstream regulator analysis identified TNF, IL1B, IFNG, NFKB1, and SP1 as factors potentially inducing FGL2-co-expressed genes, whereas factors counterbalancing FGL2-co-expressed genes included GLI1, HNF1B, or PPARGC1A. In conclusion, renal FGL2 mRNA expression is elevated in human CKD, and higher FGL2 levels are associated with fibrosis and worse outcomes.
Collapse
Affiliation(s)
- Sara Denicolò
- Department of Internal Medicine IV (Nephrology and Hypertension), Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Viji Nair
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Johannes Leierer
- Department of Internal Medicine IV (Nephrology and Hypertension), Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Michael Rudnicki
- Department of Internal Medicine IV (Nephrology and Hypertension), Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Matthias Kretzler
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Gert Mayer
- Department of Internal Medicine IV (Nephrology and Hypertension), Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Wenjun Ju
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Paul Perco
- Department of Internal Medicine IV (Nephrology and Hypertension), Medical University Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
45
|
Tampe D, Hakroush S, Tampe B. Molecular signatures of intrarenal complement receptors C3AR1 and C5AR1 correlate with renal outcome in human lupus nephritis. Lupus Sci Med 2022; 9:9/1/e000831. [PMID: 36521939 PMCID: PMC9756185 DOI: 10.1136/lupus-2022-000831] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Lupus nephritis is one of the most common and serious complications of systemic lupus erythematosus (SLE). Lupus nephritis is a major cause of kidney failure in patients with SLE, attributed to increased morbidity and mortality. The in situ deposition of intrarenal immune complexes promotes the accumulation of inflammatory cells and causes kidney injury. METHODS We here extracted transcriptome array datasets for expression of complement molecules in human lupus nephritis. Furthermore, we performed gene set enrichment analysis to identify molecular signatures associated with follow-up kidney function in lupus nephritis. RESULTS Within the glomerular compartment, intrarenal mRNA expression levels of C3AR1 (p=0.0333) and C5AR1 (p=0.0167) correlated with treatment success reflected by kidney function recovery specifically in class III lupus nephritis, while no such association was observed in class II or class IV lupus nephritis. Interestingly, mRNA expression levels of either glomerular C3AR1 or C5AR1 resulted in identical gene set and signalling pathways enrichments in human lupus nephritis, including interferon signalling and signalling by interleukins. Direct comparison of C3AR1 and C5AR1 confirmed a strong association between glomerular mRNA expression levels of both complement receptors (r=0.8955, p<0.0001). CONCLUSIONS This study provides additional insights into signalling pathways associated with intrarenal synthesis of complement components in lupus nephritis that might be also affected by targeted therapy of the complement system. These results require confirmation but may contribute to a personalised treatment approach in distinct classes of human lupus nephritis.
Collapse
Affiliation(s)
- Désirée Tampe
- Department of Nephrology and Rheumatology, University Medical Center Göttingen, Göttingen, Germany
| | - Samy Hakroush
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - Björn Tampe
- Department of Nephrology and Rheumatology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
46
|
Lausecker F, Lennon R, Randles MJ. The kidney matrisome in health, aging, and disease. Kidney Int 2022; 102:1000-1012. [PMID: 35870643 DOI: 10.1016/j.kint.2022.06.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 06/15/2022] [Accepted: 06/24/2022] [Indexed: 02/06/2023]
Abstract
Dysregulated extracellular matrix is the hallmark of fibrosis, and it has a profound impact on kidney function in disease. Furthermore, perturbation of matrix homeostasis is a feature of aging and is associated with declining kidney function. Understanding these dynamic processes, in the hope of developing therapies to combat matrix dysregulation, requires the integration of data acquired by both well-established and novel technologies. Owing to its complexity, the extracellular proteome, or matrisome, still holds many secrets and has great potential for the identification of clinical biomarkers and drug targets. The molecular resolution of matrix composition during aging and disease has been illuminated by cutting-edge mass spectrometry-based proteomics in recent years, but there remain key questions about the mechanisms that drive altered matrix composition. Basement membrane components are particularly important in the context of kidney function; and data from proteomic studies suggest that switches between basement membrane and interstitial matrix proteins are likely to contribute to organ dysfunction during aging and disease. Understanding the impact of such changes on physical properties of the matrix, and the subsequent cellular response to altered stiffness and viscoelasticity, is of critical importance. Likewise, the comparison of proteomic data sets from multiple organs is required to identify common matrix biomarkers and shared pathways for therapeutic intervention. Coupled with single-cell transcriptomics, there is the potential to identify the cellular origin of matrix changes, which could enable cell-targeted therapy. This review provides a contemporary perspective of the complex kidney matrisome and draws comparison to altered matrix in heart and liver disease.
Collapse
Affiliation(s)
- Franziska Lausecker
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Rachel Lennon
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK; Department of Paediatric Nephrology, Royal Manchester Children's Hospital, Manchester University Hospitals National Health Service (NHS) Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Michael J Randles
- Chester Medical School, Faculty of Medicine and Life Sciences, University of Chester, Chester, UK.
| |
Collapse
|
47
|
Frangou E, Garantziotis P, Grigoriou M, Banos A, Nikolopoulos D, Pieta A, Doumas SA, Fanouriakis A, Hatzioannou A, Manolakou T, Alissafi T, Verginis P, Athanasiadis E, Dermitzakis E, Bertsias G, Filia A, Boumpas DT. Cross-species transcriptome analysis for early detection and specific therapeutic targeting of human lupus nephritis. Ann Rheum Dis 2022; 81:1409-1419. [PMID: 35906002 PMCID: PMC9484391 DOI: 10.1136/annrheumdis-2021-222069] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 04/08/2022] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Patients with lupus nephritis (LN) are in urgent need for early diagnosis and therapeutic interventions targeting aberrant molecular pathways enriched in affected kidneys. METHODS We used mRNA-sequencing in effector (spleen) and target (kidneys, brain) tissues from lupus and control mice at sequential time points, and in the blood from 367 individuals (261 systemic lupus erythematosus (SLE) patients and 106 healthy individuals). Comparative cross-tissue and cross-species analyses were performed. The human dataset was split into training and validation sets and machine learning was applied to build LN predictive models. RESULTS In murine SLE, we defined a kidney-specific molecular signature, as well as a molecular signature that underlies transition from preclinical to overt disease and encompasses pathways linked to metabolism, innate immune system and neutrophil degranulation. The murine kidney transcriptome partially mirrors the blood transcriptome of patients with LN with 11 key transcription factors regulating the cross-species active LN molecular signature. Integrated protein-to-protein interaction and drug prediction analyses identified the kinases TRRAP, AKT2, CDK16 and SCYL1 as putative targets of these factors and capable of reversing the LN signature. Using murine kidney-specific genes as disease predictors and machine-learning training of the human RNA-sequencing dataset, we developed and validated a peripheral blood-based algorithm that discriminates LN patients from normal individuals (based on 18 genes) and non-LN SLE patients (based on 20 genes) with excellent sensitivity and specificity (area under the curve range from 0.80 to 0.99). CONCLUSIONS Machine-learning analysis of a large whole blood RNA-sequencing dataset of SLE patients using human orthologs of mouse kidney-specific genes can be used for early, non-invasive diagnosis and therapeutic targeting of LN. The kidney-specific gene predictors may facilitate prevention and early intervention trials.
Collapse
Affiliation(s)
- Eleni Frangou
- Laboratory of Autoimmunity and Inflammation, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
- Department of Nephrology, Limassol General Hospital, Limassol, Cyprus
| | - Panagiotis Garantziotis
- Laboratory of Autoimmunity and Inflammation, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
- Department of Clinical Immunology and Rheumatology, Medical University Hannover, Hannover, Germany
| | - Maria Grigoriou
- Laboratory of Autoimmunity and Inflammation, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Aggelos Banos
- Laboratory of Autoimmunity and Inflammation, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Dionysis Nikolopoulos
- Laboratory of Autoimmunity and Inflammation, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Antigone Pieta
- Laboratory of Autoimmunity and Inflammation, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Stavros A Doumas
- Laboratory of Autoimmunity and Inflammation, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Antonis Fanouriakis
- Laboratory of Autoimmunity and Inflammation, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Aikaterini Hatzioannou
- Laboratory of Autoimmunity and Inflammation, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Theodora Manolakou
- Laboratory of Autoimmunity and Inflammation, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Themis Alissafi
- Laboratory of Autoimmunity and Inflammation, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Panayotis Verginis
- Laboratory of Autoimmunity and Inflammation, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Emmanouil Athanasiadis
- Laboratory of Autoimmunity and Inflammation, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Emmanouil Dermitzakis
- Department of Genetic Medicine and Development and Institute of Genetics and Genomics of Geneva (iG3), University of Geneva Medical School, Geneve, Switzerland
| | - George Bertsias
- Laboratory of Rheumatology, Autoimmunity and Inflammation, University of Crete Medical School, Heraklion, Greece
| | - Anastasia Filia
- Laboratory of Autoimmunity and Inflammation, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Dimitrios T Boumpas
- Laboratory of Autoimmunity and Inflammation, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
- 4th Department of Medicine, National and Kapodistrian University of Athens Medical School, Athens, Greece
- Medical School, University of Cyprus, Nicosia, Cyprus
| |
Collapse
|
48
|
Wu J, Shao X, Shen J, Lin Q, Zhu X, Li S, Li J, Zhou W, Qi C, Ni Z. Downregulation of PPARα mediates FABP1 expression, contributing to IgA nephropathy by stimulating ferroptosis in human mesangial cells. Int J Biol Sci 2022; 18:5438-5458. [PMID: 36147466 PMCID: PMC9461665 DOI: 10.7150/ijbs.74675] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 08/17/2022] [Indexed: 11/20/2022] Open
Abstract
Immunoglobulin A nephropathy (IgAN) is the commonest primary glomerulonephritis, and a major cause of end-stage renal disease; however, its pathogenesis requires elucidation. Here, a hub gene, FABP1, and signaling pathway, PPARα, were selected as key in IgAN pathogenesis by combined weighted gene correlation network analysis of clinical traits and identification of differentially expressed genes from three datasets. FABP1 and PPARα levels were lower in IgAN than control kidney, and linearly positively correlated with one another, while FABP1 levels were negatively correlated with urinary albumin-to-creatinine ratio, and GPX4 levels were significantly decreased in IgAN. In human mesangial cells (HMCs), PPARα and FABP1 levels were significantly decreased after Gd-IgA1 stimulation and mitochondria appeared structurally damaged, while reactive oxygen species (ROS) and malondialdehyde (MDA) were significantly increased, and glutathione and GPX4 decreased, relative to controls. GPX4 levels were decreased, and those of ACSL4 increased on siPPARα and siFABP1 siRNA treatment. In PPARα lentivirus-transfected HMCs stimulated by Gd-IgA1, ROS, MDA, and ACSL4 were decreased; glutathione and GPX4, and immunofluorescence colocalization of PPARα and GPX4, increased; and damaged mitochondria reduced. Hence, PPARα pathway downregulation can reduce FABP1 expression, affecting GPX4 and ACSL4 levels, causing HMC ferroptosis, and contributing to IgAN pathogenesis.
Collapse
Affiliation(s)
- Jingkui Wu
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xinghua Shao
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jianxiao Shen
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qisheng Lin
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xuying Zhu
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shu Li
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jialin Li
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wenyan Zhou
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chaojun Qi
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhaohui Ni
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
49
|
Lv F, He Y, Xu H, Li Y, Han L, Yan L, Lang H, Zhao Y, Zhao Z, Qi Y. CD36 aggravates podocyte injury by activating NLRP3 inflammasome and inhibiting autophagy in lupus nephritis. Cell Death Dis 2022; 13:729. [PMID: 35999224 PMCID: PMC9399182 DOI: 10.1038/s41419-022-05179-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/04/2022] [Accepted: 08/10/2022] [Indexed: 01/21/2023]
Abstract
A major cause of proteinuria in lupus nephritis (LN) is podocyte injury, and determining potential therapeutic targets to prevent podocyte injury is important from a clinical perspective in the treatment of LN. CD36 is involved in podocyte injury in several glomerulopathies and was reported to be a vital candidate gene in LN. Here, we determined the role of CD36 in the podocyte injury of LN and the underlying mechanisms. We observed that CD36 and NLRP3 (NLR family pyrin domain containing 3) were upregulated in the podocytes of lupus nephritis patients and MRL/lpr mice with renal impairment. In vitro, CD36, NLRP3 inflammasome, and autophagy were elevated accompanied with increased podocyte injury stimulated by IgG extracted from lupus nephritis patients compared that from healthy donors. Knocking out CD36 with the CRISPR/cas9 system decreased the NLRP3 inflammasome levels, increased the autophagy levels and alleviated podocyte injury. By enhancing autophagy, NLRP3 inflammasome was decreased and podocyte injury was alleviated. These results demonstrated that, in lupus nephritis, CD36 promoted podocyte injury by activating NLRP3 inflammasome and inhibiting autophagy by enhancing which could decrease NLRP3 inflammasome and alleviate podocyte injury.
Collapse
Affiliation(s)
- Fu Lv
- grid.412633.10000 0004 1799 0733Nephrology Hospital, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Henan 450052 China
| | - Yingxin He
- grid.207374.50000 0001 2189 3846School of Pharmaceutical Sciences, Zhengzhou University, 100 Ke xue Avenue, Zhengzhou, Henan 450001 China
| | - Hongde Xu
- grid.207374.50000 0001 2189 3846School of Pharmaceutical Sciences, Zhengzhou University, 100 Ke xue Avenue, Zhengzhou, Henan 450001 China
| | - Yongchun Li
- grid.207374.50000 0001 2189 3846School of Pharmaceutical Sciences, Zhengzhou University, 100 Ke xue Avenue, Zhengzhou, Henan 450001 China
| | - Lipei Han
- grid.412633.10000 0004 1799 0733Nephrology Hospital, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Henan 450052 China
| | - Lijie Yan
- grid.207374.50000 0001 2189 3846School of Pharmaceutical Sciences, Zhengzhou University, 100 Ke xue Avenue, Zhengzhou, Henan 450001 China
| | - Hui Lang
- grid.207374.50000 0001 2189 3846School of Pharmaceutical Sciences, Zhengzhou University, 100 Ke xue Avenue, Zhengzhou, Henan 450001 China
| | - Yafei Zhao
- grid.412633.10000 0004 1799 0733Nephrology Hospital, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Henan 450052 China
| | - Zhanzheng Zhao
- grid.412633.10000 0004 1799 0733Nephrology Hospital, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Henan 450052 China
| | - Yuanyuan Qi
- grid.412633.10000 0004 1799 0733Nephrology Hospital, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Henan 450052 China
| |
Collapse
|
50
|
Zhou X, Zhang Y, Wang N. Systematic identification of key extracellular proteins as the potential biomarkers in lupus nephritis. Front Immunol 2022; 13:915784. [PMID: 35967373 PMCID: PMC9366080 DOI: 10.3389/fimmu.2022.915784] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/01/2022] [Indexed: 11/21/2022] Open
Abstract
Background Lupus nephritis (LN) is the most common and severe clinical manifestation of systemic lupus erythematosus (SLE) with considerable morbidity/mortality and limited treatment options. Since kidney biopsy is a relative hysteretic indicator, it is indispensable to investigate potential biomarkers for early diagnosis and predicting clinical outcomes of LN patients. Extracellular proteins may become the promising biomarkers by the secretion into body fluid. Our study linked extracellular proteins with lupus nephritis to identify the emerging biomarkers. Methods The expression profiling data were acquired from the Gene Expression Omnibus (GEO) database. Meanwhile, the two gene lists encoding extracellular proteins were collected from the Human Protein Atlas (HPA) and UniProt database. Subsequently, the extracellular protein-differentially expressed genes (EP-DEGs) were screened out, and the key EP-DEGs were determined by MCODE, MCC, and Degree methods via the protein–protein interaction (PPI) network. The expression level, immune characteristics, and diagnostic value of these candidate biomarkers were investigated. Finally, the Nephroseq V5 tool was applied to evaluate the clinical significance of the key EP-DEGs. Results A total of 164 DEGs were acquired by comparing LN samples with healthy controls based on GSE32591 datasets. Then, 38 EP-DEGs were screened out through the intersection between DEGs and extracellular protein gene lists. Function enrichment analysis indicated that these EP-DEGs might participate in immune response and constitute the extracellular matrix. Four key EP-DEGs (LUM, TGFBI, COL1A2, and POSTN) were eventually identified as candidate biomarkers, and they were all overexpressed in LN samples. Except that LUM expression was negatively correlated with most of the immune regulatory genes, there was a positive correlation between the remaining three biomarkers and the immune regulatory genes. In addition, these biomarkers had high diagnostic value, especially the AUC value of the LUM–TGFBI combination which reached almost 1 (AUC = 0.973), demonstrating high accuracy in distinguishing LN from controls. Finally, we found a meaningful correlation of these biomarkers with sex, WHO class, and renal function such as glomerular filtration rate (GFR), serum creatinine level, and proteinuria. Conclusion In summary, our study comprehensively identified four key EP-DEGs exerting a vital role in LN diagnosis and pathogenesis and serving as promising therapeutic targets.
Collapse
Affiliation(s)
- Xue Zhou
- Department of Nephrology, Tianjin Haihe Hospital, Tianjin, China
- Haihe Hospital, Tianjin University, Tianjin, China
- Haihe Clinical School, Tianjin Medical University, Tianjin, China
| | - Yuefeng Zhang
- Department of Nephrology, Tianjin Haihe Hospital, Tianjin, China
- Haihe Hospital, Tianjin University, Tianjin, China
- Haihe Clinical School, Tianjin Medical University, Tianjin, China
| | - Ning Wang
- Medical Department, The Third Central Hospital of Tianjin, Tianjin, China
- *Correspondence: Ning Wang,
| |
Collapse
|